Solar Radiation Patterns and Glaciers in the Western Himalaya
NASA Astrophysics Data System (ADS)
Dobreva, I. D.; Bishop, M. P.
2013-12-01
Glacier dynamics in the Himalaya are poorly understood, in part due to variations in topography and climate. It is well known that solar radiation is the dominant surface-energy component governing ablation, although the spatio-temporal patterns of surface irradiance have not been thoroughly investigated given modeling limitations and topographic variations including altitude, relief, and topographic shielding. Glaciation and topographic conditions may greatly influence supraglacial characteristics and glacial dynamics. Consequently, our research objectives were to develop a GIS-based solar radiation model that accounts for Earth's orbital, spectral, atmospheric and topographic dependencies, in order to examine the spatio-temporal surface irradiance patterns on glaciers in the western Himalaya. We specifically compared irradiance patterns to supraglacial characteristics and ice-flow velocity fields. Shuttle Radar Mapping Mission (SRTM) 90 m data were used to compute geomorphometric parameters that were input into the solar radiation model. Simulations results for 2013 were produced for the summer ablation season. Direct irradiance, diffuse-skylight, and total irradiance variations were compared and related to glacier altitude profiles of ice velocity and land-surface topographic parameters. Velocity and surface information were derived from analyses of ASTER satellite data. Results indicate that the direct irradiance significantly varies across the surface of glaciers given local topography and meso-scale relief conditions. Furthermore, the magnitude of the diffuse-skylight irradiance varies with altitude and as a result, glaciers in different topographic settings receive different amounts of surface irradiance. Spatio-temporal irradiance patterns appear to be related to glacier surface conditions including supraglacial lakes, and are spatially coincident with ice-flow velocity conditions on some glaciers. Collectively, our results demonstrate that glacier sensitivity to climate change is also locally controlled by numerous multi-scale topographic parameters.
Characterizing Arctic Sea Ice Topography Using High-Resolution IceBridge Data
NASA Technical Reports Server (NTRS)
Petty, Alek; Tsamados, Michel; Kurtz, Nathan; Farrell, Sinead; Newman, Thomas; Harbeck, Jeremy; Feltham, Daniel; Richter-Menge, Jackie
2016-01-01
We present an analysis of Arctic sea ice topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009-2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes.
Martin, Raul
2018-01-01
Current corneal assessment technologies make the process of corneal evaluation extremely fast and simple and several devices and technologies allow to explore and to manage patients. The purpose of this special issue is to present and also to update in the evaluation of cornea and ocular surface and this second part, reviews a description of the corneal topography and tomography techniques, providing updated information of the clinical recommendations of these techniques in eye care practice. Placido-based topographers started an exciting anterior corneal surface analysis that allows the development of current corneal tomographers that provide a full three-dimensional reconstruction of the cornea including elevation, curvature, and pachymetry data of anterior and posterior corneal surfaces. Although, there is not an accepted reference standard technology for corneal topography description and it is not possible to determine which device produces the most accurate topographic measurements, placido-based topographers are a valuable technology to be used in primary eye care and corneal tomograhers expanding the possibilities to explore cornea and anterior eye facilitating diagnosis and follow-up in several situations, raising patient follow-up, and improving the knowledge regarding to the corneal anatomy. Main disadvantages of placido-based topographers include the absence of information about the posterior corneal surface and limited corneal surface coverage without data from the para-central and/or peripheral corneal surface. However, corneal tomographers show repeatable anterior and posterior corneal surfaces measurements, providing full corneal thickness data improving cornea, and anterior surface assessment. However, differences between devices suggest that they are not interchangeable in clinical practice. PMID:29480244
Martin, Raul
2018-03-01
Current corneal assessment technologies make the process of corneal evaluation extremely fast and simple and several devices and technologies allow to explore and to manage patients. The purpose of this special issue is to present and also to update in the evaluation of cornea and ocular surface and this second part, reviews a description of the corneal topography and tomography techniques, providing updated information of the clinical recommendations of these techniques in eye care practice. Placido-based topographers started an exciting anterior corneal surface analysis that allows the development of current corneal tomographers that provide a full three-dimensional reconstruction of the cornea including elevation, curvature, and pachymetry data of anterior and posterior corneal surfaces. Although, there is not an accepted reference standard technology for corneal topography description and it is not possible to determine which device produces the most accurate topographic measurements, placido-based topographers are a valuable technology to be used in primary eye care and corneal tomograhers expanding the possibilities to explore cornea and anterior eye facilitating diagnosis and follow-up in several situations, raising patient follow-up, and improving the knowledge regarding to the corneal anatomy. Main disadvantages of placido-based topographers include the absence of information about the posterior corneal surface and limited corneal surface coverage without data from the para-central and/or peripheral corneal surface. However, corneal tomographers show repeatable anterior and posterior corneal surfaces measurements, providing full corneal thickness data improving cornea, and anterior surface assessment. However, differences between devices suggest that they are not interchangeable in clinical practice.
Tanaka, Kenneth L.; Skinner, James A.; Dohm, James M.; Irwin, Rossman P.; Kolb, Eric J.; Fortezzo, Corey M.; Platz, Thomas; Michael, Gregory G.; Hare, Trent M.
2014-01-01
This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet's surface through time, is based on unprecedented variety, quality, and quantity of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.
Feature-based characterisation of signature topography in laser powder bed fusion of metals
NASA Astrophysics Data System (ADS)
Senin, Nicola; Thompson, Adam; Leach, Richard
2018-04-01
The use of state-of-the-art areal topography measurement instrumentation allows for a high level of detail in the acquisition of topographic information at micrometric scales. The 3D geometric models of surface topography obtained from measured data create new opportunities for the investigation of manufacturing processes through characterisation of the surfaces of manufactured parts. Conventional methods for quantitative assessment of topography usually only involve the computation of texture parameters, summary indicators of topography-related characteristics that are computed over the investigated area. However, further useful information may be obtained through characterisation of signature topographic formations, as more direct indicators of manufacturing process behaviour and performance. In this work, laser powder bed fusion of metals is considered. An original algorithmic method is proposed to isolate relevant topographic formations and to quantify their dimensional and geometric properties, using areal topography data acquired by state-of-the-art areal topography measurement instrumentation.
ToF-SIMS measurements with topographic information in combined images.
Koch, Sabrina; Ziegler, Georg; Hutter, Herbert
2013-09-01
In 2D and 3D time-of-flight secondary ion mass spectrometric (ToF-SIMS) analysis, accentuated structures on the sample surface induce distorted element distributions in the measurement. The origin of this effect is the 45° incidence angle of the analysis beam, recording planar images with distortion of the sample surface. For the generation of correct element distributions, these artifacts associated with the sample surface need to be eliminated by measuring the sample surface topography and applying suitable algorithms. For this purpose, the next generation of ToF-SIMS instruments will feature a scanning probe microscope directly implemented in the sample chamber which allows the performance of topography measurements in situ. This work presents the combination of 2D and 3D ToF-SIMS analysis with topographic measurements by ex situ techniques such as atomic force microscopy (AFM), confocal microscopy (CM), and digital holographic microscopy (DHM). The concept of the combination of topographic and ToF-SIMS measurements in a single representation was applied to organic and inorganic samples featuring surface structures in the nanometer and micrometer ranges. The correct representation of planar and distorted ToF-SIMS images was achieved by the combination of topographic data with images of 2D as well as 3D ToF-SIMS measurements, using either AFM, CM, or DHM for the recording of topographic data.
Topographic ERP analyses: a step-by-step tutorial review.
Murray, Micah M; Brunet, Denis; Michel, Christoph M
2008-06-01
In this tutorial review, we detail both the rationale for as well as the implementation of a set of analyses of surface-recorded event-related potentials (ERPs) that uses the reference-free spatial (i.e. topographic) information available from high-density electrode montages to render statistical information concerning modulations in response strength, latency, and topography both between and within experimental conditions. In these and other ways these topographic analysis methods allow the experimenter to glean additional information and neurophysiologic interpretability beyond what is available from canonical waveform analyses. In this tutorial we present the example of somatosensory evoked potentials (SEPs) in response to stimulation of each hand to illustrate these points. For each step of these analyses, we provide the reader with both a conceptual and mathematical description of how the analysis is carried out, what it yields, and how to interpret its statistical outcome. We show that these topographic analysis methods are intuitive and easy-to-use approaches that can remove much of the guesswork often confronting ERP researchers and also assist in identifying the information contained within high-density ERP datasets.
Simultaneous Conoscopic Holography and Raman Spectroscopy
NASA Technical Reports Server (NTRS)
Schramm, Harry F.; Kaiser, Bruce
2005-01-01
A new instrument was developed for chemical characterization of surfaces that combines the analytical power of Raman spectroscopy with the three-dimensional topographic information provided by conoscopic holography. The figure schematically depicts the proposed hybrid instrument. The output of the conoscopic holographic portion of the instrument is a topographical map of the surface; the output of the Raman portion of the instrument is hyperspectral Raman data, from which the chemical and/or biological composition of the surface would be deduced. By virtue of the basic principles of design and operation of the instrument, the hyperspectral image data would be inherently spatially registered with the topographical data. In conoscopic holography, the object and reference beams of classical holography are replaced by the ordinary and extraordinary components generated by a single beam traveling through a birefringent, uniaxial crystal. In the basic conoscopic configuration, a laser light is projected onto a specimen and the resulting illuminated spot becomes a point source of diffuse light that propagates in every direction. The laser beam is rasterscanned in two dimensions (x and y) perpendicular to the beam axis (z), and at each x,y location, the pattern of interference between the ordinary and extraordinary rays is recorded. The recorded interferogram constitutes the conoscopic hologram. Of particular significance for the proposed instrument is that the conoscopic hologram contains information on the z coordinate (height) of the illuminated surface spot. Hence, a topographical map of the specimen is constructed point-by-point by rastering the laser beam in the x and y directions and correlating the x and y coordinates with the z information obtained from the interferograms. Conoscopic imaging is an established method, and conoscopic laboratory instruments for surface metrology are commercially available. In Raman spectroscopy of a surface, one measures the spectrum of laser light scattered inelastically from a laser-illuminated spot on the surface. The wavelengths of the inelastically scattered light differ from that of the incident laser beam by amounts that correspond to the energies of molecular vibrations. The resulting vibrational spectrum can be used to identify the molecules. Raman spectroscopy is a standard laboratory technique for identifying mineralogical, biological, and other specific chemical compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menapace, J A; Davis, P J; Dixit, S
2007-03-07
Over the past four years we have advanced Magnetorheological Finishing (MRF) techniques and tools to imprint complex continuously varying topographical structures onto large-aperture (430 x 430 mm) optical surfaces. These optics, known as continuous phase plates (CPPs), are important for high-power laser applications requiring precise manipulation and control of beam-shape, energy distribution, and wavefront profile. MRF's unique deterministic-sub-aperture polishing characteristics make it possible to imprint complex topographical information onto optical surfaces at spatial scale-lengths approaching 1 mm and surface peak-to-valleys as high as 22 {micro}m. During this discussion, we will present the evolution of the MRF imprinting technology and themore » MRF tools designed to manufacture large-aperture 430 x 430 mm CPPs. Our results will show how the MRF removal function impacts and limits imprint fidelity and what must be done to arrive at a high-quality surface. We also present several examples of this imprinting technology for fabrication of phase correction plates and CPPs for use in high-power laser applications.« less
Recognition of fiducial surfaces in lidar surveys of coastal topography
Brock, J.C.; Sallenger, A.H.; Krabill, W.B.; Swift, R.N.; Wright, C.W.
2001-01-01
A new method for the recognition and mapping of surfaces in coastal landscapes that provide accurate and low variability topographic measurements with respect to airborne lidar surveys is described and demonstrated in this paper. Such surfaces are herein termed "fiducial" because they can represent reference baseline morphology in Studies of coastal change due to natural or anthropogenic causes. Non-fiducial surfaces may also be identified in each separate lidar survey to be used in a given geomorphic change analysis. Sites that are non-fiducial in either or both lidar surveys that bracket the time period under investigation may be excluded from consideration in subsequent calculations of survey-to-survey elevation differences to eliminate spurious indications of landscape change. This new analysis method, or lidar fiducial surface recognition (LFSR) algorithm, is intended to more fully enable the non-ambiguous Use of topographic lidar in a range of coastal investigations. The LFSR algorithm may be widely applied, because it is based solely on the information inherent in the USGS/NASA/NOAA airborne topographic lidar coverage that exists for most of the contiguous U.S. coastline.
Contrast in Terahertz Images of Archival Documents—Part II: Influence of Topographic Features
NASA Astrophysics Data System (ADS)
Bardon, Tiphaine; May, Robert K.; Taday, Philip F.; Strlič, Matija
2017-04-01
We investigate the potential of terahertz time-domain imaging in reflection mode to reveal archival information in documents in a non-invasive way. In particular, this study explores the parameters and signal processing tools that can be used to produce well-contrasted terahertz images of topographic features commonly found in archival documents, such as indentations left by a writing tool, as well as sieve lines. While the amplitude of the waveforms at a specific time delay can provide the most contrasted and legible images of topographic features on flat paper or parchment sheets, this parameter may not be suitable for documents that have a highly irregular surface, such as water- or fire-damaged documents. For analysis of such documents, cross-correlation of the time-domain signals can instead yield images with good contrast. Analysis of the frequency-domain representation of terahertz waveforms can also provide well-contrasted images of topographic features, with improved spatial resolution when utilising high-frequency content. Finally, we point out some of the limitations of these means of analysis for extracting information relating to topographic features of interest from documents.
Resolving topographic detail on Venus by modeling complex Magellan altimetry echoes
NASA Technical Reports Server (NTRS)
Lovell, Amy J.; Schloerb, F. Peter; Mcgill, George E.
1993-01-01
Magellan's altimeter is providing some of the finest resolution topography of Venus achieved to date. Nevertheless, efforts continue to improve the topographic resolution whenever possible. One effort to this end is stereoscopic imaging, which provides topography at scales similar to that of the synthetic aperture radar (SAR). However, this technique requires two SAR images of the same site to be obtained and limits the utility of this method. In this paper, we present another method to resolve topographic features at scales smaller than that of an altimeter footprint, which is more globally applicable than the stereoscopic approach. Each pulse which is transmitted by Magellan's altimeter scatters from the planet and echoes to the receiver, delayed based on the distance between the spacecraft and each surface element. As resolved in time, each element of an altimetry echo represents the sum of all points on the surface which are equidistant from the spacecraft. Thus, individual returns, as a function of time, create an echo profile which may be used to derive properties of the surface, such as the scattering law or, in this case, the topography within the footprint. The Magellan project has derived some of this information by fitting model templates to radar echo profiles. The templates are calculated based on Hagfor's Law, which assumes a smooth, gently undulating surface. In most regions these templates provide a reasonable fit to the observed echo profile; however, in some cases the surface departs from these simple assumptions and more complex profiles are observed. Specifically, we note that sub-footprint topographic relief apparently has a strong effect on the shape of the echo profile. To demonstrate the effects of sub-resolution relief on echo profiles, we have calculated the echo shapes from a wide range of simple topographic models. At this point, our topographic models have emphasized surfaces where only two dominant elevations are contained within a footprint, such as graben, ridges, crater rims, and central features in impact craters.
Methodological development of topographic correction in 2D/3D ToF-SIMS images using AFM images
NASA Astrophysics Data System (ADS)
Jung, Seokwon; Lee, Nodo; Choi, Myungshin; Lee, Jungmin; Cho, Eunkyunng; Joo, Minho
2018-02-01
Time-of-flight secondary-ion mass spectrometry (ToF-SIMS) is an emerging technique that provides chemical information directly from the surface of electronic materials, e.g. OLED and solar cell. It is very versatile and highly sensitive mass spectrometric technique that provides surface molecular information with their lateral distribution as a two-dimensional (2D) molecular image. Extending the usefulness of ToF-SIMS, a 3D molecular image can be generated by acquiring multiple 2D images in a stack. These imaging techniques by ToF-SIMS provide an insight into understanding the complex structures of unknown composition in electronic material. However, one drawback in ToF-SIMS is not able to represent topographical information in 2D and 3D mapping images. To overcome this technical limitation, topographic information by ex-situ technique such as atomic force microscopy (AFM) has been combined with chemical information from SIMS that provides both chemical and physical information in one image. The key to combine two different images obtained from ToF-SIMS and AFM techniques is to develop the image processing algorithm, which performs resize and alignment by comparing the specific pixel information of each image. In this work, we present methodological development of the semiautomatic alignment and the 3D structure interpolation system for the combination of 2D/3D images obtained by ToF-SIMS and AFM measurements, which allows providing useful analytical information in a single representation.
NASA Astrophysics Data System (ADS)
Kelleher, C.; McPhillips, L. E.
2017-12-01
Urban landscapes translate water in a variety of ways that diverge from more natural systems. In particular, due to the presence of impervious surfaces and alteration of topography, they are prone to nuisance flooding when it rains. To track the locations of areas of minor flooding and other complaints, many cities are now facilitating nuisance reports from residents via information technology services like 311. These reports provide useful information for tracking where in the landscape water may collect during rain events; we sought to use this information to test potential geospatial indices for predictively identifying locations prone to nuisance flooding in urban areas. In this study, we utilized a tool commonly applied in natural systems, topographic indices, to create spatially contiguous estimates of topographic wetness index (TWI), a value that can be used to identify areas within a watershed expected to be preferentially wetter or drier based on topographic slope and surface flow pathways. For several watersheds across Baltimore and New York City (USA), we tested three different resolutions of LiDAR-derived topography and two different methods of flow routing to calculate continuous distributions of TWI. When comparing these values to nuisance flooding locations, we found that distributions of TWI values within a radius of reported nuisance floods were higher, on average, than the distribution of TWI values across each watershed. We also employed a spatial Monte Carlo sampling strategy, randomly selecting grid cells within each watershed to determine if these randomly selected grid cells have preferentially lower TWI values than those near nuisance flooding locations. Overall, we demonstrate that topographic indices may be useful predictors of localized flooding within urban environments.
NASA Astrophysics Data System (ADS)
Bryant, Rob; Cheng, Shuying; Doerr, Stefan H.; Wright, Chris J.; Bayer, Julia V.; Williams, Rhodri P.
2010-05-01
Organic coatings on mineral particles will mask the physic-chemical properties of the underlying mineral surface. Surface images and force measurements obtained using atomic force microscopy (AFM) provide information about the nature of and variability in surfaces properties at the micro- to nano-scale. As AFM technology and data processing advance it is anticipated that a significant amount of information will be obtained simultaneously from individual contacts made at high frequency in non-contact or tapping mode operation. For present purposes the surfaces of model materials (smooth glass surfaces and acid-washed sand (AWS)) provide an indication of the dependency of the so-called AFM phase image on the topographic image (which is obtained synoptically). Pixel wise correlation of these images reveals how the modulation of an AFM probe is affected when topographic features are encountered. Adsorption of soil-derived humic acid (HA) or lecithin (LE), used here as an example for natural organic material, on these surfaces provides a soft and compliant, albeit partial, covering on the mineral which modifies the topography and the response of an AFM tip as it partially indents the soft regions (which contributes depth to the phase image). This produces a broadening on the data domain in the topographic/phase scatter diagram. Two dimensional classifications of these data, together with those obtained from sand particles drawn from water repellent and wettable soils, suggest that these large adsorbate molecules appear to have little preference to attach to particular topographic features or elevations. It appears that they may effectively remain on the surface at the point of initial contact. If organic adsorbates present a hydrophobic outer surface, then it seems possible that elevated features will not be immune from this and provide scope for a local, albeit, small contribution to the expression of super-hydrophobicity. It is therefore speculated here that the water repellency of a soil is the result of not only of particle surface chemistry and soil pore space geometry, but also of the micro-topography generated by organic material adsorbed on particle surfaces.
DOT National Transportation Integrated Search
1995-06-30
Topographic surface modeling using a Geographic Information System (GIS) can be useful for the prediction of soil erosion resulting from highway construction projects. The assumption is that terrain, along with other parameters, will influence the po...
NASA Technical Reports Server (NTRS)
Madsen, Soren N.; Carsey, Frank D.; Turtle, Elizabeth P.
2003-01-01
The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through us of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100 km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.
NASA Technical Reports Server (NTRS)
Madsen, S. N.; Carsey, F. D.; Turtle, E. P.
2003-01-01
The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through use of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.
Estimating Coastal Digital Elevation Model (DEM) Uncertainty
NASA Astrophysics Data System (ADS)
Amante, C.; Mesick, S.
2017-12-01
Integrated bathymetric-topographic digital elevation models (DEMs) are representations of the Earth's solid surface and are fundamental to the modeling of coastal processes, including tsunami, storm surge, and sea-level rise inundation. Deviations in elevation values from the actual seabed or land surface constitute errors in DEMs, which originate from numerous sources, including: (i) the source elevation measurements (e.g., multibeam sonar, lidar), (ii) the interpolative gridding technique (e.g., spline, kriging) used to estimate elevations in areas unconstrained by source measurements, and (iii) the datum transformation used to convert bathymetric and topographic data to common vertical reference systems. The magnitude and spatial distribution of the errors from these sources are typically unknown, and the lack of knowledge regarding these errors represents the vertical uncertainty in the DEM. The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) has developed DEMs for more than 200 coastal communities. This study presents a methodology developed at NOAA NCEI to derive accompanying uncertainty surfaces that estimate DEM errors at the individual cell-level. The development of high-resolution (1/9th arc-second), integrated bathymetric-topographic DEMs along the southwest coast of Florida serves as the case study for deriving uncertainty surfaces. The estimated uncertainty can then be propagated into the modeling of coastal processes that utilize DEMs. Incorporating the uncertainty produces more reliable modeling results, and in turn, better-informed coastal management decisions.
Visualization of particle flux in the human body on the surface of Mars
NASA Technical Reports Server (NTRS)
Saganti, Premkumar B.; Cucinotta, Francis A.; Wilson, John W.; Schimmerling, Walter
2002-01-01
For a given galactic cosmic ray (GCR) environment, information on the particle flux of protons, alpha particles, and heavy ions, that varies with respect to the topographical altitude on the Martian surface, are needed for planning exploration missions to Mars. The Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument has been providing precise topographical surface map of the Mars. With this topographical data, the particle flux at the Martian surface level through the CO2 atmospheric shielding for solar minimum and solar maximum conditions are calculated. These particle flux calculations are then transported first through an anticipated shielding of a conceptual shelter with several water equivalent shield values (up to 50 g/cm2 of water in steps of 5 g/cm2) considered to represent a surface habitat, and then into the human body. Model calculations are accomplished utilizing the HZETRN, QMSFRG, and SUM-MARS codes. Particle flux calculations for 12 different locations in the human body were considered from skin depth to the internal organs including the blood-forming organs (BFO). Visualization of particle flux in the human body at different altitudes on the Martian surface behind a known shielding is anticipated to provide guidance for assessing radiation environment risk on the Martian surface for future human missions.
Visualization of particle flux in the human body on the surface of Mars.
