Yaguchi, Shigeo; Nishihara, Hitoshi; Kambhiranond, Waraporn; Stanley, Daniel; Apple, David
2008-01-01
To investigate the surface light scatter and optical quality of AcrySof lenses (Alcon Laboratories, Inc., Fort Worth, TX) following simulated aging of 20 years. AcrySof lenses were exposed to exaggerated thermal conditions to simulate up to 20 years of aging and were tested for surface light scatter and optical quality (modulation transfer function). There were no significant differences from baseline for either the surface light scatter or optical quality of the lenses over time. The current study demonstrated that surface light scatter on AcrySof lenses did not increase under conditions simulating 20 years of aging. Because the simulated aging environment contained no protein, this work indirectly supports the finding that surface light scatter is due to the deposition of a biomaterial on the lens surface rather than changes in the material. Optical performance integrity of the test lenses was maintained under severe environmental conditions.
Feedback control of thermal lensing in a high optical power cavity.
Fan, Y; Zhao, C; Degallaix, J; Ju, L; Blair, D G; Slagmolen, B J J; Hosken, D J; Brooks, A F; Veitch, P J; Munch, J
2008-10-01
This paper reports automatic compensation of strong thermal lensing in a suspended 80 m optical cavity with sapphire test mass mirrors. Variation of the transmitted beam spot size is used to obtain an error signal to control the heating power applied to the cylindrical surface of an intracavity compensation plate. The negative thermal lens created in the compensation plate compensates the positive thermal lens in the sapphire test mass, which was caused by the absorption of the high intracavity optical power. The results show that feedback control is feasible to compensate the strong thermal lensing expected to occur in advanced laser interferometric gravitational wave detectors. Compensation allows the cavity resonance to be maintained at the fundamental mode, but the long thermal time constant for thermal lensing control in fused silica could cause difficulties with the control of parametric instabilities.
Compensation of strong thermal lensing in high-optical-power cavities.
Zhao, C; Degallaix, J; Ju, L; Fan, Y; Blair, D G; Slagmolen, B J J; Gray, M B; Lowry, C M Mow; McClelland, D E; Hosken, D J; Mudge, D; Brooks, A; Munch, J; Veitch, P J; Barton, M A; Billingsley, G
2006-06-16
In an experiment to simulate the conditions in high optical power advanced gravitational wave detectors, we show for the first time that the time evolution of strong thermal lenses follows the predicted infinite sum of exponentials (approximated by a double exponential), and that such lenses can be compensated using an intracavity compensation plate heated on its cylindrical surface. We show that high finesse approximately 1400 can be achieved in cavities with internal compensation plates, and that mode matching can be maintained. The experiment achieves a wave front distortion similar to that expected for the input test mass substrate in the Advanced Laser Interferometer Gravitational Wave Observatory, and shows that thermal compensation schemes are viable. It is also shown that the measurements allow a direct measurement of substrate optical absorption in the test mass and the compensation plate.
Thermal lensing in ocular media
NASA Astrophysics Data System (ADS)
Vincelette, Rebecca Lee
2009-12-01
This research was a collaborative effort between the Air Force Research Laboratory (AFRL) and the University of Texas to examine the laser-tissue interaction of thermal lensing induced by continuous-wave, CW, near-infrared, NIR, laser radiation in the eye and its influence on the formation of a retinal lesion from said radiation. CW NIR laser radiation can lead to a thermal lesion induced on the retina given sufficient power and exposure duration as related to three basic parameters; the percent of transmitted energy to, the optical absorption of, and the size of the laser-beam created at the retina. Thermal lensing is a well-known phenomenon arising from the optical absorption, and subsequent temperature rise, along the path of the propagating beam through a medium. Thermal lensing causes the laser-beam profile delivered to the retina to be time dependent. Analysis of a dual-beam, multidimensional, high-frame rate, confocal imaging system in an artificial eye determined the rate of thermal lensing in aqueous media exposed to 1110, 1130, 1150 and 1318-nm wavelengths was related to the power density created along the optical axis and linear absorption coefficient of the medium. An adaptive optics imaging system was used to record the aberrations induced by the thermal lens at the retina in an artificial eye during steady-state. Though the laser-beam profiles changed over the exposure time, the CW NIR retinal damage thresholds between 1110--1319-nm were determined to follow conventional fitting algorithms which neglected thermal lensing. A first-order mathematical model of thermal lensing was developed by conjoining an ABCD beam propagation method, Beer's law of attenuation, and a solution to the heat-equation with respect to radial diffusion. The model predicted that thermal lensing would be strongest for small (< 4-mm) 1/e2 laser-beam diameters input at the corneal plane and weakly transmitted wavelengths where less than 5% of the energy is delivered to the retina. The model predicted thermal lensing would cause the retinal damage threshold for wavelengths above 1300-nm to increase with decreasing beam-diameters delivered to the corneal plane, a behavior which was opposite of equivalent conditions simulated without thermal lensing.
Dynamic Ice-Water Interactions Form Europa's Chaos Terrains
NASA Astrophysics Data System (ADS)
Blankenship, D. D.; Schmidt, B. E.; Patterson, G. W.; Schenk, P.
2011-12-01
Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. We present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. This model is consistent with key observations of chaos, predicts observables for future missions, and indicates that the surface is likely still active today[1]. We apply lessons from ice-water interaction in the terrestrial cryosphere to hypothesize a dynamic lense-collapse model to for Europa's chaos terrain. Chaos terrain morphology, like that of Conamara chaos and Thera Macula, suggests a four-phase formation [1]: 1) Surface deflection occurs as ice melts over ascending thermal plumes, as regularly occurs on Earth as subglacial volcanoes activate. The same process can occur at Europa if thermal plumes cause pressure melt as they cross ice-impurity eutectics. 2) Resulting hydraulic gradients and driving forces produce a sealed, pressurized melt lense, akin to the hydraulic sealing of subglacial caldera lakes. On Europa, the water cannot escape the lense due to the horizontally continuous ice shell. 3) Extension of the brittle ice lid above the lense opens cracks, allowing for the ice to be hydrofractured by pressurized water. Fracture, brine injection and percolation within the ice and possible iceberg toppling produces ice-melange-like granular matrix material. 4) Refreezing of the melt lense and brine-filled pores and cracks within the matrix results in raised chaos. Brine soaking and injection concentrates the ice in brines and adds water volume to the shell. As this englacial water freezes, the now water-filled ice will expand, not unlike the process of forming pingos and other "expansion ice" phenomena on Earth. The refreezing can raise the surface and create the oft-observed matrix "domes" In this presentation, we describe how catastrophic ice-water interactions on Earth have informed us about how such dynamics occur on Europa. We will discuss the observations of iceberg and matrix properties that imply shallow liquid water bodies on Europa, argue for the importance of granular mechanics in the interpretation of Europa's geology and present constraints on the properties of its ice shell. [1] Schmidt, B. E., Blankenship, D. D., Patterson, W., Schenk, P: Active chaos formation over shallow subsurface water on Europa, in review, 2011.
Parabolic single-crystal diamond lenses for coherent x-ray imaging
Terentyev, Sergey; Blank, Vladimir; Polyakov, Sergey; ...
2015-09-18
We demonstrate parabolic single-crystal diamond compound refractive lenses designed for coherent x-ray imaging resilient to extreme thermal and radiation loading expected from next generation light sources. To ensure the preservation of coherence and resilience, the lenses are manufactured from the highest-quality single-crystalline synthetic diamond material grown by a high-pressure high-temperature technique. Picosecond laser milling is applied to machine lenses to parabolic shapes with a ≃1 μm precision and surface roughness. The compound refractive lens comprised of six lenses with a radius of curvature R=200 μm at the vertex of the parabola and a geometrical aperture A=900 μm focuses 10 keVmore » x-ray photons from an undulator source at the Advanced Photon Source facility to a focal spot size of ≃20×90 μm 2 with a gain factor of ≃50-100.« less
NASA Technical Reports Server (NTRS)
Wood, V. E.; Busch, J. R.; Verber, C. M.
1982-01-01
Optical waveguide Luneburg lenses of arsenic trisulfide glass are described. The lenses are formed by thermal evaporation of As2S3 through suitably placed masks onto the surface of LiNbO3:Ti indiffused waveguides. The lenses are designed for input apertures up to 1 cm and for speeds of f/5 or better. They are designed to focus the TM sub 0 guided mode of a beam of wavelength, external to the guide, of 633 nm. The refractive index of the As2S3 films and the changes induced in the refractive index by exposure to short wavelength light were measured. Some correlation between film thickness and optical properties was noted. The short wavelength photosensitivity was used to shorten the lens focal length from the as deposited value. Lenses of rectangular shape, as viewed from above the guide, as well as conventional circular Luneburg lenses, were made. Measurements made on the lenses include thickness profile, general optical quality, focal length, quality of focal spot, and effect of ultraviolet irradiation on optical properties.
NASA Astrophysics Data System (ADS)
Rotz, R. R.; Milewski, A.
2013-12-01
In the Arabian Peninsula, freshwater recharge from rainfall is infrequent. Recharge is typically focused in small depressions that fill with seasonal runoff and potentially form freshwater lenses. This phenomenon has been verified in the Raudhatain watershed in Kuwait. This study aims to substantiate previously hypothesized lens locations and detect water in the subsurface by using thermal remote sensing and rainfall data. Potential freshwater lenses (~142) have been previously postulated throughout Kuwait and Saudi Arabia, but lack verification due to inadequate monitoring networks. We hypothesize that due to water's unique heat capacity, recharge zones can be detected by identifying areas with lower changes in surface radiance values than neighboring dry areas between day and night after peak or sustained rainfall. If successful, recharge zones and freshwater lenses can be identified and verified in remote hyper-arid regions. We collected 320 high-resolution (15m - 90m), low cloud cover (<10%) images in the visible near-infrared (VNIR) and thermal infrared (TIR) wavelengths obtained from the Advanced Spaceborne Thermal Emission and Reflection Radiometer sensor (ASTER) between 2004 and 2012. Overlapping day and night images were subtracted from each other to show surface radiance fluctuations and difference images were compared with rainfall data from Daily TRMM_3B42v7a between 2004 and 2012. Several lens locations, runoff channels, agricultural regions, and wetlands were detected in areas where radiance values change between 0.067 - 2.25 Wsr-1m-2 from day to night scenes and verified by Google Earth (15m), Landsat (30m), and ASTER VNIR (15m) images. Additionally, two seasonal peak rainfall (~35mm/day) events positively correlate with the surface radiance difference values. Surface radiance values for dry areas adjacent to the postulated lens locations range between 2.25 - 12.2 Wsr-1m-2. Results demonstrate the potential for shallow groundwater detection through the presence of ephemeral water bodies in hyper-arid regions en masse; however, the absence of comparable diurnal images limits data in these regions. Linking high rainfall events with low diurnal surface radiance images is ideal for capturing the presence of temporary surface runoff and recharge zones. Expanded research on hyper-arid regions including thermal values, proposed lens locations, and in-situ data will provide more data points and bolster the methodology.
Parabolic single-crystal diamond lenses for coherent x-ray imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terentyev, Sergey; Blank, Vladimir; Polyakov, Sergey
2015-09-14
We demonstrate parabolic single-crystal diamond compound refractive lenses designed for coherent x-ray imaging resilient to extreme thermal and radiation loading expected from next generation light sources. To ensure the preservation of coherence and resilience, the lenses are manufactured from the highest-quality single-crystalline synthetic diamond material grown by a high-pressure high-temperature technique. Picosecond laser milling is applied to machine lenses to parabolic with a similar or equal to 1 mu m precision and surface roughness. A compound refractive lens comprised of six lenses with a radius of curvature R = 200 mu m at the vertex of the parabola and amore » geometrical aperture A = 900 mu m focuses 10 keV x-ray photons from an undulator source at the Advanced Photon Source facility to a focal spot size of similar or equal to 20 x 90 mu m(2) with a gain factor of similar or equal to 50 - 100. (C) 2015 Author(s).« less
NASA Astrophysics Data System (ADS)
Faria, João.; Alves, J. L.; Nunes-Pereira, Eduardo J.
2017-08-01
The goal of this paper is to study in which extent the use of Zemax is suited for athermalization purposes. The research questions targeted in this paper are: what are the differences in the formulation of materials' thermal expansion between Zemax and Ansys; what is the impact on optical quality between both approaches; quantification of the differences between the two methodologies in terms of back focal length, spot radius and modulation transfer function (MTF). To quantify the differences between both approaches, it is used an objective working between -40°C and 110°C. Initially, only Zemax was used to evaluate the objective. Zemax considers a linear geometric expansion of every optical surface, which is here proved to not be the best approach to find a deformed geometry after a thermal load. The second approach is to create a 3D model and perform a finite element simulation in Ansys software. The input data is the thermal variation and the output is the deformed geometry of the lenses. Using SigFit software, it was possible to generate new mathematical equations of the deformed lenses and import this data into Zemax to start a new ray tracing. The new shape and location of lenses differs for both scenarios, and the difference in the focal plane shift is around 12%. The maximum spot radius difference is 27% and MTF relative error goes up to 16%. Zemax as a standalone software is valid if used as an initial guess for the optical designer. However, as a final stage for validation and detailed design, the approach containing Ansys and SigFit should be preferable.
NASA Astrophysics Data System (ADS)
Mottaghibonab, A.; Thiele, H.; Gubbini, E.; Dubowy, M.; Gal, C.; Mecsaci, A.; Gawlik, K.; Vongehr, M.; Grupp, F.; Penka, D.; Wimmer, C.; Bender, R.
2016-07-01
The Near Infrared Spectro-Photometer Optical assembly (NIOA) of EUCLID satellite requires high precision large lens holders with different lens materials, shapes and diameters. The aspherical lenses are glued into their separate CTE matched lens holder. The gluing of the lenses in their holder with 2K epoxy is selected as bonding process to minimize the stress in the lenses to achieve the required surface form error (SFE) performance (32nm) and lens position stability (+/-10μm) due to glue shrinkage. Adhesive shrinkage stress occurs during the glue curing at room temperature and operation in cryogenic temperatures, which might overstress the lens, cause performance loss, lens breakage or failure of the gluing interface. The selection of the suitable glue and required bonding parameters, design and qualification of the gluing interface, development and verification of the gluing process was a great challenge because of the low TRL and heritage of the bonding technology. The different material combinations (CaF2 to SS316L, LF5G15 and S-FTM16 to Titanium, SUPRASIL3001 to Invar M93), large diameter (168mm) and thin edge of the lenses, cryogenic nonoperational temperature (100K) and high performance accuracy of the lenses were the main design driver of the development. The different coefficients of thermal expansion (CTE) between lens and lens holder produce large local mechanical stress. As hygroscopic crystal calcium fluoride (CaF2) is very sensitive to moisture therefore an additional surface treatment of the gluing area is necessary. Extensive tests e.g glue handling and single lap shear tests are performed to select the suitable adhesive. Interface connection tests are performed to verify the feasibility of selected design (double pad design), injection channel, the roughness and treatment of the metal and lens interfaces, glue thickness, glue pad diameter and the gluing process. CTE and dynamic measurements of the glue, thermal cycling, damp- heat, connection shear and tension tests with all material combinations at RT and 100K are carried out to qualify the gluing interface. The gluing interface of the glued lenses in their mounts is also qualified with thermal cycling, 3D coordinate measurements before and after environmental tests, Polarimetry and vibration test of the lens assemblies. A multi-function double pad gluing tool and lens mounting tool is designed, manufactured and verified to meet the lens positioning and alignment performance of the lens in the holder which provides the possibility to glue lenses, filters, mirrors with different diameters, shapes and thickness with +/-10μm accuracy in plane, out of plane and +/-10 arcsec in tip/tilt with respect to the lens holder interface. The paper presents the glue interface qualification results, the qualification/verification methods, the developed ground support equipment and the gluing process of the EUCLID high precision large cryogenic lens mounts. Test results achieved in the test campaign demonstrate the suitability of the selected adhesive, glue pad design, interface parameters and the processes for the precise gluing of the lenses in lens holders for all lenses. The qualification models of the NIOA are successfully glued and qualified. The developed process can also be used for other glass materials e.g. MaF2 and optical black coated metallic surfaces.
NASA Astrophysics Data System (ADS)
Terentyev, Sergey; Blank, Vladimir D.; Polyakov, Sergey; Zholudev, Sergey; Snigirev, Anatoly A.; Polikarpov, Maxim; Kolodziej, Tomasz; Qian, Jun; Zhou, Hua; Shvyd'ko, Yuri V.
2016-09-01
We demonstrate parabolic single-crystal diamond compound refractive lenses [1] designed for coherent x-ray imaging resilient to extreme thermal and radiation loading expected from next generation light sources. To ensure the preservation of coherence and resilience, the lenses are manufactured from the highest-quality single-crystalline synthetic diamond material grown by a high-pressure high-temperature technique. Picosecond laser milling is applied to machine lenses to parabolic shapes with a 1-micron precision and surface roughness. A compound refractive lens comprised of six lenses with a radius of curvature R=200 microns at the vertex of the parabola and a geometrical aperture A=900 microns focuses 10 keV x-ray photons from an undulator source at the Advanced Photon Source facility to a focal spot size of 10x40 microns^2 with a gain factor of 100. [1] S. Terentyev, V. Blank, S. Polyakov, S. Zholudev, A. Snigirev, M. Polikarpov, T. Kolodziej, J. Qian, H. Zhou, and Yu. Shvyd'ko Applied Physics Letters 107, 111108 (2015); doi: 10.1063/1.4931357
NASA Astrophysics Data System (ADS)
Schmidt, B. E.; Blankenship, D. D.; Patterson, G. W.; Schenk, P. M.
2012-04-01
Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. While models have suggested that partial melt within a thick shell or melt-through of a thin shell may form chaos, neither model has been able to definitively explain all observations of chaos terrain. However, we present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. Our analysis of the geomorphology of Conamara Chaos and Thera Macula, was used to infer and test a four-stage lens-collapse chaos formation model: 1) Thermal plumes of warm, pure ice ascend through the shell melting the impure brittle ice above, producing a lake of briny water and surface down draw due to volume reduction. 2) Surface deflection and driving force from the plume below hydraulically seals the water in place. 3) Extension of the brittle ice lid generates fractures from below, allowing brines to enter and fluidize the ice matrix. 4) As the lens and now brash matrix refreeze, thermal expansion creates domes and raises the chaos feature above the background terrain. This new "lense-collapse" model indicates that chaos features form in the presence of a great deal of liquid water, and that large liquid water bodies exist within 3km of Europa's surface comparable in volume to the North American Great Lakes. The detection of shallow subsurface "lakes" implies that the ice shell is recycling rapidly and that Europa may be currently active. In this presentation, we will explore environments on Europa and their analogs on Earth, from collapsing Antarctic ice shelves to to subglacial volcanos in Iceland. I will present these new analyses, and describe how this new perspective informs the debate about Europa's habitability and future exploration.
Miniature electrically tunable rotary dual-focus lenses
NASA Astrophysics Data System (ADS)
Zou, Yongchao; Zhang, Wei; Lin, Tong; Chau, Fook Siong; Zhou, Guangya
2016-03-01
The emerging dual-focus lenses are drawing increasing attention recently due to their wide applications in both academia and industries, including laser cutting systems, microscopy systems, and interferometer-based surface profilers. In this paper, a miniature electrically tunable rotary dual-focus lens is developed. Such a lens consists of two optical elements, each having an optical flat surface and one freeform surface. The two freeform surfaces are initialized with the governing equation Ar2θ (A is the constant to be determined, r and θ denote the radii and angles in the polar coordinate system) and then optimized by ray tracing technique with additional Zernike polynomial terms for aberration correction. The freeform surfaces are achieved by a single-point diamond turning technique and then a PDMS-based replication process is utilized to materialize the final lens elements. To drive the two coaxial elements to rotate independently, two MEMS thermal rotary actuators are developed and fabricated by a standard MUMPs process. The experimental results show that the MEMS thermal actuator provides a maximum rotation angle of about 8.2 degrees with an input DC voltage of 6.5 V, leading to a wide tuning range for both the two focal lengths of the lens. Specifically, one focal length can be tuned from about 30 mm to 20 mm while the other one can be adjusted from about 30 mm to 60 mm.
Electrodynamic Dust Shield for Lunar/ISS Experiment Project
NASA Technical Reports Server (NTRS)
Zeitlin, Nancy; Calle, Carlos; Hogue, Michael; Johansen, Michael; Mackey, Paul
2015-01-01
The Electrostatics and Surface Physics Laboratory at Kennedy Space Center is developing a dust mitigation experiment and testing it on the lunar surface and on the International Space Station (ISS). The Electrodynamic Dust Shield (EDS) clears dust off surfaces and prevents accumulation by using a pattern of electrodes to generate a non-uniform electric field over the surface being protected. The EDS experiment will repel dust off materials such as painted Kapton and glass to demonstrate applications for thermal radiators, camera lenses, solar panels, and other hardware and equipment.
Sensitivity of a three-mirror cavity to thermal and nonlinear lensing: Gaussian-beam analysis.
Anctil, G; McCarthy, N; Piché, M
2000-12-20
We consider a compact three-mirror cavity consisting of a flat output coupler, a curved folding mirror, and an active medium with one facet cut at the Brewster angle and the other facet coated for unit reflectivity. We examine the sensitivity to thermal lensing and to self-focusing in the active medium of the Gaussian beam that is circulating in that cavity. We use a simple thin-lens model; the astigmatism of the beam that is circulating in the cavity and the nonlinear coupling between the field distributions along the two orthogonal axes are taken into account. We find configurations in which beam ellipticity is compensated for at either end of the cavity in the presence of thermal lensing. We have derived an analytical criterion that predicts the sensitivity of the beam size to nonlinear lensing. The ability of the cavity to favor self-mode locking is found to be sensitive to the strength of thermal lensing. In the absence of thermal lensing, cavities operated as telescopic systems (C = 0) or self-imaging systems (B = 0) are most appropriate for achieving self-mode locking, with nonlinear mode selection accomplished through saturation of the spatially varying laser gain. We identify conditions for which self-mode locking can be produced by variable-reflectivity output couplers with either maximum or minimum reflectivity at the center of the coupler. We use our model to estimate the nonlinear gain produced in laser cavities equipped with such output couplers. We identify a cavity configuration for which nonlinear lensing can simultaneously produce mode locking and correction of beam ellipticity at the output coupler.
Sensitivity of a Three-Mirror Cavity to Thermal and Nonlinear Lensing: Gaussian-Beam Analysis
NASA Astrophysics Data System (ADS)
Anctil, Geneviève; McCarthy, Nathalie; Piché, Michel
2000-12-01
We consider a compact three-mirror cavity consisting of a flat output coupler, a curved folding mirror, and an active medium with one facet cut at the Brewster angle and the other facet coated for unit reflectivity. We examine the sensitivity to thermal lensing and to self-focusing in the active medium of the Gaussian beam that is circulating in that cavity. We use a simple thin-lens model; the astigmatism of the beam that is circulating in the cavity and the nonlinear coupling between the field distributions along the two orthogonal axes are taken into account. We find configurations in which beam ellipticity is compensated for at either end of the cavity in the presence of thermal lensing. We have derived an analytical criterion that predicts the sensitivity of the beam size to nonlinear lensing. The ability of the cavity to favor self-mode locking is found to be sensitive to the strength of thermal lensing. In the absence of thermal lensing, cavities operated as telescopic systems ( C 0 ) or self-imaging systems ( B 0 ) are most appropriate for achieving self-mode locking, with nonlinear mode selection accomplished through saturation of the spatially varying laser gain. We identify conditions for which self-mode locking can be produced by variable-reflectivity output couplers with either maximum or minimum reflectivity at the center of the coupler. We use our model to estimate the nonlinear gain produced in laser cavities equipped with such output couplers. We identify a cavity configuration for which nonlinear lensing can simultaneously produce mode locking and correction of beam ellipticity at the output coupler.
Adaptive beam shaping by controlled thermal lensing in optical elements
NASA Astrophysics Data System (ADS)
Arain, Muzammil A.; Quetschke, Volker; Gleason, Joseph; Williams, Luke F.; Rakhmanov, Malik; Lee, Jinho; Cruz, Rachel J.; Mueller, Guido; Tanner, D. B.; Reitze, David. H.
2007-04-01
We describe an adaptive optical system for use as a tunable focusing element. The system provides adaptive beam shaping via controlled thermal lensing in the optical elements. The system is agile, remotely controllable, touch free, and vacuum compatible; it offers a wide dynamic range, aberration-free focal length tuning, and can provide both positive and negative lensing effects. Focusing is obtained through dynamic heating of an optical element by an external pump beam. The system is especially suitable for use in interferometric gravitational wave interferometers employing high laser power, allowing for in situ control of the laser modal properties and compensation for thermal lensing of the primary laser. Using CO2 laser heating of fused-silica substrates, we demonstrate a focal length variable from infinity to 4.0 m, with a slope of 0.082 diopter/W of absorbed heat. For on-axis operation, no higher-order modes are introduced by the adaptive optical element. Theoretical modeling of the induced optical path change and predicted thermal lens agrees well with measurement.
Adaptive beam shaping by controlled thermal lensing in optical elements.
Arain, Muzammil A; Quetschke, Volker; Gleason, Joseph; Williams, Luke F; Rakhmanov, Malik; Lee, Jinho; Cruz, Rachel J; Mueller, Guido; Tanner, D B; Reitze, David H
2007-04-20
We describe an adaptive optical system for use as a tunable focusing element. The system provides adaptive beam shaping via controlled thermal lensing in the optical elements. The system is agile, remotely controllable, touch free, and vacuum compatible; it offers a wide dynamic range, aberration-free focal length tuning, and can provide both positive and negative lensing effects. Focusing is obtained through dynamic heating of an optical element by an external pump beam. The system is especially suitable for use in interferometric gravitational wave interferometers employing high laser power, allowing for in situ control of the laser modal properties and compensation for thermal lensing of the primary laser. Using CO(2) laser heating of fused-silica substrates, we demonstrate a focal length variable from infinity to 4.0 m, with a slope of 0.082 diopter/W of absorbed heat. For on-axis operation, no higher-order modes are introduced by the adaptive optical element. Theoretical modeling of the induced optical path change and predicted thermal lens agrees well with measurement.
O'Brien, C; Charman, W N
2006-05-01
After a preliminary investigation of the effects of tool feed rate and spindle speed on the surface roughness of unhydrated, lathe-cut polymacon surfaces, a laboratory and clinical comparison was made between lenses with identical parameters except that the lathe-cut posterior surface was left unpolished in the "test" lenses and was polished in the "control" lenses. The lenses had moulded anterior surfaces. Laboratory comparisons included surface roughness, lens power and its uniformity across the surface. Double-blind clinical trials over 4-hour (27 subjects) and 1-month (10 subjects) periods, involved one eye of each subject wearing a "test" lens and the other, a "control" lens. No clinically significant differences were found between the results for the test and control lenses. It is concluded that today's lathing technology makes a final polishing stage unnecessary.
Versatile Chromium-Doped Zinc Selenide Infrared Laser Sources
2010-05-01
ability of the fixed- angle curved mirrors in the Z- cavity to compensate for the increasing astigmatism from the Brewster - angle thermal lens in the...duty cycle at varying PRFs. 20 Table 4: Thermal Lensing Power at 1 kHz PRF, 1 W peak power, Q-switched Laser PRF (kHz) Thermal lens power (m-1...with it some negative astigmatism effects which are compounded by thermal lensing in the crystal which is now at an angle . To counteract this
Yaguchi, Shigeo; Nishihara, Hitoshi; Kambhiranond, Waraporn; Stanley, Daniel; Apple, David J
2008-01-01
To investigate the cause of light scatter measured on the surface of AcrySof intraocular lenses (Alcon Laboratories, Inc., Fort Worth, TX) retrieved from pseudophakic postmortem human eyes. Ten intraocular lenses (Alcon AcrySofModel MA60BM) were retrieved postmortem and analyzed for light scatter before and after removal of surface-bound biofilms. Six of the 10 lenses exhibited light scatter that was clearly above baseline levels. In these 6 lenses, both peak and average pixel density were reduced by approximately 80% after surface cleaning. The current study demonstrates that a coating deposited in vivo on the lens surface is responsible for the light scatter observed when incident light is applied.
Scleral Lenses in the Management of Corneal Irregularity and Ocular Surface Disease.
Shorter, Ellen; Harthan, Jennifer; Nau, Cherie B; Nau, Amy; Barr, Joseph T; Hodge, David O; Schornack, Muriel M
2017-09-29
To describe current practice patterns regarding the use of scleral lens therapy in the management of corneal irregularity and ocular surface disease among eye care providers who fit scleral lenses. The Scleral Lenses in Current Ophthalmic Practice: an Evaluation (SCOPE) study group conducted an electronic survey of eye care providers from January 15 to March 31, 2015. Respondents ranked management options for corneal irregularity in the order in which they would generally consider their use. Respondents also ranked options for the management of ocular surface disease in the order in which they would use each of the treatments. Results for each option were analyzed as percentage first-place ranking; percentage first-, second-, or third-place ranking; and mean rank score. Survey responses were obtained from 723 providers who had fit 5 or more scleral lenses. Of these respondents, 629 ranked options for management of corneal irregularity and 612 ranked options for management of ocular surface disease. Corneal rigid gas-permeable lenses were the first option for management of corneal irregularity for 44% of respondents, and scleral lenses were the first option for 34% of respondents. Lubricant drops were the first therapeutic recommendation for ocular surface disease for 84% of respondents, and scleral lenses were ranked first by 6% of respondents. Scleral lenses rank second only to corneal rigid gas-permeable lenses for management of corneal irregularity. Scleral lenses are generally considered after other medical intervention and before surgery for the management of ocular surface disease.
NASA Astrophysics Data System (ADS)
Dürsteler, Juan Carlos
2016-12-01
A review of the use of aspherics in the last decades, understood in a broad sense as encompassing single-vision lenses with conicoid surfaces and free-form and progressive addition lenses (PALs) as well, is provided. The appearance of conicoid surfaces to correct aphakia and later to provide thinner and more aesthetically appealing plus lenses and the introduction of PALs and free-form surfaces have shaped the advances in spectacle lenses in the last three decades. This document basically considers the main target optical aberrations, the idiosyncrasy of single lenses for correction of refractive errors and the restrictions and particularities of PAL design and their links to science vision and perception.
Thin film absorption characterization by focus error thermal lensing
NASA Astrophysics Data System (ADS)
Domené, Esteban A.; Schiltz, Drew; Patel, Dinesh; Day, Travis; Jankowska, E.; Martínez, Oscar E.; Rocca, Jorge J.; Menoni, Carmen S.
2017-12-01
A simple, highly sensitive technique for measuring absorbed power in thin film dielectrics based on thermal lensing is demonstrated. Absorption of an amplitude modulated or pulsed incident pump beam by a thin film acts as a heat source that induces thermal lensing in the substrate. A second continuous wave collimated probe beam defocuses after passing through the sample. Determination of absorption is achieved by quantifying the change of the probe beam profile at the focal plane using a four-quadrant detector and cylindrical lenses to generate a focus error signal. This signal is inherently insensitive to deflection, which removes noise contribution from point beam stability. A linear dependence of the focus error signal on the absorbed power is shown for a dynamic range of over 105. This technique was used to measure absorption loss in dielectric thin films deposited on fused silica substrates. In pulsed configuration, a single shot sensitivity of about 20 ppm is demonstrated, providing a unique technique for the characterization of moving targets as found in thin film growth instrumentation.
Contact Lenses Wettability In Vitro: Effect of Surface-Active Ingredients
Lin, Meng C.; Svitova, Tatyana F.
2010-01-01
Purpose To investigate the release of surface-active agents (surfactants) from unworn soft contact lenses and their influence on the lens surface wettability in vitro. Methods Surface tension (ST) of blister pack solutions was measured by pendant-drop technique. STs at the air-aqueous interface and contact angles (CAs) of four conventional and seven silicone hydrogel (SiH) soft contact lenses (SCLs) were evaluated in a dynamic-cycling regime using a modified captive-bubble tensiometer-goniometer. Measurements were performed immediately after removal from blister packs, and after soaking in a glass vial filled with a surfactant-free solution, which was replaced daily for one week. Lens surface wettability was expressed as adhesion energy (AE) according to Young’s equation. Results STs of all blister pack solutions were lower than the reference ST of pure water (72.5 mN/m), indicating the presence of surfactants. When lenses were depleted of surfactants by soaking, the STs of all studied lenses and advancing CAs of selected lenses increased (p < 0.001). Receding CAs of all studied lenses were 12° ± 5° and were not affected by the presence of surfactants. For most of the conventional lenses, the surface wettability was largely dependent on surfactants, and reduced significantly after surfactant depletion. In contrast, most SiH lenses exhibited stable and self-sustained surface wettability in vitro. Conclusions The manufacturer-added surfactants affected wetting properties of all studied SCLs, although to different degrees. PMID:20400924
Hotta, Fumika; Imai, Shoji; Miyamoto, Tatsuro; Mitamura-Aizawa, Sayaka; Mitamura, Yoshinori
2015-01-01
Objective: To investigate the surfaces and principal elements of the colorants of cosmetically tinted contact lenses (Cos-CLs). Methods: We analyzed the surfaces and principal elements of the colorants of five commercially available Cos-CLs using scanning electron microscopy with energy-dispersive x-ray analysis. Results: In two Cos-CLs, the anterior and posterior surfaces were smooth, and colorants were found inside the lens. One lens showed colorants located to a depth of 8 to 14 μm from the anterior side of the lens. In the other lens, colorants were found in the most superficial layer on the posterior surface, although a coated layer was observed. The colorants in the other three lenses were deposited on either lens surface. Although a print pattern was uniform in embedded type lenses, uneven patterns were apparent in dot-matrix design lenses. Colorants used in all lenses contained chlorine, iron, and titanium. In the magnified scanning electron microscopy images of a certain lens, chlorine is exuded and spread. Conclusions: Cosmetically tinted contact lenses have a wide variety of lens surfaces and colorants. Colorants may be deposited on the lens surface and consist of an element that has tissue toxicity. PMID:25799458
Evaporation of a Volatile Liquid Lens on the Surface of an Immiscible Liquid.
Sun, Wei; Yang, Fuqian
2016-06-21
The evaporation behavior of toluene and hexane lenses on the surface of deionized (DI) water is studied. The toluene and hexane lenses during evaporation experience an advancing stage and a receding stage. There exists a significant difference of the evaporation behavior between the toluene lenses and the hexane lenses. The lifetime and largest diameter of both the toluene and hexane lenses increase with increasing the initial volume of the lenses. For the evaporation of the toluene lenses, the lifetime and largest diameter of the lenses decrease with increasing the temperature of DI water. The effect of the residual of the oil molecules on the evaporation of toluene lenses at a temperature of 21 °C is investigated via the evaporation of a series of consecutive toluene lenses being placed on the same position of the surface of DI water. The temporal evolution of the toluene lenses placed after the first toluene lens deviates significantly from that of the first toluene lens. Significant increase of the receding speed occurs at the dimensionless time in a range 0.7-0.8.
Omaña-Molina, Maritza A; González-Robles, Arturo; Salazar-Villatoro, Lizbeth; Bernal-Escobar, Alexander; Durán-Díaz, Angel; Méndez-Cruz, Adolfo René; Martínez-Palomo, Adolfo
2014-05-01
To describe the adhesion properties of Acanthamoeba castellanii trophozoites to silicone hydrogel contact lenses of first generation (lotrafilcon A), second generation (galyfilcon A), and third generation (comfilcon A) and correlate the results with their specific surface characteristics, time of interaction, and suspension media. Qualitative and quantitative assessments of the adhesion of 200 trophozoites of A. castellanii on contact lenses in culture medium (Bacto Casitone) and isotonic saline (IS) at different time points (15 minutes and 6 hours) were determined. By scanning electron microscopy, A. castellanii trophozoites were observed firmly adhered to the surface of hydrogel lenses after 15 minutes of interaction. The surface of lotrafilcon A lenses on which amoebae adhere better (16.4±10.2 amoebae/lens section) is rough and folded, which increases the contact surface with trophozoites, allowing acanthopodia to attach firmly. Contrarily, galyfilcon A lenses have a smoother surface, and lower numbers of amoebae were observed adhered to these lenses (4.7±2.9 amoebae/lens section). Even fewer amoebae adhered to the smoother surface of the comfilcon A lens (2.2±1.7 amoebae/lens section). Trophozoites showed similar behavior in both Bacto Casitone medium and IS. A rough surface may contribute to better adhesion of amoebae to silicone hydrogel lenses. Although a reduced numbers of trophozoites adhered to smooth lenses, trophozoites are a risk factor for amoebic keratitis. Isotonic saline facilitated trophozoite survival, suggesting that homemade saline solutions may contribute to the persistence of trophozoites, especially when there is no proper hygiene regimen used with the contact lens cases.
High-Power, Widely-Tunable Cr2+:ZnSe Master Oscillator Power Amplifier Systems
2010-05-01
Z-cavity to compensate for the increasing astigmatism from the Brewster - angle thermal lens in the gain element. However, it should be noted that the...crystal at Brewster’s angle carries with it some negative astigmatism effects which are compounded by thermal lensing in the crystal which is now at an...respect to physical properties [13, 14]. Power scaling of chromium lasers has long been hampered by the problem of thermal lensing due to the high thermo
NASA Astrophysics Data System (ADS)
Miccio, L.; Vespini, V.; Grilli, S.; Paturzo, M.; Finizio, A.; De Nicola, S.; Ferraro, P.
2009-06-01
We show how thin liquid film on polar dielectric substrate can form an array of liquid micro-lenses. The effect is driven by the pyroelectric effect leading to a new concept in electro-wetting (EW). EW is a viable method for actuation of liquids in microfluidic systems and requires the design and fabrication of complex electrodes for suitable actuation of liquids. When compared to conventional electrowetting devices, the pyroelectric effect allowed to have an electrode-less and circuitless configuration. In our case the surface electric charge induced by the thermal stimulus is able to pattern selectively the surface wettability according to geometry of the ferroelectric domains micro-engineered into the lithium niobate crystal. We show that different geometries of liquid microlenses can be obtained showing also a tuneability of the focal lenses down to 1.6 mm. Thousand of liquid microlenses, each with 100 μm diameter, can be formed and actuated. Also different geometries such as hemi-cylindrical and toroidal liquid structures can be easily obtained. By means of a digital holography method, an accurate characterization of the micro-lenses curvature is performed and presented. The preliminary results concerning the imaging capability of the micro-lens array are also reported. Microlens array can find application in medical stereo-endoscopy, imaging, telecommunication and optical data storage too.
Vermeltfoort, Pit B J; Rustema-Abbing, Minie; de Vries, Joop; Bruinsma, Gerda M; Busscher, Henk J; van der Linden, Matthijs L; Hooymans, Johanna M M; van der Mei, Henny C
2006-06-01
The aim of this study was to determine the effect of continuous wear on physicochemical surface properties of silicone hydrogel (S-H) lenses and their susceptibility to bacterial adhesion. In this study, volunteers wore 2 pairs of either "lotrafilcon A" or "balafilcon A" S-H contact lenses. The first pair was worn continuously for a week and the second pair for 4 weeks. One lens of each pair was used for surface characterization and the other one for bacterial adhesion experiments. Lens surfaces were characterized by examination of their wettability, roughness, elemental composition, and proteins attached to their surfaces. Adhesion of Staphylococcus aureus 835 and Pseudomonas aeruginosa #3 to a lens was studied using a parallel plate flow chamber. Before use, the lotrafilcon A lens was rougher than the balafilcon A lens and had a lower water contact angle and a higher affinity for S. aureus 835. After wear, both lens types had similar water contact angles, whereas the differences in elemental surface composition decreased as well. S. aureus 835 adhered in higher numbers to worn balafilcon A lenses, whereas the opposite was seen for P. aeruginosa #3. The initial deposition rates of both bacterial strains to lotrafilcon A lenses decreased by wearing and were found to correlate significant (P < 0.001) with the surface roughness of worn lenses. In this study, the differences in surface properties between 2 types of S-H lenses were found to change after 1 week of continuous wear. Generally, bacteria adhered in lower numbers and less tenaciously to worn lenses, except S. aureus 835, adhering in higher numbers to worn balafilcon A lenses.
Surface geometry and optical aberrations of ex-vivo crystalline lenses
NASA Astrophysics Data System (ADS)
Bueno, Juan M.; Schwarz, Christina; Acosta, Eva; Artal, Pablo
2010-02-01
The shape of the surfaces of ex-vivo human crystalline lenses was measured using a shadow photography technique. From these data, the back-focal distance and the contribution of each surface to the main optical aberrations of the lenses were estimated. The aberrations of the lenses were measured separately with two complementary techniques: a Hartmann-Shack wavefront sensor and a point-diffraction interferometer. A laser scanning set-up was also used to measure the actual back-focal length as well as the phase aberration in one meridian section of the lenses. Measured and predicted back-focal length agreed well within the experimental errors. The lens aberrations computed with a ray-tracing approach from the measured surfaces and geometrical data only reproduce quantitatively the measured aberrations.
Gravitational lensing by a smoothly variable surface mass density
NASA Technical Reports Server (NTRS)
Paczynski, Bohdan; Wambsganss, Joachim
1989-01-01
The statistical properties of gravitational lensing due to smooth but nonuniform distributions of matter are considered. It is found that a majority of triple images had a parity characteristic for 'shear-induced' lensing. Almost all cases of triple or multiple imaging were associated with large surface density enhancements, and lensing objects were present between the images. Thus, the observed gravitational lens candidates for which no lensing object has been detected between the images are unlikely to be a result of asymmetric distribution of mass external to the image circle. In a model with smoothly variable surface mass density, moderately and highly amplified images tended to be single rather than multiple. An opposite trend was found in models which had singularities in the surface mass distribution.
Platform technologies for hybrid optoelectronic integration and packaging
NASA Astrophysics Data System (ADS)
Datta, Madhumita
In order to bring fiber-optics closer to individual home and business services, the optical network components have to be inexpensive and reliable. Integration and packaging of optoelectronic devices holds the key to high-volume low-cost component manufacturing. The goal of this dissertation is to propose, study, and demonstrate various ways to integrate optoelectronic devices on a packaging platform to implement cost-effective, functional optical modules. Two types of hybrid integration techniques have been proposed: flip-chip solder bump bonding for high-density two-dimensional array packaging of surface-emitting devices, and solder preform bonding for fiber-coupled edge-emitting semiconductor devices. For flip-chip solder bump bonding, we developed a simple, inexpensive remetallization process called "electroless plating", which converts the aluminum bond pads of foundry-made complementary metal oxide semiconductor (CMOS) chips into solder-bondable and wire-bondable gold surfaces. We have applied for a patent on this remetallization technique. For fiber-pigtailed edge-emitting laser modules, we have studied the coupling characteristics of different types of lensed single-mode fibers including semispherically lensed fiber, cylindrically lensed fiber and conically lensed fiber. We have experimentally demonstrated 66% coupling efficiency with semispherically lensed fiber and 50% efficiency with conically lensed fibers. We have proposed and designed a packaging platform on which lensed fibers can be actively aligned to a laser and solder-attached reliably to the platform so that the alignment is retained. We have designed thin-film nichrome heaters on fused quartz platforms as local heat source to facilitate on-board solder alignment and attachment of fiber. The thermal performance of the heaters was simulated using finite element analysis tool ANSYS prior to fabrication. Using the heater's reworkability advantage, we have estimated the shift of the fiber due to solder shrinkage and introduced a pre-correction in the alignment process to restore optimum coupling efficiency close to 50% with conically lensed fibers. We have applied for a patent on this unique active alignment method through the University of Maryland's Technology Commercialization Office. Although we have mostly concentrated on active alignment platforms, we have proposed the idea of combining the passive alignment advantages of silicon optical benches to the on-board heater-assisted active alignment technique. This passive-active alignment process has the potential of cost-effective array packaging of edge-emitting devices.
Thermal lensing compensation optics for high power lasers
NASA Astrophysics Data System (ADS)
Scaggs, Michael; Haas, Gil
2011-03-01
Athermalization of focusing objectives is a common technique for optimizing imaging systems in the infrared where thermal effects are a major concern. The athermalization is generally done within the spectrum of interest and not generally applied to a single wavelength. The predominate glass used with high power infrared lasers in the near infrared of one micron, such as Nd:YAG and fiber lasers, is fused silica which has excellent thermal properties. All glasses, however, have a temperature coefficient of index of refraction (dn/dT) where as the glass heats up its index of refraction changes. Most glasses, fused silica included, have a positive dn/dT. A positive dn/dT will cause the focal length of the lens to decrease with a temperature rise. Many of the fluoride glasses, like CaF2, BaF2, LiF2, etc. have a negative dn/dT. By applying athermalization techniques of glass selection and optical design, the thermal lensing in a laser objective of a high power laser system can be substantially mitigated. We describe a passive method for minimizing thermal lensing of high power laser optics.
Adhesives and the ATS satellite. [construction of honeycomb panels
NASA Technical Reports Server (NTRS)
Hancock, F. E.
1972-01-01
Adhesives in the ATS satellite allow the designers to save weight, simplify design and fabrication and provide thermal and electrical conductivity or resistivity as required. The selections of adhesives are restricted to those few which can pass rigorous outgassing tests in order to avoid contaminating lenses and thermal control surfaces in space. An epoxy adhesive is used to construct the honeycomb panels which constitute most of the satellite's structure. General purpose epoxy adhesives hold doublers and standoffs in place and bond the truss to its fittings. Specialized adhesives include a high temperature resistant polyamide, a flexible polyurethane and filled epoxies which conduct heat or electricity.
Vermeltfoort, Pit B J; van der Mei, Henny C; Busscher, Henk J; Hooymans, Johanna M M; Bruinsma, Gerda M
2004-11-15
The aim of this study was to determine the transfer of Pseudomonas aeruginosa No. 3 and Staphylococcus aureus 835 from contact lenses to surfaces with different hydrophobicity and roughness. Bacteria were allowed to adhere to contact lenses (Surevue, PureVision, or Focus Night & Day) by incubating the lenses in a bacterial suspension for 30 min. The contaminated lenses were put on a glass, poly(methylmethacrylate), or silicone rubber substratum, shaped to mimic the eye. After 2 and 16 h, lenses were separated from the substrata and bacteria were swabbed off from the respective surfaces and resuspended in saline. Appropriate serial dilutions of these suspensions were made, from which aliquots were plated on agar for enumeration. Bacterial transfer varied between 4 and 60%, depending on the combination of strain, contact time, contact lens, and substratum surface. For P. aeruginosa No. 3, transfer was significantly higher after 16 h than after 2 h, whereas less increase with time was seen for S. aureus 835. Bacterial transfer from all tested contact lenses was least to silicone rubber, the most hydrophobic and roughest substratum surface included. (c) 2004 Wiley Periodicals, Inc.
End-pumped Nd:YVO4 laser with reduced thermal lensing via the use of a ring-shaped pump beam.
Lin, Di; Andrew Clarkson, W
2017-08-01
A simple approach for alleviating thermal lensing in end-pumped solid-state lasers using a pump beam with a ring-shaped intensity distribution to decrease the radial temperature gradient is described. This scheme has been implemented in a diode-end-pumped Nd:YVO 4 laser yielding 14 W of TEM 00 output at 1.064 μm with a corresponding slope efficiency of 53% and a beam propagation factor (M 2 ) of 1.08 limited by available pump power. By comparison, the same laser design with a conventional quasi-top-hat pump beam profile of approximately equal radial extent yielded only 9 W of output before the power rolled over due to thermal lensing. Further investigation with the aid of a probe beam revealed that the thermal lens power was ∼30% smaller for the ring-shaped pump beam compared to the quasi-top-hat beam. The implications for further power scaling in end-pumped laser configurations are considered.
Large-acceptance diamond planar refractive lenses manufactured by laser cutting.
Polikarpov, Maxim; Snigireva, Irina; Morse, John; Yunkin, Vyacheslav; Kuznetsov, Sergey; Snigirev, Anatoly
2015-01-01
For the first time, single-crystal diamond planar refractive lenses have been fabricated by laser micromachining in 300 µm-thick diamond plates which were grown by chemical vapour deposition. Linear lenses with apertures up to 1 mm and parabola apex radii up to 500 µm were manufactured and tested at the ESRF ID06 beamline. The large acceptance of these lenses allows them to be used as beam-conditioning elements. Owing to the unsurpassed thermal properties of single-crystal diamond, these lenses should be suitable to withstand the extreme flux densities expected at the planned fourth-generation X-ray sources.
Plasma surface modification of rigid contact lenses decreases bacterial adhesion.
Wang, Yingming; Qian, Xuefeng; Zhang, Xiaofeng; Xia, Wei; Zhong, Lei; Sun, Zhengtai; Xia, Jing
2013-11-01
Contact lens safety is an important topic in clinical studies. Corneal infections usually occur because of the use of bacteria-carrying contact lenses. The current study investigated the impact of plasma surface modification on bacterial adherence to rigid contact lenses made of fluorosilicone acrylate materials. Boston XO and XO2 contact lenses were modified using plasma technology (XO-P and XO2-P groups). Untreated lenses were used as controls. Plasma-treated and control lenses were incubated in solutions containing Staphylococcus aureus or Pseudomonas aeruginosa. MTT colorimetry, colony-forming unit counting method, and scanning electron microscopy were used to measure bacterial adhesion. MTT colorimetry measurements showed that the optical density (OD) values of XO-P and XO2-P were significantly lower than those of XO and XO2, respectively, after incubation with S. aureus (P < 0.01). The OD value of XO-P was also much lower than that of XO after incubation with P. aeruginosa (P < 0.01). Colony-forming unit counting revealed that a significantly lower number of bacterial colonies attached to the XO-P versus XO lenses and to the XO2-P versus XO2 lenses incubated with S. aureus (P < 0.01). Fewer bacterial colonies attached to the XO-P versus XO lenses incubated with P. aeruginosa (P < 0.01). Further, scanning electron microscopy suggested different bacterial adhesion morphology on plasma-treated versus control lenses. Plasma surface modification can significantly decrease bacterial adhesion to fluorosilicone acrylate contact lenses. This study provides important evidence of a unique benefit of plasma technology in contact lens surface modification.
Quantitative evaluation of performance of three-dimensional printed lenses
NASA Astrophysics Data System (ADS)
Gawedzinski, John; Pawlowski, Michal E.; Tkaczyk, Tomasz S.
2017-08-01
We present an analysis of the shape, surface quality, and imaging capabilities of custom three-dimensional (3-D) printed lenses. 3-D printing technology enables lens prototypes to be fabricated without restrictions on surface geometry. Thus, spherical, aspherical, and rotationally nonsymmetric lenses can be manufactured in an integrated production process. This technique serves as a noteworthy alternative to multistage, labor-intensive, abrasive processes, such as grinding, polishing, and diamond turning. Here, we evaluate the quality of lenses fabricated by Luxexcel using patented Printoptical©; technology that is based on an inkjet printing technique by comparing them to lenses made with traditional glass processing technologies (grinding, polishing, etc.). The surface geometry and roughness of the lenses were evaluated using white-light and Fizeau interferometers. We have compared peak-to-valley wavefront deviation, root mean square (RMS) wavefront error, radii of curvature, and the arithmetic roughness average (Ra) profile of plastic and glass lenses. In addition, the imaging performance of selected pairs of lenses was tested using 1951 USAF resolution target. The results indicate performance of 3-D printed optics that could be manufactured with surface roughness comparable to that of injection molded lenses (Ra<20 nm). The RMS wavefront error of 3-D printed prototypes was at a minimum 18.8 times larger than equivalent glass prototypes for a lens with a 12.7 mm clear aperture, but, when measured within 63% of its clear aperture, the 3-D printed components' RMS wavefront error was comparable to glass lenses.
Quantitative evaluation of performance of 3D printed lenses
Gawedzinski, John; Pawlowski, Michal E.; Tkaczyk, Tomasz S.
2017-01-01
We present an analysis of the shape, surface quality, and imaging capabilities of custom 3D printed lenses. 3D printing technology enables lens prototypes to be fabricated without restrictions on surface geometry. Thus, spherical, aspherical and rotationally non-symmetric lenses can be manufactured in an integrated production process. This technique serves as a noteworthy alternative to multistage, labor-intensive, abrasive processes such as grinding, polishing and diamond turning. Here, we evaluate the quality of lenses fabricated by Luxexcel using patented Printoptical© technology that is based on an inkjet printing technique by comparing them to lenses made with traditional glass processing technologies (grinding, polishing etc.). The surface geometry and roughness of the lenses were evaluated using white-light and Fizeau interferometers. We have compared peak-to-valley wavefront deviation, root-mean-squared wavefront error, radii of curvature and the arithmetic average of the roughness profile (Ra) of plastic and glass lenses. Additionally, the imaging performance of selected pairs of lenses was tested using 1951 USAF resolution target. The results indicate performance of 3D printed optics that could be manufactured with surface roughness comparable to that of injection molded lenses (Ra < 20 nm). The RMS wavefront error of 3D printed prototypes was at a minimum 18.8 times larger than equivalent glass prototypes for a lens with a 12.7 mm clear aperture, but when measured within 63% of its clear aperture, 3D printed components’ RMS wavefront error was comparable to glass lenses. PMID:29238114
Features of optical surfaces of multifocal diffractive-refractive eye lenses
NASA Astrophysics Data System (ADS)
Lenkova, G. A.
2017-09-01
This paper considers shape features of the surface structures of multifocal intraocular lenses (IOLs), which, unlike bifocal IOLs, generate additional foci or extends the depth of focus, which not only corrects near and far vision but also provides good vision at intermediate distances. Expansion of the field of clear vision is achieved due to the effects of diffraction, interference, and refraction (change in the radius of curvature of the lens surface). The optical characteristics of the most famous multifocal IOLs (trifocal and quadrafocal lenses and lenses with extended focal area) are given.
Innovative Solid State Infrared Laser Devices
2010-12-01
The polycrystalline, 8.9x7.0x3.0 mm3 (LxWxH) Cr2+:ZnSe gain element was installed at the Brewster angle of 67.7º for horizontal polarization...8 3.1.4 Waveguide devices for thermal lensing mitigation ................................... 10...power of Cr2+:ZnSe, modelocked operation of Cr2+:ZnSe and suppression of thermal lensing effects. 3.1.1 Cr2+:ZnSe power scaling We achieved first
Active correction of thermal lensing through external radiative thermal actuation.
Lawrence, Ryan; Ottaway, David; Zucker, Michael; Fritschel, Peter
2004-11-15
Absorption of laser beam power in optical elements induces thermal gradients that may cause unwanted phase aberrations. In precision measurement applications, such as laser interferometric gravitational-wave detection, corrective measures that require mechanical contact with or attachments to the optics are precluded by noise considerations. We describe a radiative thermal corrector that can counteract thermal lensing and (or) thermoelastic deformation induced by coating and substrate absorption of collimated Gaussian beams. This radiative system can correct anticipated distortions to a high accuracy, at the cost of an increase in the average temperature of the optic. A quantitative analysis and parameter optimization is supported by results from a simplified proof-of-principle experiment, demonstrating the method's feasibility for our intended application.
Compact Groups analysis using weak gravitational lensing II: CFHT Stripe 82 data
NASA Astrophysics Data System (ADS)
Chalela, Martín; Gonzalez, Elizabeth Johana; Makler, Martín; Lambas, Diego García; Pereira, Maria E. S.; O'mill, Ana; Shan, HuanYuan
2018-06-01
In this work we present a lensing study of Compact Groups (CGs) using data obtained from the high quality Canada-France-Hawaii Telescope Stripe 82 Survey. Using stacking techniques we obtain the average density contrast profile. We analyse the lensing signal dependence on the groups surface brightness and morphological content, for CGs in the redshift range z = 0.2 - 0.4. We obtain a larger lensing signal for CGs with higher surface brightness, probably due to their lower contamination by interlopers. Also, we find a strong dependence of the lensing signal on the group concentration parameter, with the most concentrated quintile showing a significant lensing signal, consistent with an isothermal sphere with σV = 336 ± 28 km/s and a NFW profile with R200 = 0.60 ± 0.05 h_{70}^{-1}Mpc. We also compare lensing results with dynamical estimates finding a good agreement with lensing determinations for CGs with higher surface brightness and higher concentration indexes. On the other hand, CGs that are more contaminated by interlopers show larger dynamical dispersions, since interlopers bias dynamical estimates to larger values, although the lensing signal is weakened.
Jet printing of convex and concave polymer micro-lenses.
Blattmann, M; Ocker, M; Zappe, H; Seifert, A
2015-09-21
We describe a novel approach for fabricating customized convex as well as concave micro-lenses using substrates with sophisticated pinning architecture and utilizing a drop-on-demand jet printer. The polymeric lens material deposited on the wafer is cured by UV light irradiation yielding lenses with high quality surfaces. Surface shape and roughness of the cured polymer lenses are characterized by white light interferometry. Their optical quality is demonstrated by imaging an USAF1951 test chart. The evaluated modulation transfer function is compared to Zemax simulations as a benchmark for the fabricated lenses.
Design and fabrication of the progressive addition lenses
NASA Astrophysics Data System (ADS)
Qin, Linling; Qian, Lin; Yu, Jingchi
2011-11-01
The use of progressive addition lenses (PALs) for the correction of presbyopia has increased dramatically in recent years. These lenses are now being used as the preferred alternative to bifocal and trifocal lenses in many parts of the world. Progressive addition lenses are a kind of opthalmic lenses with freeform surface. The surface curvature of the Progressive addition lenses varies gradually from a minimum value in the upper area, to a maximum value in the lower area. Thus a PAL has a surface with three zones which have very small astigmatism: far-view zone, near-view zone, and intermediate zone. The far view zone and near view zone have relatively constant powers and connected by the intermediate zone with power varies progressively. The design and fabrication technologies of progressive addition lenses have fast progresses because of the massive development of the optical simulation software, multi-axis ultraprecision machining technologies and CNC machining technologies. The design principles of progressive addition lenses are discussed in a historic review. Several kinds of design methods are illustrated, and their advantages and disadvantages are also represented. In the current study, it is shown that the optical characteristics of the different progressive addition lenses designs are significantly different from one another. The different fabrication technologies of Progressive addition lenses are also discussed in the paper. Plastic injection molding and precision-machine turning are the common fabrication technologies for exterior PALs and Interior PALs respectively.
Pseudomonas aeruginosa Survival at Posterior Contact Lens Surfaces after Daily Wear
Wu, Yvonne T.; Zhu, Lucia S.; Tam, K. P. Connie; Evans, David J.; Fleiszig, Suzanne M. J.
2015-01-01
Purpose Pseudomonas aeruginosa keratitis is a sight-threatening complication of contact lens wear, yet mechanisms by which lenses predispose to infection remain unclear. Here, we tested the hypothesis that tear fluid at the posterior contact lens surface can lose antimicrobial activity over time during lens wear. Methods Daily disposable lenses were worn for 1, 2, 4, 6 or 8 h immediately after removal from their packaging, or after presoaking in sterile saline for 2 days to remove packaging solution. Unworn lenses were also tested, some coated in tears “aged” in vitro for 1 or 8 h. Lenses were placed anterior surface down into tryptic soy agar cradles containing gentamicin (100µg/ml) to kill bacteria already on the lens, and posterior surfaces inoculated with gentamicin-resistant P. aeruginosa for 3 h. Surviving bacteria were enumerated by viable counts of lens homogenates. Results Posterior surfaces of lenses worn by patients for 8 h supported more P. aeruginosa growth than lenses worn for only 1 h, if lenses were presoaked prior to wear (~ 2.4-fold, p = 0.01). This increase was offset if lenses were not presoaked to remove packaging solution (p = 0.04 at 2 h and 4 h). Irrespective of presoaking, lenses worn for 8 h showed more growth on their posterior surface than unworn lenses coated with tear fluid that was “aged” for 8 h vitro (~8.6-fold, presoaked, p = 0.003: ~ 5.4-fold from packaging solution, p = 0.004). Indeed, in vitro incubation did not impact tear antimicrobial activity. Conclusions This study shows that post lens tear fluid can lose antimicrobial activity over time during contact lens wear, supporting the idea that efficient tear exchange under a lens is critical for homeostasis. Additional studies are needed to determine applicability to other lens types, wearing modalities, and relevance to contact lens-related infections. PMID:25955639
Santos, Lívia; Rodrigues, Diana; Lira, Madalena; Oliveira, M Elisabete C D Real; Oliveira, Rosário; Vilar, Eva Yebra-Pimentel; Azeredo, Joana
2007-07-01
To evaluate the influence of surface treatment of silicone-hydrogel CL on lens hydrophobicity, protein adsorption and microbial colonisation by studying several silicone hydrogel contact lenses (CL) with and without surface treatment. The lenses used in this study were Balafilcon A, Lotrafilcon A, Lotrafilcon B and Galyfilcon A. A conventional hydrogel CL (Etafilcon A) was also tested. Hydrophobicity was determined through contact angle measurement using the advancing type technique on air. The type and quantity of proteins adsorbed were assessed through SDS-PAGE and fluorescence spectroscopy, respectively. Microbial colonisation was studied by removing the microbes from the lenses through sonication, and counting the colony-forming units on agar plates. Regarding hydrophobicity, both surface and non-surface-treated silicone hydrogel CL were found to be hydrophobic, and the conventional hydrogel CL was found to be hydrophilic. Concerning protein adsorption, different protein profiles were observed on the several lenses tested. Nevertheless, the presence of proteins with the same molecular weight as lysozyme and lactoferrin was common to all lenses, which is probably related to their abundance in tears. In terms of total protein adsorption, silicone hydrogel CL did not exhibit any differences between themselves. However, the conventional hydrogel Etafilcon A adsorbed a larger amount of proteins. Regarding microbial colonisation, Balafilcon A exhibited the greatest amount of colonising microbes, which can be due to its superior hydrophobicity and higher electron acceptor capacity. This study suggests that silicone hydrogel lenses adsorb a lower amount of proteins than the conventional hydrogel lenses and that this phenomenon is independent of the presence of surface treatment. Concerning microbial colonisation, the surface treated Balafilcon A, exhibited a greater propensity, a fact that may compromise the lens wearer's ocular health.
Structural and optical behavior due to thermal effects in end-pumped Yb:YAG disk lasers.
Sazegari, Vahid; Milani, Mohammad Reza Jafari; Jafari, Ahmad Khayat
2010-12-20
We employ a Monte Carlo ray-tracing code along with the ANSYS package to predict the optical and structural behavior in end-pumped CW Yb:YAG disk lasers. The presence of inhomogeneous temperature, stress, and strain distributions is responsible for many deleterious effects for laser action through disk fracture, strain-induced birefringence, and thermal lensing. The thermal lensing, in turn, results in the optical phase distortion in solid-state lasers. Furthermore, the dependence of optical phase distortion on variables such as the heat transfer coefficient, the cooling fluid temperature, and crystal thickness is discussed.
Factors influencing bacterial adhesion to contact lenses.
Dutta, Debarun; Cole, Nerida; Willcox, Mark
2012-01-01
The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria.
Factors influencing bacterial adhesion to contact lenses
Dutta, Debarun; Willcox, Mark
2012-01-01
The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria. PMID:22259220
Ultrastructural evaluation of explanted opacified Hydroview (H60M) intraocular lenses
Cartwright, Nathaniel E Knox; Mayer, Eric J; McDonald, Brendan M; Skinner, Andrew; Salter, Chris J; Tole, Derek M; Sparrow, John M; Dick, Andrew D; Group, The Bristol IOL Study; Ferguson, David J P
2007-01-01
Aim To describe the ultrastructural appearance of explanted opacified Hydroview H60M intraocular lenses. Methods 14 explanted lenses were examined by scanning electron microscopy, and their appearance compared with a non‐implanted H60M lens from the same time period. Wavelength‐dispersive x ray spectroscopy (WDX) was performed on two opacified lenses. Results Subsurface deposits were seen in all explanted opacified lenses. These deposits broke only onto the surface of more densely opacified lenses. WDX confirmed that the deposits contained both calcium and phosphorous, consistent with their being calcium apatite. Conclusion These findings challenge the widely accepted opinion that H60M intraocular lens opacification begins on the surface of the optic. PMID:16987894
UV solid state laser ablation of intraocular lenses
NASA Astrophysics Data System (ADS)
Apostolopoulos, A.; Lagiou, D. P.; Evangelatos, Ch.; Spyratou, E.; Bacharis, C.; Makropoulou, M.; Serafetinides, A. A.
2013-06-01
Commercially available intraocular lenses (IOLs) are manufactured from silicone and acrylic, both rigid (e.g. PMMA) and foldable (hydrophobic or hydrophilic acrylic biomaterials), behaving different mechanical and optical properties. Recently, the use of apodizing technology to design new diffractive-refractive multifocals improved the refractive outcome of these intraocular lenses, providing good distant and near vision. There is also a major ongoing effort to refine laser refractive surgery to correct other defects besides conventional refractive errors. Using phakic IOLs to treat high myopia potentially provides better predictability and optical quality than corneal-based refractive surgery. The aim of this work was to investigate the effect of laser ablation on IOL surface shaping, by drilling circular arrays of holes, with a homemade motorized rotation stage, and scattered holes on the polymer surface. In material science, the most popular lasers used for polymer machining are the UV lasers, and, therefore, we tried in this work the 3rd and the 5th harmonic of a Q-switched Nd:YAG laser (λ=355 nm and λ=213 nm respectively). The morphology of the ablated IOL surface was examined with a scanning electron microscope (SEM, Fei - Innova Nanoscope) at various laser parameters. Quantitative measurements were performed with a contact profilometer (Dektak-150), in which a mechanical stylus scanned across the surface of gold-coated IOLs (after SEM imaging) to measure variations in surface height and, finally, the ablation rates were also mathematically simulated for depicting the possible laser ablation mechanism(s). The experimental results and the theoretical modelling of UV laser interaction with polymeric IOLs are discussed in relation with the physical (optical, mechanical and thermal) properties of the material, in addition to laser radiation parameters (laser energy fluence, number of pulses). The qualitative aspects of laser ablation at λ=213 nm reveal a smooth optical surface on the intraocular lens with no irregularities, observed with other wavelengths.
NASA Astrophysics Data System (ADS)
Goud, Bujagouni Karthik; Udupa, Dinesh Venkatesh; Prathap, Chilakala; Shinde, Deepak Dilip; Rao, Kompalli Divakar; Sahoo, Naba Kishore
2016-12-01
The use of optical coherence tomography (OCT) for noncontact three-dimensional aspheric lens profiling and retrieval of aspheric surface parameters is demonstrated. Two commercially available aspheric lenses with different focal length-to-diameter ratio have been imaged using OCT, and the measured optical path length distribution has been least square fitted with the aspheric lens surface retrieving the radius of curvature, aspheric constant, and conic constants. The refractive index of these lenses has also been measured referencing with a standard Zerodur glass flat. The fitted aspheric surface coefficients of the lenses are in close agreement with the manufacturer's values, thus, envisaging the potential of OCT in rapid screening, testing of aspheric lenses, and other micro-optical components such as those used in illumination optics.
Efficiency and coherence preservation studies of Be refractive lenses for XFELO application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolodziej, Tomasz; Stoupin, Stanislav; Grizolli, Walan
2018-02-14
Performance tests of parabolic beryllium refractive lenses, considered as X-ray focusing elements in the future X-ray free-electron laser oscillator (XFELO), are reported. Single and double refractive lenses were subject to X-ray tests, which included: surface profile, transmissivity measurements, imaging capabilities and wavefront distortion with grating interferometry. Optical metrology revealed that surface profiles were close to the design specification in terms of the figure and roughness. The transmissivity of the lenses is >94% at 8 keV and >98% at 14.4 and 18 keV. These values are close to the theoretical values of ideal lenses. Images of the bending-magnet source obtained withmore » the lenses were close to the expected ones and did not show any significant distortion. Grating interferometry revealed that the possible wavefront distortions produced by surface and bulk lens imperfections were on the level of ~λ/60 for 8 keV photons. Thus the Be lenses can be succesfully used as focusing and beam collimating elements in the XFELO.« less
Surface chemical structure for soft contact lenses as a function of polymer processing.
Grobe, G L; Valint, P L; Ammon, D M
1996-09-01
The surface chemistry and topography of cast-molded Etafilcon-A and doubled-sided lathed Etafilcon-A soft contact lenses were determined to be significantly different. The variations in surface chemical and morphologic structure between the two lenses were the result of contact lens manufacturing methods. The surface of the cast-molded Etafilcon-A had a consistently less rough surface compared to the doubled sided lathed Etafilcon-A as determined by atomic force microscopy. The surface of the doubled sided lathed Etafilcon-A contained primarily silicone and wax contamination in addition to minute amounts of HEMA. The cast-molded Etafilcon-A had an elemental and chemical content which was consistent with the polymer stoichiometry. Contact angle wettability profiles revealed inherent wettability differences between the two lenses types. The cast-molded Etafilcon-A had an inherently greater water wettability, polarity, and critical surface tension. This means that these two lenses cannot be compared as similar or identical lens materials in terms of surface composition. The manufacturing method used to produce a soft contact lens directly determines the surface elemental and chemical structure as well as the morphology of the finished lens material. These results suggest possible differences in the clinical comfort, spoilage, and lubricity felt during patient wear.
Surface interactions on hydrogel contact lenses: scanning electron microscopy (SEM).
Hart, D E
1987-12-01
SEM was used to visualize tear-film/hydrogel polymer surface interactions. Lenses were preserved by fixation including a quaternary ammonium complex to aid in mucin preservation. In less than 2 weeks of continuous wear the anterior surface was completely coated, yet the coating was absent from the posterior lens surface. Tear-film break-up over the deposited lens surface, combined with degradation and deformation at the polymer surface boundary, as well as entrapment of moieties within the polymer matrix, all occurred. These are the likely culprits which can contribute to adverse reactions as well as cause light scatter and diminished vision. Lenses removed directly from the eyes of patients suffering with different forms of conjunctivitis were obtained. Bacterial and viral conjunctivitis can induce a microbially contaminated as well as a heavily deformed and deposited lens. Viable and intact microbes were not typically observed in the mucoprotein layer of hydrogel contact lenses.
Microbial adherence to cosmetic contact lenses.
Chan, Ka Yin; Cho, Pauline; Boost, Maureen
2014-08-01
To investigate whether cosmetic contact lenses (CCL) with surface pigments affect microbial adherence. Fifteen brands of CCL were purchased from optical, non-optical retail outlets, and via the Internet. A standardized rub-off test was performed on each CCL (five lenses per brand) to confirm the location of the pigments. The rub-off test comprised gentle rubbing on the surfaces of each CCL with wetted cotton buds for a maximum of 20 rubs per surface. A new set of CCL (five lenses per brand) were incubated in Pseudomonas aeruginosa overnight. Viable counts of adhered bacteria were determined by the number of colony-forming units (CFU) on agar media on each lens. The adherence of P. aeruginosa as well as Staphylococcus aureus and Serratia marcescens to three brands of CCL (A-C) (five lenses per brand) were also compared to their adherences on their clear counterparts. Only two of the 15 brands of CCL tested (brands B and C) had pigments that did not detach with the rub-off test. The remaining 13 brands of CCL all failed the rub-off test and these lenses showed higher P. aeruginosa adherence (8.7 × 10(5)-1.9 × 10(6) CFU/lens). Brands B and C lenses showed at least six times less bacterial adhesion than the other 13 brands. Compared to their clear counterparts, bacterial adherence to brands B and C lenses did not differ significantly, whereas brand A lenses showed significantly higher adherence. Surface pigments on CCL resulted in significantly higher bacterial adherence. Copyright © 2013 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Wafer-level manufacturing technology of glass microlenses
NASA Astrophysics Data System (ADS)
Gossner, U.; Hoeftmann, T.; Wieland, R.; Hansch, W.
2014-08-01
In high-tech products, there is an increasing demand to integrate glass lenses into complex micro systems. Especially in the lighting industry LEDs and laser diodes used for automotive applications require encapsulated micro lenses. To enable low-cost production, manufacturing of micro lenses on wafer level base using a replication technology is a key technology. This requires accurate forming of thousands of lenses with a diameter of 1-2 mm on a 200 mm wafer compliant with mass production. The article will discuss the technical aspects of a lens manufacturing replication process and the challenges, which need to be solved: choice of an appropriate master for replication, thermally robust interlayer coating, choice of replica glass, bonding and separation procedure. A promising approach for the master substrate material is based on a lens structured high-quality glass wafer with high melting point covered by a coating layer of amorphous silicon or germanium. This layer serves as an interlayer for the glass bonding process. Low pressure chemical vapor deposition and plasma enhanced chemical vapor deposition processes allow a deposition of layer coatings with different hydrogen and doping content influencing their chemical and physical behavior. A time reduced molding process using a float glass enables the formation of high quality lenses while preserving the recyclability of the mother substrate. The challenge is the separation of the replica from the master mold. An overview of chemical methods based on optimized etching of coating layer through small channels will be given and the impact of glass etching on surface roughness is discussed.
Measurement and compensation of wavefront deformations and focal shifts in high-power laser optics
NASA Astrophysics Data System (ADS)
Mann, K.; Schäfer, B.; Stubenvoll, M.; Hentschel, K.; Zenz, M.
2015-11-01
We demonstrate the feasibility of passive compensation of the thermal lens effect in fused silica optics, placing suitable optical materials with negative dn/dT in the beam path of a high power near IR fiber laser. Following a brief overview of the involved mechanisms, photo-thermal absorption measurements with a Hartmann-Shack sensor are described, from which coefficients for surface/coating and bulk absorption in various materials are determined. Based on comprehensive knowledge of the 2D wavefront deformations resulting from absorption, passive compensation of thermally induced aberrations in complex optical systems is possible, as illustrated for an F-Theta objective. By means of caustic measurements during high-power operation we are able to demonstrate a 60% reduction of the focal shift in F-Theta lenses through passive compensation.
Bacterial adhesion to unworn and worn silicone hydrogel lenses.
Vijay, Ajay Kumar; Zhu, Hua; Ozkan, Jerome; Wu, Duojia; Masoudi, Simin; Bandara, Rani; Borazjani, Roya N; Willcox, Mark D P
2012-08-01
The objective of this study was to determine the bacterial adhesion to various silicone hydrogel lens materials and to determine whether lens wear modulated adhesion. Bacterial adhesion (total and viable cells) of Staphylococcus aureus (31, 38, and ATCC 6538) and Pseudomonas aeruginosa (6294, 6206, and GSU-3) to 10 commercially available different unworn and worn silicone hydrogel lenses was measured. Results of adhesion were correlated to polymer and surface properties of contact lenses. S. aureus adhesion to unworn lenses ranged from 2.8 × 10 to 4.4 × 10 colony forming units per lens. The highest adhesion was to lotrafilcon A lenses, and the lowest adhesion was to asmofilcon A lenses. P. aeruginosa adhesion to unworn lenses ranged from 8.9 × 10 to 3.2 × 10 colony forming units per lens. The highest adhesion was to comfilcon A lenses, and the lowest adhesion was to asmofilcon A and balafilcon A lenses. Lens wear altered bacterial adhesion, but the effect was specific to lens and strain type. Adhesion of bacteria, regardless of genera/species or lens wear, was generally correlated with the hydrophobicity of the lens; the less hydrophobic the lens surface, the greater the adhesion. P. aeruginosa adhered in higher numbers to lenses in comparison with S. aureus strains, regardless of the lens type or lens wear. The effect of lens wear was specific to strain and lens. Hydrophobicity of the silicone hydrogel lens surface influenced the adhesion of bacterial cells.