Saganti, Premkumar B; Cucinotta, Francis A; Wilson, John W; Schimmerling, Walter
2002-12-01
For a given galactic cosmic ray (GCR) environment, information on the particle flux of protons, alpha particles, and heavy ions, that varies with respect to the topographical altitude on the Martian surface, are needed for planning exploration missions to Mars. The Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument has been providing precise topographical surface map of the Mars. With this topographical data, the particle flux at the Martian surface level through the CO2 atmospheric shielding for solar minimum and solar maximum conditions are calculated. These particle flux calculations are then transported first through an anticipated shielding of a conceptual shelter with several water equivalent shield values (up to 50 g/cm2 of water in steps of 5 g/cm2) considered to represent a surface habitat, and then into the human body. Model calculations are accomplished utilizing the HZETRN, QMSFRG, and SUM-MARS codes. Particle flux calculations for 12 different locations in the human body were considered from skin depth to the internal organs including the blood-forming organs (BFO). Visualization of particle flux in the human body at different altitudes on the Martian surface behind a known shielding is anticipated to provide guidance for assessing radiation environment risk on the Martian surface for future human missions.
A System for Drawing Synthetic Images of Forested Landscapes
Timothy P. McDonald
1997-01-01
A software package for drawing images of forested landscapes was developed. Programs included in the system convert topographic and stand polygon information output from a GIS into a form that can be read by a general-purpose ray-tracing renderer. Other programs generate definitions for surface features, mainly trees but ground surface textural properties as well. The...
Tromp-van, Meerveld; James, A.L.; McDonnell, Jeffery J.; Peters, N.E.
2008-01-01
Although many hillslope hydrologic investigations have been conducted in different climate, topographic, and geologic settings, subsurface stormflow remains a poorly characterized runoff process. Few, if any, of the existing data sets from these hillslope investigations are available for use by the scientific community for model development and validation or conceptualization of subsurface stormflow. We present a high-resolution spatial and temporal rainfall-runoff data set generated from the Panola Mountain Research Watershed trenched experimental hillslope. The data set includes surface and subsurface (bedrock surface) topographic information and time series of lateral subsurface flow at the trench, rainfall, and subsurface moisture content (distributed soil moisture content and groundwater levels) from January to June 2002. Copyright 2008 by the American Geophysical Union.
Applications of corneal topography and tomography: a review.
Fan, Rachel; Chan, Tommy Cy; Prakash, Gaurav; Jhanji, Vishal
2018-03-01
Corneal imaging is essential for diagnosing and management of a wide variety of ocular diseases. Corneal topography is used to characterize the shape of the cornea, specifically, the anterior surface of the cornea. Most corneal topographical systems are based on Placido disc that analyse rings that are reflected off the corneal surface. The posterior corneal surface cannot be characterized using Placido disc technology. Imaging of the posterior corneal surface is useful for diagnosis of corneal ectasia. Unlike corneal topographers, tomographers generate a three-dimensional recreation of the anterior segment and provide information about the corneal thickness. Scheimpflug imaging is one of the most commonly used techniques for corneal tomography. The cross-sectional images generated by a rotating Scheimpflug camera are used to locate the anterior and posterior corneal surfaces. The clinical uses of corneal topography include, diagnosis of corneal ectasia, assessment of corneal astigmatism, and refractive surgery planning. This review will discuss the applications of corneal topography and tomography in clinical practice. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
Useful surface parameters for biomaterial discrimination.
Etxeberria, Marina; Escuin, Tomas; Vinas, Miquel; Ascaso, Carlos
2015-01-01
Topographical features of biomaterials' surfaces are determinant when addressing their application site. Unfortunately up to date there has not been an agreement regarding which surface parameters are more representative in discriminating between materials. Discs (n = 16) of different currently used materials for implant prostheses fabrication, such as cast cobalt-chrome, direct laser metal soldered (DLMS) cobalt-chrome, titanium grade V, zirconia (Y-TZP), E-glass fiber-reinforced composite and polyetheretherketone (PEEK) were manufactured. Nanoscale topographical surface roughness parameters generated by atomic force microscopy (AFM), microscale surface roughness parameters obtained by white light interferometry (WLI) and water angle values obtained by the sessile-water-drop method were analyzed in order to assess which parameter provides the best optimum surface characterization method. Correlations between nanoroughness, microroughness, and hydrophobicity data were performed to achieve the best parameters giving the highest discriminatory power. A subset of six parameters for surface characterization were proposed. AFM and WLI techniques gave complementary information. Wettability did not correlate with any of the nanoroughness parameters while it however showed a weak correlation with microroughness parameters. © Wiley Periodicals, Inc.
Modelling of Singapore's topographic transformation based on DEMs
NASA Astrophysics Data System (ADS)
Wang, Tao; Belle, Iris; Hassler, Uta
2015-02-01
Singapore's topography has been heavily transformed by industrialization and urbanization processes. To investigate topographic changes and evaluate soil mass flows, historical topographic maps of 1924 and 2012 were employed, and basic topographic features were vectorized. Digital elevation models (DEMs) for the two years were reconstructed based on vector features. Corresponding slope maps, a surface difference map and a scatter plot of elevation changes were generated and used to quantify and categorize the nature of the topographic transformation. The surface difference map is aggregated into five main categories of changes: (1) areas without significant height changes, (2) lowered-down areas where hill ranges were cut down, (3) raised-up areas where valleys and swamps were filled in, (4) reclaimed areas from the sea, and (5) new water-covered areas. Considering spatial proximity and configurations of different types of changes, topographic transformation can be differentiated as either creating inland flat areas or reclaiming new land from the sea. Typical topographic changes are discussed in the context of Singapore's urbanization processes. The two slope maps and elevation histograms show that generally, the topographic surface of Singapore has become flatter and lower since 1924. More than 89% of height changes have happened within a range of 20 m and 95% have been below 40 m. Because of differences in land surveying and map drawing methods, uncertainties and inaccuracies inherent in the 1924 topographic maps are discussed in detail. In this work, a modified version of a traditional scatter plot is used to present height transformation patterns intuitively. This method of deriving categorical maps of topographical changes from a surface difference map can be used in similar studies to qualitatively interpret transformation. Slope maps and histograms were also used jointly to reveal additional patterns of topographic change.
Quantitative analysis of the extensional tectonics of Tharsis bulge, Mars - Geodynamic implications
NASA Astrophysics Data System (ADS)
Thomas, P. G.; Allemand, P.
1993-07-01
The amount of horizontal strain on the Martian Tharsis bulge is quantified in order to provide further information on the tectonic evolution of this province. About 10 percent of the Tharsis surface bulge exhibits elliptical impact craters, which are the largest strain markers in the solar system. It is shown that these strain ellipses indicate more strain than could be due to the bulge building alone. The existence of such intensely deformed areas, the direction of the extensive strain, the localization of these areas on the bulge crest or on the top of topographic slopes, and the evidence of nonthinned crust under these areas may all be explained by gravitational slidings of the bulge surface over the topographic slope. This sliding would be possible because of the presence of a decollement level two kilometers below the surface, and because of the prefracturation which have made the detachment possible.
Nagoshi, Masayasu; Aoyama, Tomohiro; Sato, Kaoru
2013-01-01
Secondary electron microscope (SEM) images have been obtained for practical materials using low primary electron energies and an in-lens type annular detector with changing negative bias voltage supplied to a grid placed in front of the detector. The kinetic-energy distribution of the detected electrons was evaluated by the gradient of the bias-energy dependence of the brightness of the images. This is divided into mainly two parts at about 500 V, high and low brightness in the low- and high-energy regions, respectively and shows difference among the surface regions having different composition and topography. The combination of the negative grid bias and the pixel-by-pixel image subtraction provides the band-pass filtered images and extracts the material and topographic information of the specimen surfaces. Copyright © 2012 Elsevier B.V. All rights reserved.
Leaf cuticle topography retrieved by using fringe projection
NASA Astrophysics Data System (ADS)
Martínez, Amalia; Rayas, J. A.; Cordero, Raúl R.; Balieiro, Daniela; Labbe, Fernando
2012-02-01
The combination (often referred to as phase-stepping profilometry, PSP) of the fringe projection technique and the phase-stepping method allowed us to retrieve topographic maps of cuticles isolated from the abaxial surface of leaves; these were in turn sampled from an apple tree ( Malus domestica) of the variety Golden Delicious. The topographic maps enabled us to assess the natural features on the illuminated surface and also to detect the whole-field spatial variations in the thickness of the cuticle. Most of our attention was paid to retrieve the highly-resolved elevation information from the cuticle surface, which included the trace (in the order of tens of micrometers) left by ribs and veins. We expect that the PSP application for retrieving the cuticle topography will facilitate further studies on the dispersion and coverage of state-of-the-art agrochemical compounds meant to improve the defending properties of the cuticle. Methodological details are provided below.
Determination of Martian Northern Polar Insolation Levels Using a Geodetic Elevation Model
NASA Technical Reports Server (NTRS)
Arrell, J. R.; Zuber, M. T.
2000-01-01
Solar insolation levels at the Martian polar caps bear significantly on the seasonal and climatic cycling of volatiles on that planet. In the northern hemisphere, the Martian surface slopes downhill from the equator to the pole such that the north polar cap is situated in a 5-km-deep hemispheric-scale depression. This large-scale topographic setting plays an important role in the insolation of the northern polar cap. Elevations measured by the Mars Orbiter Laser Altimeter (MOLA) provide comprehensive, high-accuracy topographical information required to precisely determine polar insolation. In this study, we employ a geodetic elevation model to quantify the north polar insolation and consider implications for seasonal and climatic changes. Additional information is contained in original extended abstract.
Interfacial engineering of microstructured materials
NASA Astrophysics Data System (ADS)
Poda, Aimee
The tribological behavior of octadecyltrichlorosilane self assembled monolayers (OTS-SAMs) has been successfully exploited to reduce energy losses and to produce adequate adhesion barrier properties on many MEMS surfaces. Unfortunately, performance discrepancies are reported in the literature between films produced on smooth surfaces as compared to typical MEMS surfaces maintaining topographical roughness. Rational explanations in terms of reproducibility issues, production considerations, and the scale of measurement technique have been introduced to account for some of the variation. The tribological phenomena at the micro-scale are complicated by the fact that rather than inertial effects, the forces associated with the surface become dominant factors influencing the mechanical behavior of contacting components. In MEMS, real mechanical contacts typically consist of a few nanometer scale asperities. Furthermore, various surface topographies exist for MEMS device fabrication and their corresponding asperity profiles can vary drastically based on the production process. This dissertation presents research focusing on the influence of topographical asperities on OTS film properties of relevance for efficient tribological improvement. A fundamental approach has been taken to carefully examine the factors that contribute to high quality film formation, specifically formation temperature and the role of interfacial water layer associated with the sample surface. As evidenced on smooth surfaces, the characteristics for successful tribological performance of OTS films are strongly dependent on the lateral packing density and molecular orientation of the monolayer. Limited information is available on how monolayers associate on topographical asperities and whether these topographical asperities influence the interfacial reactivity of MEMS surfaces. A silica film produced from a low temperature, vapor-phase hydrolysis of tetrachlorosilane with a tunable topography is introduced and leveraged as a novel investigative platform for advanced analytical investigations often restricted to use on smooth surfaces. This tunable surface allows intellectual insight into the nature of surface properties associated with silica surfaces, the uptake of interfacial water and the subsequent influence of surface morphology on OTS film formation. FTIR analysis was utilized for an examination of interfacial properties on both smooth Si(100) surfaces and on the tunable MVD topography in combination with an investigation of OTS film formation mechanism. A dilute etchant technique is developed to provide topographic contrast for AFM imaging to allow direct examination of film packing characteristics in relation to surface asperities. A relationship between monolayer adsorption characteristics and topographical asperities with observed variations in monolayer order resultant from surface roughness has been elucidated. Results show that the packing structure of OTS monolayers is dependent on the local asperity curvature which is qualitatively different from that observed on flat surfaces. In addition, a difference in surface reactivity is observed as a result of different surface topographies with thicker silica layers maintaining a thicker interfacial water layer resulting in a higher coverage of OTS monolayers at similar reaction times and conditions. This work shows changes in surface reactivity as a consequence of different morphological surface characteristics and preparation procedures. Additional research is presented on a new class of SAM, namely octadecylphoshonic acid and its monolayer formation mechanism and properties are compared to conventional OTS monolayers. This monolayer is translated to investigative probes based on Aluminum oxide specifically tailored for a tribological comparison across multi-scale friction regimes.
NASA Technical Reports Server (NTRS)
Wu, Sherman S. C.; Howington, Annie-Elpis
1987-01-01
The Mars Digital Terrain Model (DTM) is the result of a new project to: (1) digitize the series of 1:2,000,000-scale topographic maps of Mars, which are being derived photogrammetically under a separate project, and (2) reformat the digital contour information into rasters of elevation that can be readily registered with the Digital Image Model (DIM) of Mars. Derivation of DTM's involves interpolation of elevation values into 1/64-degree resolution and transformation of them to a sinusoidal equal-area projection. Digital data are produced in blocks corresponding with the coordinates of the original 1:2,000,000-scale maps, i.e., the dimensions of each block in the equatorial belt are 22.5 deg of longitude and 15 deg of latitude. This DTM is not only compatible with the DIM, but it can also be registered with other data such as geologic units or gravity. It will be the most comprehensive record of topographic information yet compiled for the Martian surface. Once the DTM's are established, any enhancement of Mars topographic information made with updated data, such as data from the planned Mars Observer Mission, will be by mathematical transformation of the DTM's, eliminating the need for recompilation.
Impacts of Topographic Shading on Surface Energy Balance of High Mountain Asia Glaciers
NASA Astrophysics Data System (ADS)
Olson, M.; Rupper, S.
2016-12-01
Topographic shading plays an important role in the energy balance of valley glaciers. While previous studies incorporate shading of varying complexity in surface energy balance models, to date, no large-scale studies have explored in depth the effects of topographic shading on glacier surface energy balance, and how these vary geographically within High Mountain Asia (HMA). Here we develop a model to examine the variability in potential insolation during the summer melt season using the ASTER GDEM and multi-hour solar geometry to simulate topographic shading on an idealized glacier. Shading is calculated in simulations utilizing a range of slopes, aspects, and latitudes. We test glacier mass balance sensitivity to these parameters for a suite of glaciers throughout HMA. Our results show that shading impacts on glaciers in HMA are highly variable across different geographic regions, but that they are largely predictable based on topographic characteristics such as slope and aspect. For example, we find in regions with steep topography and high relief that shading frequently dominates in the ablation zone rather than the accumulation zone, contrary to the findings of some previous studies. In these regions, topographic shading may play a more significant role in glacier energy balance. These results will better define the effects of topographic shading on surface energy balance, and improve model accuracy within HMA. Additionally, this topographic shading model provides a framework to quantify how shading effects vary for advancing or retreating glaciers as they respond to fluctuations in climate across HMA.
NASA Astrophysics Data System (ADS)
de Oliveira, Cleber Gonzales; Paradella, Waldir Renato; da Silva, Arnaldo de Queiroz
The Brazilian Amazon is a vast territory with an enormous need for mapping and monitoring of renewable and non-renewable resources. Due to the adverse environmental condition (rain, cloud, dense vegetation) and difficult access, topographic information is still poor, and when available needs to be updated or re-mapped. In this paper, the feasibility of using Digital Surface Models (DSMs) extracted from TerraSAR-X Stripmap stereo-pair images for detailed topographic mapping was investigated for a mountainous area in the Carajás Mineral Province, located on the easternmost border of the Brazilian Amazon. The quality of the radargrammetric DSMs was evaluated regarding field altimetric measurements. Precise topographic field information acquired from a Global Positioning System (GPS) was used as Ground Control Points (GCPs) for the modeling of the stereoscopic DSMs and as Independent Check Points (ICPs) for the calculation of elevation accuracies. The analysis was performed following two ways: (1) the use of Root Mean Square Error (RMSE) and (2) calculations of systematic error (bias) and precision. The test for significant systematic error was based on the Student's-t distribution and the test of precision was based on the Chi-squared distribution. The investigation has shown that the accuracy of the TerraSAR-X Stripmap DSMs met the requirements for 1:50,000 map (Class A) as requested by the Brazilian Standard for Cartographic Accuracy. Thus, the use of TerraSAR-X Stripmap images can be considered a promising alternative for detailed topographic mapping in similar environments of the Amazon region, where available topographic information is rare or presents low quality.
Advances for the Topographic Characterisation of SMC Materials
Calvimontes, Alfredo; Grundke, Karina; Müller, Anett; Stamm, Manfred
2009-01-01
For a comprehensive study of Sheet Moulding Compound (SMC) surfaces, topographical data obtained by a contact-free optical method (chromatic aberration confocal imaging) were systematically acquired to characterise these surfaces with regard to their statistical, functional and volumetrical properties. Optimal sampling conditions (cut-off length and resolution) were obtained by a topographical-statistical procedure proposed in the present work. By using different length scales specific morphologies due to the influence of moulding conditions, metallic mould topography, glass fibre content and glass fibre orientation can be characterized. The aim of this study is to suggest a systematic topographical characterization procedure for composite materials in order to study and recognize the influence of production conditions on their surface quality.
The Development of 3d Sub-Surface Mapping Scheme and its Application to Martian Lobate Debris Aprons
NASA Astrophysics Data System (ADS)
Baik, H.; Kim, J.
2017-07-01
The Shallow Subsurface Radar (SHARAD), a sounding radar equipped on the Mars Reconnaissance Orbiter (MRO), has produced highly valuable information about the Martian subsurface. In particular, the complicated substructures of Mars such as polar deposit, pedestal crater and the other geomorphic features involving possible subsurface ice body has been successfully investigated by SHARAD. In this study, we established a 3D subsurface mapping strategy employing the multiple SHARAD profiles. A number of interpretation components of SHARAD signals were integrated into a subsurface mapping scheme using radargram information and topographic data, then applied over a few mid latitude Lobate Debris Aprons (LDAs). From the identified subsurface layers of LDA, and the GIS data base incorporating the other interpretation outcomes, we are expecting to trace the origin of LDAs. Also, the subsurface mapping scheme developed in this study will be further applied to other interesting Martian geological features such as inter crater structures, aeolian deposits and fluvial sediments. To achieve higher precision sub-surface mapping, the clutter simulation employing the high resolution topographic data and the upgraded clustering algorithms assuming multiple sub-surface layers will be also developed.
Weak Vertical Surface Movement Caused by the Ascent of the Emeishan Mantle Anomaly
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Zhang, Zhaochong; Reichow, Marc K.; Li, Hongbo; Cai, Wenchang; Pan, Ronghao
2018-02-01
Prevailing mantle plume models reveal that the roles of plume-lithosphere interactions in shaping surface topography are complex and controversial, and also difficult to test. The exposed and complete strata in the Emeishan large igneous province (LIP) recorded abundant paleoenvironmental information associated with preeruptions and syneruptions, attracting numerous workers to this province to test these models. Despite intensified research these models are still strongly debated. This study represents an extensive field investigation combining new and previously published data from the Emeishan LIP to further seek information on plume-induced topographic variations. Our results indicate that there are inconspicuous vertical motions of the surface topography during the ascent of mantle plume, and a significant surface subsidence occurred at the early stage of the volcanism that has a significantly positive correlation with the thickness of local lavas, and the topographic uplift emerged in the late stage of the volcanism. Our studies provide key geological and geochemical evidence that the ascent of the Emeishan plume is unable to drive a significant surface uplift, owing to the plume containing numerous entrained bodies of dense recycled oceanic crust (10-20%) that can significantly reduce plume buoyancy. The significant surface subsidence maybe linked to a significant loss of thermal buoyancy due to the release of heat, which, accompanied by rapid loading of numerous dense erupted lava and a strong lithospheric flexure, also lead to a later synchronous and significant surface subsidence in the Emeishan LIP.
NASA Technical Reports Server (NTRS)
Gossmann, H. (Principal Investigator)
1980-01-01
The author has identified the following significant results. Satellite data supplied the same information as aerial IR registrations with corresponding averaging for all studies requiring a survey of the thermal pattern within an area measuring 10 km x 10 km ore more, provided that sufficiently precise control points could be established for the purpose of geometric rectification in the surroundings of the area observed. Satellite thermal data are more comprehensive than aircraft data for studies on a regional, rather than a local scale, since airborne images often obscure the basic correlation in thermal patterns because of a variety of irrelevant topographical detail. The satellite data demonstrate the dependence of surface temperature on relief more clearly than comparable airborne imagery.
The dynamical control of subduction parameters on surface topography
NASA Astrophysics Data System (ADS)
Crameri, F.; Lithgow-Bertelloni, C. R.; Tackley, P. J.
2017-04-01
The long-wavelength surface deflection of Earth's outermost rocky shell is mainly controlled by large-scale dynamic processes like isostasy or mantle flow. The largest topographic amplitudes are therefore observed at plate boundaries due to the presence of large thermal heterogeneities and strong tectonic forces. Distinct vertical surface deflections are particularly apparent at convergent plate boundaries mostly due to the convergence and asymmetric sinking of the plates. Having a mantle convection model with a free surface that is able to reproduce both realistic single-sided subduction and long-wavelength surface topography self-consistently, we are now able to better investigate this interaction. We separate the topographic signal into distinct features and quantify the individual topographic contribution of several controlling subduction parameters. Results are diagnosed by splitting the topographic signal into isostatic and residual components, and by considering various physical aspects like viscous dissipation during plate bending. Performing several systematic suites of experiments, we are then able to quantify the topographic impact of the buoyancy, rheology, and geometry of the subduction-zone system to each and every topographic feature at a subduction zone and to provide corresponding scaling laws. We identify slab dip and, slightly less importantly, slab buoyancy as the major agents controlling surface topography at subduction zones on Earth. Only the island-arc high and the back-arc depression extent are mainly controlled by plate strength. Overall, his modeling study sets the basis to better constrain deep-seated mantle structures and their physical properties via the observed surface topography on present-day Earth and back through time.
From data to information and knowledge for geospatial applications
NASA Astrophysics Data System (ADS)
Schenk, T.; Csatho, B.; Yoon, T.
2006-12-01
An ever-increasing number of airborne and spaceborne data-acquisition missions with various sensors produce a glut of data. Sensory data rarely contains information in a explicit form such that an application can directly use it. The processing and analyzing of data constitutes a real bottleneck; therefore, automating the processes of gaining useful information and knowledge from the raw data is of paramount interest. This presentation is concerned with the transition from data to information and knowledge. With data we refer to the sensor output and we notice that data provide very rarely direct answers for applications. For example, a pixel in a digital image or a laser point from a LIDAR system (data) have no direct relationship with elevation changes of topographic surfaces or the velocity of a glacier (information, knowledge). We propose to employ the computer vision paradigm to extract information and knowledge as it pertains to a wide range of geoscience applications. After introducing the paradigm we describe the major steps to be undertaken for extracting information and knowledge from sensory input data. Features play an important role in this process. Thus we focus on extracting features and their perceptual organization to higher order constructs. We demonstrate these concepts with imaging data and laser point clouds. The second part of the presentation addresses the problem of combining data obtained by different sensors. An absolute prerequisite for successful fusion is to establish a common reference frame. We elaborate on the concept of sensor invariant features that allow the registration of such disparate data sets as aerial/satellite imagery, 3D laser point clouds, and multi/hyperspectral imagery. Fusion takes place on the data level (sensor registration) and on the information level. We show how fusion increases the degree of automation for reconstructing topographic surfaces. Moreover, fused information gained from the three sensors results in a more abstract surface representation with a rich set of explicit surface information that can be readily used by an analyst for applications such as change detection.
NASA Astrophysics Data System (ADS)
Bailly, J. S.; Dartevelle, M.; Delenne, C.; Rousseau, A.
2017-12-01
Floodplain and major river bed topography govern many river biophysical processes during floods. Despite the grow of direct topographic measurements from LiDARS on riverine systems, it still room to develop methods for large (e.g. deltas) or very local (e.g. ponds) riverine systems that take advantage of information coming from simple SAR or optical image processing on floodplain, resulting from waterbodies delineation during flood up or down, and producing ordered coutour lines. The next challenge is thus to exploit such data in order to estimate continuous topography on the floodplain combining heterogeneous data: a topographic points dataset and a located but unknown and ordered contourline dataset. This article is comparing two methods designed to estimate continuous topography on the floodplain mixing ordinal coutour lines and continuous topographic points. For both methods a first estimation step is to value each contourline with elevation and a second step is next to estimate the continuous field from both topographic points and valued contourlines. The first proposed method is a stochastic method starting from multigaussian random-fields and conditional simualtion. The second is a deterministic method based on radial spline fonction for thin layers used for approximated bivariate surface construction. Results are first shown and discussed from a set of synoptic case studies presenting various topographic points density and topographic smoothness. Next, results are shown and discuss on an actual case study in the Montagua laguna, located in the north of Valparaiso, Chile.
NASA Astrophysics Data System (ADS)
Brown, T. G.; Lespez, L.; Sear, D. A.; Houben, P.; Klimek, K.
2016-12-01
Floodplain and major river bed topography govern many river biophysical processes during floods. Despite the grow of direct topographic measurements from LiDARS on riverine systems, it still room to develop methods for large (e.g. deltas) or very local (e.g. ponds) riverine systems that take advantage of information coming from simple SAR or optical image processing on floodplain, resulting from waterbodies delineation during flood up or down, and producing ordered coutour lines. The next challenge is thus to exploit such data in order to estimate continuous topography on the floodplain combining heterogeneous data: a topographic points dataset and a located but unknown and ordered contourline dataset. This article is comparing two methods designed to estimate continuous topography on the floodplain mixing ordinal coutour lines and continuous topographic points. For both methods a first estimation step is to value each contourline with elevation and a second step is next to estimate the continuous field from both topographic points and valued contourlines. The first proposed method is a stochastic method starting from multigaussian random-fields and conditional simualtion. The second is a deterministic method based on radial spline fonction for thin layers used for approximated bivariate surface construction. Results are first shown and discussed from a set of synoptic case studies presenting various topographic points density and topographic smoothness. Next, results are shown and discuss on an actual case study in the Montagua laguna, located in the north of Valparaiso, Chile.
a Semi-Empirical Topographic Correction Model for Multi-Source Satellite Images
NASA Astrophysics Data System (ADS)
Xiao, Sa; Tian, Xinpeng; Liu, Qiang; Wen, Jianguang; Ma, Yushuang; Song, Zhenwei
2018-04-01
Topographic correction of surface reflectance in rugged terrain areas is the prerequisite for the quantitative application of remote sensing in mountainous areas. Physics-based radiative transfer model can be applied to correct the topographic effect and accurately retrieve the reflectance of the slope surface from high quality satellite image such as Landsat8 OLI. However, as more and more images data available from various of sensors, some times we can not get the accurate sensor calibration parameters and atmosphere conditions which are needed in the physics-based topographic correction model. This paper proposed a semi-empirical atmosphere and topographic corrction model for muti-source satellite images without accurate calibration parameters.Based on this model we can get the topographic corrected surface reflectance from DN data, and we tested and verified this model with image data from Chinese satellite HJ and GF. The result shows that the correlation factor was reduced almost 85 % for near infrared bands and the classification overall accuracy of classification increased 14 % after correction for HJ. The reflectance difference of slope face the sun and face away the sun have reduced after correction.
In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In re...
NASA Astrophysics Data System (ADS)
Niederheiser, R.; Rutzinger, M.; Bremer, M.; Wichmann, V.
2018-04-01
The investigation of changes in spatial patterns of vegetation and identification of potential micro-refugia requires detailed topographic and terrain information. However, mapping alpine topography at very detailed scales is challenging due to limited accessibility of sites. Close-range sensing by photogrammetric dense matching approaches based on terrestrial images captured with hand-held cameras offers a light-weight and low-cost solution to retrieve high-resolution measurements even in steep terrain and at locations, which are difficult to access. We propose a novel approach for rapid capturing of terrestrial images and a highly automated processing chain for retrieving detailed dense point clouds for topographic modelling. For this study, we modelled 249 plot locations. For the analysis of vegetation distribution and location properties, topographic parameters, such as slope, aspect, and potential solar irradiation were derived by applying a multi-scale approach utilizing voxel grids and spherical neighbourhoods. The result is a micro-topography archive of 249 alpine locations that includes topographic parameters at multiple scales ready for biogeomorphological analysis. Compared with regional elevation models at larger scales and traditional 2D gridding approaches to create elevation models, we employ analyses in a fully 3D environment that yield much more detailed insights into interrelations between topographic parameters, such as potential solar irradiation, surface area, aspect and roughness.
The effect of topography on arctic-alpine aboveground biomass and NDVI patterns
NASA Astrophysics Data System (ADS)
Riihimäki, Henri; Heiskanen, Janne; Luoto, Miska
2017-04-01
Topography is a key factor affecting numerous environmental phenomena, including Arctic and alpine aboveground biomass (AGB) distribution. Digital Elevation Model (DEM) is a source of topographic information which can be linked to local growing conditions. Here, we investigated the effect of DEM derived variables, namely elevation, topographic position, radiation and wetness on AGB and Normalized Difference Vegetation Index (NDVI) in a Fennoscandian forest-alpine tundra ecotone. Boosted regression trees were used to derive non-parametric response curves and relative influences of the explanatory variables. Elevation and potential incoming solar radiation were the most important explanatory variables for both AGB and NDVI. In the NDVI models, the response curves were smooth compared with AGB models. This might be caused by large contribution of field and shrub layer to NDVI, especially at the treeline. Furthermore, radiation and elevation had a significant interaction, showing that the highest NDVI and biomass values are found from low-elevation, high-radiation sites, typically on the south-southwest facing valley slopes. Topographic wetness had minor influence on AGB and NDVI. Topographic position had generally weak effects on AGB and NDVI, although protected topographic position seemed to be more favorable below the treeline. The explanatory power of the topographic variables, particularly elevation and radiation demonstrates that DEM-derived land surface parameters can be used for exploring biomass distribution resulting from landform control on local growing conditions.
The contribution of the diffuse light component to the topographic effect on remotely sensed data
NASA Technical Reports Server (NTRS)
Justice, C.; Holben, B.
1980-01-01
The topographic effect is measured by the difference between the global radiance from inclined surfaces as a function of their orientation relative to the sensor position and light source. The short wave radiant energy incident on a surface is composed of direct sunlight, scattered skylight, and light reflected from surrounding terrain. The latter two components are commonly known as the diffuse component. The contribution of the diffuse light component to the topographic effect was examined and the significance of this diffuse component with respect to two direct radiance models was assessed. Diffuse and global spectral radiances were measured for a series of slopes and aspects of a uniform and surface in the red and photographic infrared parts of the spectrum, using a nadir pointing two channel handheld radiometer. The diffuse light was found to produce a topographic effect which varied from the topographic effect for direct light. The topographic effect caused by diffuse light was found to increase slightly with solar elevation and wavelength for the channels examined. The correlations between data derived from two simple direct radiance simulation models and the field data were not significantly affected when the diffuse component was removed from the radiances. Radiances from a 60 percent reflective surface, assuming no atmospheric path radiance, the diffuse light topographic effect contributed a maximum range of 3 pixel values in simulated LANDSAT data from all aspects with slopes up to 30 degrees.
On the impact of a refined stochastic model for airborne LiDAR measurements
NASA Astrophysics Data System (ADS)
Bolkas, Dimitrios; Fotopoulos, Georgia; Glennie, Craig
2016-09-01
Accurate topographic information is critical for a number of applications in science and engineering. In recent years, airborne light detection and ranging (LiDAR) has become a standard tool for acquiring high quality topographic information. The assessment of airborne LiDAR derived DEMs is typically based on (i) independent ground control points and (ii) forward error propagation utilizing the LiDAR geo-referencing equation. The latter approach is dependent on the stochastic model information of the LiDAR observation components. In this paper, the well-known statistical tool of variance component estimation (VCE) is implemented for a dataset in Houston, Texas, in order to refine the initial stochastic information. Simulations demonstrate the impact of stochastic-model refinement for two practical applications, namely coastal inundation mapping and surface displacement estimation. Results highlight scenarios where erroneous stochastic information is detrimental. Furthermore, the refined stochastic information provides insights on the effect of each LiDAR measurement in the airborne LiDAR error budget. The latter is important for targeting future advancements in order to improve point cloud accuracy.
Integrating bathymetric and topographic data
NASA Astrophysics Data System (ADS)
Teh, Su Yean; Koh, Hock Lye; Lim, Yong Hui; Tan, Wai Kiat
2017-11-01
The quality of bathymetric and topographic resolution significantly affect the accuracy of tsunami run-up and inundation simulation. However, high resolution gridded bathymetric and topographic data sets for Malaysia are not freely available online. It is desirable to have seamless integration of high resolution bathymetric and topographic data. The bathymetric data available from the National Hydrographic Centre (NHC) of the Royal Malaysian Navy are in scattered form; while the topographic data from the Department of Survey and Mapping Malaysia (JUPEM) are given in regularly spaced grid systems. Hence, interpolation is required to integrate the bathymetric and topographic data into regularly-spaced grid systems for tsunami simulation. The objective of this research is to analyze the most suitable interpolation methods for integrating bathymetric and topographic data with minimal errors. We analyze four commonly used interpolation methods for generating gridded topographic and bathymetric surfaces, namely (i) Kriging, (ii) Multiquadric (MQ), (iii) Thin Plate Spline (TPS) and (iv) Inverse Distance to Power (IDP). Based upon the bathymetric and topographic data for the southern part of Penang Island, our study concluded, via qualitative visual comparison and Root Mean Square Error (RMSE) assessment, that the Kriging interpolation method produces an interpolated bathymetric and topographic surface that best approximate the admiralty nautical chart of south Penang Island.
ERIC Educational Resources Information Center
Smith, Garon C.; Hossain, Md Mainul
2017-01-01
"Complexation TOPOS" is a free software package to generate 3-D topographic surfaces ("topos") for metal-ligand complexometric titrations in aqueous media. It constructs surfaces by plotting computed equilibrium parameters above a composition grid with "volume of ligand added" as the x-axis and overall system dilution…
Method For Identifying Sedimentary Bodies From Images And Its Application To Mineral Exploration
NASA Technical Reports Server (NTRS)
Wilkinson, Murray Justin (Inventor)
2006-01-01
A method is disclosed for identifying a sediment accumulation from an image of a part of the earth's surface. The method includes identifying a topographic discontinuity from the image. A river which crosses the discontinuity is identified from the image. From the image, paleocourses of the river are identified which diverge from a point where the river crosses the discontinuity. The paleocourses are disposed on a topographically low side of the discontinuity. A smooth surface which emanates from the point is identified. The smooth surface is also disposed on the topographically low side of the point.
Topographic data requirements for EOS global change research
Gesch, Dean B.
1994-01-01
This document is a result of Earth Observing System Data and Information System (EOSDIS) Version 0 activities of the Land Processes Distributed Active Archive Center at the U.S. Geological Survey's EROS Data Center. A relatively small part of the Version 0 funding provided by NASA is used to address topographic data issues related to EOS. These issues include identifying and improving access to existing sources of topographic data, data generation, facilitating the use of topographic data in global change research by demonstrating derivative products, and inventorying the specific topographic data requirements of EOS investigators. There is a clear need for global topographic data in EOSDIS. Only 10 percent of the global land surface is covered by high-resolution data that are available to the global change science community. Alternative sources for new data exist or have been proposed; however, none of them alone can fulfill the data requirements by the launch of the first EOS platform in 4 years. There is no operational provider of all the source data that are required. Even if appropriate global source data existed, a concerted production effort would be necessary to ensure the existence of the requisite topographic data before EOS launch. Additionally, no funding from NASA or any other agency has been appropriated for a new mapping mission or for other means of data acquisition. This effort to document requirements is an initial step toward understanding the severity of the data shortage. It is well beyond the scope of Version 0 funding and capabilities to provide the required data in the proper timeframe. The shortage of data and the lack of a plan for providing the necessary topographic data through EOSDIS in time for launch are issues that must be addressed by the EOS program.
Chen, Sheng-Bo; Wang, Jing-Ran; Guo, Peng-Ju; Wang, Ming-Chang
2014-09-01
The Moon may be considered as the frontier base for the deep space exploration. The spectral analysis is one of the key techniques to determine the lunar surface rock and mineral compositions. But the lunar topographic relief is more remarkable than that of the Earth. It is necessary to conduct the topographic correction for lunar spectral data before they are used to retrieve the compositions. In the present paper, a lunar Sandmeier model was proposed by considering the radiance effect from the macro and ambient topographic relief. And the reflectance correction model was also reduced based on the Sandmeier model. The Spectral Profile (SP) data from KAGUYA satellite in the Sinus Iridum quadrangle was taken as an example. And the digital elevation data from Lunar Orbiter Laser Altimeter are used to calculate the slope, aspect, incidence and emergence angles, and terrain-viewing factor for the topographic correction Thus, the lunar surface reflectance from the SP data was corrected by the proposed model after the direct component of irradiance on a horizontal surface was derived. As a result, the high spectral reflectance facing the sun is decreased and low spectral reflectance back to the sun is compensated. The statistical histogram of reflectance-corrected pixel numbers presents Gaussian distribution Therefore, the model is robust to correct lunar topographic effect and estimate lunar surface reflectance.
,
1999-01-01
The Global Positioning System (GPS) is a constellation of navigation satellites called Navigation Satellite Timing And Ranging (NAVSTAR), maintained by the U.S. Department of Defense. Many outdoor enthusiasts recognize that a handheld GPS receiver can be an accurate tool for determining their location on the terrain. The GPS receiver helps determine locations on the Earth's surface by collecting signals from three or more satellites through a process called triangulation. Identifying a location on the Earth is more useful if you also know about the surrounding topographic conditions. Using a topographic map with the GPS receiver provides important information about features of the surrounding terrain and can help you plot an effective route from one location to another.
47 CFR 73.312 - Topographic data.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Topographic data. 73.312 Section 73.312... Broadcast Stations § 73.312 Topographic data. (a) In the preparation of the profile graphs previously... question, the next best topographic information should be used. Topographic data may sometimes be obtained...
47 CFR 73.312 - Topographic data.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Topographic data. 73.312 Section 73.312... Broadcast Stations § 73.312 Topographic data. (a) In the preparation of the profile graphs previously... question, the next best topographic information should be used. Topographic data may sometimes be obtained...
47 CFR 73.312 - Topographic data.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Topographic data. 73.312 Section 73.312... Broadcast Stations § 73.312 Topographic data. (a) In the preparation of the profile graphs previously... question, the next best topographic information should be used. Topographic data may sometimes be obtained...
47 CFR 73.312 - Topographic data.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Broadcast Stations § 73.312 Topographic data. (a) In the preparation of the profile graphs previously... 47 Telecommunication 4 2011-10-01 2011-10-01 false Topographic data. 73.312 Section 73.312... question, the next best topographic information should be used. Topographic data may sometimes be obtained...
47 CFR 73.312 - Topographic data.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Topographic data. 73.312 Section 73.312... Broadcast Stations § 73.312 Topographic data. (a) In the preparation of the profile graphs previously... question, the next best topographic information should be used. Topographic data may sometimes be obtained...
Near-station terrain corrections for gravity data by a surface-integral technique
Gettings, M.E.
1982-01-01
A new method of computing gravity terrain corrections by use of a digitizer and digital computer can result in substantial savings in the time and manual labor required to perform such corrections by conventional manual ring-chart techniques. The method is typically applied to estimate terrain effects for topography near the station, for example within 3 km of the station, although it has been used successfully to a radius of 15 km to estimate corrections in areas where topographic mapping is poor. Points (about 20) that define topographic maxima, minima, and changes in the slope gradient are picked on the topographic map, within the desired radius of correction about the station. Particular attention must be paid to the area immediately surrounding the station to ensure a good topographic representation. The horizontal and vertical coordinates of these points are entered into the computer, usually by means of a digitizer. The computer then fits a multiquadric surface to the input points to form an analytic representation of the surface. By means of the divergence theorem, the gravity effect of an interior closed solid can be expressed as a surface integral, and the terrain correction is calculated by numerical evaluation of the integral over the surfaces of a cylinder, The vertical sides of which are at the correction radius about the station, the flat bottom surface at the topographic minimum, and the upper surface given by the multiquadric equation. The method has been tested with favorable results against models for which an exact result is available and against manually computed field-station locations in areas of rugged topography. By increasing the number of points defining the topographic surface, any desired degree of accuracy can be obtained. The method is more objective than manual ring-chart techniques because no average compartment elevations need be estimated ?
Interpreting geologic maps for engineering purposes: Hollidaysburg quadrangle, Pennsylvania
,
1953-01-01
This set of maps has been prepared to show the kinds of information, useful to engineers, that can be derived from ordinary geologic maps. A few additional bits of information, drawn from other sources, are mentioned below. Some of the uses of such maps are well known; they are indispensable tools in the modern search for oil or ore deposits; they are the first essential step in unraveling the story of the earth we live on. Less well known, perhaps, is the fact that topographic and geologic maps contain many of the basic data needed for planning any engineering construction job, big or little. Any structure built by man must fit into the topographic and geologic environment shown on such maps. Moreover, most if not all construction jobs must be based on knowledge of the soils and waters, which also are intimately related to this same environment. The topographic map shows the shape of the land the hills and valleys, the streams and swamps, the man-made features such as roads, railroads, and towns. The geologic map shows the kinds and shapes of the rock bodies that form the land surface and that lie beneath it. These are the facts around which the engineer must build.
In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In re...
Markert, Lotte D'Andrea; Lovmand, Jette; Foss, Morten; Lauridsen, Rune Hoff; Lovmand, Michael; Füchtbauer, Ernst-Martin; Füchtbauer, Annette; Wertz, Karin; Besenbacher, Flemming; Pedersen, Finn Skou; Duch, Mogens
2009-11-01
The potential of embryonic stem (ES) cells for both self-renewal and differentiation into cells of all three germ layers has generated immense interest in utilizing these cells for tissue engineering or cell-based therapies. However, the ability to culture undifferentiated ES cells without the use of feeder cells as well as means to obtain homogeneous, differentiated cell populations devoid of residual pluripotent ES cells still remain major challenges. Here we have applied murine ES cells to topographically microstructured surface libraries, BioSurface Structure Arrays (BSSA), and investigated whether these could be used to (i) identify topographically microstructured growth supports alleviating the need for feeder cells for expansion of undifferentiated ES cells and (ii) identify specific types of microstructures enforcing differentiation of ES cells. The BSSA surfaces arrays consisted of 504 different topographical microstructures each located in a tester field of 3 x 3 mm. The murine ES cell lines CJ7 and KH2 were seeded upon the BSSA libraries and specific topographical structures facilitating either undifferentiated ES cell growth or enhancing spreading indicative of differentiation of the ES cells were identified. Secondly serial passage of undifferentiated CJ7 ES cells on selected microstructures, identified in the screening of these BSSA libraries, showed that these cells had retained germ-line potential. These results indicate that one specific type of topographical surface microstructures, identified by the BSSA technology, can substitute for feeder cells and that another subset may be used to eliminate undifferentiated ES cells from a population of differentiated ES cells.
Self-assembly of block copolymers on topographically patterned polymeric substrates
Russell, Thomas P.; Park, Soojin; Lee, Dong Hyun; Xu, Ting
2016-05-10
Highly-ordered block copolymer films are prepared by a method that includes forming a polymeric replica of a topographically patterned crystalline surface, forming a block copolymer film on the topographically patterned surface of the polymeric replica, and annealing the block copolymer film. The resulting structures can be used in a variety of different applications, including the fabrication of high density data storage media. The ability to use flexible polymers to form the polymeric replica facilitates industrial-scale processes utilizing the highly-ordered block copolymer films.
Measurements of Form and Frictional Drags over a Rough Topographic Bank
2014-09-01
processes, Topographic effects Unclassified Unclassified Unclassified UU 24 Hemantha Wijesekera (228) 688-4845 Reset I PAI!fElNTATION RELEASE...sea surface height associated with the sea surface slope resulting from rota- tional effects . Here barotropic pressure gradients associ- ated with...surface elevation are balanced by the Coriolis force; hTi(x, y, t) is the surface elevation resulting from accelerations/decelerations of flow over the
McPherson, Kelly R.; Freeman, Lawrence A.; Flint, Lorraine E.
2011-01-01
In 2009, the U.S. Geological Survey, in cooperation with the City of Santa Cruz, conducted bathymetric and topographic surveys to determine the water storage capacity of, and the loss of capacity owing to sedimentation in, Loch Lomond Reservoir in Santa Cruz County, California. The topographic survey was done as a supplement to the bathymetric survey to obtain information about temporal changes in the upper reach of the reservoir where the water is shallow or the reservoir may be dry, as well as to obtain information about shoreline changes throughout the reservoir. Results of a combined bathymetric and topographic survey using a new, state-of-the-art method with advanced instrument technology indicate that the maximum storage capacity of the reservoir at the spillway altitude of 577.5 feet (National Geodetic Vertical Datum of 1929) was 8,646 ±85 acre-feet in March 2009, with a confidence level of 99 percent. This new method is a combination of bathymetric scanning using multibeam-sidescan sonar, and topographic surveying using laser scanning (LiDAR), which produced a 1.64-foot-resolution grid with altitudes to 0.3-foot resolution and an estimate of total water storage capacity at a 99-percent confidence level. Because the volume of sedimentation in a reservoir is considered equal to the decrease in water-storage capacity, sedimentation in Loch Lomond Reservoir was determined by estimating the change in storage capacity by comparing the reservoir bed surface defined in the March 2009 survey with a revision of the reservoir bed surface determined in a previous investigation in November 1998. This revised reservoir-bed surface was defined by combining altitude data from the 1998 survey with new data collected during the current (2009) investigation to fill gaps in the 1998 data. Limitations that determine the accuracy of estimates of changes in the volume of sedimentation from that estimated in each of the four previous investigations (1960, 1971, 1982, and 1998) are a result of the limitations of the survey equipment and data-processing methods used. Previously used and new methods were compared to determine the recent (1998-2009) change in storage capacity and the most accurate and cost-effective means to define the reservoir bed surface so that results can be easily replicated in future surveys. Results of this investigation indicate that the advanced method used in the 2009 survey accurately captures the features of the wetted reservoir surface as well as features along the shoreline that affect the storage capacity calculations. Because the bathymetric and topographic data are referenced to a datum, the results can be easily replicated or compared with future results. Comparison of the 2009 reservoir-bed surface with the surface defined in 1998 indicates that sedimentation is occurring throughout the reservoir. About 320 acre-feet of sedimentation has occurred since 1998, as determined by comparing the revised 1998 reservoir-bed surface, with an associated maximum reservoir storage capacity of 8,965 acre-feet, to the 2009 reservoir bed surface, with an associated maximum capacity of 8,646 acre-feet. This sedimentation is more than 3 percent of the total storage capacity that was calculated on the basis of the results of the 1998 bathymetric investigation.