Xu, Jinku; Li, Xinsong; Sun, Fuqian
2011-02-01
The purpose of this work was to evaluate the usefulness of silicone hydrogel contact lenses loaded with ketotifen fumarate for ocular drug delivery. First, silicone contact lenses were prepared by photopolymerization of bitelechelic methacrylated polydimethylsiloxanes macromonomer, 3-methacryloxypropyltris(trimethylsiloxy)silane, and N,N-dimethylacrylamide using ethylene glycol dimethacrylate as a cross-linker and Darocur 1173 as an initiator followed by surface plasma treatment. Then, the silicone hydrogel matrices of the contact lenses were characterized by equilibrium swelling ratio (ESR), tensile tests, ion permeability, and surface contact angle. Finally, the contact lenses were loaded with ketotifen fumarate by pre-soaking in drug solution to evaluate drug loading capacity, in vitro and in vivo release behavior of the silicone contact lenses. The results showed that ESR and ion permeability increase, and the surface contact angle and tensile strength decreased with the increase of DMA component in the silicone hydrogel. The drug loading and in vitro releases were dependent on the hydrogel composition of hydrophilic/hydrophobic phase of the contact lenses. In rabbit eyes, the pre-soaked contact lenses sustained ketotifen fumarate release for more than 24 h, which leads to a more stable drug concentration and a longer mean retention time in tear fluid than that of eye drops of 0.05%.
The Effect of Size and Species on Lens Intracellular Hydrostatic Pressure
Gao, Junyuan; Sun, Xiurong; Moore, Leon C.; Brink, Peter R.; White, Thomas W.; Mathias, Richard T.
2013-01-01
Purpose. Previous experiments showed that mouse lenses have an intracellular hydrostatic pressure that varied from 335 mm Hg in central fibers to 0 mm Hg in surface cells. Model calculations predicted that in larger lenses, all else equal, pressure should increase as the lens radius squared. To test this prediction, lenses of different radii from different species were studied. Methods. All studies were done in intact lenses. Intracellular hydrostatic pressures were measured with a microelectrode-manometer–based system. Membrane conductances were measured by frequency domain impedance analysis. Intracellular Na+ concentrations were measured by injecting the Na+-sensitive dye sodium-binding benzofuran isophthalate. Results. Intracellular hydrostatic pressures were measured in lenses from mice, rats, rabbits, and dogs with radii (cm) 0.11, 0.22, 0.49, and 0.57, respectively. In each species, pressure varied from 335 ± 6 mm Hg in central fiber cells to 0 mm Hg in surface cells. Further characterization of transport in lenses from mice and rats showed that the density of fiber cell gap junction channels was approximately the same, intracellular Na+ concentrations varied from 17 mM in central fiber cells to 7 mM in surface cells, and intracellular voltages varied from −45 mV in central fiber cells to −60 mV in surface cells. Fiber cell membrane conductance was a factor of 2.7 times larger in mouse than in rat lenses. Conclusions. Intracellular hydrostatic pressure is an important physiological parameter that is regulated in lenses from these different species. The most likely mechanism of regulation is to reduce the density of open Na+-leak channels in fiber cells of larger lenses. PMID:23211824
Ethylene oxide-block-butylene oxide copolymer uptake by silicone hydrogel contact lens materials
NASA Astrophysics Data System (ADS)
Huo, Yuchen; Ketelson, Howard; Perry, Scott S.
2013-05-01
Four major types of silicone hydrogel contact lens material have been investigated following treatments in aqueous solutions containing poly(ethylene oxide) and poly(butylenes oxide) block copolymer (EO-BO). The extent of lens surface modification by EO-BO and the degree of bulk uptake were studied using X-ray photoelectron spectroscopy (XPS) and ultra-performance liquid chromatography (UPLC), respectively. The experimental results suggest that different interaction models exist for the lenses, highlighting the influence of both surface and bulk composition, which greatly differs between the lenses examined. Specifically, lenses with hydrophilic surface treatments, i.e., PureVision® (balafilcon A) and O2OPTIX (lotrafilcon B), demonstrated strong evidence of preferential surface adsorption within the near-surface region. In comparison, surface adsorption on ACUVUE® Oasys® (senofilcon A) and Biofinity® (comfilcon A) was limited. As for bulk absorption, the amount of EO-BO uptake was the greatest for balafilcon A and comfilcon A, and least for lotrafilcon B. These findings confirm the presence of molecular concentration gradients within the silicone hydrogel lenses following exposure to EO-BO solutions, with the nature of such concentration gradients found to be lens-specific. Together, the results suggest opportunities for compositional modifications of lenses for improved performance via solution treatments containing surface-active agents.
NASA Technical Reports Server (NTRS)
Welford, David; Rines, David M.; Dinerman, Bradley J.; Martinsen, Robert
1992-01-01
The authors report operation of a laser-diode side-pumped Nd:YAG laser with a novel pumping geometry that ensures efficient conversion of pump energy into the TEM00 mode. Significant enhancement of thermally induced lensing due to the near-Gaussian energy deposition profile of the pump radiation was observed. An induced lens of approximately 3.2-m focal length was measured at average incident pump powers of only 3.2 W (corresponding to a 0.6 W heat load).
NASA Astrophysics Data System (ADS)
Annen, Hans Philipp; Fu, Ling; Leutz, Ralf; González, Luis; Mbakop, Jehu
2011-09-01
The CPV community is still undecided on one critical issue: what material to use best for Fresnel lens parquets. Reliability and longevity are the most important, but all other properties play roles as well. We have developed and manufactured Fresnel lenses with the two commonly used materials: PMMA (Polymethylmethacrylate) and silicone on glass (SOG). Both lenses are designed for the same optical train for best comparability. This allows for better understanding the pros and cons of the materials and making an informed choice for a specific CPV module. While PMMA lenses are embossed from pre-fab sheets in a hot-cold process, the silicone lenses are cast from a heat-curing silicone rubber at moderate temperatures, reducing the energy consumption. PMMA allows for the inclusion of custom low-profile 3D (2.5D) structures for module assembly and mechanical alignment, a feature not possible in silicone due to its low rigidity. Both lenses suffer from thermal expansion and refractive index change. While PMMA parquets expand isotropically, SOG prisms deform due to the difference of expansion coefficients between the glass and the silicone. SOG lenses are prone to delamination of the silicone film. The adhesive strength of the film to the glass can be measured using a modified blister test that we developed. The results show large difference with different materials and confirm the necessity of controlling this issue closely. While the small thermal expansion of the glass sheets allows for larger parquet sizes, the deformation of the prisms with temperature may cause a performance hit.
Ion beam figuring of silicon aspheres
NASA Astrophysics Data System (ADS)
Demmler, Marcel; Zeuner, Michael; Luca, Alfonz; Dunger, Thoralf; Rost, Dirk; Kiontke, Sven; Krüger, Marcus
2011-03-01
Silicon lenses are widely used for infrared applications. Especially for portable devices the size and weight of the optical system are very important factors. The use of aspherical silicon lenses instead of spherical silicon lenses results in a significant reduction of weight and size. The manufacture of silicon lenses is more challenging than the manufacture of standard glass lenses. Typically conventional methods like diamond turning, grinding and polishing are used. However, due to the high hardness of silicon, diamond turning is very difficult and requires a lot of experience. To achieve surfaces of a high quality a polishing step is mandatory within the manufacturing process. Nevertheless, the required surface form accuracy cannot be achieved through the use of conventional polishing methods because of the unpredictable behavior of the polishing tools, which leads to an unstable removal rate. To overcome these disadvantages a method called Ion Beam Figuring can be used to manufacture silicon lenses with high surface form accuracies. The general advantage of the Ion Beam Figuring technology is a contactless polishing process without any aging effects of the tool. Due to this an excellent stability of the removal rate without any mechanical surface damage is achieved. The related physical process - called sputtering - can be applied to any material and is therefore also applicable to materials of high hardness like Silicon (SiC, WC). The process is realized through the commercially available ion beam figuring system IonScan 3D. During the process, the substrate is moved in front of a focused broad ion beam. The local milling rate is controlled via a modulated velocity profile, which is calculated specifically for each surface topology in order to mill the material at the associated positions to the target geometry. The authors will present aspherical silicon lenses with very high surface form accuracies compared to conventionally manufactured lenses.
NASA Technical Reports Server (NTRS)
Gordon, Pierce E. C.; Colozza, Anthony J.; Hepp, Aloysius F.; Heller, Richard S.; Gustafson, Robert; Stern, Ted; Nakamura, Takashi
2011-01-01
Oxygen production from lunar raw materials is critical for sustaining a manned lunar base but is very power intensive. Solar concentrators are a well-developed technology for harnessing the Sun s energy to heat regolith to high temperatures (over 1375 K). The high temperature and potential material incompatibilities present numerous technical challenges. This study compares and contrasts different solar concentrator designs that have been developed, such as Cassegrains, offset parabolas, compound parabolic concentrators, and secondary concentrators. Differences between concentrators made from lenses and mirrors, and between rigid and flexible concentrators are also discussed. Possible substrate elements for a rigid mirror concentrator are selected and then compared, using the following (target) criteria: (low) coefficient of thermal expansion, (high) modulus of elasticity, and (low) density. Several potential lunar locations for solar concentrators are compared; environmental and processing-related challenges related to dust and optical surfaces are addressed. This brief technology survey examines various sources of thermal energy that can be utilized for materials processing on the lunar surface. These include heat from nuclear or electric sources and solar concentrators. Options for collecting and transporting thermal energy to processing reactors for each source are examined. Overall system requirements for each thermal source are compared and system limitations, such as maximum achievable temperature are discussed.
A Bio-Inspired Polymeric Gradient Refractive Index (GRIN) Human Eye Lens
2012-11-19
confirmation of the desired aspheric surface shape. Furthermore, the wavefronts of aspheric posterior GRIN and PMMA lenses were measured and...compared a homogenous PMMA lens of an identical geometry. Finally, the anterior and posterior GRIN lenses were assembled into a bio-inspired GRIN...topography and exhibited confirmation of the desired aspheric surface shape. Furthermore, the wavefronts of aspheric posterior GRIN and PMMA lenses were
NASA Technical Reports Server (NTRS)
Page, Dany
1995-01-01
We model the temperature distribution at the surface of a magnetized neutron star and study the effects on the observed X-ray spectra and light curves. Generalrelativistic effects, i.e., redshift and lensing, are fully taken into account. Atmospheric effects on the emitted spectral flux are not included: we consider only blackbody emission at the local effective temperature. In this first paper we restrict ourselves to dipole fields. General features are studied and compared with the ROSAT data from the pulsars 0833 - 45 (Vela), 0656 + 14, 0630 + 178 (Geminga), and 1055 - 52, the four cases for which there is strong evidence that thermal radiation from the stellar surface is detected. The composite spectra we obtain are not very different from a blackbody spectrum at the star's effective temperature. We conclude that, as far as blackbody spectra are considered, temperature estimates using single-temperature models give results practically identical to our composite models. The change of the (composite blackbody) spectrum with the star's rotational phase is also not very large and may be unobservable inmost cases. Gravitational lensing strongly suppresses the light curve pulsations. If a dipole field is assumed, pulsed fractions comparable to the observed ones can be obtained only with stellar radii larger than those which are predicted by current models of neutron star struture, or with low stellar masses. Moreover, the shapes of the theoretical light curves with dipole fields do not correspond to the observations. The use of magnetic spectra may raise the pulsed fraction sufficiently but will certainly make the discrepancy with the light curve shapes worse: dipole fields are not sufficient to interpret the data. Many neutron star models with a meson condensate or hypersons predict very small radii, and hence very strong lensing, which will require highly nondipolar fields to be able to reproduce the observed pulsed fractions, if possible at all: this may be a new tool to constrain the size of neutron stars. The pulsed fractions obtained in all our models increase with photon energy: the strong decrease observed in Geminga at energies 0.3-0.5 keV is definitely a genuine effect of the magnetic field on the spectrum in contradistinction to the magnetic effects on the surface temperature considered her. Thus, a detailed analysis of thermal emission from the four pulsars we consider will require both complex surface field configurations and the inclusion of magnetic effects in the atmosphere (i.e., on the emitted spectrum).
Biocompatibility of antimicrobial melimine lenses: rabbit and human studies.
Dutta, Debarun; Ozkan, Jerome; Willcox, Mark D P
2014-05-01
Covalent immobilization of antimicrobial peptide melimine onto contact lenses can produce broad-spectrum antimicrobial lenses. The purpose of this study was to investigate the performance of melimine-coated contact lenses in an animal model and human clinical trial. Melimine was covalently attached onto the surface of contact lenses via EDC (1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride) coupling. A rabbit model of daily contralateral wear of lenses for 22 days was conducted to assess the lens safety. A prospective, randomized, double-masked, one-day human clinical trial was used to evaluate subjective responses and ocular physiology during contralateral wear of melimine-coated (test) and uncoated (control) lenses. Delayed reactions were monitored during follow-up visits after 1 and 4 weeks. Ex vivo retention of antimicrobial activity of worn lenses was assessed by reduction in numbers of viable Pseudomonas aeruginosa and Staphylococcus aureus. Melimine-coated lenses produced no ocular signs or symptoms that would indicate cytotoxicity during the lens wear of rabbits. No histological changes were found in rabbit corneas. During the human trial, no differences were observed in wettability, surface deposition, lens-fitting centration, movement, tightness, and corneal coverage between test and control lenses (p > 0.05). There were no significant differences in bulbar, limbal, or palpebral redness or conjunctival staining (p > 0.05). Mean corneal (extent, depth, and type) staining was higher for test lenses compared with that for control lenses (p < 0.05). There was no significant difference in subjective responses for lens comfort, dryness, and awareness (p > 0.05). No delayed reactions were associated with the test lenses. Worn test lenses retained more than 1.5 log inhibition against both bacterial types. Melimine-coated contact lenses were worn safely by humans. However, they were associated with higher corneal staining. The melimine-coated lenses retained high antibacterial activity after wear.
Guillon, Michel; Dumbleton, Kathy; Theodoratos, Panagiotis; Patel, Trisha; Karkkainen, Tom; Moody, Kurt
2018-05-01
Contact lens wearers of Asian descent may be predisposed to experience microtrauma of the ocular surface as a result a thinner post-lens tear film and higher eyelid tension, and these effects would be anticipated to be most marked in an older population. The objective of this study was to quantify the mechanical effects of the study contact lenses on the ocular surface in a population of presbyopic contact lens wearers of Asian descent. Twenty established presbyopic contact lens wearers (hydrogel n=5, none habitual wearers of etafilcon A lenses; silicone hydrogel n=15) of Asian descent were refitted with etafilcon A multifocal daily disposable contact lenses (1-DAY ACUVUE MOIST MULTIFOCAL) for a period of 1 month of daily lens wear. The habitual modalities of wear were 45% daily disposable and 55% planned replacement. Digital photographs of the upper lid margins, nasal and temporal conjunctiva, and superior cornea were taken after 6 hr of wear of the participants' habitual contact lenses, after 1 day without contact lens wear, and after 6 hr of wear of the study contact lenses at the end of the 1-month period. The photographs were masked according to study visit and the staining extent measured using proprietary software. Lid margin staining was significantly lower with the study contact lenses (2.0±1.0 mm) than with the participants' own contact lenses (3.2±3.0 mm) after 6 hr of wear, representing a mean staining decrease of 38% (P=0.010). Lid margin staining after 6 hr of wear of the study contact lenses was not different from that measured after 1 day without contact lenses (P=0.507). Limbal staining was also significantly less with the study contact lenses than with the participants' own contact lenses after 6 hr of wear (P=0.009). There was minimal upper corneal staining, and the degree was similar with the study and habitual lenses. Etafilcon A material, worn under a daily disposable modality, was shown to reduce upper lid margin and limbal staining in presbyopic contact lens wearers of Asian descent compared with the wearers' own contact lenses. Because of the high preponderance of dry eye amongst presbyopes, material selection is of importance and consideration should be given to the lens-ocular surface interaction.
Dumbleton, Kathy; Theodoratos, Panagiotis; Patel, Trisha; Karkkainen, Tom; Moody, Kurt
2018-01-01
Introduction: Contact lens wearers of Asian descent may be predisposed to experience microtrauma of the ocular surface as a result a thinner post-lens tear film and higher eyelid tension, and these effects would be anticipated to be most marked in an older population. The objective of this study was to quantify the mechanical effects of the study contact lenses on the ocular surface in a population of presbyopic contact lens wearers of Asian descent. Methods: Twenty established presbyopic contact lens wearers (hydrogel n=5, none habitual wearers of etafilcon A lenses; silicone hydrogel n=15) of Asian descent were refitted with etafilcon A multifocal daily disposable contact lenses (1-DAY ACUVUE MOIST MULTIFOCAL) for a period of 1 month of daily lens wear. The habitual modalities of wear were 45% daily disposable and 55% planned replacement. Digital photographs of the upper lid margins, nasal and temporal conjunctiva, and superior cornea were taken after 6 hr of wear of the participants' habitual contact lenses, after 1 day without contact lens wear, and after 6 hr of wear of the study contact lenses at the end of the 1-month period. The photographs were masked according to study visit and the staining extent measured using proprietary software. Results: Lid margin staining was significantly lower with the study contact lenses (2.0±1.0 mm2) than with the participants' own contact lenses (3.2±3.0 mm2) after 6 hr of wear, representing a mean staining decrease of 38% (P=0.010). Lid margin staining after 6 hr of wear of the study contact lenses was not different from that measured after 1 day without contact lenses (P=0.507). Limbal staining was also significantly less with the study contact lenses than with the participants' own contact lenses after 6 hr of wear (P=0.009). There was minimal upper corneal staining, and the degree was similar with the study and habitual lenses. Conclusions: Etafilcon A material, worn under a daily disposable modality, was shown to reduce upper lid margin and limbal staining in presbyopic contact lens wearers of Asian descent compared with the wearers' own contact lenses. Because of the high preponderance of dry eye amongst presbyopes, material selection is of importance and consideration should be given to the lens–ocular surface interaction. PMID:27755285
Harris, W F
1989-03-01
The exact equation for sagitta of spherical surfaces is generalized to toric surfaces which include spherical and cylindrical surfaces as special cases. Lens thickness, therefore, can be calculated accurately anywhere on a lens even in cases of extreme spherical and cylindrical powers and large diameters. The sagittae of tire- and barrel-form toric surfaces differ off the principal meridians, as is shown by a numerical example. The same holds for pulley- and capstan-form toric surfaces. A general expression is given for thickness at an arbitrary point on a toric lens. Approximate expressions are derived and re-expressed in terms of matrices. The matrix provides an elegant means of generalizing equations for spherical surfaces and lenses to toric surfaces and lenses.
Material properties that predict preservative uptake for silicone hydrogel contact lenses.
Green, J Angelo; Phillips, K Scott; Hitchins, Victoria M; Lucas, Anne D; Shoff, Megan E; Hutter, Joseph C; Rorer, Eva M; Eydelman, Malvina B
2012-11-01
To assess material properties that affect preservative uptake by silicone hydrogel lenses. We evaluated the water content (using differential scanning calorimetry), effective pore size (using probe penetration), and preservative uptake (using high-performance liquid chromatography with spectrophotometric detection) of silicone and conventional hydrogel soft contact lenses. Lenses grouped similarly based on freezable water content as they did based on total water content. Evaluation of the effective pore size highlighted potential differences between the surface-treated and non-surface-treated materials. The water content of the lens materials and ionic charge are associated with the degree of preservative uptake. The current grouping system for testing contact lens-solution interactions separates all silicone hydrogels from conventional hydrogel contact lenses. However, not all silicone hydrogel lenses interact similarly with the same contact lens solution. Based upon the results of our research, we propose that the same material characteristics used to group conventional hydrogel lenses, water content and ionic charge, can also be used to predict uptake of hydrophilic preservatives for silicone hydrogel lenses. In addition, the hydrophobicity of silicone hydrogel contact lenses, although not investigated here, is a unique contact lens material property that should be evaluated for the uptake of relatively hydrophobic preservatives and tear components.
Illumination-redistribution lenses for non-circular spots
NASA Astrophysics Data System (ADS)
Parkyn, William A.; Pelka, David G.
2005-08-01
The design of illumination lenses is far easier under the regime of the small-source approximation, whereby central rays are taken as representative of the entire source. This implies that the lens is much larger than the source's active emitter, and its entire interior surface is nowhere close to the source. Also, a given source luminance requires a minimum lens area to achieve the candlepower necessary for target illumination. We introduce two-surface aspheric lenses for specific illuminations tasks involving ceiling-mounted downlights, lenses that achieve uniform illuminance at the output aperture as well as at the target. This means that squared-off lenses will produce square spots. In particular, a semicircular lens and a vertical mirror will produce a semicircular spot suitable for gambling tables.
Thermal lensing and microchip laser performance of N g-cut Tm3+:KY(WO4)2 crystal
NASA Astrophysics Data System (ADS)
Gaponenko, M. S.; Loiko, P. A.; Gusakova, N. V.; Yumashev, K. V.; Kuleshov, N. V.; Pavlyuk, A. A.
2012-09-01
The thermal lensing effect was characterized in the diode-pumped monoclinic N g-cut Tm:KYW crystal under laser operation conditions at the wavelength of 1.94 μm. The thermal lens was found to be slightly astigmatic; its optical power D being positive for rays lying in all meridional planes. Thermal lens sensitivity factors M= dD/ dP abs equal 11.8 m-1/W and 8.8 m-1/W (with respect to the absorbed pump power P abs) for principal meridional planes containing N p and N m axes. Nearly athermal behavior of N g-cut crystal is associated with the mutual compensation of different impacts to the thermal lens optical power that arise from temperature dependence of the refractive index dn/ dT and anisotropic thermal expansion. It was utilized to produce passively cooled diode-pumped 0.65 W cw Tm:KYW microchip laser with slope efficiency of 44 % and low thermo-optic aberrations.
Asoubar, Daniel; Wyrowski, Frank
2015-07-27
The computer-aided design of high quality mono-mode, continuous-wave solid-state lasers requires fast, flexible and accurate simulation algorithms. Therefore in this work a model for the calculation of the transversal dominant mode structure is introduced. It is based on the generalization of the scalar Fox and Li algorithm to a fully-vectorial light representation. To provide a flexible modeling concept of different resonator geometries containing various optical elements, rigorous and approximative solutions of Maxwell's equations are combined in different subdomains of the resonator. This approach allows the simulation of plenty of different passive intracavity components as well as active media. For the numerically efficient simulation of nonlinear gain, thermal lensing and stress-induced birefringence effects in solid-state active crystals a semi-analytical vectorial beam propagation method is discussed in detail. As a numerical example the beam quality and output power of a flash-lamp-pumped Nd:YAG laser are improved. To that end we compensate the influence of stress-induced birefringence and thermal lensing by an aspherical mirror and a 90° quartz polarization rotator.
On the influence of monochromator thermal deformations on X-ray focusing
Antimonov, M. A.; Khounsary, A. M.; Sandy, A. R.; ...
2016-03-02
A cooled double crystal monochromator system is used on many high heat load X-ray synchrotron radiation beamlines in order to select, by diffraction, a narrow spectrum of the beam. Thermal deformation of the first crystal monochromator – and the potential loss of beam brightness – is often a concern. However, if downstream beam focusing is planned, the lensing effect of the monochromator must be considered even if thermal deformations are small. In this paper we report on recent experiments at an Advanced Photon Source (APS) beamline that focuses the X-ray beam using compound refractive lenses downstream of an X-ray monochromatormore » system. Increasing the X-ray beam power by increasing the storage ring current from 100 mA to 130 mA resulted in an effective doubling of the focal distance. We show quantitatively that this is due to a lensing effect of the distorted monochromator that results in the creation of a virtual source downstream of the actual source. Lastly, an analysis of the defocusing and options to mitigate this effect are explored.« less
Hart, D E; Plociniak, M P; Grimes, G W
1998-04-01
Historically, biochemical studies of the interaction between tears and hydrogel contact lenses have not been coordinated with the study of the morphological ultrastructure of the phenomena. Moreover, terms that have distinct and different meanings--pellicle, coating, deposit, and biofilm--have been used interchangeably and often incorrectly when applied within the context of the general field of contact lens biotechnology to describe the tear-polymer interaction. We describe our elucidation of morphological and elemental characteristics of the normal pellicle that forms on the lens surface and urge standard use of the word "pellicle" to specify this entity. Fourteen worn hydrogel lenses (8 Group 1 and 6 Group 4 lenses according to the FDA classification) were rinsed, quartered, and fixed or dried, depending on the analysis to be performed. Scanning electron microscopy (SEM) was used to examine the morphology of the pellicle and quantify its thickness. X-ray analysis was used to detect elements associated with the anterior, central, and posterior portions of the lenses and their relative distribution. A distinctive morphological pellicle ranging from 0.1 to 8.6 microns was present on 12 of the 14 lenses. The pellicle was thicker on the Group 4 lenses than on the Group 1 lenses (P < 0.003). However, the pellicle on Group 1 lenses became thicker with increasing lens age (P < 0.02), but not as thick as on Group 4 lenses. Morphologically distinct lipid or jelly bump deposits were observed at the surface of both lenses from a single patient wearing 2 week old Group 4 lenses. Eleven lenses had sulfur-bearing tear components on the anterior zone. Sulfur was deposited within the matrix of nine lenses. The sulfur containing moieties were more prevalent on Group 4 lenses (P < 0.002). More sulfur was assayed on older lenses (P < 0.004). The anterior lens zone had more sulfur-bearing tear components than did the posterior or center zones (P < 0.05). The physiologically normal pellicle is a distinct morphological entity covering the anterior lens surface. Abnormal deposits such as the discrete microgel region, known as jelly bumps, are not part of the physiologically normal pellicle at the anterior lens surface and have the potential to induce pathology. Sulfur-containing moieties within the matrix may represent the breakdown of large proteins and mucoproteins or intact proteins, as well as contaminants such as cosmetics and environmental pollutants. It is also possible that entire small proteins, such as lysozyme, impregnate the matrix. The moieties that become entrapped within the matrix or rigidly adhere to the matrix should be considered true deposits.
Large-Aperture Wide-Bandwidth Anti-Reflection-Coated Silicon Lenses for Millimeter Wavelengths
NASA Technical Reports Server (NTRS)
Datta, R.; Munson, C. D.; Niemack, M. D.; McMahon, J. J.; Britton, J.; Wollack, E. J.; Beall, J.; Devlin, M. J.; Fowler, J.; Gallardo, P.;
2013-01-01
The increasing scale of cryogenic detector arrays for sub-millimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n = 3.4, low loss, and relatively high thermal conductivity is a nearly optimal material for these purposes, but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coffecient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating. We have fabricated and coated silicon lenses as large as 33.4 cm in diameter with coatings optimized for use between 125-165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30 deg. with low cross-polarization. We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to sub-millimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth.
Large-aperture Wide-bandwidth Antireflection-coated Silicon Lenses for Millimeter Wavelengths
NASA Technical Reports Server (NTRS)
Datta, R.; Munson, C. D.; Niemack, M. D.; McMahon, J. J.; Britton, J.; Wollack, Edward J.; Beall, J.; Devlin, M. J.; Fowler, J.; Gallardo, P.;
2013-01-01
The increasing scale of cryogenic detector arrays for submillimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n 3.4, low loss, and high thermal conductivity is a nearly optimal material for these purposes but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coefficient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three-axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating.We have fabricated silicon lenses as large as 33.4 cm in diameter with micromachined layers optimized for use between 125 and 165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30deg with low cross polarization.We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to submillimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth.
FEL investigations of energy transfer in condensed phase systems
NASA Astrophysics Data System (ADS)
Henderson, Don O.; Mu, Richard; Silberman, Enrique; Johnson, J. B.; Edwards, Glenn S.
1993-07-01
The vibrational dynamics of O-H groups in fused silica have been examined by a time- resolved pump-probe technique using the Vanderbilt Free Electron Laser (FEL). We consider two effects, local heating and transient thermal lensing, which can influence measured T1 values in one color pump-probe measurements. The dependence of these two effects on both the micropulse spacing and the total number of micropulses delivered to the sample are analyzed in detail for the O-H/SiO2 system. The results indicate that transient thermal lensing can significantly influence the measured probe signal. The local heating may cause thermally induced changes in the ground state population of the absorber, thereby complicating the analysis of the relaxation dynamics.
NASA Astrophysics Data System (ADS)
Kraushaar, Sabine; Kamleitner, Sarah; Czarnowsky, Verena; Blöthe, Jan; Morche, David; Knöller, Kay; Lachner, Johannes
2017-04-01
The Gepatschferner glacier in the Upper Kaunertal valley is one of the fastest melting glaciers in the Eastern European Alps. With a retreat rate of around 110 m a-1 since the hydrological year 2012/ 2013, unconsolidated sediments of steep lateral moraines have been exposed to erosion, from which nowadays episodic and perennial springs well. We hypothesize that the springs indicate the melt out of dead ice lenses in areas below 2500 m, causing a potential significant morphological change in the moraines and a decrease of slope stability in the proglacial long after glacier retreat. However, permafrost degradation has not been considered so far in contemporary erosion measurements. The present study aims to identify the spring water's origin and displays first attempts of quantifying thermal erosion, which describes the matrix volume loss due to melting and drainage of ice water. Samples were routinely analyzed for temperature, electrical conductivity, δ2H, and δ18O. Results support the hypothesis that certain springs derive from melting ice of similar isotopic signature as the glacier. In a second step, chosen samples were examined for the long-lived anthropogenic nuclide 129I. Since the 1950s the atmospheric abundance of 129I has significantly increased. Its occurrence in the water samples hints a surface contact of the waters in the last 65 years. Springs of ice origin show little 129I content and are believed to derive from dead ice by the glacier. First electric resistivity measurements support the hydro-chemical results and suggest the existence of ice lenses in the subsurface. Ice ablation and discharge measurements allowed first estimates of the thermal erosion volume caused by the melt out and drainage of ice lenses.
Marx, Sebastian; Sickenberger, Wolfgang
2017-12-01
This study was designed to develop a novel technique called non-invasive keratograph dry-up time (NIK-DUT), which used an adapted corneal topographer, to analyse in-vitro contact lens surface dewetting and the effects of combinations of lenses and lens care solutions on dewetting. Variables were assessed to optimise sensitivity and reproducibility. To validate the method, in-vitro dewetting of silicone hydrogel contact lenses (balafilcon A, comfilcon A, lotrafilcon A, lotrafilcon B and senofilcon A) was tested. All lens types were soaked in OPTI-FREE ® PureMoist ® Multipurpose Disinfecting Solution (OFPM) and Sensitive Eyes ® Saline Solution. The mean NIK-DUT, defined as drying of 25% of the placido ring measurement segments (NIK-DUT_S25), was calculated for each lens/lens solution combination and a visual map constructed representing the time and location of the dry-up event. Optimal conditions for NIK-DUT measurement included mounting onto a glass stage with a surface geometry of r=8.5mm, e=0, and measuring with high intensity red or white illumination. This method detected significant differences in contact lens dewetting with different lens soaking solutions. NIK-DUT_S25 for all lenses was longer when pre-soaked in OFPM versus saline. Visual analysis showed that dewetting of contact lenses was not uniform across surfaces and differed between test solutions. NIK-DUT is suitable for detecting differences in dewetting among various contact lenses and lens-care combinations. NIK-DUT can quantify the dewetting of large areas of lens surfaces with little subjective influence. Lens care solutions containing surface-active wetting agents were found to delay surface dewetting of silicone hydrogel lenses. Copyright © 2017. Published by Elsevier Ltd.
Lievens, Christopher W; Connor, Charles G; Murphy, Heather
2003-10-01
The current study evaluates the response of the ocular surface to extended contact lens wear by comparing a new silicone hydrogel lens to an ACUVUE 2 lens. Twenty subjects with an average age of 28 years were randomly assigned to a fitting with ACUVUE 2 or PureVision lenses. Ocular surface assessment by impression cytology was performed at baseline and for the 6 months after initiation of lens wear. Although goblet cell density significantly increased with wear time, no statistically significant difference was observed between the contact lens groups. The average baseline goblet cell percentages were as follows: ACUVUE 2 group, 1.44; PureVision group, 1.11. The 6-month averages were as follows: ACUVUE 2 group, 3.16; PureVision group, 2.22. It appears that silicone hydrogel lenses may be slightly less irritating to the ocular surface than lenses not containing silicone. This could be a promising indicator for successful 30-day continuous wear.
Lee, Ga-Hyun; Yu, Hak-Sun; Lee, Ji-Eun
2016-03-01
To evaluate the effect of multipurpose contact lens care solutions (MPSs) on the adhesion of Acanthamoeba to rigid gas permeable (RGP) contact lenses. Acanthamoeba castellanii (AC) trophozoites were inoculated onto untreated RGP contact lenses (FP, Extra, or Menicon Z), and numbers of trophozoites adhering to lenses were counted under a phase contrast microscope at 18 h post-inoculation (controls). Similarly, adhering trophozoites were counted at 6 h post-inoculation on each of the three RGP lens types with one of three MPSs (Boston Simplus, Menicare Plus, and O2 Care). Scanning electron microscopic examinations were performed to compare lens surfaces. Adhesion of AC trophozoites to untreated FP was greater than to untreated Extra or Menicon Z. Surfaces of Extra and Menicon Z lenses were waxier, smoother, and more homogeneous than those of FP lenses. After treatment with Boston Simplus, adhesion of AC trophozoites was significantly reduced for all lens types as compared with controls (p < 0.0001). Treatments with Menicare Plus or O2 Care reduced the number of adherent AC trophozoites significantly on FP lenses only as compared with controls (p < 0.0001). The adhesion rates of AC trophozoites to RGP lenses depended on lens surfaces. Boston Simplus reduced the adhesion rate of AC trophozoites more than Menicare Plus or O2 Care. Appropriate RGP lens and MPS selection could decrease the prevalence of Acanthamoeba keratitis. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.
Evidence of Cross-correlation between the CMB Lensing and the γ-Ray Sky
NASA Astrophysics Data System (ADS)
Fornengo, Nicolao; Perotto, Laurence; Regis, Marco; Camera, Stefano
2015-03-01
We report the measurement of the angular power spectrum of cross-correlation between the unresolved component of the Fermi-LAT γ-ray sky maps and the cosmic microwave background lensing potential map reconstructed by the Planck satellite. The matter distribution in the universe determines the bending of light coming from the last scattering surface. At the same time, the matter density drives the growth history of astrophysical objects, including their capability at generating non-thermal phenomena, which in turn give rise to γ-ray emissions. The Planck lensing map provides information on the integrated distribution of matter, while the integrated history of γ-ray emitters is imprinted in the Fermi-LAT sky maps. We report here the first evidence of their correlation. We find that the multipole dependence of the cross-correlation measurement is in agreement with current models of the γ-ray luminosity function for active galactic nuclei and star-forming galaxies, with a statistical evidence of 3.0σ. Moreover, its amplitude can in general be matched only assuming that these extragalactic emitters are also the bulk contribution of the measured isotopic γ-ray background (IGRB) intensity. This leaves little room for a big contribution from galactic sources to the IGRB measured by Fermi-LAT, pointing toward direct evidence of the extragalactic origin of the IGRB.
Surface wettability enhancement of silicone hydrogel lenses by processing with polar plastic molds.
Lai, Y C; Friends, G D
1997-06-05
In the quest for hydrogel contact lenses with improved extended wear capability, the use of siloxane moieties in the lens materials was investigated. However, the introduction of hydrophobic siloxane groups gave rise to wettability and lipidlike deposit problems. It was found that when polysiloxane-based compositions for hydrogels were processed with polar plastic molds, such as those fabricated from an acrylonitrile-based polymer, the hydrogel lenses fabricated were wettable, with minimized lipidlike deposits. These findings were supported by the wettability of silicone hydrogel films, silicon, and nitrogen element contents near lens surfaces, as well as the results from clinical assessment of silicone hydrogel lenses.
Fluid Lensing and Applications to Remote Sensing of Aquatic Environments
NASA Technical Reports Server (NTRS)
Chirayath, Ved
2017-01-01
The use of fluid lensing technology on UAVs is presented as a novel means for 3D imaging of aquatic ecosystems from above the water's surface at the centimeter scale. Preliminary results are presented from airborne fluid lensing campaigns conducted over the coral reefs of Ofu Island, American Samoa (2013) and the stromatolite reefs of Shark Bay, Western Australia (2014), covering a combined area of 15km2. These reef ecosystems were revealed with centimetre-scale 2D resolution, and an accompanying 3D bathymetry model was derived using fluid lensing, Structure from Motion and UAV position data. Data products were validated from in-situ survey methods including underwater calibration targets, depth measurements and millimetre-scale high-dynamic range gigapixel photogrammetry. Fluid lensing is an experimental technology that uses water transmitting wavelengths to passively image underwater objects at high-resolution by exploiting time-varying optical lensing events caused by surface waves. Fluid lensing data are captured from low-altitude, cost-effective electric UAVs to achieve multispectral imagery and bathymetry models at the centimetre scale over regional areas. As a passive system, fluid lensing is presently limited by signal-to-noise ratio and water column inherent optical properties to approximately 10 m depth over visible wavelengths in clear waters. The datasets derived from fluid lensing present the first centimetre-scale images of a reef acquired from above the ocean surface, without wave distortion. The 3D multispectral data distinguish coral, fish and invertebrates in American Samoa, and reveal previously undocumented, morphologically distinct, stromatolite structures in Shark Bay. These findings suggest fluid lensing and multirotor electric drones represent a promising advance in the remote sensing of aquatic environments at the centimetre scale, or 'reef scale' relevant to the conservation of reef ecosystems. Pending further development and validation of fluid lensing methods, these technologies present a solution for large-scale 3D surveys of shallow aquatic habitats with centimetre-scale spatial resolution and hourly temporal sampling.
Antireflective glass nanoholes on optical lenses.
Lee, Youngseop; Bae, Sang-In; Eom, Jaehyeon; Suh, Ho-Cheol; Jeong, Ki-Hun
2018-05-28
Antireflective structures, inspired from moth eyes, are still reserved for practical use due to their large-area nanofabrication and mechanical stability. Here we report an antireflective optical lens with large-area glass nanoholes. The nanoholes increase light transmission due to the antireflective effect, depending on geometric parameters such as fill factor and height. The glass nanoholes of low effective refractive index are achieved by using solid-state dewetting of ultrathin silver film, reactive ion etching, and wet etching. An ultrathin silver film is transformed into nanoholes for an etch mask in reactive ion etching after thermal annealing at a low temperature. Unlike conventional nanopillars, nanoholes exhibit high light transmittance with enhancement of ~4% over the full visible range as well as high mechanical hardness. Also, an antireflective glass lens is achieved by directly employing nanoholes on the lens surface. Glass nanoholes of highly enhanced optical and mechanical performance can be directly utilized for commercial glass lenses in various imaging and lighting applications.
Microbiologic study of soft contact lenses after laser subepithelial keratectomy for myopia.
Hondur, Ahmet; Bilgihan, Kamil; Cirak, Meltem Yalinay; Dogan, Ozgur; Erdinc, Alper; Hasanreisoglu, Berati
2008-01-01
To evaluate the extent and agents of bacterial contamination of bandage disposable soft contact lenses after laser subepithelial keratectomy (LASEK) and to correlate the findings with clinical data. Disposable soft contact lenses were collected from 52 eyes of 26 consecutive patients treated with LASEK for myopia. The patients were treated with a fixed combination of tobramycin and diclofenac until epithelial closure. The lenses were removed on the fourth or fifth postoperative day with sterile forceps and immediately placed in sterile tubes containing culture media brain-heart infusion broth. The lenses were evaluated for microbial colonization. Of the 52 contact lenses analyzed, six (11.5%) had positive cultures. However, no clinical finding of infection was noted. Isolated microorganisms were coagulase-negative staphylococci (two lenses), Stenotrophomonas maltophilia (two lenses), Acinetobacter species (one lens), and Aeromonas hydrophila (one lens). Except for one case, the microorganisms were sensitive to the administered antibiotic. The risk of infectious keratitis after LASEK seems to be low. Except for staphylococci, the isolated microorganisms have not been previously reported to colonize the ocular surface or cause keratitis after refractive surgery. These findings may suggest a changing trend of potentially infectious agents after surface ablation.
Chou, B Ralph; Gupta, Alina; Hovis, Jeffery K
2005-11-01
Previous work has shown that the impact resistance to blunt missiles is affected by coatings applied to either CR-39 or polycarbonate lenses. We investigated the effects of multiple antireflection (minimum angle of resolution [MAR]) coatings on the resistance of polycarbonate lenses to puncture on impact by sharp, high-speed missiles. Four groups of surfaced plano polycarbonate lenses were investigated. Two groups had a scratch-resistant (SR) coating applied to both surfaces. One of these groups had a 2-mm center thickness and the other had a 3-mm center thickness. The other two groups of 2-mm and 3-mm thick lenses had a MAR coating applied over the SR coating. The lenses were impacted by a missile consisting of an industrial sewing machine needle mounted in a cylindrical aluminum carrier. The sharp missiles were able to pierce the lenses at speeds between 29.6 m/s and 46.2 m/s. Impact resistance was lowest for the thinner lenses and lenses with a MAR coating. The effect of the MAR and lens thickness was subadditive. We have confirmed previous observations that polycarbonate lenses are more susceptible to penetration by sharp, high-speed missiles than blunt missiles. We have also found that reducing lens center thickness and applying a MAR coating further reduces the penetration resistance. Therefore, the use of 2-mm center thickness and MAR-coated polycarbonate lenses should be discouraged for industrial eye protectors where sharp missile hazards are possible.
An End of Service Life Assessment of PMMA Lenses from Veteran Concentrator Photovoltaic Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, David C.; Khonkar, Hussameldin I.; Herrero, Rebecca
The optical performance of poly(methyl methacrylate) lenses from veteran concentrator photovoltaic modules was examined after the end of their service life. Lenses from the Martin-Marietta and Intersol module designs were examined from the 'Solar Village' site near Riyadh, Saudi Arabia, as well as the Phoenix Sky Harbor airport, followed by the Arizona Public Service Solar Test and Research (APS-STaR) center in Tempe, Arizona. The various lens specimens were deployed for 20, 27, and 22 years, respectively. Optical characterizations included lens efficiency (Solar Simulator instrument), material transmittance and haze (of coupons cut from veteran lenses, then measured again after their facetedmore » back surface was polished, and then measured again after the incident front surface was polished), and direct transmittance (as a function of detector's acceptance angle, using the Very Low Angular Beam Spread ('VLABS') instrument). Lens efficiency measurements compared the central region to the entire lens, also using hot and cold mirror measurements to diagnose differences in performance. A series of subsequent characterizations was performed because a decrease in performance of greater than 10% was observed for some of the veteran lenses. Surface roughness was examined using atomic force microscopy and scanning electron microscopy. Facet geometry (tip and valley radius) was quantified on cross-sectioned specimens. Molecular weight was compared between the incident and faceted surfaces of the lenses.« less
An end of service life assessment of PMMA lenses from veteran concentrator photovoltaic systems
Miller, David C.; Khonkar, Hussameldin I.; Herrero, Rebeca; ...
2017-04-04
The optical performance of poly(methyl methacrylate) lenses from veteran concentrator photovoltaic modules was examined after the end of their service life. Lenses from the Martin-Marietta and Intersol module designs were examined from the 'Solar Village' site near Riyadh, Saudi Arabia, as well as the Phoenix Sky Harbor airport, followed by the Arizona Public Service Solar Test and Research (APS-STaR) center in Tempe, Arizona. The various lens specimens were deployed for 20, 27, and 22 years, respectively. Optical characterizations included lens efficiency (Solar Simulator instrument), material transmittance and haze (of coupons cut from veteran lenses, then measured again after their facetedmore » back surface was polished, and then measured again after the incident front surface was polished), and direct transmittance (as a function of detector's acceptance angle, using the Very Low Angular Beam Spread ('VLABS') instrument). Lens efficiency measurements compared the central region to the entire lens, also using hot and cold mirror measurements to diagnose differences in performance. A series of subsequent characterizations was performed because a decrease in performance of greater than 10% was observed for some of the veteran lenses. The optimal focal distance of the lenses was quantified using the Solar Simulator, and then correlated to lens curvature using a recently developed measurement technique. Surface roughness was examined using atomic force microscopy and scanning electron microscopy. Facet geometry (tip and valley radius) was quantified on cross-sectioned specimens. As a result, molecular weight was compared between the incident and faceted surfaces of the lenses.« less
An end of service life assessment of PMMA lenses from veteran concentrator photovoltaic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, David C.; Khonkar, Hussameldin I.; Herrero, Rebeca
The optical performance of poly(methyl methacrylate) lenses from veteran concentrator photovoltaic modules was examined after the end of their service life. Lenses from the Martin-Marietta and Intersol module designs were examined from the 'Solar Village' site near Riyadh, Saudi Arabia, as well as the Phoenix Sky Harbor airport, followed by the Arizona Public Service Solar Test and Research (APS-STaR) center in Tempe, Arizona. The various lens specimens were deployed for 20, 27, and 22 years, respectively. Optical characterizations included lens efficiency (Solar Simulator instrument), material transmittance and haze (of coupons cut from veteran lenses, then measured again after their facetedmore » back surface was polished, and then measured again after the incident front surface was polished), and direct transmittance (as a function of detector's acceptance angle, using the Very Low Angular Beam Spread ('VLABS') instrument). Lens efficiency measurements compared the central region to the entire lens, also using hot and cold mirror measurements to diagnose differences in performance. A series of subsequent characterizations was performed because a decrease in performance of greater than 10% was observed for some of the veteran lenses. The optimal focal distance of the lenses was quantified using the Solar Simulator, and then correlated to lens curvature using a recently developed measurement technique. Surface roughness was examined using atomic force microscopy and scanning electron microscopy. Facet geometry (tip and valley radius) was quantified on cross-sectioned specimens. As a result, molecular weight was compared between the incident and faceted surfaces of the lenses.« less
Modeling of thermal lensing in side and end-pumped finite solid-state laser rods. M.S. Thesis
NASA Technical Reports Server (NTRS)
Brackett, Vincent G.
1990-01-01
An analytical expression for approximating the time-dependent thermal focal length in finite solid state laser rods was derived. The analysis is based on the temperature variation of the material refractive index caused by optical pumping of these rods. Several quantities were found to be relevant to this analysis. These quantities were the specific thermal profiles of the rods, type of optical pumping employed, type of cooling scheme employed (side and end-cooling parameters), and the specific material characteristics of the rods. The Thermal Lensing Model was formulated using the geometric ray tracing approach. The focal lengths are then approximated, by calculating the phase shift in the index of refraction, as the different rays of an incident plane wave are tracked through a lens-like crystal medium. The approach also applies in the case of Gaussian or parabolic pump beams. It is shown that the prediction of thermal focal length is in good quantitative agreement with experimentally obtained data.
NASA Astrophysics Data System (ADS)
Morandi, Andrea
2017-09-01
We propose to study multitemperature structure, clumpy gas distribution and non-thermal pressure in the outskirts of a sample of galaxy clusters by means of Chandra X-ray, Sunyaev Zeldovich and lensing data. We propose to recover the X-ray spectroscopic temperatures close to the virial radius and compare them to the average (gas mass-weighted) temperature probed through SZ. Our preliminary analysis reveals compelling evidence of a substantial amounts of cold gas (T 0.8 keV) at subvirial temperature which coexists with the hot (>4 keV) thermal component of the intracluster medium (ICM). The proposed investigation has important implications for understanding the astrophysics of the ICM in the outer volumes and the CDM scenario, and it has crucial ramifications for the cosmology.
Cluster-lensing: A Python Package for Galaxy Clusters and Miscentering
NASA Astrophysics Data System (ADS)
Ford, Jes; VanderPlas, Jake
2016-12-01
We describe a new open source package for calculating properties of galaxy clusters, including Navarro, Frenk, and White halo profiles with and without the effects of cluster miscentering. This pure-Python package, cluster-lensing, provides well-documented and easy-to-use classes and functions for calculating cluster scaling relations, including mass-richness and mass-concentration relations from the literature, as well as the surface mass density {{Σ }}(R) and differential surface mass density {{Δ }}{{Σ }}(R) profiles, probed by weak lensing magnification and shear. Galaxy cluster miscentering is especially a concern for stacked weak lensing shear studies of galaxy clusters, where offsets between the assumed and the true underlying matter distribution can lead to a significant bias in the mass estimates if not accounted for. This software has been developed and released in a public GitHub repository, and is licensed under the permissive MIT license. The cluster-lensing package is archived on Zenodo. Full documentation, source code, and installation instructions are available at http://jesford.github.io/cluster-lensing/.
Broad spectrum antimicrobial activity of melimine covalently bound to contact lenses.
Dutta, Debarun; Cole, Nerida; Kumar, Naresh; Willcox, Mark D P
2013-01-07
To develop a stable antimicrobial contact lens, which is effective against the International Organization for Standardization (ISO) panel microorganisms, Acanthamoeba castellanii and drug resistant strains of Pseudomonas aeruginosa and Staphylococcus aureus. Melimine was covalently incorporated into etafilcon A lenses. The amount of peptide present on the lens surface was quantified using amino acid analysis. After coating, the heat stability (121°C), lens surface hydrophobicity (by captive bubble), and in vitro cytotoxicity to mouse L929 cells of the lenses were investigated. Antimicrobial activity against the micro-organisms was evaluated by viable plate count and fluorescence microscopy, measuring the proportion of cell death compared with control lenses with no melimine. The most effective concentration was determined to be 152 ± 44 μg lens(-1) melimine on the lens surface. After coating, lenses were relatively hydrophilic and were nontoxic to mammalian cells. The activity remained high after autoclaving (e.g., 3.1, 3.9, 1.2, and 1.0 log inhibition against P. aeruginosa, S. aureus, A. castellanii, and Fusarium solani, respectively). Fluorescence microscopy confirmed significantly reduced (P < 0.001) adhesion of viable bacteria to melimine contact lenses. Viable count confirmed that lenses were active against all the bacteria and fungi from the ISO panel, Acanthamoeba and gave at least 2 log inhibition against all the multidrug resistant S. aureus and P. aeruginosa strains. Melimine may offer excellent potential for development as a broad spectrum antimicrobial coating for contact lenses, showing activity against all the bacterial and fungal ISO panel microorganisms, Acanthamoeba, and antibiotic resistant strains of P. aeruginosa and S. aureus.
Micro-optofluidic Lenses: A review
Nguyen, Nam-Trung
2010-01-01
This review presents a systematic perspective on the development of micro-optofluidic lenses. The progress on the development of micro-optofluidic lenses are illustrated by example from recent literature. The advantage of micro-optofluidic lenses over solid lens systems is their tunability without the use of large actuators such as servo motors. Depending on the relative orientation of light path and the substrate surface, micro-optofluidic lenses can be categorized as in-plane or out-of-plane lenses. However, this review will focus on the tunability of the lenses and categorizes them according to the concept of tunability. Micro-optofluidic lenses can be either tuned by the liquid in use or by the shape of the lens. Micro-optofluidic lenses with tunable shape are categorized according to the actuation schemes. Typical parameters of micro-optofluidic lenses reported recently are compared and discussed. Finally, perspectives are given for future works in this field. PMID:20714369
Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David
2014-09-01
Limbal ring (also known as 'circle') contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or 'enclosed' within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of 'circle' contact lenses. Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. © 2014 The Authors. Clinical and Experimental Optometry © 2014 Optometrists Association Australia.
Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David
2014-01-01
Background Limbal ring (also known as ‘circle’) contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or ‘enclosed’ within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of ‘circle’ contact lenses. Methods Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. Results SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. Conclusions SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. PMID:24689948
The Effects of Physically Unrelated Near Neighbors on the Weak Galaxy-Galaxy Lensing Signal
NASA Astrophysics Data System (ADS)
Brainerd, Tereasa
2018-01-01
The effects of physically unrelated near neighbors on the weak galaxy-galaxy lensing signal are explored. Physically unrelated near neighbors are galaxies that are close to a given lens galaxy in projection on the sky, but are located at substantially different redshifts. Typically, the effects of such physically unrelated near neighbors are assumed to cancel. If that were truly the case, these objects would not contribute to the mean tangential shear around the lenses and they can be ignored when using an observed weak lensing signal to infer the excess surface mass density surrounding a set of lens galaxies. Here, observed galaxies with known redshifts and luminosities are used as the basis of a suite of Monte Carlo simluations of weak galaxy-galaxy lensing. The simulations incorporate the intrinsic clustering of the lens galaxies, as well as the intrinsic distribution of the lens galaxy masses. Dark matter halos of appropriate sizes and masses are assigned to each of the lens galaxies, and the net effect of all lenses on a set of background source galaxies is determined. The net weak lensing signal (i.e., the mean tangential shear due to all lenses along the line of sight) is computed and then compared to the excess surface mass density surrounding the lenses. Due to the broad redshift and mass distributions of the lenses, the effects of physically unrelated near neighbors in the simulations do not cancel. On scales equal to or greater than the scale for which the two-halo term contributes substantially to the shear, this non-cancellation of the effects of physically unrelated near neighbors significantly affects the accuracy with which the excess surface mass density may be inferred from the mean tangential shear via the standard formula: < ΔΣ > = < Σc γt > . The effects of physically unrelated near neighbors are greatest for the least massive lens galaxies but can also be important for the most massive lens galaxies.
Optical performance of random anti-reflection structured surfaces (rARSS) on spherical lenses
NASA Astrophysics Data System (ADS)
Taylor, Courtney D.
Random anti-reflection structured surfaces (rARSS) have been reported to improve transmittance of optical-grade fused silica planar substrates to values greater than 99%. These textures are fabricated directly on the substrates using reactive-ion/inductively-coupled plasma etching (RIE/ICP) techniques, and often result in transmitted spectra with no measurable interference effects (fringes) for a wide range of wavelengths. The RIE/ICP processes used in the fabrication process to etch the rARSS is anisotropic and thus well suited for planar components. The improvement in spectral transmission has been found to be independent of optical incidence angles for values from 0° to +/-30°. Qualifying and quantifying the rARSS performance on curved substrates, such as convex lenses, is required to optimize the fabrication of the desired AR effect on optical-power elements. In this work, rARSS was fabricated on fused silica plano-convex (PCX) and plano-concave (PCV) lenses using a planar-substrate optimized RIE process to maximize optical transmission in the range from 500 to 1100 nm. An additional set of lenses were etched in a non-optimized ICP process to provide additional comparisons. Results are presented from optical transmission and beam propagation tests (optimized lenses only) of rARSS lenses for both TE and TM incident polarizations at a wavelength of 633 nm and over a 70° full field of view in both singlet and doublet configurations. These results suggest optimization of the fabrication process is not required, mainly due to the wide angle-of-incidence AR tolerance performance of the rARSS lenses. Non-optimized recipe lenses showed low transmission enhancement, and confirmed the need to optimized etch recipes prior to process transfer of PCX/PCV lenses. Beam propagation tests indicated no major beam degradation through the optimized lens elements. Scanning electron microscopy (SEM) images confirmed different structure between optimized and non-optimized samples. SEM images also indicated isotropically-oriented surface structures on both types of lenses.
[Soft contactlenses in general practice (author's transl)].
Miller, B
1975-07-01
In contrast to the hard lenses the soft lens has enough permeability for oxygen and water-soluble substances, whereas high molecular substances, bacteria and virus cannot penetrate the soft lenses, so long as their surfaces are intact. The two principal production methods, the spin cast method and the lathe-turned method are compared. The duration of wearing of the soft lens depends on the deposits of proteins from the tears on the surface of the lens and the desinfection method. The daily boiling of the lenses shortens their useful life, while chemical desinfection causes besides bacteriolysis, damage of the corneal cell protein. The new cleaners on the base of proteolytic plant enzymes promise good results. For the optical correction of astigmatism with more than 1 cyl, soft lenses with conic outer surface are used or combinations of a soft and a hard lens (Duosystem). The therapeutic use of soft lenses has as aim: protection of the cornea against mechanical irritation, release of pain, protracted administration output of medicaments. Further indications for use: aseptic corneal inflammation and corneal defects.
Effect of manufacturing defects on optical performance of discontinuous freeform lenses.
Wang, Kai; Liu, Sheng; Chen, Fei; Liu, Zongyuan; Luo, Xiaobing
2009-03-30
Discontinuous freeform lens based secondary optics are essential to LED illumination systems. Surface roughness and smooth transition between two discrete sub-surfaces are two of the most common manufacturing defects existing in discontinuous freeform lenses. The effects of these two manufacturing defects on the optical performance of two discontinuous freeform lenses were investigated by comparing the experimental results with the numerical simulation results based on Monte Carlo ray trace method. The results demonstrated that manufacturing defects induced surface roughness had small effect on the light output efficiency and the shape of light pattern of the PMMA lens but significantly affected the uniformity of light pattern, which declined from 0.644 to 0.313. The smooth transition surfaces with deviation angle more than 60 degrees existing in the BK7 glass lens, not only reduced the uniformity of light pattern, but also reduced the light output efficiency from 96.9% to 91.0% and heavily deformed the shape of the light pattern. Comparing with the surface roughness, the smooth transition surface had a much more adverse effect on the optical performance of discontinuous freeform lenses. Three methods were suggested to improve the illumination performance according to the analysis and discussion.
Nomachi, Miya; Sakanishi, Kotaro; Ichijima, Hideji; Cavanagh, H Dwight
2013-05-01
To evaluate the efficacy of a novel daily disposable (DD) flat package in regard to microbial contamination on the anterior and posterior surfaces of a contact lens (CL) during handling of the lens for insertion. Four kinds of commercially available general blister-packed daily disposable contact lenses (DD CLs) as controls and a novel Magic 1-day Menicon Flat Pack as a test lens were used for this in vitro study. Lenses were removed from their packages using fingers coated with fluorescein 3 to 5 μm beads or an approximately 7×10(2) to 2×10(3) colony-forming unit (CFU)/mL Staphylococcus aureus suspension. The transfer of fluorescein beads to the surface of the lenses was then observed by fluorescence microscopy. Microbial contamination on the lenses was observed by light microscopy after a 2-day incubation period; and, the number of colonies isolated from the contaminated lenses was determined after 4 days of incubation. The number of fluorescein beads on the Magic lens was significantly less (p<0.05) than that of the general blister-packed control lenses. Adherence of microbial colonies was observed on both inner and outer surfaces of general blister-packed lenses, whereas no colony formation was found on the inner surface of the Magic lens, and the lowest bacterial adherence was observed for the Magic lens. The data demonstrated that placement of the Magic DD lens onto the eye is accompanied by diminished microbial contamination compared with general blister-packed DD CLs. Eye care professionals; however, should instruct patients to comply with intended use of DD CLs to prevent CL-associated microbial keratitis. In all cases, hand washing is mandated prelens insertion.
In Vitro Spoilation of Silicone-Hydrogel Soft Contact Lenses in a Model-Blink Cell.
Peng, Cheng-Chun; Fajardo, Neil P; Razunguzwa, Trust; Radke, Clayton J
2015-07-01
We developed an in vitro model-blink cell that reproduces the mechanism of in vivo fouling of soft contact lenses. In the model-blink cell, model tear lipid directly contacts the lens surface after forced aqueous rupture, mirroring the pre-lens tear-film breakup during interblink. Soft contact lenses are attached to a Teflon holder and immersed in artificial tear solution with protein, salts, and mucins. Artificial tear-lipid solution is spread over the air/tear interface as a duplex lipid layer. The aqueous tear film is periodically ruptured and reformed by withdrawing and reinjecting tear solution into the cell, mimicking the blink-rupture process. Fouled deposits appear on the lenses after cycling, and their compositions and spatial distributions are subsequently analyzed by optical microscopy, laser ablation electrospray ionization mass spectrometry, and two-photon fluorescence confocal scanning laser microscopy. Discrete deposit (white) spots with an average size of 20 to 300 μm are observed on the studied lenses, confirming what is seen in vivo and validating the in vitro model-blink cell. Targeted lipids (cholesterol) and proteins (albumin from bovine serum) are identified in the discrete surface deposits. Both lipid and protein occur simultaneously in the surface deposits and overlap with the white spots observed by optical microscopy. Additionally, lipid and protein penetrate into the bulk of tested silicone-hydrogel lenses, likely attributed to the bicontinuous microstructure of oleophilic silicone and hydrophilic polymer phases of the lens. In vitro spoilation of soft contact lenses is successfully achieved by the model-blink cell confirming the tear rupture/deposition mechanism of lens fouling. The model-blink cell provides a reliable laboratory tool for screening new antifouling lens materials, surface coatings, and care solutions.
NASA Astrophysics Data System (ADS)
Osato, Ken; Flender, Samuel; Nagai, Daisuke; Shirasaki, Masato; Yoshida, Naoki
2018-03-01
Recent detections of the cross-correlation of the thermal Sunyaev-Zel'dovich (tSZ) effect and weak gravitational lensing (WL) enable unique studies of cluster astrophysics and cosmology. In this work, we present constraints on the amplitude of the non-thermal pressure fraction in galaxy clusters, α0, and the amplitude of the matter power spectrum, σ8, using measurements of the tSZ power spectrum from Planck, and the tSZ-WL cross-correlation from Planck and the Red Cluster Sequence Lensing Survey. We fit the data to a semi-analytic model with the covariance matrix using N-body simulations. We find that the tSZ power spectrum alone prefers σ8 ˜ 0.85 and a large fraction of non-thermal pressure (α0 ˜ 0.2-0.3). The tSZ-WL cross-correlation on the other hand prefers a significantly lower σ8 ˜ 0.6 and low α0 ˜ 0.05. We show that this tension can be mitigated by allowing for a steep slope in the stellar mass-halo mass relation, which would cause a reduction of the gas in low-mass haloes. In such a model, the combined data prefer σ8 ˜ 0.7 and α0 ˜ 0.2, consistent with predictions from hydrodynamical simulations.
Lin, David Pei-Cheng; Chang, Han-Hsin; Yang, Li-Chien; Huang, Tzu-Ping; Liu, Hsiang-Jui; Chang, Lin-Song; Lin, Chien-Hsun
2013-01-01
Purpose Weekly disposable soft contact lenses have been widely used recently, but their shield effects against ultraviolet (UV) irradiation remain to be evaluated. This study investigated the bioprotective effects of several weekly soft contact lenses against UVB irradiation on the corneal surface in a mouse model. Methods Fifty ICR mice were randomly divided into five groups: (1) blank control, (2) exposed to UVB without contact lens protection, (3) exposed to UVB and protected with Vifilcon A contact lenses, (4) exposed to UVB and protected with Etafilcon A contact lenses, and (5) exposed to UVB and protected with HEMA+MA contact lenses. The exposure to UVB irradiation was performed at 0.72 J/cm2/day after anesthesia for a 7-day period, followed by cornea surface assessment for smoothness, opacity, and grading of lissamine green staining. Tissue sections were prepared for hematoxylin and eosin staining and immunohistochemical detection by using antibodies against myeloperoxidase, cytokeratin-5, P63, Ki-67, nuclear factor-kappa B (p65), cyclooxygenase-2, Fas L, and Fas. Results The results showed impaired corneal surface with myeloperoxidase+ polymorphonuclear leukocyte infiltration into the stroma after UVB exposure, in contrast to the intact status of the blank controls. The corneas with Etafilcon A and HEMA+MA contact lenses maintained more cells positive for cytokeratin-5, P63, and Ki-67 compared to those with Vifilcon A or without contact lens protection. Furthermore, less proinflammatory factors, including nuclear factor-kappa (p65), cyclooxygenase-2, Fas L, and Fas, were induced in the corneas protected by Etafilcon A and HEMA+MA. Conclusions This study demonstrated various protective effects of weekly disposable contact lenses against UVB irradiation. The mouse model used in the present study may be used extensively for in vivo assessment of UV shield efficacy. PMID:23734085
An analytical approach to gravitational lensing by an ensemble of axisymmetric lenses
NASA Technical Reports Server (NTRS)
Lee, Man Hoi; Spergel, David N.
1990-01-01
The problem of gravitational lensing by an ensemble of identical axisymmetric lenses randomly distributed on a single lens plane is considered and a formal expression is derived for the joint probability density of finding shear and convergence at a random point on the plane. The amplification probability for a source can be accurately estimated from the distribution in shear and convergence. This method is applied to two cases: lensing by an ensemble of point masses and by an ensemble of objects with Gaussian surface mass density. There is no convergence for point masses whereas shear is negligible for wide Gaussian lenses.
NASA Technical Reports Server (NTRS)
Lucas, J.
1979-01-01
Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver Technology is the goal of this project. The energy thus produced must be technically, as well as economically, competitive with other energy sources. This project is to support the industrial development of the required technology to achieve the above stated goal. Solar energy is concentrated by either a reflecting surface or a lense to a receiver where it is transferred to a working liquid or gas. Receiver temperatures are in the 1000 - 2000 F range. Conceptual design studies are expected to identify power conversion units with a viable place in the solar energy future. Rankine and Brayton cycle engines are under investigation. This report details the Jet Propulsion Laboratory's accomplishments with point-focusing technology in Fy 1978.
Transferability of glass lens molding
NASA Astrophysics Data System (ADS)
Katsuki, Masahide
2006-02-01
Sphere lenses have been used for long time. But it is well known that sphere lenses theoretically have spherical aberration, coma and so on. And, aspheric lenses attract attention recently. Plastic lenses are molded easily with injection machines, and are relatively low cost. They are suitable for mass production. On the other hand, glass lenses have several excellent features such as high refractive index, heat resistance and so on. Many aspheric glass lenses came to be used for the latest digital camera and mobile phone camera module. It is very difficult to produce aspheric glass lenses by conventional process of curve generating and polishing. For the solution of this problem, Glass Molding Machine was developed and is spreading through the market. High precision mold is necessary to mold glass lenses with Glass Molding Machine. The mold core is ground or turned by high precision NC aspheric generator. To obtain higher transferability of the mold core, the function of the molding machine and the conditions of molding are very important. But because of high molding temperature, there are factors of thermal expansion and contraction of the mold and glass material. And it is hard to avoid the factors. In this session, I introduce following items. [1] Technology of glass molding and the machine is introduced. [2] The transferability of glass molding is analyzed with some data of glass lenses molded. [3] Compensation of molding shape error is discussed with examples.
Functionalized patchy particles using colloidal lenses
NASA Astrophysics Data System (ADS)
Middleton, Christine
2014-03-01
Colloidal assembly had been limited by the isotropic, nonspecific nature of interactions between spherical colloidal particles. By giving particles patches functionalized with single stranded DNA, these interactions can be made both directional and specific. We create patchy particles by adding patches to spherical emulsion droplets using the depletion interaction. First we make polystyrene particles in the shape of contact lenses to be the patches. The lenses are functionalized with single stranded DNA on their convex side. Then we put the lenses on the surface of oil emulsion droplets using the depletion interaction, creating a patch (or multiple patches) on the surface of each emulsion droplet. The emulsion droplets can now interact with each other in a specific, directional way through DNA functionalized patches.
Golebiowski, Blanka; Papas, Eric B; Stapleton, Fiona
2012-03-09
Deprivation of oxygen to the ocular surface during contact lens wear has been implicated in the alteration of sensory function. This study investigates whether increasing oxygen availability through discontinuation of contact lens wear or transfer into highly oxygen transmissible (high Dk/t) lenses leads to a change in corneal or conjunctival sensitivity. Twenty-seven long-term extended wearers of low Dk/t soft contact lenses ceased lens wear for 1 week and were refitted with high Dk/t silicone hydrogel lenses. A control group of 25 nonwearers matched for age and sex was also recruited. Central corneal and inferior conjunctival sensitivity were measured using an air-jet aesthesiometer. Threshold was determined using a staircase technique. Measurements were taken during low Dk/t lens wear; after 1 week of no wear; and after 1, 3, 6, and 12 months of high Dk/t lens wear. Measurements were carried out on one occasion on the nonwearers. Corneal sensitivity decreased 1 week after discontinuation of low Dk/t lenses and no further change in sensitivity occurred with high Dk/t lens wear. Conjunctival sensitivity did not change over the same time frame. Ocular surface sensitivity in long-term low Dk/t soft lens wearers was similar to that of nonwearers. Sensitivity was higher in females than males in the nonwearers, but not in the lens-wearing group. An interaction of sex on change in conjunctival threshold was found in the lens wearers. These findings indicate that factors other than oxygen availability alone determine sensitivity of the ocular surface. Silicone hydrogel contact lenses appear to have only a minor impact on ocular surface sensitivity in previous lens wearers.
NASA Astrophysics Data System (ADS)
Bourgois, R.; Hamy, A. L.; Pourcelot, P.
2017-10-01
SUN is a test bench developed by Safran Reosc to measure spherical or aspherical surface errors of litho-grade lenses with sub-nanometer accuracy. SUN provides full aperture high resolution interferometric measurements. Measurements are performed at the center of curvature using high precision transmission sphere (TS), and Computer Generated Holograms (CGH) for aspheres, in order to light the surface at normal incidence. SUN can measure lenses with diameter up to 350mm and a radius of curvature varying from 60 to 3000 mm.
1D silicon refractive lenses for surface scattering with high energy x-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertram, F.; Gutowski, O.; Schroer, C.
2016-07-27
At the high energy X-ray beamline P07 at PETRA III, 1D focusing down to 4 micrometer vertical beam height while preserving a horizontal beam width of 0.5 mm was established by refractive lenses etched into a silicon wafer. A single wafer with 8 different lens structures can cover the full energy range between 50 and 120 keV. For surface diffraction on ultrathin films a factor of 4 in intensity can be achieved compared to the already established Al-compound refractive 2D-lenses.
Secondary chaotic terrain formation in the higher outflow channels of southern circum-Chryse, Mars
Rodriguez, J.A.P.; Kargel, J.S.; Tanaka, K.L.; Crown, D.A.; Berman, D.C.; Fairen, A.G.; Baker, V.R.; Furfaro, R.; Candelaria, P.; Sasaki, S.
2011-01-01
Higher outflow channel dissection in the martian region of southern circum-Chryse appears to have extended from the Late Hesperian to the Middle Amazonian Epoch. These outflow channels were excavated within the upper 1. km of the cryolithosphere, where no liquid water is expected to have existed during these geologic epochs. In accordance with previous work, our examination of outflow channel floor morphologies suggests the upper crust excavated by the studied outflow channels consisted of a thin (a few tens of meters) layer of dry geologic materials overlying an indurated zone that extends to the bases of the investigated outflow channels (1. km in depth). We find that the floors of these outflow channels contain widespread secondary chaotic terrains (i.e., chaotic terrains produced by the destruction of channel-floor materials). These chaotic terrains occur within the full range of outflow channel dissection and tend to form clusters. Our examination of the geology of these chaotic terrains suggests that their formation did not result in the generation of floods. Nevertheless, despite their much smaller dimensions, these chaotic terrains are comprised of the same basic morphologic elements (e.g., mesas, knobs, and smooth deposits within scarp-bound depressions) as those located in the initiation zones of the outflow channels, which suggests that their formation must have involved the release of ground volatiles. We propose that these chaotic terrains developed not catastrophically but gradually and during multiple episodes of nested surface collapse. In order to explain the formation of secondary chaotic terrains within zones of outflow channel dissection, we propose that the regional Martian cryolithosphere contained widespread lenses of volatiles in liquid form. In this model, channel floor collapse and secondary chaotic terrain formation would have taken place as a consequence of instabilities arising during their exhumation by outflow channel dissection. Within relatively warm upper crustal materials in volcanic settings, or within highly saline crustal materials where cryopegs developed, lenses of volatiles in liquid form within the cryolithosphere could have formed, and/or remained stable.In addition, our numerical simulations suggest that low thermal conductivity, dry fine-grained porous geologic materials just a few tens of meters in thickness (e.g., dunes, sand sheets, some types of regolith materials), could have produced high thermal anomalies resulting in subsurface melting. The existence of a global layer of dry geologic materials overlying the cryolithosphere would suggest that widespread lenses of fluids existed (and may still exist) at shallow depths wherever these materials are fine-grained and porous. The surface ages of the investigated outflow channels and chaotic terrains span a full 500 to 700. Myr. Chaotic terrains similar in dimensions and morphology to secondary chaotic terrains are not observed conspicuously throughout the surface of Mars, suggesting that intra-cryolithospheric fluid lenses may form relatively stable systems. The existence of widespread groundwater lenses at shallow depths of burial has tremendous implications for exobiological studies and future human exploration. We find that the clear geomorphologic anomaly that the chaotic terrains and outflow channels of southern Chryse form within the Martian landscape could have been a consequence of large-scale resurfacing resulting from anomalously extensive subsurface melt in this region of the planet produced by high concentrations of salts within the regional upper crust. Crater count statistics reveal that secondary chaotic terrains and the outflow channels within which they occur have overlapping ages, suggesting that the instabilities leading to their formation rapidly dissipated, perhaps as the thickness of the cryolithosphere was reset following the disruption of the upper crustal thermal structure produced during outflow channel ex
Non-Thermal Electromagnetic Radiation Damage to Lens Epithelium
Bormusov, Elvira; P.Andley, Usha; Sharon, Naomi; Schächter, Levi; Lahav, Assaf; Dovrat, Ahuva
2008-01-01
High frequency microwave electromagnetic radiation from mobile phones and other modern devices has the potential to damage eye tissues, but its effect on the lens epithelium is unknown at present. The objective of this study was to investigate the non-thermal effects of high frequency microwave electromagnetic radiation (1.1GHz, 2.22 mW) on the eye lens epithelium in situ. Bovine lenses were incubated in organ culture at 35°C for 10-15 days. A novel computer-controlled microwave source was used to investigate the effects of microwave radiation on the lenses. 58 lenses were used in this study. The lenses were divided into four groups: (1) Control lenses incubated in organ culture for 10 to15 days. (2) Electromagnetic radiation exposure group treated with 1.1 GHz, 2.22 mW microwave radiation for 90 cycles of 50 minutes irradiation followed by 10 minutes pause and cultured up to 10 days. (3) Electromagnetic radiation exposure group treated as group 2 with 192 cycles of radiation and cultured for 15 days. (4) Lenses exposed to 39.5ºC for 2 hours 3 times with 24 hours interval after each treatment beginning on the second day of the culture and cultured for 11 days. During the culture period, lens optical quality was followed daily by a computer-operated scanning laser beam. At the end of the culture period, control and treated lenses were analyzed morphologically and by assessment of the lens epithelial ATPase activity. Exposure to 1.1 GHz, 2.22 mW microwaves caused a reversible decrease in lens optical quality accompanied by irreversible morphological and biochemical damage to the lens epithelial cell layer. The effect of the electromagnetic radiation on the lens epithelium was remarkably different from those of conductive heat. The results of this investigation showed that electromagnetic fields from microwave radiation have a negative impact on the eye lens. The lens damage by electromagnetic fields was distinctly different from that caused by conductive heat. PMID:19517034
Willcox, Mark; Sharma, Savitri; Naduvilath, Thomas J; Sankaridurg, Padmaja R; Gopinathan, Usha; Holden, Brien A
2011-03-01
To determine whether carriage of microbes on the contact lens or ocular surfaces during extended wear (EW) with soft hydroxyethyl methacrylate (HEMA)-based contact lenses predisposes the wearer to adverse events. Participants (non-contact lens wearers) were enrolled in a clinical study involving wear of HEMA-based hydrogel lenses on a six night EW basis with weekly replacement. Type and number of bacteria colonizing the lower lid margins, upper bulbar conjunctiva, and contact lenses during EW after one night, 1 week, 1 month, and thereafter every 3 months for 3.5 years were determined. The association of bacteria with adverse responses was compared between carriers (defined as having significant microbes cultured from two or more samples with 1 year) and noncarriers, and the strength of the association was estimated using multivariate logistic regression. Carriers of gram-positive bacteria on lenses (particularly coagulase negative staphylococci or Corynebacterium spp.) were approximately three and eight times more likely to develop contact lens-induced peripheral ulcers (CLPUs) and asymptomatic infiltrates (AIs), respectively. Staphylococcus aureus was most frequently isolated from lenses during CLPU. Carriers of gram-negative bacteria on lenses were five times more likely to develop contact lens-induced acute red eye (CLARE). Haemophilus influenzae was isolated most frequently from lenses during CLARE and AI events. Bacterial carriage on contact lenses during EW predisposes the wearer to the development of corneal inflammatory events including CLARE, CLPU, and AI.
Detecting ice lenses and melt-refreeze crusts using satellite passive microwaves (Invited)
NASA Astrophysics Data System (ADS)
Montpetit, B.; Royer, A.; Roy, A.