Lunar textural analysis based on WAC-derived kilometer-scale roughness and entropy maps
NASA Astrophysics Data System (ADS)
Li, Bo; Wang, XueQiang; Zhang, Jiang; Chen, Jian; Ling, Zongcheng
2016-06-01
In general, textures are thought to be some complicated repeated patterns formed by elements, or primitives which are sorted in certain rules. Lunar surfaces record the interactions between its outside environment and itself, thus, based on high-resolution DEM model or image data, there are some topographic features which have different roughness and entropy values or signatures on lunar surfaces. Textures of lunar surfaces can help us to concentrate on typical topographic and photometric variations and reveal the relationships between obvious features (craters, impact basins, sinuous rilles (SRs) and ridges) with resurfacing processes on the Moon. In this paper, the term surface roughness is an expression of the variability of a topographic or photometric surface at kilometer scale, and the term entropy can characterize the variability inherent in a geological and topographic unit and evaluate the uncertainty of predictions made by a given geological process. We use the statistical moments of gray-level histograms in different-sized neighborhoods (e.g., 3, 5, 10, 20, 40 and 80 pixels) to compute the kilometer-scale roughness and entropy values, using the mosaic image from 70°N to 70°S obtained by Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC). Large roughness and entropy signatures were only found in the larger scale maps, while the smallest 3-pixel scale map had more disorderly and unsystematic textures. According to the entropy values in 10-pixel scale entropy map, we made a frequency curve and categorized lunar surfaces into three types, shadow effects, maria and highlands. A 2D scatter plot of entropy versus roughness values was produced and we found that there were two point clusters corresponding to the highlands and maria, respectively. In the last, we compared the topographic and photometric signatures derived from Lunar Orbiter Laser Altimeter (LOLA) data and WAC mosaic image. On the lunar surfaces, the ridges have obvious multilevel topographic textures which are sensitive to the topographic changes, while the ejecta deposits of fresh craters appear obvious photometric textures which are sensitive to the brightness variations.
The surface and interior of Venus
NASA Technical Reports Server (NTRS)
Masursky, H.; Kaula, W. M.; Russell, C. T.; Schubert, G.; Mcgill, G. E.; Pettengill, G. H.; Shapiro, I. I.; Phillips, R. J.
1977-01-01
The present knowledge of Venus is reviewed with discussions of the nature and history of both the surface, crust and interior. Instrumentation on board the Pioneer Venus Orbiter, including the radar mapper, radio tracking and the fluxgate magnetometer, is described. Topographic, geological, Bouguer gravity, magnetic, and crustal thickness maps will be constructed from Orbiter data. These maps should provide information on composition and thermal history, the major geological or geophysical provinces, the rate of past and present tectonic activity, and evidence of past or present MHD dynamos.
Micro-topographic hydrologic variability due to vegetation acclimation under climate change
NASA Astrophysics Data System (ADS)
Le, P. V.; Kumar, P.
2012-12-01
Land surface micro-topography and vegetation cover have fundamental effects on the land-atmosphere interactions. The altered temperature and precipitation variability associated with climate change will affect the water and energy processes both directly and that mediated through vegetation. Since climate change induces vegetation acclimation that leads to shifts in evapotranspiration and heat fluxes, it further modifies microclimate and near-surface hydrological processes. In this study, we investigate the impacts of vegetation acclimation to climate change on micro-topographic hydrologic variability. The ability to accurately predict these impacts requires the simultaneous considerations of biochemical, ecophysiological and hydrological processes. A multilayer canopy-root-soil system model coupled with a conjunctive surface-subsurface flow model is used to capture the acclimatory responses and analyze the changes in dynamics of structure and connectivity of micro-topographic storage and in magnitudes of runoff. The study is performed using Light Detection and Ranging (LiDAR) topographic data in the Birds Point-New Madrid floodway in Missouri, U.S.A. The result indicates that both climate change and its associated vegetation acclimation play critical roles in altering the micro-topographic hydrological responses.
THEMIS high-resolution digital terrain: Topographic and thermophysical mapping of Gusev Crater, Mars
Cushing, G.E.; Titus, T.N.; Soderblom, L.A.; Kirk, R.L.
2009-01-01
We discuss a new technique to generate high-resolution digital terrain models (DTMs) and to quantitatively derive and map slope-corrected thermophysical properties such as albedo, thermal inertia, and surface temperatures. This investigation is a continuation of work started by Kirk et al. (2005), who empirically deconvolved Thermal Emission Imaging System (THEMIS) visible and thermal infrared data of this area, isolating topographic information that produced an accurate DTM. Surface temperatures change as a function of many variables such as slope, albedo, thermal inertia, time, season, and atmospheric opacity. We constrain each of these variables to construct a DTM and maps of slope-corrected albedo, slope- and albedo-corrected thermal inertia, and surface temperatures across the scene for any time of day or year and at any atmospheric opacity. DTMs greatly facilitate analyses of the Martian surface, and the MOLA global data set is not finely scaled enough (128 pixels per degree, ???0.5 km per pixel near the equator) to be combined with newer data sets (e.g., High Resolution Imaging Science Experiment, Context Camera, and Compact Reconnaissance Imaging Spectrometer for Mars at ???0.25, ???6, and ???20 m per pixel, respectively), so new techniques to derive high-resolution DTMs are always being explored. This paper discusses our technique of combining a set of THEMIS visible and thermal infrared observations such that albedo and thermal inertia variations within the scene are eliminated and only topographic variations remain. This enables us to produce a high-resolution DTM via photoclinometry techniques that are largely free of albedo-induced errors. With this DTM, THEMIS observations, and a subsurface thermal diffusion model, we generate slope-corrected maps of albedo, thermal inertia, and surface temperatures. In addition to greater accuracy, these products allow thermophysical properties to be directly compared with topography.
In traditional watershed delineation and topographic modelling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In r...
Topographic Influence on Near-Surface Seismic Velocity in southern California
NASA Astrophysics Data System (ADS)
Lin, J. C.; Moon, S.; Meng, L.; Davis, P. M.
2016-12-01
Near-surface seismic velocity is commonly used to determine subsurface rock structure, properties, and ground-motion amplification. The spatial distribution of Vs30 (shear-wave seismic velocity in the top 30 m of Earth's crust) has been inferred based on the correlations of measured Vs30 with rock types and topographic slopes. Inference of Vs30 based on topographic slopes relies on the assumption that mechanically strong rocks tend to have steep slopes. The topographic slopes can thus be used to infer bedrock strength and seismic velocity. However, due to limited accessibility and logistical difficulties, there are few Vs30 measurements in sites of crystalline rocks that have measurable topographic variations. Thus, the variability of Vs30 with topographic slope for crystalline rocks has not been addressed systematically. In order to examine the local variabilities in near-surface seismic velocity in southern California, we measured the spatial distributions of near-surface seismic velocity at two sites: one in the San Gabriel Mountains (SGM) and one in the San Bernardino Mountains (SBM). Both sites are composed of predominantly crystalline rocks with topographic slopes that range from 0.2 to 0.5. We conducted seismic refraction surveys using sledgehammer-induced impacts on a steel plate along seismic lines that were oriented roughly N-S, 240 m in length with a spacing of 5 m, and with topographic variation including both a local hilltop and valley. Using first P-wave arrivals, we constructed a P-wave seismic tomography down to 50 m. Our results show that P-wave seismic velocity in the SGM site varies significantly within hillslopes and does not linearly correlate with slope, while P-wave seismic velocity in the SBM site shows little variation in the hillslope. In the SGM site, the Vs30 beneath the valley is 25% faster than the Vs30 beneath the hillslope. These results suggest that the local variability of seismic velocity depends on differences in sediment thickness, bedrock fractures, and weathering patterns.
Modification of Surface Energy via Direct Laser Ablative Surface Patterning
NASA Technical Reports Server (NTRS)
Wohl, Christopher J., Jr. (Inventor); Belcher, Marcus A. (Inventor); Connell, John W. (Inventor); Hopkins, John W. (Inventor)
2015-01-01
Surface energy of a substrate is changed without the need for any template, mask, or additional coating medium applied to the substrate. At least one beam of energy directly ablates a substrate surface to form a predefined topographical pattern at the surface. Each beam of energy has a width of approximately 25 micrometers and an energy of approximately 1-500 microJoules. Features in the topographical pattern have a width of approximately 1-500 micrometers and a height of approximately 1.4-100 micrometers.
Micropatterned Azopolymer Surfaces Modulate Cell Mechanics and Cytoskeleton Structure.
Rianna, Carmela; Ventre, Maurizio; Cavalli, Silvia; Radmacher, Manfred; Netti, Paolo A
2015-09-30
Physical and chemical characteristics of materials are important regulators of cell behavior. In particular, cell elasticity is a fundamental parameter that reflects the state of a cell. Surface topography finely modulates cell fate and function via adhesion mediated signaling and cytoskeleton generated forces. However, how topographies alter cell mechanics is still unclear. In this work we have analyzed the mechanical properties of peripheral and nuclear regions of NIH-3T3 cells on azopolymer substrates with different topographic patterns. Micrometer scale patterns in the form of parallel ridges or square lattices of surface elevations were encoded on light responsive azopolymer films by means of contactless optical methods. Cell mechanics was investigated by atomic force microscopy (AFM). Cells and consequently the cell cytoskeleton were oriented along the linear patterns affecting cytoskeletal structures, e.g., formation of actin stress fibers. Our data demonstrate that topographic substrate patterns are recognized by cells and mechanical information is transferred by the cytoskeleton. Furthermore, cytoskeleton generated forces deform the nucleus, changing its morphology that appears to be related to different mechanical properties in the nuclear region.
The effect of short ground vegetation on terrestrial laser scans at a local scale
NASA Astrophysics Data System (ADS)
Fan, Lei; Powrie, William; Smethurst, Joel; Atkinson, Peter M.; Einstein, Herbert
2014-09-01
Terrestrial laser scanning (TLS) can record a large amount of accurate topographical information with a high spatial accuracy over a relatively short period of time. These features suggest it is a useful tool for topographical survey and surface deformation detection. However, the use of TLS to survey a terrain surface is still challenging in the presence of dense ground vegetation. The bare ground surface may not be illuminated due to signal occlusion caused by vegetation. This paper investigates vegetation-induced elevation error in TLS surveys at a local scale and its spatial pattern. An open, relatively flat area vegetated with dense grass was surveyed repeatedly under several scan conditions. A total station was used to establish an accurate representation of the bare ground surface. Local-highest-point and local-lowest-point filters were applied to the point clouds acquired for deriving vegetation height and vegetation-induced elevation error, respectively. The effects of various factors (for example, vegetation height, edge effects, incidence angle, scan resolution and location) on the error caused by vegetation are discussed. The results are of use in the planning and interpretation of TLS surveys of vegetated areas.
NASA Astrophysics Data System (ADS)
Lawrence, K. Deepak; Ramamoorthy, B.
2016-03-01
Cylinder bores of automotive engines are 'engineered' surfaces that are processed using multi-stage honing process to generate multiple layers of micro geometry for meeting the different functional requirements of the piston assembly system. The final processed surfaces should comply with several surface topographic specifications that are relevant for the good tribological performance of the engine. Selection of the process parameters in three stages of honing to obtain multiple surface topographic characteristics simultaneously within the specification tolerance is an important module of the process planning and is often posed as a challenging task for the process engineers. This paper presents a strategy by combining the robust process design and gray-relational analysis to evolve the operating levels of honing process parameters in rough, finish and plateau honing stages targeting to meet multiple surface topographic specifications on the final running surface of the cylinder bores. Honing experiments were conducted in three stages namely rough, finish and plateau honing on cast iron cylinder liners by varying four honing process parameters such as rotational speed, oscillatory speed, pressure and honing time. Abbott-Firestone curve based functional parameters (Rk, Rpk, Rvk, Mr1 and Mr2) coupled with mean roughness depth (Rz, DIN/ISO) and honing angle were measured and identified as the surface quality performance targets to be achieved. The experimental results have shown that the proposed approach is effective to generate cylinder liner surface that would simultaneously meet the explicit surface topographic specifications currently practiced by the industry.
The effects of surface topography control using liquid crystal elastomers on bodies in flow
NASA Astrophysics Data System (ADS)
Settle, Michael; Guin, Tyler; Beblo, Richard; White, Timothy; Reich, Gregory
2018-03-01
Surface topography control has use across many applications including delayed separation of flow via selective boundary-layer tripping. Recently, advances with liquid crystal elastomers (LCE) have been leveraged for controlled, repeatable, out-of-plane deformations that could enable these topographical changes. An aligned LCE deforms when heated, associated with a loss in order. Circumferential patterns fabricated through the thickness of the LCE film yield a predictable conical out-of-plane deformation that can control surface topography. This study focuses on the experimental investigation of LCE behavior for flow control. Initially, the deformations of LCE samples 1/2" in diameter and 50 µm thick were characterized using Digital Image Correlation under uniform positive and negative gauge pressures at various temperatures. Surface topography showed strong dependence on boundary conditions, sample dimensions, and pattern location relative to the applied boundary conditions, informing adjustment of the LCE of the chemistry to produce higher modulus and glassy materials. As an initial demonstration of the ability to control flow, Then, to demonstrate the potential for flow control, 3D printed cylinders with varying arrangements of representative topographical features were characterized in a wind tunnel with Particle Image Velocimetry. Results showed that features with a maximum deflection height of 1.5 mm in a two-row arrangement can form an asymmetric wake about a 73 mm diameter cylinder that reduces drag while generating lift. These results inform subsequent investigation of active LCE elements on a cylinder that are currently under examination.
A topographic feature taxonomy for a U.S. national topographic mapping ontology
Varanka, Dalia E.
2013-01-01
Using legacy feature lists from the U.S. National Topographic Mapping Program of the twentieth century, a taxonomy of features is presented for purposes of developing a national topographic feature ontology for geographic mapping and analysis. After reviewing published taxonomic classifications, six basic classes are suggested; terrain, surface water, ecological regimes, built-up areas, divisions, and events. Aspects of ontology development are suggested as the taxonomy is described.
Influence of the State of the Tungsten Tip on STM Topographic Images of SnSe Surfaces
NASA Astrophysics Data System (ADS)
Ly, Trinh Thi; Kim, Jungdae
2018-03-01
Tin selenide (SnSe) has recently attracted significant attention because of its excellent thermoelectric properties with a figure of merit (ZT) of 2.6. Previous scanning tunneling microscopy (STM) studies of SnSe surfaces showed that only Sn atoms are resolved in topographic images due to the dominant contribution of the Sn 5 p z states in tunneling. However, when the state of the tungsten (W) tip changes from a typical four-lobe d state such as d xy or {d_{{x^2} - {y^2}}} to a two-lobe {d_{{z^2}}} state, the atomic features observed on the SnSe surface in STM topography can be dramatically altered. In this report, we present the results of a systematic study on the influence of the W tip's states on the STM images of SnSe surfaces. Sn atoms are observed with much stronger corrugation amplitude and smaller apparent radius when the tip is in a {d_{{z^2}}} state. In addition, the atomic features of the Se atoms become visible because of the sharply focused shape of the W {d_{{z^2}}} state. We expect our results to provide important information for establishing a better understanding of the microscopic nature of SnSe surfaces.
Theory connecting nonlocal sediment transport, earth surface roughness, and the Sadler effect
NASA Astrophysics Data System (ADS)
Schumer, Rina; Taloni, Alessandro; Furbish, David Jon
2017-03-01
Earth surface evolution, like many natural phenomena typified by fluctuations on a wide range of scales and deterministic smoothing, results in a statistically rough surface. We present theory demonstrating that scaling exponents of topographic and stratigraphic statistics arise from long-time averaging of noisy surface evolution rather than specific landscape evolution processes. This is demonstrated through use of "elastic" Langevin equations that generically describe disturbance from a flat earth surface using a noise term that is smoothed deterministically via sediment transport. When smoothing due to transport is a local process, the geologic record self organizes such that a specific Sadler effect and topographic power spectral density (PSD) emerge. Variations in PSD slope reflect the presence or absence and character of nonlocality of sediment transport. The range of observed stratigraphic Sadler slopes captures the same smoothing feature combined with the presence of long-range spatial correlation in topographic disturbance.
Simulation and Analysis of Topographic Effect on Land Surface Albedo over Mountainous Areas
NASA Astrophysics Data System (ADS)
Hao, D.; Wen, J.; Xiao, Q.
2017-12-01
Land surface albedo is one of the significant geophysical variables affecting the Earth's climate and controlling the surface radiation budget. Topography leads to the formation of shadows and the redistribution of incident radiation, which complicates the modeling and estimation of the land surface albedo. Some studies show that neglecting the topography effect may lead to significant bias in estimating the land surface albedo for the sloping terrain. However, for the composite sloping terrain, the topographic effects on the albedo remain unclear. Accurately estimating the sub-topographic effect on the land surface albedo over the composite sloping terrain presents a challenge for remote sensing modeling and applications. In our study, we focus on the development of a simplified estimation method for land surface albedo including black-sky albedo (BSA) and white-sky albedo (WSA) of the composite sloping terrain at a kilometer scale based on the fine scale DEM (30m) and quantitatively investigate and understand the topographic effects on the albedo. The albedo is affected by various factors such as solar zenith angle (SZA), solar azimuth angle (SAA), shadows, terrain occlusion, and slope and aspect distribution of the micro-slopes. When SZA is 30°, the absolute and relative deviations between the BSA of flat terrain and that of rugged terrain reaches 0.12 and 50%, respectively. When the mean slope of the terrain is 30.63° and SZA=30°, the absolute deviation of BSA caused by SAA can reach 0.04. The maximal relative and relative deviation between the WSA of flat terrain and that of rugged terrain reaches 0.08 and 50%. These results demonstrate that the topographic effect has to be taken into account in the albedo estimation.
Cho, Heesook; Yoo, Hana; Park, Soojin
2010-05-18
Disposable topographic silicon oxide patterns were fabricated from polymeric replicas of sawtoothed glass surfaces, spin-coating of poly(dimethylsiloxane) (PDMS) thin films, and thermal annealing at certain temperature and followed by oxygen plasma treatment of the thin PDMS layer. A simple imprinting process was used to fabricate the replicated PDMS and PS patterns from sawtoothed glass surfaces. Next, thin layers of PDMS films having different thicknesses were spin-coated onto the sawtoothed PS surfaces and annealed at 60 degrees C to be drawn the PDMS into the valley of the sawtoothed PS surfaces, followed by oxygen plasma treatment to fabricate topographic silicon oxide patterns. By control of the thickness of PDMS layers, silicon oxide patterns having various line widths were fabricated. The silicon oxide topographic patterns were used to direct the self-assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films via solvent annealing process. A highly ordered PS-b-P2VP micellar structure was used to let gold precursor complex with P2VP chains, and followed by oxygen plasma treatment. When the PS-b-P2VP thin films containing gold salts were exposed to oxygen plasma environments, gold salts were reduced to pure gold nanoparticles without changing high degree of lateral order, while polymers were completely degraded. As the width of trough and crest in topographic patterns increases, the number of gold arrays and size of gold nanoparticles are tuned. In the final step, the silicon oxide topographic patterns were selectively removed by wet etching process without changing the arrays of gold nanoparticles.
NASA Astrophysics Data System (ADS)
Olson, M.; Rupper, S.; Shean, D. E.
2017-12-01
Topography directly influences the amount of global radiation, as well as other key energy flux terms, arriving on a glacier surface. This is particularly important in regions of variable and complex topography such as High Mountain Asia (HMA). In this region surface energy and mass balance estimates often rely heavily on modeling, and thus require accurate accounting of topography through available remote sensing platforms. Our previous work shows that topographic shading from surrounding terrain can alter the mean daily potential direct shortwave radiation by upwards of 20% for some valley glaciers. In this work, we find in regions of high topographic relief that shading frequently dominates in the ablation zone rather than the accumulation zone, contrary to the findings of some previous studies. This however, is largely dependent on the valley aspect and relative relief of nearby terrain. In addition, we examine the impact of topography, primarily topographic shading, on components of surface energy balance for a large sample of glaciers across different regions in HMA. Our results show that while the impact of topographic shading is highly variable throughout HMA, the magnitude of influence can often be predicted based on simple characteristics such as latitude, valley aspect, and orientation of the immediate surrounding topography. We also explore the uncertainty in topographic shading and in calculated surface energy due to the spatial resolution and accuracy of DEMs. In particular, we compare the shading and energy balance results utilizing a suite of DEMs, including 2 m, 8 m, and 30 m World View DEMs, 30 m ASTER GDEM, 30 m SRTM DEM, and 30 m ALOS DEM. These results will help us improve glacier energy and mass balance modeling accuracy, and demonstrate limitations and uncertainties when modeling changes in surface energy fluxes due to surrounding topography for mountain glaciers.
Exploring new topography-based subgrid spatial structures for improving land surface modeling
Tesfa, Teklu K.; Leung, Lai-Yung Ruby
2017-02-22
Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation,more » slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Altogether the local method and non-geo-located subgrid structures effectively and robustly capture topographic, climatic and vegetation variability, which is important for land surface modeling.« less
Exploring new topography-based subgrid spatial structures for improving land surface modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesfa, Teklu K.; Leung, Lai-Yung Ruby
Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation,more » slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Altogether the local method and non-geo-located subgrid structures effectively and robustly capture topographic, climatic and vegetation variability, which is important for land surface modeling.« less
Todd A. Schroeder; Robbie Hember; Nicholas C. Coops; Shunlin Liang
2009-01-01
The magnitude and distribution of incoming shortwave solar radiation (SW) has significant influence on the productive capacity of forest vegetation. Models that estimate forest productivity require accurate and spatially explicit radiation surfaces that resolve both long- and short-term temporal climatic patterns and that account for topographic variability of the land...
Regional comparisons of Vs30 and Spectral Ratio Methods
NASA Astrophysics Data System (ADS)
McNamara, D. E.; Gee, L. S.; Stephenson, W. J.; Odum, J. K.; Williams, R. A.; Hartzell, S.