2013-12-01
With recent winter climate warming in high latitude regions, rain-on-snow and melt-refreeze events are more frequent creating ice lenses or ice crusts at the surface or even within the snowpack through drainage. These ice layers create an impermeable ice barrier that reduces vegetation respiration and modifies snow properties due to the weak thermal diffusivity of ice. Winter mean soil temperatures increase due to latent heat being released during the freezing process. When ice layers freeze at the snow-soil interface, they can also affect the feeding habits of the northern wild life. Ice layers also significantly affect satellite passive microwave signals that are widely used to monitor the spatial and temporal evolution of snow. Here we present a method using satellite passive microwave brightness temperatures (Tb) to detect ice lenses and/or ice crusts within a snowpack. First the Microwave Emission Model for Layered Snowpacks (MEMLS) was validated to model Tb at 10.7, 19 and 37 GHz using in situ measurements taken in multiple sub-arctic environments where ice layers where observed. Through validated modeling, the effects of ice layer insertion were studied and an ice layer index was developed using the polarization ratio (PR) at all three frequencies. The developed ice index was then applied to satellite passive microwave signals for reported ice layer events.
NASA Astrophysics Data System (ADS)
Bričkus, D.; Dement'ev, A. S.
2017-05-01
Temperature dependences of the thermo-optical coefficients of YAG crystals are often neglected when thermal lensing in laser rods is investigated, though their influence is very significant. It is especially significant for transversally non-uniform thermal loading. An analytical solution of the heat transfer equation with only the radial heat flow is found in the integral form, which is very convenient for numerical simulations. Uniform, top-hat, parabolic, Gaussian, super-Gaussian and annular heat source distributions are used in the calculations. The generalization of the thermally-induced refractive index change for long enough [1 1 1]-cut YAG rods to the case of temperature-dependent YAG parameters is developed and applied to the calculation of the corresponding optical path differences. Different definitions of the optical power of the aberrated thermal lens (TL) are discussed in detail. It is shown that for each of the heat source distributions, the temperature dependences of the YAG parameters significantly increase (1.5-1.8 times) the paraxial optical power of the induced TL.
Understanding the formation and evolution of rain-formed fresh lenses at the ocean surface
NASA Astrophysics Data System (ADS)
Drushka, Kyla; Asher, William E.; Ward, Brian; Walesby, Kieran
2016-04-01
Rain falling on the ocean produces a layer of buoyant fresher surface water, or "fresh lens." Fresh lenses can have significant impacts on satellite-in situ salinity comparisons and on exchanges between the surface and the bulk mixed layer. However, because these are small, transient features, relatively few observations of fresh lenses have been made. Here the Generalized Ocean Turbulence Model (GOTM) is used to explore the response of the upper few meters of the ocean to rain events. Comparisons with observations from several platforms demonstrate that GOTM can reproduce the main characteristics of rain-formed fresh lenses. Idealized sensitivity tests show that the near-surface vertical salinity gradient within fresh lenses has a linear dependence on rain rate and an inverse dependence on wind speed. Yearlong simulations forced with satellite rainfall and reanalysis atmospheric parameters demonstrate that the mean salinity difference between 0.01 and 5 m, equivalent to the measurement depths of satellite radiometers and Argo floats, is -0.04 psu when averaged over the 20°S-20°N tropical band. However, when averaged regionally, the mean vertical salinity difference exceeds -0.15 psu in the Indo-Pacific warm pool, in the Pacific and Atlantic intertropical convergence zone, and in the South Pacific convergence zone. In most of these regions, salinities measured by the Aquarius satellite instrument have a fresh bias relative to Argo measurements at 5 m depth. These results demonstrate that the fresh bias in Aquarius salinities in rainy, low-wind regions may be caused by the presence of rain-produced fresh lenses.
NASA Astrophysics Data System (ADS)
Ben Yaish, Shai; Zlotnik, Alex; Raveh, Ido; Yehezkel, Oren; Belkin, Michael; Lahav, Karen; Zalevsky, Zeev
2009-02-01
We present novel technology for extension in depth of focus of imaging lenses for use in ophthalmic lenses correcting myopia, hyperopia with regular/irregular astigmatism and presbyopia. This technology produces continuous focus without appreciable loss of energy. It is incorporated as a coating or engraving on the surface for spectacles, contact or intraocular lenses. It was fabricated and tested in simulations and in clinical trials. From the various testing this technology seems to provide a satisfactory single-lens solution. Obtained performance is apparently better than those of existing multi/bifocal lenses and it is modular enough to provide solution to various ophthalmic applications.
Power Scaling Fiber Amplifiers Using Very-Large-Mode-Area Fibers
2016-02-23
fiber lasers are limited to below 1kW due to limited mode size and thermal issues, particularly thermal mode instability (TMI). Two comprehensive models...accurately modeling very- large-mode-area fiber amplifiers while simultaneously including thermal lensing and TMI. This model was applied to investigate...expected resilience to TMI. 15. SUBJECT TERMS Fiber amplifier, high power laser, thermal mode instability, large-mode-area fiber, ytterbium-doped
Wichmann, Matthias; Scherger, Benedikt; Schumann, Steffen; Lippert, Sina; Scheller, Maik; Busch, Stefan F; Jansen, Christian; Koch, Martin
2011-12-05
Typical lenses suffer from Fresnel reflections at their surfaces, reducing the transmitted power and leading to interference phenomena. While antireflection coatings can efficiently suppress these reflections for a small frequency window, broadband antireflection coatings remain challenging. In this paper, we report on the simulation and experimental investigation of Brewster lenses in the THz-range. These lenses can be operated under the Brewster angle, ensuring reflection-free transmission of p-polarized light in an extremely broad spectral range. Experimental proof of the excellent focusing capabilities of the Brewster lenses is given by frequency and spatially resolved focus plane measurements using a fiber-coupled THz-TDS system.
The Alvarez and Lohmann refractive lenses revisited.
Barbero, Sergio
2009-05-25
Alvarez and Lohmann lenses are variable focus optical devices based on lateral shifts of two lenses with cubic-type surfaces. I analyzed the optical performance of these types of lenses computing the first order optical properties (applying wavefront refraction and propagation) without the restriction of the thin lens approximation, and the spot diagram using a ray tracing algorithm. I proposed an analytic and numerical method to select the most optimum coefficients and the specific configuration of these lenses. The results show that Lohmann composite lens is slightly superior to Alvarez one because the overall thickness and optical aberrations are smaller.
A measurement of CMB cluster lensing with SPT and DES year 1 data
NASA Astrophysics Data System (ADS)
Baxter, E. J.; Raghunathan, S.; Crawford, T. M.; Fosalba, P.; Hou, Z.; Holder, G. P.; Omori, Y.; Patil, S.; Rozo, E.; Abbott, T. M. C.; Annis, J.; Aylor, K.; Benoit-Lévy, A.; Benson, B. A.; Bertin, E.; Bleem, L.; Buckley-Geer, E.; Burke, D. L.; Carlstrom, J.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Chang, C. L.; Cho, H.-M.; Crites, A. T.; Crocce, M.; Cunha, C. E.; da Costa, L. N.; D'Andrea, C. B.; Davis, C.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Dodelson, S.; Doel, P.; Drlica-Wagner, A.; Estrada, J.; Everett, W. B.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; García-Bellido, J.; George, E. M.; Gaztanaga, E.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Halverson, N. W.; Harrington, N. L.; Hartley, W. G.; Holzapfel, W. L.; Honscheid, K.; Hrubes, J. D.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Knox, L.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lee, A. T.; Leitch, E. M.; Li, T. S.; Lima, M.; Luong-Van, D.; Manzotti, A.; March, M.; Marrone, D. P.; Marshall, J. L.; Martini, P.; McMahon, J. J.; Melchior, P.; Menanteau, F.; Meyer, S. S.; Miller, C. J.; Miquel, R.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Nord, B.; Ogando, R. L. C.; Padin, S.; Plazas, A. A.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Romer, A. K.; Roodman, A.; Ruhl, J. E.; Rykoff, E.; Sako, M.; Sanchez, E.; Sayre, J. T.; Scarpine, V.; Schaffer, K. K.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Shirokoff, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Staniszewski, Z.; Stark, A.; Story, K.; Suchyta, E.; Tarle, G.; Thomas, D.; Troxel, M. A.; Vanderlinde, K.; Vieira, J. D.; Walker, A. R.; Williamson, R.; Zhang, Y.; Zuntz, J.
2018-05-01
Clusters of galaxies gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint in the CMB on arcminute scales. Measurement of this effect offers a promising way to constrain the masses of galaxy clusters, particularly those at high redshift. We use CMB maps from the South Pole Telescope Sunyaev-Zel'dovich (SZ) survey to measure the CMB lensing signal around galaxy clusters identified in optical imaging from first year observations of the Dark Energy Survey. The cluster catalogue used in this analysis contains 3697 members with mean redshift of \\bar{z} = 0.45. We detect lensing of the CMB by the galaxy clusters at 8.1σ significance. Using the measured lensing signal, we constrain the amplitude of the relation between cluster mass and optical richness to roughly 17 {per cent} precision, finding good agreement with recent constraints obtained with galaxy lensing. The error budget is dominated by statistical noise but includes significant contributions from systematic biases due to the thermal SZ effect and cluster miscentring.
A Measurement of CMB Cluster Lensing with SPT and DES Year 1 Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, E.J.; et al.
2017-08-03
Clusters of galaxies gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint in the CMB on arcminute scales. Measurement of this effect offers a promising way to constrain the masses of galaxy clusters, particularly those at high redshift. We use CMB maps from the South Pole Telescope Sunyaev-Zel'dovich (SZ) survey to measure the CMB lensing signal around galaxy clusters identified in optical imaging from first year observations of the Dark Energy Survey. We detect lensing of the CMB by the galaxy clusters at 6.5more » $$\\sigma$$ significance. Using the measured lensing signal, we constrain the amplitude of the relation between cluster mass and optical richness to roughly $$20\\%$$ precision, finding good agreement with recent constraints obtained with galaxy lensing. The error budget is dominated by statistical noise but includes significant contributions from systematic biases due to the thermal SZ effect and cluster miscentering.« less
30 CFR 18.66 - Tests of windows and lenses.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of windows and lenses. 18.66 Section 18... Tests § 18.66 Tests of windows and lenses. (a) Impact tests. A 4-pound cylindrical weight with a 1-inch-diameter hemispherical striking surface shall be dropped (free fall) to strike the window or lens in its...
Calcification of different designs of silicone intraocular lenses in eyes with asteroid hyalosis.
Stringham, Jack; Werner, Liliana; Monson, Bryan; Theodosis, Raymond; Mamalis, Nick
2010-08-01
To describe the association between calcification of older and newer designs of silicone intraocular lenses (IOLs) and asteroid hyalosis. Case series with clinicopathologic correlation. Sixteen silicone IOLs explanted because of decreased visual acuity associated with opacifying deposits on the posterior optic surface. All 16 lenses underwent gross and light microscopic analyses. Selected lenses underwent alizarin red staining or scanning electron microscopy coupled with energy dispersive x-ray spectroscopy for elemental composition. Clinical data in each case were obtained by a questionnaire sent to the explanting surgeons. Clinical data in relation to 111 hydrophilic acrylic lenses explanted because of calcification also were assessed for comparison. Deposit morphologic features and location were evaluated under gross and light microscopy. The calcified nature of the deposits was assessed by histochemical staining and surface analyses. Clinical data obtained included age at IOL implantation, gender, implantation and explantation dates, as well as history of neodymium:yttrium-aluminum-garnet laser treatment. The presence of asteroid hyalosis in the affected eye was investigated for the explanted silicone and hydrophilic acrylic lenses. The 16 lenses were of 8 designs manufactured from different silicone materials, which were explanted 9.21+/-3.66 years after implantation. Neodymium:yttrium-aluminum-garnet laser applications performed in 12 cases partially removed deposits from the lens, followed by a gradual increase in their density after the procedures. The presence of asteroid hyalosis was confirmed in 13 cases; no notes regarding this condition were found in patient charts in the other 3 cases. The deposits were only on the posterior optic surface of the silicone lenses and were composed of calcium and phosphate. A history of asteroid hyalosis was not found in relation to any of the 111 cases of postoperative calcification of hydrophilic acrylic lenses. Including this current series, there are 22 cases of calcification of silicone lenses involving 8 designs manufactured from different silicone materials described in the literature. The presence of asteroid hyalosis was confirmed in 86.4% of cases. These findings may be added to the list of pros and cons surgeons consider when selecting or recommending an IOL. Copyright 2010 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
High power high repetition rate VCSEL array side-pumped pulsed blue laser
NASA Astrophysics Data System (ADS)
van Leeuwen, Robert; Zhao, Pu; Chen, Tong; Xu, Bing; Watkins, Laurence; Seurin, Jean-Francois; Xu, Guoyang; Miglo, Alexander; Wang, Qing; Ghosh, Chuni
2013-03-01
High power, kW-class, 808 nm pump modules based on the vertical-cavity surface-emitting laser (VCSEL) technology were developed for side-pumping of solid-state lasers. Two 1.2 kW VCSEL pump modules were implemented in a dual side-pumped Q-switched Nd:YAG laser operating at 946 nm. The laser output was frequency doubled in a BBO crystal to produce pulsed blue light. With 125 μs pump pulses at a 300 Hz repetition rate 6.1 W QCW 946 nm laser power was produced. The laser power was limited by thermal lensing in the Nd:YAG rod.
In vitro study of antibiotic effect on bacterial adherence to acrylic intraocular lenses.
Gaál, Valéria; Kilár, Ferenc; Acs, Barnabás; Szijjártó, Zsuzsanna; Kocsis, Béla; Kustos, Ildikó
2005-11-10
Implantation of artificial intraocular lenses into the eye during ophthalmic surgical procedures ensures an unliving surface on which bacterial pathogens may attach and form biofilms. Despite antibiotic treatment bacteria growing in biofilms might cause inflammation and serious complications. In this study the adhesive ability of 7 Staphylococcus aureus and 11 coagulase-negative Staphylococcus (CNS) strains to the surface of acrylic intraocular lenses had been examined by the ultrasonic method. In untreated cases adhesion of the S. aureus and CNS strains did not differ significantly. We could not demonstrate significant differences between the adhesive ability of the standard strains and the clinical isolates. In this study a single--60 min long--antibiotic (ciprofloxacin and tobramycin) treatment had been applied, that correlate well with the single or intermittant antibiotic prophylaxis of patients. Ciprofloxacin administration was able to reduce significantly the number of attached cells on the surface of acrylic lenses both in the case of S. aureus and CNS strains. Dependence of the effect from concentration could also be demonstrated. Tobramycin treatment was able to inhibit significantly the attachment of S. aureus cells. Despite the debate on antibiotic prophylaxis we presented in our experiments that a single antibiotic administration can decrease the attachment of bacterial cells to the surface of acrylic intraocular lenses, and might be effective in the prevention of postoperative endophthalmitis, that is a rare but serious complication of ophthalmic surgery.
NASA Astrophysics Data System (ADS)
Timmons, Nicholas; Cooray, Asantha; Feng, Chang; Keating, Brian
2017-11-01
We measure the cosmic microwave background (CMB) skewness power spectrum in Planck, using frequency maps of the HFI instrument and the Sunyaev-Zel’dovich (SZ) component map. The two-to-one skewness power spectrum measures the cross-correlation between CMB lensing and the thermal SZ effect. We also directly measure the same cross-correlation using the Planck CMB lensing map and the SZ map and compare it to the cross-correlation derived from the skewness power spectrum. We model fit the SZ power spectrum and CMB lensing-SZ cross-power spectrum via the skewness power spectrum to constrain the gas pressure profile of dark matter halos. The gas pressure profile is compared to existing measurements in the literature including a direct estimate based on the stacking of SZ clusters in Planck.
Prokopowicz, Magdalena; Czarnobaj, Katarzyna; Raczyńska, Krystyna; Łukasiak, Jerzy; Przyjazny, Andrzej
2002-01-01
The objective of these investigations was an in vitro evaluation whether silicone oil OXANE of viscosity 5700 cSt clinically used in eye surgery as a substitute of the vitreous body, being in contact with an artificial polymer lens used as an implant of human lens, causes the changes in its optical properties. The paper presents the results of spectral analysis of transmission of visible (VIS) radiation of three types of artificial lenses: hard PMMA, hydrogel, heparin surface modified (HSM) hard PMMA, and the same lenses damaged by YAG laser radiation with an energy increasing from 1.7 mJ to 3.7 mJ, exposed to clinically applied silicone oil. The studies were carried out, in two-week intervals, over a period of 20 weeks. Hard PMMA and HSM lenses were found not to have changed their optical properties after 20 weeks of exposure to silicone oil. The measured transmittance values were within the range of instrumental error (+/- 1%). Optical properties of hydrogel lenses exposed to silicone oils deteriorated with exposure and after 20-week exposure to silicone oil the average transmittance value decreased by about 18%, reaching its final value of 67.08 +/- 2.37% (RSD = 5.56%). A minimal decrease of the initial transmittance values was observed only for the lenses exposed to laser radiation of highest energy (3.7 mJ). After completed exposure to silicone oil, two kinds of lenses were found to have a slightly improved transmittance: hard PMMA lenses by about 4% and HSM lenses by about 2%. On the other hand, in case of hydrogel lenses the deterioration of optical properties to the extent comparable to that of hydrogel lenses not damaged by laser radiation was observed.
Sung, Yu-Lung; Jeang, Jenn; Lee, Chia-Hsiung; Shih, Wei-Chuan
2015-04-01
We present a highly repeatable, lithography-free and mold-free method for fabricating flexible optical lenses by in situ curing liquid polydimethylsiloxane droplets on a preheated smooth surface with an inkjet printing process. This method enables us to fabricate lenses with a focal length as short as 5.6 mm, which can be controlled by varying the droplet volume and the temperature of the preheated surface. Furthermore, the lens can be attached to a smartphone camera without any accessories and can produce high-resolution (1 μm) images for microscopy applications.
Beach, R.J.; Benett, W.J.
1994-04-26
A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding is described. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic. 3 figures.
Opdahl, Aric; Kim, Seong H; Koffas, Telly S; Marmo, Chris; Somorjai, Gabor A
2003-10-01
The surface mechanical properties of poly(hydroxyethyl)methacrylate (pHEMA)-based contact lenses were monitored as a function of humidity by atomic force microscopy (AFM). Surface viscoelastic and adhesion values were extracted from AFM force versus distance interaction curves and were found to be strongly dependent on the bulk water content of the lens and on the relative humidity. At low relative humidity, 40-50%, the dehydration rate from the surface is faster than the hydration rate from the bulk, leading to a rigid surface region that has mechanical properties similar to those measured on totally dehydrated lenses. At relative humidity values > 60%, the dehydration rate from the lens surface rapidly decreases, leading to higher surface water content and a softer surface region. The results indicate that, in an ocular environment, although the bulk of the pHEMA contact lens is hydrated, the surface region may be in a transition between a dehydrated glassy state and a hydrated rubbery state. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 350-356, 2003
Danion, Anne; Arsenault, Isabelle; Vermette, Patrick
2007-09-01
In vitro methods to evaluate antibacterial activity were used with contact lenses bearing levofloxacin-loaded liposomes developed for the prevention and treatment of bacterial ocular infections such as keratitis. Levofloxacin was incorporated into liposomes before these intact liposomes were immobilized onto the surfaces of soft contact lenses using a multilayer immobilization strategy. The release of levofloxacin from contact lenses bearing 2, 5, and 10 layers of liposomes into a saline buffer at 37 degrees C was monitored by fluorescence. The levofloxacin release, as a function of time, was described by a mechanism taking into account two independent first-order kinetic models. The total release of levofloxacin from the contact lenses was completed within 6 days. The release of levofloxacin from contact lenses bearing 10 layers of liposomes and subsequently soaked overnight in a levofloxacin solution was also studied and compare to that of dried contact lenses without any chemical modification rehydrated in a levofloxacin solution. The antibacterial activity of the liposome-coated contact lenses against Staphylococcus aureus was evaluated by measuring (i) the diameters of the inhibition zone on an agar plate and (ii) the optical density using a broth assay. The liposome-coated lenses showed an antibacterial activity both on agar and in broth following 24 h. When initial bacteria inocula were equal or below 10(6) CFU/mL, all the bacteria were inhibited within 2 h. When using initial bacteria inocula of 10(8) CFU/mL, an initial burst release provided by soaking the liposomal lenses was required for the first hours to inhibit bacteria growth. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.
Research on surface free energy of electrowetting liquid zoom lens
NASA Astrophysics Data System (ADS)
Zhao, Cunhua; Lu, Gaoqi; Wei, Daling; Hong, Xinhua; Cui, Dongqing; Gao, Changliu
2011-08-01
Zoom imaging systems have the tendencies of miniaturization or complication so the traditional glass / plastic lenses can't meet the needs. Therefore, a new method, liquid lens is put forward which realizes zoom by changing the shape of liquid surface. liquid zoom lenses have many merits such as smaller volume, lighter weight, controlled zoom, faster response, higher transmission, lower energy consumption and so on. Liquid zoom lenses have wide applications in mobile phones, digital cameras and other small imaging system. The electrowetting phenomenon was reviewed firstly and then the influence of the exerted voltage to the contact angle was analysed in electrowetting effect. At last, the surface free energy of cone-type double liquid zoom lens was researched via the energy minimization principle. The research of surface free energy offers important theoretic dependence for designing liquid zoom lens.
Antireflective surface structures on optics for high energy lasers
NASA Astrophysics Data System (ADS)
Busse, Lynda E.; Florea, Catalin M.; Shaw, L. Brandon; Frantz, Jesse; Bayya, Shyam; Poutous, Menelaos K.; Joshi, Rajendra; Aggarwal, Ishwar D.; Sanghera, Jas S.
2014-02-01
We report results for antireflective surface structures (ARSS) fabricated directly into the surface of optics and lenses which are important as high energy (multi-kW) laser components, including fused silica windows and lenses, YAG crystals and ceramics and spinel ceramics. Very low reflection losses as well as high laser damage thresholds have been measured for optics with ARSS. Progress to scale up the process for large size windows will also be presented..
Contact lens deposits, adverse responses, and clinical ocular surface parameters.
Zhao, Zhenjun; Naduvilath, Thomas; Flanagan, Judith L; Carnt, Nicole A; Wei, Xiaojia; Diec, Jennie; Evans, Vicki; Willcox, Mark D P
2010-09-01
To correlate clinical responses during contact lens wear with the amount of protein or cholesterol extracted from lenses after wear. Clinical parameters, including adverse response rates and corneal staining, and symptomatology rating during lens wear were collected from a series of clinical tests comprising four different silicone hydrogel lenses with four different multipurpose solutions. To test for correlates, the amount of total protein or cholesterol extracted from lenses after daily wear were compared statistically to clinical parameters. The amount of protein (p = 0.008) or cholesterol (p = 0.01) extracted from lenses was higher for those subjects who showed solution-induced corneal staining. Amount of protein extracted was correlated (p < 0.01) with conjunctival staining (R = -0.23), lens front surface wetting (r = 0.14), and lens fit tightness (R = -0.20). These clinical parameters accounted for 48% of lens protein deposition. The amount of cholesterol extracted from lenses was much more weakly associated with clinical variables. Amount of protein or cholesterol extracted from lenses was not associated with the production of any corneal infiltrative or mechanical adverse event during wear and was only very weakly correlated with insertion comfort of lenses. These results suggest that there may be no physiologically relevant consequence of cholesterol depositing on silicone hydrogel lenses. The amount of protein that deposits onto silicone hydrogel lenses during wear may have more affect on lens performance on-eye. However, the correlations were generally small and may still not indicate any causative relevant physiological response. Further work is required to determine whether there is any direct causative effect to support these correlative findings.
Ji, Yong Woo; Cho, Young Joo; Lee, Chul Hee; Hong, Soon Ho; Chung, Dong Yong; Kim, Eung Kweon; Lee, Hyung Keun
2015-01-01
To compare physical characteristics of cosmetic contact lenses (Cos-CLs) and conventional contact lenses (Con-CLs) that might affect susceptibility to bacterial adhesion on the contact lens (CL) surface. Surface characteristics of Cos-CLs and Con-CLs made from the same material by the same manufacturer were measured by atomic force microscopy (AFM) and scanning electron microscopy. To determine the extent and rate of bacterial adhesion, Cos-CL and Con-CL were immersed in serum-free Roswell Park Memorial Institute media containing Staphylococcus aureus or Pseudomonas aeruginosa. Additionally, the rate of removal of adherent bacteria was evaluated using hand rubbing or immersion in multipurpose disinfecting solutions (MPDS). The mean surface roughness (root mean square and peak-to-valley value) measured by AFM was significantly higher for Cos-CL than for Con-CL. At each time point, significantly more S. aureus and P. aeruginosa adhered to Cos-CL than to Con-CL, which correlated with the surface roughness of CL. In Cos-CL, bacteria were mainly found on the tinted surface rather than on the noncolored or convex areas. Pseudomonas aeruginosa attached earlier than S. aureus to all types of CL. However, P. aeruginosa was more easily removed from the surface of CL than S. aureus by hand rubbing or MPDS soaking. Increased surface roughness is an important physical factor for bacterial adhesion in Cos-CL, which may explain why rates of bacterial keratitis rates are higher in Cos-CL users in CL physical characteristics.
Development of New Laser Protective Dyes. Phase 2.
DYE LASERS, PROTECTION, LASERS, DYES , HAZARDS, SYNTHESIS, EYE SAFETY, OPTICAL MATERIALS, PLASTICS, LENSES, THERMAL STABILITY, CYANINE DYES , POLYCARBONATES, INJECTION MOLDING, NEAR INFRARED RADIATION, FLUORENES.
NASA Astrophysics Data System (ADS)
Zervas, Michalis N.
2018-02-01
We introduced a simple formula providing the mode-field diameter shrinkage, due to heat load in fiber amplifiers, and used it to compare the traditional thermal-lensing power limit (PTL) to a newly developed transverse-mode instability (TMI) power limit (PTMI), giving a fixed ratio of PTMI/PTL≍0.6, in very good agreement with experiment. Using a failure-in-time analysis we also introduced a new power limiting factor due to mechanical reliability of bent fibers. For diode (tandem) pumping power limits of 28kW (52kW) are predicted. Setting a practical limit of maximum core diameter to 35μm, the limits reduce to 15kW (25kW).
OCT 3-D surface topography of isolated human crystalline lenses
Sun, Mengchan; Birkenfeld, Judith; de Castro, Alberto; Ortiz, Sergio; Marcos, Susana
2014-01-01
Quantitative 3-D Optical Coherence Tomography was used to measure surface topography of 36 isolated human lenses, and to evaluate the relationship between anterior and posterior lens surface shape and their changes with age. All lens surfaces were fitted to 6th order Zernike polynomials. Astigmatism was the predominant surface aberration in anterior and posterior lens surfaces (accounting for ~55% and ~63% of the variance respectively), followed by spherical terms, coma, trefoil and tetrafoil. The amount of anterior and posterior surface astigmatism did not vary significantly with age. The relative angle between anterior and posterior surface astigmatism axes was on average 36.5 deg, tended to decrease with age, and was >45 deg in 36.1% lenses. The anterior surface RMS spherical term, RMS coma and 3rd order RMS decreased significantly with age. In general, there was a statistically significant correlation between the 3rd and 4th order terms of the anterior and posterior surfaces. Understanding the coordination of anterior and posterior lens surface geometries and their topographical changes with age sheds light into the role of the lens in the optical properties of the eye and the lens aging mechanism. PMID:25360371
OCT 3-D surface topography of isolated human crystalline lenses.
Sun, Mengchan; Birkenfeld, Judith; de Castro, Alberto; Ortiz, Sergio; Marcos, Susana
2014-10-01
Quantitative 3-D Optical Coherence Tomography was used to measure surface topography of 36 isolated human lenses, and to evaluate the relationship between anterior and posterior lens surface shape and their changes with age. All lens surfaces were fitted to 6th order Zernike polynomials. Astigmatism was the predominant surface aberration in anterior and posterior lens surfaces (accounting for ~55% and ~63% of the variance respectively), followed by spherical terms, coma, trefoil and tetrafoil. The amount of anterior and posterior surface astigmatism did not vary significantly with age. The relative angle between anterior and posterior surface astigmatism axes was on average 36.5 deg, tended to decrease with age, and was >45 deg in 36.1% lenses. The anterior surface RMS spherical term, RMS coma and 3rd order RMS decreased significantly with age. In general, there was a statistically significant correlation between the 3rd and 4th order terms of the anterior and posterior surfaces. Understanding the coordination of anterior and posterior lens surface geometries and their topographical changes with age sheds light into the role of the lens in the optical properties of the eye and the lens aging mechanism.
Study of parameters in precision optical glass molding
NASA Astrophysics Data System (ADS)
Ni, Ying; Wang, Qin-hua; Yu, Jing-chi
2010-10-01
Precision glass compression molding is an attractive approach to manufacture small precision optics in large volume over traditional manufacturing techniques because of its advantages such as lower cost, faster time to market and being environment friendly. In order to study the relationship between the surface figures of molded lenses and molding process parameters such as temperature, pressure, heating rate, cooling rate and so on, we present some glass compression molding experiments using same low Tg (transition temperature) glass material to produce two different kinds of aspheric lenses by different molding process parameters. Based on results from the experiments, we know the major factors influencing surface figure of molded lenses and the changing range of these parameters. From the knowledge we could easily catch proper molding parameters which are suitable for aspheric lenses with diameter from 10mm to 30mm.
Kienast, A; Menz, D-H; Dresp, J; Klinger, M; Bunse, A; Ohgke, H; Solbach, W; Laqua, H; Kämmerer, R; Hoerauf, H
2003-10-01
Dynasilan is a fluoroalkylsilan which is able to bind to surface active molecules of intraocular lenses (IOLs), thereby offering a new option for surface modification of silicone lenses. The purpose of this in vitro study was to investigate the influence of this new surface treatment on the adherence of two typical endophthalmitis-inducing bacteria ( Staphylococcus epidermidis, Propionibacterium acnes). A total of 14 Dynasilan-treated and 14 untreated silicone lenses were incubated at 37 degrees C for 24 h in brain heart infusion broth (10(8) CFU/ml) either with Staphylococcus epidermidis or with Propionibacterium acnes for 1 h. Subsequently, the adherent bacteria were resuspended using ultrasonification at 35 kHz for 3 x 45 s. After a dilution series and incubation at 37 degrees C for 24 h or 3 days the colonies were counted. On untreated IOLs incubated with Staphylococcus epidermidis the average number of bacteria was 3.6 x 10(7)/ml, and on treated IOLs the number of counted colonies was reduced to 1.09 x 10(7)/ml. Incubated with Propionibacterium acnes the average number of adherent bacteria on untreated IOLs was 4.75 x 10(4)/ml and on modified IOLs the number was reduced to 2.94 x 10(4)/ml. Dynasilan surface treatment may reduce the adherence of Staphylococcus epidermidis and Propionibacterium acnes on silicone intraocular lenses. Further studies regarding the stability of this treatment, its biocompatibility and influence on lens epithelial cell adhesion are in progress.
Werner, L; Shugar, J K; Apple, D J; Pandey, S K; Escobar-Gomez, M; Visessook, N; Evans, B B
2000-11-01
To report the pathological and ultrastructural features and interval surgical management of an atypical case of opacification between piggyback intraocular lenses (IOLs). Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, and Nature Coast EyeCare Institute and Surgery Center, Perry, Florida, USA. Opacification between 2 acrylic piggyback lenses was observed 16 months after implantation, with decreased best corrected visual acuity and a hyperopic shift. Elschnig pearls were observed in the peripheral interface between the lenses, and the central interface was occupied by an amorphous material. The pearls were surgically aspirated, but attempts to remove the central material were unsuccessful. The lenses were explanted and sent to the laboratory. Staining with hematoxylin and eosin (H&E), examination under a light microscope, and scanning electron microscopic analysis were performed. The surfaces of the anterior IOL were relatively clear. The amorphous material, mostly attached to the center of the anterior surface of the posterior IOL, was homogeneously stained with H&E. No cell nucleus was observed in this region. Scanning electron microscopy showed that the IOL edge presented a smooth, regular surface relatively free of deposits. The most central region was covered by an irregular layer of an amorphous compact material with some cracks, fissures, or both on its surface. Although the exact composition of the material between the lenses could not be established, hypotheses were advanced to understand the pathological mechanism associated with this condition. This case is different from those in previous reports of opacification composed of cortex and cells between piggyback IOLs.
Visualizing hydrophobic domains in silicone hydrogel lenses with Sudan IV.
Jacob, Jean T; Levet, Jacques; Edwards, Tamika A; Dassanayake, Nissanke; Ketelson, Howard
2012-06-08
A lipophilic dye is used to investigate the degree to which the surface and bulk hydrophobic domains of the lenses can be imaged and to identify specific changes in the availability of those domains after in vitro wear and cleaning conditions. The effect of a multipurpose solution (MPS), OPTI-FREE RepleniSH, on lens hydrophobic domains was also investigated. Hydrophobic domains were determined using a saturated solution of Sudan IV. Staining periods of 30 minutes and 16 hours were used to determine surface versus bulk hydrophobic domains. Four types of silicone hydrogel lens materials were tested. The degree of staining was visually documented by photography and quantitatively determined by extraction and analysis of the total amount of dye adsorbed. Specific differences in staining were found for all control lenses. Exposure to in vitro wear conditions significantly decreased the staining response for all lens types as compared with unworn lenses (P = 0.001). However, the trend of staining remained the same: balafilcon A > galyfilcon A > senofilcon A > lotrafilcon B. MPS decreased the extent of staining; the degree of its effect varied with lens type. Hydrophobic staining with Sudan IV visualized domains on and within silicone hydrogel lenses. Differences in staining response after exposure to wear and cleaning conditions indicate the potential for protein and lipid deposition on the different lens types and the ability of MPS to affect that deposition. Hydrophobic staining may be useful for determining differences in surface modification and lipophilicity of silicone hydrogel lenses.
Electrically atomised formulations of timolol maleate for direct and on-demand ocular lens coatings.
Mehta, Prina; Al-Kinani, Ali A; Haj-Ahmad, Rita; Arshad, Muhammad Sohail; Chang, Ming-Wei; Alany, Raid G; Ahmad, Zeeshan
2017-10-01
Advances in nanotechnology have enabled solutions for challenging drug delivery targets. While the eye presents numerous emerging opportunities for delivery, analysis and sensing; issues persist for conventional applications. This includes liquid phase formulation localisation on the ocular surface once administered as formulated eye-drops; with the vast majority of dosage (>90%) escaping from the administered site due to tear production and various drainage mechanisms. The work presented here demonstrates a single needle electrohydrodynamic (EHD) engineering process to nano-coat (as an on demand and controllable fiber depositing method) the surface of multiple contact lenses rendering formulations to be stationary on the lens and at the bio-interface. The coating process was operational based on ejected droplet charge and glaucoma drug timolol maleate (TM) was used to demonstrate surface coating optimisation, bio-surface permeation properties (flux, using a bovine model) and various kinetic models thereafter. Polymers PVP, PNIPAM and PVP:PNIPAM (50:50%w/w) were used to encapsulate the active. Nano-fibrous and particulate samples were characterised using SEM, FTIR, DSC and TGA to confirm structural and thermal stability of surface coated formulations. More than 52% of nano-structured coatings (for all formulations) were <200nm in diameter. In vitro studies show coatings to exhibit biphasic release profiles; an initial burst release followed by sustained release; with TM-loaded PNIPAM coating releasing most drug after 24h (89.8%). Kinetic modelling (Higuchi, Korsmeyer-Peppas) was indicative of quasi-Fickian diffusion whilst biological evaluation demonstrates adequate ocular tolerability. Results from permeation studies indicate coated lenses are ideal to reduce dosing regimen, which in turn will reduce systemic drug absorption. Florescent microscopy demonstrated probe and probe embedded coating behaviour from lens surface in vitro. The multiple lens surface coating method demonstrates sustained drug release yielding promising results; suggesting both novel device and method to enhance drug activity at the eyes surface which will reduce formulation drainage. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Chromatic confocal microscope using hybrid aspheric diffractive lenses
NASA Astrophysics Data System (ADS)
Rayer, Mathieu; Mansfield, Daniel
2014-05-01
A chromatic confocal microscope is a single point non-contact distance measurement sensor. For three decades the vast majority of the chromatic confocal microscope use refractive-based lenses to code the measurement axis chromatically. However, such an approach is limiting the range of applications. In this paper the performance of refractive, diffractive and Hybrid aspheric diffractive are compared. Hybrid aspheric diffractive lenses combine the low geometric aberration of a diffractive lens with the high optical power of an aspheric lens. Hybrid aspheric diffractive lenses can reduce the number of elements in an imaging system significantly or create large hyper- chromatic lenses for sensing applications. In addition, diffractive lenses can improve the resolution and the dynamic range of a chromatic confocal microscope. However, to be suitable for commercial applications, the diffractive optical power must be significant. Therefore, manufacturing such lenses is a challenge. We show in this paper how a theoretical manufacturing model can demonstrate that the hybrid aspheric diffractive configuration with the best performances is achieved by step diffractive surface. The high optical quality of step diffractive surface is then demonstrated experimentally. Publisher's Note: This paper, originally published on 5/10/14, was replaced with a corrected/revised version on 5/19/14. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.
In-vacuum optical isolation changes by heating in a Faraday isolator.
Acernese, Fausto; Alshourbagy, Mohamed; Amico, Paolo; Antonucci, Federica; Aoudia, S; Astone, P; Avino, Saverio; Ballardin, G; Baggio, L; Barone, Fabrizio; Barsotti, Lisa; Barsuglia, Matteo; Bauer, Th S; Bigotta, Stefano; Birindelli, Simona; Bizouard, Marie-Anne; Boccara, Albert-Claude; Bondu, François; Bosi, Leone; Braccini, Stefano; Bradaschia, Carlo; Brillet, Alain; Brisson, Violette; Buskulic, Damir; Cagnoli, G; Calloni, Enrico; Campagna, Enrico; Carbognani, Franco; Carbone, L; Cavalier, Fabien; Cavalieri, R; Cella, G; Cesarini, E; Chassande-Mottin, E; Chatterji, S; Cleva, F; Coccia, E; Corda, C; Corsi, A; Cottone, F; Coulon, J-P; Cuoco, E; D'Antonio, S; Dari, A; Dattilo, V; Davier, M; De Rosa, R; Del Prete, M; Di Fiore, L; Di Lieto, A; Di Paolo Emilio, M; Di Virgilio, A; Evans, M; Fafone, V; Ferrante, I; Fidecaro, F; Fiori, I; Flaminio, R; Fournier, J-D; Frasca, S; Frasconi, F; Gammaitoni, L; Garufi, F; Genin, E; Gennai, A; Giazotto, A; Giordano, L; Granata, V; Greverie, C; Grosjean, D; Guidi, G; Hamdani, S; Hebri, S; Heitmann, H; Hello, P; Huet, D; La Penna, P; Laval, M; Leroy, N; Letendre, N; Lopez, B; Lorenzini, M; Loriette, V; Losurdo, G; Mackowski, J-M; Majorana, E; Man, N; Mantovani, M; Marchesoni, F; Marion, F; Marque, J; Martelli, F; Masserot, A; Menzinger, F; Milano, L; Minenkov, Y; Moins, C; Morgado, N; Mosca, S; Mours, B; Neri, I; Nocera, F; Pagliaroli, G; Palomba, C; Paoletti, F; Pardi, S; Pasqualetti, A; Passaquieti, R; Passuello, D; Persichetti, G; Piergiovanni, F; Pinard, L; Poggiani, R; Punturo, M; Puppo, P; Rabaste, O; Rapagnani, P; Regimbau, T; Remillieux, A; Ricci, F; Ricciardi, I; Rocchi, A; Rolland, L; Romano, R; Ruggi, P; Russo, G; Sentenac, D; Solimeno, S; Swinkels, B L; Tarallo, M; Terenzi, R; Toncelli, A; Tonelli, M; Tournefier, E; Travasso, F; Vajente, G; van den Brand, J F J; van der Putten, S; Verkindt, D; Vetrano, F; Viceré, A; Vinet, J-Y; Vocca, H; Yvert, M
2008-11-01
We describe a model evaluating changes in the optical isolation of a Faraday isolator when passing from air to vacuum in terms of different thermal effects in the crystal. The changes are particularly significant in the crystal thermal lensing (refraction index and thermal expansion) and in its Verdet constant and can be ascribed to the less efficient convection cooling of the magneto-optic crystal of the Faraday isolator. An isolation decrease by a factor of 10 is experimentally observed in a Faraday isolator that is used in a gravitational wave experiment (Virgo) with a 10 W input laser when going from air to vacuum. A finite element model simulation reproduces with a great accuracy the experimental data measured on Virgo and on a test bench. A first set of measurements of the thermal lensing has been used to characterize the losses of the crystal, which depend on the sample. The isolation factor measured on Virgo confirms the simulation model and the absorption losses of 0.0016 +/- 0.0002/cm for the TGG magneto-optic crystal used in the Faraday isolator.
Low-strain laser-based solder joining of mounted lenses
NASA Astrophysics Data System (ADS)
Burkhardt, Thomas; Hornaff, Marcel; Kamm, Andreas; Burkhardt, Diana; Schmidt, Erik; Beckert, Erik; Eberhardt, Ramona; Tünnermann, Andreas
2015-09-01
A novel laser-based soldering technique - Solderjet Bumping - using liquid solder droplets in a flux-free process with only localized heating is presented. We demonstrate an all inorganic, adhesive free bonding of optical components and support structures suitable for optical assemblies and instruments under harsh environmental conditions. Low strain bonding suitable for a following high-precision adjustment turning process is presented, addressing components and subsystems for objectives for high power and short wavelengths. The discussed case study shows large aperture transmissive optics (diameter approx. 74 mm and 50 mm) made of fused silica and LAK9G15, a radiation resistant glass, bonded to thermally matched metallic mounts. The process chain of Solderjet Bumping - cleaning, solderable metallization, handling, bonding and inspection - is discussed. This multi-material approach requires numerical modelling for dimensioning according to thermal and mechanical loads. The findings of numerical modelling, process parametrization and environmental testing (thermal and vibrational loads) are presented. Stress and strain introduced into optical components as well as deformation of optical surfaces can significantly deteriorate the wave front of passing light and therefore reduce system performance significantly. The optical performance with respect to stress/strain and surface deformation during bonding and environmental testing were evaluated using noncontact and nondestructive optical techniques: polarimetry and interferometry, respectively. Stress induced surface deformation of less than 100 nm and changes in optical path difference below 5 nm were achieved. Bond strengths of about 55 MPa are reported using tin-silver-copper soft solder alloy.
Tsai, Kuo-Ming; Wang, He-Yi
2014-08-20
This study focuses on injection molding process window determination for obtaining optimal imaging optical properties, astigmatism, coma, and spherical aberration using plastic lenses. The Taguchi experimental method was first used to identify the optimized combination of parameters and significant factors affecting the imaging optical properties of the lens. Full factorial experiments were then implemented based on the significant factors to build the response surface models. The injection molding process windows for lenses with optimized optical properties were determined based on the surface models, and confirmation experiments were performed to verify their validity. The results indicated that the significant factors affecting the optical properties of lenses are mold temperature, melt temperature, and cooling time. According to experimental data for the significant factors, the oblique ovals for different optical properties on the injection molding process windows based on melt temperature and cooling time can be obtained using the curve fitting approach. The confirmation experiments revealed that the average errors for astigmatism, coma, and spherical aberration are 3.44%, 5.62%, and 5.69%, respectively. The results indicated that the process windows proposed are highly reliable.
Platelet lysate and chondroitin sulfate loaded contact lenses to heal corneal lesions.
Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Delfino, Alessio; Riva, Federica; Icaro Cornaglia, Antonia; Marrubini, Giorgio; Musitelli, Giorgio; Del Fante, Claudia; Perotti, Cesare; Caramella, Carla; Ferrari, Franca
2016-07-25
Hemoderivative tear substitutes contain various ephiteliotrophic factors, such as growth factors (GF), involved in ocular surface homeostasis without immunogenic properties. The aim of the present work was the loading of platelet lysate into contact lenses to improve the precorneal permanence of platelet lysate growth factors on the ocular surface to enhance the treatment of corneal lesions. To this purpose, chondroitin sulfate, a sulfated glycosaminoglycan, which is normally present in the extracellular matrix, was associated with platelet lysate. In fact, chondroitin sulfate is capable of electrostatic interaction with positively charged growth factors, in particular, with bFGF, IGF, VEGF, PDGF and TGF-β, resulting in their stabilization and reduced degradation in solution. In the present work, various types of commercially available contact lenses have been loaded with chondroitin sulfate or chondroitin sulfate in association with platelet lysate to achieve a release of growth factors directly onto the corneal surface lesions. One type of contact lenses (PureVision(®)) showed in vitro good proliferation properties towards corneal cells and were able to enhance cut closure in cornea constructs. Copyright © 2016 Elsevier B.V. All rights reserved.
Thermal lensing effects in rod-based Tm3+: YLF amplifiers versus pump and cooling conditions
NASA Astrophysics Data System (ADS)
Jolly, A.; Vidal, S.; Boullet, J.
2018-06-01
We report on a comprehensive study of the thermal-lensing penalties in rod-based, end-pumped amplifiers made of thulium-doped YLF. Aiming to optimize the beam quality under optimized pump and cooling conditions, this applies to the definition of highly efficient laser designs with operation up to the saturation of the gain. Single-pass and double-pass pump schemes are benchmarked by means of an innovative modeling process, to determine the appropriate rod’s length and the complete set of input data which determines the spatial transfer function of a given rod. This is done in the form of an equivalent, pump-dependent, thick GRIN lens. The characteristics of this highly astigmatic and basically divergent lens are computed thanks to complementary 3D-FEM thermo-mechanical modeling. To benchmark the different contributors to natural thermal-lensing phenomena, we refer to the situation of uniform side-cooling. The computational results are parameterized in a broad range of operating conditions. Then we suggest non-uniform side-cooling, as a possible option of interest for cancelling the astigmatism. The development of YLF-based amplifiers of a new generation taking advantage of a highly stable and easily controllable beam quality, either using rod-based or slab-based architectures, will be part of the potential applications of this fairly generic modeling approach.
NASA Astrophysics Data System (ADS)
Adams, Matthew S.; Salgaonkar, Vasant A.; Sommer, Graham; Diederich, Chris J.
2017-02-01
Endoluminal high-intensity ultrasound offers spatially-precise thermal ablation of tissues adjacent to body lumens, but is constrained in treatment volume and penetration depth by the effective aperture of integrated transducers, which are limited in size to enable delivery through anatomical passages, endoscopic instrumentation, or laparoscopic ports. This study introduced and investigated three distinct endoluminal ultrasound applicator designs that can be delivered in a compact state then deployed or expanded at the target luminal site to increase the effective therapeutic aperture. The first design incorporated an array of planar transducers which could be unfolded at specific angles of convergence between the transducers. Two alternative designs consisted of fixed transducer sources surrounded by an expandable multicompartment balloon that contained acoustic reflector and dynamically-adjustable fluid lenses compartments. Parametric studies of acoustic output were performed across device design parameters via the rectangular radiator and secondary sources methods. Biothermal models were used to simulate resulting temperature distributions in three-dimensional heterogeneous tissue models. Simulations indicate that a deployable transducer array can increase volumetric coverage and penetration depth by 80% and 20%, respectively, while permitting more conformal thermal lesion shapes based on the degree of convergence between the transducers. The applicator designs incorporating reflector and fluid lenses demonstrated enhanced focal gain and penetration depth that increased with the diameter of the expanded reflector-lens balloon. Thermal simulations of assemblies with 12 mm compact profiles and 50 mm expanded balloon diameters demonstrated generation of localized thermal lesions at depths up to 10 cm in liver tissue.
Tonopen XL assessment of intraocular pressure through silicone hydrogel contact lenses.
Schornack, Muriel; Rice, Melissa; Hodge, David
2012-09-01
To assess the accuracy of Tonopen XL measurement of intraocular pressure (IOP) through low-power (-0.25 to -3.00) and high power (-3.25 to -6.00) silicone hydrogel lenses of 3 different materials (galyfilcon A, senofilcon A, and lotrafilcon B). Seventy-eight patients were recruited for participation in this study. All were habitual wearers of silicone hydrogel contact lenses, and none had been diagnosed with glaucoma, ocular hypertension, or anterior surface disease. IOP was measured with and without lenses in place in the right eye only. Patients were randomized to initial measurement either with or without the lens in place. A single examiner collected all data. No statistically significant differences were noted between IOP measured without lenses and IOP measured through low-power lotrafilcon B lenses or high-power or low-power galyfilcon A and senofilcon A lenses. However, we did find a statistically significant difference between IOP measured without lenses and IOP measured through high-power lotrafilcon B lenses. In general, Tonopen XL measurement of IOP through silicone hydrogel lenses may be sufficiently accurate for clinical purposes. However, Tonopen XL may overestimate IOP if performed through a silicone hydrogel lens of relatively high modulus.
To the horizon and beyond: Weak lensing of the CMB and binary inspirals into horizonless objects
NASA Astrophysics Data System (ADS)
Kesden, Michael
This thesis examines two predictions of general relativity: weak lensing and gravitational waves. The cosmic microwave background (CMB) is gravitationally lensed by the large-scale structure between the observer and the last- scattering surface. This weak lensing induces non-Gaussian correlations that can be used to construct estimators for the deflection field. The error and bias of these estimators are derived and used to analyze the viability of lensing reconstruction for future CMB experiments. Weak lensing also affects the one-point probability distribution function of the CMB. The skewness and kurtosis induced by lensing and the Sunayev- Zel'dovich (SZ) effect are calculated as functions of the angular smoothing scale of the map. While these functions offer the advantage of easy computability, only the skewness from lensing-SZ correlations can potentially be detected, even in the limit of the largest amplitude fluctuations allowed by observation. Lensing estimators are also essential to constrain inflation, the favored explanation for large-scale isotropy and the origin of primordial perturbations. B-mode polarization is considered to be a "smoking-gun" signature of inflation, and lensing estimators can be used to recover primordial B-modes from lensing-induced contamination. The ability of future CMB experiments to constrain inflation is assessed as functions of survey size and instrumental sensitivity. A final application of lensing estimators is to constrain a possible cutoff in primordial density perturbations on near-horizon scales. The paucity of independent modes on such scales limits the statistical certainty of such a constraint. Measurements of the deflection field can be used to constrain at the 3s level the existence of a cutoff large enough to account for current CMB observations. A final chapter of this thesis considers an independent topic: the gravitational-wave (GW) signature of a binary inspiral into a horizonless object. If the supermassive objects at galactic centers lack the horizons of traditional black holes, inspiraling objects could emit GWs after passing within their surfaces. The GWs produced by such an inspiral are calculated, revealing distinctive features potentially observable by future GW observatories.
NASA Technical Reports Server (NTRS)
Battaglia, N.; Leauthaud, A.; Miyatake, H.; Hasseleld, M.; Gralla, M. B.; Allison, R.; Bond, J. R.; Calabrese, E.; Crichton, D.; Devlin, M. J.;
2016-01-01
Mass calibration uncertainty is the largest systematic effect for using clustersof galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters selected through their high signal-to-noise thermal Sunyaev-Zeldovich (tSZ) signal measured with the Atacama Cosmology Telescope (ACT). For a sample of 9 ACT clusters with a tSZ signal-to-noise greater than five, the average weak lensing mass is (4.8 plus or minus 0.8) times 10 (sup 14) solar mass, consistent with the tSZ mass estimate of (4.7 plus or minus 1.0) times 10 (sup 14) solar mass, which assumes a universal pressure profile for the cluster gas. Our results are consistent with previous weak-lensing measurements of tSZ-detected clusters from the Planck satellite. When comparing our results, we estimate the Eddington bias correction for the sample intersection of Planck and weak-lensing clusters which was previously excluded.
A measurement of CMB cluster lensing with SPT and DES year 1 data
Baxter, E. J.; Raghunathan, S.; Crawford, T. M.; ...
2018-02-09
Clusters of galaxies gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint in the CMB on arcminute scales. Measurement of this effect offers a promising way to constrain the masses of galaxy clusters, particularly those at high redshift. We use CMB maps from the South Pole Telescope Sunyaev-Zel'dovich (SZ) survey to measure the CMB lensing signal around galaxy clusters identified in optical imaging from first year observations of the Dark Energy Survey. The cluster catalog used in this analysis contains 3697 members with mean redshift ofmore » $$\\bar{z} = 0.45$$. We detect lensing of the CMB by the galaxy clusters at $$8.1\\sigma$$ significance. Using the measured lensing signal, we constrain the amplitude of the relation between cluster mass and optical richness to roughly $$17\\%$$ precision, finding good agreement with recent constraints obtained with galaxy lensing. The error budget is dominated by statistical noise but includes significant contributions from systematic biases due to the thermal SZ effect and cluster miscentering.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battaglia, N.; Miyatake, H.; Hasselfield, M.
Mass calibration uncertainty is the largest systematic effect for using clusters of galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters selected through their high signal-to-noise thermal Sunyaev-Zeldovich (tSZ) signal measured with the Atacama Cosmology Telescope (ACT). For a sample of 9 ACT clusters with a tSZ signal-to-noise greater than five the average weak lensing mass is (4.8±0.8) ×10{sup 14} M{sub ⊙}, consistent with the tSZ mass estimate of (4.70±1.0) ×10{sup 14} M{sub ⊙} which assumes a universal pressure profile for the cluster gas. Our results are consistentmore » with previous weak-lensing measurements of tSZ-detected clusters from the Planck satellite. When comparing our results, we estimate the Eddington bias correction for the sample intersection of Planck and weak-lensing clusters which was previously excluded.« less
A measurement of CMB cluster lensing with SPT and DES year 1 data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, E. J.; Raghunathan, S.; Crawford, T. M.
Clusters of galaxies gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint in the CMB on arcminute scales. Measurement of this effect offers a promising way to constrain the masses of galaxy clusters, particularly those at high redshift. We use CMB maps from the South Pole Telescope Sunyaev-Zel'dovich (SZ) survey to measure the CMB lensing signal around galaxy clusters identified in optical imaging from first year observations of the Dark Energy Survey. The cluster catalog used in this analysis contains 3697 members with mean redshift ofmore » $$\\bar{z} = 0.45$$. We detect lensing of the CMB by the galaxy clusters at $$8.1\\sigma$$ significance. Using the measured lensing signal, we constrain the amplitude of the relation between cluster mass and optical richness to roughly $$17\\%$$ precision, finding good agreement with recent constraints obtained with galaxy lensing. The error budget is dominated by statistical noise but includes significant contributions from systematic biases due to the thermal SZ effect and cluster miscentering.« less
Feedback Regulation of Intracellular Hydrostatic Pressure in Surface Cells of the Lens
Gao, Junyuan; Sun, Xiurong; White, Thomas W.; Delamere, Nicholas A.; Mathias, Richard T.
2015-01-01
In wild-type lenses from various species, an intracellular hydrostatic pressure gradient goes from ∼340 mmHg in central fiber cells to 0 mmHg in surface cells. This gradient drives a center-to-surface flow of intracellular fluid. In lenses in which gap-junction coupling is increased, the central pressure is lower, whereas if gap-junction coupling is reduced, the central pressure is higher but surface pressure is always zero. Recently, we found that surface cell pressure was elevated in PTEN null lenses. This suggested disruption of a feedback control system that normally maintained zero surface cell pressure. Our purpose in this study was to investigate and characterize this feedback control system. We measured intracellular hydrostatic pressures in mouse lenses using a microelectrode/manometer-based system. We found that all feedback went through transport by the Na/K ATPase, which adjusted surface cell osmolarity such that pressure was maintained at zero. We traced the regulation of Na/K ATPase activity back to either TRPV4, which sensed positive pressure and stimulated activity, or TRPV1, which sensed negative pressure and inhibited activity. The inhibitory effect of TRPV1 on Na/K pumps was shown to signal through activation of the PI3K/AKT axis. The stimulatory effect of TRPV4 was shown in previous studies to go through a different signal transduction path. Thus, there is a local two-legged feedback control system for pressure in lens surface cells. The surface pressure provides a pedestal on which the pressure gradient sits, so surface pressure determines the absolute value of pressure at each radial location. We speculate that the absolute value of intracellular pressure may set the radial gradient in the refractive index, which is essential for visual acuity. PMID:26536260
Technical Guide for Indoor Air Quality Surveys
2014-07-24
inability to wear contact lenses; and dry, itchy, flaking skin [16,23]. The number of persons affected increases as the relative humidity decreases below...40%. The inability to wear contact lenses in a building with low relative humidity results from fluid loss from the exposed outer eye surface...eye and may enhance the possibility of an infection. Even without contact lenses, the eyes can feel dry, irritated, and itchy. Low relative
NASA Astrophysics Data System (ADS)
Sokoloff, J. B.
2014-09-01
One role of a lubricant is to prevent wear of two surfaces in contact, which is likely to be the result of adhesive forces that cause a pair of asperities belonging to two surfaces in contact to stick together. Such adhesive sticking of asperities can occur both for sliding surfaces and for surfaces which are pressed together and then pulled apart. The latter situation, for example, is important for contact lenses, as prevention of sticking reduces possible damage to the cornea as the lenses are inserted and removed from the eye. Contact lenses are made from both neutral and polyelectrolyte hydrogels. It is demonstrated here that sticking of neutral hydrogels can be prevented by repulsive forces between asperities in contact, resulting from polymers attached to the gel surface but not linked with each other. For polyelectrolyte hydrogels, it is shown that osmotic pressure due to counterions, held at the interface between asperities in contact by the electrostatic attraction between the ions and the fixed charges in the gel, can provide a sufficiently strong repulsive force to prevent adhesive sticking of small-length-scale asperities.
NASA Astrophysics Data System (ADS)
Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.
2018-06-01
In the present investigation, we present the variations in nonlinear optical (NLO) properties of undoped and Al doped ZnO (AZO) films under two different off-resonant regimes using continuous and pulsed mode lasers. Z-scan open aperture experiment is performed to quantify nonlinear absorption constant and imaginary component of third order susceptibility. Reverse saturable absorption (RSA) and saturable absorption (SA) behaviors are noticed in both undoped and AZO films under pulsed mode and continuous wavelength (CW) regime respectively. The RSA and SA behavior observed in the films are attributed to two photon absorption (TPA) and thermal lensing properties respectively. The thermal lensing is assisted by the thermo-optic effects within the films due to the continuous illumination of the laser.
The Danger of Using Tap Water with Contact Lenses
Acanthamoeba is a microbe that is very common in tap water. It has two forms: the trophozoite and the cyst. These trophozoites and cysts can stick to the surface of your contact lenses and then infect your eye.
Xie, Dan; Zhang, Honghai; Shu, Xiayun; Xiao, Junfeng
2012-07-02
The paper reports an effective method to fabricate micro-lens arrays with the ultraviolet-curable polymer, using an original pneumatically diaphragm-driven drop-on-demand inkjet system. An array of plano convex micro-lenses can be formed on the glass substrate due to surface tension and hydrophobic effect. The micro-lens arrays have uniform focusing function, smooth and real planar surface. The fabrication process showed good repeatability as well, fifty micro-lenses randomly selected form 9 × 9 miro-lens array with an average diameter of 333.28μm showed 1.1% variations. Also, the focal length, the surface roughness and optical property of the fabricated micro-lenses are measured, analyzed and proved satisfactory. The technique shows great potential for fabricating polymer micro-lens arrays with high flexibility, simple technological process and low production cost.
NASA Technical Reports Server (NTRS)
Deguchi, Shuji; Watson, William D.
1988-01-01
Statistical methods are developed for gravitational lensing in order to obtain analytic expressions for the average surface brightness that include the effects of microlensing by stellar (or other compact) masses within the lensing galaxy. The primary advance here is in utilizing a Markoff technique to obtain expressions that are valid for sources of finite size when the surface density of mass in the lensing galaxy is large. The finite size of the source is probably the key consideration for the occurrence of microlensing by individual stars. For the intensity from a particular location, the parameter which governs the importance of microlensing is determined. Statistical methods are also formulated to assess the time variation of the surface brightness due to the random motion of the masses that cause the microlensing.
GAUSSIAN BEAM LASER RESONATOR PROGRAM
NASA Technical Reports Server (NTRS)
Cross, P. L.
1994-01-01
In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaminski, Adam
A method and apparatus to generate harmonically related laser wavelengths includes a pair of lenses at opposing faces of a non-linear optical material. The lenses are configured to promote incoming and outgoing beams to be normal to each outer lens surface over a range of acceptance angles of the incoming laser beam. This reduces reflection loss for higher efficiency operation. Additionally, the lenses allow a wider range of wavelengths for lasers for more universal application. Examples of the lenses include plano-cylindrical and plano-spherical form factors.
Johnson, Traci L; Rigby, Jane R; Sharon, Keren; Gladders, Michael D; Florian, Michael; Bayliss, Matthew B; Wuyts, Eva; Whitaker, Katherine E; Livermore, Rachael; Murray, Katherine T
2017-07-10
We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z =2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r <100 pc. Within the range of overlap, the clump luminosity function measured for this lensed galaxy is remarkably similar to those of z ∼ 0 galaxies. In this galaxy, star-forming regions smaller than 100 pc-physical scales not usually resolved at these redshifts by current telescopes-are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of order 1 kiloparsec. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time.
Maceo, Bianca M; Manns, Fabrice; Borja, David; Nankivil, Derek; Uhlhorn, Stephen; Arrieta, Esdras; Ho, Arthur; Augusteyn, Robert C; Parel, Jean-Marie
2011-11-30
The purpose of this study was to determine the contribution of the gradient refractive index to the change in lens power in hamadryas baboon and cynomolgus monkey lenses during simulated accommodation in a lens stretcher. Thirty-six monkey lenses (1.4-14.1 years) and twenty-five baboon lenses (1.8-28.0 years) were stretched in discrete steps. At each stretching step, the lens back vertex power was measured and the lens cross-section was imaged with optical coherence tomography. The radii of curvature for the lens anterior and posterior surfaces were calculated for each step. The power of each lens surface was determined using refractive indices of 1.365 for the outer cortex and 1.336 for the aqueous. The gradient contribution was calculated by subtracting the power of the surfaces from the measured lens power. In all lenses, the contribution of the surfaces and gradient increased linearly with the amplitude of accommodation. The gradient contributes on average 65 ± 3% for monkeys and 66 ± 3% for baboons to the total power change during accommodation. When expressed in percent of the total power change, the relative contribution of the gradient remains constant with accommodation and age in both species. These findings are consistent with Gullstrand's intracapsular theory of accommodation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giannantonio, T.; et al.
Optical imaging surveys measure both the galaxy density and the gravitational lensing-induced shear fields across the sky. Recently, the Dark Energy Survey (DES) collaboration used a joint fit to two-point correlations between these observables to place tight constraints on cosmology (DES Collaboration et al. 2017). In this work, we develop the methodology to extend the DES Collaboration et al. (2017) analysis to include cross-correlations of the optical survey observables with gravitational lensing of the cosmic microwave background (CMB) as measured by the South Pole Telescope (SPT) and Planck. Using simulated analyses, we show how the resulting set of five two-pointmore » functions increases the robustness of the cosmological constraints to systematic errors in galaxy lensing shear calibration. Additionally, we show that contamination of the SPT+Planck CMB lensing map by the thermal Sunyaev-Zel'dovich effect is a potentially large source of systematic error for two-point function analyses, but show that it can be reduced to acceptable levels in our analysis by masking clusters of galaxies and imposing angular scale cuts on the two-point functions. The methodology developed here will be applied to the analysis of data from the DES, the SPT, and Planck in a companion work.« less
Cross-correlation of weak lensing and gamma rays: implications for the nature of dark matter
NASA Astrophysics Data System (ADS)
Tröster, Tilman; Camera, Stefano; Fornasa, Mattia; Regis, Marco; van Waerbeke, Ludovic; Harnois-Déraps, Joachim; Ando, Shin'ichiro; Bilicki, Maciej; Erben, Thomas; Fornengo, Nicolao; Heymans, Catherine; Hildebrandt, Hendrik; Hoekstra, Henk; Kuijken, Konrad; Viola, Massimo
2017-05-01
We measure the cross-correlation between Fermi gamma-ray photons and over 1000 deg2 of weak lensing data from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), the Red Cluster Sequence Lensing Survey (RCSLenS), and the Kilo Degree Survey (KiDS). We present the first measurement of tomographic weak lensing cross-correlations and the first application of spectral binning to cross-correlations between gamma rays and weak lensing. The measurements are performed using an angular power spectrum estimator while the covariance is estimated using an analytical prescription. We verify the accuracy of our covariance estimate by comparing it to two internal covariance estimators. Based on the non-detection of a cross-correlation signal, we derive constraints on weakly interacting massive particle (WIMP) dark matter. We compute exclusion limits on the dark matter annihilation cross-section <σannv>, decay rate Γdec and particle mass mDM. We find that in the absence of a cross-correlation signal, tomography does not significantly improve the constraining power of the analysis. Assuming a strong contribution to the gamma-ray flux due to small-scale clustering of dark matter and accounting for known astrophysical sources of gamma rays, we exclude the thermal relic cross-section for particle masses of mDM ≲ 20 GeV.
The Visualization of Infrared Radiation Using Thermal Sensitive Foils
ERIC Educational Resources Information Center
Bochnícek, Zdenek
2013-01-01
This paper describes a set of demonstration school experiments where infrared radiation is detected using thermal sensitive foils. The possibility of using standard glass lenses for infrared imaging is discussed in detail. It is shown that with optic components made from glass, infrared radiation up to 2.5 µm of wavelength can be detected. The…
Defect inspection of actuator lenses using swept-source optical coherence tomography
NASA Astrophysics Data System (ADS)
Lee, Jaeyul; Shirazi, Muhammad Faizan; Park, Kibeom; Jeon, Mansik; Kim, Jeehyun
2017-12-01
Actuator lens industries have gained an enormous interest with the enhancement of various latest communication devices, such as mobile phone and notebooks. The quality of the aforementioned devices can be degraded due to the internal defects of actuator lenses. Therefore, in this study, we implemented swept-source optical coherence tomography (SS-OCT) system to inspect defects of actuator lenses. Owing to the high-resolution of the SS-OCT system, defected foreign substances between the actuator lenses, defective regions of lenses and surface stains were more clearly distinguished through three-dimensional (3D) and two-dimensional (2D) cross-sectional OCT images. Therefore, the implemented SS-OCT system can be considered as a potential application to defect inspection of actuator lens.
Thermally induced all-optical inverter and dynamic hysteresis loops in graphene oxide dispersions.
Melle, Sonia; Calderón, Oscar G; Egatz-Gómez, Ana; Cabrera-Granado, E; Carreño, F; Antón, M A
2015-11-01
We experimentally study the temporal dynamics of amplitude-modulated laser beams propagating through a water dispersion of graphene oxide sheets in a fiber-to-fiber U-bench. Nonlinear refraction induced in the sample by thermal effects leads to both phase reversing of the transmitted signals and dynamic hysteresis in the input-output power curves. A theoretical model including beam propagation and thermal lensing dynamics reproduces the experimental findings.
Saw-tooth refractive x-ray optics with sub-micron resolution
NASA Astrophysics Data System (ADS)
Cederstrom, Bjorn; Ribbing, Carolina; Lundqvist, Mats
2002-11-01
Saw-tooth refractive x-ray lenses have been used to focus a synchrotron beam to sub-μm line width. These lenses are free from spherical aberration and work in analogy with 1-D focusing parabolic compound refractive lenses. However, the focal length can be varied by a simple mechanical procedure. Silicon lenses were fabricated by wet anisotropic etching, and epoxy replicas were molded from the silicon masters. Theses lenses provided 1-D intensity gains up to a factor of 40 and the smallest focal line width was 0.74 μm, very close to the theoretical expectation. Two crossed lenses were put in series to obtain 2-D focusing and the 80 μm by 275 μm source was imaged to 1.0 μm by 5.4 μm. Beryllium lenses were fabricated using conventional computer-controlled milling. The focal line width was 1.7 μm, nearly 3 times larger than predicted by theory. This can be attributed to large surface roughness and a bent lens shape.
NASA Astrophysics Data System (ADS)
Shirasaki, Masato; Takada, Masahiro
2018-05-01
Stacked lensing is a powerful means of measuring the average mass distribution around large-scale structure tracers. There are two stacked lensing estimators used in the literature, denoted as ΔΣ and γ+, which are related as ΔΣ = Σcrγ+, where Σcr(zl, zs) is the critical surface mass density for each lens-source pair (zl and zs are lens and source redshifts, respectively). In this paper we derive a formula for the covariance matrix of ΔΣ-estimator focusing on "weight" function to improve the signal-to-noise (S/N). We assume that the lensing fields and the distribution of lensing objects obey the Gaussian statistics. With this formula, we show that, if background galaxy shapes are weighted by an amount of Σ _cr^{-2}(z_l,z_s), the ΔΣ-estimator maximizes the S/N in the shot noise limited regime. We also show that the ΔΣ-estimator with the weight Σ _cr^{-2} gives a greater (S/N)2 than that of the γ+-estimator by about 5-25% for lensing objects at redshifts comparable with or higher than the median of source galaxy redshifts for hypothetical Subaru HSC and DES surveys. However, for low-redshift lenses such as zl ≲ 0.3, the γ+-estimator has higher (S/N)2 than ΔΣ. We also discuss that the (S/N)2 for ΔΣ at large separations in the sample variance limited regime can be boosted, by up to a factor of 1.5, if one adopts a weight of Σ _cr^{-α } with α > 2. Our formula allows one to explore how the combination of the different estimators can approach an optimal estimator in all regimes of redshifts and separation scales.
Designing perturbative metamaterials from discrete models.
Matlack, Kathryn H; Serra-Garcia, Marc; Palermo, Antonio; Huber, Sebastian D; Daraio, Chiara
2018-04-01
Identifying material geometries that lead to metamaterials with desired functionalities presents a challenge for the field. Discrete, or reduced-order, models provide a concise description of complex phenomena, such as negative refraction, or topological surface states; therefore, the combination of geometric building blocks to replicate discrete models presenting the desired features represents a promising approach. However, there is no reliable way to solve such an inverse problem. Here, we introduce 'perturbative metamaterials', a class of metamaterials consisting of weakly interacting unit cells. The weak interaction allows us to associate each element of the discrete model with individual geometric features of the metamaterial, thereby enabling a systematic design process. We demonstrate our approach by designing two-dimensional elastic metamaterials that realize Veselago lenses, zero-dispersion bands and topological surface phonons. While our selected examples are within the mechanical domain, the same design principle can be applied to acoustic, thermal and photonic metamaterials composed of weakly interacting unit cells.
SGAS 143845.1 + 145407: A Big, Cool Starburst at Redshift 0.816
NASA Technical Reports Server (NTRS)
Gladders, Michael D.; Rigby, Jane R.; Sharon, Keren; Wuyts, Eva; Abramson, Louis E.; Dahle, Hakon; Persson, S. E.; Monson, Andrew J.; Kelson, Daniel D.; Benford, Dominic J.;
2012-01-01
We present the discovery and a detailed multi-wavelength study of a strongly-lensed luminous infrared galaxy at z=0.816. Unlike most known lensed galaxies discovered at optical or near-infrared wavelengths, this lensed source is red, which the data presented here demonstrate is due to ongoing dusty star formation. The overall lensing magnification (a factor of 17) facilitates observations from the blue optical through to 500 micrometers, fully capturing both the stellar photospheric emission as well as the reprocessed thermal dust emission. We also present optical and near-IR spectroscopy. These extensive data show that this lensed galaxy is in many ways typical of IR-detected sources at z approximates 1, with both a total luminosity and size in accordance with other (albeit much less detailed) measurements in samples of galaxies observed in deep fields with the Spitzer telescope. Its far-infrared spectral energy distribution is well-fit by local templates that are an order of magnitude less luminous than the lensed galaxy; local templates of comparable luminosity are too hot to fit. Its size (D approximately 7 kpc) is much larger than local luminous infrared galaxies, but in line with sizes observed for such galaxies at z approximates 1. The star formation appears uniform across this spatial scale. Thus, this lensed galaxy, which appears representative of vigorously star-forming z approximates 1 galaxies, is forming stars in a fundamentally different mode than is seen at z approximates 0.
Anti-Fog Solution for Air-Purifying Respirator Lenses
2010-06-01
INTRODUCTION Fogging of respirator and protective eyewear lenses occurs when water vapor condenses on the surface of the lens. Topical coatings, such as... safety goggles and six full-facepiece APRs to create 12 Snellen visual acuity conditions. The foils were calibrated during prior unpublished human
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomeroy, J. W., E-mail: James.Pomeroy@Bristol.ac.uk; Kuball, M.
2015-10-14
Solid immersion lenses (SILs) are shown to greatly enhance optical spatial resolution when measuring AlGaN/GaN High Electron Mobility Transistors (HEMTs), taking advantage of the high refractive index of the SiC substrates commonly used for these devices. Solid immersion lenses can be applied to techniques such as electroluminescence emission microscopy and Raman thermography, aiding the development device physics models. Focused ion beam milling is used to fabricate solid immersion lenses in SiC substrates with a numerical aperture of 1.3. A lateral spatial resolution of 300 nm is demonstrated at an emission wavelength of 700 nm, and an axial spatial resolution of 1.7 ± 0.3 μm atmore » a laser wavelength of 532 nm is demonstrated; this is an improvement of 2.5× and 5×, respectively, when compared with a conventional 0.5 numerical aperture objective lens without a SIL. These results highlight the benefit of applying the solid immersion lenses technique to the optical characterization of GaN HEMTs. Further improvements may be gained through aberration compensation and increasing the SIL numerical aperture.« less
Miñones Conde, M; Conde, O; Trillo, J M; Miñones, J
2011-04-05
Mixed monolayers of poly(methyl methacrylate) (PMMA), the main component of hard contact lenses, and dipalmitoyl phosphatidyl choline (DPPC), a characteristic phospholipidic constituent of ocular tear films, were selected as an in vitro model in order to observe the behavior of contact lenses on the eye. Using Langmuir monolayer and Brewster angle microscopy (BAM) techniques, the interaction between both components was analyzed from the data of surface pressure-area isotherms, compressional modulus-surface pressure, and relative film thickness versus time elapsed from the beginning of compression, together with BAM images. Regardless of the surface pressure at which the molecular/monomer areas (A(m)) were recorded, the A(m) mole fractions of PMMA (X(PMMA)) plots show that the experimental results match the theoretical values calculated from additivity rule A(m) = X(PMMA)A(PMMA) + X(DPPC)A(DPPC). The application of the Crisp phase rule to the phase diagram of the PMMA-DPPC system can explain the existence of a mixed monolayer made up of miscible components with ideal behavior at surface pressures below 25 mN/m. However, at very high surface pressures, when collapse is reached (at 60 mN/m), the single collapsed components are segregated into two independent phases. These results allows us to argue that PMMA hard contact lenses in the eye do not alter the structural characteristics of the phospholipid (DPPC) in tears.
Veli, Muhammed; Ozcan, Aydogan
2018-03-27
We present a cost-effective and portable platform based on contact lenses for noninvasively detecting Staphylococcus aureus, which is part of the human ocular microbiome and resides on the cornea and conjunctiva. Using S. aureus-specific antibodies and a surface chemistry protocol that is compatible with human tears, contact lenses are designed to specifically capture S. aureus. After the bacteria capture on the lens and right before its imaging, the captured bacteria are tagged with surface-functionalized polystyrene microparticles. These microbeads provide sufficient signal-to-noise ratio for the quantification of the captured bacteria on the contact lens, without any fluorescent labels, by 3D imaging of the curved surface of each lens using only one hologram taken with a lens-free on-chip microscope. After the 3D surface of the contact lens is computationally reconstructed using rotational field transformations and holographic digital focusing, a machine learning algorithm is employed to automatically count the number of beads on the lens surface, revealing the count of the captured bacteria. To demonstrate its proof-of-concept, we created a field-portable and cost-effective holographic microscope, which weighs 77 g, controlled by a laptop. Using daily contact lenses that are spiked with bacteria, we demonstrated that this computational sensing platform provides a detection limit of ∼16 bacteria/μL. This contact-lens-based wearable sensor can be broadly applicable to detect various bacteria, viruses, and analytes in tears using a cost-effective and portable computational imager that might be used even at home by consumers.