2013-12-01
Earthquake damage is often increased due to local ground-motion amplification in soft soils and thick basin sediments with factors such as topographic effects and water saturation. Seismic hazard assessments depend on detailed information on local site response and many different methods have been developed to estimate site response. Based on numerous empirical studies, the average shear-wave velocity in the upper 30 m (Vs30) has become the most common means of classifying site conditions and has been adopted in the NEHRP design provisions for new buildings. In general, higher Vs30 values are associated with firm, dense rock and lower levels of ground shaking while lower Vs30 values are associated with softer soils and high site amplification. Vs30 is commonly computed by measuring the time it takes for shear-waves to travel from 30m depth to the surface using either active sources such as explosions or passive ambient noise microtremor sources. Since this approach is limited to locations where active measurements are undertaken, recent methods have sought to approximate Vs30 regionally, such as using topographic slope as a proxy. In this presentation, we compute a standard site response, horizontal-to-vertical spectral ratio (HVSR) using long-term power spectral density statistics of both ambient noise and earthquake signals at permanent and temporary seismic stations. We compare the HVSR results to surface observations of Vs30 and approximations using topographic slope in several different regions including the Eastern United States, St. Louis and the Los Angeles basin. In our comparison of the HVSR results to Vs30, we find that HVSR peak frequency can be used as a proxy for Vs30. Relationships between surface measured Vs30 and HVSR are less scattered than with Vs30 estimated using topographic approximations. In general, higher Vs30 is associated with higher HVSR peak frequency with variations in slope for different regions. We use these regional relationships to estimate NEHRP soil class at over 200 seismic stations in the US.
Malmblorg, William T.; West, William B.; Brabb, Earl E.; Parker, John M.
2008-01-01
The general location and age of more than 33,500 mostly foraminifer samples from Chevron surface localities in nearly 600 U.S. Geological Survey (USGS) 7.5' quadrangles from California were provided by Brabb and Parker (2003). Barren and non-diagnostic samples plus many that have no paleontologic information were omitted to provide a revised list for more than 27,000 of these samples by Brabb and Parker (2005). The locations for many of these samples were recorded by Chevron geoscientists on topographic maps (originals now in the USGS Library in Menlo Park, Calif.). The recent availability of digital databases for geologic and topographic maps has provided the opportunity to prepare a database of the locations of these Chevron samples so that the information can be combined with geology and topography for plotting or geospatial analysis. This report provides specific locations for more than 13,000 samples in central California that have enough paleontologic information to determine their age but omits thousands of samples that are too closely spaced to differentiate or those that have only a general location.
Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.
2009-01-01
The U.S. Geological Survey (USGS) has taken the lead in the creation of a valuable remote sensing product by incorporating digital elevation models (DEMs) derived from Light Detection and Ranging (lidar) into the National Elevation Dataset (NED), the elevation layer of 'The National Map'. High-resolution lidar-derived DEMs provide the accuracy needed to systematically quantify and fully integrate surface flow including flow direction, flow accumulation, sinks, slope, and a dense drainage network. In 2008, 1-meter resolution lidar data were acquired in Minnehaha County, South Dakota. The acquisition was a collaborative effort between Minnehaha County, the city of Sioux Falls, and the USGS Earth Resources Observation and Science (EROS) Center. With the newly acquired lidar data, USGS scientists generated high-resolution DEMs and surface flow features. This report compares lidar-derived surface flow features in Minnehaha County to 30- and 10-meter elevation data previously incorporated in the NED and ancillary hydrography datasets. Surface flow features generated from lidar-derived DEMs are consistently integrated with elevation and are important in understanding surface-water movement to better detect surface-water runoff, flood inundation, and erosion. Many topographic and hydrologic applications will benefit from the increased availability of accurate, high-quality, and high-resolution surface-water data. The remotely sensed data provide topographic information and data integration capabilities needed for meeting current and future human and environmental needs.
Modified Surface Having Low Adhesion Properties to Mitigate Insect Residue Adhesion
NASA Technical Reports Server (NTRS)
Wohl, Christopher J., Jr. (Inventor); Smith, Joseph G., Jr. (Inventor); Siochi, Emilie J. (Inventor); Penner, Ronald K. (Inventor)
2016-01-01
A process to modify a surface to provide reduced adhesion surface properties to mitigate insect residue adhesion. The surface may include the surface of an article including an aircraft, an automobile, a marine vessel, all-terrain vehicle, wind turbine, helmet, etc. The process includes topographically and chemically modifying the surface by applying a coating comprising a particulate matter, or by applying a coating and also topographically modifying the surface by various methods, including but not limited to, lithographic patterning, laser ablation and chemical etching, physical vapor phase deposition, chemical vapor phase deposition, crystal growth, electrochemical deposition, spin casting, and film casting.
NASA Astrophysics Data System (ADS)
Coppersmith, R.; Schultz-Fellenz, E. S.; Sussman, A. J.; Vigil, S.; Dzur, R.; Norskog, K.; Kelley, R.; Miller, L.
2015-12-01
While long-term objectives of monitoring and verification regimes include remote characterization and discrimination of surficial geologic and topographic features at sites of interest, ground truth data is required to advance development of remote sensing techniques. Increasingly, it is desirable for these ground-based or ground-proximal characterization methodologies to be as nimble, efficient, non-invasive, and non-destructive as their higher-altitude airborne counterparts while ideally providing superior resolution. For this study, the area of interest is an alluvial site at the Nevada National Security Site intended for use in the Source Physics Experiment's (Snelson et al., 2013) second phase. Ground-truth surface topographic characterization was performed using a DJI Inspire 1 unmanned aerial system (UAS), at very low altitude (< 5-30m AGL). 2D photographs captured by the standard UAS camera payload were imported into Agisoft Photoscan to create three-dimensional point clouds. Within the area of interest, careful installation of surveyed ground control fiducial markers supplied necessary targets for field collection, and information for model georectification. The resulting model includes a Digital Elevation Model derived from 2D imagery. It is anticipated that this flexible and versatile characterization process will provide point cloud data resolution equivalent to a purely ground-based LiDAR scanning deployment (e.g., 1-2cm horizontal and vertical resolution; e.g., Sussman et al., 2012; Schultz-Fellenz et al., 2013). In addition to drastically increasing time efficiency in the field, the UAS method also allows for more complete coverage of the study area when compared to ground-based LiDAR. Comparison and integration of these data with conventionally-acquired airborne LiDAR data from a higher-altitude (~ 450m) platform will aid significantly in the refinement of technologies and detection capabilities of remote optical systems to identify and detect surface geologic and topographic signatures of interest. This work includes a preliminary comparison of surface signatures detected from varying standoff distances to assess current sensor performance and benefits.
Simultaneous solution of the geoid and the surface density anomalies
NASA Astrophysics Data System (ADS)
Ardalan, A. A.; Safari, A.; Karimi, R.; AllahTavakoli, Y.
2012-04-01
The main application of the land gravity data in geodesy is "local geoid" or "local gravity field" modeling, whereas the same data could play a vital role for the anomalous mass-density modeling in geophysical explorations. In the realm of local geoid computations based on Geodetic Boundary Value Problems (GBVP), it is needed that the effect of the topographic (or residual terrain) masses be removed via application of the Newton integral in order to perform the downward continuation in a harmonic space. However, harmonization of the downward continuation domain may not be perfectly possible unless accurate information about the mass-density of the topographic masses be available. On the other hand, from the exploration point of view the unwanted topographical masses within the aforementioned procedure could be regarded as the signal. In order to overcome the effect of the remaining masses within the remove step of the GBVP, which cause uncertainties in mathematical modeling of the problem, here we are proposing a methodology for simultaneous solution of the geoid and residual surface density modeling In other words, a new mathematical model will be offered which both provides the needed harmonic space for downward continuation and at the same time accounts for the non-harmonic terms of gravitational field and makes use of it for residual mass density modeling within the topographic region. The presented new model enjoys from uniqueness of the solution, opposite to the inverse application of the Newton integral for mass density modeling which is non-unique, and only needs regularization to remove its instability problem. In this way, the solution of the model provides both the incremental harmonic gravitational potential on surface of the reference ellipsoid as the gravity field model and the lateral surface mass-density variations via the second derivatives of the non harmonic terms of gravitational field. As the case study and accuracy verification, the proposed methodology is applied for identification of the salt geological structures as well as geoid computations within the northern coasts of Persian Gulf.
Estimating 3D topographic map of optic nerve head from a single fundus image
NASA Astrophysics Data System (ADS)
Wang, Peipei; Sun, Jiuai
2018-04-01
Optic nerve head also called optic disc is the distal portion of optic nerve locating and clinically visible on the retinal surface. It is a 3 dimensional elliptical shaped structure with a central depression called the optic cup. This shape of the ONH and the size of the depression can be varied due to different retinopathy or angiopathy, therefore the estimation of topography of optic nerve head is significant for assisting diagnosis of those retinal related complications. This work describes a computer vision based method, i.e. shape from shading (SFS) to recover and visualize 3D topographic map of optic nerve head from a normal fundus image. The work is expected helpful for assessing those complications associated the deformation of optic nerve head such as glaucoma and diabetes. The illumination is modelled as uniform over the area around optic nerve head and its direction estimated from the available image. The Tsai discrete method has been employed to recover the 3D topographic map of the optic nerve head. The initial experimental result demonstrates our approach works on most of fundus images and provides a cheap, but good alternation for rendering and visualizing the topographic information of the optic nerve head for potential clinical use.
U.S. Army Environmental Restoration Programs Guidance Manual
1998-04-01
without delay. In addition to sampling, the SI usually includes a reconnaissance of the site’s layout, surrounding topographical features , and the...chemical monitoring of some, but not necessarily all, of the following: 2.1.1 Surface Features (topographic mapping, etc.) (natural and manmade features ...include some, but not necessarily all, of the following: 3.1.1 Surface Features 3.1.2 Meteorology 3.1.3 Surface-Water Hydrology 3.1.4 Geology 3.1.5
Topograph for inspection of engine cylinder walls.
Franz, S; Leonhardt, K; Windecker, R; Tiziani, H J
1999-12-20
The microstructural inspection of engine cylinder walls is an important task for quality management in the automotive industry. Until recently, mainly tactile methods were used for this purpose. We present an optical instrument based on microscopic fringe projection that permits fast, reliable, and nondestructive measurements of microstructure. The field of view is 0.8 mm x 1.2 mm, with a spatial sampling of 1100 x 700 pixels. In contrast to conventional tactile sensors, the optical method provides fast in situ three-dimensional surface characterizations that provide more information about the surface than do line profiles. Measurements are presented, and advantages of this instrument for characterization of a surface are discussed.
Functional Topography of Human Auditory Cortex
Rauschecker, Josef P.
2016-01-01
Functional and anatomical studies have clearly demonstrated that auditory cortex is populated by multiple subfields. However, functional characterization of those fields has been largely the domain of animal electrophysiology, limiting the extent to which human and animal research can inform each other. In this study, we used high-resolution functional magnetic resonance imaging to characterize human auditory cortical subfields using a variety of low-level acoustic features in the spectral and temporal domains. Specifically, we show that topographic gradients of frequency preference, or tonotopy, extend along two axes in human auditory cortex, thus reconciling historical accounts of a tonotopic axis oriented medial to lateral along Heschl's gyrus and more recent findings emphasizing tonotopic organization along the anterior–posterior axis. Contradictory findings regarding topographic organization according to temporal modulation rate in acoustic stimuli, or “periodotopy,” are also addressed. Although isolated subregions show a preference for high rates of amplitude-modulated white noise (AMWN) in our data, large-scale “periodotopic” organization was not found. Organization by AM rate was correlated with dominant pitch percepts in AMWN in many regions. In short, our data expose early auditory cortex chiefly as a frequency analyzer, and spectral frequency, as imposed by the sensory receptor surface in the cochlea, seems to be the dominant feature governing large-scale topographic organization across human auditory cortex. SIGNIFICANCE STATEMENT In this study, we examine the nature of topographic organization in human auditory cortex with fMRI. Topographic organization by spectral frequency (tonotopy) extended in two directions: medial to lateral, consistent with early neuroimaging studies, and anterior to posterior, consistent with more recent reports. Large-scale organization by rates of temporal modulation (periodotopy) was correlated with confounding spectral content of amplitude-modulated white-noise stimuli. Together, our results suggest that the organization of human auditory cortex is driven primarily by its response to spectral acoustic features, and large-scale periodotopy spanning across multiple regions is not supported. This fundamental information regarding the functional organization of early auditory cortex will inform our growing understanding of speech perception and the processing of other complex sounds. PMID:26818527
Mars synthetic topographic mapping
Wu, S.S.C.
1978-01-01
Topographic contour maps of Mars are compiled by the synthesis of data acquired from various scientific experiments of the Mariner 9 mission, including S-band radio-occulation, the ultraviolet spectrometer (UVS), the infrared radiometer (IRR), the infrared interferometer spectrometer (IRIS) and television imagery, as well as Earth-based radar information collected at Goldstone, Haystack, and Arecibo Observatories. The entire planet is mapped at scales of 1:25,000,000 and 1:25,000,000 using Mercator, Lambert, and polar stereographic map projections. For the computation of map projections, a biaxial spheroid figure is adopted. The semimajor and semiminor axes are 3393.4 and 3375.7 km, respectively, with a polar flattening of 0.0052. For the computation of elevations, a topographic datum is defined by a gravity field described in terms of spherical harmonics of fourth order and fourth degree combined with a 6.1-mbar occulation pressure surface. This areoid can be approximated by a triaxial ellipsoid with semimajor axes of A = 3394.6 km and B = 3393.3 km and a semiminor axis of C = 3376.3 km. The semimajor axis A intersects the Martian surface at longitude 105??W. The dynamic flattening of Mars is 0.00525. The contour intercal of the maps is 1 km. For some prominent features where overlapping pictures from Mariner 9 are available, local contour maps at relatively larger scales were also compiled by photogrammetric methods on stereo plotters. ?? 1978.
Cell adhesion on nanotextured slippery superhydrophobic substrates.
Di Mundo, Rosa; Nardulli, Marina; Milella, Antonella; Favia, Pietro; d'Agostino, Riccardo; Gristina, Roberto
2011-04-19
In this work, the response of Saos2 cells to polymeric surfaces with different roughness/density of nanometric dots produced by a tailored plasma-etching process has been studied. Topographical features have been evaluated by atomic force microscopy, while wetting behavior, in terms of water-surface adhesion energy, has been evaluated by measurements of drop sliding angle. Saos2 cytocompatibility has been investigated by scanning electron microscopy, fluorescent microscopy, and optical microscopy. The similarity in outer chemical composition has allowed isolation of the impact of the topographical features on cellular behavior. The results indicate that Saos2 cells respond differently to surfaces with different nanoscale topographical features, clearly showing a certain inhibition in cell adhesion when the nanoscale is particularly small. This effect appears to be attenuated in surfaces with relatively bigger nanofeatures, though these express a more pronounced slippery/dry wetting character. © 2011 American Chemical Society
Determination of important topographic factors for landslide mapping analysis using MLP network.
Alkhasawneh, Mutasem Sh; Ngah, Umi Kalthum; Tay, Lea Tien; Mat Isa, Nor Ashidi; Al-batah, Mohammad Subhi
2013-01-01
Landslide is one of the natural disasters that occur in Malaysia. Topographic factors such as elevation, slope angle, slope aspect, general curvature, plan curvature, and profile curvature are considered as the main causes of landslides. In order to determine the dominant topographic factors in landslide mapping analysis, a study was conducted and presented in this paper. There are three main stages involved in this study. The first stage is the extraction of extra topographic factors. Previous landslide studies had identified mainly six topographic factors. Seven new additional factors have been proposed in this study. They are longitude curvature, tangential curvature, cross section curvature, surface area, diagonal line length, surface roughness, and rugosity. The second stage is the specification of the weight of each factor using two methods. The methods are multilayer perceptron (MLP) network classification accuracy and Zhou's algorithm. At the third stage, the factors with higher weights were used to improve the MLP performance. Out of the thirteen factors, eight factors were considered as important factors, which are surface area, longitude curvature, diagonal length, slope angle, elevation, slope aspect, rugosity, and profile curvature. The classification accuracy of multilayer perceptron neural network has increased by 3% after the elimination of five less important factors.
Determination of Important Topographic Factors for Landslide Mapping Analysis Using MLP Network
Alkhasawneh, Mutasem Sh.; Ngah, Umi Kalthum; Mat Isa, Nor Ashidi; Al-batah, Mohammad Subhi
2013-01-01
Landslide is one of the natural disasters that occur in Malaysia. Topographic factors such as elevation, slope angle, slope aspect, general curvature, plan curvature, and profile curvature are considered as the main causes of landslides. In order to determine the dominant topographic factors in landslide mapping analysis, a study was conducted and presented in this paper. There are three main stages involved in this study. The first stage is the extraction of extra topographic factors. Previous landslide studies had identified mainly six topographic factors. Seven new additional factors have been proposed in this study. They are longitude curvature, tangential curvature, cross section curvature, surface area, diagonal line length, surface roughness, and rugosity. The second stage is the specification of the weight of each factor using two methods. The methods are multilayer perceptron (MLP) network classification accuracy and Zhou's algorithm. At the third stage, the factors with higher weights were used to improve the MLP performance. Out of the thirteen factors, eight factors were considered as important factors, which are surface area, longitude curvature, diagonal length, slope angle, elevation, slope aspect, rugosity, and profile curvature. The classification accuracy of multilayer perceptron neural network has increased by 3% after the elimination of five less important factors. PMID:24453846
Accuracy and precision of stream reach water surface slopes estimated in the field and from maps
Isaak, D.J.; Hubert, W.A.; Krueger, K.L.
1999-01-01
The accuracy and precision of five tools used to measure stream water surface slope (WSS) were evaluated. Water surface slopes estimated in the field with a clinometer or from topographic maps used in conjunction with a map wheel or geographic information system (GIS) were significantly higher than WSS estimated in the field with a surveying level (biases of 34, 41, and 53%, respectively). Accuracy of WSS estimates obtained with an Abney level did not differ from surveying level estimates, but conclusions regarding the accuracy of Abney levels and clinometers were weakened by intratool variability. The surveying level estimated WSS most precisely (coefficient of variation [CV] = 0.26%), followed by the GIS (CV = 1.87%), map wheel (CV = 6.18%), Abney level (CV = 13.68%), and clinometer (CV = 21.57%). Estimates of WSS measured in the field with an Abney level and estimated for the same reaches with a GIS used in conjunction with l:24,000-scale topographic maps were significantly correlated (r = 0.86), but there was a tendency for the GIS to overestimate WSS. Detailed accounts of the methods used to measure WSS and recommendations regarding the measurement of WSS are provided.
Naylor, Andrew; Talwalkar, Sumedh C.; Trail, Ian A.; Joyce, Thomas J.
2016-01-01
The articulating surfaces of four different sizes of unused pyrolytic carbon proximal interphalangeal prostheses (PIP) were evaluated though measuring several topographical parameters using a white light interferometer: average roughness (Sa); root mean-square roughness (Sq); skewness (Ssk); and kurtosis (Sku). The radii of the articulating surfaces were measured using a coordinate measuring machine, and were found to be: 2.5, 3.3, 4.2 and 4.7 mm for proximal, and 4.0, 5.1, 5.6 and 6.3 mm for medial components. ANOVA was used to assess the relationship between the component radii and each roughness parameter. Sa, Sq and Ssk correlated negatively with radius (p = 0.001, 0.001, 0.023), whilst Sku correlated positively with radius (p = 0.03). Ergo, the surfaces with the largest radii possessed the better topographical characteristics: low roughness, negative skewness, high kurtosis. Conversely, the surfaces with the smallest radii had poorer topographical characteristics. PMID:27089375
Determining Titan surface topography from Cassini SAR data
Stiles, Bryan W.; Hensley, Scott; Gim, Yonggyu; Bates, David M.; Kirk, Randolph L.; Hayes, Alex; Radebaugh, Jani; Lorenz, Ralph D.; Mitchell, Karl L.; Callahan, Philip S.; Zebker, Howard; Johnson, William T.K.; Wall, Stephen D.; Lunine, Jonathan I.; Wood, Charles A.; Janssen, Michael; Pelletier, Frederic; West, Richard D.; Veeramacheneni, Chandini
2009-01-01
A technique, referred to as SARTopo, has been developed for obtaining surface height estimates with 10 km horizontal resolution and 75 m vertical resolution of the surface of Titan along each Cassini Synthetic Aperture Radar (SAR) swath. We describe the technique and present maps of the co-located data sets. A global map and regional maps of Xanadu and the northern hemisphere hydrocarbon lakes district are included in the results. A strength of the technique is that it provides topographic information co-located with SAR imagery. Having a topographic context vastly improves the interpretability of the SAR imagery and is essential for understanding Titan. SARTopo is capable of estimating surface heights for most of the SAR-imaged surface of Titan. Currently nearly 30% of the surface is within 100 km of a SARTopo height profile. Other competing techniques provide orders of magnitude less coverage. We validate the SARTopo technique through comparison with known geomorphological features such as mountain ranges and craters, and by comparison with co-located nadir altimetry, including a 3000 km strip that had been observed by SAR a month earlier. In this area, the SARTopo and nadir altimetry data sets are co-located tightly (within 5-10 km for one 500 km section), have similar resolution, and as expected agree closely in surface height. Furthermore the region contains prominent high spatial resolution topography, so it provides an excellent test of the resolution and precision of both techniques.
NASA Technical Reports Server (NTRS)
Lang, Harold R.
1991-01-01
A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.
Titan Polar Landscape Evolution
NASA Technical Reports Server (NTRS)
Moore, Jeffrey M.
2016-01-01
With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.
Highest Resolution Topography of 433 Eros and Implications for MUSES-C
NASA Technical Reports Server (NTRS)
Cheng, A. F.; Barnouin-Jha, O.
2003-01-01
The highest resolution observations of surface morphology and topography at asteroid 433 Eros were obtained by the Near Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft on 12 February 2001, as it landed within a ponded deposit on Eros. Coordinated observations were obtained by the imager and the laser rangefinder, at best image resolution of 1 cm/pixel and best topographic resolution of 0.4 m. The NEAR landing datasets provide unique information on rock size and height distributions and regolith processes. Rocks and soil can be distinguished photometrically, suggesting that bare rock is indeed exposed. The NEAR landing data are the only data at sufficient resolution to be relevant to hazard assessment on future landed missions to asteroids, such as the MUSES-C mission which will land on asteroid 25143 (1998 SF36) in order to obtain samples. In a typical region just outside the pond where NEAR landed, the areal coverage by resolved positive topographic features is 18%. At least one topographic feature in the vicinity of the NEAR landing site would have been hazardous for a spacecraft.