Gartaganis, Sotirios P; Prahs, Philipp; Lazari, Eftichia D; Gartaganis, Panos S; Helbig, Horst; Koutsoukos, Petros G
2016-08-01
To investigate the nature and characteristic features of deposits causing opacification of intraocular lenses (IOLs) based on the examination of clinical findings using scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX) analysis. Retrospective, observational case series. This is a multicenter study of 6 hydrophilic acrylic IOLs (Lentis LS-502-1; Oculentis GmbH, Berlin, Germany) with a hydrophobic surface that were explanted from 5 patients because of opacification. Three patients had an uncomplicated phacoemulsification. One patient underwent combined phacoemulsification and pars plana vitrectomy for retinal detachment and later silicone oil endotamponade owing to redetachment. The last patient had a pars plana vitrectomy and silicone oil instillation combined with phacoemulsification for tractive retinal detachment and diabetic retinopathy. The explanted lenses were submitted to our laboratory and were examined by SEM and EDX in order to identify the morphologic features and the composition of the deposits. SEM and EDX analyses confirmed the presence of calcific deposits in the interior of the opacified hydrophilic IOLs, with a pattern showing the formation of lumps on the surface. The lumps were due to subsurface formation of calcium phosphate crystalline deposits. The crystallite clusters seemed to diffuse from the IOL interior to the surface. We demonstrated the calcification pattern of the hydrophilic IOL (Lentis LS-502-1) with a hydrophobic surface. Although hydrophilic acrylic lenses have a hydrophobic surface, the development of calcification is a possible threat initiating from the hydrophilic subsurface of the IOLs. Copyright © 2016 Elsevier Inc. All rights reserved.
Measurement of the alignment of the surfaces and the edges of aspheric lenses
NASA Astrophysics Data System (ADS)
Beutler, Andreas
2016-09-01
A single aspheric or freeform lens contains the elements front and backside surface, edges and maybe other reference surfaces or structures. In this paper is demonstrated how a high precision form tester is capable of measuring these elements utilizing an optical and a tactile probe system. The measurements can be used to determine the orientation or alignment of the different surfaces and structures. Different measuring examples are presented and the influence of the measuring uncertainty from the instrument and the measuring strategy are shown. This information may be useful for tolerancing of lenses and an optimization of the production process.
Simulations of thermal lensing of a Ti:Sapphire crystal end-pumped with high average power
NASA Astrophysics Data System (ADS)
Wagner, Gerd; Shiler, Max; Wulfmeyer, Volker
2005-10-01
A detailed 3-dimensional calculation of the temperature field of a laser crystal pumped with high average power is presented. The pump configuration, the anisotropy of a Brewster-angle-cut Ti:Sapphire crystal, and the temperature dependence of the thermal conductivity are taken into account. The corresponding focal length of the thermal lens is calculated for pump levels up to 100 W. This refined thermal model is the basis for a optimized resonator design of a high-average power differential absorption lidar system transmitter.
Simulations of thermal lensing of a Ti:Sapphire crystal end-pumped with high average power.
Wagner, Gerd; Shiler, Max; Wulfmeyer, Volker
2005-10-03
A detailed 3-dimensional calculation of the temperature field of a laser crystal pumped with high average power is presented. The pump configuration, the anisotropy of a Brewster-angle-cut Ti:Sapphire crystal, and the temperature dependence of the thermal conductivity are taken into account. The corresponding focal length of the thermal lens is calculated for pump levels up to 100 W. This refined thermal model is the basis for a optimized resonator design of a high-average power differential absorption lidar system transmitter.
Microbial adhesion to silicone hydrogel lenses: a review.
Willcox, Mark D P
2013-01-01
Microbial adhesion to contact lenses is believed to be one of the initiating events in the formation of many corneal infiltrative events, including microbial keratitis, that occur during contact lens wear. The advent of silicone hydrogel lenses has not reduced the incidence of these events. This may partly be related to the ability of microbes to adhere to these lenses. The aim of this study was to review the published literature on microbial adhesion to contact lenses, focusing on adhesion to silicone hydrogel lenses. The literature on microbial adhesion to contact lenses was searched, along with associated literature on adverse events that occur during contact lens wear. Particular reference was paid to the years 1995 through 2012 because this encompasses the time when the first clinical trials of silicone hydrogel lenses were reported, and their commercial availability and the publication of epidemiology studies on adverse events were studied. In vitro studies of bacterial adhesion to unworn silicone hydrogel lens have shown that generally, bacteria adhere to these lenses in greater numbers than to the hydroxyethyl methacrylate-based soft lenses. Lens wear has different effects on microbial adhesion, and this is dependent on the type of lens and microbial species/genera that is studied. Biofilms that can be formed on any lens type tend to protect the bacteria and fungi from the effects on disinfectants. Fungal hyphae can penetrate the surface of most types of lenses. Acanthamoeba adhere in greater numbers to first-generation silicone hydrogel lenses compared with the second-generation or hydroxyethyl methacrylate-based soft lenses. Microbial adhesion to silicone hydrogel lenses occurs and is associated with the production of corneal infiltrative events during lens wear.
Szczotka-Flynn, Loretta B; Pearlman, Eric; Ghannoum, Mahmoud
2010-03-01
A contact lens (CL) can act as a vector for microorganisms to adhere to and transfer to the ocular surface. Commensal microorganisms that uneventfully cohabitate on lid margins and conjunctivae and potential pathogens that are found transiently on the ocular surface can inoculate CLs in vivo. In the presence of reduced tissue resistance, these resident microorganisms or transient pathogens can invade and colonize the cornea or conjunctiva to produce inflammation or infection. The literature was reviewed and used to summarize the findings over the last 30 years on the identification, enumeration, and classification of microorganisms adherent to CLs and their accessories during the course of normal wear and to hypothesize the role that these microorganisms play in CL infection and inflammation. Lens handling greatly increases the incidence of lens contamination, and the ocular surface has a tremendous ability to destroy organisms. However, even when removed aseptically from the eye, more than half of lenses are found to harbor microorganisms, almost exclusively bacteria. Coagulase-negative Staphylococci are most commonly cultured from worn lenses; however, approximately 10% of lenses harbor Gram-negative and highly pathogenic species, even in asymptomatic subjects. In storage cases, the incidence of positive microbial bioburden is also typically greater than 50%. All types of care solutions can become contaminated, including up to 30% of preserved products. The process of CL-related microbial keratitis and inflammation is thought to be preceded by the presence or transfer or both of microorganisms from the lens to the ocular surface. Thus, this detailed understanding of lens-related bioburden is important in the understanding of factors associated with infectious and inflammatory complications. Promising mechanisms to prevent bacterial colonization on lenses and lens cases are forthcoming, which may decrease the incidence of microbially driven CL complications.
Maceo, Bianca M.; Manns, Fabrice; Borja, David; Nankivil, Derek; Uhlhorn, Stephen; Arrieta, Esdras; Ho, Arthur; Augusteyn, Robert C.; Parel, Jean-Marie
2012-01-01
The purpose of this study was to determine the contribution of the gradient refractive index to the change in lens power in hamadryas baboon and cynomolgus monkey lenses during simulated accommodation in a lens stretcher. Thirty-six monkey lenses (1.4–14.1 years) and twenty-five baboon lenses (1.8–28.0 years) were stretched in discrete steps. At each stretching step, the lens back vertex power was measured and the lens cross-section was imaged with optical coherence tomography. The radii of curvature for the lens anterior and posterior surfaces were calculated for each step. The power of each lens surface was determined using refractive indices of 1.365 for the outer cortex and 1.336 for the aqueous. The gradient contribution was calculated by subtracting the power of the surfaces from the measured lens power. In all lenses, the contribution of the surfaces and gradient increased linearly with the amplitude of accommodation. The gradient contributes on average 65 ± 3% for monkeys and 66 ± 3% for baboons to the total power change during accommodation. When expressed in percent of the total power change, the relative contribution of the gradient remains constant with accommodation and age in both species. These findings are consistent with Gullstrand’s intracapsular theory of accommodation. PMID:22131444
Yuksel Elgin, Cansu; Iskeleli, Guzin; Aydin, Ovgu
2018-06-01
To investigate changes in tear and ocular surface of patients with keratoconus using rigid gas permeable contact lenses (RGPCL) and compare them against keratoconus patients who were not using lenses as well as a control group of healthy subjects. 24 keratoconus patients using RGPCL (Group 1) 22 patients who were not using lenses (Group 3) and 21 healthy subjects (Group 3) were included in the study. Subjective complaints about the subjects' eyes have been investigated using the ocular-surface disease index (OSDI). After the control of best-corrected visual acuity, anterior chamber and fundus examinations were performed. Schirmer (p-value=0.01) and tear break up mean comparison tests (p-value=0.002) revealed significant differences across different groups but tear osmolarity analysis did not (p-value >0.05). Oxford and OSDI scores were compatible with Schirmer and tear break up test comparisons. (for both p-value=0.001) Moreover, no statistical differences were seen in impression cytology measures between groups. (p-value >0.05) CONCLUSIONS: The erosion in the tear film stability is in line with the erosion in the ocular surface epithelium. Taking into account the statistical indifference between the impression cytology measures across groups, the break up time differences may be attributed to the collagen destruction in tear. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
HERSCHEL-ATLAS: TOWARD A SAMPLE OF {approx}1000 STRONGLY LENSED GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Nuevo, J.; Lapi, A.; Bressan, S.
2012-04-10
While the selection of strongly lensed galaxies (SLGs) with 500 {mu}m flux density S{sub 500} > 100 mJy has proven to be rather straightforward, for many applications it is important to analyze samples larger than the ones obtained when confining ourselves to such a bright limit. Moreover, only by probing to fainter flux densities is it possible to exploit strong lensing to investigate the bulk of the high-z star-forming galaxy population. We describe HALOS (the Herschel-ATLAS Lensed Objects Selection), a method for efficiently selecting fainter candidate SLGs, reaching a surface density of {approx_equal} 1.5-2 deg{sup -2}, i.e., a factor ofmore » about 4-6 higher than that at the 100 mJy flux limit. HALOS will allow the selection of up to {approx}1000 candidate SLGs (with amplifications {mu} {approx}> 2) over the full H-ATLAS survey area. Applying HALOS to the H-ATLAS Science Demonstration Phase field ({approx_equal} 14.4 deg{sup 2}) we find 31 candidate SLGs, whose candidate lenses are identified in the VIKING near-infrared catalog. Using the available information on candidate sources and candidate lenses we tentatively estimate a {approx_equal} 72% purity of the sample. As expected, the purity decreases with decreasing flux density of the sources and with increasing angular separation between candidate sources and lenses. The redshift distribution of the candidate lensed sources is close to that reported for most previous surveys for lensed galaxies, while that of candidate lenses extends to redshifts substantially higher than found in the other surveys. The counts of candidate SLGs are also in good agreement with model predictions. Even though a key ingredient of the method is the deep near-infrared VIKING photometry, we show that H-ATLAS data alone allow the selection of a similarly deep sample of candidate SLGs with an efficiency close to 50%; a slightly lower surface density ({approx_equal} 1.45 deg{sup -2}) can be reached with a {approx}70% efficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D. C.; Carloni, J. D.; Pankow, J. W.
2012-01-01
Concentrating photovoltaic (CPV) technology recently gained interest based on its expected low levelized cost of electricity, high efficiency, and scalability. Many CPV systems employ Fresnel lenses composed of poly(methyl methacrylate) (PMMA) to obtain a high optical flux density on the cell. The optical and mechanical durability of these lenses, however, is not well established relative to the desired surface life of 30 years. Our research aims to quantify the expected lifetime of PMMA in key market locations (FL, AZ, and CO).
Faghri, Jamshid
2008-05-01
Coagulase-negative staphylococci and diphtheroids are normal inhabitants of the outer surface of the human eye. These microorganisms serve as part of the defense mechanism of the ocular anatomy in preventing colonization and infection by pathogenic bacteria. Nevertheless, infections associated with contaminated solutions and cases became serious problems for people who wear soft contact lenses. The aim of this study is to isolate and identify aerobic bacteria, particularly, gram-negative species associated with the use of extended-wear soft contact lenses. Extended-wear contact lenses were collected, using aseptic technique, from the eyes of individuals after 30 days of extended wear (5-7 day intermittent periods) and were examined for adhered aerobic bacteria. Coagulase-negative staphylococci were isolated from 74% of the lenses. Serratia marcescens was found at an incidence of 10% and Pseudomonas aeruginosa at an incidence of 6%. The presence of species of bacteria, including P. aeruginosa and S. marcescens, which have been associated with daily wear soft contact lenses, solutions, and cases also seem to be associated with extended-wear lenses.
Effect of cholesterol deposition on bacterial adhesion to contact lenses.
Babaei Omali, Negar; Zhu, Hua; Zhao, Zhenjun; Ozkan, Jerome; Xu, Banglao; Borazjani, Roya; Willcox, Mark D P
2011-08-01
To examine the effect of cholesterol on the adhesion of bacteria to silicone hydrogel contact lenses. Contact lenses, collected from subjects wearing Acuvue Oasys or PureVision lenses, were extracted in chloroform:methanol (1:1, v/v) and amount of cholesterol was estimated by thin-layer chromatography. Unworn lenses were soaked in cholesterol, and the numbers of Pseudomonas aeruginosa strains or Staphylococcus aureus strains that adhered to the lenses were measured. Cholesterol was tested for effects on bacterial growth by incubating bacteria in medium containing cholesterol. From ex vivo PureVision lenses, 3.4 ± 0.3 μg/lens cholesterol was recovered, and from Acuvue Oasys lenses, 2.4 ± 0.2 to 1.0 ± 0.1 μg/lens cholesterol was extracted. Cholesterol did not alter the total or viable adhesion of any strain of P. aeruginosa or S. aureus (p > 0.05). However, worn PureVision lenses reduced the numbers of viable cells of P. aeruginosa (5.8 ± 0.4 log units) compared with unworn lenses (6.4 ± 0.2 log units, p = 0.001). Similarly, there were fewer numbers of S. aureus 031 adherent to worn PureVision (3.05 ± 0.8 log units) compared with unworn PureVision (4.6 ± 0.3 log units, p = 0.0001). Worn Acuvue Oasys lenses did not affect bacterial adhesion. Cholesterol showed no effect on the growth of any test strain. Although cholesterol has been shown to adsorb to contact lenses during wear, this lipid does not appear to modulate bacterial adhesion to a lens surface.
Production application of injection-molded diffractive elements
NASA Astrophysics Data System (ADS)
Clark, Peter P.; Chao, Yvonne Y.; Hines, Kevin P.
1995-12-01
We demonstrate that transmission kinoforms for visible light applications can be injection molded in acrylic in production volumes. A camera is described that employs molded Fresnel lenses to change the convergence of a projection ranging system. Kinoform surfaces are used in the projection system to achromatize the Fresnel lenses.
Kang, Seok-Won; Fragala, Joe; Kim, Su-Ho; Banerjee, Debjyoti
2017-11-01
This paper presents a design optimization method based on theoretical analysis and numerical calculations, using a commercial multi-physics solver (e.g., ANSYS and ESI CFD-ACE+), for a 3D continuous model, to analyze the bending characteristics of an electrically heated bimorph microcantilever. The results from the theoretical calculation and numerical analysis are compared with those measured using a CCD camera and magnification lenses for a chip level microcantilever array fabricated in this study. The bimorph microcantilevers are thermally actuated by joule heating generated by a 0.4 μm thin-film Au heater deposited on 0.6 μm Si₃N₄ microcantilevers. The initial deflections caused by residual stress resulting from the thermal bonding of two metallic layers with different coefficients of thermal expansion (CTEs) are additionally considered, to find the exact deflected position. The numerically calculated total deflections caused by electrical actuation show differences of 10%, on average, with experimental measurements in the operating current region (i.e., ~25 mA) to prevent deterioration by overheating. Bimorph microcantilevers are promising components for use in various MEMS (Micro-Electro-Mechanical System) sensing applications, and their deflection characteristics in static mode sensing are essential for detecting changes in thermal stress on the surface of microcantilevers.
Kim, Su-Ho; Banerjee, Debjyoti
2017-01-01
This paper presents a design optimization method based on theoretical analysis and numerical calculations, using a commercial multi-physics solver (e.g., ANSYS and ESI CFD-ACE+), for a 3D continuous model, to analyze the bending characteristics of an electrically heated bimorph microcantilever. The results from the theoretical calculation and numerical analysis are compared with those measured using a CCD camera and magnification lenses for a chip level microcantilever array fabricated in this study. The bimorph microcantilevers are thermally actuated by joule heating generated by a 0.4 μm thin-film Au heater deposited on 0.6 μm Si3N4 microcantilevers. The initial deflections caused by residual stress resulting from the thermal bonding of two metallic layers with different coefficients of thermal expansion (CTEs) are additionally considered, to find the exact deflected position. The numerically calculated total deflections caused by electrical actuation show differences of 10%, on average, with experimental measurements in the operating current region (i.e., ~25 mA) to prevent deterioration by overheating. Bimorph microcantilevers are promising components for use in various MEMS (Micro-Electro-Mechanical System) sensing applications, and their deflection characteristics in static mode sensing are essential for detecting changes in thermal stress on the surface of microcantilevers. PMID:29104265
Ultrathin zoom lens system based on liquid lenses
NASA Astrophysics Data System (ADS)
Li, Lei; Liu, Chao; Wang, Qiong-Hua
2015-07-01
In this paper, we propose an ultrathin zoom lens system based on liquid lenses. The proposed system consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens has several concentric surfaces. The annular folded lens is used to get the main power and correct aberrations. The three liquid lenses are used to change the focal length and correct aberration. An analysis of the proposed system is presented along with the design, fabrication, and testing of a prototype. All the elements in the proposed system are very thin, so the system is an ultrathin zoom lens system, which has potential application as lightweight, thin, high-quality imagers for aerospace, consumer, and military applications.
1994-05-01
thermal stresses of 10 million Watts per meter, 1,000 times better than Zerodur *. This property is also important for many thermal management...products UTD has coated to date include: • Optical windows, lenses, and mirrors . Zinc sulfide infrared windows coated with a 2.5 micron-thick...implants 16, 49 microwave plasma-enhanced CVD 2 mirrors , diamond-coated 49 models of diamond growth 10, 25, 33, 34, 39 moderators 10
Automatic low-order aberration compensator for solid-state slab lasers
NASA Astrophysics Data System (ADS)
Yu, Xin; Dong, Lizhi; Lai, Boheng; Yang, Ping; Kong, Qingfeng; Yang, Kangjian; Liu, Yong; Tang, Guomao; Xu, Bing
2016-09-01
Slab geometry is a promising architecture for power scaling of solid-state lasers. By propagating the laser beams along zigzag path in the gain medium, the thermal effects can be well compensated. However, in the non-zigzag direction, the thermal effects are not compensated. Among the overall aberrations in the slab lasers, the major contributors are two low-order aberrations: astigmatism and defocus, which can range up to over 100 microns (peak to valley), leading to detracted beam quality. Another problem with slab lasers is that the output beams are generally in a rectangular aperture with high aspect ratio (normally 1:10), where square beams are favorable for many applications. In order to solve these problems, we propose an automatic low-order aberration compensation system. This system is composed of three lenses fixed on a motorized rail, one is a spherical lens and the others are cylindrical lenses. Astigmatism and defocus can be compensated by merely adjusting the distances between the lenses. Two wave-front sensors are employed in this compensation system, one is used for detecting the initial parameters of the beams, and the other one is used for detecting the remaining aberrations after correction. The adjustments of the three lenses are directly calculated based on beam parameters using ray tracing method. The initial size of the beam is 3.2mm by 26mm, and peak to valley(PV) value of the wave-front is 33.07λ(λ=1064nm). After correction, the dimension becomes 40mm by 40mm, and peak to valley (PV) value of the wave-front is less than 2 microns.
Rotation of the cosmic microwave background polarization from weak gravitational lensing.
Dai, Liang
2014-01-31
When a cosmic microwave background (CMB) photon travels from the surface of last scatter through spacetime metric perturbations, the polarization vector may rotate about its direction of propagation. This gravitational rotation is distinct from, and occurs in addition to, the lensing deflection of the photon trajectory. This rotation can be sourced by linear vector or tensor metric perturbations and is fully coherent with the curl deflection field. Therefore, lensing corrections to the CMB polarization power spectra as well as the temperature-polarization cross correlations due to nonscalar perturbations are modified. The rotation does not affect lensing by linear scalar perturbations, but needs to be included when calculations go to higher orders. We present complete results for weak lensing of the full-sky CMB power spectra by general linear metric perturbations, taking into account both deflection of the photon trajectory and rotation of the polarization. For the case of lensing by gravitational waves, we show that the B modes induced by the rotation largely cancel those induced by the curl component of deflection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schechter, Paul L.; Pooley, David; Blackburne, Jeffrey A.
2014-10-01
We measure the stellar mass surface densities of early-type galaxies by observing the micro-lensing of macro-lensed quasars caused by individual stars, including stellar remnants, brown dwarfs, and red dwarfs too faint to produce photometric or spectroscopic signatures. Instead of observing multiple micro-lensing events in a single system, we combine single-epoch X-ray snapshots of 10 quadruple systems, and compare the measured relative magnifications for the images with those computed from macro-models. We use these to normalize a stellar mass fundamental plane constructed using a Salpeter initial mass function with a low-mass cutoff of 0.1 M {sub ☉} and treat the zeropointmore » of the surface mass density as a free parameter. Our method measures the graininess of the gravitational potential produced by individual stars, in contrast to methods that decompose a smooth total gravitational potential into two smooth components, one stellar and one dark. We find the median likelihood value for the normalization factor F by which the Salpeter stellar masses must be multiplied is 1.23, with a one sigma confidence range, dominated by small number statistics, of 0.77« less
A ballistic evaluation of the impact resistance of spectacle lens materials.
Oliver, A L; Chou, B R
1993-10-01
The impact resistance of chemically and thermally hardened glass lenses of 2.2- and 3.0-mm thicknesses was evaluated using a ballistic test. Each lens was edged and mounted into a spectacle frame, which was placed on a standard headform. A 6.5-mm steel ball was fired from an air gun at the center of the lens at increasing speeds until the lens broke. The multiple impact data were used to plot cumulative breakage curves. We found that heat-treated photochromic glass and heat-treated crown glass fail at similar missile speeds and that chemical treating considerably improves the impact resistance of crown glass but not of photochromic glass. The poorer performance of photochromic lenses indicates that they should not be prescribed when optimal impact protection is required. Plastic lenses show superior performance.
Nanofinishing of BK7 glass using a magnetorheological solid rotating core tool.
Kumar, Sumit; Singh, Anant Kumar
2018-02-01
Surface finishing is a promising method to improve the optical characteristics of crown glass. BK7 finds its applications in transmissive optics, i.e., lenses of binoculars, lenses of microscopes, lenses of telescopes, and light-emitting diodes. The magnetorheological (MR) nanofinishing of optical glasses using a solid rotating core tool is found more advantageous than the other advanced finishing processes in aspects such as precision and accuracy. In the present research, the MR nanofinishing with a solid rotating core tool is carried out on the BK7 glass of size 10×10×3 mm. Response surface methodology is conducted in order to find the optimum process parameters. The effects of process parameters on the percentage change in surface roughness are analyzed. The best surface roughness R a and R q values are achieved at 22 nm and 32 nm from the initial of 41 nm and 57 nm in 30 min of the finishing time cycle. To study the surface morphology of nanofinished BK7 glass, scanning electron microscopy is performed with sputter coating of gold on a glass specimen.
Dutta, Debarun; Zhao, Timothy; Cheah, Kai Bing; Holmlund, Larke; Willcox, Mark D P
2017-06-01
To determine the antimicrobial activity of the melimine derived peptide Mel4 against Delftia, Stenotrophomonas, Elizabethkingia, Burkholderia and to investigate biocompatibility of Mel4 as an antimicrobial coating on contact lenses in animals and humans. In vitro antimicrobial activity of Mel4 was determined against the four Gram negative bacteria by investigating growth curves for 24h followed by viable counts to determine the minimum inhibitory concentration (MIC). Contact lenses were coated by covalently binding Mel4, characterized by amino acid analysis, and were investigated for changes in lens parameters. Safety of Mel-4 coated lenses were determined in a rabbit model of daily contralateral wear. A prospective, randomised, double-masked, contralateral, 1week daily wear human clinical trial was used to evaluate subjective responses and ocular physiology. Mel4 was active against all the bacteria tested (MIC 50 ranged from 31-1000μgml -1 ) and produced an antimicrobial surface on contact lenses. Mel4-coating resulted hydrophilic surface without any significant change in contact lens parameters, and showed no signs of cytotoxicity or ocular irritation during rabbit wear. During human clinical trial, there were no differences between Mel4 coated and uncoated contact lenses in lens performance indicators and ocular signs such as corneal fluorescein staining. Mel4 and control uncoated lenses had no differences in ocular symptoms during lens wear. Mel4 has achieved antimicrobial activity against variety of Gram negative bacteria that are often resistant to the action of cationic peptides and have been implicated in contact lens related adverse events. Mel4-coated contact lenses were safe to wear. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Slit lamps and lenses: a potential source of nosocomial infections?
Sobolewska, Bianka; Buhl, Michael; Liese, Jan; Ziemssen, Focke
2018-01-30
The aim of the study was to evaluate the bacterial contamination level of contact surfaces on slit lamps and the grip areas of lenses. Within unannounced audits, two regions of the slit lamps (headrest and joystick), indirect ophthalmoscopy devices, and ultrasound probes were obtained with rayon-tipped swab. Non-contact lenses used for indirect fundoscopy were pressed on RODAC (Replicate Organism Detection and Counting) plates. One hundred and eighty-one surfaces were sampled. The total number of colony-forming units was assessed and bacterial species were identified. Spa-typing and antimicrobial susceptibility testing were performed from Staphylococcus aureus isolates. Among the total bacterial isolates from ophthalmological equipment (lenses: 51 of 78, slit lamps: 43 of 88, ophthalmoscopy helmets: 3 of 8, ultrasound probes: 2 of 7), coagulase-negative staphylococci (CNS) was most frequently found, followed by Micrococcus spp. (lenses vs. slit lamps: P < 0.001 and P = 0.01, respectively). The bacterial contamination of lenses (76%) was significantly higher than that of slit lamps (54%) (P < 0.003). A significantly higher contamination with CNS was observed on lenses from residents vs. from consultants (78% vs. 35%, P = 0.01). A total of seven different spa-types of S. aureus were isolated. No correlation was found between S. aureus contamination of different ophthalmological equipments (Spearman's rank correlation coefficient, ρ = 0.04, P = 0.75). Methicillin-resistant S. aureus was not detected. Bacterial species of the normal skin flora were isolated from the ophthalmological equipment. The bacterial contamination of the portable devices was significantly higher than that of slit lamps. Therefore, proper hygiene of the mobile instruments should be monitored in order to prevent transmission of bacteria in residents and consultants.
Candida albicans and Pseudomonas aeruginosa adhesion on soft contact lenses.
Onurdağ, Fatma Kaynak; Ozkan, Semiha; Ozgen, Selda; Olmuş, Hülya; Abbasoğlu, Ufuk
2011-04-01
In this study it was aimed to determine the adherence of Pseudomonas and Candida to contact lens surfaces, and to determine the difference in adherence between five contact lens types. Biofilm-negative control strains were also used to emphasize the difference between biofilm-positive and biofilm-negative strains in adherence. Five different soft contact lenses were used to investigate the adherence of Pseudomonas aeruginosa and Candida albicans strains. P. aeruginosa ATCC 27853, P. aeruginosa ATCC 10145, C.albicans ATCC 10231 standard strains and C. albicans clinical isolate were included in the study. Slime formation was investigated by two methods; modified Christensen macrotube method, and a modified microtiter plate test. P. aeruginosa and C. albicans slime formation on soft contact lenses was studied in adherence and separation phases. Pseudomonas and Candida suspensions were serially diluted and inoculated to blood agar and sabouraud dextrose agar surfaces respectively. After overnight incubation, the colonies were counted. Sterile unworn contact lenses were used as negative controls, and bacterial and fungal culture suspensions were used as positive controls. The experiments were conducted in three parallel series. The number of adherent Pseudomonas was as follows from high to low in polymacon, etafilcon A, hilafilcon, ocufilcon and lotrafilcon contact lenses respectively. However, the number of adherent yeast were determined higher in lotrafilcon and ocufilcon contact lenses, followed by hilafilcon, etafilcon A and polymacon contact lenses. Biofilm-negative Pseudomonas ATCC standard strain and Candida clinical isolate were used to confirm that the number of adherent cells were lower than the biofilm-positive ones. This study demonstrates that in addition to the contact lens properties, the microorganisms themselves and their interactions with the lens material also play an important role in adherence.
Emission-angle and polarization-rotation effects in the lensed CMB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Antony; Hall, Alex; Challinor, Anthony, E-mail: antony@cosmologist.info, E-mail: ahall@roe.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk
Lensing of the CMB is an important effect, and is usually modelled by remapping the unlensed CMB fields by a lensing deflection. However the lensing deflections also change the photon path so that the emission angle is no longer orthogonal to the background last-scattering surface. We give the first calculation of the emission-angle corrections to the standard lensing approximation from dipole (Doppler) sources for temperature and quadrupole sources for temperature and polarization. We show that while the corrections are negligible for the temperature and E-mode polarization, additional large-scale B-modes are produced with a white spectrum that dominates those from post-Bornmore » field rotation (curl lensing). On large scales about one percent of the total lensing-induced B-mode amplitude is expected to be due to this effect. However, the photon emission angle does remain orthogonal to the perturbed last-scattering surface due to time delay, and half of the large-scale emission-angle B modes cancel with B modes from time delay to give a total contribution of about half a percent. While not important for planned observations, the signal could ultimately limit the ability of delensing to reveal low amplitudes of primordial gravitational waves. We also derive the rotation of polarization due to multiple deflections between emission and observation. The rotation angle is of quadratic order in the deflection angle, and hence negligibly small: polarization typically rotates by less than an arcsecond, orders of magnitude less than a small-scale image rotates due to post-Born field rotation (which is quadratic in the shear). The field-rotation B modes dominate the other effects on small scales.« less
Precision cylinder optics for higher requirements; Techical Digest
NASA Astrophysics Data System (ADS)
Bergner, Dieter; Falkenstorfer, Oliver; Malina, Dirk; Roder, Janett; Schreiner, Roland
2005-05-01
JENOPTIK Laser, Optik, Systeme GmbH (JO L.O.S.) enlarged its product range in the field of cylinder lenses and crystal optics. These components are used in optical measuring technology and in various laser applications. The new cylinder components are a result of the state of the art manufacturing technology. For applications, where the quality of standard cylinders with a surface deviation of PV Lambda/2 to Lambda/5 @632,8nm and tested with a reference glass only is not sufficient, the surface shape can be improved to PV Lambda/10 @632,8nm. The presentation deals with Jenoptik's current state to produce cylinder optics, to reduce remaining surface shape deviations of semi-finished cylinder optics and to test these elements. Based on in-house developed machinery, cylinders are manufactured by means of blocking or drum. The required surface quality in the range of PV Lambda/10 @632,8nm for cylindrical lenses can be reached by computer aided correction using mrf-polishing techniques in connection with an interferometer test set-up. Therefore, the polishing machine is equipped with an additional axis of movement. The interferometer measurement of the residual surface deviation is done by Computer Generated Holograms (CGH), which are designed and manufactured in-house. CGHs from JO L.O.S. for testing cylindrical lenses can be custom designed starting with F#1.0. They are related to the typical rectangular geometry of cylinder components. Using these measurement techniques, testing is no longer the limiting factor in achieving high quality cylindrical surfaces. JO L.O.S. has all the capabilities of effective manufacturing, testing and correcting cylindrical lenses. Latest results achieved in series production are shown.
Precision cylinder optics for higher requirements; Techical Digest
NASA Astrophysics Data System (ADS)
Bergner, Dieter; Falkenstorfer, Oliver; Malina, Dirk; Roder, Janett; Schreiner, Roland
2005-05-01
JENOPTIK Laser, Optik, Systeme GmbH (JO L.O.S.) enlarged its product range in the field of cylinder lenses and crystal optics. These components are used in optical measuring technology and in various laser applications. The new cylinder components are a result of the state of the art manufacturing technology. For applications, where the quality of standard cylinders with a surface deviation of PV~Lambda/2 to ~Lambda/5 @632,8nm and tested with a reference glass only is not sufficient, the surface shape can be improved to PV Lambda/10 @632,8nm. The presentation deals with Jenoptik's current state to produce cylinder optics, to reduce remaining surface shape deviations of semi-finished cylinder optics and to test these elements. Based on in-house developed machinery, cylinders are manufactured by means of blocking or drum. The required surface quality in the range of PV~Lambda/10 @632,8nm for cylindrical lenses can be reached by computer aided correction using mrf-polishing techniques in connection with an interferometer test set-up. Therefore, the polishing machine is equipped with an additional axis of movement. The interferometer measurement of the residual surface deviation is done by Computer Generated Holograms (CGH), which are designed and manufactured in-house. CGHs from JO L.O.S. for testing cylindrical lenses can be custom designed starting with F#1.0. They are related to the typical rectangular geometry of cylinder components. Using these measurement techniques, testing is no longer the limiting factor in achieving high quality cylindrical surfaces. JO L.O.S. has all the capabilities of effective manufacturing, testing and correcting cylindrical lenses. Latest results achieved in series production are shown.
Antimicrobial Efficacy of Contact Lens Care Solutions Against Neutrophil-Enhanced Bacterial Biofilms
Hinojosa, Jorge A.; Patel, Naiya B.; Zhu, Meifang; Robertson, Danielle M.
2017-01-01
Purpose Neutrophil-derived extracellular debris has been shown to accelerate bacterial biofilm formation on hydrogel and silicone hydrogel contact lens surfaces compared to lenses inoculated with bacteria alone. The purpose of this study was to evaluate the disinfection efficacy of four standard commercial contact lens cleaning regimens against neutrophil-enhanced bacterial biofilms formed on silicone hydrogel contact lenses. Methods Four reference strains were used: Pseudomonas aeruginosa, Serratia marcescens, Stenotrophomonas maltophilia, and Staphylococcus aureus. Human neutrophils were isolated from peripheral blood by venipuncture. Unworn Lotrafilcon B lenses were incubated overnight in each respective strain with stimulated neutrophils. Contact lenses were then cleaned using one of four contact lens care solutions according to manufacturer instructions. Bacterial viability was assessed by colony counts and confocal microscopy. Volume of residual debris on lens surfaces after cleaning was quantified using IMARIS software. Results All four solutions tested showed effective antimicrobial activity against each bacterial strain; however, substantial amounts of nonviable bacteria and cellular debris remained on the lens surface despite concomitant digital cleaning. Conclusions Necrotic cellular debris that accumulates under the posterior lens surface during wear of an inoculated contact lens is not fully removed during routine cleaning and disinfection. Translational Relevance The accumulation of residual cellular debris on the contact lens surface may contribute to new colonization of the lens and represents a significant risk factor for a contact lens–related adverse event. Additional studies are needed to correlate these findings with risk for corneal infiltrative and/or infectious events in a standard animal model. PMID:28473944
NASA Astrophysics Data System (ADS)
Strauch, Matthias; Konijnenberg, Sander; Shao, Yifeng; Urbach, H. Paul
2017-02-01
Liquid lenses are used to correct for low order wavefront aberrations. Electrowetting liquid lenses can nowadays control defocus and astigmatism effectively, so they start being used for ophthalmology applications. To increase the performance and applicability, we introduce a new driving mechanism to create, detect and correct higher order aberrations using standing waves on the liquid interface. The speed of a liquid lens is in general limited, because the liquid surface cannot follow fast voltage changes, while providing a spherical surface. Surface waves are created instead and with them undesired aberrations. We try to control those surface waves to turn them into an effective wavefront shaping tool. We introduce a model, which treats the liquid lens as a circular vibrating membrane with adjusted boundary conditions. Similar to tunable acoustic gradient (TAG) lenses, the nature of the surface modes are predicted to be Bessel functions. Since Bessel functions are a full set of orthogonal basis functions any surface can be created as a linear combination of different Bessel functions. The model was investigated experimentally in two setups. First the point spread functions were studied and compared to a simulation of the intensity distribution created by Fresnel propagated Bessel surfaces. Second the wavefronts were measured directly using a spatial light modulator. The surface resonance frequencies confirm the predictions made by the model as well as the wavefront measurements. By superposition of known surface modes, it is possible to create new surface shapes, which can be used to simulate and measure the human eye.
Therapeutic use of mini-scleral lenses in a patient with Graves' ophthalmopathy.
Harthan, Jennifer S
2014-01-01
Patients with Graves' ophthalmopathy can be very challenging to manage secondary to the complex nature of their disease presentation. Patients may present with a variety of ocular findings including: lid retraction, periorbital and lid swelling, chemosis, conjunctival hyperemia, proptosis, optic neuropathy, restrictive myopathy, exposure keratopathy and/or keratoconjunctivitis sicca. Mini-scleral and scleral lens designs have been important in the management of irregular and regular corneas, and in the therapy of ocular surface diseases. We present here the case of a 48-year-old Caucasian male who had been diagnosed with Graves' ophthalmopathy 13 years earlier. With significant ocular surface staining and over ten diopters of astigmatism, the patient had never been able to wear contact lenses comfortably. After being fit with the Mini-Scleral Design™ lenses, his vision improved to 20/25 OU, his ocular surface improved, and overall quality of vision increased. Copyright © 2012 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.
CAD Integration : new optical design possibilities
NASA Astrophysics Data System (ADS)
Haumonte, Jean-Baptiste; Venturino, Jean-Claude
2005-09-01
The development of optical design and analysis tools in a CAD software can help to optimise the design, size and performance of tomorrow's consumer products. While optics was still held back by software limitations, CAD programs were moving forward in leaps and bounds, improving manufacturing technologies and making it possible to design and produce highly innovative and sophisticated products. The problem was that in the past, 'traditional' optical design programs were only able to simulate spherical and aspherical lenses, meaning that the optical designers were limited to designing systems which were a series of imperfect lenses, each one correcting the last. That is why OPTIS has created the first optical design program to be fully integrated into a CAD program. The technology is available from OPTIS in an integrated SOLIDWORKS or CATIA V5 version. Users of this software can reduce the number of lenses needed in a system. Designers will now have access to complex surfaces such as NURBS meaning they will now be able to define free shape progressive lenses and even improve on optical performances using fewer lenses. This revolutionary technology will allow mechanical designers to work on optical systems and to share information with optical designers for the first time. Previously not possible in a CAD program you may now determine all the optical performances of any optical system, providing first order and third order performances, sequential and non-sequential ray-tracing, wavefront surfaces, point spread function, MTF, spot-diagram, using real optical surfaces and guaranteeing the mechanical precision necessary for an optical system.
Wei, Cynthia; Zhu, Meifang; Petroll, W. Matthew; Robertson, Danielle M.
2014-01-01
Purpose. To establish a rabbit model of infectious Pseudomonas aeruginosa keratitis using ultrahigh oxygen transmissible rigid lenses and characterize the frequency and severity of infection when compared to a non–oxygen transmissible lens material. Methods. Rabbits were fit with rigid lenses composed of ultrahigh and non–oxygen transmissible materials. Prior to wear, lenses were inoculated with an invasive corneal isolate of P. aeruginosa stably conjugated to green fluorescent protein (GFP). Corneas were examined before and after lens wear using a modified Heidelberg Rostock Tomograph in vivo confocal microscope. Viable bacteria adherent to unworn and worn lenses were assessed by standard plate counts. The presence of P. aeruginosa-GFP and myeloperoxidase-labeled neutrophils in infected corneal tissue was evaluated using laser scanning confocal microscopy. Results. The frequency and severity of infectious keratitis was significantly greater with inoculated ultrahigh oxygen transmissible lenses. Infection severity was associated with increasing neutrophil infiltration and in severe cases, corneal melting. In vivo confocal microscopic analysis of control corneas following lens wear confirmed that hypoxic lens wear was associated with mechanical surface damage, whereas no ocular surface damage was evident in the high-oxygen lens group. Conclusions. These data indicate that in the absence of adequate tear clearance, the presence of P. aeruginosa trapped under the lens overrides the protective effects of oxygen on surface epithelial cells. These findings also suggest that alternative pathophysiological mechanisms exist whereby changes under the lens in the absence of frank hypoxic damage result in P. aeruginosa infection in the otherwise healthy corneal epithelium. PMID:25125601
Bacterial adhesion to conventional hydrogel and new silicone-hydrogel contact lens materials.
Kodjikian, Laurent; Casoli-Bergeron, Emmanuelle; Malet, Florence; Janin-Manificat, Hélène; Freney, Jean; Burillon, Carole; Colin, Joseph; Steghens, Jean-Paul
2008-02-01
As bacterial adhesion to contact lenses may contribute to the pathogenesis of keratitis, the aim of our study was to investigate in vitro adhesion of clinically relevant bacteria to conventional hydrogel (standard HEMA) and silicone-hydrogel contact lenses using a bioluminescent ATP assay. Four types of unworn contact lenses (Etafilcon A, Galyfilcon A, Balafilcon A, Lotrafilcon B) were incubated with Staphylococcus epidermidis (two different strains) and Pseudomonas aeruginosa suspended in phosphate buffered saline (PBS). Lenses were placed with the posterior surface facing up and were incubated in the bacterial suspension for 4 hours at 37 degrees C. Bacterial binding was then measured and studied by bioluminescent ATP assay. Six replicate experiments were performed for each lens and strain. Adhesion of all species of bacteria to standard HEMA contact lenses (Etafilcon A) was found to be significantly lower than that of three types of silicone-hydrogel contact lenses, whereas Lotrafilcon B material showed the highest level of bacterial binding. Differences between species in the overall level of adhesion to the different types of contact lenses were observed. Adhesion of P. aeruginosa was typically at least 20 times greater than that observed with both S. epidermidis strains. Conventional hydrogel contact lenses exhibit significantly lower bacterial adhesion in vitro than silicone-hydrogel ones. This could be due to the greater hydrophobicity but also to the higher oxygen transmissibility of silicone-hydrogel lenses.
Refractive Optics for Hard X-ray Transmission Microscopy
NASA Astrophysics Data System (ADS)
Simon, M.; Ahrens, G.; Last, A.; Mohr, J.; Nazmov, V.; Reznikova, E.; Voigt, A.
2011-09-01
For hard x-ray transmission microscopy at photon energies higher than 15 keV we design refractive condenser and imaging elements to be used with synchrotron light sources as well as with x-ray tube sources. The condenser lenses are optimized for low x-ray attenuation—resulting in apertures greater than 1 mm—and homogeneous intensity distribution on the detector plane, whereas the imaging enables high-resolution (<100 nm) full-field imaging. To obtain high image quality at reasonable exposure times, custom-tailored matched pairs of condenser and imaging lenses are being developed. The imaging lenses (compound refractive lenses, CRLs) are made of SU-8 negative resist by deep x-ray lithography. SU-8 shows high radiation stability. The fabrication technique enables high-quality lens structures regarding surface roughness and arrangement precision with arbitrary 2D geometry. To provide point foci, crossed pairs of lenses are used. Condenser lenses have been made utilizing deep x-ray lithographic patterning of thick SU-8 layers, too, whereas in this case, the aperture is limited due to process restrictions. Thus, in terms of large apertures, condenser lenses made of structured and rolled polyimide film are more attractive. Both condenser types, x-ray mosaic lenses and rolled x-ray prism lenses (RXPLs), are considered to be implemented into a microscope setup. The x-ray optical elements mentioned above are characterized with synchrotron radiation and x-ray laboratory sources, respectively.
Melimine-Coated Antimicrobial Contact Lenses Reduce Microbial Keratitis in an Animal Model.
Dutta, Debarun; Vijay, Ajay K; Kumar, Naresh; Willcox, Mark D P
2016-10-01
To determine the ability of antimicrobial peptide melimine-coated contact lenses to reduce the incidence of microbial keratitis (MK) in a rabbit model of contact lens wear. In vitro antimicrobial activity of melimine-coated contact lenses was determined against Pseudomonas aeruginosa by viable count and a radiolabeled assay. The amount of lipopolysaccharide (LPS) associated with bacteria bound to melimine-coated and control lenses was determined. Ocular swabs from rabbit eyes were collected for assessment of ocular microflora. A rabbit model for MK was developed that used overnight wear of contact lenses colonized by P. aeruginosa in the absence of a corneal scratch. During lens wear, detailed ocular examinations were performed, and the incidence of MK was investigated. Bacteria associated with worn lenses and infected corneas were determined by viable plate count. Inhibition in viable and total P. aeruginosa adhesion by melimine-coated contact lenses was 3.1 log10 and 0.4 log10, respectively. After colonization, the amount of LPS on lenses was approximately the same with or without melimine. Gram-positive bacteria were found in all the ocular swabs followed by fungus (42%). Melimine-coated lens wear was protective and significantly (odds ratio 10.12; P = 0.012) reduced the incidence of P. aeruginosa-driven MK in the rabbit model. The antimicrobial lenses were associated with significantly (P < 0.001) lower ocular scores, indicating improved ocular signs compared with controls. This study showed that contaminated contact lenses can produce MK without corneal epithelial defect in an animal model. Melimine-coated contact lenses reduced the incidence of MK associated with P. aeruginosa in vivo. Development of MK requires viable bacteria adherent to contact lenses, and bacterial debris adherent at the lens surface did not cause keratitis.
Wavefront measurement of plastic lenses for mobile-phone applications
NASA Astrophysics Data System (ADS)
Huang, Li-Ting; Cheng, Yuan-Chieh; Wang, Chung-Yen; Wang, Pei-Jen
2016-08-01
In camera lenses for mobile-phone applications, all lens elements have been designed with aspheric surfaces because of the requirements in minimal total track length of the lenses. Due to the diffraction-limited optics design with precision assembly procedures, element inspection and lens performance measurement have become cumbersome in the production of mobile-phone cameras. Recently, wavefront measurements based on Shack-Hartmann sensors have been successfully implemented on injection-molded plastic lens with aspheric surfaces. However, the applications of wavefront measurement on small-sized plastic lenses have yet to be studied both theoretically and experimentally. In this paper, both an in-house-built and a commercial wavefront measurement system configured on two optics structures have been investigated with measurement of wavefront aberrations on two lens elements from a mobile-phone camera. First, the wet-cell method has been employed for verifications of aberrations due to residual birefringence in an injection-molded lens. Then, two lens elements of a mobile-phone camera with large positive and negative power have been measured with aberrations expressed in Zernike polynomial to illustrate the effectiveness in wavefront measurement for troubleshooting defects in optical performance.
Fundamental physics from future weak-lensing calibrated Sunyaev-Zel'dovich galaxy cluster counts
NASA Astrophysics Data System (ADS)
Madhavacheril, Mathew S.; Battaglia, Nicholas; Miyatake, Hironao
2017-11-01
Future high-resolution measurements of the cosmic microwave background (CMB) will produce catalogs of tens of thousands of galaxy clusters through the thermal Sunyaev-Zel'dovich (tSZ) effect. We forecast how well different configurations of a CMB Stage-4 experiment can constrain cosmological parameters, in particular, the amplitude of structure as a function of redshift σ8(z ) , the sum of neutrino masses Σ mν, and the dark energy equation of state w (z ). A key element of this effort is calibrating the tSZ scaling relation by measuring the lensing signal around clusters. We examine how the mass calibration from future optical surveys like the Large Synoptic Survey Telescope (LSST) compares with a purely internal calibration using lensing of the CMB itself. We find that, due to its high-redshift leverage, internal calibration gives constraints on cosmological parameters comparable to the optical calibration, and can be used as a cross-check of systematics in the optical measurement. We also show that in contrast to the constraints using the CMB lensing power spectrum, lensing-calibrated tSZ cluster counts can detect a minimal Σ mν at the 3 - 5 σ level even when the dark energy equation of state is freed up.
Papadatou, Eleni; Del Águila-Carrasco, Antonio J; Esteve-Taboada, José J; Madrid-Costa, David; Cerviño-Expósito, Alejandro
2017-01-01
To analytically assess the effect of pupil size upon the refractive power distributions of different designs of multifocal contact lenses. Two multifocal contact lenses of center-near design and one multifocal contact lens of center-distance design were used in this study. Their power profiles were measured using the NIMO TR1504 device (LAMBDA-X, Belgium). Based on their power profiles, the power distribution was assessed as a function of pupil size. For the high addition lenses, the resulting refractive power as a function of viewing distance (far, intermediate, and near) and pupil size was also analyzed. The power distribution of the lenses was affected by pupil size differently. One of the lenses showed a significant spread in refractive power distribution, from about -3 D to 0 D. Generally, the power distribution of the lenses expanded as the pupil diameter became greater. The surface of the lens dedicated for each distance varied substantially with the design of the lens. In an experimental basis, our results show how the lenses power distribution is affected by the pupil size and underlined the necessity of careful evaluation of the patient's visual needs and the optical properties of a multifocal contact lens for achieving the optimal visual outcome.
Zhang, Min; Li, Songjing
2016-01-01
In this work, liquid colour-changing lenses for vision protection, camouflage and optical filtering are developed by circulating colour liquids through microfluidic channels on the lenses manually. Soft lithography technology is applied to fabricate the silicone liquid colour-changing layers with microfluidic channels on the lenses instead of mechanical machining. To increase the hardness and abrasion resistance of the silicone colour-changing layers on the lenses, proper fabrication parameters such as 6:1 (mass ration) mixing proportion and 100 °C curing temperature for 2 h are approved for better soft lithography process of the lenses. Meanwhile, a new surface treatment for the irreversible bonding of silicone colour-changing layer with optical resin (CR39) substrate lens by using 5 % (volume ratio) 3-Aminopropyltriethoxysilane solution is proposed. Vision protection, camouflage and optical filtering functions of the lenses are investigated with different designs of the channels and multi-layer structures. Each application can not only well achieve their functional demands, but also shows the advantages of functional flexibility, rapid prototyping and good controllability compared with traditional ways. Besides optometry, some other designs and applications of the lenses are proposed for potential utility in the future.
Tear exchange and contact lenses: A review
Muntz, Alex; Subbaraman, Lakshman N.; Sorbara, Luigina; Jones, Lyndon
2015-01-01
Tear exchange beneath a contact lens facilitates ongoing fluid replenishment between the ocular surface and the lens. This exchange is considerably lower during the wear of soft lenses compared with rigid lenses. As a result, the accumulation of tear film debris and metabolic by-products between the cornea and a soft contact lens increases, potentially leading to complications. Lens design innovations have been proposed, but no substantial improvement in soft lens tear exchange has been reported. Researchers have determined post-lens tear exchange using several methods, notably fluorophotometry. However, due to technological limitations, little remains known about tear hydrodynamics around the lens and, to-date, true tear exchange with contact lenses has not been shown. Further knowledge regarding tear exchange could be vital in aiding better contact lens design, with the prospect of alleviating certain adverse ocular responses. This article reviews the literature to-date on the significance, implications and measurement of tear exchange with contact lenses. PMID:25575892
Takada; Komatsu; Futamase
2000-04-20
We investigate the weak gravitational lensing effect that is due to the large-scale structure of the universe on two-point correlations of local maxima (hot spots) in the two-dimensional sky map of the cosmic microwave background (CMB) anisotropy. According to the Gaussian random statistics, as most inflationary scenarios predict, the hot spots are discretely distributed, with some characteristic angular separations on the last scattering surface that are due to oscillations of the CMB angular power spectrum. The weak lensing then causes pairs of hot spots, which are separated with the characteristic scale, to be observed with various separations. We found that the lensing fairly smooths out the oscillatory features of the two-point correlation function of hot spots. This indicates that the hot spot correlations can be a new statistical tool for measuring the shape and normalization of the power spectrum of matter fluctuations from the lensing signatures.
V-Assembly Dual-Head Efficient Resonator (VADER) for Remote Sensing Applications
NASA Technical Reports Server (NTRS)
Coyle, D. Barry; Kay, Richard B.; Stysley, Paul R.; Clark, Greg; Poulios, Demetrios; Frederickson, Robert; Blalock, Gordon; Arnold, Ed; Cory, Ken
2011-01-01
The V-Assembly Dual-head Efficient Resonator (VADER) is a diode pumped, Nd:YAG, Q-switched, positive branch unstable resonator that employs a split laser gain module designed for optimal efficiency and thermal lensing compensation.
ERIC Educational Resources Information Center
Ford, Norman C.; Kane, Joseph W.
1971-01-01
Proposes a method of collecting solar energy by using available plastics for Fresnel lenses to focus heat onto a converter where thermal dissociation of water would produce hydrogen. The hydrogen would be used as an efficient non-polluting fuel. Cost estimates are included. (AL)
NASA Astrophysics Data System (ADS)
Katahira, Yu; Fukuta, Masahiko; Katsuki, Masahide; Momochi, Takeshi; Yamamoto, Yoshihiro
2016-09-01
Recently, it has been required to improve qualities of aspherical lenses mounted on camera units. Optical lenses in highvolume production generally are applied with molding process using cemented carbide or Ni-P coated steel, which can be selected from lens material such as glass and plastic. Additionally it can be obtained high quality of the cut or ground surface on mold due to developments of different mold product technologies. As results, it can be less than 100nmPV as form-error and 1nmRa as surface roughness in molds. Furthermore it comes to need higher quality, not only formerror( PV) and surface roughness(Ra) but also other surface characteristics. For instance, it can be caused distorted shapes at imaging by middle spatial frequency undulations on the lens surface. In this study, we made focus on several types of sinuous structures, which can be classified into form errors for designed surface and deteriorate optical system performances. And it was obtained mold product processes minimalizing undulations on the surface. In the report, it was mentioned about the analyzing process by using PSD so as to evaluate micro undulations on the machined surface quantitatively. In addition, it was mentioned that the grinding process with circumferential velocity control was effective for large aperture lenses fabrication and could minimalize undulations appeared on outer area of the machined surface, and mentioned about the optical glass lens molding process by using the high precision press machine.
Repetitively Q-switched Nd:BeL lasers
NASA Technical Reports Server (NTRS)
Degnan, J.; Birnbaum, M.; Deshazer, L. G.
1979-01-01
The thermal and mechanical characteristics which will ultimately limit the performance of Nd:BeL at high average power levels were investigated. The output beam characteristics (pulse width, peak power, beam dimensions and collimation) were determined at high repetition rates for both Nd:BeL and Nd:YAG. The output of Nd:BeL was shown to exceed that of Nd:YAG by a factor of 2.7 at low Q-switched repetition rates (1 Hz). This result follows from the smaller stimulated emission cross section of x-axis Nb:BeL compared to that of NdYAG by the same factor. At high repetition rates (10 Hz) the output of Nd:Bel falls to a level of three-fifths of its low repetition rate value while under similar tests the output of Nd:YAG remains essentially constant. A comparison of the measured values of the elasto-optic coefficients, the dn/dT values and the linear expansion coefficients for BeL and YAG failed to provide an explanation for the performance of BeL; however, thermal lensing was observed in Nd:BeL. Results imply that the output of a high repetition rate Q-switched Nd:BeL laser (high thermal loading) could be dramatically increased by utilization of a resonator design to compensate for the thermal lensing effects.
Kammann, J; Kreiner, C F; Kaden, P
1994-08-01
Experience with intraocular lenses (IOL) made of PMMA dates back ca. 40 years, while silicone IOLs have been in use for only about 10 years. The biocompatibility of PMMA and silicone caoutchouc was tested in a comparative study investigating the growth of mouse fibroblasts on different IOL materials. Spectrophotometric determination of protein synthesis and liquid scintillation counting of DNA synthesis were carried out. The spreading of cells was planimetrically determined, and the DNA synthesis of individual cells in direct contact with the test sample was tested. The results showed that the biocompatibility of silicone lenses made of purified caoutchouc is comparable with that of PMMA lenses; there is no statistically significant difference. However, impurities arising during material synthesis result in a statistically significant inhibition of cell growth on the IOL surfaces.
Stationary nonimaging lenses for solar concentration.
Kotsidas, Panagiotis; Chatzi, Eleni; Modi, Vijay
2010-09-20
A novel approach for the design of refractive lenses is presented, where the lens is mounted on a stationary aperture and the Sun is tracked by a moving solar cell. The purpose of this work is to design a quasi-stationary concentrator by replacing the two-axis tracking of the Sun with internal motion of the miniaturized solar cell inside the module. Families of lenses are designed with a variation of the simultaneous multiple surface technique in which the sawtooth genetic algorithm is implemented to optimize the geometric variables of the optic in order to produce high fluxes for a range of incidence angles. Finally, we show examples of the technique for lenses with 60° and 30° acceptance half-angles, with low to medium attainable concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timmons, Nicholas; Cooray, Asantha; Feng, Chang
2017-11-01
We measure the cosmic microwave background (CMB) skewness power spectrum in Planck , using frequency maps of the HFI instrument and the Sunyaev–Zel’dovich (SZ) component map. The two-to-one skewness power spectrum measures the cross-correlation between CMB lensing and the thermal SZ effect. We also directly measure the same cross-correlation using the Planck CMB lensing map and the SZ map and compare it to the cross-correlation derived from the skewness power spectrum. We model fit the SZ power spectrum and CMB lensing–SZ cross-power spectrum via the skewness power spectrum to constrain the gas pressure profile of dark matter halos. The gasmore » pressure profile is compared to existing measurements in the literature including a direct estimate based on the stacking of SZ clusters in Planck .« less
Luneburg lens and optical matrix algebra research
NASA Technical Reports Server (NTRS)
Wood, V. E.; Busch, J. R.; Verber, C. M.; Caulfield, H. J.
1984-01-01
Planar, as opposed to channelized, integrated optical circuits (IOCs) were stressed as the basis for computational devices. Both fully-parallel and systolic architectures are considered and the tradeoffs between the two device types are discussed. The Kalman filter approach is a most important computational method for many NASA problems. This approach to deriving a best-fit estimate for the state vector describing a large system leads to matrix sizes which are beyond the predicted capacities of planar IOCs. This problem is overcome by matrix partitioning, and several architectures for accomplishing this are described. The Luneburg lens work has involved development of lens design techniques, design of mask arrangements for producing lenses of desired shape, investigation of optical and chemical properties of arsenic trisulfide films, deposition of lenses both by thermal evaporation and by RF sputtering, optical testing of these lenses, modification of lens properties through ultraviolet irradiation, and comparison of measured lens properties with those expected from ray trace analyses.
Lenses matching of compound eye for target positioning
NASA Astrophysics Data System (ADS)
Guo, Fang; Zheng, Yan Pei; Wang, Keyi
2012-10-01
Compound eye, as a new imaging method with multi-lens for a large field of view, could complete target positioning and detection fastly, especially at close range. Therefore it could be applicated in the fields of military and medical treatment and aviation with vast market potential and development prospect. Yet the compound eye imaging method designed use three layer construction of multiple lens array arranged in a curved surface and refractive lens and imaging sensor of CMOS. In order to simplify process structure and increase the imaging area of every sub-eye, the imaging area of every eye is coved with the whole CMOS. Therefore, for several imaging point of one target, the corresponding lens of every imaging point is unkonown, and thus to identify. So an algorithm was put forward. Firstly, according to the Regular Geometry relationship of several adjacent lenses, data organization of seven lenses with a main lens was built. Subsequently, by the data organization, when one target was caught by several unknown lenses, we search every combined type of the received lenses. And for every combined type, two lenses were selected to combine and were used to calculate one three-dimensional (3D) coordinate of the target. If the 3D coordinates are same to the some combine type of the lenses numbers, in theory, the lenses and the imaging points are matched. So according to error of the 3D coordinates is calculated by the different seven lenses numbers combines, the unknown lenses could be distinguished. The experimental results show that the presented algorithm is feasible and can complete matching task for imaging points and corresponding lenses.
Gradient Index Polymer Optics: Achromatic Singlet Lens Design
2010-01-01
lenses in Zemax ®. In order to model these lenses, user-defined surfaces had to be developed for the software. RL RG z y • • Δz • tc •n0 n1• Raytrace...results of the custom code, interfaced with Zemax ®, were carefully validated against ray trajectories calculated independently using previously
STS-32 photographic equipment (cameras,lenses,film magazines) on flight deck
NASA Technical Reports Server (NTRS)
1990-01-01
STS-32 photographic equipment is displayed on the aft flight deck of Columbia, Orbiter Vehicle (OV) 102. On the payload station are a dual camera mount with two handheld HASSELBLAD cameras, camera lenses, and film magazines. This array of equipment will be used to record onboard activities and observations of the Earth's surface.
Abbey, Ashkan M.; Gregori, Ninel Z.; Surapaneni, Krishna; Miller, Darlene
2014-01-01
Purpose While manufacturers recommend cleaning ophthalmic lenses with detergent and water and then a specific disinfectant, disinfectants are rarely used in ophthalmic practices. The aim of this pilot study was to evaluate the efficacy of detergent and water versus bleach, a recommended disinfectant, to eliminate common ocular bacteria and viruses from ophthalmic lenses. Methods Three bacterial strains (Staphylococcus epidermidis, Corynebacterium straitum, and methicillin-resistant Staphylococcus aureus (MRSA) and two viral strains (adenovirus and herpes simplex virus (HSV) type-1) were individually inoculated to 20 gonioscopy and laser lenses. Lenses were washed with detergent and water and then disinfected with 10% bleach. All lenses were cultured after inoculation, after detergent and water, and after the bleach. Bacterial cultures in thioglycollate broth were observed for 3 weeks and viral cultures for 2 weeks. The presence of viruses was also detected by multiplex polymerase chain reaction (PCR). Results All 20 lenses inoculated with Staphylococcus epidermidis, Corynebacterium straitum, adenovirus, and HSV-1 showed growth after inoculation, but no growth after detergent/water and after the bleach. All lenses showed positive HSV and adenovirus PCR after inoculation and negative PCR after detergent/water and after bleach. All MRSA contaminated lenses showed growth after inoculation and no growth after detergent and water. However, one lens showed positive growth after bleach. Conclusions Cleaning with detergent and water appeared to effectively eliminate bacteria and viruses from the surface of contaminated ophthalmic lenses. Further studies are warranted to design practical disinfection protocols that minimize lens damage. PMID:24747806
Resolving z ~2 galaxy using adaptive coadded source plane reconstruction
NASA Astrophysics Data System (ADS)
Sharma, Soniya; Richard, Johan; Kewley, Lisa; Yuan, Tiantian
2018-06-01
Natural magnification provided by gravitational lensing coupled with Integral field spectrographic observations (IFS) and adaptive optics (AO) imaging techniques have become the frontier of spatially resolved studies of high redshift galaxies (z>1). Mass models of gravitational lenses hold the key for understanding the spatially resolved source–plane (unlensed) physical properties of the background lensed galaxies. Lensing mass models very sensitively control the accuracy and precision of source-plane reconstructions of the observed lensed arcs. Effective source-plane resolution defined by image-plane (observed) point spread function (PSF) makes it challenging to recover the unlensed (source-plane) surface brightness distribution.We conduct a detailed study to recover the source-plane physical properties of z=2 lensed galaxy using spatially resolved observations from two different multiple images of the lensed target. To deal with PSF’s from two data sets on different multiple images of the galaxy, we employ a forward (Source to Image) approach to merge these independent observations. Using our novel technique, we are able to present a detailed analysis of the source-plane dynamics at scales much better than previously attainable through traditional image inversion methods. Moreover, our technique is adapted to magnification, thus allowing us to achieve higher resolution in highly magnified regions of the source. We find that this lensed system is highly evident of a minor merger. In my talk, I present this case study of z=2 lensed galaxy and also discuss the applications of our algorithm to study plethora of lensed systems, which will be available through future telescopes like JWST and GMT.
Extended release of hyaluronic acid from hydrogel contact lenses for dry eye syndrome.
Maulvi, Furqan A; Soni, Tejal G; Shah, Dinesh O
2015-01-01
Current dry eye treatment includes delivering comfort enhancing agents to the eye via eye drops, but low residence time of eye drops leads to low bioavailability. Frequent administration leads to incompliance in patients, so there is a great need for medical device such as contact lenses to treat dry eye. Studies in the past have demonstrated the efficacy of hyaluronic acid (HA) in the treatment of dry eyes using eye drops. In this paper, we present two methods to load HA in hydrogel contact lenses, soaking method and direct entrapment. The contact lenses were characterized by studying their optical and physical properties to determine their suitability as extended wear contact lenses. HA-laden hydrogel contact lenses prepared by soaking method showed release up to 48 h with acceptable physical and optical properties. Hydrogel contact lenses prepared by direct entrapment method showed significant sustained release in comparison to soaking method. HA entrapped in hydrogels resulted in reduction in % transmittance, sodium ion permeability and surface contact angle, while increase in % swelling. The impact on each of these properties was proportional to HA loading. The batch with 200-μg HA loading showed all acceptable values (parameters) for contact lens use. Results of cytotoxicity study indicated the safety of hydrogel contact lenses. In vivo pharmacokinetics studies in rabbit tear fluid showed dramatic increase in HA mean residence time and area under the curve with lenses in comparison to eye drop treatment. The study demonstrates the promising potential of delivering HA through contact lenses for the treatment of dry eye syndrome.
Welding processes and ocular hazards and protection.
Pabley, A S; Keeney, A H
1981-07-01
There are approximately 60 different forms of welding, but only six of these are commonly used. Shielded metal-arc or stick welding, gas metal-arc welding, and oxyacetylene welding are the most frequently used. All produce ultraviolet, visible, and infrared radiation at damaging levels. Conventional glass welding shields contain ultraviolet, visible, and infrared absorbers. Infrared absorbers, however, cause heating and secondary re-radiation. New polycarbonate lenses offer greater impact resistance, and have less tendency to welding spatter. Early abrasion-resistant and reflective coatings on plastics were ineffective. Thin layers of gold with proprietary coatings provide cool reflection and surface resistance. Thermal monitoring of welding indicated that these new shields reduce temperature rises above the ambient by 150% to 175% compared to green glass filter plates without interfering with the welder's vision.
Szczotka-Flynn, Loretta B.; Pearlman, Eric; Ghannoum, Mahmoud
2012-01-01
Purpose A contact lens (CL) can act as a vector for microorganisms to adhere to and transfer to the ocular surface. Commensal microorganisms that uneventfully cohabitate on lid margins and conjunctivae and potential pathogens that are found transiently on the ocular surface can inoculate CLs in vivo. In the presence of reduced tissue resistance, these resident microorganisms or transient pathogens can invade and colonize the cornea or conjunctiva to produce inflammation or infection. Methods The literature was reviewed and used to summarize the findings over the last 30 years on the identification, enumeration, and classification of microorganisms adherent to CLs and their accessories during the course of normal wear and to hypothesize the role that these microorganisms play in CL infection and inflammation. Results Lens handling greatly increases the incidence of lens contamination, and the ocular surface has a tremendous ability to destroy organisms. However, even when removed aseptically from the eye, more than half of lenses are found to harbor microorganisms, almost exclusively bacteria. Coagulase-negative Staphylococci are most commonly cultured from worn lenses; however, approximately 10% of lenses harbor Gram-negative and highly pathogenic species, even in asymptomatic subjects. In storage cases, the incidence of positive microbial bioburden is also typically greater than 50%. All types of care solutions can become contaminated, including up to 30% of preserved products. Conclusions The process of CL-related microbial keratitis and inflammation is thought to be preceded by the presence or transfer or both of microorganisms from the lens to the ocular surface. Thus, this detailed understanding of lens-related bioburden is important in the understanding of factors associated with infectious and inflammatory complications. Promising mechanisms to prevent bacterial colonization on lenses and lens cases are forthcoming, which may decrease the incidence of microbially driven CL complications. PMID:20168237
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hojjati, Alireza; Harnois-Deraps, Joachim; Waerbeke, Ludovic Van
2015-10-01
We use the cosmo-OWLS suite of cosmological hydrodynamical simulations, which includes different galactic feedback models, to predict the cross-correlation signal between weak gravitational lensing and the thermal Sunyaev-Zeldovich (tSZ) y-parameter. The predictions are compared to the recent detection reported by van Waerbeke and collaborators. The simulations reproduce the weak lensing-tSZ cross-correlation, ξ{sub yκ}(θ), well. The uncertainty arising from different possible feedback models appears to be important on small scales only (0θ ∼< 1 arcmin), while the amplitude of the correlation on all scales is sensitive to cosmological parameters that control the growth rate of structure (such as σ{sub 8}, Ω{sub m} andmore » Ω{sub b}). This study confirms our previous claim (in Ma et al.) that a significant proportion of the signal originates from the diffuse gas component in low-mass (M{sub halo} ∼< 10{sup 14} M{sub ⊙}) clusters as well as from the region beyond the virial radius. We estimate that approximately 20% of the detected signal comes from low-mass clusters, which corresponds to about 30% of the baryon density of the Universe. The simulations also suggest that more than half of the baryons in the Universe are in the form of diffuse gas outside halos (∼> 5 times the virial radius) which is not hot or dense enough to produce a significant tSZ signal or be observed by X-ray experiments. Finally, we show that future high-resolution tSZ-lensing cross-correlation observations will serve as a powerful tool for discriminating between different galactic feedback models.« less
Technology Development for Cosmic Microwave Background Cosmology
NASA Astrophysics Data System (ADS)
Munson, Charles D.
The Cosmic Microwave Background (CMB) offers a unique window into the early universe by probing thermal radiation remaining from the big bang. Due to its low temperature and bright foregrounds, its thorough characterization requires technological advancement beyond the current state-of-the-art. In this thesis, I present the development and fabrication of novel metamaterial silicon optics to improve the sensitivity of current and future CMB telescopes. By machining subwavelength features into the silicon surfaces, traditional antireflection coatings can be replaced by all-silicon metamaterials that significantly reduce reflections over previous approaches. I discuss the design of these structured surfaces and the design and construction of a sophisticated fabrication facility necessary to implement this technology on large diameter (30+ cm) lenses for the Atacama Cosmology Telescope Polarization project (ACTPol). I then apply this metamaterial technology to the development of improved free-space filters for millimeter and sub-millimeter wavelength imaging (focusing specifically on blocking infrared radiation, necessary for current cryogenic detector systems). This produces a highly effective infrared-blocking filter, blocking over 99% of the incident power from a 300 K blackbody while maintaining transmission of better than 99% in a target CMB observing band (between 70 and 170 GHz). I conclude with a discussion of the development of a real-space simulation framework to assist in better understanding current CMB results and forecasting for future experiments. By taking a CMB realization and adding to it accurate real-space modeling of the Sunyaev-Zel'dovich effect and weak lensing distortions (introduced by galaxy clusters), a better understanding of the impacts of large scale structure on the CMB can be obtained.
Technology Development for Cosmic Microwave Background Cosmology
NASA Astrophysics Data System (ADS)
Munson, Charles D.
2017-05-01
The Cosmic Microwave Background (CMB) offers a unique window into the early universe by probing thermal radiation remaining from the big bang. Due to its low temperature and bright foregrounds, its thorough characterization requires technological advancement beyond the current state-of-the-art. In this thesis, I present the development and fabrication of novel metamaterial silicon optics to improve the sensitivity of current and future CMB telescopes. By machining subwavelength features into the silicon surfaces, traditional antireflection coatings can be replaced by all-silicon metamaterials that significantly reduce reflections over previous approaches. I discuss the design of these structured surfaces and the design and construction of a sophisticated fabrication facility necessary to implement this technology on large diameter (30+ cm) lenses for the Atacama Cosmology Telescope Polarization project (ACTPol). I then apply this metamaterial technology to the development of improved free-space filters for millimeter and sub-millimeter wavelength imaging (focusing specifically on blocking infrared radiation, necessary for current cryogenic detector systems). This produces a highly effective infrared-blocking filter, blocking over 99% of the incident power from a 300 K blackbody while maintaining transmission of better than 99% in a target CMB observing band (between 70 and 170 GHz). I conclude with a discussion of the development of a real-space simulation framework to assist in better understanding current CMB results and forecasting for future experiments. By taking a CMB realization and adding to it accurate real-space modeling of the Sunyaev-Zel'dovich effect and weak lensing distortions (introduced by galaxy clusters), a better understanding of the impacts of large scale structure on the CMB can be obtained.
NASA Astrophysics Data System (ADS)
Thompson, E. J.; Asher, W.; Drushka, K.; Schanze, J. J.; Jessup, A. T.; Clark, D.
2016-12-01
Rain can produce a lens of fresher and generally colder, less dense water at the ocean surface. These stable surface layers concentrate heat, freshwater, and momentum into a thin layer and reduce the exchange of these properties between the surface layer and deeper water, which can impact regional freshwater storage and air-sea fluxes of heat and moisture. Although in situ observations have shown that fresh lenses are common in the presence of rain, attempts to correlate the magnitude and lifetime of the surface freshening with rain rate using field data have not produced a definitive relationship. The reasons for this are most likely that in situ rain rate measurements represent the freshwater flux to the ocean surface at a single point in space and time, whereas the fresh lens is the result of the integrated rainfall over time and space, convoluted with the evolution of the fresh lens. Therefore, it is possible that integrated, upstream rainfall estimates might provide a better correlate for the presence of fresh lenses than in situ measurements at a point. This hindcast study seeks to determine the utility of NASA GPM IMERG satellite measurements of rain relative to in situ collocated rain measurements in predicting the occurrence and duration of 0-1 m freshwater stabilization of the ocean. Vertical gradients of temperature, salinity, and density between the surface and at most a few meters were measured using towed profilers and underway sampling during the 2016 SPURS-2 experiment conducted in the tropical east Pacific Ocean. Local wind speed was also measured and taken into account. These measurements were used to determine whether local or integrated upstream precipitation metrics could better predict the occurrence of rain-generated lenses of fresher water at the ocean surface and whether the strength and duration of rain events was correlated with the observed lifetime of fresh lenses.
Protein deposition and its effect on bacterial adhesion to contact lenses.
Omali, Negar Babaei; Zhu, Hua; Zhao, Zhenjun; Willcox, Mark D P
2013-06-01
Bacterial adhesion to contact lenses is believed to be the initial step for the development of several adverse reactions that occur during lens wear such as microbial keratitis. This study examined the effect of combinations of proteins on the adhesion of bacteria to contact lenses. Unworn balafilcon A and senofilcon A lenses were soaked in commercially available pure protein mixtures to achieve the same amount of various proteins as found ex vivo. These lenses were then exposed to Pseudomonas aeruginosa and Staphylococcus aureus. Following incubation, the numbers of P. aeruginosa or S. aureus that adhered to the lenses were measured. The possible effect of proteins on bacterial growth was investigated by incubating bacteria in medium containing protein. Although there was a significant (p < 0.003) increase in the total or viable counts of one strain of S. aureus (031) on balafilcon A lenses soaked in the lysozyme/lactoferrin combination, the protein adhered to lenses did not alter the adhesion of any other strains of P. aeruginosa or S. aureus (p > 0.05). Growth of S. aureus 031 (p < 0.0001) but not of P. aeruginosa 6294 was stimulated by addition of lysozyme/lactoferrin combination (2.8/0.5 mg/mL). Addition of lipocalin did not affect the growth of any strains tested (p > 0.05). Adsorption of amounts of lysozyme and lactoferrin or lipocalin equivalent to those extracted from worn contact lenses did not affect the adhesion of most strains of S. aureus or P. aeruginosa to lens surfaces.
Henriques, Mariana; Sousa, Cláudia; Lira, Madalena; Elisabete, M; Oliveira, Real; Oliveira, Rosário; Azeredo, Joana
2005-06-01
The purpose of this study is to compare the adhesion capabilities of the most important etiologic agents of microbial ocular infection to the recently available silicone-hydrogel lenses with those to a conventional hydrogel lens. In vitro static adhesion assays of Pseudomonas aeruginosa 10,145, Staphylococcus epidermidis 9142 (biofilm-positive), and 12,228 (biofilm-negative) to two extended-wear silicone-hydrogel lenses (balafilcon A and lotrafilcon A), a daily wear silicone-hydrogel lens (galyfilcon A) and a conventional hydrogel (etafilcon A) were performed. To interpret the adhesion results, lens surface relative hydrophobicity was assessed by water contact angle measurements. P. aeruginosa and S. epidermidis 9142 exhibited greater adhesion capabilities to the extended wear silicone-hydrogel lenses than to the daily wear silicone- and conventional hydrogel lenses (p < 0.05). No statistical differences were found between the adhesion extent of these strains to galyfilcon A and etafilcon A. The biofilm negative strain of S. epidermidis adhered in larger extents to the silicone-hydrogel lenses than to the conventional hydrogel (p < 0.05), but in much lower amounts than the biofilm-positive strain. The water contact angle measurements revealed that the extended wear silicone-hydrogel lenses are hydrophobic, whereas the daily wear silicone- and conventional hydrogel lenses are hydrophilic. As a result of their hydrophobicity, the extended wear silicone-hydrogel lenses (lotrafilcon A and balafilcon A) may carry higher risk of microbial contamination than both the hydrophilic daily wear silicone-hydrogel lens, galyfilcon A and the conventional hydrogel lens, etafilcon A.
NASA Astrophysics Data System (ADS)
Johnson, Traci L.; Rigby, Jane R.; Sharon, Keren; Gladders, Michael D.; Florian, Michael; Bayliss, Matthew B.; Wuyts, Eva; Whitaker, Katherine E.; Livermore, Rachael; Murray, Katherine T.
2017-07-01
We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z = 2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r< 100 pc. Within the range of overlap, the clump luminosity function measured for this lensed galaxy is remarkably similar to those of z˜ 0 galaxies. In this galaxy, star-forming regions smaller than 100 pc—physical scales not usually resolved at these redshifts by current telescopes—are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of the order of 1 kpc. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13003.
NASA Astrophysics Data System (ADS)
Chen, Enguo; Liu, Peng; Yu, Feihong
2012-10-01
A novel synchronized optimization method of multiple freeform surfaces is proposed and applied to double lenses illumination system design of CF-LCoS pico-projectors. Based on Snell's law and the energy conservation law, a series of first-order partial differential equations are derived for the multiple freeform surfaces of the initial system. By assigning the light deflection angle to each freeform surface, multiple surfaces can be obtained simultaneously by solving the corresponding equations, meanwhile the restricted angle on CF-LCoS is guaranteed. In order to improve the spatial uniformity, the multi-surfaces are synchronously optimized by using simplex algorithm for an extended LED source. Design example shows that the double lenses based illumination system, which employs a single 2 mm×2 mm LED chip and a CF-LCoS panel with a diagonal of 0.59 inches satisfies the needs of pico-projector. Moreover, analytical result indicates that the design method represents substantial improvement and practical significance over traditional CF-LCoS projection system, which could offer outstanding performance with both portability and low cost. The synchronized optimization design method could not only realize collimating and uniform illumination, but also could be introduced to other specific light conditions.
Characterizing the Mineralogy of Potential Lunar Landing Sites
NASA Technical Reports Server (NTRS)
Pieters, Carle; Head, James W., III; Mustard, Jack; Boardman, Joe; Buratti, Bonnie; Clark, Roger; Green, Rob; Head, James W, III; McCord, Thomas B.; Mustard, Jack;
2006-01-01
Many processes active on the early Moon are common to most terrestrial planets, including the record of early and late impact bombardment. The Moon's surface provides a record of the earliest era of terrestrial planet evolution, and the type and composition of minerals that comprise a planetary surface are a direct result of the initial composition and subsequent thermal and physical processing. Lunar mineralogy seen today is thus a direct record of the early evolution of the lunar crust and subsequent geologic processes. Specifically, the distribution and concentration of specific minerals is closely tied to magma ocean products, lenses of intruded or remelted plutons, basaltic volcanism and fire-fountaining, and any process (e.g. cratering) that might redistribute or transform primary and secondary lunar crustal materials. The association of several lunar minerals with key geologic processes is illustrated in Figure 1. The geologic history of potential landing sites on the Moon can be read from the character and context of local mineralogy.
Wear effects on microscopic morphology and hyaluronan uptake in siloxane-hydrogel contact lenses.
Tavazzi, Silvia; Tonveronachi, Martina; Fagnola, Matteo; Cozza, Federica; Ferraro, Lorenzo; Borghesi, Alessandro; Ascagni, Miriam; Farris, Stefano
2015-07-01
The purpose of this study was a comparison between new and worn siloxane-hydrogel contact lenses in terms of microscopic structure, surface morphology, and loading of hyaluronan. The analyses were performed by scanning electron microscopy, with the support of the freeze-drying technique, and by fluorescence confocal microscopy. Along the depth profile of new lenses, a thin porous top layer was observed, which corresponds to the region of hyaluronan penetration inside well-defined channels. The time evolution was followed from one day to two weeks of daily wear, when a completely different scenario was found. Clear experimental evidence of a buggy surface was observed with several crests and regions of swelling, which could be filled by the hyaluronan solution. The modifications are attributed to the progressive relaxation of the structure of the polymeric network. © 2014 Wiley Periodicals, Inc.
Wu, Rengmao; Hua, Hong; Benítez, Pablo; Miñano, Juan C.; Liang, Rongguang
2016-01-01
The energy efficiency and compactness of an illumination system are two main concerns in illumination design for extended sources. In this paper, we present two methods to design compact, ultra efficient aspherical lenses for extended Lambertian sources in two-dimensional geometry. The light rays are directed by using two aspherical surfaces in the first method and one aspherical surface along with an optimized parabola in the second method. The principles and procedures of each design method are introduced in detail. Three examples are presented to demonstrate the effectiveness of these two methods in terms of performance and capacity in designing compact, ultra efficient aspherical lenses. The comparisons made between the two proposed methods indicate that the second method is much simpler and easier to be implemented, and has an excellent extensibility to three-dimensional designs. PMID:29092336
Single-crystal diamond refractive lens for focusing X-rays in two dimensions.
Antipov, S; Baryshev, S V; Butler, J E; Antipova, O; Liu, Z; Stoupin, S
2016-01-01
The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses.
Single-crystal diamond refractive lens for focusing X-rays in two dimensions
Antipov, S.; Baryshev, S. V.; Butler, J. E.; Antipova, O.; Liu, Z.; Stoupin, S.
2016-01-01
The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses. PMID:26698059
Single-crystal diamond refractive lens for focusing X-rays in two dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antipov, S.; Baryshev, Sergey; Butler, J. E.
2016-01-01
The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources formore » secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses.« less
Sub-wavelength Laser Nanopatterning using Droplet Lenses
NASA Astrophysics Data System (ADS)
Duocastella, Martí; Florian, Camilo; Serra, Pere; Diaspro, Alberto
2015-11-01
When a drop of liquid falls onto a screen, e.g. a cell phone, the pixels lying underneath appear magnified. This lensing effect is a combination of the curvature and refractive index of the liquid droplet. Here, the spontaneous formation of such lenses is exploited to overcome the diffraction limit of a conventional laser direct-writing system. In particular, micro-droplets are first laser-printed at user-defined locations on a surface and they are later used as lenses to focus the same laser beam. Under conditions described herein, nanopatterns can be obtained with a reduction in spot size primarily limited by the refractive index of the liquid. This all-optics approach is demonstrated by writing arbitrary patterns with a feature size around 280 nm, about one fourth of the processing wavelength.
Radiation, Thermal Gradient and Weight: a threefold dilemma for PLATO
NASA Astrophysics Data System (ADS)
Magrin, Demetrio; Ragazzoni, Roberto; Bruno, Giordano; Piazza, Daniele; Borsa, Francesco; Ghigo, Mauro; Mogulsky, Valery; Bergomi, Maria; Biondi, Federico; Chinellato, Simonetta; Dima, Marco; Farinato, Jacopo; Greggio, Davide; Gullieuszik, Marco; Marafatto, Luca; Viotto, Valentina; Munari, Matteo; Pagano, Isabella; Sicilia, Daniela; Basso, Stefano; Spiga, Daniele; Bandy, Timothy; Brändli, Mathias; Benz, Willy; De Roche, Thierry; Rieder, Martin; Brandeker, Alexis; Klebor, Maximilian; Schweitzer, Mario; Wieser, Matthias; Erikson, Anders; Rauer, Heike
2016-07-01
The project PLAnetary Transits and Oscillations of stars (PLATO) is one of the selected medium class (M class) missions in the framework of the ESA Cosmic Vision 2015-2025 program. The mean scientific goal of PLATO is the discovery and study of extrasolar planetary systems by means of planetary transits detection. The opto mechanical subsystem of the payload is made of 32 normal telescope optical units (N-TOUs) and 2 fast telescope optical units (FTOUs). The optical configuration of each TOU is an all refractive design based on six properly optimized lenses. In the current baseline, in front of each TOU a Suprasil window is foreseen. The main purposes of the entrance window are to shield the following lenses from possible damaging high energy radiation and to mitigate the thermal gradient that the first optical element will experience during the launch from ground to space environment. In contrast, the presence of the window increases the overall mass by a non-negligible quantity. We describe here the radiation and thermal analysis and their impact on the quality and risks assessment, summarizing the trade-off process with pro and cons on having or dropping the entrance window in the optical train.
NASA Astrophysics Data System (ADS)
Hung, J.; Castillo, J.; Laboren, I.; Rodríguez, M.; Hassegawa, M.
2005-11-01
The antiphotooxidative properties of boldine and chloride berberine were studied by time-resolved thermal lensing technique. These compounds belong to isoquinoline alkaloids possessing interesting biological activity (e.g. antibacterial, antimalarial, antitumor). Antiphotooxidative properties of the alkaloids were studied by mechanism of energy transference between powerful oxidizing agents such as singlet oxygen. Singlet oxygen was produced by energy transfer from chlorophyll-sensitized photooxidation of oil by exposure of high light intensities like laser. The lifetimes of singlet oxygen in dimethylsulfoxide, methanol and water were determined to confirm the assignment of the singlet molecular oxygen O II (1Δ g) in the experiments. In order to understand the effect of the alkaloids on active oxygen species, we carried out in detail an analysis of the thermal lensing signal. It was shown that the alkaloids can act as quenchers of singlet oxygen. To demonstrate the ability of the alkaloids to act efficient singlet oxygen acceptors, we have measured the fluorescence spectra of the studied alkaloids in the presence and in the absence of singlet oxygen. The antiphotooxidative activity of boldine and chloride berberine can be explained by the ability to quench singlet oxygen.
2013-10-01
its Verification in the Design and Testing of W-band Dual-Aspheric Lenses A. Altintas and V. Yurchenko EEE Department, Bilkent University Ankara...Theory and Techn., Vol. 55, 239, 2007 [5] ZEMAX Development Corporation, Zemax- EE , http://www.zemax.com/ [6] Pasqualini D. and Maci S., ”High-Frequency
Optical design and performance of F-Theta lenses for high-power and high-precision applications
NASA Astrophysics Data System (ADS)
Yurevich, V. I.; Grimm, V. A.; Afonyushkin, A. A.; Yudin, K. V.; Gorny, S. G.
2015-09-01
F-Theta lenses are widely used in remote laser processing. Nowadays, a large variety of scanning systems utilizing these devices are commercially available. In this paper, we demonstrate that all practical issues lose their triviality in designing high-performance F-Theta scanning systems. Laser power scaling requires attention to thermally-induced phenomena and ghost reflections. This requirement considerably complicates optimization of the optical configuration of the system and primary aberration correction, even during preliminary design. Obtaining high positioning accuracy requires taking into consideration all probable reasons for processing field distortion. We briefly describe the key engineering relationships and invariants as well as the typical design of a scanner lens and the main field-flattening techniques. Specific emphasis is directed to consideration of the fundamental nonlinearity of two-mirror scanners. To the best of our knowledge, this issue has not been yet studied. We also demonstrate the benefits of our F-Theta lens optimization technique, which uses a plurality of entrance pupils. The problems of eliminating focused ghost reflections and the effects of thermally-induced processes in high-power F-Theta lenses are considered. A set of multi-path 3D processing and laser cutting experiments were conducted and are presented herein to demonstrate the impact of laser beam degradation on the process performance. A selection of our non-standard optical designs is presented.
Gravitational lensing by an ensemble of isothermal galaxies
NASA Technical Reports Server (NTRS)
Katz, Neal; Paczynski, Bohdan
1987-01-01
Calculation of 28,000 models of gravitational lensing of a distant quasar by an ensemble of randomly placed galaxies, each having a singular isothermal mass distribuiton, is reported. The average surface mass density was 0.2 of the critical value in all models. It is found that the surface mass density averaged over the area of the smallest circle that encompasses the multiple images is 0.82, only slightly smaller than expected from a simple analytical model of Turner et al. (1984). The probability of getting multiple images is also as large as expected analytically. Gravitational lensing is dominated by the matter in the beam; i.e., by the beam convergence. The cases where the multiple imaging is due to asymmetry in mass distribution (i.e., due to shear) are very rare. Therefore, the observed gravitational-lens candidates for which no lensing object has been detected between the images cannot be a result of asymmetric mass distribution outside the images, at least in a model with randomly distributed galaxies. A surprisingly large number of large separations between the multiple images is found: up to 25 percent of multiple images have their angular separation 2 to 4 times larger than expected in a simple analytical model.
Effects of thermal deformation on optical instruments for space application
NASA Astrophysics Data System (ADS)
Segato, E.; Da Deppo, V.; Debei, S.; Cremonese, G.
2017-11-01
Optical instruments for space missions work in hostile environment, it's thus necessary to accurately study the effects of ambient parameters variations on the equipment. In particular optical instruments are very sensitive to ambient conditions, especially temperature. This variable can cause dilatations and misalignments of the optical elements, and can also lead to rise of dangerous stresses in the optics. Their displacements and the deformations degrade the quality of the sampled images. In this work a method for studying the effects of the temperature variations on the performance of imaging instrument is presented. The optics and their mountings are modeled and processed by a thermo-mechanical Finite Element Model (FEM) analysis, then the output data, which describe the deformations of the optical element surfaces, are elaborated using an ad hoc MATLAB routine: a non-linear least square optimization algorithm is adopted to determine the surface equations (plane, spherical, nth polynomial) which best fit the data. The obtained mathematical surface representations are then directly imported into ZEMAX for sequential raytracing analysis. The results are the variations of the Spot Diagrams, of the MTF curves and of the Diffraction Ensquared Energy due to simulated thermal loads. This method has been successfully applied to the Stereo Camera for the BepiColombo mission reproducing expected operative conditions. The results help to design and compare different optical housing systems for a feasible solution and show that it is preferable to use kinematic constraints on prisms and lenses to minimize the variation of the optical performance of the Stereo Camera.
Miniaturization of Fresnel lenses for solar concentration: a quantitative investigation.
Duerr, Fabian; Meuret, Youri; Thienpont, Hugo
2010-04-20
Sizing down the dimensions of solar concentrators for photovoltaic applications offers a number of promising advantages. It provides thinner modules and smaller solar cells, which reduces thermal issues. In this work a plane Fresnel lens design is introduced that is first analyzed with geometrical optics. Because of miniaturization, pure ray tracing may no longer be valid to determine the concentration performance. Therefore, a quantitative wave optical analysis of the miniaturization's influence on the obtained concentration performance is presented. This better quantitative understanding of the impact of diffraction in microstructured Fresnel lenses might help to optimize the design of several applications in nonimaging optics.
García-Millán, Eva; Koprivnik, Sandra; Otero-Espinar, Francisco Javier
2015-06-20
This paper proposes an approach to improve drug loading capacity and release properties of poly(2-hydroxyethyl methacrylate) (p(HEMA)) soft contact lenses based on the optimization of the hydrogel composition and microstructural modifications using water during the polymerization process. P(HEMA) based soft contact lenses were prepared by thermal or photopolymerization of 2-hydroxyethyl methacrylate (HEMA) solutions containing ethylene glycol di-methacrylate as crosslinker and different proportions of N-vinyl-2-pyrrolidone (NVP) or methacrylic acid (MA) as co-monomers. Transmittance, water uptake, swelling, microstructure, drug absorption isotherms and in vitro release were characterized using triamcinolone acetonide (TA) as model drug. Best drug loading ratios were obtained with lenses containing the highest amount (200 mM) of MA. Incorporation of 40% V/V of water during the polymerization increases the hydrogel porosity giving a better drug loading capacity. In vitro TA release kinetics shows that MA hydrogels released the drug significantly faster than NVP-hydrogels. Drug release was found to be diffusion controlled and kinetics was shown to be reproducible after consecutive drug loading/release processes. Results of p(HEMA) based soft contact lenses copolymerized with ethylene glycol dimethacrylate (EGDMA) and different co-monomers could be a good alternative to optimize the loading and ocular drug delivery of this corticosteroid drug. Copyright © 2015. Published by Elsevier B.V.
High performance terahertz metasurface quantum-cascade VECSEL with an intra-cryostat cavity
Xu, Luyao; Curwen, Christopher A.; Reno, John L.; ...
2017-09-04
A terahertz quantum-cascade (QC) vertical-external-cavity surface-emitting-laser (VECSEL) is demonstrated with over 5 mW power in continuous-wave and single-mode operation above 77 K, in combination with a near-Gaussian beam pattern with full-width half-max divergence as narrow as ~5° × 5°, with no evidence of thermal lensing. This is realized by creating an intra-cryostat VECSEL cavity to reduce the cavity loss and designing an active focusing metasurface reflector with low power dissipation for efficient heat removal. Compared with a conventional quantumcascade laser based on a metal-metal waveguide, the intra-cryostat QC-VECSEL exhibits significant improvements in both output power level and beam pattern. Also,more » the intra-cryostat configuration newly allows evaluation of QC-VECSEL operation vs. temperature, showing a maximum pulsed mode operating temperature of 129 K. While the threshold current density in the QC-VECSEL is worse in comparison to a conventional edge-emitting metal-metal waveguide QClaser, the beam quality, slope efficiency, maximum power, and thermal resistance are all significantly improved.« less
Novel Approaches in Formulation and Drug Delivery using Contact Lenses
Singh, Kishan; Nair, Anroop B; Kumar, Ashok; Kumria, Rachna
2011-01-01
The success of ocular delivery relies on the potential to enhance the drug bioavailability by controlled and extended release of drug on the eye surface. Several new approaches have been attempted to augment the competence and diminish the intrinsic side effects of existing ocular drug delivery systems. In this contest, progress has been made to develop drug-eluting contact lens using different techniques, which have the potential to control and sustain the delivery of drug. Further, the availability of novel polymers have facilitated and promoted the utility of contact lenses in ocular drug delivery. Several research groups have already explored the feasibility and potential of contact lens using conventional drugs for the treatment of periocular and intraocular diseases. Contact lenses formulated using modern technology exhibits high loading, controlled drug release, apposite thickness, water content, superior mechanical and optical properties as compared to commercial lenses. In general, this review discus various factors and approaches designed and explored for the successful delivery of ophthalmic drugs using contact lenses as drug delivery device PMID:24826007
Tear exchange and contact lenses: a review.
Muntz, Alex; Subbaraman, Lakshman N; Sorbara, Luigina; Jones, Lyndon
2015-01-01
Tear exchange beneath a contact lens facilitates ongoing fluid replenishment between the ocular surface and the lens. This exchange is considerably lower during the wear of soft lenses compared with rigid lenses. As a result, the accumulation of tear film debris and metabolic by-products between the cornea and a soft contact lens increases, potentially leading to complications. Lens design innovations have been proposed, but no substantial improvement in soft lens tear exchange has been reported. Researchers have determined post-lens tear exchange using several methods, notably fluorophotometry. However, due to technological limitations, little remains known about tear hydrodynamics around the lens and, to-date, true tear exchange with contact lenses has not been shown. Further knowledge regarding tear exchange could be vital in aiding better contact lens design, with the prospect of alleviating certain adverse ocular responses. This article reviews the literature to-date on the significance, implications and measurement of tear exchange with contact lenses. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.
Efficacy of detergent and water versus bleach for disinfection of direct contact ophthalmic lenses.
Abbey, Ashkan M; Gregori, Ninel Z; Surapaneni, Krishna; Miller, Darlene
2014-06-01
Although manufacturers recommend cleaning ophthalmic lenses with detergent and water and then with a specific disinfectant, disinfectants are rarely used in ophthalmic practices. The aim of this pilot study was to evaluate the efficacy of detergent and water versus that of bleach, a recommended disinfectant, to eliminate common ocular bacteria and viruses from ophthalmic lenses. Three bacterial strains (Staphylococcus epidermidis, Corynebacterium straitum, and methicillin-resistant Staphylococcus aureus and 2 viral strains (adenovirus and herpes simplex virus [HSV] type-1) were individually inoculated onto 20 gonioscopy and laser lenses. The lenses were washed with detergent and water and then disinfected with 10% bleach. All the lenses were cultured after inoculation, after washing with detergent and water, and after disinfecting with the bleach. Bacterial cultures in thioglycollate broth were observed for 3 weeks, and viral cultures were observed for 2 weeks. The presence of viruses was also detected by multiplex polymerase chain reaction (PCR). All 20 lenses inoculated with S. epidermidis, C. straitum, adenovirus, and HSV-1 showed growth after inoculation but no growth after washing with detergent/water and after disinfecting with the bleach. All lenses showed positive HSV and adenovirus PCR results after inoculation and negative PCR results after washing with detergent/water and after disinfecting with bleach. All methicillin-resistant S. aureus-contaminated lenses showed growth after inoculation and no growth after washing with detergent and water. However, 1 lens showed positive growth after disinfecting with bleach. Cleaning with detergent and water seemed to effectively eliminate bacteria and viruses from the surface of contaminated ophthalmic lenses. Further studies are warranted to design practical disinfection protocols that minimize lens damage.
Which soft contact lens power is better for piggyback fitting in keratoconus?
Romero-Jiménez, Miguel; Santodomingo-Rubido, Jacinto; Flores-Rodríguez, Patricia; González-Méijome, Jose Manuel
2013-02-01
To evaluate the impact of differente soft contact lens power in the anterior corneal curvature and regularity in subjects with keratoconus. Nineteen subjects (30 eyes) with keratoconus were included in the study. Six corneal topographies were taken with Pentacam Eye System over the naked eye and successively with soft lens (Senofilcon A) powers of -3.00, -1.50, 0.00, +1.50 and +3.00 D. Corneal measurements of mean central keratometry (MCK), maximum tangential curvature (TK), maximum front elevation (MFE) and eccentricity (Ecc) at 6 and 8 mm diameters as well as anterior corneal surface high order aberrations (i.e. total RMS, spherical- and coma-like and secondary astigmatism) were evaluated. Negative- and plano-powered soft lenses flattened (p<0.05 in all cases), whereas positive-powered lenses did not induce any significant changes (p>0.05 in all cases) in MCK in comparison to the naked eye. The TK power decreased with negative lenses (p<0.05 in both cases) and increased with +3.00 D lenses (p=0.03) in comparison to the naked eye. No statistically significant differences were found in MFE with any soft lens power in comparison to the naked eye (p>0.05 in all cases). Corneal eccentricity increased at 8 mm diameter for all lens powers (p<0.05 in all cases). No statistically differences were found in HOA RMS and spherical-like aberration (both p>0.05). Statistically differences were found in coma-like and secondary astigmatism (both p<0.05). Negative-powered soft contact lenses provide a flatter anterior surface in comparison to positive-powered lenses in subjects with keratoconus and thus they might be more suitable for piggyback contact lens fitting. Copyright © 2012 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Evaluation of the quality of generic polymethylmethacrylate intraocular lenses marketed in India.
Combe, R; Watkins, R; Brian, G
2001-04-01
To determine the quality of single-piece, allpolymethylmethacrylate (PMMA) Intraocular lenses (IOLs) from eght generic manufacturers marketing their product in India. This assessment of quality was made with respect to compliance with internationa standards for the manufacture of IOLs, specifically those parameters most likely to affect patient postoperat ve visual acuity and the long-term biocompatibility of the implanted lens. Ten IOLs from each of eight manufacturers were purchased randomly from commercial retail outlets in India. Each IOL, in a masked fashion, had its physical dimensions, optical performance and cosmetic appearance assessed, using the methods prescribed in ISO 11979-2 and 11979-3. Validation of manufacturing process controls were determined by statistical process contro techniques. Four IOLs from each manufacturer were also tested for the presence of unpolymerized PMMA using gas chromatography. Only lenses from two IOL manufacturers complied with the optical and mechanical standards. All other manufacturers' lenses failed one or more of these tests. Intraocular lenses from only two producers met with surface quality and bulk homogeneity standards. All others exhibited defects such as surface contamination and scratches, poor polishing, and chipped or rough positioning holes. Lenses from two producers exhibited high levels of methylmethacrylate monomer (MMA). Non-clinical grade PMMA starting material may have been used in the manufacture of IOLs by some producers. Critical manufacturing defects occurred in the IOLs from five of the eight producers tested. Only one manufacturer's IOLs met all specifications, and on statistical analysis demonstrated good manufacturing process contro with respect to the properties tested. With the widespread acceptance of IOL implantation in developing countries, such as India, it is essential that in the rush to make this the norm, the quality of implants used not be overlooked.
Mathews, Steven M; Spallholz, Julian E; Grimson, Mark J; Dubielzig, Richard R; Gray, Tracy; Reid, Ted W
2006-08-01
Although silicone hydrogel materials have produced many corneal health benefits to patients wearing contact lenses, bacteria that cause acute red eye or corneal ulcers are still a concern. A coating that inhibits bacterial colonization while not adversely affecting the cornea should improve the safety of contact lens wear. A covalent selenium (Se) coating on contact lenses was evaluated for safety using rabbits and prevention of bacterial colonization of the contact lenses in vitro. Contact lenses coated with Se were worn on an extended-wear schedule for up to 2 months by 10 New Zealand White rabbits. Corneal health was evaluated with slit-lamp biomicroscopy, pachymetry, electron microscopy, and histology. Lenses worn by the rabbits were analyzed for protein and lipid deposits. In addition, the ability of Se to block bacterial colonization was tested in vitro by incubating lenses in a Pseudomonas aeruginosa broth followed by scanning electron microscopy of the contact lens surface. The covalent Se coating decreased bacterial colonization in vitro while not adversely affecting the corneal health of rabbits in vivo. The Se coating produced no noticeable negative effects as observed with slit-lamp biomicroscopy, pachymetry, electron microscopy, and histology. The Se coating did not affect protein or lipid deposition on the contact lenses. The data from this pilot study suggest that a Se coating on contact lenses might reduce acute red eye and bacterial ulceration because of an inhibition of bacterial colonization. In addition, our safety tests suggest that this positive effect can be produced without an adverse effect on corneal health.
Phosphorylcholine impairs susceptibility to biofilm formation of hydrogel contact lenses.
Selan, Laura; Palma, Stefano; Scoarughi, Gian Luca; Papa, Rosanna; Veeh, Richard; Di Clemente, Daniele; Artini, Marco
2009-01-01
To compare silicone-hydrogel, poly(2-hydroxyethyl methacrylate) (pHEMA), and phosphorylcholine-coated (PC-C) contact lenses in terms of their susceptibility to biofilm formation by Staphylococcus epidermidis and Pseudomonas aeruginosa. Laboratory investigation. Biofilm formation on colonized test lenses was evaluated with confocal microscopy and in vitro antibiotic susceptibility assays. The results of the latter assays were compared with those performed on planktonic cultures of the same organism. For both microorganisms, sessile colonies on silicone-hydrogel and pHEMA lenses displayed lower antibiotic susceptibility than their planktonic counterparts. In contrast, the susceptibility of cultures growing on PC-C lenses was comparable with that for planktonic cultures. In particular, minimum inhibitory concentration for Tazocin (piperacillin plus tazobactam; Wyeth Pharmaceuticals, Aprilia, Italy; S. epidermidis) and gentamicin (P. aeruginosa) was identical, either in the presence of PC-C support or in planktonic cultures (Tazocin, = 0.2 mug/ml; gentamicin, 0.4 mug/ml). Minimum inhibitory concentration for imipenem (P. aeruginosa) was two-fold higher for PC-C lenses (0.4 mug/ml) with respect to planktonic cultures (0.2 mug/ml). Confocal microscopy of lenses colonized for 24 hours with P. aeruginosa green fluorescent protein-expressing cells revealed a sessile colonization on silicone-hydrogel lens and a few isolated bacterial cells scattered widely over the surface of the PC-C lens. An increase in antibiotic susceptibility of bacterial cultures was associated with diminished bacterial adhesion. Our results indicate that PC-C lenses seem to be more resistant than silicone-hydrogel and pHEMA lenses to bacterial adhesion and colonization. This feature may facilitate their disinfection.
NASA Astrophysics Data System (ADS)
Chirayath, V.
2014-12-01
Fluid Lensing is a theoretical model and algorithm I present for fluid-optical interactions in turbulent flows as well as two-fluid surface boundaries that, when coupled with an unique computer vision and image-processing pipeline, may be used to significantly enhance the angular resolution of a remote sensing optical system with applicability to high-resolution 3D imaging of subaqueous regions and through turbulent fluid flows. This novel remote sensing technology has recently been implemented on a quadcopter-based UAS for imaging shallow benthic systems to create the first dataset of a biosphere with unprecedented sub-cm-level imagery in 3D over areas as large as 15 square kilometers. Perturbed two-fluid boundaries with different refractive indices, such as the surface between the ocean and air, may be exploited for use as lensing elements for imaging targets on either side of the interface with enhanced angular resolution. I present theoretical developments behind Fluid Lensing and experimental results from its recent implementation for the Reactive Reefs project to image shallow reef ecosystems at cm scales. Preliminary results from petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk coral reefs in American Samoa (August, 2013) show broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to understanding climate change's impact on coastal zones, global oxygen production and carbon sequestration.
Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Linder, E; Leitch, E M; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Schanning, I; Schenck, D E; Sherwin, B; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tomaru, T; Wilson, B; Yadav, A; Zahn, O
2014-07-11
Gravitational lensing due to the large-scale distribution of matter in the cosmos distorts the primordial cosmic microwave background (CMB) and thereby induces new, small-scale B-mode polarization. This signal carries detailed information about the distribution of all the gravitating matter between the observer and CMB last scattering surface. We report the first direct evidence for polarization lensing based on purely CMB information, from using the four-point correlations of even- and odd-parity E- and B-mode polarization mapped over ∼30 square degrees of the sky measured by the POLARBEAR experiment. These data were analyzed using a blind analysis framework and checked for spurious systematic contamination using null tests and simulations. Evidence for the signal of polarization lensing and lensing B modes is found at 4.2σ (stat+sys) significance. The amplitude of matter fluctuations is measured with a precision of 27%, and is found to be consistent with the Lambda cold dark matter cosmological model. This measurement demonstrates a new technique, capable of mapping all gravitating matter in the Universe, sensitive to the sum of neutrino masses, and essential for cleaning the lensing B-mode signal in searches for primordial gravitational waves.
Thermally stimulated nonlinear refraction in gelatin stabilized Cu-PVP nanocomposite thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamgadge, Y. S., E-mail: ystamgadge@gmail.com; Atkare, D. V.; Pahurkar, V. G.
2016-05-06
This article illustrates investigations on thermally stimulated third order nonlinear refraction of Cu-PVP nanocomposite thin films. Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD) and Ultraviolet-visible (UV-vis) spectroscopyfor structural and linear optical studies. Third order nonlinear refraction studies have been performed using closed aperture z-scan technique under continuous wave (CW) He-Ne laser. Cu-PVP nanocomposites are found to exhibit strong nonlinear refractive index stimulated by thermal lensing effect.
NASA Astrophysics Data System (ADS)
Turchiello, Rozane de F.; Pereira, Luiz A. A.; Gómez, Sergio L.
2017-07-01
This paper presents a simple and affordable experiment on the thermal lens effect, suitable for an undergraduate educational laboratory or as a tabletop demonstration in a lecture on nonlinear optics. Such an experiment exploits the formation of a lens in an absorbing medium illuminated by a laser beam with a Gaussian intensity profile. As an absorber, we use a commercial soy sauce, which exhibits a strong thermal lensing effect. Additionally, we show how to measure the radius of a Gaussian beam using the knife-edge method, and how to estimate the focal length of the induced thermal lens.
Self-compensation for trefoil aberration of symmetric dioptric microlithographic lens
NASA Astrophysics Data System (ADS)
Peng, Wei-Jei; Ho, Cheng-Fang; Hsu, Wei-Yao
2017-08-01
The i-line microlithographic lens with unity magnification can be applied for the 3D integrated circuit steppers. The configuration of the microlithographic lens can be divided into three types: the dioptric type, the catoptric type, and the mixed catoptric and dioptric type. The dioptric type with unity magnification is typically designed as symmetry about the aperture stop on both image and object sides to counterbalance aberrations effectively. The lens mounting is substantially critical for the diffraction-limit microlithographic lens, because mounting stresses and gravity degrade image quality severely. The surface deformation of the kinematic mounting is ultimately low, but the disadvantage is high cost and complicated structures. The three-point mounting belongs to the semi-kinematic mounting without over constrain to decrease the surface deformation significantly instead of the ring mounting; however, the disadvantage is the trefoil aberration caused from large-aperture lenses due to gravity. Clocking lenses is a practical method of compensating the surface figure error for optimum wavefront aberration during pre-assembly phase, and then the time and cost spent on the post-assembly for fine alignment reduce much. The self-compensation by two pairs of symmetric lenses on both sides with 60-degree angle difference is beneficial to compensate the trefoil aberration effectively, and it is a costeffective method to achieve the wavefront error close to the design value. In this study, the self-compensation method for the trefoil deformation of large-aperture lenses employed in the symmetric dioptric microlithographic lens is successfully verified in simulation.
Seawater intrusion vulnerability indicators for freshwater lenses in strip islands
NASA Astrophysics Data System (ADS)
Morgan, L.; Werner, A. D.
2014-12-01
Freshwater lenses on small islands have been described as some of the most vulnerable aquifer systems in the world. Yet, little guidance is available regarding methods for rapidly assessing the vulnerability of freshwater lenses to the potential effects of climate change. To address this gap we employ a steady-state analytic modelling approach to develop seawater intrusion (SWI) vulnerability indicator equations. The vulnerability indicator equations quantify the propensity for SWI to occur in strip islands due to both recharge change and sea-level rise (SLR) (incorporating the effect of land surface inundation (LSI)). This work extends that of Werner et al. (2012) who developed SWI vulnerability indicator equations for unconfined and confined continental aquifers, and did not consider LSI. Flux-controlled and head-controlled conceptualisations of freshwater lenses are adopted. Under flux-controlled conditions the water table is able to rise unencumbered by land surface effects. Under head-controlled conditions the head is fixed at the centre of the lens due to, for example, centrally located topographic controls, surface water features or pumping. A number of inferences about SWI vulnerability in freshwater lenses can be made from the analysis: (1) SWI vulnerability indicators for SLR (under flux-controlled conditions) are proportional to lens thickness (or volume) and the rate of LSI and inversely proportional to island width; (2) SWI vulnerability indicators for recharge change (under flux-controlled conditions) are proportional to lens thickness (or volume) and inversely proportional to recharge; (3) SLR has greater impact under head-controlled conditions rather than flux-controlled conditions, whereas the opposite is the case for LSI and recharge change. Example applications to several case studies illustrate use of the method for rapidly ranking lenses according to vulnerability, thereby allowing for prioritisation of areas where further and more detailed SWI investigations may be required. References Werner, A.D., Ward, J.D., Morgan, L.K., Simmons, C.T., Robinson, N.I., Teubner, M.D., 2012. Vulnerability indicators of seawater intrusion. Ground Water 50(1), 48-58. doi:10.1111/j.1745-6584.2011.00817.x.
Use of radioactive sources in measuring characteristics of snowpacks
Henry W. Anderson; Philip M. McDonald; Lloyd W. Gay
1963-01-01
Use of radioactive probes inserted in mountain snowpacks may make possible more accurate appraisal and prediction of snowmelt water. Commercially available gamma and neutron probes were tested for their ability to measure snow density, ice lenses, and the thermal quality of individual layers in the snowpack.
Hagedorn, Sarah; Drolle, Elizabeth; Lorentz, Holly; Srinivasan, Sruthi; Leonenko, Zoya; Jones, Lyndon
2015-01-01
Purpose The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Methods Meibum study: Meibum was collected from all participants and studied via Langmuir–Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Results Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. Conclusions MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. PMID:25620317
Optical zoom system realized by lateral shift of Alvarez freeform lenses
NASA Astrophysics Data System (ADS)
Hou, Changlun; Xin, Qing; Zang, Yue
2018-04-01
We present and characterize an optical zoom system with lateral movement of an Alvarez freeform lens for imaging. Mathematical analysis for determining the required freeform surfaces is presented, and optical simulations are performed to confirm and refine the expected zooming behavior. A 3 × optical zoom system that was equivalent to a photographic objective lens with focal length ranging from 34.5 to 103.5 mm and field of view ranging from 60 deg to 22.4 deg is developed by using two pairs of Alvarez lenses and conventional aspheric lenses. The optical performances of the Alvarez zoom system are demonstrated experimentally.
Surface Modification of Intraocular Lenses
Huang, Qi; Cheng, George Pak-Man; Chiu, Kin; Wang, Gui-Qin
2016-01-01
Objective: This paper aimed to review the current literature on the surface modification of intraocular lenses (IOLs). Data Sources: All articles about surface modification of IOLs published up to 2015 were identified through a literature search on both PubMed and ScienceDirect. Study Selection: The articles on the surface modification of IOLs were included, but those on design modification and surface coating were excluded. Results: Technology of surface modification included plasma, ion beam, layer-by-layer self-assembly, ultraviolet radiation, and ozone. The main molecules introduced into IOLs surface were poly (ethylene glycol), polyhedral oligomeric silsesquioxane, 2-methacryloyloxyethyl phosphorylcholine, TiO2, heparin, F-heparin, titanium, titanium nitride, vinyl pyrrolidone, and inhibitors of cytokines. The surface modification either resulted in a more hydrophobic lens, a more hydrophilic lens, or a lens with a hydrophilic anterior and hydrophobic posterior surface. Advances in research regarding surface modification of IOLs had led to a better biocompatibility in both in vitro and animal experiments. Conclusion: The surface modification is an efficient, convenient, economic and promising method to improve the biocompatibility of IOLs. PMID:26830993
Turhan, Semra Akkaya; Toker, Ebru
2015-01-01
To evaluate the lens edge interaction with the ocular surface with different edge designs using optical coherence tomography and to examine the effect of lens power on the lens edge interactions. Four types of silicone hydrogel lenses with different edge designs (round-, semi-round-, chisel-, and knife-edged) at six different powers (+5.0, +3.0, +1.0, -1.0, -3.0, and -5.0 diopters) were fitted to both eyes of 20 healthy volunteers. Optical coherence tomography images were taken at the corneal center and at the limbus within 15-30 minutes after insertion. The images were evaluated with respect to two parameters: conjunctival indentation exerted by the lens edge; and the tear film gaps between the posterior surface of the lens and the ocular surface. The amount of conjunctival indentation was measured with the distortion angle of the conjunctiva at the lens edge. The degree of conjunctival indentation was highest with the chisel-edged design followed by the semi-round design (P<0.0001). Knife- and round-edged lenses exerted similar levels of conjunctival indentation that was significantly lower compared to chisel-edged lens (P<0.001). For each one of the tested lens edge designs, no significant difference was observed in the conjunctival indentation with respect to lens power. The chisel-edged lens produced the highest amount of conjunctival indentation for each one of the six lens powers (P<0.0001). Post-lens tear film gaps at the limbus were observed at most in the round-edge design (P=0.001). The fitting properties of contact lenses may be influenced by their edge design but not by their lens power.
Turhan, Semra Akkaya; Toker, Ebru
2015-01-01
Purpose To evaluate the lens edge interaction with the ocular surface with different edge designs using optical coherence tomography and to examine the effect of lens power on the lens edge interactions. Methods Four types of silicone hydrogel lenses with different edge designs (round-, semi-round-, chisel-, and knife-edged) at six different powers (+5.0, +3.0, +1.0, −1.0, −3.0, and −5.0 diopters) were fitted to both eyes of 20 healthy volunteers. Optical coherence tomography images were taken at the corneal center and at the limbus within 15–30 minutes after insertion. The images were evaluated with respect to two parameters: conjunctival indentation exerted by the lens edge; and the tear film gaps between the posterior surface of the lens and the ocular surface. The amount of conjunctival indentation was measured with the distortion angle of the conjunctiva at the lens edge. Results The degree of conjunctival indentation was highest with the chisel-edged design followed by the semi-round design (P<0.0001). Knife- and round-edged lenses exerted similar levels of conjunctival indentation that was significantly lower compared to chisel-edged lens (P<0.001). For each one of the tested lens edge designs, no significant difference was observed in the conjunctival indentation with respect to lens power. The chisel-edged lens produced the highest amount of conjunctival indentation for each one of the six lens powers (P<0.0001). Post-lens tear film gaps at the limbus were observed at most in the round-edge design (P=0.001). Conclusion The fitting properties of contact lenses may be influenced by their edge design but not by their lens power. PMID:26045658
Tang, Dawei; Gao, Feng; Jiang, X
2014-08-20
We present a spectral domain low-coherence interferometry (SD-LCI) method that is effective for applications in on-line surface inspection because it can obtain a surface profile in a single shot. It has an advantage over existing spectral interferometry techniques by using cylindrical lenses as the objective lenses in a Michelson interferometric configuration to enable the measurement of long profiles. Combined with a modern high-speed CCD camera, general-purpose graphics processing unit, and multicore processors computing technology, fast measurement can be achieved. By translating the tested sample during the measurement procedure, real-time surface inspection was implemented, which is proved by the large-scale 3D surface measurement in this paper. ZEMAX software is used to simulate the SD-LCI system and analyze the alignment errors. Two step height surfaces were measured, and the captured interferograms were analyzed using a fast Fourier transform algorithm. Both 2D profile results and 3D surface maps closely align with the calibrated specifications given by the manufacturer.
NASA Technical Reports Server (NTRS)
Bailey, M. C.
1994-01-01
A beam waveguide was designed that is based upon the propagation characteristics of the fundamental Gaussian beam and the focusing properties of spherical dielectric lenses. The 20-GHz, two-horn, four-lens system was constructed and experimentally evaluated by probing the field in a plane perpendicular to the beam axis at the center of the beam waveguide system. The critical parameters were determined by numerical sensitivity studies, and the lens-horn critical spacing was adjusted to better focus the beam at the probe plane. The measured performance was analyzed by consideration of higher order Gaussian-Laguerre beam modes. The beam waveguide system was successfully used in the measurements of the electromagnetic transmission properties of Shuttle thermal-protection tiles while the tile surface was being heated to reentry-level temperatures with a high-power laser.
International Lens Design Conference, Monterey, CA, June 11-14, 1990, Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, G.N.
1990-01-01
The present conference on lens design encompasses physical and geometrical optics, diffractive optics, the optimization of optical design, software packages, ray tracing, the use of artificial intelligence, the achromatization of materials, zoom optics, microoptics and GRIN lenses, and IR lens design. Specific issues addressed include diffraction-performance calculations in lens design, the optimization of the optical transfer function, a rank-down method for automatic lens design, applications of quadric surfaces, the correction of aberrations by using HOEs in UV and visible imaging systems, and an all-refractive telescope for intersatellite communications. Also addressed are automation techniques for optics manufacturing, all-reflective phased-array imaging telescopes,more » the thermal aberration analysis of a Nd:YAG laser, the analysis of illumination systems, athermalized FLIR optics, and the design of array systems using shared symmetry.« less
Thermal analysis of a diffusion bonded Er3+,Yb3+:glass/Co2+: MgAl2O4 microchip lasers
NASA Astrophysics Data System (ADS)
Belghachem, Nabil; Mlynczak, Jaroslaw; Kopczynski, krzysztof; Mierczyk, Zygmunt; Gawron, Michal
2016-10-01
The analysis of thermal effects in a diffusion bonded Er3+,Yb3+:glass/Co2+:MgAl2O4 microchip laser is presented. The analysis is performed for both wavelengths at 940 nm and at 975 nm as well as for two different sides of pumping, glass side and saturable absorber side. The heat sink effect of Co2+:MgAl2O4, as well as the impact of the thermal expansion and induced stress on the diffusion bonding are emphasised. The best configurations for reducing the temperature peaks, the Von Mises stresses on the diffusion bonding, and the thermal lensing are determined.
Tolerancing a lens for LED uniform illumination
NASA Astrophysics Data System (ADS)
Ryu, Jieun; Sasian, Jose
2017-08-01
A method to evaluate tolerance sensitivities for lenses used to produce uniform illumination is presented. Closed form surfaces are used to define optical surfaces and relative illumination is calculated from light etendue considerations.
THE GINI COEFFICIENT AS A MORPHOLOGICAL MEASUREMENT OF STRONGLY LENSED GALAXIES IN THE IMAGE PLANE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florian, Michael K.; Li, Nan; Gladders, Michael D.
2016-12-01
Characterization of the morphology of strongly lensed galaxies is challenging because images of such galaxies are typically highly distorted. Lens modeling and source plane reconstruction is one approach that can provide reasonably undistorted images from which morphological measurements can be made, though at the expense of a highly spatially variable telescope point-spread function (PSF) when mapped back to the source plane. Unfortunately, modeling the lensing mass is a time- and resource-intensive process, and in many cases there are too few constraints to precisely model the lensing mass. If, however, useful morphological measurements could be made in the image plane rathermore » than the source plane, it would bypass this issue and obviate the need for a source reconstruction process for some applications. We examine the use of the Gini coefficient as one such measurement. Because it depends on the cumulative distribution of the light of a galaxy, but not the relative spatial positions, the fact that surface brightness is conserved by lensing means that the Gini coefficient may be well preserved by strong gravitational lensing. Through simulations, we test the extent to which the Gini coefficient is conserved, including by effects due to PSF convolution and pixelization, to determine whether it is invariant enough under lensing to be used as a measurement of galaxy morphology that can be made in the image plane.« less
The GINI coefficient as a morphological measurement of strongly lensed galaxies in the image plane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florian, Michael K.; Li, Nan; Gladders, Michael D.
2016-11-30
Characterization of the morphology of strongly lensed galaxies is challenging because images of such galaxies are typically highly distorted. Lens modeling and source plane reconstruction is one approach that can provide reasonably undistorted images from which morphological measurements can be made, though at the expense of a highly spatially variable telescope point-spread function (PSF) when mapped back to the source plane. Unfortunately, modeling the lensing mass is a time-and resource-intensive process, and in many cases there are too few constraints to precisely model the lensing mass. If, however, useful morphological measurements could be made in the image plane rather thanmore » the source plane, it would bypass this issue and obviate the need for a source reconstruction process for some applications. We examine the use of the Gini coefficient as one such measurement. Because it depends on the cumulative distribution of the light of a galaxy, but not the relative spatial positions, the fact that surface brightness is conserved by lensing means that the Gini coefficient may be well preserved by strong gravitational lensing. Through simulations, we test the extent to which the Gini coefficient is conserved, including by effects due to PSF convolution and pixelization, to determine whether it is invariant enough under lensing to be used as a measurement of galaxy morphology that can be made in the image plane.« less
IR-to-visible image upconverter under nonlinear crystal thermal gradient operation.
Maestre, H; Torregrosa, A J; Fernández-Pousa, C R; Capmany, J
2018-01-22
In this work we study the enhancement of the field-of-view of an infrared image up-converter by means of a thermal gradient in a PPLN crystal. Our work focuses on compact upconverters, in which both a short PPLN crystal length and high numerical aperture lenses are employed. We found a qualitative increase in both wavelength and angular tolerances, compared to a constant temperature upconverter, which makes it necessary a correct IR wavelength allocation in order to effectively increase the up-converted area.
DPAL: Historical Perspective And Summary Of Achievements
2013-08-20
of a gas gain medium. The thermal effects existing, for example, in solid state lasers cause aberrations and thermal lensing that degrade the beam...and 500 torr of ethane buffer gas had windows AR coated on both sides (external and internal) and was kept at 98°C. The pump and lasing beams were...back mirror. A 2 cm long cell with antireflection coated windows was filled with metallic cesium and 500 Torr ethane and placed in a heated oven with a
Optical Quality of High-Power Laser Beams in Lenses
2008-10-31
M 2 - 1 after the third collimating lens. This low-power limit has been successfully benchmarked against the ZEMAX optical design code [11]. In the...York, NY (1995). 11. ZEMAX Development Corporation, http://www.zemax.com Table 1: Thermal and optical parameters for BK7 and uv-grade fused silica
NASA Astrophysics Data System (ADS)
Siritanasak, P.; Aleman, C.; Arnold, K.; Cukierman, A.; Hazumi, M.; Kazemzadeh, K.; Keating, B.; Matsumura, T.; Lee, A. T.; Lee, C.; Quealy, E.; Rosen, D.; Stebor, N.; Suzuki, A.
2016-08-01
Polarbear-2 (PB-2) is a next-generation receiver that is part of the Simons Array cosmic microwave background (CMB) polarization experiment which is located in the Atacama desert in Northern Chile. The primary scientific goals of the Simons Array are a deep search for the CMB B-mode signature of gravitational waves from inflation and the characterization of large-scale structure using its effect on CMB polarization. The PB-2 receiver will deploy with 1897 dual-polarization sinuous antenna-coupled pixels, each with a directly contacting extended hemispherical silicon lens. Every pixel has dual polarization sensitivity in two spectral bands centered at 95 and 150 GHz, for a total of 7588 transition edge sensor bolometers operating at 270 mK. To achieve the PB-2 detector requirements, we developed a broadband anti-reflection (AR) coating for the extended hemispherical lenses that uses two molds to apply two layers of epoxy, Stycast 1090 and Stycast 2850FT. Our measurements of the absorption loss from the AR coating on a flat surface at cryogenic temperatures show less than 1 % absorption, and the coating has survived multiple thermal cycles. We can control the diameter of the coating within 25 {\\upmu }m and translation errors are within 25 {\\upmu }m in all directions, which results in less than 1 % decrease in transmittance. We also find the performance of the AR-coated lens matches very well with simulations.
Rapid fabrication of a micro-ball lens array by extrusion for optical fiber applications.
Shen, S C; Huang, J C
2009-07-20
Batch-fabrication of a micro-ball lens array (MBA) could not only reduce micro assembly costs but also replace conventional ball lenses or costly GRINs (Gradient Refractive Index) without compromising performance. Compared with conventional half-spherical micro-lenses, the MBA is a spherical micro-lens that can focus light in all directions, thus providing the flexibility required for optical applications. Current MBAs are made of SU-8 photoresist by an extrusion process rather than the traditional thermal reflow process. The aim of this study was to develop a new process for MBA batch-fabrication, performed at ambient temperature, by spin-coating SU-8 onto a silicon-wafer surface, which serves as an extrusion plate, and extruding it through a nozzle to form an MBA. The nozzle consists of a nozzle orifice and nozzle cavity, the former being defined and made from SU-8 photoresist using ultra-violet (UV) lithography, which results in good mechanical properties. In this paper, the fabrication of 4 x 4 MBAs with diameters ranging from 60 to 550 um is described. Optical measurements indicated a diameter variance within 3% and a maximum coupling efficiency of approximately 62% when the single mode fiber (SMF) was placed at a distance of 10 um from the MBA. The results of this study proved that MBA fabrication by the extrusion process can enhance the coupling efficiency.
Effect of Daily Contact Lens Cleaning on Ocular Adverse Events during Extended Wear.
Ozkan, Jerome; Rathi, Varsha M; de la Jara, Percy Lazon; Naduvilath, Thomas; Holden, Brien A; Willcox, Mark D P
2015-02-01
The purpose of the study was to assess what effect daily cleaning of contact lenses with a multipurpose disinfection solution (MPDS), during 30 nights extended wear, would have on contact lens-related adverse events. This was a prospective, open-label, randomized, controlled, parallel-group, 3-month clinical study in which 193 participants were dispensed with lotrafilcon A silicone hydrogel lenses for a 30-day extended-wear schedule and with lenses replaced monthly. Participants were randomized to a control or test group. Test subjects were required to remove lenses daily after waking, clean them with the MPDS, and reinsert the lenses. Control subjects wore lenses without removal for 30 days extended wear. Handling-related lens contamination was assessed at the baseline visit. There was no significant difference between the test and control groups for the incidence of significant corneal infiltrative events (1.3 vs. 4.9%, p = 0.368), total corneal infiltrative events (2.6 vs. 4.9%, p = 0.682), or mechanical events (1.3 vs. 2.5%, p = 1.00). The test group had greater corneal staining (p < 0.047) and fewer mucin balls (p = 0.033). Handling-related lens contamination (unworn lenses) resulted in isolation of Gram-positive bacteria from 92.5% of test lenses compared with 87.5% of control lenses (p = 0.712). Gram-negative bacteria were isolated from 5% of test subjects compared with 2.5% of control subjects (p = 1.00). Fungus was isolated from 2.5% of subjects in both the test and control groups (p = 1.00). The intervention of daily morning cleaning of the lens surface with an MPDS during extended wear did not significantly influence the incidence of adverse events.
Maulvi, Furqan A; Lakdawala, Dhara H; Shaikh, Anjum A; Desai, Ankita R; Choksi, Harsh H; Vaidya, Rutvi J; Ranch, Ketan M; Koli, Akshay R; Vyas, Bhavin A; Shah, Dinesh O
2016-03-28
Glaucoma is commonly treated using eye drops, which is highly inefficient due to rapid clearance (low residence time) from ocular surface. Contact lenses are ideally suited for controlled drug delivery to cornea, but incorporation of any drug loaded particulate system (formulation) affect the optical and physical property of contact lenses. The objective of the present work was to implant timolol maleate (TM) loaded ethyl cellulose nanoparticle-laden ring in hydrogel contact lenses that could provide controlled drug delivery at therapeutic rates without compromising critical lens properties. TM-implant lenses were developed, by dispersing TM encapsulated ethyl cellulose nanoparticles in acrylate hydrogel (fabricated as ring implant) and implanted the same in hydrogel contact lenses (sandwich system). The TM-ethyl cellulose nanoparticles were prepared by double emulsion method at different ratios of TM to ethyl cellulose. The X-ray diffraction studies revealed the transformation of TM to amorphous state. In vitro release kinetic data showed sustained drug release within the therapeutic window for 168h (NP 1:3 batch) with 150μg loading. Cytotoxicity and ocular irritation study demonstrated the safety of TM-implant contact lenses. In vivo pharmacokinetic studies in rabbit tear fluid showed significant increase in mean residence time (MRT) and area under curve (AUC), with TM-implant contact lenses in comparison to eye drop therapy. In vivo pharmacodynamic data in rabbit model showed sustained reduction in intra ocular pressure for 192h. The study demonstrated the promising potential of implantation technology to treat glaucoma using contact lenses, and could serve as a platform for other ocular diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
The development of alignment turning system for precision len cells
NASA Astrophysics Data System (ADS)
Huang, Chien-Yao; Ho, Cheng-Fang; Wang, Jung-Hsing; Chung, Chien-Kai; Chen, Jun-Cheng; Chang, Keng-Shou; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Chen, Fong-Zhi
2017-08-01
In general, the drop-in and cell-mounted assembly are used for standard and high performance optical system respectively. The optical performance is limited by the residual centration error and position accuracy of the conventional assembly. Recently, the poker chip assembly with high precision lens barrels that can overcome the limitation of conventional assembly is widely applied to ultra-high performance optical system. ITRC also develops the poker chip assembly solution for high numerical aperture objective lenses and lithography projection lenses. In order to achieve high precision lens cell for poker chip assembly, an alignment turning system (ATS) is developed. The ATS includes measurement, alignment and turning modules. The measurement module including a non-contact displacement sensor and an autocollimator can measure centration errors of the top and the bottom surface of a lens respectively. The alignment module comprising tilt and translation stages can align the optical axis of the lens to the rotating axis of the vertical lathe. The key specifications of the ATS are maximum lens diameter, 400mm, and radial and axial runout of the rotary table < 2 μm. The cutting performances of the ATS are surface roughness Ra < 1 μm, flatness < 2 μm, and parallelism < 5 μm. After measurement, alignment and turning processes on our ATS, the centration error of a lens cell with 200mm in diameter can be controlled in 10 arcsec. This paper also presents the thermal expansion of the hydrostatic rotating table. A poker chip assembly lens cell with three sub-cells is accomplished with average transmission centration error in 12.45 arcsec by fresh technicians. The results show that ATS can achieve high assembly efficiency for precision optical systems.
NASA Technical Reports Server (NTRS)
O'Neill, Mark; McDanal, A. J.; Brandhorst, Henry; Spence, Brian; Iqbal, Shawn; Sharps, Paul; McPheeters, Clay; Steinfeldt, Jeff; Piszczor, Michael; Myers, Matt
2016-01-01
At the 42nd PVSC, our team presented recent advances in our space photovoltaic concentrator technology. These advances include more robust Fresnel lenses for optical concentration, more thermally conductive graphene radiators for waste heat rejection, improved color-mixing lens technology to minimize chromatic aberration losses with 4-junction solar cells, and an articulating photovoltaic receiver enabling single-axis sun-tracking, while maintaining a sharp focal line despite large beta angles of incidence. In the past year, under a NASA Phase II SBIR program, our team has made much additional progress in the development of this new space photovoltaic concentrator technology, as described in this paper.
Development of microchannel plate x-ray optics
NASA Technical Reports Server (NTRS)
Kaaret, Philip; Chen, Andrew
1994-01-01
The goal of this research program was to develop a novel technique for focusing x-rays based on the optical system of a lobster's eye. A lobster eye employs many closely packed reflecting surfaces arranged within a spherical or cylindrical shell. These optics have two unique properties: they have unlimited fields of view and can be manufactured via replication of identical structures. Because the angular resolution is given by the ratio of the size of the individual optical elements to the focal length, optical elements with sizes on the order of one hundred microns are required to achieve good angular resolution with a compact telescope. We employed anisotropic etching of single crystal silicon wafers for the fabrication of micron-scale optical elements. This technique, commonly referred to as silicon micromachining, is based on silicon fabrication techniques developed by the microelectronics industry. An anisotropic etchant is a chemical which etches certain silicon crystal planes much more rapidly than others. Using wafers in which the slowly etched crystal planes are aligned perpendicularly to the wafer surface, it is possible to etch a pattern completely through a wafer with very little distortion. Our optics consist of rectangular pores etched completely through group of zone axes (110) oriented silicon wafers. The larger surfaces of the pores (the mirror elements) were aligned with the group of zone axes (111) planes of the crystal perpendicular to the wafer surface. We have succeeded in producing silicon lenses with a geometry suitable for 1-d focusing x-ray optics. These lenses have an aspect ratio (40:1) suitable for x-ray reflection and have very good optical surface alignment. We have developed a number of process refinements which improved the quality of the lens geometry and the repeatability of the etch process. A significant progress was made in obtaining good optical surface quality. The RMS roughness was decreased from 110 A for our initial lenses to 30 A in the final lenses. A further factor of three improvement in surface quality is required for the production of efficient x-ray optics. In addition to the silicon fabrication, an x-ray beam line was constructed at Columbia for testing the optics.
Paradiso, Patrizia; Chu, Virginia; Santos, Luís; Serro, Ana Paula; Colaço, Rogério; Saramago, Benilde
2015-07-01
Although the plasma technology has long been applied to treat contact lenses, the effect of this treatment on the performance of drug-loaded contact lenses is still unclear. The objective of this work is to study the effect of nitrogen plasma treatment on two drug-loaded polymeric formulations which previously demonstrated to be suitable for therapeutic contact lenses: a poly-hydroxyethylmethacrylate (pHEMA) based hydrogel loaded with levofloxacin and a silicone-based hydrogel loaded with chlorhexidine. Modifications of the surface and the optical properties, and alterations in the drug release profiles and possible losses of the antimicrobial activities of the drugs induced by the plasma treatment were assessed. The results showed that, depending on the system and on the processing conditions, the plasma treatment may be beneficial for increasing wettability and refractive index, without degrading the lens surface. From the point of view of drug delivery, plasma irradiation at moderate power (200 W) decreased the initial release rate and the amount of released drug, maintaining the drug activity. For lower (100 W) and higher powers (300 W), almost no effect was detected because the treatment was, respectively, too soft and too aggressive for the lens materials. © 2014 Wiley Periodicals, Inc.
Assessing tear film on soft contact lenses with lateral shearing interferometry.
Szczesna, Dorota H
2011-11-01
Evaluating precorneal tear film is one of important clinical measurements for assessing health of anterior eye. Contact lens wear is known to influence the quality of tear film. The aim was to evaluate the applicability of lateral shearing interferometry technique in the noninvasive assessment of the effects of contact lens replacement modality and its water content on tear film stability. Sixteen regular soft contact lens wearers took place in the study. Lateral shearing interferometry measurements, in suppressed blinking conditions, were taken in the mornings and afternoons, after a minimum of 5 hours of lens wear for the daily lenses, and after 2 weeks and 1 month for the fortnightly and monthly lens replacement modalities, respectively. Significant differences (paired bootstrap-based Behrens-Fisher test, P < 0.05) in the tear film surface quality were found between all considered pairs of replacement modalities except for the daily and fortnightly lenses measured in the afternoon of the first day of wear. Significant worsening (paired bootstrap-based Behrens-Fisher test, P < 0.001) of tear film quality was found for the low water content materials. Lateral shearing interferometry is a powerful method for the noninvasive assessment of tear film surface quality on soft contact lenses that may find, in future, its use in the clinical assessment of anterior eye's health.
Oscillatory squeeze film analysis of soft contact lenses.
Donnchadha, Éanna Mac; Leal, Cristina; Esmonde, Harry
2018-04-13
The complex modulus of a soft contact lens affects the optical performance, fitting, on-eye movement, wettability, physiological impact and overall comfort of the lens. However, despite acknowledgement that the mechanical behaviour of contact lenses is time-dependent, the rheological characteristics of contact lenses remain under-defined. While existing studies have focussed on elasticity to describe lens behaviour, this paper proposes using oscillatory squeeze film analysis to evaluate the complex modulus. The effects of excitation amplitude, repeatability and surface wetness are examined for four commercially available lenses. Slip at the lens/platen interface is considered along with bias introduced by pre-compressing the lens between platens. Test results when compared to results reported from other test methods indicate that a high degree of slip occurs at the lens platen interface suggesting that deformation is primarily due to biaxial extension. Copyright © 2018 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Photometric redshift requirements for lens galaxies in galaxy-galaxy lensing analyses
NASA Astrophysics Data System (ADS)
Nakajima, R.; Mandelbaum, R.; Seljak, U.; Cohn, J. D.; Reyes, R.; Cool, R.
2012-03-01
Weak gravitational lensing is a valuable probe of galaxy formation and cosmology. Here we quantify the effects of using photometric redshifts (photo-z) in galaxy-galaxy lensing, for both sources and lenses, both for the immediate goal of using galaxies with photo-z as lenses in the Sloan Digital Sky Survey (SDSS) and as a demonstration of methodology for large, upcoming weak lensing surveys that will by necessity be dominated by lens samples with photo-z. We calculate the bias in the lensing mass calibration as well as consequences for absolute magnitude (i.e. k-corrections) and stellar mass estimates for a large sample of SDSS Data Release 8 (DR8) galaxies. The redshifts are obtained with the template-based photo-z code ZEBRA on the SDSS DR8 ugriz photometry. We assemble and characterize the calibration samples (˜9000 spectroscopic redshifts from four surveys) to obtain photometric redshift errors and lensing biases corresponding to our full SDSS DR8 lens and source catalogues. Our tests of the calibration sample also highlight the impact of observing conditions in the imaging survey when the spectroscopic calibration covers a small fraction of its footprint; atypical imaging conditions in calibration fields can lead to incorrect conclusions regarding the photo-z of the full survey. For the SDSS DR8 catalogue, we find σΔz/(1+z)= 0.096 and 0.113 for the lens and source catalogues, with flux limits of r= 21 and 21.8, respectively. The photo-z bias and scatter is a function of photo-z and template types, which we exploit to apply photo-z quality cuts. By using photo-z rather than spectroscopy for lenses, dim blue galaxies and L* galaxies up to z˜ 0.4 can be used as lenses, thus expanding into unexplored areas of parameter space. We also explore the systematic uncertainty in the lensing signal calibration when using source photo-z, and both lens and source photo-z; given the size of existing training samples, we can constrain the lensing signal calibration (and therefore the normalization of the surface mass density) to within 2 and 4 per cent, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevenson, D.
1970-01-01
Recent studies of oil accumulations in the Ste. Genevieve Limestone Formation in Illinois demonstrate the usefulness of fitting third-order trend surfaces to structural data and analyzing the residuals calculated by subtracting the trend surface from the structure surface. Known oil pools are located in areas having positive residual values. This type of investigation, supplemented by conventional structural and stratigraphic studies, was performed on a 9-township (approx. 324 sq miles) area in Effingham and Shelby counties, Illinois. The known oil pools in the oolite and sandstone lenses of the Ste. Genevieve Formation lie within positive residuals resulting from the difference betweenmore » a third-order trend surface and the structural surface on top of the Ste. Genevieve. A composite map outlining areas where present anticlinal noses, sandstone lenses, and positive residuals lie in close proximity to each other is included in this report to indicate places where future exploration for Ste. Genevieve oil would have the greatest chance for success.« less
Birkenfeld, Judith; de Castro, Alberto; Ortiz, Sergio; Pascual, Daniel; Marcos, Susana
2013-06-28
The optical properties of the crystalline lens are determined by its shape and refractive index distribution. However, to date, those properties have not been measured together in the same lens, and therefore their relative contributions to optical aberrations are not fully understood. The shape, the optical path difference, and the focal length of ten porcine lenses (age around 6 months) were measured in vitro using Optical Coherence Tomography and laser ray tracing. The 3D Gradient Refractive Index distribution (GRIN) was reconstructed by means of an optimization method based on genetic algorithms. The optimization method searched for the parameters of a 4-variable GRIN model that best fits the distorted posterior surface of the lens in 18 different meridians. Spherical aberration and astigmatism of the lenses were estimated using computational ray tracing, with the reconstructed GRIN lens and an equivalent homogeneous refractive index. For all lenses the posterior radius of curvature was systematically steeper than the anterior one, and the conic constant of both the anterior and posterior positive surfaces was positive. In average, the measured focal length increased with increasing pupil diameter, consistent with a crystalline lens negative spherical aberration. The refractive index of nucleus and surface was reconstructed to an average value of 1.427 and 1.364, respectively, for 633 nm. The results of the GRIN reconstruction showed a wide distribution of the index in all lens samples. The GRIN shifted spherical aberration towards negative values when compared to a homogeneous index. A negative spherical aberration with GRIN was found in 8 of the 10 lenses. The presence of GRIN also produced a decrease in the total amount of lens astigmatism in most lenses, while the axis of astigmatism was only little influenced by the presence of GRIN. To our knowledge, this study is the first systematic experimental study of the relative contribution of geometry and GRIN to the aberrations in a mammal lens. Copyright © 2013 Elsevier Ltd. All rights reserved.
Optical edge effects create conjunctival indentation thickness artefacts.
Sorbara, Luigina; Simpson, Trefford L; Maram, Jyotsna; Song, Eun Sun; Bizheva, Kostadinka; Hutchings, Natalie
2015-05-01
Conjunctival compression observed in ultrahigh resolution optical coherence tomography (UHR-OCT) images of contact lens edges could be actual tissue alteration, may be an optical artefact arising from the difference between the refractive indexes of the lens material and the conjunctival tissue, or could be a combination of the two. The purpose of this study is to image the artefact with contact lenses on a non-biological (non-indentable) medium and to determine the origins of the observed conjunctival compression. Two-dimensional cross-sectional images of the edges of a selection of marketed silicone hydrogel and hydrogel lenses (refractive index ranging from 1.40 to 1.43) were acquired with a research grade UHR-OCT system. The lenses were placed on three continuous surfaces, a glass sphere (refractive index n = 1.52), a rigid contact lens (n = 1.376) and the cornea of a healthy human subject (average n = 1.376). The displacement observed was analysed using ImageJ. The observed optical displacement ranged between 5.39(0.06) μm with Acuvue Advance and 11.99(0.18) μm with Air Optix Night & Day when the lens was imaged on the glass reference sphere. Similarly, on a rigid contact lens displacement ranged between 5.51(0.03) and 9.72(0.12) μm. Displacement was also observed when the lenses were imaged on the human conjunctiva and ranged from 6.49(0.80) μm for the 1-day Acuvue Moist to 17.4(0.22) μm for the Pure Vision contact lens. An optical displacement artefact was observed when imaging a contact lens on two rigid continuous surfaces with UHR-OCT where compression or indentation of the surface could not have been a factor. Contact lenses imaged in situ also exhibited displacement at the intersection of the contact lens edge and the conjunctiva, likely a manifestation of both the artefact and compression of the conjunctiva. © 2015 The Authors Ophthalmic & Physiological Optics © 2015 The College of Optometrists.
Extrinsic curvature, geometric optics, and lamellar order on curved substrates
NASA Astrophysics Data System (ADS)
Kamien, Randall D.; Nelson, David R.; Santangelo, Christian D.; Vitelli, Vincenzo
2009-11-01
When thermal energies are weak, two-dimensional lamellar structures confined on a curved substrate display complex patterns arising from the competition between layer bending and compression in the presence of geometric constraints. We present broad design principles to engineer the geometry of the underlying substrate so that a desired lamellar pattern can be obtained by self-assembly. Two distinct physical effects are identified as key factors that contribute to the interaction between the shape of the underlying surface and the resulting lamellar morphology. The first is a local ordering field for the direction of each individual layer, which tends to minimize its curvature with respect to the three-dimensional embedding. The second is a nonlocal effect controlled by the intrinsic geometry of the surface that forces the normals to the (nearly incompressible) layers to lie on geodesics, leading to caustic formation as in optics. As a result, different surface morphologies with predominantly positive or negative Gaussian curvature can act as converging or diverging lenses, respectively. By combining these ingredients, as one would with different optical elements, complex lamellar morphologies can be obtained. This smectic optometry enables the manipulation of lamellar configurations for the design of materials.
Dong, Zhizhang; Ding, Xiaoyan; Li, Yong; Gan, Yifeng; Wang, Yanhui; Xu, Libin; Wang, Yahong; Zhou, Ying; Li, Juan
2018-05-22
To identify the deposition of fine (≤2.5 μm diameter) particulate matter (PM) particles (PM 2.5 ) on contact lens surfaces and to investigate the effects of such deposition on the oxygen permeability (OP) and refractive index (RI) of contact lenses. A total of 36 contact lenses, including rigid gas permeable (RGP) lens and soft contact lens (SCL), were investigated. RGP lens (n=12) and SCL (n=12) (experimental group) were incubated in a PM 2.5 solution for 24 h, after which PM 2.5 -treated RGP lens (n=6) and SCL (n=6) were further washed for 1 h in phosphate-buffered saline (PBS). All lenses were examined by field emission scanning electron microscopy. OP and RI of all lenses were measured. Average-sized PM 2.5 particles deposited on RGP contact lens and SCL surfaces after immersion in the PM 2.5 solution were 3.192 ± 1.637 and 2.158 ± 1.187/100 μm 2 , respectively. On RGP lens surfaces, we observed both large (≥2.5 µm diameter) and small (PM 2.5 ) particles. PM 2.5 particles were deposited in diffuse patterns, primarily along the honeycomb structural border of SCL, while no PM 2.5 particles were found in the honeycomb hole of SCL surfaces. Washing in PBS removed the larger PM particles from RGP lens surfaces, but left copious amounts of PM 2.5 particles. In contrast, nearly all PM particles were removed from SCL surfaces after PBS washing. OP values of RGP lens and SCL appeared to be unchanged by PM 2.5 deposition. RI values increased in both RGP lens and SCL groups after PM 2.5 deposition. However, these increases were not statistically significant, suggesting that PM 2.5 deposition itself does not cause fluctuations in contact lens RI. Deposition of PM 2.5 particles on contact lens surfaces varies according to lens material. PM 2.5 particles deposited on SCL, but only large particles on RGP surfaces were able to be removed by washing in PBS and did not appear to alter OP and RI of either lens type.
Tear oxygen under hydrogel and silicone hydrogel contact lenses in humans.
Bonanno, Joseph A; Clark, Christopher; Pruitt, John; Alvord, Larry
2009-08-01
To determine the tear oxygen tension under a variety of conventional and silicone hydrogel contact lenses in human subjects. Three hydrogel and five silicone hydrogel lenses (Dk/t = 17 to 329) were coated on the back surface with an oxygen sensitive, bovine serum albumin-Pd meso-tetra (4-carboxyphenyl) porphine complex (BSA-porphine). Each lens type was placed on the right eye of 15 non-contact lens wearers to obtain a steady-state open eye tear oxygen tension using oxygen sensitive phosphorescence decay of BSA-porphine. A closed-eye oxygen tension estimate was obtained by measuring the change in tear oxygen tension after 5 min of eye closure. In separate experiments, a goggle was placed over the lens wearing eye and a gas mixture (PO2 = 51 torr) flowed over the lens to simulate anterior lens oxygen tension during eye closure. Mean open eye oxygen tension ranged from 58 to 133 torr. Closed eye estimates ranged from 11 to 42 torr. Oxygen tension under the goggle ranged from 8 to 48 torr and was higher than the closed eye estimate for six out of the eight lenses, suggesting that the average closed eye anterior lens surface oxygen tension is <51 torr. For Dk/t >30, the measured tear oxygen tension is significantly lower than that predicted from previous studies. The phosphorescence decay methodology is capable of directly measuring the in vivo post lens PO2 of high Dk/t lenses without disturbing the contact lens or cornea. Our data indicate that increasing Dk/t up to and beyond 140 continues to yield increased flux into the central cornea.
NASA Astrophysics Data System (ADS)
Karunakaran, Bhuvaneshwari; Tharion, Joseph; Dhawangale, Arvind Ramrao; Paul, Debjani; Mukherji, Soumyo
2018-02-01
Miniature lenses can transform commercial imaging systems, e.g., smartphones and webcams, into powerful, low-cost, handheld microscopes. To date, the reproducible fabrication of polymer lenses is still a challenge as they require controlled dispensing of viscous liquid. This paper reports a reproducible lens fabrication technique using liquid mold with programmable curvature and off-the-shelf materials. The lens curvature is controlled during fabrication by tuning the curvature of an interface of two immiscible liquids [polydimethylsiloxane (PDMS) and glycerol]. The curvature control is implemented using a visual feedback system, which includes a software-based guiding system to produce lenses of desired curvature. The technique allows PDMS lens fabrication of a wide range of sizes and focal lengths, within 20 min. The fabrication of two lens diameters: 1 and 5 mm with focal lengths ranging between 1.2 and 11 mm are demonstrated. The lens surface and bulk quality check performed using X-ray microtomography and atomic force microscopy reveal that the lenses are suitable for optical imaging. Furthermore, a smartphone microscope with ˜1.4-μm resolution is developed using a self-assembly of a single high power fabricated lens and microaperture. The lenses have various potential applications, e.g., optofluidics, diagnostics, forensics, and surveillance.
Hagedorn, Sarah; Drolle, Elizabeth; Lorentz, Holly; Srinivasan, Sruthi; Leonenko, Zoya; Jones, Lyndon
2015-01-01
The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Meibum study: Meibum was collected from all participants and studied via Langmuir-Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.
Thermal effects in an ultrafast BiB 3O 6 optical parametric oscillator at high average powers
Petersen, T.; Zuegel, J. D.; Bromage, J.