Ephrin-A/EphA specific co-adaptation as a novel mechanism in topographic axon guidance
Fiederling, Felix; Weschenfelder, Markus; Fritz, Martin; von Philipsborn, Anne; Bastmeyer, Martin; Weth, Franco
2017-01-01
Genetic hardwiring during brain development provides computational architectures for innate neuronal processing. Thus, the paradigmatic chick retinotectal projection, due to its neighborhood preserving, topographic organization, establishes millions of parallel channels for incremental visual field analysis. Retinal axons receive targeting information from quantitative guidance cue gradients. Surprisingly, novel adaptation assays demonstrate that retinal growth cones robustly adapt towards ephrin-A/EphA forward and reverse signals, which provide the major mapping cues. Computational modeling suggests that topographic accuracy and adaptability, though seemingly incompatible, could be reconciled by a novel mechanism of coupled adaptation of signaling channels. Experimentally, we find such ‘co-adaptation’ in retinal growth cones specifically for ephrin-A/EphA signaling. Co-adaptation involves trafficking of unliganded sensors between the surface membrane and recycling endosomes, and is presumably triggered by changes in the lipid composition of membrane microdomains. We propose that co-adaptative desensitization eventually relies on guidance sensor translocation into cis-signaling endosomes to outbalance repulsive trans-signaling. DOI: http://dx.doi.org/10.7554/eLife.25533.001 PMID:28722651
Topographic correction realization based on the CBERS-02B image
NASA Astrophysics Data System (ADS)
Qin, Hui-ping; Yi, Wei-ning; Fang, Yong-hua
2011-08-01
The special topography of mountain terrain will induce the retrieval distortion in same species and surface spectral lines. In order to improve the research accuracy of topographic surface characteristic, many researchers have focused on topographic correction. Topographic correction methods can be statistical-empirical model or physical model, in which the methods based on the digital elevation model data are most popular. Restricted by spatial resolution, previous model mostly corrected topographic effect based on Landsat TM image, whose spatial resolution is 30 meter that can be easily achieved from internet or calculated from digital map. Some researchers have also done topographic correction based on high spatial resolution images, such as Quickbird and Ikonos, but there is little correlative research on the topographic correction of CBERS-02B image. In this study, liao-ning mountain terrain was taken as the objective. The digital elevation model data was interpolated to 2.36 meter by 15 meter original digital elevation model one meter by one meter. The C correction, SCS+C correction, Minnaert correction and Ekstrand-r were executed to correct the topographic effect. Then the corrected results were achieved and compared. The images corrected with C correction, SCS+C correction, Minnaert correction and Ekstrand-r were compared, and the scatter diagrams between image digital number and cosine of solar incidence angel with respect to surface normal were shown. The mean value, standard variance, slope of scatter diagram, and separation factor were statistically calculated. The analysed result shows that the shadow is weakened in corrected images than the original images, and the three-dimensional affect is removed. The absolute slope of fitting lines in scatter diagram is minished. Minnaert correction method has the most effective result. These demonstrate that the former correction methods can be successfully adapted to CBERS-02B images. The DEM data can be interpolated step by step to get the corresponding spatial resolution approximately for the condition that high spatial resolution elevation data is hard to get.
Comparison of High and Low Density Airborne LIDAR Data for Forest Road Quality Assessment
NASA Astrophysics Data System (ADS)
Kiss, K.; Malinen, J.; Tokola, T.
2016-06-01
Good quality forest roads are important for forest management. Airborne laser scanning data can help create automatized road quality detection, thus avoiding field visits. Two different pulse density datasets have been used to assess road quality: high-density airborne laser scanning data from Kiihtelysvaara and low-density data from Tuusniemi, Finland. The field inventory mainly focused on the surface wear condition, structural condition, flatness, road side vegetation and drying of the road. Observations were divided into poor, satisfactory and good categories based on the current Finnish quality standards used for forest roads. Digital Elevation Models were derived from the laser point cloud, and indices were calculated to determine road quality. The calculated indices assessed the topographic differences on the road surface and road sides. The topographic position index works well in flat terrain only, while the standardized elevation index described the road surface better if the differences are bigger. Both indices require at least a 1 metre resolution. High-density data is necessary for analysis of the road surface, and the indices relate mostly to the surface wear and flatness. The classification was more precise (31-92%) than on low-density data (25-40%). However, ditch detection and classification can be carried out using the sparse dataset as well (with a success rate of 69%). The use of airborne laser scanning data can provide quality information on forest roads.
Landscape Variation in Tree Species Richness in Northern Iran Forests
Bourque, Charles P.-A.; Bayat, Mahmoud
2015-01-01
Mapping landscape variation in tree species richness (SR) is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area’s unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i) three topographic variables generated directly from the area’s digital terrain model; (ii) four ecophysiologically-relevant variables derived from process models or from first principles; and (iii) seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content), yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot), than by Fagus orientalis (median difference of one species). This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently general to be applicable to the characterisation of SR in other forested regions of the world, providing plot-scale data are available for model generation. PMID:25849029
Landscape variation in tree species richness in northern Iran forests.
Bourque, Charles P-A; Bayat, Mahmoud
2015-01-01
Mapping landscape variation in tree species richness (SR) is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area's unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i) three topographic variables generated directly from the area's digital terrain model; (ii) four ecophysiologically-relevant variables derived from process models or from first principles; and (iii) seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content), yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot), than by Fagus orientalis (median difference of one species). This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently general to be applicable to the characterisation of SR in other forested regions of the world, providing plot-scale data are available for model generation.
A model for the origin of Martian polygonal terrain
NASA Technical Reports Server (NTRS)
Mcgill, G. E.
1993-01-01
Extensive areas of the Martian northern plains in Utopia and Acidalia Planitiae are characterized by 'polygonal terrain.' Polygonal terrain consists of material cut by complex troughs defining a pattern resembling mudcracks, columnar joints, or frost-wedge polygons on the Earth. However, the Martian polygons are orders of magnitude larger than these potential Earth analogs, leading to severe mechanical difficulties for genetic models based on simple analogy arguments. Stratigraphic studies show that the polygonally fractured material in Utopia Planitia was deposited on a land surface with significant topography, including scattered knobs and mesas, fragments of ancient crater rims, and fresh younger craters. Sediments or volcanics deposited over topographically irregular surfaces can experience differential compaction producing drape folds. Bending stresses due to these drape folds would be superposed on the pervasive tensile stresses due to desiccation or cooling, such that the probability of fracturing is enhanced above buried topographic highs and suppressed above buried topographic lows. Thus it was proposed that the scale of the Martian polygons is controlled by the spacing of topographic highs on the buried surface rather than by the physics of the shrinkage process.
NASA Technical Reports Server (NTRS)
Mader, G. L.
1981-01-01
A technique for producing topographic information is described which is based on same side/same time viewing using a dissimilar combination of radar imagery and photographic images. Common geographic areas viewed from similar space reference locations produce scene elevation displacements in opposite direction and proper use of this characteristic can yield the perspective information necessary for determination of base to height ratios. These base to height ratios can in turn be used to produce a topographic map. A test area covering the Harrisburg, Pennsylvania region was observed by synthetic aperture radar on the Seasat satellite and by return beam vidicon on by the LANDSAT - 3 satellite. The techniques developed for the scaling re-orientation and common registration of the two images are presented along with the topographic determination data. Topographic determination based exclusively on the images content is compared to the map information which is used as a performance calibration base.
NASA Astrophysics Data System (ADS)
Karimzadeh, Sadra; Miyajima, Masakatsu; Kamel, Batoul; Pessina, Vera
2015-10-01
We present topographic slope positions of seismic stations within four independent networks (IGUT, IIEES, GSI, and BHRC) in Iran through integrated use of digital elevation models and GIS. Since topographic amplification factor (TAF) due to ground surface irregularity could be one of the reasons of earthquake wave amplification and unexpected damage of structures located on the top of ridges in many previous studies, the ridge stations in the study area are recognized using topographic position index (TPI) as a spatial-based scale-dependent approach that helps in classification of topographic positions. We also present the correlation between local topographic positions and V {/s 30} along with Voronoi tiles of two networks (IGUT and IIEES). The obtained results can be profitably used in seismology to establish homogeneous subnetworks based on Voronoi tiles with precise feedback and in the formulation of new ground motion prediction equations with respect to topographic position and topographic amplification factor.
75 FR 42680 - Proposed Information Collection; Topographic and Bathymetric Data Survey
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
.... Twenty-one pieces of information about each dataset will be collected to give an accurate picture of data quality and give users of the Topographic and Bathymetric Data Inventory access to each dataset. The end...
Mapping benefits from updated ifsar data in Alaska: improved source data enables better maps
Craun, Kari J.
2015-08-06
The U.S. Geological Survey (USGS) and partners in other Federal and State agencies are working collaboratively toward Statewide coverage of interferometric synthetic aperture radar (ifsar) elevation data in Alaska. These data will provide many benefits to a wide range of stakeholders and users. Some applications include development of more accurate and highly detailed topographic maps; improvement of surface water information included in the National Hydrography (NHD) and Watershed Boundary Datasets (WBDs); and use in scientific modeling applications such as calculating glacier surface elevation differences over time and estimating tsunami inundation areas.
Form drag in rivers due to small-scale natural topographic features: 2. Irregular sequences
Kean, J.W.; Smith, J.D.
2006-01-01
The size, shape, and spacing of small-scale topographic features found on the boundaries of natural streams, rivers, and floodplains can be quite variable. Consequently, a procedure for determining the form drag on irregular sequences of different-sized topographic features is essential for calculating near-boundary flows and sediment transport. A method for carrying out such calculations is developed in this paper. This method builds on the work of Kean and Smith (2006), which describes the flow field for the simpler case of a regular sequence of identical topographic features. Both approaches model topographic features as two-dimensional elements with Gaussian-shaped cross sections defined in terms of three parameters. Field measurements of bank topography are used to show that (1) the magnitude of these shape parameters can vary greatly between adjacent topographic features and (2) the variability of these shape parameters follows a lognormal distribution. Simulations using an irregular set of topographic roughness elements show that the drag on an individual element is primarily controlled by the size and shape of the feature immediately upstream and that the spatial average of the boundary shear stress over a large set of randomly ordered elements is relatively insensitive to the sequence of the elements. In addition, a method to transform the topography of irregular surfaces into an equivalently rough surface of regularly spaced, identical topographic elements also is given. The methods described in this paper can be used to improve predictions of flow resistance in rivers as well as quantify bank roughness.
Airborne Topographic Mapper Calibration Procedures and Accuracy Assessment
NASA Technical Reports Server (NTRS)
Martin, Chreston F.; Krabill, William B.; Manizade, Serdar S.; Russell, Rob L.; Sonntag, John G.; Swift, Robert N.; Yungel, James K.
2012-01-01
Description of NASA Airborn Topographic Mapper (ATM) lidar calibration procedures including analysis of the accuracy and consistancy of various ATM instrument parameters and the resulting influence on topographic elevation measurements. The ATM elevations measurements from a nominal operating altitude 500 to 750 m above the ice surface was found to be: Horizontal Accuracy 74 cm, Horizontal Precision 14 cm, Vertical Accuracy 6.6 cm, Vertical Precision 3 cm.
An Overview of the Topography of Mars from the Mars Orbiter Laser Altimeter (MOLA)
NASA Technical Reports Server (NTRS)
Smith, David E.; Zuber, Maria T.
2000-01-01
The Mars Global Surveyor (MGS) spacecraft has now completed more than half of its one-Mars-year mission to globally map Mars. During the MGS elliptical and circular orbit mapping phases, the Mars Orbiter Laser Altimeter (MOLA), an instrument on the MGS payload, has collected over 300 million precise elevation measurements. MOLA measures the range from the MGS spacecraft to the Martian surface and to atmospheric reflections. Range is converted to topography through knowledge of the MGS spacecraft orbit. Ranges from MOLA have resulted in a precise global topographic map of Mars. The instrument has also provided measurements of the width of the backscattered optical pulse and of the 1064 nm reflectivity of the Martian surface and atmosphere. The range resolution of the MOLA instrument is 37.5 cm and the along-track resolution of MOLA ground shots is approx. 300 m; the across-track spacing depends on latitude and time in the mapping orbit. The best current topographic grid has a spatial resolution of approx. 1/16 deg and vertical accuracy of approx. one meter. Additional information is contained in the original extended abstract.
Development of antifouling surfaces to reduce bacterial attachment
NASA Astrophysics Data System (ADS)
Graham, Mary Viola
Bacteria are exceptionally good at adhering to surfaces and forming complex structures known as biofilms. This process, known as biofouling, can cause problems for infrastructure (eg, clogging and damaging pipes), for the food industry (eg, contamination of processing surfaces and equipment, and for the medical industry (eg, contamination of indwelling medical devices). Accordingly, multiple strategies have been explored to combat biofouling, including chemical modification of surfaces, development of antibiotic coatings, and more recently, the use of engineered surface topography. When designed properly, engineered surface topographies can significantly reduce bacterial surface attachment, ultimately limiting surface colonization. In this work, we hypothesized that the morphology, size, spacing, and surface pre-treatment of topographical features should directly correlate with the size and shape of target organisms, in order to reduce biofouling. Topographical features with size and spacing from 0.25 to 2 mum were fabricated in silicone elastomer and tested against rod shaped bacteria with an average size of 0.5 x 2 mum and spherical bacteria (cocci) ranging from 0.5 - 1 μm in diameter. Antifouling properties of the different topographical features were tested in both static and flow-based assays, and under oxygen plasma-treated (hydrophilic) and untreated (hydrophobic) surface conditions. We found that surface pre-treatment universally affects the ability bacteria to attach to surfaces, while surface topography limits attachment in a manner dependent on the bacterial size/shape and the size/spacing of the topography.
NASA Astrophysics Data System (ADS)
Chen, Z.; Schellart, W. P.; Duarte, J. C.; Strak, V.
2017-12-01
Topography that forms at the free top surface of the lithosphere contains important information about the dynamics of the tectonic plates and the sub-lithospheric mantle. Investigating topography around subduction zones can provide quantitative and conceptual insights into the interaction between the plates, the slabs, mantle flow, and the associated stresses. To achieve this, geodynamic modelling can be an effective tool. In this study, we used techniques of stereoscopic photogrammetry and Particle Image Velocimetry to monitor simultaneously the topography of the overriding plate and the velocity field of the subduction-induced mantle flow occurring in the mantle wedge. Model results show that the overriding plate topography is characterized by an area of forearc topographic subsidence, with a magnitude scaling to 1.44-3.97 km in nature, and a transient local topographic high located between the forearc depression and the trench. These topographic features rapidly develop during the slab sinking phase and gradually decrease during the slab rollback phase. We propose that these topographic transient features predominantly result from the variation of the vertical component of the trench suction along the subduction zone interface, which is minimum near the trench and maximum near the tip of the mantle wedge and is caused by the gradual slab steepening during the initial transient slab sinking phase. The downward mantle flow in the nose of the mantle wedge plays a minor role in the formation of the forearc subsidence. Our findings provide a new mechanism for the formation of forearc topographic subsidence, which has been commonly observed at natural subduction zones.
The Effect of DEM Source and Grid Size on the Index of Connectivity in Savanna Catchments
NASA Astrophysics Data System (ADS)
Jarihani, Ben; Sidle, Roy; Bartley, Rebecca; Roth, Christian
2017-04-01
The term "hydrological connectivity" is increasingly used instead of sediment delivery ratio to describe the linkage between the sources of water and sediment within a catchment to the catchment outlet. Sediment delivery ratio is an empirical parameter that is highly site-specific and tends to lump all processes, whilst hydrological connectivity focuses on the spatially-explicit hydrologic drivers of surficial processes. Detailed topographic information plays a fundamental role in geomorphological interpretations as well as quantitative modelling of sediment fluxes and connectivity. Geomorphometric analysis permits a detailed characterization of drainage area and drainage pattern together with the possibility of characterizing surface roughness. High resolution topographic data (i.e., LiDAR) are not available for all areas; however, remotely sensed topographic data from multiple sources with different grid sizes are used to undertake geomorphologic analysis in data-sparse regions. The Index of Connectivity (IC), a geomorphometric model based only on DEM data, is applied in two small savanna catchments in Queensland, Australia. The influence of the scale of the topographic data is explored by using DEMs from LiDAR ( 1 m), WorldDEM ( 10 m), raw SRTM and hydrologically corrected SRTM derived data ( 30 m) to calculate the index of connectivity. The effect of the grid size is also investigated by resampling the high resolution LiDAR DEM to multiple grid sizes (e.g. 5, 10, 20 m) and comparing the extracted IC.
Can high resolution topographic surveys provide reliable grain size estimates?
NASA Astrophysics Data System (ADS)
Pearson, Eleanor; Smith, Mark; Klaar, Megan; Brown, Lee
2017-04-01
High resolution topographic surveys contain a wealth of information that is not always exploited in the generation of Digital Elevation Models (DEMs). In particular, several authors have related sub-grid scale topographic variability (or 'surface roughness') to particle grain size by deriving empirical relationships between the two. Such relationships would permit rapid analysis of the spatial distribution of grain size over entire river reaches, providing data to drive distributed hydraulic models and revolutionising monitoring of river restoration projects. However, comparison of previous roughness-grain-size relationships shows substantial variability between field sites and do not take into account differences in patch-scale facies. This study explains this variability by identifying the factors that influence roughness-grain-size relationships. Using 275 laboratory and field-based Structure-from-Motion (SfM) surveys, we investigate the influence of: inherent survey error; irregularity of natural gravels; particle shape; grain packing structure; sorting; and form roughness on roughness-grain-size relationships. A suite of empirical relationships is presented in the form of a decision tree which improves estimations of grain size. Results indicate that the survey technique itself is capable of providing accurate grain size estimates. By accounting for differences in patch facies, R2 was seen to improve from 0.769 to R2 > 0.9 for certain facies. However, at present, the method is unsuitable for poorly sorted gravel patches. In future, a combination of a surface roughness proxy with photosieving techniques using SfM-derived orthophotos may offer improvements on using either technique individually.
Steering of Upper Ocean Currents and Fronts by the Topographically Constrained Abyssal Circulation
2008-07-06
a) Mean surface dynamic height relative to 1000 m from version 2.5 of the Generalized Digital Environmental Model ( GDEM ) oceanic climatology, an...NLOM simulations in comparison to the mean surface dynamic height with respect to 1000 m from the Generalized Digital Environmental Model ( GDEM ...the Kuroshio pathway east of Japan, giving much better agreement with the pathway in the GDEM climatology. Dynamics of the topographic impact on
Lava flow topographic measurements for radar data interpretation
NASA Technical Reports Server (NTRS)
Campbell, Bruce A.; Garvin, James B.
1993-01-01
Topographic profiles at 25- and 5-cm horizontal resolution for three sites along a lava flow on Kilauea Volcano are presented, and these data are used to illustrate techniques for surface roughness analysis. Height and slope distributions and the height autocorrelation function are evaluated as a function of varying lowpass filter wavelength for the 25-cm data. Rms slopes are found to increase rapidly with decreasing topographic scale and are typically much higher than those found by modeling of Magellan altimeter data for Venus. A more robust description of the surface roughness appears to be the ratio of rms height to surface height correlation length. For all three sites this parameter falls within the range of values typically found from model fits to Magellan altimeter waveforms. The 5-cm profile data are used to estimate the effect of small-scale roughness on quasi-specular scattering.
The AR Sandbox: Augmented Reality in Geoscience Education
NASA Astrophysics Data System (ADS)
Kreylos, O.; Kellogg, L. H.; Reed, S.; Hsi, S.; Yikilmaz, M. B.; Schladow, G.; Segale, H.; Chan, L.
2016-12-01
The AR Sandbox is a combination of a physical box full of sand, a 3D (depth) camera such as a Microsoft Kinect, a data projector, and a computer running open-source software, creating a responsive and interactive system to teach geoscience concepts in formal or informal contexts. As one or more users shape the sand surface to create planes, hills, or valleys, the 3D camera scans the surface in real-time, the software creates a dynamic topographic map including elevation color maps and contour lines, and the projector projects that map back onto the sand surface such that real and projected features match exactly. In addition, users can add virtual water to the sandbox, which realistically flows over the real surface driven by a real-time fluid flow simulation. The AR Sandbox can teach basic geographic and hydrologic skills and concepts such as reading topographic maps, interpreting contour lines, formation of watersheds, flooding, or surface wave propagation in a hands-on and explorative manner. AR Sandbox installations in more than 150 institutions have shown high audience engagement and long dwell times of often 20 minutes and more. In a more formal context, the AR Sandbox can be used in field trip preparation, and can teach advanced geoscience skills such as extrapolating 3D sub-surface shapes from surface expression, via advanced software features such as the ability to load digital models of real landscapes and guiding users towards recreating them in the sandbox. Blueprints, installation instructions, and the open-source AR Sandbox software package are available at http://arsandbox.org .
3D Geo-Structures Visualization Education Project (3dgeostructuresvis.ucdavis.edu)
NASA Astrophysics Data System (ADS)
Billen, M. I.
2014-12-01
Students of field-based geology must master a suite of challenging skills from recognizing rocks, to measuring orientations of features in the field, to finding oneself (and the outcrop) on a map and placing structural information on maps. Students must then synthesize this information to derive meaning from the observations and ultimately to determine the three-dimensional (3D) shape of the deformed structures and their kinematic history. Synthesizing this kind of information requires sophisticated visualizations skills in order to extrapolate observations into the subsurface or missing (eroded) material. The good news is that students can learn 3D visualization skills through practice, and virtual tools can help provide some of that practice. Here I present a suite of learning modules focused at developing students' ability to imagine (visualize) complex 3D structures and their exposure through digital topographic surfaces. Using the software 3DVisualizer, developed by KeckCAVES (keckcaves.org) we have developed visualizations of common geologic structures (e.g., syncline, dipping fold) in which the rock is represented by originally flat-lying layers of sediment, each with a different color, which have been subsequently deformed. The exercises build up in complexity, first focusing on understanding the structure in 3D (penetrative understanding), and then moving to the exposure of the structure at a topographic surface. Individual layers can be rendered as a transparent feature to explore how the layer extends above and below the topographic surface (e.g., to follow an eroded fold limb across a valley). The exercises are provided using either movies of the visualization (which can also be used for examples during lectures), or the data and software can be downloaded to allow for more self-driven exploration and learning. These virtual field models and exercises can be used as "practice runs" before going into the field, as make-up assignments, as a field experience in regions without good geologic outcrops, or for students with disabilities that prevent them from going into the field. These exercises and modules are available from 3dgeostructuresvis.ucdavis.edu. We plan to add several new structures to the site each year. This project was funded by a National Science Foundation CAREER grant to Billen.
New Topographic Maps of Io Using Voyager and Galileo Stereo Imaging and Photoclinometry
NASA Astrophysics Data System (ADS)
White, O. L.; Schenk, P. M.; Hoogenboom, T.
2012-03-01
Stereo and photoclinometry processing have been applied to Voyager and Galileo images of Io in order to derive regional- and local-scale topographic maps of 20% of the moon’s surface to date. We present initial mapping results.
NASA Technical Reports Server (NTRS)
Garneau, S.; Plaut, J. J.
2000-01-01
The surface roughness of the Vastitas Borealis Formation on Mars was analyzed with fractal statistics. Root mean square slopes and fractal dimensions were calculated for 74 topographic profiles. Results have implications for radar scattering models.
NASA Astrophysics Data System (ADS)
Hayes, A. G., Jr.; Birch, S.; Corlies, P.; Poggiali, V.; Dietrich, W. E.; Howard, A. D.; Kirk, R. L.; Mastrogiuseppe, M.; Malaska, M.; Moore, J. M.; Mitchell, K. L.