2017-08-15
An ultrafast, high-average-power, extended-cavity, femtosecond BiB 3O 6 optical parametric oscillator was constructed as a test bed for investigating the scalability of infrared parametric devices. Despite the high pulse energies achieved by this system, the reduction in slope efficiency near the maximum-available pump power prompted the investigation of thermal effects in the crystal during operation. Furthermore, the local heating effects in the crystal were used to determine the impact on both phase matching and thermal lensing to understand limitations that must be overcome to achieve microjoule-level pulse energies at high repetition rates.
Thermal effects in an ultrafast BiB 3O 6 optical parametric oscillator at high average powers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, T.; Zuegel, J. D.; Bromage, J.
An ultrafast, high-average-power, extended-cavity, femtosecond BiB 3O 6 optical parametric oscillator was constructed as a test bed for investigating the scalability of infrared parametric devices. Despite the high pulse energies achieved by this system, the reduction in slope efficiency near the maximum-available pump power prompted the investigation of thermal effects in the crystal during operation. Furthermore, the local heating effects in the crystal were used to determine the impact on both phase matching and thermal lensing to understand limitations that must be overcome to achieve microjoule-level pulse energies at high repetition rates.
NASA Astrophysics Data System (ADS)
Doushkina, Valentina
2010-08-01
Innovative hybrid glass-polymer optical solutions on a component, module, or system level offer thermal stability of glass with low manufacturing cost of polymers reducing component weight, enhancing the safety and appeal of the products. Narrow choice of polymer materials is compensated by utilizing sophisticated optical surfaces such as refractive, reflective, and diffractive substrates with spherical, aspherical, cylindrical, and freeform prescriptions. Current advancements in polymer technology and injection molding capabilities placed polymer optics in the heart of many high tech devices and applications including Automotive Industry, Defense & Aerospace; Medical/Bio Science; Projection Displays, Sensors, Information Technology, Commercial and Industrial. This paper is about integration of polymer and glass optics for enhanced optical performance with reduced number of components, thermal stability, and low manufacturing cost. The listed advantages are not achievable when polymers or glass optics are used as stand-alone. The author demonstrates that integration of polymer and glass on component or optical system level on one hand offers high resolution and diffraction limited image quality, similar to the glass optics with stable refractive index and stable thermal performance when design is athermalized within the temperature range. On the other hand, the integrated hybrid solution significantly reduces cost, weight, and complexity, just like the polymer optics. The author will describe the design and analyzes process of combining glass and polymer optics for variety of challenging applications such as fast optics with low F/#, wide field of view lenses or systems, free form optics, etc.
Aberrations associated with rigid contact lenses.
Atchison, D A
1995-10-01
A rigid contact lens on an eye can produce levels of spherical aberration very different from those produced by a spectacle lens in front of the eye. These levels are considerably affected by contact lens surface asphericity. Change in longitudinal spherical aberration associated with aspherizing a contact lens surface is well predicted by a simple equation for change in sagittal power of the surface. Displacing an aspheric contact lens on the eye can produce considerable defocus, which is well predicted by simple equations for change in sagittal and tangential surface powers. The best refractive correction with contact lenses can be determined only by overrefraction with a patient wearing a contact lens of power and characteristics similar to that which will be prescribed. An aspheric contact lens that moves to a considerable extent on the eye will cause more unstable vision than will a spherical lens that moves to the same extent.
Environmental cell assembly for use in for use in spectroscopy and microscopy applications
Stowe, Ashley Clinton; Smyrl, Norman; Hallman, Jr., Russell L.
2014-09-02
An environmental cell assembly for use in microscopy and spectroscopy applications, including: an environmentally sealed body assembly configured to selectively hold and contain a sample; a plurality of ports manufactured into one or more surfaces of the body assembly for one or more of evacuating the body assembly and injecting a gas into or removing a gas from the body assembly; a port manufactured into a surface of the body assembly for receiving a translating stage configured to move the sample within the body assembly; and a port manufactured into a surface of the body assembly for receiving one or more lenses utilized in a microscopy or spectroscopy application; wherein the one or more lenses are disposed adjacent the sample without intervening structures disposed there between. The cell assembly also includes a port manufactured into a surface of the body assembly for retaining a window and providing visualization of the sample.
Thickness and topographic inspection of RPG contact lenses by optical triangulation
NASA Astrophysics Data System (ADS)
Costa, Manuel F. M.
2001-06-01
Optical triangulation as a non-destructive test method extensively proved its usefulness on the dimensional and topographic inspection of a large range of objects and surfaces. In this communication the issue of microtopographic and thickness inspection of hard contact lenses (RPG) is addressed. The use of optical triangulation is discussed based on the results of the application of our MICROTOP.03.MFC microtopographer to this kind of tasks will be presented.
NASA Astrophysics Data System (ADS)
Wilde, C.; Langehanenberg, P.; Schenk, T.
2017-10-01
For modern production of micro lens systems, such as cementing of doublets or more lenses, precise centering of the lens edge is crucial. Blocking the lens temporarily on a centering arbor ensures that the centers of all optical lens surfaces coincide with the lens edge, while the arbor's axis serves as reference for both alignment and edging process. This theoretical assumption of the traditional cementing technology is not applicable for high-end production. In reality cement wedges between the bottom lens surface and the arbor's ring knife edge may occur and even expensive arbors with single-micron precision suffer from reduced quality of the ring knife edge after multiple usages and cleaning cycles. Consequently, at least the position of the bottom lens surface is undefined and the optical axis does not coincide with the arbor's reference axis! In order to overcome this basic problem in using centering arbors, we present a novel and efficient technique which can measure and align both surfaces of a lens with respect to the arbor axis with high accuracy and furthermore align additional lenses to the optical axis of the bottom lens. This is accomplished by aligning the lens without mechanical contact to the arbor. Thus the lens can be positioned in four degrees of freedom, while the centration errors of all lens surfaces are measured and considered. Additionally the arbor's reference axis is not assumed to be aligned to the rotation axis, but simultaneously measured with high precision.
3D Dynamics of the Near-Surface Layer of the Ocean in the Presence of Freshwater Influx
NASA Astrophysics Data System (ADS)
Dean, C.; Soloviev, A.
2015-12-01
Freshwater inflow due to convective rains or river runoff produces lenses of freshened water in the near surface layer of the ocean. These lenses are localized in space and typically involve both salinity and temperature anomalies. Due to significant density anomalies, strong pressure gradients develop, which result in lateral spreading of freshwater lenses in a form resembling gravity currents. Gravity currents inherently involve three-dimensional dynamics. The gravity current head can include the Kelvin-Helmholtz billows with vertical density inversions. In this work, we have conducted a series of numerical experiments using computational fluid dynamics tools. These numerical simulations were designed to elucidate the relationship between vertical mixing and horizontal advection of salinity under various environmental conditions and potential impact on the pollution transport including oil spills. The near-surface data from the field experiments in the Gulf of Mexico during the SCOPE experiment were available for validation of numerical simulations. In particular, we observed a freshwater layer within a few-meter depth range and, in some cases, a density inversion at the edge of the freshwater lens, which is consistent with the results of numerical simulations. In conclusion, we discuss applicability of these results to the interpretation of Aquarius and SMOS sea surface salinity satellite measurements. The results of this study indicate that 3D dynamics of the near-surface layer of the ocean are essential in the presence of freshwater inflow.
NASA Astrophysics Data System (ADS)
Huang, Wei-Ren; Huang, Shih-Pu; Tsai, Tsung-Yueh; Lin, Yi-Jyun; Yu, Zong-Ru; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Young, Hong-Tsu
2017-09-01
Spherical lenses lead to forming spherical aberration and reduced optical performance. Consequently, in practice optical system shall apply a combination of spherical lenses for aberration correction. Thus, the volume of the optical system increased. In modern optical systems, aspherical lenses have been widely used because of their high optical performance with less optical components. However, aspherical surfaces cannot be fabricated by traditional full aperture polishing process due to their varying curvature. Sub-aperture computer numerical control (CNC) polishing is adopted for aspherical surface fabrication in recent years. By using CNC polishing process, mid-spatial frequency (MSF) error is normally accompanied during this process. And the MSF surface texture of optics decreases the optical performance for high precision optical system, especially for short-wavelength applications. Based on a bonnet polishing CNC machine, this study focuses on the relationship between MSF surface texture and CNC polishing parameters, which include feed rate, head speed, track spacing and path direction. The power spectral density (PSD) analysis is used to judge the MSF level caused by those polishing parameters. The test results show that controlling the removal depth of single polishing path, through the feed rate, and without same direction polishing path for higher total removal depth can efficiently reduce the MSF error. To verify the optical polishing parameters, we divided a correction polishing process to several polishing runs with different direction polishing paths. Compare to one shot polishing run, multi-direction path polishing plan could produce better surface quality on the optics.
Instrumental studies on silicone oil adsorption to the surface of intraocular lenses
NASA Astrophysics Data System (ADS)
Kim, Chun Ho; Joo, Choun-Ki; Chun, Heung Jae; Yoo, Bok Ryul; Noh, Dong Il; Shim, Young Bock
2012-12-01
The purpose of this study was to examine the degree of adherence of silicone oil to various intraocular lenses (IOLs) through comparison of the physico-chemical properties of the oil and IOLs. Four kinds of IOLs comprising various biomaterials were examined: PMMA (720A™), PHEMA (IOGEL 1103™), Acrysof (MA60BM™), and silicone (SI30NB™). Each lens was immersed in silicone oil or carboxylated silicone (CS-PDMS) oil for 72 h. For determination of the changes in chemical and elemental compositions on the surfaces of IOLs caused by the contact with silicone oil, IOLs were washed and rinsed with n-pentane to remove as much of the adsorbed silicone oil as possible, then subjected to Fourier transform infrared spectroscopic (FTIR) and X-ray photoelectron spectroscopic (XPS) analyses. The results of FTIR studies strongly indicate that washing with n-pentane completely removed the adhered silicone oil on the surfaces of PHEMA and Acrysof IOLs, whereas the residual silicone oil was detected on the surfaces of PMMA and silicone IOLs. XPS studies showed that silicone oil coverage of PMMA lenses was 12%, even after washing with n-pentane. In the case of silicone IOLs, the relative O1s peak area of carboxyl group in the residual CS-PDMS oil was found to be ˜2.7%. Considering that 2.8% carboxyl group-substituted silicone oil was used in the present study, CS-PDMS oil covered the entire surface of the silicone IOLs.
Protein deposition on a lathe-cut silicone hydrogel contact lens material.
Subbaraman, Lakshman N; Woods, Jill; Teichroeb, Jonathan H; Jones, Lyndon
2009-03-01
To determine the quantity of total protein, total lysozyme, and the conformational state of lysozyme deposited on a novel, lathe-cut silicone hydrogel (SiHy) contact lens material (sifilcon A) after 3 months of wear. Twenty-four subjects completed a prospective, bilateral, daily-wear, 9-month clinical evaluation in which the subjects were fitted with a novel, custom-made, lathe-cut SiHy lens material. The lenses were worn for three consecutive 3-month periods, with lenses being replaced after each period of wear. After 3 months of wear, the lenses from the left eye were collected and assessed for protein analysis. The total protein deposited on the lenses was determined by a modified Bradford assay, total lysozyme using Western blotting and the lysozyme activity was determined using a modified micrococcal assay. The total protein recovered from the custom-made lenses was 5.3 +/- 2.3 microg/lens and the total lysozyme was 2.4 +/- 1.2 microg/lens. The denatured lysozyme found on the lenses was 1.9 +/- 1.0 microg/lens and the percentage of lysozyme denatured was 80 +/- 10%. Even after 3 months of wear, the quantity of protein and the conformational state of lysozyme deposited on these novel lens materials was very similar to that found on similar surface-coated SiHy lenses after 2 to 4 weeks of wear. These results indicate that extended use of the sifilcon A material is not deleterious in terms of the quantity and quality of protein deposited on the lens.
Dooley, Katherine L; Arain, Muzammil A; Feldbaum, David; Frolov, Valery V; Heintze, Matthew; Hoak, Daniel; Khazanov, Efim A; Lucianetti, Antonio; Martin, Rodica M; Mueller, Guido; Palashov, Oleg; Quetschke, Volker; Reitze, David H; Savage, R L; Tanner, D B; Williams, Luke F; Wu, Wan
2012-03-01
We present the design and performance of the LIGO Input Optics subsystem as implemented for the sixth science run of the LIGO interferometers. The Initial LIGO Input Optics experienced thermal side effects when operating with 7 W input power. We designed, built, and implemented improved versions of the Input Optics for Enhanced LIGO, an incremental upgrade to the Initial LIGO interferometers, designed to run with 30 W input power. At four times the power of Initial LIGO, the Enhanced LIGO Input Optics demonstrated improved performance including better optical isolation, less thermal drift, minimal thermal lensing, and higher optical efficiency. The success of the Input Optics design fosters confidence for its ability to perform well in Advanced LIGO.
Thermoacoustic focusing lens by symmetric Airy beams with phase manipulations
NASA Astrophysics Data System (ADS)
Liu, Chen; Xia, Jian-Ping; Sun, Hong-Xiang; Yuan, Shou-Qi
2017-12-01
We report the realization of broadband acoustic focusing lenses based on two symmetric thermoacoustic phased arrays of Airy beams, in which the units of thermoacoustic phase control are designed by employing air with different temperatures surrounded by rigid insulated boundaries and thermal insulation films. The phase delays of the transmitted and reflected units could cover a whole 2π interval, which arises from the change of the sound velocity of air induced by the variation of the temperature. Based on the units of phase control, we design the transmitted and reflected acoustic focusing lenses with two symmetric Airy beams, and verify the high self-healing focusing characteristic and the feasibility of the thermal insulation films. Besides, the influences of the bending angle of the Airy beam on the focusing performance are discussed in detail. The proposed acoustic lens has advantages of broad bandwidth (about 4.8 kHz), high focusing performance, self-healing feature, and simple structure, which enable it to provide more schemes for acoustic focusing. It has excellent potential applications in acoustic devices.
NASA Astrophysics Data System (ADS)
Arasa, Josep; Pizarro, Carles; Blanco, Patricia
2016-06-01
Injection molded plastic lenses have continuously improved their performance regarding optical quality and nowadays are as usual as glass lenses in image forming devices. However, during the manufacturing process unavoidable fluctuations in material density occur, resulting in local changes in the distribution of refractive index, which degrade the imaging properties of the polymer lens. Such material density fluctuations correlate to phase delays, which opens a path for their mapping. However, it is difficult to transfer the measured variations in refractive index into conventional optical simulation tool. Thus, we propose a method to convert the local variations in refractive index into local changes of one surface of the lens, which can then be described as a free-form surface, easy to introduce in conventional simulation tools. The proposed method was tested on a commercial gradient index (GRIN) lens for a set of six different object positions, using the MTF sagittal and tangential cuts to compare the differences between the real lens and a lens with homogenous refractive index, and the last surface converted into a free-form shape containing the internal refractive index changes. The same procedure was used to reproduce the local refractive index changes of an injected plastic lens with local index changes measured using an in-house built polariscopic arrangement, showing the capability of the method to provide successful results.
Kapoula, Zoi; Gaertner, Chrystal; Matheron, Eric
2012-01-01
There is controversy as to whether dyslexic children present systematic postural deficiency. Clinicians use a combination of ophthalmic prisms and proprioceptive soles to improve postural performances. This study examines the effects of convergent prisms and spherical lenses on posture. Fourteen dyslexics (13–17 years-old) and 11 non dyslexics (13–16 years-old) participated in the study. Quiet stance posturography was performed with the TechnoConcept device while subjects fixated a target at eye-level from a distance of 1_m. Four conditions were run: normal viewing; viewing the target with spherical lenses of −1 diopter (ACCOM1) over each eye; viewing with −3 diopters over each eye (ACCOM3); viewing with a convergent prism of 8 diopters per eye. Relative to normal viewing, the −1 lenses increased the surface of body sway significantly whereas the −3 diopter lenses only resulted in a significant increase of antero-posterior body sway. Thus, adolescents would appear to cope more effectively with stronger conflicts rather than subtle ones. The prism condition resulted in a significant increase in both the surface and the antero-posterior body sway. Importantly, all of these effects were similar for the two groups. Wavelet analysis (time frequency domain) revealed high spectral power of antero-posterior sway for the prism condition in both groups. In the ACCOM3 condition, the spectral power of antero-posterior sway decreased for non dyslexics but increased for dyslexics suggesting that dyslexics encounter more difficulty with accommodation. The cancelling time for medium range frequency (believed to be controlled by the cerebellum), was shorter in dyslexics, suggesting fewer instances of optimal control. We conclude that dyslexics achieve similar postural performances albeit less efficiently. Prisms and lenses destabilize posture for all teenagers. Thus, contrary to adults, adolescents do not seem to use efferent, proprioceptive ocular motor signals to improve their posture, at least not immediately when confronted to convergence accommodation conflict. PMID:23144786
Europa's shallow subsurface: lakes, layers and life? (Invited)
NASA Astrophysics Data System (ADS)
Schmidt, B. E.; Soderlund, K. M.; Gooch, B. T.; Blankenship, D. D.
2013-12-01
With an icy exterior covering a global ocean, Europa has long been a target of interest in the search for life beyond Earth. A critical question related to the habitability of this icy world is: how does the ice shell recycle? Recent detection of shallow subsurface water lenses or "lakes" joins the evidence that implies Europa is currently active, recycling its ice shell. This new perspective has important astrobiological implications. At a surface age of 40-90 Myr, and about 50% covered by chaos terrain, Europa's resurfacing rate is likely to be very high if water does play a significant role in their formation. Because of the vigor of overturn implied if chaos does form by the collapse of ice above subsurface lenses, it is likely that surface and subsurface materials are well-mixed within the largest and deepest lenses, providing a mechanism for bringing oxidants and other surface contaminants to the deeper ice shell where it can reach the ocean by convective or compositional effects. The timescales over which large lenses refreeze (a few hundred thousand years) are large compared to the timescales for vertical transport (a few tens of thousands of years), while the timescales for smaller lenses are comparable to or shorter than convective timescales but involving smaller impurity loads than for larger more well-mixed sources. Melt lenses are intriguing potential habitats, particularly the larger features. Moreover, their formation likely requires the existence of impurities within the upper ice shell that may be sources of energy for microorganisms. Geomorphic evidence also exists for brine percolation that can disperse fluids both vertically and horizontally through pores and fractures. This process, observed in terrestrial ice shelves, may preserve liquid water within the ice matrix over many kilometers from the source. Horizontal transport of material may produce interconnectivity between distinct regions of Europa, providing a pathway for transferring nutrients and biomass, thus preserving habitable conditions within the ice over a longer duration. From this point of view, we evaluate the habitability of Europa's ice and ocean in light of active processes, including the lifetime of liquid reservoirs, vertical and horizontal material transport, and the resurfacing rate of the body that may be responsible both for reenergizing and destroying shallow habitats.
Correction of Hydrostatic Cluster Masses through Power Ratios and Weak Lensing
NASA Astrophysics Data System (ADS)
Mahdavi, Andisheh
2009-09-01
The evolution of rich, X-ray emitting clusters of galaxies has given us precise measurements of the cosmological parameters, with dramatic constraints on the dark energy equation of state. Built into these measurements are wholesale corrections for the infamous "X-ray mass underestimate"---the fact that X-ray masses are systematically low due to the incomplete thermalization of the intracluster plasma. We seek to refine the mass correction for cosmological use through morphological power ratios. Power ratios deliver more accurate correction factors because they take into account variations in substructure from cluster to cluster. We will test their ability to correct X-ray masses by comparing hydrostatic and weak lensing mass profiles for a sample of 44 rich clusters of galaxies.
Serendipitous discovery of a strong-lensed galaxy in integral field spectroscopy from MUSE
NASA Astrophysics Data System (ADS)
Galbany, Lluís; Collett, Thomas E.; Méndez-Abreu, Jairo; Sánchez, Sebastián F.; Anderson, Joseph P.; Kuncarayakti, Hanindyo
2018-06-01
2MASX J04035024-0239275 is a bright red elliptical galaxy at redshift 0.0661 that presents two extended sources at 2″ to the north-east and 1″ to the south-west. The sizes and surface brightnesses of the two blue sources are consistent with a gravitationally-lensed background galaxy. In this paper we present MUSE observations of this galaxy from the All-weather MUse Supernova Integral-field Nearby Galaxies (AMUSING) survey, and report the discovery of a background lensed galaxy at redshift 0.1915, together with other 15 background galaxies at redshifts ranging from 0.09 to 0.9, that are not multiply imaged. We have extracted aperture spectra of the lens and all the sources and fit the stellar continuum with STARLIGHT to estimate their stellar and emission line properties. A trace of past merger and active nucleus activity is found in the lensing galaxy, while the background lensed galaxy is found to be star-forming. Modeling the lensing potential with a singular isothermal ellipsoid, we find an Einstein radius of 1."45±0."04, which corresponds to 1.9 kpc at the redshift of the lens and it is much smaller than its effective radius (reff ˜ 9″"). Comparing the Einstein mass and the STARLIGHT stellar mass within the same aperture yields a dark matter fraction of 18% ± 8 % within the Einstein radius. The advent of large surveys such as the Large Synoptic Survey Telescope (LSST) will discover a number of strong-lensed systems, and here we demonstrate how wide-field integral field spectroscopy offers an excellent approach to study them and to precisely model lensing effects.
Medium-power diode-pumped Nd:BaY2F8 laser
NASA Astrophysics Data System (ADS)
Agnesi, Antonio; Guandalini, Annalisa; Lucca, Andrea; Sani, Elisa; Toncelli, Alessandra; Tonelli, Mauro; dell'Acqua, Stefano
2003-05-01
We report what is to our knowledge the first Nd:BaY2F8 (Nd:BaYF) laser pumped with a multiwatt fiber-coupled diode array tuned at approximately 804 nm. As much as 2.4 W were obtained with 6.2 W of absorbed pump power, showing efficient operation (51% slope efficiency), excellent beam quality (M2=1.1), and weak thermal lensing. Small intracavity losses (<1%) were measured, indicating both reduced thermally induced aberrations and good optical quality of the laser crystal.
Modeling Corneal Oxygen with Scleral Gas Permeable Lens Wear.
Compañ, Vicente; Aguilella-Arzo, Marcel; Edrington, Timothy B; Weissman, Barry A
2016-11-01
The main goal of this current work is to use an updated calculation paradigm, and updated boundary conditions, to provide theoretical guidelines to assist the clinician whose goal is to improve his or her scleral gas permeable (GP) contact lens wearing patients' anterior corneal oxygen supply. Our model uses a variable value of corneal oxygen consumption developed through Monod equations that disallows negative oxygen tensions within the stroma to predict oxygen tension at the anterior corneal surface of scleral GP contact lens wearing eyes, and to describe oxygen tension and flux profiles, for various boundary conditions, through the lens, tears, and cornea. We use several updated tissue and boundary parameters in our model. Tear exchange with GP scleral lenses is considered nonexistent in this model. The majority of current scleral GP contact lenses should produce some levels of corneal hypoxia under open eye conditions. Only lenses producing the thinnest of tear vaults should result in anterior corneal surface oxygen tensions greater than a presumed critical oxygen tension of 100 mmHg. We also find that corneal oxygen tension and flux are each more sensitive to modification in tear vault than to changes in lens oxygen permeability, within the ranges of current clinical manipulation. Our study suggests that clinicians would be prudent to prescribe scleral GP lenses manufactured from higher oxygen permeability materials and especially to fit without excessive corneal clearance.
Feng, Guo-Hua; Liu, Jun-Hao
2013-02-01
This paper proposes a tunable-focus liquid lens implemented with a simple cylindrical container structure and liquid as the lens material. The cylindrical container was constructed using a Pb [Zr(0.52)Ti(0.48)]O(3) (PZT) ring transducer and a polydimethylsiloxane membrane that was attached to a flat side of the transducer. The free surface of the liquid in the cylindrical container can be driven as a static-like convex lens with different curvatures because the higher-order harmonic resonance of the PZT transducer was electrically controlled. Based on a capillary-force-dominant design, the activated liquid lens maintained surface curvature in an arbitrary orientation without a gravitational effect. Profiles of the liquid lenses were characterized with the driving voltages of the transducer ranging from 12 to 60 V peak-to-peak (Vpp) at a resonant frequency of 460 kHz. The temperature effects on the lenses caused by the continuous operation of the transducer were measured. Images showed the various curvatures of the lenses with a range of actuation voltages. A change in focal length of eight times (5.72 to 46.03 cm) was demonstrated within the 10 Vpp variation of the driving voltage. For the characterized liquid lenses, the distortion was less than 2%, and the modulation transfer function reached 63 line pairs per mm (lp/mm) using ZEMAX analysis.
Near-field microscopy with a microfabricated solid immersion lens
NASA Astrophysics Data System (ADS)
Fletcher, Daniel Alden
2001-07-01
Diffraction of focused light prevents optical microscopes from resolving features in air smaller than half the wavelength, λ Spatial resolution can be improved by passing light through a sub-wavelength metal aperture scanned close to a sample, but aperture-based probes suffer from low optical throughput, typically below 10-4. An alternate and more efficient technique is solid immersion microscopy in which light is focused through a high refractive index Solid Immersion Lens (SIL). This work describes the fabrication, modeling, and use of a microfabricated SIL to obtain spatial resolution better than the diffraction limit in air with high optical throughput for infrared applications. SILs on the order of 10 μm in diameter are fabricated from single-crystal silicon and integrated onto silicon cantilevers with tips for scanning. We measure a focused spot size of λ/5 with optical throughput better than 10-1 at a wavelength of λ = 9.3 μm. Spatial resolution is improved to λ/10 with metal apertures fabricated directly on the tip of the silicon SIL. Microlenses have reduced spherical aberration and better transparency than large lenses but cannot be made arbitrarily small and still focus. We model the advantages and limitations of focusing in lenses close to the wavelength in diameter using an extension of Mie theory. We also investigate a new contrast mechanism unique to microlenses resulting from the decrease in field-of-view with lens diameter. This technique is shown to achieve λ/4 spatial resolution. We explore applications of the microfabricated silicon SIL for high spatial resolution thermal microscopy and biological spectroscopy. Thermal radiation is collected through the SIL from a heated surface with spatial resolution four times better than that of a diffraction- limited infrared microscope. Using a Fourier-transform infrared spectrometer, we observe absorption peaks in bacteria cells positioned at the focus of the silicon SIL.
Layered chalcogenide glass structures for IR lenses
NASA Astrophysics Data System (ADS)
Gibson, Daniel; Bayya, Shyam; Sanghera, Jas; Nguyen, Vinh; Scribner, Dean; Maksimovic, Velimir; Gill, John; Yi, Allen; Deegan, John; Unger, Blair
2014-07-01
A technique for fabricating novel infrared (IR) lenses can enable a reduction in the size and weight of IR imaging optics through the use of layered glass structures. These structures can range from having a few thick glass layers, mimicking cemented doublets and triplets, to having many thin glass layers approximating graded index (GRIN) lenses. The effectiveness of these structures relies on having materials with diversity in refractive index (large Δn) and dispersion and similar thermo-viscous behavior (common glass transition temperature, ΔTg = 10°C). A library of 13 chalcogenide glasses with broad IR transmission (NIR through LWIR bands) was developed to satisfy these criteria. The lens fabrication methodology, including glass design and synthesis, sheet fabrication, preform making, lens molding and surface finishing are presented.
... change the shape of the cornea surface to eliminate astigmatism, along with nearsightedness or farsightedness. ... contact lenses. Laser vision correction can most often eliminate, or greatly reduce astigmatism.
Quantitative bioimaging of trace elements in the human lens by LA-ICP-MS.
Konz, Ioana; Fernández, Beatriz; Fernández, M Luisa; Pereiro, Rosario; González-Iglesias, Héctor; Coca-Prados, Miguel; Sanz-Medel, Alfredo
2014-04-01
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for the quantitative imaging of Fe, Cu and Zn in cryostat sections of human eye lenses and for depth profiling analysis in bovine lenses. To ensure a tight temperature control throughout the experiments, a new Peltier-cooled laser ablation cell was employed. For quantification purposes, matrix-matched laboratory standards were prepared from a pool of human lenses from eye donors and spiked with standard solutions containing different concentrations of natural abundance Fe, Cu and Zn. A normalisation strategy was also carried out to correct matrix effects, lack of tissue homogeneity and/or instrumental drifts using a thin gold film deposited on the sample surface. Quantitative images of cryo-sections of human eye lenses analysed by LA-ICP-MS revealed a homogeneous distribution of Fe, Cu and Zn in the nuclear region and a slight increase in Fe concentration in the outer cell layer (i.e. lens epithelium) at the anterior pole. These results were assessed also by isotope dilution mass spectrometry, and Fe, Cu and Zn concentrations determined by ID-ICP-MS in digested samples of lenses and lens capsules.
MAGNIFICENT MAGNIFICATION: EXPLOITING THE OTHER HALF OF THE LENSING SIGNAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huff, Eric M.; Graves, Genevieve J.
2014-01-10
We describe a new method for measuring galaxy magnification due to weak gravitational lensing. Our method makes use of a tight scaling relation between galaxy properties that are modified by gravitational lensing, such as apparent size, and other properties that are not, such as surface brightness. In particular, we use a version of the well-known fundamental plane relation for early-type galaxies. This modified ''photometric fundamental plane'' uses only photometric galaxy properties, eliminating the need for spectroscopic data. We present the first detection of magnification using this method by applying it to photometric catalogs from the Sloan Digital Sky Survey. Thismore » analysis shows that the derived magnification signal is within a factor of three of that available from conventional methods using gravitational shear. We suppress the dominant sources of systematic error and discuss modest improvements that may further enhance the lensing signal-to-noise available with this method. Moreover, some of the dominant sources of systematic error are substantially different from those of shear-based techniques. With this new technique, magnification becomes a useful measurement tool for the coming era of large ground-based surveys intending to measure gravitational lensing.« less
Controlled release of betamethasone from vitamin E-loaded silicone-based soft contact lenses.
Rad, Maryam Shayani; Sajadi Tabassi, Sayyed Abolghasem; Moghadam, Maryam Hassanpour; Mohajeri, Seyed Ahmad
2016-11-01
Betamethasone (BMZ) is an effective drug which is commonly used as an eye drop for the management of ophthalmic inflammations. Due to low ocular bioavailability, it is necessary to prepare and optimize an ocular drug delivery system for BMZ. In this study we tried to use vitamin E diffusion barrier for sustaining BMZ release. Three commercial contact lenses were soaked in vitamin E solutions and swelling percentage, diameter, transmittance, binding capacity and release amount and time were evaluated in comparison with non-vitamin E-loaded pure lenses. The results showed that vitamin E significantly decreased water content of contact lenses whereas, increased the lens diameter in both dry and wet states. It effectively blocked UV radiation which is harmful for the eye surface while had no significant effect on visible transmittance. BMZ loading capacity enhanced and release rate remarkably decreased after using vitamin E as a hydrophobic diffusion barrier. This study revealed that vitamin E can be applied as a hydrophobic diffusion barrier for controlling and sustaining BMZ release from silicone-based soft contact lenses into the lachrymal fluid. It can also protect eye tissues as an antioxidant by blocking the UV radiation.
Study of 3D printing method for GRIN micro-optics devices
NASA Astrophysics Data System (ADS)
Wang, P. J.; Yeh, J. A.; Hsu, W. Y.; Cheng, Y. C.; Lee, W.; Wu, N. H.; Wu, C. Y.
2016-03-01
Conventional optical elements are based on either refractive or reflective optics theory to fulfill the design specifications via optics performance data. In refractive optical lenses, the refractive index of materials and radius of curvature of element surfaces determine the optical power and wavefront aberrations so that optical performance can be further optimized iteratively. Although gradient index (GRIN) phenomenon in optical materials is well studied for more than a half century, the optics theory in lens design via GRIN materials is still yet to be comprehensively investigated before realistic GRIN lenses are manufactured. In this paper, 3D printing method for manufacture of micro-optics devices with special features has been studied based on methods reported in the literatures. Due to the additive nature of the method, GRIN lenses in micro-optics devices seem to be readily achievable if a design methodology is available. First, derivation of ray-tracing formulae is introduced for all possible structures in GRIN lenses. Optics simulation program is employed for characterization of GRIN lenses with performance data given by aberration coefficients in Zernike polynomial. Finally, a proposed structure of 3D printing machine is described with conceptual illustration.
Tear Oxygen Under Hydrogel and Silicone Hydrogel Contact Lenses in Humans
Bonanno, Joseph A.; Clark, Christopher; Pruitt, John; Alvord, Larry
2011-01-01
Purpose To determine the tear oxygen tension under a variety of conventional and silicone hydrogel contact lenses in human subjects. Methods Three hydrogel and five silicone hydrogel lenses (Dk/t = 17 to 329) were coated on the back surface with an oxygen sensitive, bovine serum albumin-Pd meso-tetra (4-carboxyphenyl) porphine complex (BSA-porphine). Each lens type was placed on the right eye of 15 non-contact lens wearers to obtain a steady-state open eye tear oxygen tension using oxygen sensitive phosphorescence decay of BSA-porphine. A closed-eye oxygen tension estimate was obtained by measuring the change in tear oxygen tension after 5 min of eye closure. In separate experiments, a goggle was placed over the lens wearing eye and a gas mixture (PO2 = 51 torr) flowed over the lens to simulate anterior lens oxygen tension during eye closure. Results Mean open eye oxygen tension ranged from 58 to 133 torr. Closed eye estimates ranged from 11 to 42 torr. Oxygen tension under the goggle ranged from 8 to 48 torr and was higher than the closed eye estimate for six out of the eight lenses, suggesting that the average closed eye anterior lens surface oxygen tension is <51 torr. For Dk/t >30, the measured tear oxygen tension is significantly lower than that predicted from previous studies. Conclusions The phosphorescence decay methodology is capable of directly measuring the in vivo post lens PO2 of high Dk/t lenses without disturbing the contact lens or cornea. Our data indicate that increasing Dk/t up to and beyond 140 continues to yield increased flux into the central cornea. PMID:19609230
Comparison of progressive addition lenses by direct measurement of surface shape.
Huang, Ching-Yao; Raasch, Thomas W; Yi, Allen Y; Bullimore, Mark A
2013-06-01
To compare the optical properties of five state-of-the-art progressive addition lenses (PALs) by direct physical measurement of surface shape. Five contemporary freeform PALs (Varilux Comfort Enhanced, Varilux Physio Enhanced, Hoya Lifestyle, Shamir Autograph, and Zeiss Individual) with plano distance power and a +2.00-diopter add were measured with a coordinate measuring machine. The front and back surface heights were physically measured, and the optical properties of each surface, and their combination, were calculated with custom MATLAB routines. Surface shape was described as the sum of Zernike polynomials. Progressive addition lenses were represented as contour plots of spherical equivalent power, cylindrical power, and higher order aberrations (HOAs). Maximum power rate, minimum 1.00-DC corridor width, percentage of lens area with less than 1.00 DC, and root mean square of HOAs were also compared. Comfort Enhanced and Physio Enhanced have freeform front surfaces, Shamir Autograph and Zeiss Individual have freeform back surfaces, and Hoya Lifestyle has freeform properties on both surfaces. However, the overall optical properties are similar, regardless of the lens design. The maximum power rate is between 0.08 and 0.12 diopters per millimeter and the minimum corridor width is between 8 and 11 mm. For a 40-mm lens diameter, the percentage of lens area with less than 1.00 DC is between 64 and 76%. The third-order Zernike terms are the dominant high-order terms in HOAs (78 to 93% of overall shape variance). Higher order aberrations are higher along the corridor area and around the near zone. The maximum root mean square of HOAs based on a 4.5-mm pupil size around the corridor area is between 0.05 and 0.06 µm. This nonoptical method using a coordinate measuring machine can be used to evaluate a PAL by surface height measurements, with the optical properties directly related to its front and back surface designs.
Nord, B.; Buckley-Geer, E.; Lin, H.; ...
2016-08-05
We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either weremore » not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ~ 0.80–3.2 and in i-band surface brightness i SB ~ 23–25 mag arcsec –2 (2'' aperture). For each of the six systems, we estimate the Einstein radius θ E and the enclosed mass M enc, which have ranges θ E ~ 5''–9'' and M enc ~ 8 × 10 12 to 6 × 10 13 M ⊙, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nord, B.; Buckley-Geer, E.; Lin, H.
We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either weremore » not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ~ 0.80–3.2 and in i-band surface brightness i SB ~ 23–25 mag arcsec –2 (2'' aperture). For each of the six systems, we estimate the Einstein radius θ E and the enclosed mass M enc, which have ranges θ E ~ 5''–9'' and M enc ~ 8 × 10 12 to 6 × 10 13 M ⊙, respectively.« less
Karunakaran, Bhuvaneshwari; Tharion, Joseph; Dhawangale, Arvind Ramrao; Paul, Debjani; Mukherji, Soumyo
2018-02-01
Miniature lenses can transform commercial imaging systems, e.g., smartphones and webcams, into powerful, low-cost, handheld microscopes. To date, the reproducible fabrication of polymer lenses is still a challenge as they require controlled dispensing of viscous liquid. This paper reports a reproducible lens fabrication technique using liquid mold with programmable curvature and off-the-shelf materials. The lens curvature is controlled during fabrication by tuning the curvature of an interface of two immiscible liquids [polydimethylsiloxane (PDMS) and glycerol]. The curvature control is implemented using a visual feedback system, which includes a software-based guiding system to produce lenses of desired curvature. The technique allows PDMS lens fabrication of a wide range of sizes and focal lengths, within 20 min. The fabrication of two lens diameters: 1 and 5 mm with focal lengths ranging between 1.2 and 11 mm are demonstrated. The lens surface and bulk quality check performed using X-ray microtomography and atomic force microscopy reveal that the lenses are suitable for optical imaging. Furthermore, a smartphone microscope with ∼1.4-μm resolution is developed using a self-assembly of a single high power fabricated lens and microaperture. The lenses have various potential applications, e.g., optofluidics, diagnostics, forensics, and surveillance. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Using Nonprinciple Rays to Form Images in Geometrical Optics
NASA Astrophysics Data System (ADS)
Marx, Jeff; Mian, Shabbir
2015-11-01
Constructing ray diagrams to locate the image of an object formed by thin lenses and mirrors is a staple of many introductory physics courses at the high school and college levels, and has been the subject of some pedagogy-related articles. Our review of textbooks distributed in the United States suggests that the singular approach involves drawing principle rays to locate an object's image. We were pleasantly surprised to read an article in this journal by Suppapittayaporn et al. in which they use an alternative method to construct rays for thin lenses based on a "tilted principle axis" (TPA). In particular, we were struck by the generality of the approach (a single rule for tracing rays as compared to the typical two or three rules), and how it could help students more easily tackle challenging situations, such as multi-lens systems and occluded lenses, where image construction using principle rays may be impractical. In this paper, we provide simple "proofs" for this alternative approach for the case of thin lenses and single refracting surfaces.
Materials for x-ray refractive lenses minimizing wavefront distortions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Thomas; Alianelli, Lucia; Lengeler, Daniel
2017-06-09
Refraction through curved surfaces, reflection from curved mirrors in grazing incidence, and diffraction from Fresnel zone plates are key hard x-ray focusing mechanisms. In this article, we present materials used for refractive x-ray lenses. Important properties of such x-ray lenses include focusing strength, shape, and the material’s homogeneity and absorption coefficient. Both the properties of the initial material and the fabrication process result in a lens with imperfections, which can lead to unwanted wavefront distortions. Different fabrication methods for one-dimensional and two-dimensional focusing lenses are presented, together with the respective benefits and inconveniences that are mostly due to shape fidelity.more » Different materials and material grades have been investigated in terms of their homogeneity and the absence of inclusions. Single-crystalline materials show high homogeneity, but suffer from unwanted diffracted radiation, which can be avoided using amorphous materials. Lastly, we show that shape imperfections can be corrected using a correction lens.« less
The opto-cryo-mechanical design of the short wavelength camera for the CCAT Observatory
NASA Astrophysics Data System (ADS)
Parshley, Stephen C.; Adams, Joseph; Nikola, Thomas; Stacey, Gordon J.
2014-07-01
The CCAT observatory is a 25-m class Gregorian telescope designed for submillimeter observations that will be deployed at Cerro Chajnantor (~5600 m) in the high Atacama Desert region of Chile. The Short Wavelength Camera (SWCam) for CCAT is an integral part of the observatory, enabling the study of star formation at high and low redshifts. SWCam will be a facility instrument, available at first light and operating in the telluric windows at wavelengths of 350, 450, and 850 μm. In order to trace the large curvature of the CCAT focal plane, and to suit the available instrument space, SWCam is divided into seven sub-cameras, each configured to a particular telluric window. A fully refractive optical design in each sub-camera will produce diffraction-limited images. The material of choice for the optical elements is silicon, due to its excellent transmission in the submillimeter and its high index of refraction, enabling thin lenses of a given power. The cryostat's vacuum windows double as the sub-cameras' field lenses and are ~30 cm in diameter. The other lenses are mounted at 4 K. The sub-cameras will share a single cryostat providing thermal intercepts at 80, 15, 4, 1 and 0.1 K, with cooling provided by pulse tube cryocoolers and a dilution refrigerator. The use of the intermediate temperature stage at 15 K minimizes the load at 4 K and reduces operating costs. We discuss our design requirements, specifications, key elements and expected performance of the optical, thermal and mechanical design for the short wavelength camera for CCAT.
Electrowetting Variable Optics for Visible and Infrared Applications
NASA Astrophysics Data System (ADS)
Watson, Alexander Maxwell
Miniaturized variable optical devices are important for the fields of medical technology, optical communication, and consumer imaging devices. Areas ranging from endoscopy and optogenetics to atomic clocks and imaging all benefit from versatile optical systems. These applications all require precise and rapid control of imaging focal depth and lateral scanning. Electrowetting variable optics is one emergent technology that has the capability to provide focus tuning, beam steering, and even phase modulation in a small and robust package which requires no moving parts. Furthermore, electrowetting based devices there are attractive due to their transmissive nature, polarization insensitivity, low insertion loss, low electrical power requirements, and high optical quality. These features mean that electrowetting adaptive optical components are an attractive solution, compared with MEMS and liquid crystal optical components. Electrowetting is a technique that enables control of the shape of a liquid droplet with applied voltage. A conductive droplet on a dielectric surface alters its contact angle due to charges that build up between an underlying electrode and the surface of the droplet. This effect can be used to tune the curvature and tilt of liquids within cavities. The liquid boundary creates a high quality surface to use for lensing or steering applications. This thesis will focus on the development of electrowetting based lenses and prisms and applications in imaging for both visible and infrared wavelengths. Within this dissertation is the first demonstration of electrowetting lenses for phase control, as well as the investigation of non-aqueous electrowetting lens liquids for electrowetting lenses operation in the infrared. Key considerations that affect the performance and reliability are dielectric material and thickness, liquid selection and source of ionic conduction. The optical devices presented herein utilize judicious selection of dielectric material and electrowetting liquids to enable low voltage variable optics and demonstrate applications in microscopy and microendoscopy.
Directed Thermal Diffusions through Metamaterial Source Illusion with Homogeneous Natural Media
Xu, Guoqiang; Zhang, Haochun; Jin, Liang
2018-01-01
Owing to the utilization of transformation optics, many significant research and development achievements have expanded the applications of illusion devices into thermal fields. However, most of the current studies on relevant thermal illusions used to reshape the thermal fields are dependent of certain pre-designed geometric profiles with complicated conductivity configurations. In this paper, we propose a methodology for designing a new class of thermal source illusion devices for achieving directed thermal diffusions with natural homogeneous media. The employments of the space rotations in the linear transformation processes allow the directed thermal diffusions to be independent of the geometric profiles, and the utilization of natural homogeneous media improve the feasibility. Four schemes, with fewer types of homogeneous media filling the functional regions, are demonstrated in transient states. The expected performances are observed in each scheme. The related performance are analyzed by comparing the thermal distribution characteristics and the illusion effectiveness on the measured lines. The findings obtained in this paper see applications in the development of directed diffusions with minimal thermal loss, used in novel “multi-beam” thermal generation, thermal lenses, solar receivers, and waveguide. PMID:29671833
Kuszak, J R; Mazurkiewicz, M; Jison, L; Madurski, A; Ngando, A; Zoltoski, R K
2006-01-01
The results of a recent study on accommodation in humans and baboons has revealed that lens fiber structure and organization are key components of the mechanism of accommodation. Dynamic focusing involves the controlled displacement and replacement, or realignment, of cortical fiber-ends at sutures as the mechanism of accommodation at the fiber level. This emended explanation of the mechanism of accommodation raises the following question: as the structure of crystalline lenses are only similar, not identical between species, is accommodative amplitude related to differences in the structure and organization of fibers between species? To address this question, we have quantitatively examined the structure and organization of fibers in a number of the more commonly used animal models (mice, cattle, frogs, rabbits and chickens) for lens research. Lenses (a minimum of 12-18 lenses/species) from mice, cattle, frogs and rabbits were used for this study. Prior to fixation for structural analysis, measurements of the gross shape of the lenses (equatorial diameter, anterior and posterior minor radii [anterior + posterior minor radius = polar axis]) were taken directly through a stereo surgical dissecting microscope equipped with an ocular reticle. Lenses were then prepared for and examined by light (LM), transmission (TEM) and scanning electron microscopy (SEM). Scale computer-assisted drawings (CADs) of lenses and lens fibers were then constructed from quantitative data as described above and from quantitative data contained in micrographs. The differences in fiber structure and organization that effect accommodative range arise early in development and are continued throughout lifelong lens growth. In umbilical suture lenses (avian) secondary fibers develop with almost completely tapered anterior ends (85-90% reduction of their measures of width and thickness at the equator). By comparison, in lenses with line sutures (e.g. frogs and rabbits) secondary fibers develop with just a 50-60% reduction in anterior fiber taper. In lenses with Y sutures (mice and cattle), fiber width taper is only 25-40%. However, in all cases, while the taper of the posterior end width of fibers is just slightly less (approx. 15-20%) than that of anterior ends, posterior end thickness is only reduced by one half that of anterior thickness. In humans, the mechanism of accommodation at the fiber level involves the controlled realignment of very flattened and flared, rather than tapered fiber-ends at sutures. In this manner, the simultaneous increase in lens thickness and surface curvature in the accommodated state is the result of fiber-ends being overlapped along multiple (9-12) suture branches covering the majority of the anterior and posterior surfaces. The results of this animal study strongly suggest that accommodative range is directly related to quantitative differences in fiber structure and organization in the different suture types. The very broad accommodative range in birds is made possible, at least in part, by the almost complete tapering of fiber-ends at umbilical sutures. In contrast, the essentially negligible accommodative range of animals that have line- and Y-suture lenses is at least partially the result of the fact that these lenses have fibers with very little end taper. Thus, the blunt ends of fibers in line- and Y-suture lenses precludes any significant overlap of end segments to effect accommodation.
Study of surface modes on a vibrating electrowetting liquid lens
NASA Astrophysics Data System (ADS)
Strauch, Matthias; Shao, Yifeng; Bociort, Florian; Urbach, H. Paul
2017-10-01
The increased usage of liquid lenses motivates us to investigate surface waves on the liquid's surface. During fast focal switching, the surface waves decrease the imaging quality. We propose a model that describes the surface modes appearing on a liquid lens and predicts the resonance frequencies. The effects of those surface modes on a laser beam are simulated using Fresnel propagation, and the model is verified experimentally.
MATTER IN THE BEAM: WEAK LENSING, SUBSTRUCTURES, AND THE TEMPERATURE OF DARK MATTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahdi, Hareth S.; Elahi, Pascal J.; Lewis, Geraint F.
2016-08-01
Warm dark matter (WDM) models offer an attractive alternative to the current cold dark matter (CDM) cosmological model. We present a novel method to differentiate between WDM and CDM cosmologies, namely, using weak lensing; this provides a unique probe as it is sensitive to all of the “matter in the beam,” not just dark matter haloes and the galaxies that reside in them, but also the diffuse material between haloes. We compare the weak lensing maps of CDM clusters to those in a WDM model corresponding to a thermally produced 0.5 keV dark matter particle. Our analysis clearly shows thatmore » the weak lensing magnification, convergence, and shear distributions can be used to distinguish between CDM and WDM models. WDM models increase the probability of weak magnifications, with the differences being significant to ≳5 σ , while leaving no significant imprint on the shear distribution. WDM clusters analyzed in this work are more homogeneous than CDM ones, and the fractional decrease in the amount of material in haloes is proportional to the average increase in the magnification. This difference arises from matter that would be bound in compact haloes in CDM being smoothly distributed over much larger volumes at lower densities in WDM. Moreover, the signature does not solely lie in the probability distribution function but in the full spatial distribution of the convergence field.« less
Optical effects of exposing intact human lenses to ultraviolet radiation and visible light.
Kessel, Line; Eskildsen, Lars; Lundeman, Jesper Holm; Jensen, Ole Bjarlin; Larsen, Michael
2011-12-30
The human lens is continuously exposed to high levels of light. Ultraviolet radiation is believed to play a causative role in the development of cataract. In vivo, however, the lens is mainly exposed to visible light and the ageing lens absorbs a great part of the short wavelength region of incoming visible light. The aim of the present study was to examine the optical effects on human lenses of short wavelength visible light and ultraviolet radiation. Naturally aged human donor lenses were irradiated with UVA (355 nm), violet (400 and 405 nm) and green (532 nm) lasers. The effect of irradiation was evaluated qualitatively by photography and quantitatively by measuring the direct transmission before and after irradiation. Furthermore, the effect of pulsed and continuous laser systems was compared as was the effect of short, intermediate and prolonged exposures. Irradiation with high intensity lasers caused scattering lesions in the human lenses. These effects were more likely to be seen when using pulsed lasers because of the high pulse intensity. Prolonged irradiation with UVA led to photodarkening whereas no detrimental effects were observed after irradiation with visible light. Irradiation with visible light does not seem to be harmful to the human lens except if the lens is exposed to laser irradiances that are high enough to warrant thermal protein denaturation that is more readily seen using pulsed laser systems.
Consequences of wear interruption for discomfort with contact lenses.
Papas, Eric B; Tilia, Daniel; Tomlinson, Daniel; Williams, Josh; Chan, Eddy; Chan, Jason; Golebiowski, Blanka
2014-01-01
To establish whether increased end-of-day discomfort during soft contact lens wear is associated with short-term changes occurring to the lens itself. Twenty-seven subjects wore hydrogel lenses (Focus Dailies; Alcon) bilaterally for 10 hours on two separate days. Comfort was reported using 1-100 numerical rating scales (1 = intolerable discomfort, 100 = lens cannot be felt). Day 1 ratings were taken before lens insertion and at 0.05, 5, and 10 hours post-insertion. Day 2 ratings occurred at similar times, but lenses were removed after the 5-hour assessment and either reinserted (n = 14) or newly replaced (n = 12). An additional rating was taken 5 minutes after re-insertion. Wear then continued to the 10-hour point. In a separate study, 24 different subjects repeated these procedures using a silicone hydrogel lens (AirOptix Aqua; Alcon) with wear taking place on 3 days to permit lens replacement to be with existing as well as new lenses in all subjects. For hydrogel lenses, comfort scores (mean ± 95% CI) reported after 10 hours were 79.4 ± 8.3 when lenses were worn un-replaced, compared with 73.2 ± 9.2 for replacement with the existing lens. When replacement was with a brand new lens, the corresponding values were 72.9 ± 10.9 (un-replaced) versus 69.2 ± 12.8 (new lens replacement). For silicone hydrogel lenses, 10-hour comfort was 90.3 ± 3.2 (un-replaced) versus 92.2 ± 2.9 (replacement with existing lens) versus 90.0 ± 3.3 (replacement with new lens). Differences between replacement conditions were not significant in any case (analysis of variance, p > 0.05). Final comfort was not influenced by replacing lenses midway through the wearing period. Comfort decrements experienced by users of these daily contact lenses towards the later part of the wearing period are not caused by changes occurring to the lenses on this time scale. Possible alternative etiological factors include a fatigue-like response in one or more ocular tissues or stimulation of ocular surface nociceptors induced by the presence of the contact lens.
Solar Photovoltaic Array With Mini-Dome Fresnel Lenses
NASA Technical Reports Server (NTRS)
Piszczor, Michael F., Jr.; O'Neill, Mark J.
1994-01-01
Mini-dome Fresnel lenses concentrate sunlight onto individual photovoltaic cells. Facets of Fresnel lens designed to refract incident light at angle of minimum deviation to minimize reflective losses. Prismatic cover on surface of each cell reduces losses by redirecting incident light away from metal contacts toward bulk of semiconductor, where it is usefully absorbed. Simple design of mini-dome concentrator array easily adaptable to automated manufacturing techniques currently used by semiconductor industry. Attractive option for variety of future space missions.
Güell, José Luis; Morral, Merce; Gris, Oscar; Gaytan, Javier; Sisquella, Maite; Manero, Felicidad
2007-08-01
To perform a dynamic study of the relationship between Verisyse (AMO) and Artiflex (Ophtec B.V.) phakic intraocular lenses (pIOLs) and anterior chamber structures during accommodation using optical coherence tomography (OCT) (Visante, Carl Zeiss Meditec, Inc.) Institutional practice. Eleven myopic patients were randomly selected to have implantation of a Verisyse pIOL in 1 eye and an Artiflex pIOL in the other. Using a 2-dimensional image, dynamic measurements of the relationship between the anterior surface of the pIOL and the corneal endothelium, the posterior surface of the pIOL and the anterior surface of the crystalline lens, and the pupil diameter were performed using Visante OCT. Physiological accommodation was stimulated by adding lenses in 1.00 diopter (D) steps from +1.00 to -7.00 D. Both groups had a significant decrease in pupil diameter (P<.0001, generalized linear model [GLM]) and in the distance between the anterior surface of the pIOL and the corneal endothelium (P<.0001, GLM) with accommodation. There were no statistically significant changes in the distance between the posterior surface of either pIOL and the anterior surface of the crystalline lens (P = .2845, GLM). There were no statistically significant differences between the 2 pIOLs in any measurement (P>.05, GLM). The results fit with Helmholtz' theory of accommodation as forward movement of the diaphragm iris-crystalline lens was seen. There was a decrease in the distance between the pIOL and corneal endothelium and in the pupil diameter, whereas the distance between both pIOLs and the crystalline lens remained constant throughout the accommodation examination. This suggests that the risk for cataract from intermittent contact between the crystalline lens and IOL from accommodative effort is unlikely.
Laser interferometric studies of thermal effects of diode-pumped solid state lasing medium
NASA Astrophysics Data System (ADS)
Peng, Xiaoyuan; Asundi, Anand K.; Xu, Lei; Chen, Yihong; Xiong, Zhengjun; Lim, Gnian Cher
2000-04-01
Thermal effects dramatically influence the laser performance of diode-pumped solid state lasers (DPSSL). There are three factors accounting for thermal effects in diode-pumped laser medium: the change of the refractive index due to temperature gradient, the change of the refractive index due to thermal stress, and the change of the physical length due to thermal expansion (end effect), in which the first two effects can be called as thermal parts. A laser interferometer is proposed to measure both the bulk and physical messages of solid-state lasing medium. There are two advantages of the laser interferometry to determine the thermal lensing effect. One is that it allows separating the average thermal lens into thermal parts and end effect. Another is that the laser interferometry provides a non- invasive, full field, high-resolution means of diagnosing such effects by measuring the optical path difference induced by thermal loading in a lasing crystal reliable without disturbing the normal working conditions of the DPSS laser. Relevant measurement results are presented in this paper.
NASA Technical Reports Server (NTRS)
Shukla, R. P.; Dokhanian, Mostafa; Venkateswarlu, Putcha; George, M. C.
1990-01-01
The present paper describes an application of a phase conjugate Twyman-Green interferometer using barium titanate as a self-pumping mirror for testing optical components like concave and convex spherical mirrors and lenses. The aberrations introduced by the beam splitter while testing concave or convex spherical mirrors of large aperture are automatically eliminated due to self-focussing property of the phase conjugate mirror. There is no necessity for a good spherical surface as a reference surface unlike in classical Twyman-Green interferometer or Williams interferometer. The phase conjugate Twyman Green interferometer with a divergent illumination can be used as a test plate for checking spherical surfaces. A nondestructive technique for measuring the refractive indices of a Fabry Perot etalon by using a phase conjugate interferometer is also suggested. The interferometer is found to be useful for measuring the refractive indices of liquids and solid transparent materials with an accuracy of the order of + or - 0.0004.
Achrotech: achromat cost versus performance for conventional, diffractive, and GRIN components
NASA Astrophysics Data System (ADS)
Morris, Jeffrey; Wolf, Greg; Vandendriessche, Stefaan; Sparrold, Scott
2016-09-01
An achromatic component shares a common focus at two wavelengths and is a commonly used device in optical assemblies. This work explores the cost versus performance tradeoff for several types of achromatic lenses: conventional doublets with homogenous glass elements, hybrid doublets with a diffractive surface, axial GRadient INdex (GRIN) lenses (where the index of refraction changes along the length of the lens), and radial GRIN lenses (where the index of refraction changes depending on radial position). First order achromatic principles will be reviewed and applied to each system as a starting point and refined through the use of ray trace software. Optical performance will be assessed in terms of focusing efficiency and imaging. Cost will then be evaluated by accounting for current manufacturing costs and retail price through several distributors.
Solar Pumped High Power Solid State Laser for Space Applications
NASA Technical Reports Server (NTRS)
Fork, Richard L.; Laycock, Rustin L.; Green, Jason J. A.; Walker, Wesley W.; Cole, Spencer T.; Frederick, Kevin B.; Phillips, Dane J.
2004-01-01
Highly coherent laser light provides a nearly optimal means of transmitting power in space. The simplest most direct means of converting sunlight to coherent laser light is a solar pumped laser oscillator. A key need for broadly useful space solar power is a robust solid state laser oscillator capable of operating efficiently in near Earth space at output powers in the multi hundred kilowatt range. The principal challenges in realizing such solar pumped laser oscillators are: (1) the need to remove heat from the solid state laser material without introducing unacceptable thermal shock, thermal lensing, or thermal stress induced birefringence to a degree that improves on current removal rates by several orders of magnitude and (2) to introduce sunlight at an effective concentration (kW/sq cm of laser cross sectional area) that is several orders of magnitude higher than currently available while tolerating a pointing error of the spacecraft of several degrees. We discuss strategies for addressing these challenges. The need to remove the high densities of heat, e.g., 30 kW/cu cm, while keeping the thermal shock, thermal lensing and thermal stress induced birefringence loss sufficiently low is addressed in terms of a novel use of diamond integrated with the laser material, such as Ti:sapphire in a manner such that the waste heat is removed from the laser medium in an axial direction and in the diamond in a radial direction. We discuss means for concentrating sunlight to an effective areal density of the order of 30 kW/sq cm. The method integrates conventional imaging optics, non-imaging optics and nonlinear optics. In effect we use a method that combines some of the methods of optical pumping solid state materials and optical fiber, but also address laser media having areas sufficiently large, e.g., 1 cm diameter to handle the multi-hundred kilowatt level powers needed for space solar power.
Method for quick thermal tolerancing of optical systems
NASA Astrophysics Data System (ADS)
Werschnik, J.; Uhlendorf, K.
2016-09-01
Optical systems for lithography (projection lens), inspection (micro-objectives) or laser material processing usually have tight specifications regarding focus and wave-front stability. The same is true regarding the field dependent properties. Especially projection lenses have tight specifications on field curvature, magnification and distortion. Unwanted heating either from internal or external sources lead to undesired changes of the above properties. In this work we show an elegant and fast method to analyze the thermal sensitivity using ZEMAX. The key point of this method is using the thermal changes of the lens data from the multi-configuration editor as starting point for a (standard) tolerance analysis. Knowing the sensitivity we can either define requirements on the environment or use it to systematically improve the thermal behavior of the lens. We demonstrate this method for a typical projection lens for which we optimized the thermal field curvature to a minimum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nord, B.; Buckley-Geer, E.; Lin, H.
We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either weremore » not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ∼ 0.80–3.2 and in i -band surface brightness i {sub SB} ∼ 23–25 mag arcsec{sup −2} (2″ aperture). For each of the six systems, we estimate the Einstein radius θ {sub E} and the enclosed mass M {sub enc}, which have ranges θ {sub E} ∼ 5″–9″ and M {sub enc} ∼ 8 × 10{sup 12} to 6 × 10{sup 13} M {sub ⊙}, respectively.« less
NASA Astrophysics Data System (ADS)
Nord, B.; Buckley-Geer, E.; Lin, H.; Diehl, H. T.; Helsby, J.; Kuropatkin, N.; Amara, A.; Collett, T.; Allam, S.; Caminha, G. B.; De Bom, C.; Desai, S.; Dúmet-Montoya, H.; Pereira, M. Elidaiana da S.; Finley, D. A.; Flaugher, B.; Furlanetto, C.; Gaitsch, H.; Gill, M.; Merritt, K. W.; More, A.; Tucker, D.; Saro, A.; Rykoff, E. S.; Rozo, E.; Birrer, S.; Abdalla, F. B.; Agnello, A.; Auger, M.; Brunner, R. J.; Carrasco Kind, M.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; Foley, R. J.; Gerdes, D. W.; Glazebrook, K.; Gschwend, J.; Hartley, W.; Kessler, R.; Lagattuta, D.; Lewis, G.; Maia, M. A. G.; Makler, M.; Menanteau, F.; Niernberg, A.; Scolnic, D.; Vieira, J. D.; Gramillano, R.; Abbott, T. M. C.; Banerji, M.; Benoit-Lévy, A.; Brooks, D.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carretero, J.; D'Andrea, C. B.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Frieman, J.; Gaztanaga, E.; Gruen, D.; Honscheid, K.; James, D. J.; Kuehn, K.; Li, T. S.; Lima, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Walker, A. R.; Wester, W.; Zhang, Y.; DES Collaboration
2016-08-01
We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either were not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ˜ 0.80-3.2 and in I-band surface brightness I SB ˜ 23-25 mag arcsec-2 (2″ aperture). For each of the six systems, we estimate the Einstein radius θ E and the enclosed mass M enc, which have ranges θ E ˜ 5″-9″ and M enc ˜ 8 × 1012 to 6 × 1013 M ⊙, respectively. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
Visualization of permanent marks in progressive addition lenses by digital in-line holography
NASA Astrophysics Data System (ADS)
Perucho, Beatriz; Micó, Vicente
2013-04-01
A critical issue in the production of ophthalmic lenses is to guarantee the correct centering and alignment throughout the manufacturing and mounting processes. Aimed to that, progressive addition lenses (PALs) incorporate permanent marks at standardized locations at the lens. Those marks are engraved upon the surface and provide the model identification and addition power of the PAL, as well as to serve as locator marks to re-ink the removable marks again if necessary. Although the permanent marks should be visible by simple visual inspection, those marks are often faint and weak on new lenses providing low contrast, obscured by scratches on older lenses, and partially occluded and difficult to recognize on tinted or anti-reflection coated lenses. In this contribution, we present an extremely simple visualization system for permanent marks in PALs based on digital in-line holography. Light emitted by a superluminescent diode (SLD) is used to illuminate the PAL which is placed just before a digital (CCD) sensor. Thus, the CCD records an in-line hologram incoming from the diffracted wavefront provided by the PAL. As a result, it is possible to recover an in-focus image of the PAL inspected region by means of classical holographic tools applied in the digital domain. This numerical process involves digital recording of the in-line hologram, numerical back propagation to the PAL plane, and some digital processing to reduce noise and present a high quality final image. Preliminary experimental results are provided showing the applicability of the proposed method.
Internet based post-graduate course in spectacle lens design
NASA Astrophysics Data System (ADS)
Jalie, Mo
2014-07-01
The complexity of spectacle lenses has increased enormously over the last three decades. The advent of aspheric lenses for the normal power range and the, now commonplace, progressive lenses for the correction of presbyopia, are just two examples of 21st Century technology. Freeform surfaces are now employed to personalize lenses to wearer's needs and these may be both progressive and atoroidal in nature. At the same time, optometry has taken a sideways step from optics and physics into a more general primary health care profession with an ever-increasing amount of biological and medical content added to an already brimming curriculum, hence the need for persons without optometry training to undertake the study of spectacle lenses. Some years ago a post-graduate course was designed for opticians who had a good grasp of mathematics and the ability to pay close attention to detail in the lengthy trigonometric ray-tracing techniques employed in lens design calculations. The year-long course, is undertaken by distance learning, and has been undertaken via the internet by students from many countries around the world. Final assessment is by means of examination held by the Association of British Dispensing Opticians and takes the form of two three-hour papers, Paper One consisting of the determination of the aberrations of a spectacle lens by accurate trigonometric ray tracing and the second, a general paper on the optics of ophthalmic lenses. It leads to the professional qualification, ABDO (Hons) SLD.
NASA Astrophysics Data System (ADS)
Grilli, S.; Miccio, L.; Vespini, V.; Ferraro, P.
2008-08-01
In recent years a wide variety of liquid based optical elements have been conceived, designed and fabricated even for commercial products like digital cameras. The impressive development of microfluidic systems in conjunction with optics has led to the creation of a completely new field of investigation named optofludics. Among other things, the optofluidic area deals with the investigation and the realization of liquid micro-lenses. Different methods and configurations have been proposed in literature to achieve liquid variable micro-lenses. This paper reports about the possibility to achieve lensing effect by a relatively easy to accomplish technique based on an open microfluidic system consisting of a tiny amount of appropriate liquid manipulated by the pyroelectric effect onto a periodically poled LiNbO3 substrate. Basically, an electrowetting process is performed to actuate the liquid film by using the surface charges generated pyroelectrically under temperature variation. The configuration is electrode-less compared to standard electrowetting systems, thus improving the device flexibility and easiness of fabrication. The curvature of the liquid lenses has been characterized by interferometric techniques based on the evaluation of the phase map through digital holography. The results showing the evolution of the lens curvature with the temperature variation will be presented and discussed.
Deformable mirror technologies at AOA Xinetics
NASA Astrophysics Data System (ADS)
Wirth, Allan; Cavaco, Jeffrey; Bruno, Theresa; Ezzo, Kevin M.
2013-05-01
AOA Xinetics (AOX) has been at the forefront of Deformable Mirror (DM) technology development for over two decades. In this paper the current state of that technology is reviewed and the particular strengths and weaknesses of the various DM architectures are presented. Emphasis is placed on the requirements for DMs applied to the correction of high-energy and high average power lasers. Mirror designs optimized for the correction of typical thermal lensing effects in diode pumped solid-state lasers will be detailed and their capabilities summarized. Passive thermal management techniques that allow long laser run times to be supported will also be discussed.
Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing
Cremers, D.A.; Keller, R.A.
1982-06-08
The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be rlated to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10/sup -5/ cm/sup -1/ has been demonstrated using this technique.
Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing
Cremers, D.A.; Keller, R.A.
1985-10-01
The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be related to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10[sup [minus]5] cm[sup [minus]1] has been demonstrated using this technique. 6 figs.
Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing
Cremers, David A.; Keller, Richard A.
1985-01-01
The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be related to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10.sup.-5 cm.sup.-1 has been demonstrated using this technique.
Sorbara, Luigina; Maram, Jyotsna; Simpson, Trefford; Hutchings, Natalie
2018-04-01
First, to examine how wearing high and low modulus lenses with two different base curves affected lens fit, and the corneal tissue and bulbar conjunctival vascular tissue (bulbar redness and blood velocity). Secondly, to quantify the associations between these baseline and outcome variables and the third purpose was to correlate these variables with end of day comfort. Thirty participants wore higher (PureVision (PV) 8.3, 8.6) and lower (Acuvue Advance (AA) 8.3, 8.7) modulus silicone hydrogel lenses for two weeks on a daily wear basis. Lens fitting characteristics were examined. Corneal epithelial thickness was measured and the cornea and conjunctiva were assessed. RBC velocity was estimated from high magnification bulbar conjunctival images. Subjective comfort/dryness was reported by participants using visual analogue scales. AA lenses were rated the most comfortable (ANOVA, p=0.041). The least movement was while using the AA 8.3 base curve lens (Tukey p=0.028). Steep AA and PV lenses showed significantly higher conjunctival staining at the 2 week visit (ANOVA, p=0.029). There was a significant decrease in RBC velocity with both steeper AA lenses vs PV lenses (Tukey, p=0.001). Comparing baseline and 2 week visits, there was a significant negative correlation for the PV 8.3 between comfort and superior bulbar staining (r=-0.53). For both the PV 8.3 and AA 8.3 reduced RBC velocity was correlated with dryness (r=0.61 and r=0.91, respectively). Physical differences in contact lenses affect structural and vascular functional aspects of the ocular surface and these may be associated with symptoms of dryness. Copyright © 2017 British Contact Lens Association. All rights reserved.
Rad, Maryam Shayani; Mohajeri, Seyed Ahmad
2016-09-01
The purpose of the present study was to evaluate the efficacy of commercial soft contact lenses, loaded with vitamin E, as ocular drug delivery systems for simultaneous loading and release of ciprofloxacin (Cipro) and betamethasone (BMZ) in artificial tears. In this study, we applied vitamin E as a barrier to increase BMZ-Cipro loading into three commercial silicone-based soft contact lenses and control their simultaneous release into the artificial lachrymal fluid. Two different concentrations of vitamin E solution (0.1 and 0.2 g/ml) were used, and various parameters including changes in lens diameter, water content, ultraviolet-visible light (UV-Vis) transmittance, drug-binding properties, and drug release profile were investigated. The obtained results indicated that vitamin E significantly reduced the swelling properties of contact lenses in aqueous media, while it enhanced the lens diameter in both dry and hydrated states. Vitamin E had no significant effects on visible transmittance, while it blocked UV radiation, which could be harmful for the eye surface. Our findings revealed that vitamin E improved the simultaneous loading amount of BMZ-Cipro into soft contact lenses. Additionally, BMZ and Cipro release rates significantly reduced after using vitamin E as a hydrophobic diffusion barrier. After soaking the lenses in 0.1 and 0.2 g/ml of vitamin E solution, BMZ release time increased by 28.8-81.6 and 182.4-201 folds, respectively. Moreover, Cipro release time increased by 12-18 and 1152-2313 folds, respectively. The results of the present study indicated the efficacy of vitamin E as a diffusion barrier in developing a controlled drug delivery system for the simultaneous loading of BMZ and Cipro and sustaining their release from soft contact lenses.
Gravitational lensing in modified Newtonian dynamics
NASA Astrophysics Data System (ADS)
Mortlock, Daniel J.; Turner, Edwin L.
2001-10-01
Modified Newtonian dynamics (MOND) is an alternative theory of gravity that aims to explain large-scale dynamics without recourse to any form of dark matter. However, the theory is incomplete, lacking a relativistic counterpart, and so makes no definite predictions about gravitational lensing. The most obvious form that MONDian lensing might take is that photons experience twice the deflection of massive particles moving at the speed of light, as in general relativity (GR). In such a theory there is no general thin-lens approximation (although one can be made for spherically symmetric deflectors), but the three-dimensional acceleration of photons is in the same direction as the relativistic acceleration would be. In regimes where the deflector can reasonably be approximated as a single point-mass (specifically low-optical depth microlensing and weak galaxy-galaxy lensing), this naive formulation is consistent with observations. Forthcoming galaxy-galaxy lensing data and the possibility of cosmological microlensing have the potential to distinguish unambiguously between GR and MOND. Some tests can also be performed with extended deflectors, for example by using surface brightness measurements of lens galaxies to model quasar lenses, although the breakdown of the thin-lens approximation allows an extra degree of freedom. None the less, it seems unlikely that simple ellipsoidal galaxies can satisfy both constraints. Furthermore, the low-density universe implied by MOND must be completely dominated by the cosmological constant (to fit microwave background observations), and such models are at odds with the low frequency of quasar lenses. These conflicts might be resolved by a fully consistent relativistic extension to MOND; the alternative is that MOND is not an accurate description of the Universe.
Direct Laser Writing of Nanophotonic Structures on Contact Lenses.
AlQattan, Bader; Yetisen, Ali K; Butt, Haider
2018-04-24
Contact lenses are ubiquitous biomedical devices used for vision correction and cosmetic purposes. Their application as quantitative analytical devices is highly promising for point-of-care diagnostics. However, it is a challenge to integrate nanoscale features into commercial contact lenses for application in low-cost biosensors. A neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (1064 nm, 3 ns pulse, 240 mJ) in holographic interference patterning mode was utilized to produce optical nanostructures over the surface of a hydrogel contact lens. One-dimensional (925 nm) and two-dimensional (925 nm × 925 nm) nanostructures were produced on contact lenses and analyzed by spectroscopy and angle-resolve measurements. The holographic properties of these nanostructures were tested in ambient moisture, fully hydrated, and artificial tear conditions. The measurements showed a rapid tuning of optical diffraction from these nanostructures from 41 to 48°. The nanostructures were patterned near the edges of the contact lens to avoid any interference and obstruction to the human vision. The formation of 2D nanostructures on lenses increased the diffraction efficiency by more than 10%. The versatility of the holographic laser ablation method was demonstrated by producing four different 2D nanopattern geometries on contact lenses. Hydrophobicity of the contact lens was characterized by contact angle measurements, which increased from 59.0° at pristine condition to 62.5° at post-nanofabrication. The holographic nanostructures on the contact lens were used to sense the concentration of Na + ions. Artificial tear solution was used to simulate the conditions in dry eye syndrome, and nanostructures on the contact lenses were used to detect the electrolyte concentration changes (±47 mmol L -1 ). Nanopatterns on a contact lens may be used to sense other ocular diseases in early stages at point-of-care settings.
NASA Astrophysics Data System (ADS)
Schwindt, Daniel; Kneisel, Christof
2010-05-01
Discontinuous alpine permafrost is expected to exist at altitudes above 2400m a.s.l. at mean annual air temperatures (MAAT) of less than -1°C. Below timberline only a few sites are known, where sporadic permafrost exists in vegetated talus slopes with positive MAAT. Aim of the study is to characterize permafrost-humus interaction, the thermal regime and its influence on temporal and spatial permafrost variability. Results of geophysical and thermal measurements from three talus slopes, located in the Swiss Alps (Engadin, Appenzell) at elevations between 1200 and 1800m a.s.l. with MAAT between 2.8°C and 5.5°C are presented. Parent rock-material of the slopes are granite (Bever Valley, Engadin) and dolomite (Susauna Valley, Engadin; Brüeltobel, Appenzell). Joint application of electrical resistivity tomography (ERT) and refraction seismic tomography (RST) is used to detect and characterize permafrost. To observe temporal and spatial variability in ice content and characteristics year-around geoelectrical monitoring and quasi-3D ERT are used. A forward modeling approach has been applied to validate the results of geoelectrical monitoring. A number of temperature data loggers were installed in different depth of the humus layer and in different positions of the slope to monitor the ground thermal regime. Isolated permafrost has been detected by the combination of ERT and RST in the lower parts of the investigated talus slopes. Results from geophysical measurements and monitoring indicate a high spatial and temporal variability in ice content and ice characteristics (temperature, density, content of unfrozen water) for all sites. A distinct rise of resistivities between November and December indicates a decrease of unfrozen water content, caused by a pronounced cooling in the lower parts of the slope. Decreasing ice content and extent of the permafrost lenses can be observed in decreasing seismic velocities from 2600m/sec in spring to only 1500m/sec in October. Ice characteristics, ice content and extent of permafrost lenses depend on the thermal regime, induced by characteristics of surface (humus, vegetation) and subsurface (parental rock material) material as well as thermal effects, with an inversive air flow inside the talus slope of cold air inflow in winter in the lower parts and cold air outflow in summer through the same vents (chimney effect), a theory that has been proven by temperature measurements in the Brüeltobel and the Susauna Valley. While the dolomitic talus slopes are relatively homogenous concerning surface and subsurface material, showing a consistent thick humus cover, the granitic site shows a small-scale heterogeneity of different humus forms and thicknesses as well as size of granitic boulders, influencing the thermal regime. Temperatures in the humus profile are very constant for the dolomitic sites, reflecting the insulation capability of the humus cover, with temperatures in August around 3°C at 30cm depth (mean air temperature in August 12°C). Humus temperatures (30cm depth) in the Bever Valley vary strongly between areas with consistent humus cover (1-2°C in August) and areas with coarse, uncovered boulders, where temperatures show a stronger coupling to air temperatures. While the chimney effect has strong influence on the ground thermal regime of the dolomitic sites, for some parts of the granitic slope in the Bever Valley the theory has to be expanded towards a continuous air exchange with the atmosphere, for areas where the insulation capability of the humus cover is highly disturbed along large parts of the talus slope.
Shiraya, Tomoyasu; Kato, Satoshi; Minami, Keiichiro; Miyata, Kazunori
2017-02-01
The aim of this study was to experimentally examine the changes in the transmittances of photocoagulation lasers when surface light scattering increases in AcrySof intraocular lenses (IOLs). SA60AT IOLs (Alcon) were acceleratingly aging for 0, 3, 5, and 10 years to simulate surface light scattering, and the surface light-scattering intensities of both IOL surfaces were measured using a Scheimpflug photographer. The powers of laser beams that passed from a laser photocoagulator through the aged IOLs were measured at 532, 577, and 647 nm. Changes in the laser power and transmittance with the years of aging and the intensities of surface light scattering were examined. Although the intensity of surface light scattering increased with the years of aging, the laser power did not change with the years of aging (P > 0.30, Kruskal-Wallis test). There were no significant changes in the laser transmittance with the years of aging or the laser wavelength (P > 0.30 and 0.57, respectively). The intensity of surface light scattering revealed no significant association with the laser transmittance at any wavelength (P > 0.37, liner regression). The increases in the surface light scattering of the AcrySof IOLs would not influence retinal photocoagulation treatments for up to 10 years after implantation.
NASA Astrophysics Data System (ADS)
Oguri, Masamune; Schrabback, Tim; Jullo, Eric; Ota, Naomi; Kochanek, Christopher S.; Dai, Xinyu; Ofek, Eran O.; Richards, Gordon T.; Blandford, Roger D.; Falco, Emilio E.; Fohlmeister, Janine
2013-02-01
We present Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3) observations of SDSS J1029+2623, a three-image quasar lens system produced by a foreground cluster at z = 0.584. Our strong lensing analysis reveals six additional multiply imaged galaxies in addition to the multiply imaged quasar. We confirm the complex nature of the mass distribution of the lensing cluster, with a bimodal dark matter distribution which deviates from the Chandra X-ray surface brightness distribution. The Einstein radius of the lensing cluster is estimated to be θE = 15.2 ± 0.5 arcsec for the quasar redshift of z = 2.197. We derive a radial mass distribution from the combination of strong lensing, HST/ACS weak lensing and Subaru/Suprime-cam weak lensing analysis results, finding a best-fitting virial mass of Mvir = 1.55+ 0.40- 0.35 × 1014 h- 1 M⊙ and a concentration parameter of cvir = 25.7+ 14.1- 7.5. The lensing mass estimate at the outer radius is smaller than the X-ray mass estimate by a factor of ˜2. We ascribe this large mass discrepancy to shock heating of the intracluster gas during a merger, which is also suggested by the complex mass and gas distributions and the high value of the concentration parameter. In the HST image, we also identify a probable galaxy, GX, in the vicinity of the faintest quasar image C. In strong lens models, the inclusion of GX explains the anomalous flux ratios between the quasar images. The morphology of the highly elongated quasar host galaxy is also well reproduced. The best-fitting model suggests large total magnifications of 30 for the quasar and 35 for the quasar host galaxy, and has an AB time delay consistent with the measured value.
ERIC Educational Resources Information Center
Khan, Sameen Ahmed
2010-01-01
Spherometers are instruments designed to measure the radius of curvature of spherical surfaces. They are particularly useful in situations where only a portion of the spherical surface is available, for example, for measuring the radii of curvature of spherical lenses. A spherometer can be easily modified so that it can also be used to measure the…
Passive athermalization of doublets in 8-13 micron waveband
NASA Astrophysics Data System (ADS)
Schuster, Norbert
2014-10-01
Passive athermalization of lenses has become a key-technology for automotive and other outdoor applications using modern uncooled 25, 17 and 12 micron pixel pitch bolometer arrays. Typical pixel counts for thermal imaging are 384x288 (qVGA), 640x480 (VGA), and 1024x768 (XGA). Two lens arrangements (called Doublets) represent a cost effective way to satisfy resolution requirements of these detectors with F-numbers 1.4 or faster. Thermal drift of index of refraction and the geometrical changes (in lenses and housing) versus temperature defocus the initial image plane from the detector plane. The passive athermalization restricts this drop of spatial resolution in a wide temperature range (typically -40°C…+80°C) to an acceptable value without any additional external refocus. In particular, lenses with long focal lengths and high apertures claim athermalization. A careful choice of lens and housing materials and a sophistical dimensioning lead to three different principles of passivation: The Passive Mechanical Athermalization (PMA) shifts the complete lens cell, the Passive Optical and Mechanical Athermalization (POMA) shifts only one lens inside the housing, the Passive Optical Athermalization (POA) works without any mechanism. All three principles will be demonstrated for a typical narrow-field lens (HFOV about 12°) with high aperture (aperture based F-number 1.3) for the actual uncooled reference detector (17micron VGA). Six design examples using different combinations of lens materials show the impact on spatial lens resolution, on overall length, and on weight. First order relations are discussed. They give some hints for optimization solutions. Pros and cons of different passive athermalization principles are evaluated in regards of housing design, availability of materials and costing. Examples with a convergent GASIR®1-lens in front distinguish by best resolution, short overall length, and lowest weight.
3D printed plano-freeform optics for non-coherent discontinuous beam shaping
NASA Astrophysics Data System (ADS)
Assefa, Bisrat G.; Saastamoinen, Toni; Biskop, Joris; Kuittinen, Markku; Turunen, Jari; Saarinen, Jyrki
2018-03-01
The design, fabrication, and characterization of freeform optics for LED-based complex target irradiance distribution are challenging. Here, we investigate a 3D printing technology called Printoptical® technology in order to relax or push forward both the fabrication limits and LED-based applications of thick freeform lenses with small slope features. The freeform designs are carried out with an assumption of small-sized LED source using an existing point-source-based Tailoring method, which is available in the semi-commercial software. The numerical methods of the designs are characterized by ray-tracing software. The irradiance patterns of the 3D printed freeform lenses are promising considering the average shape conformity deviation of around ± 40 µm and center area surface roughness around ± 12 nm, which is to our knowledge by far the best result reported for 3D printed freeform lenses with a thickness greater than 1 mm. Applications of freeform lenses with discontinuous target irradiance distribution patterns are expected in eco-friendly energy efficient lighting such as in zebra-cross lighting.
3D printed plano-freeform optics for non-coherent discontinuous beam shaping
NASA Astrophysics Data System (ADS)
Assefa, Bisrat G.; Saastamoinen, Toni; Biskop, Joris; Kuittinen, Markku; Turunen, Jari; Saarinen, Jyrki
2018-06-01
The design, fabrication, and characterization of freeform optics for LED-based complex target irradiance distribution are challenging. Here, we investigate a 3D printing technology called Printoptical® technology in order to relax or push forward both the fabrication limits and LED-based applications of thick freeform lenses with small slope features. The freeform designs are carried out with an assumption of small-sized LED source using an existing point-source-based Tailoring method, which is available in the semi-commercial software. The numerical methods of the designs are characterized by ray-tracing software. The irradiance patterns of the 3D printed freeform lenses are promising considering the average shape conformity deviation of around ± 40 µm and center area surface roughness around ± 12 nm, which is to our knowledge by far the best result reported for 3D printed freeform lenses with a thickness greater than 1 mm. Applications of freeform lenses with discontinuous target irradiance distribution patterns are expected in eco-friendly energy efficient lighting such as in zebra-cross lighting.
Compact Groups analysis using weak gravitational lensing
NASA Astrophysics Data System (ADS)
Chalela, Martín; Gonzalez, Elizabeth Johana; Garcia Lambas, Diego; Foëx, Gael
2017-05-01
We present a weak lensing analysis of a sample of Sloan Digital Sky Survey compact groups (CGs). Using the measured radial density contrast profile, we derive the average masses under the assumption of spherical symmetry, obtaining a velocity dispersion for the singular isothermal spherical model, σV = 270 ± 40 km s-1, and for the NFW model, R_{200}=0.53± 0.10 h_{70}^{-1} Mpc. We test three different definitions of CG centres to identify which best traces the true dark matter halo centre, concluding that a luminosity-weighted centre is the most suitable choice. We also study the lensing signal dependence on CG physical radius, group surface brightness and morphological mixing. We find that groups with more concentrated galaxy members show steeper mass profiles and larger velocity dispersions. We argue that both, a possible lower fraction of interloper and a true steeper profile, could be playing a role in this effect. Straightforward velocity dispersion estimates from member spectroscopy yield σV ≈ 230 km s-1 in agreement with our lensing results.
Cowell, B A; Willcox, M D; Schneider, R P
1998-06-01
Adhesion of bacteria to hydrogel lenses is thought to be an initial step of ocular colonization allowing evasion of normal host defences. The salt concentration of media is an important parameter controlling microbial adhesion. Salinity varies from 0.97% NaCl equivalents in the open eye to 0.89% in the closed eye state. In this study, the effect of sodium chloride in the concentration range of 0.8-1.0% (w/v) NaCl on adhesion of ocular bacteria to soft contact lenses was investigated using a static adhesion assay. Pseudomonas aeruginosa was found to adhere to lenses in significantly greater amounts than Serratia marcescens, Flavobacterium meningosepticum, Stenotrophomonas maltophilia and Staphylococcus intermedius. Increasing NaCl from 0.8% to 1.0% (w/v) increased adhesion of all bacteria tested. This adhesion was strong since the organisms could not be removed by washing in low ionic buffer. Adhesion of these organisms did not correlate with their cell surface properties as determined by bacterial adhesion to hydrocarbons (BATH) and retention on sepharose columns.
Visual acuity estimation from simulated images
NASA Astrophysics Data System (ADS)
Duncan, William J.
Simulated images can provide insight into the performance of optical systems, especially those with complicated features. Many modern solutions for presbyopia and cataracts feature sophisticated power geometries or diffractive elements. Some intraocular lenses (IOLs) arrive at multifocality through the use of a diffractive surface and multifocal contact lenses have a radially varying power profile. These type of elements induce simultaneous vision as well as affecting vision much differently than a monofocal ophthalmic appliance. With myriad multifocal ophthalmics available on the market it is difficult to compare or assess performance in ways that effect wearers of such appliances. Here we present software and algorithmic metrics that can be used to qualitatively and quantitatively compare ophthalmic element performance, with specific examples of bifocal intraocular lenses (IOLs) and multifocal contact lenses. We anticipate this study, methods, and results to serve as a starting point for more complex models of vision and visual acuity in a setting where modeling is advantageous. Generating simulated images of real- scene scenarios is useful for patients in assessing vision quality with a certain appliance. Visual acuity estimation can serve as an important tool for manufacturing and design of ophthalmic appliances.
Nanoplasmonic lenses for bacteria sorting (Presentation Recording)
NASA Astrophysics Data System (ADS)
Zhu, Xiangchao; Yanik, Ahmet A.
2015-08-01
We demonstrate that patches of two dimensional arrays of circular plasmonic nanoholes patterned on gold-titanium thin film enables subwavelength focusing of visible light in far field region. Efficient coupling of the light with the excited surface plasmon at metal dielectric interface results in strong light transmission. As a result, surface plasmon plays an important role in the far field focusing behavior of the nanohole-aperture patches device. Furthermore, the focal length of the focused beam was found to be predominantly dependent on the overall size of the patch, which is in good agreement with that calculated by Rayleigh-Sommerfield integral formula. The focused light beam can be utilized to separate bio-particles in the dynamic range from 0.1 μm to 1 μm through mainly overcoming the drag force induced by fluid flow. In our proposed model, focused light generated by our plasmonic lenses will push the larger bio-particles in size back to the source of fluid flow and allow the smaller particles to move towards the central aperture of the patch. Such a new kind of plasmonic lenses open up possibility of sorting bacterium-like particles with plasmonic nanolenses, and also represent a promising tool in the field of virology.
Aspheres for high speed cine lenses
NASA Astrophysics Data System (ADS)
Beder, Christian
2005-09-01
To fulfil the requirements of today's high performance cine lenses aspheres are an indispensable part of lens design. Among making them manageable in shape and size, tolerancing aspheres is an essential part of the development process. The traditional method of tolerancing individual aspherical coefficients results in unemployable theoretical figures only. In order to obtain viable parameters that can easily be dealt with in a production line, more enhanced techniques are required. In this presentation, a method of simulating characteristic manufacturing errors and deducing surface deviation and slope error tolerances will be shown.
NASA Astrophysics Data System (ADS)
Dvoretckaia, L. N.; Mozharov, A. M.; Mukhin, I. S.
2017-11-01
Photolithography mask made of close-packed array of micro- and nano-sized spherical lenses allows to obtain the ordered structures and provides highest “optical resolution/cost” ratio between all existing photolithography and laser direct writing methods. In this letter, we present results of modeling the propagation of a plane wave falling on the array of quartz (SiO2) microspherical lenses and focusing in the image reverse photoresist layer. We present here experimental results on fabrication of ordered arrays of submicron wells and columns and substrate preparation for growth of monocrystalline nanowires on metal surface using photolithography with mask of SiO2 microspheres. Such ordered nano-sized arrays of wells and columns can be used in fabrication of further growth of monocrystalline nanowires, quantum dots and production of plasmon structures.
Multiple pass reimaging optical system
NASA Technical Reports Server (NTRS)
Gunter, W. D., Jr.; Brown, R. M. (Inventor)
1973-01-01
An optical imaging system for enabling nonabsorbed light imaged onto a photodetective surface to be collected and reimaged one or more times onto that surface in register with the original image. The system includes an objective lens, one or more imaging lenses, one or more retroreflectors and perhaps a prism for providing optical matching of the imaging lens focal planes to the photo detective surface.
Fluorescent solute-partitioning characterization of layered soft contact lenses.
Dursch, T J; Liu, D E; Oh, Y; Radke, C J
2015-03-01
Partitioning of aqueous packaging, wetting, and care-solution agents into and out of soft contact lenses (SCLs) is important for improving wear comfort and also for characterizing lens physico-chemical properties. We illustrate both features of partitioning by application of fluorescent-solute partitioning into DAILIES TOTAL1® (delefilcon A) water-gradient SCLs, which exhibit a layered structure of a silicone-hydrogel (SiHy) core sandwiched between thin surface-gel layers. Two-photon fluorescence confocal laser-scanning microscopy and attenuated total-reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) characterize the lens and assess uptake profiles of six prototypical fluorescent solutes. Comparison of solute uptake in a SiHy-core prototype lens (i.e., O2OPTIX(TM)) validates the core SiHy structure of DAILIESTOTAL1®. To establish surface-layer charge, partition coefficients and water contents are obtained for aqueous pH values of 4 and 7.4. Solute fluorescence-intensity profiles clearly confirm a layered structure for the DAILIES TOTAL1® lenses. In all cases, aqueous solute partition coefficients are greater in the surface layers than in the SiHy core, signifying higher water in the surface gels. ATR-FTIR confirms surface-layer mass water contents of 82±3%. Water uptake and hydrophilic-solute uptake at pH 4 compared with that at pH 7.4 reveal that the surface-gel layers are anionic at physiologic pH 7.4, whereas both the SiHy core and O2OPTIX™ (lotrafilcon B) are nonionic. We successfully confirm the layered structure of DAILIES TOTAL1®, consisting of an 80-μm-thick SiHy core surrounded by 10-μm-thick polyelectrolyte surface-gel layers of significantly greater water content and aqueous solute uptake compared with the core. Accordingly, fluorescent-solute partitioning in SCLs provides information on gel structure and composition, in addition to quantifying uptake and release amounts and rates. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Zhuang, Zhenfeng; Chen, Yanting; Yu, Feihong; Sun, Xiaowei
2014-08-01
This paper presents a field curvature correction method of designing an ultrashort throw ratio (TR) projection lens for an imaging system. The projection lens is composed of several refractive optical elements and an odd polynomial mirror surface. A curved image is formed in a direction away from the odd polynomial mirror surface by the refractive optical elements from the image formed on the digital micromirror device (DMD) panel, and the curved image formed is its virtual image. Then the odd polynomial mirror surface enlarges the curved image and a plane image is formed on the screen. Based on the relationship between the chief ray from the exit pupil of each field of view (FOV) and the corresponding predescribed position on the screen, the initial profile of the freeform mirror surface is calculated by using segments of the hyperbolic according to the laws of reflection. For further optimization, the value of the high-order odd polynomial surface is used to express the freeform mirror surface through a least-squares fitting method. As an example, an ultrashort TR projection lens that realizes projection onto a large 50 in. screen at a distance of only 510 mm is presented. The optical performance for the designed projection lens is analyzed by ray tracing method. Results show that an ultrashort TR projection lens modulation transfer function of over 60% at 0.5 cycles/mm for all optimization fields is achievable with f-number of 2.0, 126° full FOV, <1% distortion, and 0.46 TR. Moreover, in comparing the proposed projection lens' optical specifications to that of traditional projection lenses, aspheric mirror projection lenses, and conventional short TR projection lenses, results indicate that this projection lens has the advantages of ultrashort TR, low f-number, wide full FOV, and small distortion.
Athermal design and analysis of glass-plastic hybrid lens
NASA Astrophysics Data System (ADS)
Yang, Jian; Cen, Zhaofeng; Li, Xiaotong
2018-01-01
With the rapid development of security market, the glass-plastic hybrid lens has gradually become a choice for the special requirements like high imaging quality in a wide temperature range and low cost. The reduction of spherical aberration is achieved by using aspherical surface instead of increasing the number of lenses. Obviously, plastic aspherical lens plays a great role in the cost reduction. However, the hybrid lens has a priority issue, which is the large thermal coefficient of expansion of plastic, causing focus shift and seriously affecting the imaging quality, so the hybrid lens is highly sensitive to the change of temperature. To ensure the system operates normally in a wide temperature range, it is necessary to eliminate the influence of temperature on the hybrid lens system. A practical design method named the Athermal Material Map is summarized and verified by an athermal design example according to the design index. It includes the distribution of optical power and selection of glass or plastic. The design result shows that the optical system has excellent imaging quality at a wide temperature range from -20 ° to 70 °. The method of athermal design in this paper has generality which could apply to optical system with plastic aspherical surface.
NASA Astrophysics Data System (ADS)
Geach, J. E.; More, A.; Verma, A.; Marshall, P. J.; Jackson, N.; Belles, P.-E.; Beswick, R.; Baeten, E.; Chavez, M.; Cornen, C.; Cox, B. E.; Erben, T.; Erickson, N. J.; Garrington, S.; Harrison, P. A.; Harrington, K.; Hughes, D. H.; Ivison, R. J.; Jordan, C.; Lin, Y.-T.; Leauthaud, A.; Lintott, C.; Lynn, S.; Kapadia, A.; Kneib, J.-P.; Macmillan, C.; Makler, M.; Miller, G.; Montaña, A.; Mujica, R.; Muxlow, T.; Narayanan, G.; O'Briain, D.; O'Brien, T.; Oguri, M.; Paget, E.; Parrish, M.; Ross, N. P.; Rozo, E.; Rusu, Cristian E.; Rykoff, E. S.; Sanchez-Argüelles, D.; Simpson, R.; Snyder, C.; Schloerb, F. P.; Tecza, M.; Wang, W.-H.; Van Waerbeke, L.; Wilcox, J.; Viero, M.; Wilson, G. W.; Yun, M. S.; Zeballos, M.
2015-09-01
We report the discovery of a gravitationally lensed hyperluminous infrared galaxy (intrinsic LIR ≈ 1013 L⊙) with strong radio emission (intrinsic L1.4 GHz ≈ 1025 W Hz-1) at z = 2.553. The source was identified in the citizen science project SPACE WARPS through the visual inspection of tens of thousands of iJKs colour composite images of luminous red galaxies (LRGs), groups and clusters of galaxies and quasars. Appearing as a partial Einstein ring (re ≈ 3 arcsec) around an LRG at z = 0.2, the galaxy is extremely bright in the sub-millimetre for a cosmological source, with the thermal dust emission approaching 1 Jy at peak. The redshift of the lensed galaxy is determined through the detection of the CO(3→2) molecular emission line with the Large Millimetre Telescope's Redshift Search Receiver and through [O III] and Hα line detections in the near-infrared from Subaru/Infrared Camera and Spectrograph. We have resolved the radio emission with high-resolution (300-400 mas) eMERLIN L-band and Very Large Array C-band imaging. These observations are used in combination with the near-infrared imaging to construct a lens model, which indicates a lensing magnification of μ ≈ 10. The source reconstruction appears to support a radio morphology comprised of a compact (<250 pc) core and more extended component, perhaps indicative of an active nucleus and jet or lobe.
de Castro, Alberto; Birkenfeld, Judith; Maceo, Bianca; Manns, Fabrice; Arrieta, Esdras; Parel, Jean-Marie; Marcos, Susana
2013-09-11
To estimate changes in surface shape and gradient refractive index (GRIN) profile in primate lenses as a function of accommodation. To quantify the contribution of surface shape and GRIN to spherical aberration changes with accommodation. Crystalline lenses from 15 cynomolgus monkeys were studied in vitro under different levels of accommodation produced by a stretching system. Lens shape was obtained from optical coherence tomography (OCT) cross-sectional images. The GRIN was reconstructed with a search algorithm using the optical path measured from OCT images and the measured back focal length. The spherical aberration of the lens was estimated as a function of accommodation using the reconstructed GRIN and a homogeneous refractive index. The lens anterior and posterior radii of curvature decreased with increasing lens power. Both surfaces exhibited negative asphericities in the unaccommodated state. The anterior surface conic constant shifted toward less negative values with accommodation, while the value of the posterior remained constant. GRIN parameters remained constant with accommodation. The lens spherical aberration with GRIN distribution was negative and higher in magnitude than that with a homogeneous equivalent refractive index (by 29% and 53% in the unaccommodated and fully accommodated states, respectively). Spherical aberration with the equivalent refractive index shifted with accommodation toward negative values (-0.070 μm/diopter [D]), but the reconstructed GRIN shifted it farther (-0.124 μm/D). When compared with the lens with the homogeneous equivalent refractive index, the reconstructed GRIN lens has more negative spherical aberration and a larger shift toward more negative values with accommodation.
Two-step recording of visible holographic elements in photo-thermo-refractive glass
NASA Astrophysics Data System (ADS)
Kompan, Fedor; Divliansky, Ivan; Smirnov, Vadim; Glebov, Leonid B.
2018-02-01
Photo-thermo-refractive (PTR) glass) is a photosensitive silicate glass doped with Ce3+ where a permanent refractive index decrement is produced by UV exposure followed by thermal development. This material provides high efficiency and low losses combined with high thermal, ionizing and laser tolerance of holographic optical elements (HOEs). This is why PTR glass is widely used for holographic recording of volume Bragg gratings (trivial holograms produced by interference of two collimated beams) and phase plates operating in near UV, visible, and near IR spectral regions. It would be very beneficial though to record also complex HOEs (lenses and curved mirrors) for those spectral regions. However, PTR is not sensitive to visible or IR radiation and therefore does not allow the recording of nonplanar holograms for these regions. The present paper describes a technique for recording complex HOEs using visible radiation in Ce3+ doped PTR glass. This two-step technique includes a blank exposure to UV radiation followed by structured exposure to a visible beam. It was found that the second exposure decreases the refractive index decrement induced in the UV exposed glass after thermal development. This means that areas, which underwent double exposure, have refractive index lower than in unexposed areas but higher than in just UV exposed ones. Thus, this technique provides refractive index increment after visible irradiation of UV exposed PTR glass. Using this approach, complex holograms (curved mirrors and lenses) operating in the visible region, were recorded in PTR glass.
Umetsu, Keiichi; Zitrin, Adi; Gruen, Daniel; ...
2016-04-20
Here, we present a comprehensive analysis of strong-lensing, weak-lensing shear and magnification data for a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters atmore » $$0.19\\lesssim z\\lesssim 0.69$$ selected from Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis combines constraints from 16-band Hubble Space Telescope observations and wide-field multi-color imaging taken primarily with Suprime-Cam on the Subaru Telescope, spanning a wide range of cluster radii (10''–16'). We reconstruct surface mass density profiles of individual clusters from a joint analysis of the full lensing constraints, and determine masses and concentrations for all of the clusters. We find the internal consistency of the ensemble mass calibration to be ≤5% ± 6% in the one-halo regime (200–2000 kpc h –1) compared to the CLASH weak-lensing-only measurements of Umetsu et al. For the X-ray-selected subsample of 16 clusters, we examine the concentration–mass (c–M) relation and its intrinsic scatter using a Bayesian regression approach. Our model yields a mean concentration of $$c{| }_{z=0.34}=3.95\\pm 0.35$$ at M200c sime 14 × 1014 M⊙ and an intrinsic scatter of $$\\sigma (\\mathrm{ln}{c}_{200{\\rm{c}}})=0.13\\pm 0.06$$, which is in excellent agreement with Λ cold dark matter predictions when the CLASH selection function based on X-ray morphological regularity and the projection effects are taken into account. We also derive an ensemble-averaged surface mass density profile for the X-ray-selected subsample by stacking their individual profiles. The stacked lensing signal is detected at 33σ significance over the entire radial range ≤4000 kpc h –1, accounting for the effects of intrinsic profile variations and uncorrelated large-scale structure along the line of sight. The stacked mass profile is well described by a family of density profiles predicted for cuspy dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro–Frenk–White (NFW), Einasto, and DARKexp models, whereas the single power-law, cored isothermal and Burkert density profiles are disfavored by the data. We show that cuspy halo models that include the large-scale two-halo term provide improved agreement with the data. For the NFW halo model, we measure a mean concentration of $${c}_{200{\\rm{c}}}={3.79}_{-0.28}^{+0.30}$$ at $${M}_{200{\\rm{c}}}={14.1}_{-1.0}^{+1.0}\\times {10}^{14}\\;{M}_{\\odot }$$, demonstrating consistency between the complementary analysis methods.« less
Clinical evaluation of long-term users of two contact lens care preservative systems.
Young, Graeme; Keir, Nancy; Hunt, Chris; Woods, Craig A
2009-03-01
To clinically evaluate long-term users of two different contact lens care preservative systems and to investigate whether prolonged use is associated with an increase in the prevalence of dry eye. Eighty-nine wearers of group IV hydrogel or silicone hydrogel lenses participated in this one-visit, investigator-masked study. Subjects were required to have consistently used a polyhexamethylene biguanide (PHMB) or polyquaternium-1 (PQT) based solution for 2 years. Consistent use was defined as 80% for the past 2 years and 100% for the past year. Clinical assessments included: average and comfortable wear time; overall and end-of-day comfort; signs of dryness, discomfort, burning or stinging, grittiness or scratchiness and visual changes; non-invasive and fluorescein break-up-time; pre-ocular tear film lipids, tear meniscus height, Schirmer and fluorescein clearance tests; limbal and bulbar hyperemia; palpebral roughness; corneal and conjunctival staining; lens front surface wetting; and lens film deposits. Significantly more grittiness or scratchiness was reported by subjects using a PHMB-containing system (67% vs. 44%; P = 0.02). Palpebral roughness and hyperemia were significantly greater in the PHMB group wearing group IV lenses (P = 0.01 and P = 0.05, respectively). Corneal staining was significantly higher in the PHMB users in all four peripheral sectors (P < 0.01). Nasal and temporal conjunctival staining was also significantly higher for users of PHMB-containing systems (P < 0.05). Front surface lens wettability was significantly better for group IV PQT users compared to PHMB users (P = 0.008), with 84% vs. 72%, respectively, with lenses graded by the investigator as having "good" or "excellent" wettability. Significantly higher levels of lens front surface film deposits were noted with PHMB users (P = 0.007), with 58% of group IV lenses treated with PHMB compared with 38% of group IV lenses treated with PQT showing some lens front surface film deposition. No significant differences between the two preservative system groups were noted for the range of dry eye evaluations nor the remaining clinical assessments. Differences in both ocular and lens characteristic were observed between long-term users of two preservative systems used in many contact lens multi-purpose solutions. The findings from this study did not support the hypothesis that prolonged use of PHMB-containing solutions leads to dry eye. Additional studies including a larger sample size and perhaps longer use of the systems could help to further elucidate differences in clinical performance between systems.
Moulded infrared optics making night vision for cars within reach
NASA Astrophysics Data System (ADS)
Bourget, Antoine; Guimond, Yann; Franks, John; Van Den Bergh, Marleen
2005-02-01
Sustainable mobility is a major public concern, making increased safety one of the major challenges for the car of the future. About half of all serious traffic accidents occur at night, while only a minority of journeys is at night. Reduced visibility is one of the main reasons for these striking statistics and this explains the interest of the automobile industry in Enhanced Night Vision Systems. As an answer to the need for high volume, low cost optics for these applications, Umicore has developed GASIR. This material is transparent in the NEAR and FAR infrared, and is mouldable into high quality finished spherical, aspherical and diffractive lenses. Umicore's GASIR moulded lenses are an ideal solution for thermal imaging for cars (Night Vision) and for sensing systems like pedestrian detection, collision avoidance, occupation detection, intelligent airbag systems etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Shuo; Zhu, Zong-Hong; Covone, Giovanni
We present a new analysis of Hubble Space Telescope, Spitzer Space Telescope, and Very Large Telescope imaging and spectroscopic data of a bright lensed galaxy at z = 1.0334 in the lensing cluster A2667. Using this high-resolution imaging, we present an updated lens model that allows us to fully understand the lensing geometry and reconstruct the lensed galaxy in the source plane. This giant arc gives a unique opportunity to view the structure of a high-redshift disk galaxy. We find that the lensed galaxy of A2667 is a typical spiral galaxy with a morphology similar to the structure of itsmore » counterparts at higher redshift, z ∼ 2. The surface brightness of the reconstructed source galaxy in the z {sub 850} band reveals the central surface brightness I(0) = 20.28 ± 0.22 mag arcsec{sup –2} and a characteristic radius r{sub s} = 2.01 ± 0.16 kpc at redshift z ∼ 1. The morphological reconstruction in different bands shows obvious negative radial color gradients for this galaxy. Moreover, the redder central bulge tends to contain a metal-rich stellar population, rather than being heavily reddened by dust due to high and patchy obscuration. We analyze the VIMOS/integral field unit spectroscopic data and find that, in the given wavelength range (∼1800-3200 Å), the combined arc spectrum of the source galaxy is characterized by a strong continuum emission with strong UV absorption lines (Fe II and Mg II) and shows the features of a typical starburst Wolf-Rayet galaxy, NGC 5253. More specifically, we have measured the equivalent widths of Fe II and Mg II lines in the A2667 spectrum, and obtained similar values for the same wavelength interval of the NGC 5253 spectrum. Marginal evidence for [C III] 1909 emission at the edge of the grism range further confirms our expectation.« less
Morgan, Philip B; Chamberlain, Paul; Moody, Kurt; Maldonado-Codina, Carole
2013-06-01
To evaluate the performance of a silicone hydrogel daily disposable lens in neophyte subjects over 12 months. Seventy four subjects with no previous contact lens experience were randomised to wear narafilcon A (1 DAY ACUVUE(®) TruEye™) lenses (LW group) or to wear no contact lenses (NLW group) for 12 months. Biomicroscopy (performed by a masked investigator), visual acuity and subjective response scores were recorded at an initial visit and six follow-up visits, in addition to lens fit and surface evaluation for the LW group. Comfort was recorded with SMS messaging. Fifteen of the LW group discontinued before the end of the study, compared with six of the NLW group. Measured visual acuity was about half a line better for the NLW group as these subjects were provided with their full sphero-cylindrical over-refraction, compared to the LW group in their best spherical corrected contact lenses; subjective scores for vision were similar for the two groups. Bulbar conjunctival hyperaemia, limbal hyperaemia, corneal staining, conjunctival staining and papillary conjunctivitis were clinically equivalent for the two groups whereas conjunctival staining was higher in the LW group. Comfort scores assessed by SMS were equivalent for the LW and NLW groups; there was a measurable improvement in comfort during the first month of wear for the LW group. This work has demonstrated that modern soft lenses (narafilcon A daily disposable silicone hydrogel lenses) offer an excellent, comfortable form of vision correction, and are able to exhibit minimal alterations to ocular physiology. Copyright © 2012 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Controlled Release of Multiple Therapeutics from Silicone Hydrogel Contact Lenses.
White, Charles James; DiPasquale, Stephen Anthony; Byrne, Mark Edward
2016-04-01
The majority of contact lens wearers experience a significant level of ocular discomfort associated with lens wear, often within hours of wear, related to dry lenses, inflammation, protein adhesion to the lens surface, etc. Application of controlled drug release techniques has focused on the incorporation and/or release of a single comfort molecule from a lens including high molecular weight comfort agents or pharmaceutical agents. Previous studies have sought to mitigate the occurrence of only single propagators of discomfort. Clinical studies with eye drop solutions have shown that a mixture of diverse comfort agents selected to address multiple propagators of discomfort provide the greatest and longest lasting sensations of comfort for the patient. In this paper, multiple propagators of discomfort are addressed through the simultaneous release of four molecules from a novel contact lens to ensure high level of lens wear comfort. Silicone hydrogel contact lenses were engineered via molecular imprinting strategies to simultaneously release up to four template molecules including hydropropyl methylcellulose (HPMC), trehalose, ibuprofen, and prednisolone. By adjusting the ratio of functional monomer to comfort molecule, a high level of control was demonstrated over the release rate. HPMC, trehalose, ibuprofen, and prednisolone were released at therapeutically relevant concentrations with varying rates from a single lens. The results indicate use as daily disposable lenses for single day release or extended-wear lenses with multiple day release. Imprinted lenses are expected to lead to higher efficacy for patients compared to topical eye drops by improving compliance and mitigating concentration peaks and valleys associated with multiple drops.
Controlled Release of Multiple Therapeutics from Silicone Hydrogel Contact Lenses
White, Charles J.; DiPasquale, Stephen A.; Byrne, Mark E.
2016-01-01
Purpose The majority of contact lens wearers experience a significant level of ocular discomfort associated with lens wear, often within hours of wear, related to dry lenses, inflammation, protein adhesion to the lens surface, etc. Application of controlled drug release techniques has focused on the incorporation and/or release of a single comfort molecule from a lens including high molecular weight comfort agents or pharmaceutical agents. Previous studies have sought to mitigate the occurrence of only single propagators of discomfort. Clinical studies with eye drop solutions have shown that a mixture of diverse comfort agents selected to address multiple propagators of discomfort provide the greatest and longest lasting sensations of comfort for the patient. In this paper, multiple propagators of discomfort are addressed through the simultaneous release of four molecules from a novel contact lens to ensure high level of lens wear comfort. Methods Silicone hydrogel contact lenses were engineered via molecular imprinting strategies to simultaneously release up to four template molecules including hydropropyl methylcellulose (HPMC), trehalose, ibuprofen, and prednisolone. Results By adjusting the ratio of functional monomer to comfort molecule, a high level of control was demonstrated over the release rate. HPMC, trehalose, ibuprofen, and prednisolone were released at therapeutically relevant concentrations with varying rates from a single lens. Conclusions The results indicate use as daily disposable lenses for single day release or extended-wear lenses with multiple day release. Imprinted lenses are expected to lead to higher efficacy for patients compared to topical eye drops by improving compliance and mitigating concentration peaks and valleys associated with multiple drops. PMID:26945177
Maïssa, Cécile; Guillon, Michel; Garofalo, Renee J
2012-01-01
The principal objective of the study was to measure the conjunctival staining produced in the circumlimbal region by silicone hydrogel contact lenses with different edge designs. The secondary objective was to investigate the association between circumlimbal staining and comfort. Four silicone hydrogel contact lenses: ACUVUE OASYS (knife edge design), AIR OPTIX, Biofinity (chisel edge rounded edge combination), and PureVision (rounded edge design), and 1 hydrogel contact lens, ACUVUE 2 (knife edge design), were tested. The study was conducted on a cohort population of 27 established soft contact lens wearers, who wore each contact lens type, in a random order, for a period of 10 (±2) days. Circumlimbal staining was measured in a double-masked fashion through image analysis of digital photographs of lissamine green taken under controlled experimental conditions. The results obtained showed that contact lens edge design was the primary factor controlling circumlimbal staining for silicone hydrogel lenses: a rounded edge away from the ocular surface produced the lowest staining (average, 0.19%) and a knife edge in close apposition to the ocular surface produced the highest staining (average, 1.34%). Contact lens material rigidity was also identified to affect circumlimbal staining and an inverse association between circumlimbal staining and contact lens comfort was demonstrated: the rounded edge design produced the lowest comfort (72 of 100) and the knife edge design produced the highest (87 out of 100). Soft contact lens wear induces circumlimbal staining, the level of staining being influenced by the contact lens edge design. However, high level of circumlimbal staining is not associated with decreased comfort.
New method for evaluating high-quality fog protective coatings
NASA Astrophysics Data System (ADS)
Czeremuszkin, Grzegorz; Latreche, Mohamed; Mendoza-Suarez, Guillermo
2011-05-01
Fogging is commonly observed when humid-warm air contacts the cold surface of a transparent substrate, i.e. eyewear lenses, making the observed image blurred and hazy. To protect from fogging, the lens inner surfaces are protected with Anti-Fog coatings, which render them hydrophilic and induce water vapor condensation as a smooth, thin and invisible film, which uniformly flows down on the lens as the condensation progresses. Coatings differ in protection level, aging kinetics, and susceptibility to contamination. Some perform acceptably in limited conditions, beyond which the condensing water film becomes unstable, nonuniform, and scatters light or shows refractory distortions, both affecting the observed image. Quantifying the performance of Anti-Fog coated lenses is difficult: they may not show classical fogging and the existing testing methods, based on fog detection, are therefore inapplicable. The presented method for evaluating and quantifying AF properties is based on characterizing light scattering on lenses exposed to controlled humidity and temperature. Changes in intensity of laser light scattered at low angles (1, 2 4 and 8 degrees), observed during condensation of water on lenses, provide information on the swelling of Anti-Fog coatings, formation of uniform water film, going from an unstable to a steady state, and on the coalescence of discontinuous films. Real time observations/measurements allow for better understanding of factors controlling fogging and fog preventing phenomena. The method is especially useful in the development of new coatings for military-, sport-, and industrial protective eyewear as well as for medical and automotive applications. It allows for differentiating between coatings showing acceptable, good, and excellent performance.
Schafer, Jeffery; Reindel, William; Steffen, Robert; Mosehauer, Gary; Chinn, Joseph
2018-01-01
Background Sustained digital display viewing reduces eye blink frequency and tear film stability. To retain water and preserve a smooth optical surface, contact lens manufacturers have integrated the humectant polyvinylpyrrolidone (PVP) into silicone hydrogel contact lenses. In this study, extended blink time (EBT) was used to assess visual stability over a prolonged blink interval of two PVP-containing silicone hydrogel lenses, samfilcon A (SAM) and senofilcon A (SEN). Materials and methods This randomized, bilateral, masked, crossover study assessed lens performance in ten subjects after 16 hours of wear. EBT, ie, the time elapsed between cessation of blinking and blur-out of a threshold letter on the acuity chart, was measured. At the end of the wear period, subjects reported duration of computer use and rated visual quality (VQ) and comfort while wearing the assigned lens, and the investigator evaluated lens surface wetting characteristics. Each lens was removed and immediately weighed to determine total water content. Results EBTs were 10.42 seconds for SAM and 8.04 seconds for SEN (p = 0.015). Subjective ratings of VQ after 16 hours of wear were 84.6 for SAM and 74.4 for SEN (p = 0.049). Comfort ratings were 85.9 for SAM and 80.2 for SEN (p > 0.05). Median times of computer use were 6–8 hours for both lens types. Post blink, 70.0% of SAM and 30.0% of SEN lenses were completely wet (p = 0.021). Total water content after wear was 43.7% for SAM and 35.5% for SEN (p < 0.001). Conclusion EBT measurement indicated more stable vision with the PVP-containing SAM polymer compared with the PVP-containing SEN polymer. The SAM polymer also demonstrated better surface wetting and maintained higher water content after a prolonged period of wear. EBT can be valuable in assessing vision stability of patients after hours of computer use. PMID:29765195
In vitro analysis of the physical properties of contact lens blister pack solutions.
Menzies, Kara L; Jones, Lyndon
2011-04-01
Since the initial development of silicone hydrogels, many modifications to the bulk and surface properties of the lenses have been undertaken to improve the wettability and comfort of the lenses. Recently, manufacturers have incorporated various "wetting agents" or surface-active agents into the blister packaging solutions (BPSs) of the lenses to improve initial comfort of the lens on eye. The purpose of this study was to measure and compare the pH, surface tension (ST), viscosity, and osmolality of BPSs for a variety of silicone hydrogel and polyHEMA-based hydrogel lenses. In addition, two saline solutions were tested for comparison purposes. The pH, osmolality, ST, and viscosity were measured for the BPSs for lotrafilcon B and lotrafilcon A and lotrafilcon B with a "modified BPS" (m-lotrafilcon A, m-lotrafilcon B) (CIBA Vision, Duluth, GA); balafilcon A (Bausch & Lomb, Rochester, NY); galyfilcon A, senofilcon A, and narafilcon A (Johnson & Johnson, Jacksonville, FL); and comfilcon A and enfilcon A (CooperVision, Pleasanton, CA) and BPSs from two conventional polyHEMA-based materials-etafilcon A (Johnson & Johnson) and omafilcon A (CooperVision). The two saline solutions tested were Unisol (Alcon, Fort Worth, TX) and Softwear Saline (CIBA Vision). The pH results for the two saline solutions and all BPSs remained in the pH range of tears (6.6-7.8). The ST of the modified BPS was significantly lower (p < 0.01) than the original non-modified BPS. Viscosity measurements ranged between 0.90 and 1.00 cP for all BPSs and saline solutions, except for the modified BPS, which had significantly higher viscosities (p < 0.001). Osmolality measurements were not significantly different (p > 0.05) between BPSs made by the same manufacturer but were significantly different compared with BPSs made by different manufacturers (p < 0.05). The incorporation of wetting agents and surfactants into BPSs does alter the physical properties of the BPSs, which may have clinical implications regarding initial in-eye comfort.
Contact lens materials, mucin fragmentation and relation to symptoms.
Berry, Monica; Purslow, Chris; Murphy, Paul J; Pult, Heiko
2012-07-01
Mucins adhere to contact lenses (CLs), reflecting the renewal of the preocular fluid and enzymatic activity at the ocular surface. In this study, we aimed to analyze mucin fragmentation on materials new to the ocular surface and investigate whether this correlates with wearing comfort. Lenses were obtained from new CL wearers after 2 weeks each of wearing vifilcon A, followed by senofilcon A, and then by vifilcon A lenses. Symptoms were evaluated using the Ocular Surface Disease Index (OSDI). CLs were extracted in a mixture of guanidinium hydrochloride and radioimmunoprecipitation assay buffer. Mucin mobility was analyzed after electrophoresis, Western blotting, and visualization with antibodies against mucin peptide core. Mobilities, normalized to total reactivity in the lane, were compared between visits for each subject and were expressed as shifts. Mucin (MUC)5AC polymers exceeding 260 kDa were observed in agarose gels; NuPAGE resolved polymers from 260 to 3.5 kDa: when large mucins were detected, the smallest fragments were missing. Fragmentation patterns were significantly different between lens types for MUC1 (analysis of variance, P = 0.006) and MUC4 (P < 0.001) but not for MUC5AC or MUC16 (P > 0.293). Mobility shifts of MUC1 and MUC4 were significantly negatively correlated (Pearson, r = -0.908; P = 0.002). For OSDI scores >15, mucin fragmentation was unchanged, whereas for OSDI scores <15, MUC4 and MUC5AC fragments were longer on vifilcon A than on senofilcon lenses (unpaired t test, P = 0.046), irrespective of the direction of change (analysis of variance, P > 0.366). Changes in MUC1 breakdown were significantly negatively correlated to the overall OSDI score (r = -0.891, P = 0.001). In asymptomatic CL wearers, only changes in mucin fragmentation in response to a new material were consistent and fast, irrespective of CL order. Lack of change seems, therefore, to be connected with discomfort during CL wear.
[Clinical experiences after implantation of various lens types in silicon oil tamponade].
Effert, R; Lommatzsch, A; Wessing, A
1996-06-01
A tamponade of the vitreous space with silicone oil will obligatory lead to cataract after 6 to 12 months. Today it is easily possible, to implant an artificial lense in silicone oil filled eyes. However the combination of an artificial lense and silicone oil will lead to a strong inflammation in the anterior segment of the eye. 22 pseudophacic patients with silicone oil tamponade were examined 2 to 6 months after the operation. In 12 patients simple artificial lenses were implanted, in 10 patients heparin modified lenses were implanted. In 10 cases the lens was implanted followed by the insufflation of silicone oil in the vitreous cavity, in 2 cases a lens was implanted in a silicone oil filled eye and the silicon oil was not removed. In 8 cases the implantation of the artificial lens has been performed some months to years before the insufflation of the silicone oil. The indication for the silicon oil tamponade was a PVR retinal detachment in all cases. The following parameters were examined: Reaction of the pupil to light, pupil round or oval in miosis, examination of the fundus peripherie possible after mydriasis, fixation of the iris with parts of the capsula or with the anterior surface of the lens? In addition in 12 cases the postoperative refraction was compared with the results of the biometry, which was performed before the operation. In the cases with a simple lens in about 50% an incomplete miosis or an oval pupil because of fixation of the iris with parts of the capsula or with the anterior surface of the lense could be observed. In the cases with heparin modified lenses these complications could be observed in 20%. In all cases a strong opacification of the capsula was seen. In 8 of 12 cases with combined procedure a small hyperopia was measured, in 4 cases a large deviation was measured. The implantation of an artificial lens in silicone oil filled eyes is an alternative to the aphacic status with an Ando Iridectomy. Obviously heparin modified lenses have advantages in these cases. Because of the strong cataract formation we suggest to remove the anterior and the posterior capsula in the first operative session and to implant the haptics of the lens into the sulcus. Because of the high rate of complications generally first a stable retina condition should be reached before the implanation of an artificial lens is performed.
Direct laser writing of topographic features in semiconductor-doped glass
NASA Astrophysics Data System (ADS)
Smuk, Andrei Y.
2000-11-01
Patterning of glass and silica surfaces is important for a number of modern technologies, which depend on these materials for manufacturing of both final products, such as optics, and prototypes for casting and molding. Among the fields that require glass processing on microscopic scale are optics (lenses and arrays, diffractive/holographic elements, waveguides), biotechnology (capillary electrophoresis chips and biochemical libraries) and magnetic media (landing zones for magnetic heads). Currently, standard non-laser techniques for glass surface patterning require complex multi-step processes, such as photolithography. Work carried out at Brown has shown that semiconductor- doped glasses (SDG) allow a single-step patterning process using low power continuous-wave visible lasers. SDG are composite materials, which consist of semiconductor crystallites embedded into glass matrix. In this study, borosilicate glasses doped with CdSxSe1-x nanocrystals were used. Exposure of these materials to a low-power above- the-energy gap laser beam leads to local softening, and subsequent expansion and rapid solidification of the exposed volume, resulting in a nearly spherical topographic feature on the surface. The effects of the incident power, beam configuration, and the exposure time on the formation and final parameters of the microlens were studied. Based on the numerical simulation of the temperature distribution produced by the absorbed Gaussian beam, and the ideas of viscous flow at the temperatures around the glass transition point, a model of lens formation is suggested. The light intensity distribution in the near-field of the growing lens is shown to have a significant effect on the final lens height. Fabrication of dense arrays of microlenses is shown, and the thermal and structural interactions between the neighboring lenses were also studied. Two-dimensional continuous-profile topographic features are achieved by exposure of the moving substrates to the writing beam. By controlling the translation speed and the position of the sample, predefined extended structures, such as diffractive optical elements (blazed gratings, Dammann generators, Fresnel zone plates) can be produced with resolution of ~1μm. Below-the-surface patterning is achieved due to a selective etching of laser-written structures in hydrofluoric acid. Similar selective etching technique was developed for undoped borosilicate glasses by exposure to intense visible and UV radiation.
NASA Astrophysics Data System (ADS)
Xiang, Huazhong; Guo, Hang; Fu, Dongxiang; Zheng, Gang; Zhuang, Songlin; Chen, JiaBi; Wang, Cheng; Wu, Jie
2018-05-01
To precisely measure the whole-surface characterization of freeform progressive addition lenses (PALs), considering the multi-optical-axis conditions is becoming particularly important. Spherical power and astigmatism (cylinder) measurements for freeform PALs, using a Hartmann-Shack wavefront sensor (HSWFS) are proposed herein. Conversion formulas for the optical performance results were provided as HSWFS Zernike polynomial expansions. For each selected zone, the studied PALs were placed and tilted to simulate the multi-optical-axis conditions. The results of two tested PALs were analyzed using MATLAB programs and represented as contour plots of the spherical equivalent and cylinder of the whole-surface. The proposed experimental setup can provide a high accuracy as well as a possibility of choosing 12 lines and positions of 193 measurement zones on the entire surface. This approach to PAL analysis is potentially an efficient and useful method to objectively evaluate the optical performances, in which the full lens surface is defined and expressed as the contour plots of power in different regions (i.e., the distance region, progressive region, and near region) of the lens for regions of interest.
Device for collecting and analyzing matrix-isolated samples
Reedy, Gerald T.
1979-01-01
A gas-sample collection device is disclosed for matrix isolation of individual gas bands from a gas chromatographic separation and for presenting these distinct samples for spectrometric examination. The device includes a vacuum chamber containing a rotatably supported, specular carrousel having a number of external, reflecting surfaces around its axis of rotation for holding samples. A gas inlet is provided for depositing sample and matrix material on the individual reflecting surfaces maintained at a sufficiently low temperature to cause solidification. Two optical windows or lenses are installed in the vacuum chamber walls for transmitting a beam of electromagnetic radiation, for instance infrared light, through a selected sample. Positioned within the chamber are two concave mirrors, the first aligned to receive the light beam from one of the lenses and focus it to the sample on one of the reflecting surfaces of the carrousel. The second mirror is aligned to receive reflected light from that carrousel surface and to focus it outwardly through the second lens. The light beam transmitted from the sample is received by a spectrometer for determining absorption spectra.
An Experimental Study on the Effect of Using Fresnel Lenses on the Performance of Solar Stills
NASA Astrophysics Data System (ADS)
Abdelsalam, Tarek I.; Abdel-Mesih, Bahy
The global water concern is mainly about the scarcity of fresh water resources despite the abundance of saline and brackish water in oceans, seas, and underground. Solar desalination offers a worthy solution to produce fresh water by using solar radiation, which also lessens the energy concern by offering a renewable source of energy to alter the consumption of fossil fuels and other non-renewable resources. One of the solar desalination technologies is the solar still system, which is a portable unit capable of producing distilled water by evaporating brackish or saline water by using solar thermal energy. The steam is then condensed on the inside of the glass cover and collected as fresh water. Solar stills are easy to manufacture and install using local materials and workmanship, which suits underprivileged remote communities that face difficulties in finding clean potable water, while locating near a source of saline water. However, efficiency and productivity of solar stills are still feeble when compared to other traditional desalination techniques. As an attempt to overcome these issues, an upgraded system is proposed and tested experimentally to augment the incoming solar radiation falling on the top glass surface of the still by concentrating extra solar radiation to preheat the flowing feedwater to the solar still system. The results of the experimental study showed that the integration of linear Fresnel lenses has approximately tripled the productivity of distilled water and improved efficiency of a solar still, by about 68.76 %, when compared to a conventional non-concentrating solar still.
Karbasi, Salman; Arianpour, Ashkan; Motamedi, Nojan; Mellette, William M; Ford, Joseph E
2015-06-10
Imaging fiber bundles can map the curved image surface formed by some high-performance lenses onto flat focal plane detectors. The relative alignment between the focal plane array pixels and the quasi-periodic fiber-bundle cores can impose an undesirable space variant moiré pattern, but this effect may be greatly reduced by flat-field calibration, provided that the local responsivity is known. Here we demonstrate a stable metric for spatial analysis of the moiré pattern strength, and use it to quantify the effect of relative sensor and fiber-bundle pitch, and that of the Bayer color filter. We measure the thermal dependence of the moiré pattern, and the achievable improvement by flat-field calibration at different operating temperatures. We show that a flat-field calibration image at a desired operating temperature can be generated using linear interpolation between white images at several fixed temperatures, comparing the final image quality with an experimentally acquired image at the same temperature.
Thermo-optical properties of Alexandrite laser crystal
NASA Astrophysics Data System (ADS)
Loiko, Pavel; Ghanbari, Shirin; Matrosov, Vladimir; Yumashev, Konstantin; Major, Arkady
2018-02-01
Alexandrite is a well-known material for broadly tunable and power-scalable near-IR lasers. We measured the thermal coefficients of the optical path (TCOP) and thermo-optic coefficients (TOCs) of Alexandrite at 632.8 nm for three principal light polarizations, E || a, E || b and E || c. All TOCs are positive and show a notable polarization-anisotropy, dna/dT = 5.5, dnb/dT = 7.0 and dnc/dT = 14.9×10-6 K-1. We also characterized thermal lensing in a continuous-wave Alexandrite laser which used a Brewster-oriented c-cut 0.16 at.% Cr3+ doped BeAl2O4 crystal pumped at 532 nm and emitted at 750.9 nm (E || b). The measured thermal lens was positive and astigmatic. The sensitivity factors of the thermal lens (Mx,y = dDx,y/dPabs) were found to be Mx = 1.74 and My = 2.38 [m-1/W].
NASA Technical Reports Server (NTRS)
Lucas, J.
1979-01-01
Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver technology is the goal of this Project. The energy thus produced must be economically competitive with other sources. The Project supports the industrial development of technology and hardware for extracting energy from solar power to achieve the stated goal. Present studies are working to concentrate the solar energy through mirrors or lenses, to a working fluid or gas, and through a power converter change to an energy source useful to man. Rankine-cycle and Brayton-cycle engines are currently being developed as the most promising energy converters for our near future needs.
NASA Astrophysics Data System (ADS)
M, H. Moghtader Dindarlu; M Kavosh, Tehrani; H, Saghafifar; A, Maleki
2015-12-01
In this paper, according to the temperature and strain distribution obtained by considering the Gaussian pump profile and dependence of physical properties on temperature, we derive an analytical model for refractive index variations of the diode side-pumped Nd:YAG laser rod. Then we evaluate this model by numerical solution and our maximum relative errors are 5% and 10% for variations caused by thermo-optical and thermo-mechanical effects; respectively. Finally, we present an analytical model for calculating the focal length of the thermal lens and spherical aberration. This model is evaluated by experimental results.
Control of Love waves by resonant metasurfaces.
Palermo, Antonio; Marzani, Alessandro
2018-05-08
Metasurfaces of mechanical resonators have been successfully used to control in-plane polarized surface waves for filtering, waveguiding and lensing applications across different length scales. In this work, we extend the concept of metasurfaces to anti-plane surface waves existing in semi-infinite layered media, generally known as Love waves. By means of an effective medium approach, we derive an original closed-form dispersion relation for the metasurface. This relation reveals the possibility to control the Love waves dispersive properties by varying the resonators mechanical parameters. We exploit this capability to manipulate the metasurface refractive index and design two gradient index (GRIN) metalenses, i.e. a Luneburg lens and a Maxwell lens. We confirm the performance of the designed lenses using full 3D finite element simulations. Our work demonstrates the possibility of realizing wave control devices for anti-plane waves.
Quality Control of Injection Molded Eyewear by Non-Contact Deflectometry
NASA Astrophysics Data System (ADS)
Speck, A.; Zelzer, B.; Langenbucher, A.; Eppig, T.
2014-07-01
Occupational eye wear such as safety spectacles are manufactured by injection molding techniques. Testing of the assembled safety spectacle lenses in transmission is state of the art, but there is a lack of surface measurement systems for occupational safety lenses. The purpose of this work was to validate a deflectometric setup for topography measurement, detection of defects and visualization of the polishing quality, e.g. casting indentations or impressions, for the production process of safety spectacles. The setup is based on a customized stereo phase measuring deflectometer (PMD), equipped with 3 cameras with f'1,2 = 16 mm and f'3 = 8.5 mm and a specified measurement uncertainty of ± 3 μm. Sixteen plastic lenses and 8 corresponding injection molds from 4 parallel cavities were used for validation of the deflectometer. For comparison an interferometric method and a reference standard (< λ/10 super polished) was used. The accuracy and bias with a spherical safety spectacle sample was below 1 μm, according to DIN ISO 5725-2.2002-12. The repeatability was 2.1 μm and 35.7 μm for a blind radius fit. In conclusion, the PMD technique is an appropriate tool for characterizing occupational safety spectacle and injections mold surfaces. With the presented setup we were able to quantify the surface quality. This can be useful and may optimize the quality of the end product, in addition to standardized measuring systems in transmission.
The Projected Dark and Baryonic Ellipsoidal Structure of 20 CLASH Galaxy Clusters
NASA Astrophysics Data System (ADS)
Umetsu, Keiichi; Sereno, Mauro; Tam, Sut-Ieng; Chiu, I.-Non; Fan, Zuhui; Ettori, Stefano; Gruen, Daniel; Okumura, Teppei; Medezinski, Elinor; Donahue, Megan; Meneghetti, Massimo; Frye, Brenda; Koekemoer, Anton; Broadhurst, Tom; Zitrin, Adi; Balestra, Italo; Benítez, Narciso; Higuchi, Yuichi; Melchior, Peter; Mercurio, Amata; Merten, Julian; Molino, Alberto; Nonino, Mario; Postman, Marc; Rosati, Piero; Sayers, Jack; Seitz, Stella
2018-06-01
We reconstruct the two-dimensional (2D) matter distributions in 20 high-mass galaxy clusters selected from the CLASH survey by using the new approach of performing a joint weak gravitational lensing analysis of 2D shear and azimuthally averaged magnification measurements. This combination allows for a complete analysis of the field, effectively breaking the mass-sheet degeneracy. In a Bayesian framework, we simultaneously constrain the mass profile and morphology of each individual cluster, assuming an elliptical Navarro–Frenk–White halo characterized by the mass, concentration, projected axis ratio, and position angle (PA) of the projected major axis. We find that spherical mass estimates of the clusters from azimuthally averaged weak-lensing measurements in previous work are in excellent agreement with our results from a full 2D analysis. Combining all 20 clusters in our sample, we detect the elliptical shape of weak-lensing halos at the 5σ significance level within a scale of 2 {Mpc} {h}-1. The median projected axis ratio is 0.67 ± 0.07 at a virial mass of {M}vir}=(15.2+/- 2.8)× {10}14 {M}ȯ , which is in agreement with theoretical predictions from recent numerical simulations of the standard collisionless cold dark matter model. We also study misalignment statistics of the brightest cluster galaxy, X-ray, thermal Sunyaev–Zel’dovich effect, and strong-lensing morphologies with respect to the weak-lensing signal. Among the three baryonic tracers studied here, we find that the X-ray morphology is best aligned with the weak-lensing mass distribution, with a median misalignment angle of | {{Δ }}{PA}| =21^\\circ +/- 7^\\circ . We also conduct a stacked quadrupole shear analysis of the 20 clusters assuming that the X-ray major axis is aligned with that of the projected mass distribution. This yields a consistent axis ratio of 0.67 ± 0.10, suggesting again a tight alignment between the intracluster gas and dark matter. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Society of Japan.
New trends in space x-ray optics
NASA Astrophysics Data System (ADS)
Hudec, R.; Maršíková, V.; Pína, L.; Inneman, A.; Skulinová, M.
2017-11-01
The X-ray optics is a key element of various X-ray telescopes, X-ray microscopes, as well as other X-ray imaging instruments. The grazing incidence X-ray lenses represent the important class of X-ray optics. Most of grazing incidence (reflective) X-ray imaging systems used in astronomy but also in other (laboratory) applications are based on the Wolter 1 (or modified) arrangement. But there are also other designs and configurations proposed, used and considered for future applications both in space and in laboratory. The Kirkpatrick-Baez (K-B) lenses as well as various types of Lobster-Eye optics and MCP/Micropore optics serve as an example. Analogously to Wolter lenses, the X-rays are mostly reflected twice in these systems to create focal images. Various future projects in X-ray astronomy and astrophysics will require large segments with multiple thin shells or foils. The large Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All these space projects will require high quality and light segmented shells (bent or flat foils) with high X-ray reflectivity and excellent mechanical stability. The Multi Foil Optics (MFO) approach represent a promising alternative for both LE and K-B X-ray optical modules. Several types of reflecting substrates may be considered for these applications, with emphasis on thin float glass sheets and, more recently, high quality silicon wafers. This confirms the importance of non- Wolter X-ray optics designs for the future. Future large space X-ray telescopes (such as IXO) require precise and light-weight X-ray optics based on numerous thin reflecting shells. Novel approaches and advanced technologies are to be exploited and developed. In this contribution, we refer on results of tested X-ray mirror shells produced by glass thermal forming (GTF) and by shaping Si wafers. Both glass foils and Si wafers are commercially available, have excellent surface microroughness of a few 0.1 nm, and low weight (the volume density is 2.5 g cm-3 for glass and 2.3 g cm-3 for Si). Technologies are needed to be exploited; how to shape these substrates to achieve the required precise Xray optics geometries without degradations of the fine surface microroughness. Although glass and recently silicon wafers are considered to represent most promising materials for future advanced large aperture space Xray telescopes, there also exist other alternative materials worth further study such as amorphous metals and glassy carbon [1]. In order to achieve sub-arsec angular resolutions, principles of active optics have to be adopted.
Vibrational spectroscopy in the ophthalmological field
NASA Astrophysics Data System (ADS)
Bertoluzza, Alessandro; Monti, P.; Simoni, R.
1991-05-01
Some applications of vibrational (Raman and FT/IR) spectroscopy to the study of biocompatibility in the ophthalmological field are described. The structure arid elastic properties of a new hydrophobic fluorocarbon copolymer (FCC) are presented. Bacterial adhesion on its surface is also considered. The structure arid properties of soft contact lenses based on poly2--hydroxyethylmethacrylate (PHEMA) and polyvinylpyrrolidone (PVP) are discussed in relation to their recent use as intrastromal implants. The preliminary results dealing with a study on protein deposits on soft contact lenses in presence of a collyrium limiting the formation of such deposits are also reported. 1.
Micro-Raman analysis of glisterings in intraocular lenses
NASA Astrophysics Data System (ADS)
Rusciano, G.; Martinez, A.; Pesce, G.; Zito, G.; Sasso, A.
2017-06-01
The phenomenon of inclusions or microvacuoles in intraocular lenses (IOL), often referred to glistenings due to their appearance when visualized in slit-lamp exams, is main cause of decreased visual in people after IOL implantation. For this reason, there is a huge request by the market of new polymers able to reduce, or even eliminate, the formation of such microvacuoles. In such frame, the use of advanced optical techniques, able to provide a deeper insight on the glistering formation, is strongly required. In particular, Raman spectroscopy (RS) is ideally suited for the analysis of polymers, due to its well-know sensitivity to highly polarizable chemical groups, commonly found in the polymer chains backbones. Moreover, the combination of RS with optical microscopy (Raman micro-spectroscopy) paves the way for real, information-rich chemical mapping of polymeric materials (Raman imaging). In this paper, we analyze the formation of microvacuoles in IOLs following a thermal treatment. In particular, we performed a chemical mapping of a single microvacuole, which allowed us to infer on its effective chemical composition. In order to investigate on the reversibility of glistenings formation, this analysis was repeated as function of time after thermal treatment, in different IOL environments. It turns out that this phenomenon is partially reversible, with an almost complete disappearance of microvacuoles in a dry environment.
Sankaridurg, P R; Willcox, M D; Sharma, S; Gopinathan, U; Janakiraman, D; Hickson, S; Vuppala, N; Sweeney, D F; Rao, G N; Holden, B A
1996-01-01
Ten episodes of adverse responses to contact lens wear, including contact lens-induced acute red eye (CLARE), in which Haemophilus influenzae was isolated from contact lenses and/or from one of the external ocular sites at the time of the event, are described. All episodes occurred in patients wearing disposable hydrogel lenses on a 6-night extended-wear schedule. Two of the patients had recurrent episodes. H. influenzae was usually isolated in large numbers, and other bacteria or fungi colonizing the contact lens or the external ocular surface were usually present in low numbers. Those patients who were colonized with H. influenzae were more than 100 times as likely to have had a CLARE or infiltrative response than those subjects who were not colonized with this bacterium. H. influenzae colonization of the contact lens and eye may be subsequent to colonization of the nasopharynx because four of the seven patients presented with fever at the time of the event, with concurrent upper respiratory tract infection. Contact lens wearers should be made aware of the potential risk of CLARE associated with the wearing of contact lenses for extended periods during and subsequent to upper respiratory tract infection. PMID:8880493
Wu, Chen; Han, Zhaolong; Wang, Shang; Li, Jiasong; Singh, Manmohan; Liu, Chih-hao; Aglyamov, Salavat; Emelianov, Stanislav; Manns, Fabrice; Larin, Kirill V.
2015-01-01
Purpose. To evaluate the capability of a novel, coaligned focused ultrasound and phase-sensitive optical coherence elastography (US-OCE) system to assess age-related changes in biomechanical properties of the crystalline lens in situ. Methods. Low-amplitude elastic deformations in young and mature rabbit lenses were measured by an US-OCE system consisting of a spectral-domain optical coherence tomography (OCT) system coaligned with a focused ultrasound system used to produce a transient force on the lens surface. Uniaxial compressional tests were used to validate the OCE data. Results. The OCE measurements showed that the maximum displacements of the young rabbit lenses were significantly larger than those of the mature lenses, indicating a gradual increase of the lens stiffness with age. Temporal analyses of the displacements also demonstrate a similar trend of elastic properties in these lenses. The stress-strain measurements using uniaxial mechanical tests confirmed the results obtained by the US-OCE system. Conclusions. The results demonstrate that the US-OCE system can be used for noninvasive analysis and quantification of lens biomechanical properties in situ and possibly in vivo. PMID:25613945
Small-scale modification to the lensing kernel
NASA Astrophysics Data System (ADS)
Hadzhiyska, Boryana; Spergel, David; Dunkley, Joanna
2018-02-01
Calculations of the cosmic microwave background (CMB) lensing power implemented into the standard cosmological codes such as camb and class usually treat the surface of last scatter as an infinitely thin screen. However, since the CMB anisotropies are smoothed out on scales smaller than the diffusion length due to the effect of Silk damping, the photons which carry information about the small-scale density distribution come from slightly earlier times than the standard recombination time. The dominant effect is the scale dependence of the mean redshift associated with the fluctuations during recombination. We find that fluctuations at k =0.01 Mpc-1 come from a characteristic redshift of z ≈1090 , while fluctuations at k =0.3 Mpc-1 come from a characteristic redshift of z ≈1130 . We then estimate the corrections to the lensing kernel and the related power spectra due to this effect. We conclude that neglecting it would result in a deviation from the true value of the lensing kernel at the half percent level at small CMB scales. For an all-sky, noise-free experiment, this corresponds to a ˜0.1 σ shift in the observed temperature power spectrum on small scales (2500 ≲l ≲4000 ).
The central image of a gravitationally lensed quasar.
Winn, Joshua N; Rusin, David; Kochanek, Christopher S
2004-02-12
A galaxy can act as a gravitational lens, producing multiple images of a background object. Theory predicts that there should be an odd number of images produced by the lens, but hitherto almost all lensed objects have two or four images. The missing 'central' images, which should be faint and appear near the centre of the lensing galaxy, have long been sought as probes of galactic cores too distant to resolve with ordinary observations. There are five candidates for central images, but in one case the third image is not necessarily the central one, and in the others the putative central images might be foreground sources. Here we report a secure identification of a central image, based on radio observations of one of the candidates. Lens models using the central image reveal that the massive black hole at the centre of the lensing galaxy has a mass of <2 x 10(8) solar masses (M(o)), and the galaxy's surface density at the location of the central image is > 20,000M(o) pc(-2), which is in agreement with expections based on observations of galaxies that are much closer to the Earth.
Wilson, S E; Brubaker, R F
1987-01-01
The possibility that injection-molded intraocular lenses (IOLs) with imperfections called iridescent clefts could have a decreased threshold to neodymium: YAG (Nd:YAG) laser-induced damage was investigated. Thresholds for Nd:YAG laser-induced damage were determined for injection-molded and lathe-cut polymethylmethacrylate lenses. When aimed at a membrane in contact with a posterior convex surface, the average thresholds were 0.96 +/- 0.18 mJ (Standard deviation [SD]) and 1.80 +/- 0.55 mJ, respectively. The difference was significant at P = 0.001. When injection-molding polymethylmethacrylate was used to make lathe-cut IOLs, very few iridescent clefts were present, and the threshold to Nd:YAG laser-induced damage was 0.94 +/- 0.25 mJ. Iridescent clefts are therefore produced during the injection-molding process but they do not lower the threshold to Nd:YAG laser-induced damage. Rather, the reduced threshold in injection-molded lenses is most probably a result of the polymethylmethacrylate used in their manufacture. Clinically, iridescent clefts in a lens suggest that it has been manufactured by an injection-molding process and that Nd:YAG laser posterior capsulotomy must be performed at the lowest possible energy level to avoid damage.
Zhu, Qiang; Cheng, Hongbo; Huo, Yingnan; Mao, Shirui
2018-06-10
In the present work the feasibility of using inner layer-embedded contact lenses (CLs) to achieve sustained release of highly water soluble drug, betaxolol hydrochloride (BH) on the ocular surface was investigated. Blend film of cellulose acetate and Eudragit S100 was selected as the inner layer, while silicone hydrogel was used as outer layer to construct inner layer-embedded contact lenses. Influence of polymer ratio in the blend film on in vitro drug release behavior in phosphate buffered solution or simulated tear fluid was studied and drug-polymer interaction, erosion and swelling of the blend film were characterized to better understand drug-release mechanism. Storage stability of the inner layer-embedded contact lenses in phosphate buffer solution was also conducted, with ignorable drug loss and negligible change in drug release pattern within 30 days. In vivo pharmacokinetic study in rabbits showed sustained drug release for over 240 h in tear fluid, indicating prolonged drug precorneal residence time. In conclusion, cellulose acetate/Eudragit S100 inner layer-embedded contact lenses are quite promising as controlled-release carrier of highly water soluble drug for ophthalmic delivery. Copyright © 2018 Elsevier B.V. All rights reserved.
Gravitational microlensing - The effect of random motion of individual stars in the lensing galaxy
NASA Technical Reports Server (NTRS)
Kundic, Tomislav; Wambsganss, Joachim
1993-01-01
We investigate the influence of random motion of individual stars in the lensing galaxy on the light curve of a gravitationally lensed background quasar. We compare this with the effects of the transverse motion of the galaxy. We find that three-dimensional random motion of stars with a velocity dispersion sigma in each dimension is more effective in producing 'peaks' in a microlensed light curve by a factor a about 1.3 than motion of the galaxy with a transverse velocity v(t) = sigma. This effectiveness parameter a seems to depend only weakly on the surface mass density. With an assumed transverse velocity of v(t) = 600 km/s of the galaxy lensing the QSO 2237+0305 and a measured velocity dispersion of sigma = 215 km/s, the expected rate of maxima in the light curves calculated for bulk motion alone has to be increased by about 10 percent due to the random motion of stars. As a consequence, the average time interval Delta t between two high-magnification events is smaller than the time interval Delta(t) bulk, calculated for bulk motion alone, Delta t about 0.9 Delta(t) bulk.
Anisotropic Galaxy-Galaxy Lensing in the Illustris-1 Simulation
NASA Astrophysics Data System (ADS)
Brainerd, Tereasa G.
2017-06-01
In Cold Dark Matter universes, the dark matter halos of galaxies are expected to be triaxial, leading to a surface mass density that is not circularly symmetric. In principle, this "flattening" of the dark matter halos of galaxies should be observable as an anisotropy in the weak galaxy-galaxy lensing signal. The degree to which the weak lensing signal is observed to be anisotropic, however, will depend strongly on the degree to which mass (i.e., the dark matter) is aligned with light in the lensing galaxies. That is, the anisotropy will be maximized when the major axis of the projected mass distribution is well aligned with the projected light distribution of the lens galaxies. Observational studies of anisotropic galaxy-galaxy lensing have found an anisotropic weak lensing signal around massive, red galaxies. Detecting the signal around blue, disky galaxies has, however, been more elusive. A possible explanation for this is that mass and light are well aligned within red galaxies and poorly aligned within blue galaxies (an explanation that is supported by studies of the locations of satellites of large, relatively isolated galaxies). Here we compute the weak lensing signal of isolated central galaxies in the Illustris-1 simulation. We compute the anisotropy of the weak lensing signal using two definitions of the geometry: [1] the major axis of the projected dark matter mass distribution and [2] the major axis of the projected stellar mass. On projected scales less than 15% of the virial radius, an anisotropy of order 10% is found for both definitions of the geometry. On larger scales, the anisotropy computed relative to the major axis of the projected light distribution is less than the anisotropy computed relative to the major axis of the projected dark matter. On projected scales of order the virial radius, the anisotropy obtained when using the major axis of the light is an order of magnitude less than the anisotropy obtained when using the major axis of the dark matter. The suppression of the anisotropy when using the major axis of the light to define the geometry is indicative of a significant misalignment of mass and light in the Illustris-1 galaxies at large physical radii.
Aspheric glass lens modeling and machining
NASA Astrophysics Data System (ADS)
Johnson, R. Barry; Mandina, Michael
2005-08-01
The incorporation of aspheric lenses in complex lens system can provide significant image quality improvement, reduction of the number of lens elements, smaller size, and lower weight. Recently, it has become practical to manufacture aspheric glass lenses using diamond-grinding methods. The evolution of the manufacturing technology is discussed for a specific aspheric glass lens. When a prototype all-glass lens system (80 mm efl, F/2.5) was fabricated and tested, it was observed that the image quality was significantly less than was predicted by the optical design software. The cause of the degradation was identified as the large aspheric element in the lens. Identification was possible by precision mapping of the spatial coordinates of the lens surface and then transforming this data into an appropriate optical surface defined by derived grid sag data. The resulting optical analysis yielded a modeled image consistent with that observed when testing the prototype lens system in the laboratory. This insight into a localized slope-error problem allowed improvements in the fabrication process to be implemented. The second fabrication attempt, the resulting aspheric lens provided remarkable improvement in the observed image quality, although still falling somewhat short of the desired image quality goal. In parallel with the fabrication enhancement effort, optical modeling of the surface was undertaken to determine how much surface error and error types were allowable to achieve the desired image quality goal. With this knowledge, final improvements were made to the fabrication process. The third prototype lens achieved the goal of optical performance. Rapid development of the aspheric glass lens was made possible by the interactive relationship between the optical designer, diamond-grinding personnel, and the metrology personnel. With rare exceptions, the subsequent production lenses were optical acceptable and afforded reasonable manufacturing costs.
Refractive power and biometric properties of the nonhuman primate isolated crystalline lens.