2017-12-01
The topographic information provided by Cassini RADAR Altimetry, SAR Topography, and stereo photogrammetry has opened new doors for Titan research by allowing the quantitative analysis of morphologic form as well as relative measurements of liquid elevation. Herein, we investigate the relative elevation of liquid bodies and the three-dimensional morphology of Titan's lacustrine basins in order to provide observables that will constrain connectivity and plausible formation mechanisms. Using delay-Dopler processed altimetry measurements we show that the liquid elevations of Titan's Mare are the same to within measurement error, consistent with an equipotential surface. The liquid elevation of several smaller lakes, however, are found to be several hundreds above this sea level, suggesting that they exist in isolated or perched basins. Within a given topographic basin, the floor elevations of empty lakes are typically higher than the local liquid elevation, suggesting either the presence of an impermeable boundary or local subsurface connectivity. Basins with floors closer to the local phreatic surface appear brighter to both nadir and off-nadir microwave observations than those that are more elevated, indicating a potential change in composition. The majority of Titan's lakes reside in sharp edged depressions whose planform curvature suggests expansion through uniform scarp retreat. Many, but not all, of these basins exhibit flat floors and hundred-meter scale steep-sided raised rims that present a challenge to formation models. Raised rims are found on 57% of all the lakes in our study, including for all lakes >500 km2 in area. With super-resolution altimetry profiles, the raised rims can also be correlated directly with SAR image data, allowing for the identification of raised rims on other lakes, even when they lack topographic data coverage.. The basins are often topographically closed with no evidence for inflow or flow channels at the 300 m resolution of Cassini SAR images. The implications of these observations will be discussed in the context of common basin formation models. We conclude that sublimation and dissolution mechanisms can best match the observed constraints, but that challenges still exist in their implementation.
NASA Astrophysics Data System (ADS)
Odaka, Akihiro; Satoh, Nobuo; Katori, Shigetaka
2017-08-01
We partially deposited fullerene (C60) and phenyl-C61-butyric acid methyl ester thin films that are typical n-type semiconductor materials on indium-tin oxide by mist deposition at various substrate temperatures. The topographic and surface potential images were observed via dynamic force microscopy/Kelvin probe force microscopy with the frequency modulation detection method. We proved that the area where a thin film is deposited depends on the substrate temperature during deposition from the topographic images. It was also found that the surface potential depends on the substrate temperature from the surface potential images.
Bruzaud, Jérôme; Tarrade, Jeanne; Celia, Elena; Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Guittard, Frédéric; Herry, Jean-Marie; Guilbaud, Morgan; Bellon-Fontaine, Marie-Noëlle
2017-04-01
Reducing bacterial adhesion on substrates is fundamental for various industries. In this work, new superhydrophobic surfaces are created by electrodeposition of hydrophobic polymers (PEDOT-F 4 or PEDOT-H 8 ) on stainless steel with controlled topographical features, especially at a nano-scale. Results show that anti-bioadhesive and anti-biofilm properties require the control of the surface topographical features, and should be associated with a low adhesion of water onto the surface (Cassie-Baxter state) with limited crevice features at the scale of bacterial cells (nano-scale structures). Copyright © 2016. Published by Elsevier B.V.
Utility of fluorescence microscopy in embryonic/fetal topographical analysis.
Zucker, R M; Elstein, K H; Shuey, D L; Ebron-McCoy, M; Rogers, J M
1995-06-01
For topographical analysis of developing embryos, investigators typically rely on scanning electron microscopy (SEM) to provide the surface detail not attainable with light microscopy. SEM is an expensive and time-consuming technique, however, and the preparation procedure may alter morphology and leave the specimen friable. We report that by using a high-resolution compound epifluorescence microscope with inexpensive low-power objectives and the fluorochrome acridine orange, we were able to obtain surface images of fixed or fresh whole rat embryos and fetal palates of considerably greater topographical detail than those obtained using routine light microscopy. Indeed the resulting high-resolution images afford not only superior qualitative documentation of morphological observations, but the capability for detailed morphometry via digitization and computer-assisted image analysis.
Multiscale geomorphometric modeling of Mercury
NASA Astrophysics Data System (ADS)
Florinsky, I. V.
2018-02-01
Topography is one of the key characteristics of a planetary body. Geomorphometry deals with quantitative modeling and analysis of the topographic surface and relationships between topography and other natural components of landscapes. The surface of Mercury is systematically studied by interpretation of images acquired during the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. However, the Mercurian surface is still little explored by methods of geomorphometry. In this paper, we evaluate the Mercury MESSENGER Global DEM MSGR_DEM_USG_SC_I_V02 - a global digital elevation model (DEM) of Mercury with the resolution of 0.015625° - as a source for geomorphometric modeling of this planet. The study was performed at three spatial scales: the global, regional (the Caloris basin), and local (the Pantheon Fossae area) ones. As the initial data, we used three DEMs of these areas with resolutions of 0.25°, 0.0625°, and 0.015625°, correspondingly. The DEMs were extracted from the MESSENGER Global DEM. From the DEMs, we derived digital models of several fundamental morphometric variables, such as: slope gradient, horizontal curvature, vertical curvature, minimal curvature, maximal curvature, catchment area, and dispersive area. The morphometric maps obtained represent peculiarities of the Mercurian topography in different ways, according to the physical and mathematical sense of a particular variable. Geomorphometric models are a rich source of information on the Mercurian surface. These data can be utilized to study evolution and internal structure of the planet, for example, to visualize and quantify regional topographic differences as well as to refine geological boundaries.
Application of aerial photography to water-related programs in Michigan
NASA Technical Reports Server (NTRS)
Enslin, W. R.; Hill-Rowley, R.; Tilmann, S. E.
1977-01-01
Aerial photography and information system technology were used to generate information required for the effective operation of three water-related programs in Michigan. Potential mosquito breeding sites were identified from specially acquired low altitude 70 mm color photography for the city of Lansing; the inventory identified 35% more surface water areas than indicated on existing field maps. A comprehensive inventory of surface water sources and potential access sites was prepared to assist fire departments in Antrim County with fire truck water-recharge operations. Remotely-sensed land cover/use data for Windsor Township, Eaton County, were integrated with other resource data into a computer-based information system for regional water quality studies. Eleven thematic maps focusing on landscape features affecting non-point water pollution and waste disposal were generated from analyses of a four-hectare grid-based data file containing land cover/use, soils, topographic and geologic (well-log) data.
Evaluating Topographic Effects on Ground Deformation: Insights from Finite Element Modeling
NASA Astrophysics Data System (ADS)
Ronchin, Erika; Geyer, Adelina; Martí, Joan
2015-07-01
Ground deformation has been demonstrated to be one of the most common signals of volcanic unrest. Although volcanoes are commonly associated with significant topographic relief, most analytical models assume the Earth's surface as flat. However, it has been confirmed that this approximation can lead to important misinterpretations of the recorded surface deformation data. Here we perform a systematic and quantitative analysis of how topography may influence ground deformation signals generated by a spherical pressure source embedded in an elastic homogeneous media and how these variations correlate with the different topographic parameters characterizing the terrain form (e.g., slope, aspect, curvature). For this, we bring together the results presented in previous published papers and complement them with new axisymmetric and 3D finite element (FE) model results. First, we study, in a parametric way, the influence of a volcanic edifice centered above the pressure source axis. Second, we carry out new 3D FE models simulating the real topography of three different volcanic areas representative of topographic scenarios common in volcanic regions: Rabaul caldera (Papua New Guinea) and the volcanic islands of Tenerife and El Hierro (Canary Islands). The calculated differences are then correlated with a series of topographic parameters. The final aim is to investigate the artifacts that might arise from the use of half-space models at volcanic areas due to diverse topographic features (e.g., collapse caldera structures, prominent central edifices, large landslide scars).
Laser-ranging scanning system to observe topographical deformations of volcanoes.
Aoki, T; Takabe, M; Mizutani, K; Itabe, T
1997-02-20
We have developed a laser-ranging system to observe the topographical structure of volcanoes. This system can be used to measure the distance to a target by a laser and shows the three-dimensional topographical structure of a volcano with an accuracy of 30 cm. This accuracy is greater than that of a typical laser-ranging system that uses a corner-cube reflector as a target because the reflected light jitters as a result of inclination and unevenness of the target ground surface. However, this laser-ranging system is useful for detecting deformations of topographical features in which placement of a reflector is difficult, such as in volcanic regions.
Generation of topographic terrain models utilizing synthetic aperture radar and surface level data
NASA Technical Reports Server (NTRS)
Imhoff, Marc L. (Inventor)
1991-01-01
Topographical terrain models are generated by digitally delineating the boundary of the region under investigation from the data obtained from an airborne synthetic aperture radar image and surface elevation data concurrently acquired either from an airborne instrument or at ground level. A set of coregistered boundary maps thus generated are then digitally combined in three dimensional space with the acquired surface elevation data by means of image processing software stored in a digital computer. The method is particularly applicable for generating terrain models of flooded regions covered entirely or in part by foliage.
Influence of Topographic Unloading on Magma Intrusions: Modelling Dike Propagation Under Calderas
NASA Astrophysics Data System (ADS)
Gaete Rojas, A. B.; Kavanagh, J.; Walter, T. R.
2017-12-01
Dikes are common igneous bodies involved in the transport of magma through the crust to feed volcanic eruptions. Dike emplacement in the presence of topographic depressions, as produced by unloading in volcanic systems with calderas, is enigmatic. Field observations of post-caldera volcanism suggest the emplacement of dikes often occurs as cone sheets and/or ring/radial dikes. However, the extrapolation of the surface expression of these laminar intrusions to depth to infer their sub-surface geometry is often based on limited information. As a result, key questions remain regarding the propagation dynamics of dikes beneath calderas, including the physical processes that influence the development of an intrusive cone sheet rather than a circumferential, steep-sided ring dike that could breach the surface. Scaled laboratory modeling allows us to study the development of cone sheets and ring dikes in 3D in the presence of a surface depression, tracking the evolution of the dynamic processes of their formation.Here, we analyze the evolution of dikes propagating in an elastic medium in the presence of a stress perturbation due to unloading. We performed experiments using a 30 × 40 × 40 cm3tank filled with 2.5 wt.% solidified gelatine with a cylindrical surface depression to produce a crustal analogue with caldera-like topography. Magma-filled hydrofractures were creating by injecting dyed water as the magma analogue. The intrusion evolution was monitored using 3 cameras, with an overhead laser scanner measuring the progressive surface uplift and polarized light tracking the evolution of the stress field. We find that the formation of a cone sheet or a ring dike is a consequence of the caldera size and its stress field, with small calderas favouring ring dike formation. The offset of the injection point relative to the centre of the caldera is also assessed. Cone sheets are formed as the dike is strongly deflected, and the dike propagation front transitions into radially propagating fingers that eventually join to form the cone. Surface deformation is broader and produces greater topographic change, whereas a ring dike produces a smaller and more localized surface displacement. These results may help to identify and interpret the process related to magma ascent during post-caldera volcanism.
Pump-probe Kelvin-probe force microscopy: Principle of operation and resolution limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murawski, J.; Graupner, T.; Milde, P., E-mail: peter.milde@tu-dresden.de
Knowledge on surface potential dynamics is crucial for understanding the performance of modern-type nanoscale devices. We describe an electrical pump-probe approach in Kelvin-probe force microscopy that enables a quantitative measurement of dynamic surface potentials at nanosecond-time and nanometer-length scales. Also, we investigate the performance of pump-probe Kelvin-probe force microscopy with respect to the relevant experimental parameters. We exemplify a measurement on an organic field effect transistor that verifies the undisturbed functionality of our pump-probe approach in terms of simultaneous and quantitative mapping of topographic and electronic information at a high lateral and temporal resolution.
Volcanic geomorphology using TanDEM-X
NASA Astrophysics Data System (ADS)
Poland, Michael; Kubanek, Julia
2016-04-01
Topography is perhaps the most fundamental dataset for any volcano, yet is surprisingly difficult to collect, especially during the course of an eruption. For example, photogrammetry and lidar are time-intensive and often expensive, and they cannot be employed when the surface is obscured by clouds. Ground-based surveys can operate in poor weather but have poor spatial resolution and may expose personnel to hazardous conditions. Repeat passes of synthetic aperture radar (SAR) data provide excellent spatial resolution, but topography in areas of surface change (from vegetation swaying in the wind to physical changes in the landscape) between radar passes cannot be imaged. The German Space Agency's TanDEM-X satellite system, however, solves this issue by simultaneously acquiring SAR data of the surface using a pair of orbiting satellites, thereby removing temporal change as a complicating factor in SAR-based topographic mapping. TanDEM-X measurements have demonstrated exceptional value in mapping the topography of volcanic environments in as-yet limited applications. The data provide excellent resolution (down to ~3-m pixel size) and are useful for updating topographic data at volcanoes where surface change has occurred since the most recent topographic dataset was collected. Such data can be used for applications ranging from correcting radar interferograms for topography, to modeling flow pathways in support of hazards mitigation. The most valuable contributions, however, relate to calculating volume changes related to eruptive activity. For example, limited datasets have provided critical measurements of lava dome growth and collapse at volcanoes including Merapi (Indonesia), Colima (Mexico), and Soufriere Hills (Montserrat), and of basaltic lava flow emplacement at Tolbachik (Kamchatka), Etna (Italy), and Kīlauea (Hawai`i). With topographic data spanning an eruption, it is possible to calculate eruption rates - information that might not otherwise be available, as was the case at Tolbachik and Kīlauea. With a dense time series of TanDEM-X imagery over an erupting volcano, lava discharge over time can be determined. At Kīlauea, such results revealed relatively low rates of lava discharge during 2011-2014, which suggests a decrease in magma supply to the entire volcano, and which has important implications for lava flow hazards assessment. Some problems remain in using TanDEM-X data for volcano monitoring, like variations in satellite imaging geometry over time and distinguishing vegetation from the ground surface. Nonetheless, we are convinced of the high value of TanDEM-X data that, if utilized to its full potential, offer a unique opportunity for elucidating a range of volcanic processes around the world.
NASA Astrophysics Data System (ADS)
Evans, Martin; Allott, Tim; Worrall, Fred; Rowson, James; Maskill, Rachael
2014-05-01
Water table is arguably the dominant control on biogeochemical cycling in peatland systems. Local water tables are controlled by peat surface water balance and lateral transfer of water driven by slope can be a significant component of this balance. In particular, blanket peatlands typically have relatively high surface slope compared to other peatland types so that there is the potential for water table to be significantly contolled by topographic context. UK blanket peatlands are also significantly eroded so that there is the potential for additional topographic drainage of the peatland surface. This paper presents a topographically driven model of blanket peat water table. An initial model presented in Allott et al. (2009) has been refined and tested against further water table data collected across the Bleaklow and Kinderscout plateaux of the English Peak District. The water table model quantifies the impact of peat erosion on water table throughout this dramatically dissected landscape demonstrating that almost 50% of the landscape has suffered significant water table drawdown. The model calibrates the impact of slope and degree of dissection on local water tables but does not incorporate any effects of surface cover on water table conditions. Consequently significant outliers in the test data are potentially indicative of important impacts of surface cover on water table conditions. In the test data presented here sites associated with regular moorland burning are significant outliers. The data currently available do not allow us to draw conclusions around the impact of land cover but they indicate an important potential application of the validated model in controlling for topographic position in further testing of the impact of land cover on peatland water tables. Allott, T.E.H. & Evans, M.G., Lindsay, J.B., Agnew, C.T., Freer, J.E., Jones, A. & Parnell, M. Water tables in Peak District blanket peatlands. Moors for the Future Report No. 17. Moors for the Future Partnership, Edale, 47pp.
4D very high-resolution topography monitoring of surface deformation using UAV-SfM framework.
NASA Astrophysics Data System (ADS)
Clapuyt, François; Vanacker, Veerle; Schlunegger, Fritz; Van Oost, Kristof
2016-04-01
During the last years, exploratory research has shown that UAV-based image acquisition is suitable for environmental remote sensing and monitoring. Image acquisition with cameras mounted on an UAV can be performed at very-high spatial resolution and high temporal frequency in the most dynamic environments. Combined with Structure-from-Motion algorithm, the UAV-SfM framework is capable of providing digital surface models (DSM) which are highly accurate when compared to other very-high resolution topographic datasets and highly reproducible for repeated measurements over the same study area. In this study, we aim at assessing (1) differential movement of the Earth's surface and (2) the sediment budget of a complex earthflow located in the Central Swiss Alps based on three topographic datasets acquired over a period of 2 years. For three time steps, we acquired aerial photographs with a standard reflex camera mounted on a low-cost and lightweight UAV. Image datasets were then processed with the Structure-from-Motion algorithm in order to reconstruct a 3D dense point cloud representing the topography. Georeferencing of outputs has been achieved based on the ground control point (GCP) extraction method, previously surveyed on the field with a RTK GPS. Finally, digital elevation model of differences (DOD) has been computed to assess the topographic changes between the three acquisition dates while surface displacements have been quantified by using image correlation techniques. Our results show that the digital elevation model of topographic differences is able to capture surface deformation at cm-scale resolution. The mean annual displacement of the earthflow is about 3.6 m while the forefront of the landslide has advanced by ca. 30 meters over a period of 18 months. The 4D analysis permits to identify the direction and velocity of Earth movement. Stable topographic ridges condition the direction of the flow with highest downslope movement on steep slopes, and diffuse movement due to lateral sediment flux in the central part of the earthflow.
Space-based Swath Imaging Laser Altimeter for Cryospheric Topographic and Surface Property Mapping
NASA Technical Reports Server (NTRS)
Abshire, James; Harding, David; Shuman, Chris; Sun, Xiaoli; Dabney, Phil; Krainak, Michael; Scambos, Ted
2005-01-01
Uncertainties in the response of the Greenland and Antarctic polar ice sheets to global climatic change inspired the development of ICESat/GLAS as part of NASA's Earth Observing System. ICESat's primary purpose is the measurement of ice sheet surface elevation profiles with sufficient accuracy, spatial density, and temporal coverage so that elevation changes can be derived with an accuracy of <1.5 cm/year for averages of measurements over the ice sheets with areas of 100 x 100 km. The primary means to achieve this elevation change detection is spatial averaging of elevation differences at cross-overs between ascending and descending profiles in areas of low ice surface slope. Additional information is included in the original extended abstract.
McDonald, Richard R.; Nelson, Jonathan M.
2016-01-01
Appendix G: Hanson Russian River Ponds Floodplain Restoration: Feasibility Study and Conceptual Design |G-1Appendix GPhysical Evaluation of the Restoration AlternativesRichard McDonald and Jonathan Nelson, PhDU.S. Geological Survey Geomorphology and Sediment Transport Laboratory, Golden, ColoradoIntroductionTo assess the relative and overall impacts of the scenarios proposed in Chapters 7 and 9,(Stage I-A–I-D and Stage II-A –II-E), each of the topographic configurations were evaluated over a range of flows. Thisevaluation was carried out using computational flow modeling tools available in the iRIC public-domain river modeling interface (www.i-ric.org, Nelsonet al.in press). Using the iRIC modeling tools described in more detail below, basic hydraulic computations of water-surface elevation, velocity, shear stress, and other hydraulic variables were carried out for the alternatives in the reach surrounding the project area, from the confluence of Dry Creek upstream to the Wohler road bridge downstream, for the full range of observed flows. This methodology allows comparison of the current channel configuration with the proposed alternatives in terms of inundation period and frequency, depth, water velocity, and other hydraulic information. By integrating this kind of information over the reach of interest and the flow record, critical metrics assessing the impacts of various topographic modifications can be compared to those same metrics for the existing condition or other modification scenarios. In addition, because the iRIC tools include predictions of sediment mobility, suspension of fines, and the potential evolution of the land surface in response to flow, these methods provide evaluation of sediment transport, stability of current and proposed surfaces, and evaluation of how these surfaces might evolve into the future. This hydraulic and sediment transport information is critically important for understanding theimpacts of various proposed alternatives on the physical system; perhaps even more importantly given the objectives of the proposed restoration, this information can be related to biological impacts, as is discussed in subsequent chapters of this document.
Topographic map of Golden Gate Estates, Collier County, Florida
Jurado, Antonio
1981-01-01
Construction of canals related to land development in the Golden Gate Estates area of Collier County, Fla., has altered the natural drainage pattern of the watershed. The area of approximately 300 square miles was topographically mapped with a contour interval of 0.5 foot to assist in determining the effects of canal construction on the surface-water and ground-water resources in the watershed. The topographic map was prepared at a scale of 1:48,000 using aerial photography and ground-control points. (USGS)
NASA Technical Reports Server (NTRS)
Brown, Christopher A.
1993-01-01
The approach of the project is to base the design of multi-function, reflective topographies on the theory that topographically dependent phenomena react with surfaces and interfaces at certain scales. The first phase of the project emphasizes the development of methods for understanding the sizes of topographic features which influence reflectivity. Subsequent phases, if necessary, will address the scales of interaction for adhesion and manufacturing processes. A simulation of the interaction of electromagnetic radiation, or light, with a reflective surface is performed using specialized software. Reflectivity of the surface as a function of scale is evaluated and the results from the simulation are compared with reflectivity measurements made on multi-function, reflective surfaces.
Hemispheric and Topographic Asymmetry of Magnetospheric Particle Irradiation for Icy Moon Surfaces
NASA Technical Reports Server (NTRS)
Cooper, John F.; Sturner, S. J.
2007-01-01
All surfaces of icy moons without significant atmospheres, i.e. all except Titan in the giant planet systems, are irradiated by hot plasma and more energetic charged particles from the local magnetospheric environments. This irradiation can significantly impact the chemical composition, albedo, and detectable presence of signs of life on the sensible surfaces, while also limiting lifetimes and science operations of orbital spacecraft for extreme radiation environments as at Europa. Planning of surface remote sensing and lander operations, and interpretation of remote sensing and in-situ measurements, should include consideration of natural shielding afforded by the body of the moon, by any intrinsic or induced magnetic fields as at Ganyrnede, and by topographic structures.
Spatial Relation Predicates in Topographic Feature Semantics
Varanka, Dalia E.; Caro, Holly K.
2013-01-01
Topographic data are designed and widely used for base maps of diverse applications, yet the power of these information sources largely relies on the interpretive skills of map readers and relational database expert users once the data are in map or geographic information system (GIS) form. Advances in geospatial semantic technology offer data model alternatives for explicating concepts and articulating complex data queries and statements. To understand and enrich the vocabulary of topographic feature properties for semantic technology, English language spatial relation predicates were analyzed in three standard topographic feature glossaries. The analytical approach drew from disciplinary concepts in geography, linguistics, and information science. Five major classes of spatial relation predicates were identified from the analysis; representations for most of these are not widely available. The classes are: part-whole (which are commonly modeled throughout semantic and linked-data networks), geometric, processes, human intention, and spatial prepositions. These are commonly found in the ‘real world’ and support the environmental science basis for digital topographical mapping. The spatial relation concepts are based on sets of relation terms presented in this chapter, though these lists are not prescriptive or exhaustive. The results of this study make explicit the concepts forming a broad set of spatial relation expressions, which in turn form the basis for expanding the range of possible queries for topographical data analysis and mapping.
Micro-Topographies Promote Late Chondrogenic Differentiation Markers in the ATDC5 Cell Line.