Borja, David; Manns, Fabrice; Ho, Arthur; Ziebarth, Noel M; Acosta, Ana Carolina; Arrieta-Quintera, Esdras; Augusteyn, Robert C; Parel, Jean-Marie
2010-04-01
Purpose. To characterize the age dependence of shape, refractive power, and refractive index of isolated lenses from nonhuman primates. Methods. Measurements were performed on ex vivo lenses from cynomolgus monkeys (cyno: n = 120; age, 2.7-14.3 years), rhesus monkeys (n = 61; age, 0.7-13.3 years), and hamadryas baboons (baboon: n = 16; age, 1.7-27.3 years). Lens thickness, diameter, and surface curvatures were measured with an optical comparator. Lens refractive power was measured with a custom optical system based on the Scheiner principle. The refractive contributions of the gradient, the surfaces, and the equivalent refractive index were calculated with optical ray-tracing software. The age dependence of the optical and biometric parameters was assessed. Results. Over the measured age range isolated lens thickness decreased (baboon: -0.04, cyno: -0.05, and rhesus: -0.06 mm/y) and equatorial diameter increased (logarithmically for the baboon and rhesus, and linearly for cyno: 0.07 mm/y). The isolated lens surfaces flattened and the corresponding refractive power from the surfaces decreased with age (-0.33, -0.48, and -0.68 D/y). The isolated lens equivalent refractive index decreased (only significant for the baboon, -0.001 D/y), and as a result the total isolated lens refractive power decreased with age (baboon: -1.26, cyno: -0.97, and rhesus: -1.76 D/y). Conclusions. The age-dependent trends in the optical and biometric properties, growth, and aging, of nonhuman primate lenses are similar to those of the pre-presbyopic human lens. As the lens ages, the decrease in refractive contributions from the gradient refractive index causes a rapid age-dependent decrease in maximally accommodated lens refractive power.
Effects of silicone hydrogel contact lenses on ocular surface after Sub-Bowman's Keratomileusis.
Gao, Shaohui; Wu, Junshu; Li, Lili; Wang, Yong; Zhong, Xingwu
2013-11-01
To evaluate the efficacy of silicone hydrogel contact lenses on ocular surface after Sub-Bowman Keratomileusis (SBK). Forty-six patients suffered from myopia underwent a bilateral SBK. Post-operatively, one eye of each patient wore a PureVision contact lens for 24 h as a treated eye and the contralateral eye was as a blank control. Afterwards, corneal fluorescein (FL) staining, tear break-up time (TBUT), schirmer I test (SIT), central corneal thickness (CCT), ocular surface disease index (OSDI), corneal hysteresis (CH), corneal resistance factor (CRF) and corneal flap complications were assessed 1 d (except for CH and CRF), 1 week, 1 month and 3 months postoperatively. Following SBK, in contrast to the control, corneal fluorescein staining of treated eyes were significantly reduced and tear break-up time of treated eyes were significantly improved at 1 d and 1 week after SBK. However, Schirmer I test of treated and control eyes were not different after SBK. Central corneal thickness of treated eyes were significantly thinner than that of control at 1 d after SBK, however, there were no differences at other time points. Ocular surface disease index of treated eyes were obviously alleviated more than that of control at 1 d after SBK, but no differences were found at other visits. Moreover, Corneal hysteresis and corneal resistance factor of treated and un-treated eyes were not different after surgery. And also the rate of corneal flap complications were not different between treated and control eyes after SBK. Silicone hydrogel contact lenses played a positive role in accelerating corneal epithelial healing, enhancing tear film stability and reducing discomfort of patients in the early stage after SBK.
de Castro, Alberto; Birkenfeld, Judith; Maceo, Bianca; Manns, Fabrice; Arrieta, Esdras; Parel, Jean-Marie; Marcos, Susana
2013-01-01
Purpose. To estimate changes in surface shape and gradient refractive index (GRIN) profile in primate lenses as a function of accommodation. To quantify the contribution of surface shape and GRIN to spherical aberration changes with accommodation. Methods. Crystalline lenses from 15 cynomolgus monkeys were studied in vitro under different levels of accommodation produced by a stretching system. Lens shape was obtained from optical coherence tomography (OCT) cross-sectional images. The GRIN was reconstructed with a search algorithm using the optical path measured from OCT images and the measured back focal length. The spherical aberration of the lens was estimated as a function of accommodation using the reconstructed GRIN and a homogeneous refractive index. Results. The lens anterior and posterior radii of curvature decreased with increasing lens power. Both surfaces exhibited negative asphericities in the unaccommodated state. The anterior surface conic constant shifted toward less negative values with accommodation, while the value of the posterior remained constant. GRIN parameters remained constant with accommodation. The lens spherical aberration with GRIN distribution was negative and higher in magnitude than that with a homogeneous equivalent refractive index (by 29% and 53% in the unaccommodated and fully accommodated states, respectively). Spherical aberration with the equivalent refractive index shifted with accommodation toward negative values (−0.070 μm/diopter [D]), but the reconstructed GRIN shifted it farther (−0.124 μm/D). Conclusions. When compared with the lens with the homogeneous equivalent refractive index, the reconstructed GRIN lens has more negative spherical aberration and a larger shift toward more negative values with accommodation. PMID:23927893
NASA Technical Reports Server (NTRS)
Eisenhardt, Peter R.; Armus, Lee; Hogg, David W.; Soifer, B. T.; Neugebauer, G.; Werner, Michael W.
1996-01-01
With a redshift of 2.3, the IRAS source FSC 10214+4724 is apparently one of the most luminous objects known in the universe. We present an image of FSC 10214+4724 at 0.8 pm obtained with the Hubble Space Telescope (HST) WFPC2 Planetary Camera. The source appears as an unresolved (less then 0.06) arc 0.7 long, with significant substructure along its length. The center of curvature of the arc is located near an elliptical galaxy 1.18 to the north. An unresolved component 100 times fainter than the arc is clearly detected on the opposite side of this galaxy. The most straightforward interpretation is that FSC 10214+4724 is gravitationally lensed by the foreground elliptical galaxy, with the faint component a counter-image of the IRAS source. The brightness of the arc in the HST image is then magnified by approx. 100, and the intrinsic source diameter is approx. 0.0l (80 pc) at 0.25 microns rest wavelength. The bolometric luminosity is probably amplified by a smaller factor (approx. 30) as a result of the larger extent expected for the source in the far-infrared. A detailed lensing model is presented that reproduces the observed morphology and relative flux of the arc and counterimage and correctly predicts the position angle of the lensing galaxy. The model also predicts reasonable values for the velocity dispersion, mass, and mass-to-light ratio of the lensing galaxy for a wide range of galaxy redshifts. A redshift for the lensing galaxy of -0.9 is consistent with the measured surface brightness profile from the image, as well as with the galaxy's spectral energy distribution. The background lensed source has an intrinsic luminosity approx. 2 x 10(exp 13) L(solar mass) and remains a highly luminous quasar with an extremely large ratio of infrared to optical/ultraviolet luminosity.
Biswas, Sondip K; Brako, Lawrence; Lo, Woo-Kuen
2014-08-01
The wavy square array junctions are composed of truncated aquaporin-0 (AQP0) proteins typically distributed in the deep cortical and nuclear fibers in wild-type lenses. These junctions may help maintain the narrowed extracellular spaces between fiber cells to minimize light scattering. Herein, we investigate the impact of the cell shape changes, due to abnormal formation of extensive square array junctions, on the lens opacification in the caveolin-1 knockout mice. The cav1-KO and wild-type mice at age 1-22 months were used. By light microscopy examinations, cav1-KO lenses at age 1-18 months were transparent in both cortical and nuclear regions, whereas some lenses older than 18 months old exhibited nuclear cataracts. Scanning EM consistently observed the massive formation of ridge-and-valley membrane surfaces in young fibers at approximately 150 μm deep in all cav1-KO lenses studied. In contrast, the typical ridge-and-valleys were only seen in mature fibers deeper than 400 μm in wild-type lenses. The resulting extensive ridge-and-valleys dramatically altered the overall cell shape in cav1-KO lenses. Remarkably, despite dramatic shape changes, these deformed fiber cells remained intact and made close contact with their neighboring cells. By freeze-fracture TEM, ridge-and-valleys exhibited the typical orthogonal arrangement of 6.6 nm square array intramembrane particles and displayed the narrowed extracellular spaces. Immunofluorescence analysis showed that AQP0 C-terminus labeling was significantly decreased in outer cortical fibers in cav1-KO lenses. However, freeze-fracture immunogold labeling showed that the AQP0 C-terminus antibody was sparsely distributed on the wavy square array junctions, suggesting that the cleavage of AQP0 C-termini might not yet be complete. The cav1-KO lenses with nuclear cataracts showed complete cellular breakdown and large globule formation in the lens nucleus. This study suggests that despite dramatic cell shape changes, the massive formation of wavy square array junctions in intact fibers may provide additional adhesive support for maintaining the narrowed extracellular spaces that are crucial for the transparency of cav1-KO lenses. Copyright © 2014 Elsevier Ltd. All rights reserved.
Two-dimensional single crystal diamond refractive x-ray lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antipov, S., E-mail: s.antipov@euclidtechlabs.com; Baryshev, S. V.; Butler, J. E.
2016-07-27
The next generation light sources such as diffraction-limited storage rings and high repetition rate x-ray free-electron lasers will generate x-ray beams with significantly increased brilliance. These future machines will require X-ray optical components that are capable of handling higher instantaneous and average power densities while tailoring the properties of the x-ray beams for a variety of scientific experiments. Single crystal diamond is one of the best bulk materials for this application, because it is radiation hard, has a suitable uniform index of refraction and the best available thermal properties. In this paper we report on fabrication and experimental testing ofmore » a two-dimensional (2D) single crystal diamond compound refractive X-ray lenses (CRL). These lenses were manufactured using femto-second laser cutting and tested at the Advanced Photon Source of Argonne National Laboratory.« less
Sengor, Tomris; Aydin Kurna, Sevda; Ozbay, Nurver; Ertek, Semahat; Aki, Suat; Altun, Ahmet
2012-01-01
To evaluate ocular surface changes in long-term silicone hydrogel contact lens wearers. Thirty patients were included in this study. Twenty patients (40 eyes) using contact lenses constituted group 1 and 10 (20 eyes) volunteers constituted group 2. The duration of average contact lens usage was 7.74 ± 3.3 years. Ocular surface was evaluated by surface staining, tear film break-up time (TBUT), Schirmer I test, and conjunctival impression cytology with color-coded mapping technique and by the Ocular Surface Disease Index (OSDI). The mean break-up time was lower and staining scores were higher in group 1 (p<0.001) but Schirmer values were not significantly different from group 2 (p>0.05). The mean OSDI score was 34.59 ± 11.93 to 19.28 ± 6.7 in group 1 and 2. Increased metaplastic predominant changes of grade II and III were observed in the interpalpebral and perilimbal areas in group 1. Significant correlations were observed in TBUT, cornea staining, and grade II to grade III metaplasia ratios between duration of the lens usage and contact lens wear time in a day. Silicone hydrogel lenses produce significant changes on tear film and impression cytology of the ocular surface in long-term use.
Challenges in mold manufacturing for high precision molded diffractive optical elements
NASA Astrophysics Data System (ADS)
Pongs, Guido; Bresseler, Bernd; Schweizer, Klaus; Bergs, Thomas
2016-09-01
Isothermal precision glass molding of imaging optics is the key technology for mass production of precise optical elements. Especially for numerous consumer applications (e.g. digital cameras, smart phones, …), high precision glass molding is applied for the manufacturing of aspherical lenses. The usage of diffractive optical elements (DOEs) can help to further reduce the number of lenses in the optical systems which will lead to a reduced weight of hand-held optical devices. But today the application of molded glass DOEs is limited due to the technological challenges in structuring the mold surfaces. Depending on the application submicrometer structures are required on the mold surface. Furthermore these structures have to be replicated very precisely to the glass lens surface. Especially the micro structuring of hard and brittle mold materials such as Tungsten Carbide is very difficult and not established. Thus a multitude of innovative approaches using diffractive optical elements cannot be realized. Aixtooling has investigated in different mold materials and different suitable machining technologies for the micro- and sub-micrometer structuring of mold surfaces. The focus of the work lays on ultra-precision grinding to generate the diffractive pattern on the mold surfaces. This paper presents the latest achievements in diffractive structuring of Tungsten Carbide mold surfaces by ultra-precision grinding.
NASA Astrophysics Data System (ADS)
Han, Soo; Ji, Seungmuk; Abdullah, Abdullah; Kim, Duckil; Lim, Hyuneui; Lee, Donghyun
2018-01-01
Bacterial biofilm formation on optical devices such as contact lenses, optical glasses, endoscopic devices, and microscopic slides and lenses are major concerns in the field of medicine and biomedical engineering. To solve these problems, here we present the first report of superhydrophilic transparent nanopillar-structured surfaces with bactericidal properties. To construct bactericidal surfaces, we imitated a topological mechanism found in nature in which nanopillar-structured surfaces cause a mechanical disruption of the outer cell membranes of bacteria, resulting in bacterial cell death. We used nanosphere lithography to fabricate nanopillars with various sharpnesses and heights on a quartz substrate. Water contact angle and light reflectance measurements revealed superhydrophilic, antifogging and antireflective properties, which are important for use in optical devices. To determine bactericidal efficiency, the fabricated surfaces were incubated and tested against two Gram-negative bacteria associated with biofilm formation and various diseases in humans, Pseudomonas aeruginosa and Escherichia coli. The highest bactericidal activity was achieved with nanopillars that measured 300 nm in height and 10 nm in apex diameter. Quartz substrates patterned with such nanopillars killed ∼38,000 P. aeruginosa and ∼27,000 E. coli cells cm-2 min-1, respectively. Thus, the newly designed nanopillar-structured bactericidal surfaces are suitable for use in the development of superhydrophilic and transparent optical devices.
NASA Astrophysics Data System (ADS)
Takahashi, Ryuichi; Hamana, Takashi; Shirasaki, Masato; Namikawa, Toshiya; Nishimichi, Takahiro; Osato, Ken; Shiroyama, Kosei
2017-11-01
We present 108 full-sky gravitational lensing simulation data sets generated by performing multiple-lens plane ray-tracing through high-resolution cosmological N-body simulations. The data sets include full-sky convergence and shear maps from redshifts z = 0.05 to 5.3 at intervals of 150 {h}-1{Mpc} comoving radial distance (corresponding to a redshift interval of {{Δ }}z≃ 0.05 at the nearby universe), enabling the construction of a mock shear catalog for an arbitrary source distribution up to z = 5.3. The dark matter halos are identified from the same N-body simulations with enough mass resolution to resolve the host halos of the Sloan Digital Sky Survey (SDSS) CMASS and luminous red galaxies (LRGs). Angular positions and redshifts of the halos are provided by a ray-tracing calculation, enabling the creation of a mock halo catalog to be used for galaxy-galaxy and cluster-galaxy lensing. The simulation also yields maps of gravitational lensing deflections for a source redshift at the last scattering surface, and we provide 108 realizations of lensed cosmic microwave background (CMB) maps in which the post-Born corrections caused by multiple light scattering are included. We present basic statistics of the simulation data, including the angular power spectra of cosmic shear, CMB temperature and polarization anisotropies, galaxy-galaxy lensing signals for halos, and their covariances. The angular power spectra of the cosmic shear and CMB anisotropies agree with theoretical predictions within 5% up to {\\ell }=3000 (or at an angular scale θ > 0.5 arcmin). The simulation data sets are generated primarily for the ongoing Subaru Hyper Suprime-Cam survey, but are freely available for download at http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/.
Takahashi, Ryuichi; Hamana, Takashi; Shirasaki, Masato; ...
2017-11-14
We present 108 full-sky gravitational lensing simulation data sets generated by performing multiple-lens plane ray-tracing through high-resolution cosmological N-body simulations. The data sets include full-sky convergence and shear maps from redshifts z = 0.05 to 5.3 at intervals ofmore » $$150\\,{h}^{-1}\\mathrm{Mpc}$$ comoving radial distance (corresponding to a redshift interval of $${\\rm{\\Delta }}z\\simeq 0.05$$ at the nearby universe), enabling the construction of a mock shear catalog for an arbitrary source distribution up to z = 5.3. The dark matter halos are identified from the same N-body simulations with enough mass resolution to resolve the host halos of the Sloan Digital Sky Survey (SDSS) CMASS and luminous red galaxies (LRGs). Angular positions and redshifts of the halos are provided by a ray-tracing calculation, enabling the creation of a mock halo catalog to be used for galaxy–galaxy and cluster–galaxy lensing. The simulation also yields maps of gravitational lensing deflections for a source redshift at the last scattering surface, and we provide 108 realizations of lensed cosmic microwave background (CMB) maps in which the post-Born corrections caused by multiple light scattering are included. We present basic statistics of the simulation data, including the angular power spectra of cosmic shear, CMB temperature and polarization anisotropies, galaxy–galaxy lensing signals for halos, and their covariances. The angular power spectra of the cosmic shear and CMB anisotropies agree with theoretical predictions within 5% up to $${\\ell }=3000$$ (or at an angular scale $$\\theta \\gt 0.5$$ arcmin). The simulation data sets are generated primarily for the ongoing Subaru Hyper Suprime-Cam survey, but are freely available for download at http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Ryuichi; Hamana, Takashi; Shirasaki, Masato
We present 108 full-sky gravitational lensing simulation data sets generated by performing multiple-lens plane ray-tracing through high-resolution cosmological N-body simulations. The data sets include full-sky convergence and shear maps from redshifts z = 0.05 to 5.3 at intervals ofmore » $$150\\,{h}^{-1}\\mathrm{Mpc}$$ comoving radial distance (corresponding to a redshift interval of $${\\rm{\\Delta }}z\\simeq 0.05$$ at the nearby universe), enabling the construction of a mock shear catalog for an arbitrary source distribution up to z = 5.3. The dark matter halos are identified from the same N-body simulations with enough mass resolution to resolve the host halos of the Sloan Digital Sky Survey (SDSS) CMASS and luminous red galaxies (LRGs). Angular positions and redshifts of the halos are provided by a ray-tracing calculation, enabling the creation of a mock halo catalog to be used for galaxy–galaxy and cluster–galaxy lensing. The simulation also yields maps of gravitational lensing deflections for a source redshift at the last scattering surface, and we provide 108 realizations of lensed cosmic microwave background (CMB) maps in which the post-Born corrections caused by multiple light scattering are included. We present basic statistics of the simulation data, including the angular power spectra of cosmic shear, CMB temperature and polarization anisotropies, galaxy–galaxy lensing signals for halos, and their covariances. The angular power spectra of the cosmic shear and CMB anisotropies agree with theoretical predictions within 5% up to $${\\ell }=3000$$ (or at an angular scale $$\\theta \\gt 0.5$$ arcmin). The simulation data sets are generated primarily for the ongoing Subaru Hyper Suprime-Cam survey, but are freely available for download at http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/.« less
Riley, Colleen; Young, Graeme; Chalmers, Robin
2006-12-01
Many soft contact lens wearers have symptoms or signs that compromise successful lens wear. This study estimated the prevalence of problems in current wearers of soft contact lenses and tested the effect of refitting patients with senofilcon A silicone hydrogel lenses (ACUVUE Oasys). Prevalence was estimated from 1,092 current lens wearers for frequent or constant discomfort or dryness, at least 2 hours of uncomfortable wear, at least grade 2 limbal or bulbar hyperemia (0-4), or at least grade 3 corneal staining (0-15). In the second part of the study, 112 of the 564 wearers classified as problem patients were refitted with senofilcon A lenses and reassessed 2 weeks later. Fifty-two percent (564 of 1,092) had some qualifying criteria, with dryness reported by 23%, discomfort by 13%, and at least 2 hours of uncomfortable wear by 27%. Six percent of subjects had qualifying limbal hyperemia; 10% had bulbar hyperemia; and 12% had corneal staining. After refitting 112 problem patients, 75% had less dryness; 88% had better comfort (P<0.0001 each); and 76% had fewer uncomfortable hours of wear (P=0.004). Although the average wearing time was unchanged, comfortable wearing time increased significantly (10.4 to 11.6 hours) (P=0.004). All (35 of 35) eyes with qualifying limbal hyperemia before the refit also improved (P<0.0001), as did 80% (40 of 50) of those with bulbar hyperemia (P<0.0001) and 76% (26 of 34) of those with corneal staining (P=0.005). Most soft lens wearers encounter clinically significant signs or symptoms with their current contact lenses. Refitting with new-generation silicone hydrogel lenses (senofilcon A) can alleviate some of these common problems.
NASA Astrophysics Data System (ADS)
Gomer, Matthew R.; Williams, Liliya L. R.
2018-04-01
The positions of multiple images in galaxy lenses are related to the galaxy mass distribution. Smooth elliptical mass profiles were previously shown to be inadequate in reproducing the quad population. In this paper, we explore the deviations from such smooth elliptical mass distributions. Unlike most other work, we use a model-free approach based on the relative polar image angles of quads, and their position in 3D space with respect to the fundamental surface of quads (FSQ). The FSQ is defined by quads produced by elliptical lenses. We have generated thousands of quads from synthetic populations of lenses with substructure consistent with Lambda cold dark matter (ΛCDM) simulations, and found that such perturbations are not sufficient to match the observed distribution of quads relative to the FSQ. The result is unchanged even when subhalo masses are increased by a factor of 10, and the most optimistic lensing selection bias is applied. We then produce quads from galaxies created using two components, representing baryons and dark matter. The transition from the mass being dominated by baryons in inner radii to being dominated by dark matter in outer radii can carry with it asymmetries, which would affect relative image angles. We run preliminary experiments using lenses with two elliptical mass components with non-identical axial ratios and position angles, perturbations from ellipticity in the form of non-zero Fourier coefficients a4 and a6, and artificially offset ellipse centres as a proxy for asymmetry at image radii. We show that combination of these effects is a promising way of accounting for quad population properties. We conclude that the quad population provides a unique and sensitive tool for constraining detailed mass distribution in the centres of galaxies.
Coral-Ghanem, Cleusa; Alves, Milton Ruiz
2008-01-01
To evaluate the clinical performance of Monocurve and Bicurve (Soper-McGuire design) rigid gas-permeable contact lens fitting in patients with keratoconus. A prospective and randomized comparative clinical trial was conducted with a minimum follow-up of six months in two groups of 63 patients. One group was fitted with Monocurve contact lenses and the other with Bicurve Soper-McGuire design. Study variables included fluoresceinic pattern of lens-to-cornea fitting relationship, location and morphology of the cone, presence and degree of punctate keratitis and other corneal surface alterations, topographic changes, visual acuity for distance corrected with contact lenses and survival analysis for remaining with the same contact lens design during the study. During the follow-up there was a decrease in the number of eyes with advanced and central cones fitted with Monocurve lenses, and an increase in those fitted with Soper-McGuire design. In the Monocurve group, a flattening of both the steepest and the flattest keratometric curve was observed. In the Soper-McGuire group, a steepening of the flattest keratometric curve and a flattening of the steepest keratometric curve were observed. There was a decrease in best-corrected visual acuity with contact lens in the Monocurve group. Survival analysis for the Monocurve lens was 60.32% and for the Soper-McGuire was 71.43% at a mean follow-up of six months. This study showed that due to the changes observed in corneal topography, the same contact lens design did not provide an ideal fitting for all patients during the follow-up period. The Soper-McGuire lenses had a better performance than the Monocurve lenses in advanced and central keratoconus.
In vitro release of two anti-muscarinic drugs from soft contact lenses
Hui, Alex; Bajgrowicz-Cieslak, Magdalena; Phan, Chau-Minh; Jones, Lyndon
2017-01-01
The purpose of this study was to investigate the release of the anti-myopia drugs atropine sulfate and pirenzepine dihydrochloride from commercially available soft contact lenses. Standard ultraviolet (UV) absorbance–concentration curves were generated for atropine and pirenzepine. Ten commercially available contact lenses, including four multifocal lenses, were loaded by soaking in atropine or pirenzepine solutions at two different concentrations (10 mg/mL and 1 mg/mL). The release of the drugs into phosphate-buffered saline was determined over the course of 24 hours at 34°C using UV absorbance. Materials with surface charge released the greatest amount of atropine when loaded with either concentration when compared to the other lens types (p<0.05), releasing upward of 1.026±0.035 mg/lens and 0.979±0.024 mg/lens from etafilcon A and ocufilcon A, respectively. There were no significant differences in the amount of atropine or pirenzepine released from the multifocal and non-multifocal lenses made from the same lens materials. Narafilcon A material demonstrated prolonged release of up to 8 hours when loaded with pirenzepine, although the overall dose delivered from the lens into the solution was among the lowest of the materials investigated. The rest of the lenses reached a plateau within 2 hours of release, suggesting that they were unable to sustain drug release into the solution for long periods of time. Given that no single method of myopia control has yet shown itself to be completely effective in preventing myopia progression, a combination of optical and pharmaceutical devices comprising a drug delivering contact lens presents a novel solution that warrants further investigation. PMID:29213204
Wafer-level fabrication of arrays of glass lens doublets
NASA Astrophysics Data System (ADS)
Passilly, Nicolas; Perrin, Stéphane; Albero, Jorge; Krauter, Johann; Gaiffe, Olivier; Gauthier-Manuel, Ludovic; Froehly, Luc; Lullin, Justine; Bargiel, Sylwester; Osten, Wolfgang; Gorecki, Christophe
2016-04-01
Systems for imaging require to employ high quality optical components in order to dispose of optical aberrations and thus reach sufficient resolution. However, well-known methods to get rid of optical aberrations, such as aspherical profiles or diffractive corrections are not easy to apply to micro-optics. In particular, some of these methods rely on polymers which cannot be associated when such lenses are to be used in integrated devices requiring high temperature process for their further assembly and separation. Among the different approaches, the most common is the lens splitting that consists in dividing the focusing power between two or more optical components. In here, we propose to take advantage of a wafer-level technique, devoted to the generation of glass lenses, which involves thermal reflow in silicon cavities to generate lens doublets. After the convex lens sides are generated, grinding and polishing of both stack sides allow, on the first hand, to form the planar lens backside and, on the other hand, to open the silicon cavity. Nevertheless, silicon frames are then kept and thinned down to form well-controlled and auto-aligned spacers between the lenses. Subsequent accurate vertical assembly of the glass lens arrays is performed by anodic bonding. The latter ensures a high level of alignment both laterally and axially since no additional material is required. Thanks to polishing, the generated lens doublets are then as thin as several hundreds of microns and compatible with micro-opto-electro-systems (MOEMS) technologies since they are only made of glass and silicon. The generated optical module is then robust and provide improved optical performances. Indeed, theoretically, two stacked lenses with similar features and spherical profiles can be almost diffraction limited whereas a single lens characterized by the same numerical aperture than the doublet presents five times higher wavefront error. To demonstrate such assumption, we fabricated glass lens doublets and compared them to single lenses of equivalent focusing power. For similar illumination, the optical aberrations are significantly reduced.
NASA Astrophysics Data System (ADS)
Yu, Zhaohua; Schulmeister, Karl; Talebizadeh, Nooshin; Kronschläger, Martin; Söderberg, Per
2015-01-01
The damage mechanism for near-infrared radiation (IRR) induced cataract is unclear. Both a photochemical and a thermal mechanism were suggested. The current paper aims to elucidate a photochemical effect based on investigation of irradiance-exposure time reciprocity. Groups of 20 rats were unilaterally exposed to 96-W/cm2 IRR at 1090 nm within the dilated pupil accumulating 57, 103, 198, and 344 kJ/cm2, respectively. Temperature was recorded at the limbus of the exposed eye. Seven days after exposure, the lenses were macroscopically imaged and light scattering was quantitatively measured. The average maximum temperature increases for exposure times of 10, 18, 33, and 60 min were expressed as 7.0±1.1, 6.8±1.1, 7.6±1.3, and 7.4±1.1°C [CI (0.95)] at the limbus of the exposed eye. The difference of light scattering in the lenses between exposed and contralateral not-exposed eyes was 0.00±0.02, 0.01±0.03, -0.01±0.02, and -0.01±0.03 transformed equivalent diazepam concentration (tEDC), respectively, and no apparent morphological changes in the lens were observed. An exposure to 96-W/cm2 1090-nm IRR projected on the cornea within the dilated pupil accumulating radiant exposures up to 344 kJ/cm2 does not induce cataract if the temperature rise at the limbus is <8°C. This is consistent with a thermal damage mechanism for IRR-induced cataract.
Evaluation of thermal effects on the beam quality of disk laser with unstable resonator
NASA Astrophysics Data System (ADS)
Shayganmanesh, Mahdi; Beirami, Reza
2017-01-01
In this paper thermal effects of the disk active medium and associated effects on the beam quality of laser are investigated. Using Collins integral and iterative method, transverse mode of an unstable resonator including a Yb:YAG active medium in disk geometry is calculated. After that the beam quality of the laser is calculated based on the generalized beam characterization method. Thermal lensing of the disk is calculated based on the OPD (Optical Path Difference) concept. Five factors influencing the OPD including temperature gradient, disk thermal expansion, photo-elastic effect, electronic lens and disk deformation are considered in our calculations. The calculations show that the effect of disk deformation factor on the quality of laser beam in the resonator is strong. However the total effect of all the thermal factors on the internal beam quality is fewer. Also it is shown that thermal effects degrade the output power, beam profile and beam quality of the output laser beam severely. As well the magnitude of each of affecting factors is evaluated distinctly.
LoCuSS: comparison of observed X-ray and lensing galaxy cluster scaling relations with simulations
NASA Astrophysics Data System (ADS)
Zhang, Y.-Y.; Finoguenov, A.; Böhringer, H.; Kneib, J.-P.; Smith, G. P.; Kneissl, R.; Okabe, N.; Dahle, H.
2008-05-01
The Local Cluster Substructure Survey (LoCuSS, Smith et al.) is a systematic multi-wavelength survey of more than 100 X-ray luminous galaxy clusters in the redshift range 0.14-0.3 selected from the ROSAT All Sky Survey. We used data on 37 LoCuSS clusters from the XMM-Newton archive to investigate the global scaling relations of galaxy clusters. The scaling relations based solely on the X-ray data (S-T, S-Y_X, P-Y_X, M-T, M-Y_X, M-M_gas, M_gas-T, L-T, L-Y_X, and L-M) obey empirical self-similarity and reveal no additional evolution beyond the large-scale structure growth. They also reveal up to 17 per cent segregation between all 37 clusters and non-cool core clusters. Weak lensing mass measurements are also available in the literature for 19 of the clusters with XMM-Newton data. The average of the weak lensing mass to X-ray based mass ratio is 1.09± 0.08, setting the limit of the non-thermal pressure support to 9 ± 8 per cent. The mean of the weak lensing mass to X-ray based mass ratio of these clusters is ~1, indicating good agreement between X-ray and weak lensing masses for most clusters, although with 31-51 per cent scatter. The scatter in the mass-observable relations (M-Y_X, M-M_gas, and M-T) is smaller using X-ray based masses than using weak lensing masses by a factor of 2. With the scaled radius defined by the YX profile - r500 Y_X,X, r500YX,wl, and r500Y_X,si, we obtain lower scatter in the weak lensing mass based mass-observable relations, which means the origin of the scatter is M^wl and MX instead of Y_X. The normalization of the M-YX relation using X-ray mass estimates is lower than the one from simulations by up to 18-24 per cent at 3σ significance. This agrees with the M-YX relation based on weak lensing masses, the normalization of the latter being ~20 per cent lower than the one from simulations at ~2σ significance. This difference between observations and simulations is also indicated in the M-M_gas and M-T relations. Despite the large scatter in the comparison of X-ray to lensing, the agreement between these two completely independent observational methods is an important step towards controlling astrophysical and measurement systematics in cosmological scaling relations. This work is based on observations made with the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and the USA (NASA). Appendices A-C are only available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
St. Laurent, Louis; Clayson, Carol Anne
2015-04-01
The near-surface oceanic boundary layer is generally regarded as convectively unstable due to the effects of wind, evaporation, and cooling. However, stable conditions also occur often, when rain or low-winds and diurnal warming provide buoyancy to a thin surface layer. These conditions are prevalent in the tropical and subtropical latitude bands, and are underrepresented in model simulations. Here, we evaluate cases of oceanic stable boundary layers and their turbulent processes using a combination of measurements and process modeling. We focus on the temperature, salinity and density changes with depth from the surface to the upper thermocline, subject to the influence of turbulent processes causing mixing. The stabilizing effects of freshwater from rain as contrasted to conditions of high solar radiation and low winds will be shown, with observations providing surprising new insights into upper ocean mixing in these regimes. Previous observations of freshwater lenses have demonstrated a maximum of dissipation near the bottom of the stable layer; our observations provide a first demonstration of a similar maximum near the bottom of the solar heating-induced stable layer and a fresh-water induced barrier layer. Examples are drawn from recent studies in the tropical Atlantic and Indian oceans, where ocean gliders equipped with microstructure sensors were used to measure high resolution hydrographic properties and turbulence levels. The limitations of current mixing models will be demonstrated. Our findings suggest that parameterizations of near-surface mixing rates during stable stratification and low-wind conditions require considerable revision, in the direction of larger diffusivities.
NASA Astrophysics Data System (ADS)
Schuster, Norbert; Franks, John
2011-06-01
In the 8-12 micron waveband Focal Plane Arrays (FPA) are available with a 17 micron pixel pitch in different arrays sizes (e.g. 512 x 480 pixels and 320 x 240 pixels) and with excellent electrical properties. Many applications become possible using this new type of IR-detector which will become the future standard in uncooled technology. Lenses with an f-number faster than f/1.5 minimize the diffraction impact on the spatial resolution and guarantee a high thermal resolution for uncooled cameras. Both effects will be quantified. The distinction between Traditional f-number (TF) and Radiometric f-number (RF) is discussed. Lenses with different focal lengths are required for applications in a variety of markets. They are classified by their Horizontal field of view (HFOV). Respecting the requirements for high volume markets, several two lens solutions will be discussed. A commonly accepted parameter of spatial resolution is the Modulation Transfer Function (MTF)-value at the Nyquist frequency of the detector (here 30cy/mm). This parameter of resolution will be presented versus field of view. Wide Angle and Super Wide Angle lenses are susceptible to low relative illumination in the corner of the detector. Measures to reduce this drop to an acceptable value are presented.
In vitro and in vivo evaluation of novel ciprofloxacin-releasing silicone hydrogel contact lenses.
Hui, Alex; Willcox, Mark; Jones, Lyndon
2014-07-15
The purpose of this study was to evaluate ciprofloxacin-releasing silicone hydrogel contact lens materials in vitro and in vivo for the treatment of microbial keratitis. Model silicone hydrogel contact lens materials were manufactured using a molecular imprinting technique to modify ciprofloxacin release kinetics. Various contact lens properties, including light transmission and surface wettability, were determined, and the in vitro ciprofloxacin release kinetics elucidated using fluorescence spectrophotometry. The materials then were evaluated for their ability to inhibit Pseudomonas aeruginosa growth in vitro and in an in vivo rabbit model of microbial keratitis. Synthesized lenses had similar material properties to commercial contact lens materials. There was a decrease in light transmission in the shorter wavelengths due to incorporation of the antibiotic, but over 80% light transmission between 400 and 700 nm. Modified materials released for more than 8 hours, significantly longer than unmodified controls (P < 0.05). In vivo, there was no statistically significant difference between the number of colony-forming units (CFU) recovered from corneas treated with eye drops and those treated with one of two modified contact lenses (P > 0.05), which is significantly less than corneas treated with unmodified control lenses or those that received no treatment at all (P < 0.05). These novel contact lenses designed for the extended release of ciprofloxacin may be beneficial to supplement or augment future treatments of sight-threatening microbial keratitis. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
First test of Verlinde's theory of emergent gravity using weak gravitational lensing measurements
NASA Astrophysics Data System (ADS)
Brouwer, Margot M.; Visser, Manus R.; Dvornik, Andrej; Hoekstra, Henk; Kuijken, Konrad; Valentijn, Edwin A.; Bilicki, Maciej; Blake, Chris; Brough, Sarah; Buddelmeijer, Hugo; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Holwerda, Benne W.; Hopkins, Andrew M.; Klaes, Dominik; Liske, Jochen; Loveday, Jon; McFarland, John; Nakajima, Reiko; Sifón, Cristóbal; Taylor, Edward N.
2017-04-01
Verlinde proposed that the observed excess gravity in galaxies and clusters is the consequence of emergent gravity (EG). In this theory, the standard gravitational laws are modified on galactic and larger scales due to the displacement of dark energy by baryonic matter. EG gives an estimate of the excess gravity (described as an apparent dark matter density) in terms of the baryonic mass distribution and the Hubble parameter. In this work, we present the first test of EG using weak gravitational lensing, within the regime of validity of the current model. Although there is no direct description of lensing and cosmology in EG yet, we can make a reasonable estimate of the expected lensing signal of low-redshift galaxies by assuming a background Lambda cold dark matter cosmology. We measure the (apparent) average surface mass density profiles of 33 613 isolated central galaxies and compare them to those predicted by EG based on the galaxies' baryonic masses. To this end, we employ the ˜180 deg2 overlap of the Kilo-Degree Survey with the spectroscopic Galaxy And Mass Assembly survey. We find that the prediction from EG, despite requiring no free parameters, is in good agreement with the observed galaxy-galaxy lensing profiles in four different stellar mass bins. Although this performance is remarkable, this study is only a first step. Further advancements on both the theoretical framework and observational tests of EG are needed before it can be considered a fully developed and solidly tested theory.
Corneal edema and permanent blue discoloration of a silicone intraocular lens by methylene blue.
Stevens, Scott; Werner, Liliana; Mamalis, Nick
2007-01-01
To report a silicone intraocular lens (IOL) stained blue by inadvertent intraoperative use of methylene blue instead of trypan blue and the results of experimental staining of various lens materials with different concentrations of the same dye. A "blue dye" was used to enhance visualization during capsulorhexis in a patient undergoing phacoemulsification with implantation of a three-piece silicone lens. Postoperatively, the patient presented with corneal edema and a discolored IOL. Various IOL materials were experimentally stained using methylene blue. Sixteen lenses (4 silicone, 4 hydrophobic acrylic, 4 hydrophilic acrylic, and 4 polymethylmethacrylate) were immersed in 0.5 mL of methylene blue at concentrations of 1%, 0.1%, 0.01%, and 0.001%. These lenses were grossly and microscopically evaluated for discoloration 6 and 24 hours after immersion. The corneal edema resolved within 1 month after the initial surgical procedure. After explantation, gross and microscopic analyses of the explanted silicone lens revealed that its surface and internal substance had been permanently stained blue. In the experimental study, all of the lenses except the polymethylmethacrylate lenses were permanently stained by methylene blue. The hydrophilic acrylic lenses showed the most intense blue staining in all dye concentrations. This is the first clinicopathological report of IOL discoloration due to intraocular use of methylene blue. This and other tissue dyes may be commonly found among surgical supplies in the operating room and due diligence is necessary to avoid mistaking these dyes for those commonly used during ocular surgery.
NASA Astrophysics Data System (ADS)
Schwartz, Jerrod J.; Stavrakis, Stavros; Quake, Stephen R.
2010-02-01
Although single-molecule fluorescence spectroscopy was first demonstrated at near-absolute zero temperatures (1.8 K), the field has since advanced to include room-temperature observations, largely owing to the use of objective lenses with high numerical aperture, brighter fluorophores and more sensitive detectors. This has opened the door for many chemical and biological systems to be studied at native temperatures at the single-molecule level both in vitro and in vivo. However, it is difficult to study systems and phenomena at temperatures above 37 °C, because the index-matching fluids used with high-numerical-aperture objective lenses can conduct heat from the sample to the lens, and sustained exposure to high temperatures can cause the lens to fail. Here, we report that TiO2 colloids with diameters of 2 µm and a high refractive index can act as lenses that are capable of single-molecule imaging at 70 °C when placed in immediate proximity to an emitting molecule. The optical system is completed by a low-numerical-aperture optic that can have a long working distance and an air interface, which allows the sample to be independently heated. Colloidal lenses were used for parallel imaging of surface-immobilized single fluorophores and for real-time single-molecule measurements of mesophilic and thermophilic enzymes at 70 °C. Fluorophores in close proximity to TiO2 also showed a 40% increase in photostability due to a reduction of the excited-state lifetime.
ALMA OBSERVATIONS OF SPT-DISCOVERED, STRONGLY LENSED, DUSTY, STAR-FORMING GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hezaveh, Y. D.; Marrone, D. P.; Spilker, J. S.
2013-04-20
We present Atacama Large Millimeter/submillimeter Array (ALMA) 860 {mu}m imaging of four high-redshift (z = 2.8-5.7) dusty sources that were detected using the South Pole Telescope (SPT) at 1.4 mm and are not seen in existing radio to far-infrared catalogs. At 1.''5 resolution, the ALMA data reveal multiple images of each submillimeter source, separated by 1''-3'', consistent with strong lensing by intervening galaxies visible in near-IR imaging of these sources. We describe a gravitational lens modeling procedure that operates on the measured visibilities and incorporates self-calibration-like antenna phase corrections as part of the model optimization, which we use to interpretmore » the source structure. Lens models indicate that SPT0346-52, located at z = 5.7, is one of the most luminous and intensely star-forming sources in the universe with a lensing corrected FIR luminosity of 3.7 Multiplication-Sign 10{sup 13} L{sub Sun} and star formation surface density of 4200 M{sub Sun} yr{sup -1} kpc{sup -2}. We find magnification factors of 5 to 22, with lens Einstein radii of 1.''1-2.''0 and Einstein enclosed masses of 1.6-7.2 Multiplication-Sign 10{sup 11} M{sub Sun }. These observations confirm the lensing origin of these objects, allow us to measure their intrinsic sizes and luminosities, and demonstrate the important role that ALMA will play in the interpretation of lensed submillimeter sources.« less
The effects of non-ionic polymeric surfactants on the cleaning of biofouled hydrogel materials.
Guan, Allan; Li, Zhenyu; Phillips, K Scott
2015-01-01
Block co-polymer surfactants have been used for cleaning hydrogel medical devices that contact the body (e.g., contact lenses) because of their biocompatibility. This work examined the relationship between concentration and detergency of two non-ionic polymeric surfactants (Pluronic F127 and Triton X-100) for cleaning protein soil, with anionic surfactants (sodium dodecyl sulfate and sodium laureth sulfate) as positive controls. Surface plasmon resonance was used to quantify removal of simulated tear soil from self-assembled monolayer surfaces, and a microplate format was used to study the removal of fluorescently labeled soil proteins from contact lenses. While detergency increased as a function of concentration for anionic surfactants, it decreased with concentration for the two polymeric surfactants. The fact that the protein detergency of some non-ionic polymeric surfactants did not increase with concentration above the critical micelle concentration could have implications for optimizing the tradeoff between detergency and biocompatibility.
Qu, Wenwen; Busscher, Henk J; Hooymans, Johanna M M; van der Mei, Henny C
2011-06-15
Contact lens induced microbial keratitis results from bacterial transmission from one surface to another. We investigated the adhesion forces of Pseudomonas aeruginosa, Staphylococci and Serratia to different contact lenses, lens cases and corneal surfaces using AFM, and applied a Weibull analysis on these adhesion forces to calculate bacterial transmission probabilities from lens case to corneas with a contact lens as an intermediate. Also a new surface thermodynamic parameter was introduced, the interfacial free energy of transmission, which in essence compares the interfacial free energies of bacterial adhesion, calculated from measured contact angles with liquids on the donating and receiving surfaces in the transmission process. Bacterial adhesion forces were generally strongest among all eight strains for the lens case (-6.5 to -12.0 nN) and corneas (-3.5 to -11.5 nN), while contact lenses (-0.6 to -13.1 nN) exerted slightly smaller adhesion forces. Consequently, bacterial transmission from lens case to contact lens yielded a smaller contribution in the final transmission than from contact lens to cornea. Bacterial transmission probabilities as derived from force analyses were higher when the interfacial free energies of transmission were more negative, which is in line with surface thermodynamic principles. Therewith this parameter could provide useful in analyzing other bacterial transmission phenomena between donating and receiving surfaces as well. Copyright © 2011 Elsevier Inc. All rights reserved.
Joshi, A; Haynes, N D; Zelmon, D E; Stafsudd, O; Shori, R
2012-02-13
The refractive indices and thermo-optic coefficients for varying concentrations of Er3+ doped polycrystalline yttria were measured at a variety of wavelengths and temperatures. A Lorenz oscillator model was employed to model the room temperature indices and thermo-optic coefficients were calculated based on temperature dependent index measurements from 0.45 to 1.064 microns. Some consequences relating to thermal lensing are discussed.
Optical limiting in gelatin stabilized Cu-PVP nanocomposite colloidal suspension
NASA Astrophysics Data System (ADS)
Tamgadge, Y. S.; Gedam, P. P.; Thakare, N. B.; Talwatkar, S. S.; Sunatkari, A. L.; Muley, G. G.
2018-05-01
This article illustrates investigations on optical limiting properties of Cu-PVP nanocomposite colloidal suspension. Gelatin stabilized Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD), Ultraviolet-visible (UV-vis) spectroscopy, etc. for structural and linear optical studies. Optical limiting properties of Colloidal Cu-PVP nanocomposites have been investigated at 808 nm diode CW laser. Minimum optical limiting threshold was found for GCu3-PVP nanocomposites sample. The strong optical limiting is thermal in origin as CW laser is used and effects are attributed to thermal lensing effect.
Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Mitchell, Scott; Lang, John; Maderas, Dennis; Speth, Joel; Payne, Stephen A.
2000-01-01
A hollow lensing duct to condense (intensify) light using a combination of focusing using a spherical or cylindrical lens followed by reflective waveguiding. The hollow duct tapers down from a wide input side to a narrow output side, with the input side consisting of a lens that may be coated with an antireflective coating for more efficient transmission into the duct. The inside surfaces of the hollow lens duct are appropriately coated to be reflective, preventing light from escaping by reflection as it travels along the duct (reflective waveguiding). The hollow duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials.
Nishihara, Hitoshi; Ayaki, Masahiko; Watanabe, Tomiko; Ohnishi, Takeo; Kageyama, Toshiyuki; Yaguchi, Shigeo
2004-03-01
To compare the long-term clinical and experimental results of soft acrylic intraocular lenses(IOLs) manufactured by the lathe-cut(LC) method and by the cast-molding(CM) method. This was a retrospective study of 20 patients(22 eyes) who were examined in a 5- and 7-year follow-up study. Sixteen eyes were implanted with polyacrylic IOLs manufactured by the LC method and 6 eyes were implanted with polyacrylic IOLs manufactured by the CM method. Postoperative measurements included best corrected visual acuity, contrast sensitivity, biomicroscopic examination, and Scheimpflug slit-lamp images to evaluate surface light scattering. Scanning electron microscopy and three-dimensional surface analysis were conducted. At 7 years, the mean visual acuity was 1.08 +/- 0.24 (mean +/- standard deviation) in the LC group and 1.22 +/- 0.27 in the CM group. Surface light-seatter was 12.0 +/- 4.0 computer compatible tapes(CCT) in the LC group and 37.4 +/- 5.4 CCT in the CM group. Mean surface roughness was 0.70 +/- 0.07 nm in the LC group and 6.16 +/- 0.97 nm in the CM group. Acrylic IOLs manufactured by the LC method are more stable in long-termuse.
Kilohertz Pulse Repetition Frequency Slab Ti:sapphire Lasers with High Average Power (10 W)
NASA Astrophysics Data System (ADS)
Wadsworth, William J.; Coutts, David W.; Webb, Colin E.
1999-11-01
High-average-power broadband 780-nm slab Ti:sapphire lasers, pumped by a kilohertz pulse repetition frequency copper vapor laser (CVL), were demonstrated. These lasers are designed for damage-free power scaling when pumped by CVL s configured for maximum output power (of order 100 W) but with poor beam quality ( M 2 300 ). A simple Brewster-angled slab laser side pumped by a CVL produced 10-W average power (1.25-mJ pulses at 8 kHz) with 4.2-ns FWHM pulse duration at an absolute efficiency of 15% (68-W pump power). Thermal lensing in the Brewster slab laser resulted in multitransverse mode output, and pump absorption was limited to 72% by the maximum doping level for commercially available Ti:sapphire (0.25%). A slab laser with a multiply folded zigzag path was therefore designed and implemented that produced high-beam-quality (TEM 00 -mode) output when operated with cryogenic cooling and provided a longer absorption path for the pump. Excessive scattering of the Ti:sapphire beam at the crystal surfaces limited the efficiency of operation for the zigzag laser, but fluorescence diagnostic techniques, gain measurement, and modeling suggest that efficient power extraction ( 15 W TEM 00 , 23% efficiency) from this laser would be possible for crystals with an optical quality surface polish.
The clinical and cellular basis of contact lens-related corneal infections
Robertson, Danielle M; Cavanagh, H Dwight
2008-01-01
Microbial keratitis (MK) is the most visually devastating complication associated with contact lens wear. Pseudomonas aeruginosa (PA) is highly invasive in the corneal epithelium and is responsible for more than half of the reported cases of contact lens-related MK. To protect against Pseudomonas-mediated MK, the corneal epithelium has evolved overlapping defense mechanisms that function to protect the ocular surface from microbial invasion. Research has shown that contact lens wear disrupts these protective mechanisms through breakdown of normal homeostatic surface renewal as well as damaging the corneal surface, exposing underlying cell membrane receptors that bind and internalize PA through the formation of lipid rafts. Human clinical trials have shown that initial adherence of PA with resulting increased risk for microbial infection is mediated in part by contact lens oxygen transmissibility. Recently, chemical preserved multipurpose solutions (MPS) have been implicated in increasing PA adherence to corneal epithelial cells, in addition to inducing significant levels of toxic staining when used in conjunction with specific silicone hydrogel lenses. This review summarizes what is currently known about the relationship between contact lenses, the corneal epithelium, MPS, and infection. PMID:19277209
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beesing, M. E.; Buchholz, R. L.; Evans, R. A.
1980-01-01
An investigation of the optical performance of a variety of concentrating solar collectors is reported. The study addresses two important issues: the accuracy of reflective or refractive surfaces required to achieve specified performance goals, and the effect of environmental exposure on the performance concentrators. To assess the importance of surface accuracy on optical performance, 11 tracking and nontracking concentrator designs were selected for detailed evaluation. Mathematical models were developed for each design and incorporated into a Monte Carlo ray trace computer program to carry out detailed calculations. Results for the 11 concentrators are presented in graphic form. The models andmore » computer program are provided along with a user's manual. A survey data base was established on the effect of environmental exposure on the optical degradation of mirrors and lenses. Information on environmental and maintenance effects was found to be insufficient to permit specific recommendations for operating and maintenance procedures, but the available information is compiled and reported and does contain procedures that other workers have found useful.« less
NASA Astrophysics Data System (ADS)
Chatterjee, Saikat; Koopmans, Léon V. E.
2018-02-01
In the last decade, the detection of individual massive dark matter sub-haloes has been possible using potential correction formalism in strong gravitational lens imaging. Here, we propose a statistical formalism to relate strong gravitational lens surface brightness anomalies to the lens potential fluctuations arising from dark matter distribution in the lens galaxy. We consider these fluctuations as a Gaussian random field in addition to the unperturbed smooth lens model. This is very similar to weak lensing formalism and we show that in this way we can measure the power spectrum of these perturbations to the potential. We test the method by applying it to simulated mock lenses of different geometries and by performing an MCMC analysis of the theoretical power spectra. This method can measure density fluctuations in early type galaxies on scales of 1-10 kpc at typical rms levels of a per cent, using a single lens system observed with the Hubble Space Telescope with typical signal-to-noise ratios obtained in a single orbit.
DARK MATTER MASS FRACTION IN LENS GALAXIES: NEW ESTIMATES FROM MICROLENSING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiménez-Vicente, J.; Mediavilla, E.; Kochanek, C. S.
2015-02-01
We present a joint estimate of the stellar/dark matter mass fraction in lens galaxies and the average size of the accretion disk of lensed quasars based on microlensing measurements of 27 quasar image pairs seen through 19 lens galaxies. The Bayesian estimate for the fraction of the surface mass density in the form of stars is α = 0.21 ± 0.14 near the Einstein radius of the lenses (∼1-2 effective radii). The estimate for the average accretion disk size is R{sub 1/2}=7.9{sub −2.6}{sup +3.8}√(M/0.3 M{sub ⊙}) light days. The fraction of mass in stars at these radii is significantly largermore » than previous estimates from microlensing studies assuming quasars were point-like. The corresponding local dark matter fraction of 79% is in good agreement with other estimates based on strong lensing or kinematics. The size of the accretion disk inferred in the present study is slightly larger than previous estimates.« less
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Mccollum, Timothy A.
1994-01-01
The need for efficient, cost effective sources of electrical power in space has led to the development of photovoltaic power systems which make use of novel refractive solar concentrators. These concentrators have been conceived in both point-focus and linear-focus designs. Current concentrator lenses are fabricated from flexible silicones with Fresnel facets along their inside surface. To insure the efficient operation of these power systems, the concentrator lenses must be durable and the silicone material must remain specularly transmitting over a reasonable lifetime in low Earth orbit (LEO) and other space environments. Because of the vulnerability of silicones to atomic oxygen and ultraviolet radiation in LEO these lenses have been coated with a multi-layer metal oxide protective coating. The objective of this research was to evaluate the LEO durability of the multilayer coated silicone for advanced refractive photovoltaic concentrator arrays with respect to optical properties and microstructure. Flat metal oxide coated silicone samples were exposed to ground-laboratory and in-space atomic oxyqen for durability evaluation.
Design of a novel panoramic lens without central blindness
NASA Astrophysics Data System (ADS)
Gong, Chen; Cheng, Dewen; Xu, Chen; Wang, Yongtian
2015-08-01
The panoramic lenses are getting more and more popular in recent years. However, these lenses have the drawback of obscuring the rays of the coaxial fields, thus cause blind area in the center field of vision. We present a novel panoramic system consisting of two optical channels to overcome this issue, the system has a field of view (FOV) reaching 200 in vertical and 360 in horizontal direction without blindness area. The two channels have different focal lengths, providing design flexibility to meet application requirements where the center FOV or the marginal FOV is of more interest. The system has no half-reflecting surfaces to ensure high transmission ratio, but this feature greatly increase the design difficulty. The distortion of the novel lens is much smaller than traditional panoramic lenses since the distortion has two node points. Due to the ability of information acquisition in real-time and wide-angle, the novel panoramic lens would be very useful for a variety of real-world applications such as surveillance, short-throw projector and pilotless automobile.
NASA Astrophysics Data System (ADS)
Lagouarde, J.-P.; Irvine, M.
2008-12-01
The measurements of surface temperature are prone to important directional anisotropy related to the structure of the canopy and the radiative and energy exchanges inside of it. Directional effects must be taken into account for a number of practical applications such as the correction of large swath satellite data, the assimilation of thermal infrared (TIR) measurements in surface models, the design of future spatial missions… For urban canopies, experimental measurements of TIR directional anisotropy previously performed during summer days over Marseille in the framework of the ESCOMPTE campaign (2001) revealed significant angular surface temperature variations with noticeable hot spot effects whose intensity was related to the canopy structure. The CAPITOUL project (
Surface characterization of polymer-drug modified vascular stents and intraocular lenses
NASA Astrophysics Data System (ADS)
Elachchabi, Amin
Two of the most important medical devices in clinical use today are endoluminal stents and intraocular lenses (IOLs). In both devices, surface and interfacial properties are of basic importance in the development and clinical performance of these devices. Drug eluting stents have revolutionized the world of interventional cardiology. Research reported here was devoted to the design and development of new drug eluting stents wherein the metallic backbone is completely embedded in a polymeric matrix used also as a drug reservoir. This design, using silicone-drug compositions can lead to higher drug payloads, less tissue damage during angioplasty balloon/stent expansion, and the novel capability of delivering multiple drugs. The adhesion of the polymeric coating to the metallic stent is essential and has not been adequately reported previously. The adhesion of polydimethylsiloxane (PDMS) coatings to a stainless steel stent substrate was shown to be enhanced by the application of mixtures of tetra-n-propyl silicate, tetrabutyltitanate, tetra-2-methoxyethoxysilane, and 3-(trimethoxysilyl)propyl methacrylate coupling agents. Additionally, the effect of drug loading on the stress/strain properties of the polymeric coating is of basic importance. The tensile strength and percent elongation of dexamethasone loaded PDMS films was shown to remain satisfactory for stent coatings at low concentrations (less than 1%) but decreased as the concentrations of dexamethasone in PDMS was increased to 5%. The release of multiple therapeutic agents from PDMS coatings to reduce in-stent restenosis has not been previously reported. The release profile of Paclitaxel, dexamethasone 21-acetate, and their combination from PDMS coatings was studied using high precision liquid chromatography (HPLC). Although dexamethasone release was reduced by paclitaxel, paclitaxel release was unaffected by combination with dexamethasone. Paclitaxel release from the polymeric matrices was shown to inhibit human coronary smooth muscle cell growth in vitro whereas dexamethasone exhibited no similar effect. A second major subject of this research was a series of studies concerning the properties of foldable hydrophobic acrylic intraocular lenses (IOLs) which have not previously been investigated. Most IOLs implanted today in the U.S. and the western world are foldable. The goal of this research was to conduct new surface characterization studies on the surfaces of several different foldable lenses in clinical use. Atomic force microscopy showed that these IOLs have different morphologies and that hydration greatly altered the surface morphology of these implants. Contact angle goniometry studies indicated that water contact angles varied significantly from one lens to the other and that prolonged hydration led to a reduction of the water contact angle. Nanoindentation experiments yielded new information on the surface mechanical properties of IOLs and a new methodology was developed to analyze nanoindent data to determine the surface modulus and hardness of foldable IOLs and low modulus polymers in general. The novel surface properties studies reported here can be important in guiding the design and the development of new ocular implants.
Elseht, Rabab Mohamed; Nagy, Khaled Ahmed
2018-05-01
To evaluate the clinical value of rigid gas permeable contact lenses in children after traumatic corneal scarring. This comparative study included 15 children (age range: 5.7 to 14 years; mean ± standard deviation = 9.4 ± 2.9 years) with corneal scars and best corrected visual acuity (BCVA) of worse than 20/20, history of penetrating ocular trauma, and/or cataract extraction. All children were advised to wear spherical rigid gas permeable contact lenses for 6 months with a special regimen. Visual acuity was compared before and after fitting. The total and anterior surface aberrations of all children were measured using a corneal topographer before and after treatment. There was a significant improvement in the BCVA after wearing rigid gas permeable contact lenses compared to spectacle visual acuity (P = .001). There was also significant improvement of the keratometric astigmatism (P = .001) and corneal aberrations such as higher order aberrations (P = .008), lower order aberrations, root mean square, and point spread function (P = .001). The optical performance of rigid gas permeable contact lenses has been demonstrated to be effective in the visual rehabilitation of children with traumatic corneal lacerations. Corneal topography was an objective tool for detecting optical disorders. [J Pediatr Ophthalmol Strabismus. 2018;55(3):178-181.]. Copyright 2018, SLACK Incorporated.
2014-01-01
Unacceptable principal powers in well-centred lenses may require a toric over-refraction which differs in nature from the one where correct powers have misplaced meridians. This paper calculates residual (over) refractions and their natures. The magnitude of the power of the over-refraction serves as a general, reliable, real scalar criterion for acceptance or tolerance of lenses whose surface relative curvatures change or whose meridians are rotated and cause powers to differ. Principal powers and meridians of lenses are analogous to eigenvalues and eigenvectors of symmetric matrices, which facilitates the calculation of powers and their residuals. Geometric paths in symmetric power space link intended refractive correction and these carefully chosen, undue refractive corrections. Principal meridians alone vary along an arc of a circle centred at the origin and corresponding powers vary autonomously along select diameters of that circle in symmetric power space. Depending on the path of the power change, residual lenses different from their prescription in principal powers and meridians are pure cross-cylindrical or spherocylindrical in nature. The location of residual power in symmetric dioptric power space and its optical cross-representation characterize the lens that must be added to the compensation to attain the power in the prescription. PMID:25478004
Abelman, Herven; Abelman, Shirley
2014-01-01
Unacceptable principal powers in well-centred lenses may require a toric over-refraction which differs in nature from the one where correct powers have misplaced meridians. This paper calculates residual (over) refractions and their natures. The magnitude of the power of the over-refraction serves as a general, reliable, real scalar criterion for acceptance or tolerance of lenses whose surface relative curvatures change or whose meridians are rotated and cause powers to differ. Principal powers and meridians of lenses are analogous to eigenvalues and eigenvectors of symmetric matrices, which facilitates the calculation of powers and their residuals. Geometric paths in symmetric power space link intended refractive correction and these carefully chosen, undue refractive corrections. Principal meridians alone vary along an arc of a circle centred at the origin and corresponding powers vary autonomously along select diameters of that circle in symmetric power space. Depending on the path of the power change, residual lenses different from their prescription in principal powers and meridians are pure cross-cylindrical or spherocylindrical in nature. The location of residual power in symmetric dioptric power space and its optical cross-representation characterize the lens that must be added to the compensation to attain the power in the prescription.
Application and System Design of Elastomer Based Optofluidic Lenses
NASA Astrophysics Data System (ADS)
Savidis, Nickolaos
Adaptive optic technology has revolutionized real time correction of wavefront aberrations. Optofluidic based applied optic devices have offered an opportunity to produce flexible refractive lenses in the correction of wavefronts. Fluidic lenses have superiority relative to their solid lens counterparts in their capabilities of producing tunable optical systems, that when synchronized, can produce real time variable systems with no moving parts. We have developed optofluidic fluidic lenses for applications of applied optical devices, as well as ophthalmic optic devices. The first half of this dissertation discusses the production of fluidic lenses as optical devices. In addition, the design and testing of various fluidic systems made with these components are evaluated. We begin with the creation of spherical or defocus singlet fluidic lenses. We then produced zoom optical systems with no moving parts by synchronizing combinations of these fluidic spherical lenses. The variable power zoom system incorporates two singlet fluidic lenses that are synchronized. The coupled device has no moving parts and has produced a magnification range of 0.1 x to 10 x or a 20 x magnification range. The chapter after fluidic zoom technology focuses on producing achromatic lens designs. We offer an analysis of a hybrid diffractive and refractive achromat that offers discrete achromatized variable focal lengths. In addition, we offer a design of a fully optofluidic based achromatic lens. By synchronizing the two membrane surfaces of the fluidic achromat we develop a design for a fluidic achromatic lens. The second half of this dissertation discusses the production of optofluidic technology in ophthalmic applications. We begin with an introduction to an optofluidic phoropter system. A fluidic phoropter is designed through the combination of a defocus lens with two cylindrical fluidic lenses that are orientated 45° relative to each other. Here we discuss the designs of the fluidic cylindrical lens coupled with a previously discussed defocus singlet lens. We then couple this optofluidic phoropter with relay optics and Shack-Hartmann wavefront sensing technology to produce an auto-phoropter device. The auto-phoropter system combines a refractometer designed Shack-Hartmann wavefront sensor with the compact refractive fluidic lens phoropter. This combination allows for the identification and control of ophthalmic cylinder, cylinder axis, as well as refractive error. The closed loop system of the fluidic phoropter with refractometer enables for the creation of our see-through auto-phoropter system. The design and testing of several generations of transmissive see-through auto-phoropter devices are presented in this section.
Joint study of lipopolysaccharide suspensions with thermal lensing and optoacoustic methods
NASA Astrophysics Data System (ADS)
Orlova, Nataliya V.; Brusnichkin, Anton V.; Proskurnin, Mikhail A.; Fokin, Andrey V.; Ovchinnikov, Oleg B.; Egerev, Sergey V.
2004-07-01
Pyrogens being introduced intravenously increase body temperature that leads to hazardous consequences and even to lethal outcome. One of the widespread pyrogen systems is presented by suspensions composed of bacterial endotoxins (or lypopolysaccharides, LPS). The aim of the work is to compare experimentally two methods for the determination of LPS at the submicrogram level and below. Both methods suppose that the LPS suspension is irradiated by a laser pulse. The thermal lens (TL) method (microsecond to millisecond irradiation cycle) detects LPS by a direct pick-up of the transient thermal field. The optoacoustic (OA) method (nanosecond laser pulses) has a potential to use non-thermal constitutents of the LPS response and to provide some selectivity of LPS detection with respect to optically uniform contaminants in the sample. In experiments, the selectivity was enhanced by means of analytical reagents, methylene blue and Stains All dyes. It was shown that both methods are mutually complementary. Then, their detectability potential increases and reaches 10 ppb if there occur ion pairs of LPS and cationic dye.
The structure of clusters of galaxies
NASA Astrophysics Data System (ADS)
Fox, David Charles
When infalling gas is accreted onto a cluster of galaxies, its kinetic energy is converted to thermal energy in a shock, heating the ions. Using a self-similar spherical model, we calculate the collisional heating of the electrons by the ions, and predict the electron and ion temperature profiles. While there are significant differences between the two, they occur at radii larger than currently observable, and too large to explain observed X-ray temperature declines in clusters. Numerical simulations by Navarro, Frenk, & White (1996) predict a universal dark matter density profile. We calculate the expected number of multiply-imaged background galaxies in the Hubble Deep Field due to foreground groups and clusters with this profile. Such groups are up to 1000 times less efficient at lensing than the standard singular isothermal spheres. However, with either profile, the expected number of galaxies lensed by groups in the Hubble Deep Field is at most one, consistent with the lack of clearly identified group lenses. X-ray and Sunyaev-Zel'dovich (SZ) effect observations can be combined to determine the distance to clusters of galaxies, provided the clusters are spherical. When applied to an aspherical cluster, this method gives an incorrect distance. We demonstrate a method for inferring the three-dimensional shape of a cluster and its correct distance from X-ray, SZ effect, and weak gravitational lensing observations, under the assumption of hydrostatic equilibrium. We apply this method to simple, analytic models of clusters, and to a numerically simulated cluster. Using artificial observations based on current X-ray and SZ effect instruments, we recover the true distance without detectable bias and with uncertainties of 4 percent.
Image formation by bifocal lenses in a trilobite eye?
Gál, J; Horváth, G; Clarkson, E N; Haiman, O
2000-01-01
In this work we report on a unique and ancient type of eye, in which the lower surface of the upper calcite lens units possessed an enigmatic central bulge making the dioptric apparatus similar to a bifocal lens. This eye belonged to the trilobite Dalmanitina socialis, which became extinct several hundred million years ago. As far as we know, image formation by bifocal lenses of this kind did/does not occur in any other ancient or modern animal visual system. We suggest that the function of these bifocal lenses may be to enable the trilobite to see simultaneously both very near (e.g. floating food particles and tiny preys) and far (e.g. sea floor, conspecifics, or approaching enemies) in the optical environment through the central and peripheral lens region, respectively. This was the only reasonable function we could find to explain the puzzling lens shape. We admit that it is not clear whether bifocality was necessary for the animal studied. We show that the misleading and accidental resemblance of an erroneous correcting lens surface (designed by René DesCartes in 1637 [DesCartes, R. (1637). Oeuvres de DesCartes. La Géometrie. Livre 2. pp. 134. J. Maire, Leyden] to the correcting interface in the compound Dalmanitina lens may be the reason why the earlier students of the Dalmanitina lens did not recognize its possible bifocality.
Application of Shack-Hartmann wavefront sensing technology to transmissive optic metrology
NASA Astrophysics Data System (ADS)
Rammage, Ron R.; Neal, Daniel R.; Copland, Richard J.
2002-11-01
Human vision correction optics must be produced in quantity to be economical. At the same time every human eye is unique and requires a custom corrective solution. For this reason the vision industries need fast, versatile and accurate methodologies for characterizing optics for production and research. Current methods for measuring these optics generally yield a cubic spline taken from less than 10 points across the surface of the lens. As corrective optics have grown in complexity this has become inadequate. The Shack-Hartmann wavefront sensor is a device that measures phase and irradiance of light in a single snapshot using geometric properties of light. Advantages of the Shack-Hartmann sensor include small size, ruggedness, accuracy, and vibration insensitivity. This paper discusses a methodology for designing instruments based on Shack-Hartmann sensors. The method is then applied to the development of an instrument for accurate measurement of transmissive optics such as gradient bifocal spectacle lenses, progressive addition bifocal lenses, intrarocular devices, contact lenses, and human corneal tissue. In addition, this instrument may be configured to provide hundreds of points across the surface of the lens giving improved spatial resolution. Methods are explored for extending the dynamic range and accuracy to meet the expanding needs of the ophthalmic and optometric industries. Data is presented demonstrating the accuracy and repeatability of this technique for the target optics.
Distortion improvement of capsule endoscope image
NASA Astrophysics Data System (ADS)
Mang, Ou-Yang; Huang, Shih-Wei; Chen, Yung-Lin; Lin, Chu-Hsun; Lin, Tai-Yung; Kuo, Yi-Ting
2007-02-01
Distortion exists in the present capsule endoscope image resulting from the confined space and the wide-angle requirement [8]. Based on the previous two lens works, the optimal design had obtained that the field of view was about 86 degrees , and MTF was about 18% at 100 lp/mm, but distortion would go to -26%. It's difficult to add another lens on the 7mm optical path between the dome and imaging lenses for improving distortion. In order to overcome this problem, we intend to design the optical dome as another optical lens. The original dome is transparent and has an equal thickness, namely without refracting light almost. Our objective in this paper is to design the inner curvature of the dome and associate two aspheric imaging lenses in front of the CMOS sensors to advance the distortion with maintaining field of view and MTF under the same capsule volume. Furthermore, the paper proposes the real object plane of intestine is nearly a curved surface rather than an ideal flat surface. Taking those reasons under consideration, we design three imaging lenses with curved object plane and obtain the field of view is about 86 degrees , MTF is about 26% at 100 lp/mm, and the distortion improve to -7.5%. Adding the dome lens is not only to enhance the image quality, but also to maintain the tiny volume requirement.
Molded, wafer level optics for long wave infra-red applications
NASA Astrophysics Data System (ADS)
Franks, John
2016-05-01
For many years, the Thermal Imaging market has been driven by the high volume consumer market. The first signs of this came with the launch of night vision systems for cars, first by Cadillac and Honda and then, more successfully by BMW, Daimler and Audi. For the first time, simple thermal imaging systems were being manufactured at the rate of more than 10,000 units a year. This step change in volumes enabled a step change in system costs, with thermal imaging moving into the consumer's price range. Today we see that the consumer awareness and the consumer market continues to increase with the launch of a number of consumer focused smart phone add-ons. This has brought a further step change in system costs, with the possibility to turn your mobile phone into a thermal imager for under $250. As the detector technology has matured, the pixel pitches have dropped from 50μm in 2002 to 12 μm or even 10μm in today's detectors. This dramatic shrinkage in size has had an equally dramatic effect on the optics required to produce the image on the detector. A moderate field of view that would have required a focal length of 40mm in 2002 now requires a focal length of 8mm. For wide field of view applications and small detector formats, focal lengths in the range 1mm to 5mm are becoming common. For lenses, the quantity manufactured, quality and costs will require a new approach to high volume Infra-Red (IR) manufacturing to meet customer expectations. This, taken with the SwaP-C requirements and the emerging requirement for very small lenses driven by the new detectors, suggests that wafer scale optics are part of the solution. Umicore can now present initial results from an intensive research and development program to mold and coat wafer level optics, using its chalcogenide glass, GASIR®.
Static Linear Fresnel Lenses as LCPV System in a Greenhouse
NASA Astrophysics Data System (ADS)
Sonneveld, P. J.; Swinkels, G. L. A. M.; van Tuijl, B. A. J.; Janssen, H. J. J.; de Zwart, H. F.
2011-12-01
A low concentrating PV system with water cooling (LCPVT system) will result in electrical and thermal energy output from the solar energy excess entering a building or greenhouse. All the direct radiation could be converted, which corresponds to 75% of the incoming solar energy. This will significantly reduce the demand of cooling of the building. For an optimal performance it is beneficial to construct asymmetric roof elements with a steep inclination at the north side (the exact angle of course depends on the latitude of the building site). The Fresnel lens structure is oriented in upwards direction. In the current design, two of them are placed between an AR-coated double glass structure to prevent pollution and condensation on the lenses. Compared with a previous system, the number of lenses is reduced from 3 to 2 lenses, which reduces the costs of the system by limiting the number of receivers. By the upward facing of the lens structure, the focus quality is preserved over a much broader range of angles of incidence compared to a lens with downward facing structures. Each PMMA lens with a size of 1.20 m×1.60 m is composed of 12 `tiles' for easy production. The focal distance of the lens is 1,875 m and the concentration factor 50x. In most cases the focus line is thinner than 3 cm and the transmission is above 80%. The performance of these lenses with respect of the shape of the focal area and the position of the focal line has been analyzed with ray tracing techniques. From this analyses it was concluded that tracking of the receiver module is possible with two motors. One motor controls the distance between lens and receiver and one motor controls the translocation of the receivers parallel to the lens. The second conclusion was that the positions of the focal line are within the bounds of the greenhouse construction for almost the whole year. Only in winter, the focal line will be unreachable from time to time. A 480 m2 greenhouse with the LCPVT system based on Static Fresnel lenses and a 40 m CPVT-module and a 200 m CT-module is designed by Bode Project Engineering and constructed by Technokas in Bleiswijk the Netherlands.
2006-03-01
high numerical aperture fibre optics. Applying fibre optics to STP allows the solar concentrator mirror to be mechanically decoupled from the solar...Applying fibre optics to STP allows the solar concentrator mirror to be mechanically decoupled from the solar heat exchanger as well as granting...concentration is achieved via an optical concentrating system, such as a series of lenses or mirrors . This concentrated sunlight impinges on a blackbody
Custom ceramic microchannel-cooled array for high-power fiber-coupled application
NASA Astrophysics Data System (ADS)
Junghans, Jeremy; Feeler, Ryan; Stephens, Ed
2018-03-01
A low-SWaP (Size, Weight and Power) diode array has been developed for a high-power fiber-coupled application. High efficiency ( 65%) diodes enable high optical powers while minimizing thermal losses. A large amount of waste heat is still generated and must be extracted. Custom ceramic microchannel-coolers (MCCs) are used to dissipate the waste heat. The custom ceramic MCC was designed to accommodate long cavity length diodes and micro-lenses. The coolers provide similar thermal performance as copper MCCs however they are not susceptible to erosion and can be cooled with standard filtered water. The custom ceramic micro-channel cooled array was designed to be a form/fit replacement for an existing copperbased solution. Each array consisted of three-vertically stacked MCCs with 4 mm CL, 976 nm diodes and beamshaping micro-optics. The erosion and corrosion resistance of ceramic array is intended to mitigate the risk of copperbased MCC corrosion failures. Elimination of the water delivery requirements (pH, resistivity and dissolved oxygen control) further reduces the system SWaP while maintaining reliability. The arrays were fabricated and fully characterized. This work discusses the advantages of the ceramic MCC technology and describes the design parameters that were tailored for the fiber-coupled application. Additional configuration options (form/fit, micro-lensing, alternate coolants, etc.) and on-going design improvements are also discussed.
Recent technology and usage of plastic lenses in image taking objectives
NASA Astrophysics Data System (ADS)
Yamaguchi, Susumu; Sato, Hiroshi; Mori, Nobuyoshi; Kiriki, Toshihiko
2005-09-01
Recently, plastic lenses produced by injection molding are widely used in image taking objectives for digital cameras, camcorders, and mobile phone cameras, because of their suitability for volume production and ease of obtaining an advantage of aspherical surfaces. For digital camera and camcorder objectives, it is desirable that there is no image point variation with the temperature change in spite of employing several plastic lenses. At the same time, due to the shrinking pixel size of solid-state image sensor, there is now a requirement to assemble lenses with high accuracy. In order to satisfy these requirements, we have developed 16 times compact zoom objective for camcorder and 3 times class folded zoom objectives for digital camera, incorporating cemented plastic doublet consisting of a positive lens and a negative lens. Over the last few years, production volumes of camera-equipped mobile phones have increased substantially. Therefore, for mobile phone cameras, the consideration of productivity is more important than ever. For this application, we have developed a 1.3-mega pixels compact camera module with macro function utilizing the advantage of a plastic lens that can be given mechanically functional shape to outer flange part. Its objective consists of three plastic lenses and all critical dimensions related to optical performance can be determined by high precise optical elements. Therefore this camera module is manufactured without optical adjustment in automatic assembling line, and achieves both high productivity and high performance. Reported here are the constructions and the technical topics of image taking objectives described above.
The eye lens: age-related trends and individual variations in refractive index and shape parameters.
Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto
2015-10-13
The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height.
The eye lens: age-related trends and individual variations in refractive index and shape parameters
Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto
2015-01-01
The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height. PMID:26416418