Le, Bach Q; Vasilevich, Aliaksei; Vermeulen, Steven; Hulshof, Frits; Stamatialis, Dimitrios F; van Blitterswijk, Clemens A; de Boer, Jan
2017-05-01
Chemical and mechanical cues are well-established influencers of in vitro chondrogenic differentiation of ATDC5 cells. Here, we investigate the role of topographical cues in this differentiation process, a study not been explored before. Previously, using a library of surface micro-topographies we found some distinct patterns that induced alkaline phosphatase (ALP) production in human mesenchymal stromal cells. ALP is also a marker for hypertrophy, the end stage of chondrogenic differentiation preceding bone formation. Thus, we hypothesized that these patterns could influence end-stage chondrogenic differentiation of ATDC5 cells. In this study, we randomly selected seven topographies among the ALP influencing hits. Cells grown on these surfaces displayed varying nuclear shape and actin filament structure. When stimulated with insulin-transferrin-selenium (ITS) medium, nodule formation occurred and in some cases showed alignment to the topographical patterns. Gene expression analysis of cells growing on topographical surfaces in the presence of ITS medium revealed a downregulation of early markers and upregulation of late markers of chondrogenic differentiation compared to cells grown on a flat surface. In conclusion, we demonstrated that surface topography in addition to other cues can promote hypertrophic differentiation suitable for bone tissue engineering.
NASA Astrophysics Data System (ADS)
Styron, R. H.; Hetland, E. A.; Zhang, G.
2013-12-01
The weight of large mountains produces stresses in the crust that locally may be on the order of tectonic stresses (10-100 MPa). These stresses have a significant and spatially-variable deviatoric component that may be resolved as strong normal and shear stresses on range-bounding faults. In areas of high relief, the shear stress on faults can be comparable to inferred stress drops in earthquakes, and fault-normal stresses may be greater than 50 MPa, and thus may potentially influence fault rupture. Additionally, these stresses may be used to make inferences about the orientation and magnitude of tectonic stresses, for example by indicating a minimum stress needed to be overcome by tectonic stress. We are studying these effects in several tectonic environments, such as the Longmen Shan (China), the Denali fault (Alaska, USA) and the Wasatch Fault Zone (Utah, USA). We calculate the full topographic stress tensor field in the crust in a study region by convolution of topography with Green's functions approximating stresses from a point load on the surface of an elastic halfspace, using the solution proposed by Liu and Zoback [1992]. The Green's functions are constructed from Boussinesq's solutions for a vertical point load on an elastic halfspace, as well as Cerruti's solutions for a horizontal surface point load, accounting for irregular surface boundary and topographic spreading forces. The stress tensor field is then projected onto points embedded in the halfspace representing the faults, and the fault normal and shear stresses at each point are calculated. Our primary focus has been on the 2008 Wenchuan earthquake, as this event occurred at the base of one of Earth's highest and steepest topographic fronts and had a complex and well-studied coseismic slip distribution, making it an ideal case study to evaluate topographic influence on faulting. We calculate the topographic stresses on the Beichuan and Pengguan faults, and compare the results to the coseismic slip distribution, considering several published fault models. These models differ primarily in slip magnitude and planar vs. listric fault geometry at depth. Preliminary results indicate that topographic stresses are generally resistive to tectonic deformation, especially above ~10 km depth, where the faults are steep in all models. Down-dip topographic shear stresses on the fault are normal sense where the faults dip steeply, and reach 20 MPa on the fault beneath the Pengguan massif. Reverse-sense shear up to ~15 MPa is present on gently-dipping thrust flats at depth on listric fault models. Strike-slip shear stresses are sinistral on the steep, upper portions of faults but may be dextral on thrust flats. Topographic normal stress on the faults reaches ~80 MPa on thrust ramps and may be higher on flats. Coseismic slip magnitude is negatively correlated with topographic normal and down-dip shear stresses. The spatial patterns of topographic stresses and slip suggest that topographic stresses have significantly suppressed slip in certain areas: slip maxima occur in areas of locally lower topographic stresses, while areas of higher down-dip shear and normal stress show less slip than adjacent regions.
Roth, Jason L.; Capel, Paul D.
2012-01-01
North-central Iowa is an agriculturally intensive area comprising the southeastern portion of the Prairie Pothole Region, a landscape containing a high density of enclosed topographical depressions. Artificial drainage practices have been implemented throughout the area to facilitate agricultural production. Vertical surface drains are utilized to drain the topographical depressions that accumulate water. This study focuses on the hydrology of a drained topographical depression located in a 39.5 ha agricultural field. To assess the hydrology of the drained depression, a water balance was constructed for 11 ponding events during the 2008 growing season. Continuous pond and groundwater level data were obtained with pressure transducers. Flows into the vertical surface drain were calculated based on pond depth. Precipitation inflows and evaporative outflows of the ponds were calculated using climatic data. Groundwater levels were used to assess groundwater/pond interactions. Results of the water balances show distinct differences between the inflows to and outflows from the depression based on antecedent conditions. In wet conditions, groundwater inflow sustained the ponds. The ponds receded only after the groundwater level declined to below the land surface. In drier conditions, groundwater was not a source of water to the depression. During these drier conditions, infiltration comprised 30% of the outflows from the depression during declining pond stages. Over the entire study period, the surface drain, delivering water to the stream, was the largest outflow from the pond, accounting for 97% of the outflow, while evapotranspiration was just 2%. Precipitation onto the pond surface proved to be a minor component, accounting for 4% of the total inflows.
Valois, Caroline R A; Silva, Luciano P; Azevedo, Ricardo B
2008-07-01
The purpose of this study was to evaluate the surface of rotary nickel-titanium (Ni-Ti) files after multiple autoclave cycles. Two different types of rotary Ni-Ti (Greater Taper and ProFile) were attached to a glass base. After 1, 5, and 10 autoclave cycles the files were positioned in the atomic force microscope. The analyses were performed on 15 different points. The same files were used as control before any autoclave cycle. The following vertical topographic parameters were measured: arithmetic mean roughness, maximum height, and root mean square. The differences were tested by analysis of variance with Tukey test. All topographic parameters were higher for both Greater Taper and ProFile after 10 cycles compared with the control (P < .05). ProFile also showed higher topographic parameters after 5 cycles compared with the control (P < .05). The results indicated that multiple autoclave cycles increase the depth of surface irregularities located on rotary Ni-Ti files.
NASA Technical Reports Server (NTRS)
Petro, N. E.; Hollibaugh-Baker, D.; Jolliff, B. L.
2017-01-01
Data from recent lunar orbital missions have provided critical insight into the surface composition, morphology, and geologic history of the Moon. A key region that has benefited from this new data is the South Pole-Aitken Basin (SPA), a key area for future sample return]. A key area of investigation of SPA has been the characterization of its surface, detailing the interior composition, geologic evolution, and possible exposure of deep-seated materials. Recently we have applied a number of datasets to ascertain the origin of surfaces in central SPA and identify units that represent the ancient SPA-derived impact melt and those that represent volcanic activity. Here we apply a technique that utilizes high-resolution topographic data to remove local slopes to highlight subtle topographic variations. Such detrended data allows us to characterize units that are either ancient (SPA impact melt) or that represent subsequent volcanic activity.
Landslide hazard mapping with selected dominant factors: A study case of Penang Island, Malaysia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tay, Lea Tien; Alkhasawneh, Mutasem Sh.; Ngah, Umi Kalthum
Landslide is one of the destructive natural geohazards in Malaysia. In addition to rainfall as triggering factos for landslide in Malaysia, topographical and geological factors play important role in the landslide susceptibility analysis. Conventional topographic factors such as elevation, slope angle, slope aspect, plan curvature and profile curvature have been considered as landslide causative factors in many research works. However, other topographic factors such as diagonal length, surface area, surface roughness and rugosity have not been considered, especially for the research work in landslide hazard analysis in Malaysia. This paper presents landslide hazard mapping using Frequency Ratio (FR) and themore » study area is Penang Island of Malaysia. Frequency ratio approach is a variant of probabilistic method that is based on the observed relationships between the distribution of landslides and each landslide-causative factor. Landslide hazard map of Penang Island is produced by considering twenty-two (22) landslide causative factors. Among these twenty-two (22) factors, fourteen (14) factors are topographic factors. They are elevation, slope gradient, slope aspect, plan curvature, profile curvature, general curvature, tangential curvature, longitudinal curvature, cross section curvature, total curvature, diagonal length, surface area, surface roughness and rugosity. These topographic factors are extracted from the digital elevation model of Penang Island. The other eight (8) non-topographic factors considered are land cover, vegetation cover, distance from road, distance from stream, distance from fault line, geology, soil texture and rainfall precipitation. After considering all twenty-two factors for landslide hazard mapping, the analysis is repeated with fourteen dominant factors which are selected from the twenty-two factors. Landslide hazard map was segregated into four categories of risks, i.e. Highly hazardous area, Hazardous area, Moderately hazardous area and Not hazardous area. The maps was assessed using ROC (Rate of Curve) based on the area under the curve method (AUC). The result indicates an increase of accuracy from 77.76% (with all 22 factors) to 79.00% (with 14 dominant factors) in the prediction of landslide occurrence.« less
3D Tensorial Elastodynamics for Isotropic Media on Vertically Deformed Meshes
NASA Astrophysics Data System (ADS)
Shragge, J. C.
2017-12-01
Solutions of the 3D elastodynamic wave equation are sometimes required in industrial and academic applications of elastic reverse-time migration (E-RTM) and full waveform inversion (E-FWI) that involve vertically deformed meshes. Examples include incorporating irregular free-surface topography and handling internal boundaries (e.g., water bottom) directly into the computational meshes. In 3D E-RTM and E-FWI applications, the number of forward modeling simulations can number in the tens of thousands (per iteration), which necessitates the development of stable, accurate and efficient 3D elastodynamics solvers. For topographic scenarios, most finite-difference solution approaches use a change-of-variable strategy that has a number of associated computational challenges, including difficulties in handling of the free-surface boundary condition. In this study, I follow a tensorial approach and use a generalized family of analytic transforms to develop a set of analytic equations for 3D elastodynamics that directly incorporates vertical grid deformations. Importantly, this analytic approach allows for the specification of an analytic free-surface boundary condition appropriate for vertically deformed meshes. These equations are both straightforward and efficient to solve using a velocity-stress formulation with finite-difference (MFD) operators implemented on a fully staggered grid. Moreover, I demonstrate that the use of mimetic finite difference (MFD) methods allows stable, accurate, and efficient numerical solutions to be simulated for typical topographic scenarios. Examples demonstrate that high-quality elastic wavefields can be generated for topographic surfaces exhibiting significant topographic relief.
Legally compatible design of digital dactyloscopy in future surveillance scenarios
NASA Astrophysics Data System (ADS)
Pocs, Matthias; Schott, Maik; Hildebrandt, Mario
2012-06-01
Innovation in multimedia systems impacts on our society. For example surveillance camera systems combine video and audio information. Currently a new sensor for capturing fingerprint traces is being researched. It combines greyscale images to determine the intensity of the image signal, on one hand, and topographic information to determine fingerprint texture on a variety of surface materials, on the other. This research proposes new application areas which will be analyzed from a technical-legal view point. It assesses how technology design can promote legal criteria of German and European privacy and data protection. For this we focus on one technology goal as an example.
2015-01-01
Material composition and topography of the cell-contacting material interface are important considerations in the design of biomaterials at the nano and micro scales. This study is one of the first to have assessed the osteoblastic response to micropatterned polymer–ceramic composite surfaces. In particular, the effect of topographic variations of composite poly(ε-caprolactone)/hydroxyapatite (PCL/HAp) films on viability, proliferation, migration and osteogenesis of fibroblastic and osteoblastic MC3T3-E1 cells was evaluated. To that end, three different micropatterned PCL/HAp films were compared: flat and textured, the latter of which included films comprising periodically arranged and randomly distributed oval topographic features 10 μm in diameter, 20 μm in separation and 10 μm in height, comparable to the dimensions of MC3T3-E1 cells. PCL/HAp films were fabricated by the combination of a bottom-up, soft chemical synthesis of the ceramic, nanoparticulate phase and a top-down, photolithographic technique for imprinting fine, microscale features on them. X-ray diffraction analysis indicated an isotropic orientation of both the polymeric chains and HAp crystallites in the composite samples. Biocompatibility tests indicated no significant decrease in their viability when grown on PCL/HAp films. Fibroblast proliferation and migration onto PCL/HAp films proceeded slower than on the control borosilicate glass, with the flat composite film fostering more cell migration activity than the films containing topographic features. The gene expression of seven analyzed osteogenic markers, including procollagen type I, osteocalcin, osteopontin, alkaline phosphatase, and the transcription factors Runx2 and TGFβ-1, was, however, consistently upregulated in cells grown on PCL/HAp films comprising periodically ordered topographic features, suggesting that the higher levels of symmetry of the topographic ordering impose a moderate mechanochemical stress on the adherent cells and thus promote a more favorable osteogenic response. The obtained results suggest that topography can be a more important determinant of the cell/surface interaction than the surface chemistry and/or stiffness as well as that the regularity of the distribution of topographic features can be a more important variable than the topographic features per se. PMID:25014232
Teeple, Andrew; Kress, Wade H.; Cannia, James C.; Ball, Lyndsay B.
2009-01-01
To help manage and understand the Platte River system in Nebraska, the Platte River Cooperative Hydrology Study (COHYST), a group of state and local governmental agencies, developed a regional ground-water model. The southern boundary of this model lies along the Republican River, where an area with insufficient geologic data immediately north of the Republican River led to problems in the conceptualization of the simulated flow system and to potential problems with calibration of the simulation. Geologic descriptions from a group of test holes drilled in south-central Nebraska during 2001 and 2002 indicated a possible hydrologic disconnection between the Quaternary-age alluvial deposits in the uplands and those in the Republican River lowland. This disconnection was observed near a topographic high in the Cretaceous-age Niobrara Formation, which is the local bedrock. In 2003, the U.S. Geological Survey, in cooperation with the COHYST, collected surface geophysical data near these test holes to better define this discontinuity. Two-dimensional imaging methods for direct-current resistivity and capacitively coupled resistivity were used to define the subsurface distribution of resistivity along several county roads near Riverton and Inavale, Nebraska. The relation between the subsurface distribution of resistivity and geology was defined by comparing existing geologic descriptions of test holes to surface-geophysical resistivity data along two profiles and using the information gained from these comparisons to interpret the remaining four profiles. In all of the resistivity profile sections, there was generally a three-layer subsurface interpretation, with a resistor located between two conductors. Further comparison of geologic data with the geophysical data and with surficial features was used to identify a topographic high in the Niobrara Formation near the Franklin Canal which was coincident with a resistivity high. Electrical properties of the Niobrara Formation made accurate interpretation of the resistivity profile sections difficult and less confident because of similar resistivity of this formation and that of the coarser-grained sediment of the Quaternary-age deposits. However, distinct conductive features were identified within the resistivity profile sections that aided in delineating the contact between the resistive Quaternary-age deposits and the resistive Niobrara Formation. Using this information, an interpretive boundary was drawn on the resistivity profile sections to represent the contact between the Quaternary-age alluvial deposits and the Cretaceous-age Niobrara Formation. A digital elevation model (DEM) of the top of the Niobrara Formation was constructed using the altitudes from the interpreted contact lines. This DEM showed that the general trend of top of the Niobrara Formation dips to the southeast. At the north edge of the study site, the Niobrara Formation topographic high trends east-west with an altitude range of 559 meters in the west to 543 meters in the east. Based on the land-surface elevation and the Niobrara Formation DEM, the estimated thickness of the Quaternary-age alluvial deposits throughout the study area was mapped and showed a thinning of the Quaternary-age alluvial deposits to the north, approximately where the topographic high of the Niobrara Formation is located. This topographic high in the Niobrara Formation has the potential to act as a barrier to ground-water flow from the uplands alluvial aquifer to the Republican River alluvial aquifer as shown in the resistivity profile sections. The Quaternary-age alluvial deposits in the uplands and those in the Republican River Valley are not fully represented as disconnected because it is possible that there are ground-water flow paths that were not mapped during this study.
Oxygen Plasma Modification of Poss-Coated Kapton(Registered TradeMark) HN Films
NASA Technical Reports Server (NTRS)
Wohl, C. J.; Belcher, M. A.; Ghose, S.; Connell, J. W.
2008-01-01
The surface energy of a material depends on both surface composition and topographic features. In an effort to modify the surface topography of Kapton(Registered TradeMark) HN film, organic solutions of a polyhedral oligomeric silsesquioxane, octakis(dimethylsilyloxy)silsesquioxane (POSS), were spray-coated onto the Kapton(Registered TradeMark) HN surface. Prior to POSS application, the Kapton(Registered TradeMark) HN film was activated by exposure to radio frequency (RF)-generated oxygen plasma. After POSS deposition and solvent evaporation, the films were exposed to various durations of RF-generated oxygen plasma to create a topographically rich surface. The modified films were characterized using optical microscopy, attenuated total reflection infrared (ATR-IR) spectroscopy, and high-resolution scanning electron microscopy (HRSEM). The physical properties of the modified films will be presented.
Geophysical imaging reveals topographic stress control of bedrock weathering
NASA Astrophysics Data System (ADS)
St. Clair, J.; Moon, S.; Holbrook, W. S.; Perron, J. T.; Riebe, C. S.; Martel, S. J.; Carr, B.; Harman, C.; Singha, K.; Richter, D. deB.
2015-10-01
Bedrock fracture systems facilitate weathering, allowing fresh mineral surfaces to interact with corrosive waters and biota from Earth’s surface, while simultaneously promoting drainage of chemically equilibrated fluids. We show that topographic perturbations to regional stress fields explain bedrock fracture distributions, as revealed by seismic velocity and electrical resistivity surveys from three landscapes. The base of the fracture-rich zone mirrors surface topography where the ratio of horizontal compressive tectonic stresses to near-surface gravitational stresses is relatively large, and it parallels the surface topography where the ratio is relatively small. Three-dimensional stress calculations predict these results, suggesting that tectonic stresses interact with topography to influence bedrock disaggregation, groundwater flow, chemical weathering, and the depth of the “critical zone” in which many biogeochemical processes occur.
Magnetorheological Finishing for Imprinting Continuous Phase Plate Structure onto Optical Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menapace, J A; Dixit, S N; Genin, F Y
2004-01-05
Magnetorheological finishing (MRF) techniques have been developed to manufacture continuous phase plates (CPP's) and custom phase corrective structures on polished fused silica surfaces. These phase structures are important for laser applications requiring precise manipulation and control of beam-shape, energy distribution, and wavefront profile. The MRF's unique deterministic-sub-aperture polishing characteristics make it possible to imprint complex topographical information onto optical surfaces at spatial scale-lengths approaching 1 mm. In this study, we present the results of experiments and model calculations that explore imprinting two-dimensional sinusoidal structures. Results show how the MRF removal function impacts and limits imprint fidelity and what must bemore » done to arrive at a high quality surface. We also present several examples of this imprinting technology for fabrication of phase correction plates and CPPs for use at high fluences.« less
Characterizing Surfaces of the Wide Bandgap Semiconductor Ilmenite with Scanning Probe Microcopies
NASA Technical Reports Server (NTRS)
Wilkins, R.; Powell, Kirk St. A.
1997-01-01
Ilmenite (FeTiO3) is a wide bandgap semiconductor with an energy gap of about 2.5eV. Initial radiation studies indicate that ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Two scanning probe microscopy methods have been used to characterize the surface of samples taken from Czochralski grown single crystals. The two methods, atomic force microscopy (AFM) and scanning tunneling microscopy (STM), are based on different physical principles and therefore provide different information about the samples. AFM provides a direct, three-dimensional image of the surface of the samples, while STM give a convolution of topographic and electronic properties of the surface. We will discuss the differences between the methods and present preliminary data of each method for ilmenite samples.
NASA Astrophysics Data System (ADS)
Pino-Almero, Laura; Mínguez-Rey, María Fe; Sentamans-Segarra, Salvador; Salvador-Palmer, María Rosario; Anda, Rosa María Cibrián-Ortiz de; La O, Javier López-de
2016-11-01
Idiopathic scoliosis requires a close follow-up while the patient is skeletally immature to detect early progression. Patients who are monitored by radiographs are exposed to high doses of ionizing radiation. The purpose of this study is to evaluate if an optic noninvasive method of back surface topography based on structured light would be clinically useful in the follow-up of young patients with idiopathic scoliosis. This could reduce the number of radiographs made on these children. Thirty-one patients with idiopathic scoliosis were submitted twice to radiograph and our topographic method at intervals of 6 months to 1 year. Three topographical variables were applied horizontal plane deformity index (DHOPI), posterior trunk symmetry index (POTSI), and columnar profile (PC). A statistically significant correlation was found between variations of Cobb angle with DHOPI (r=0.720, p<0.01) and POTSI (r=0.753, p<0.01) during the monitoring period. Hence, this topographic method could be useful in clinical practice as an objective adjuvant tool in routine follow-up of scoliosis.
Standard for the U.S. Geological Survey Historical Topographic Map Collection
Allord, Gregory J.; Fishburn, Kristin A.; Walter, Jennifer L.
2014-01-01
This document defines the digital map product of the U.S. Geological Survey (USGS) Historical Topographic Map Collection (HTMC). The HTMC is a digital archive of about 190,000 printed topographic quadrangle maps published by the USGS from the inception of the topographic mapping program in 1884 until the last paper topographic map using lithographic printing technology was published in 2006. The HTMC provides a comprehensive digital repository of all scales and all editions of USGS printed topographic maps that is easily discovered, browsed, and downloaded by the public at no cost. Each printed topographic map is scanned “as is” and captures the content and condition of each map. The HTMC provides ready access to maps that are no longer available for distribution in print. A new generation of topographic maps called “US Topo” was defined in 2009. US Topo maps, though modeled on the legacy 7.5-minute topographic maps, conform to different standards. For more information on the HTMC, see the project Web site at: http://nationalmap.gov/historical/.
City of Flagstaff Project: Ground Water Resource Evaluation, Remote Sensing Component
Chavez, Pat S.; Velasco, Miguel G.; Bowell, Jo-Ann; Sides, Stuart C.; Gonzalez, Rosendo R.; Soltesz, Deborah L.
1996-01-01
Many regions, cities, and towns in the Western United States need new or expanded water resources because of both population growth and increased development. Any tools or data that can help in the evaluation of an area's potential water resources must be considered for this increasingly critical need. Remotely sensed satellite images and subsequent digital image processing have been under-utilized in ground water resource evaluation and exploration. Satellite images can be helpful in detecting and mapping an area's regional structural patterns, including major fracture and fault systems, two important geologic settings for an area's surface to ground water relations. Within the United States Geological Survey's (USGS) Flagstaff Field Center, expertise and capabilities in remote sensing and digital image processing have been developed over the past 25 years through various programs. For the City of Flagstaff project, this expertise and these capabilities were combined with traditional geologic field mapping to help evaluate ground water resources in the Flagstaff area. Various enhancement and manipulation procedures were applied to the digital satellite images; the results, in both digital and hardcopy format, were used for field mapping and analyzing the regional structure. Relative to surface sampling, remotely sensed satellite and airborne images have improved spatial coverage that can help study, map, and monitor the earth surface at local and/or regional scales. Advantages offered by remotely sensed satellite image data include: 1. a synoptic/regional view compared to both aerial photographs and ground sampling, 2. cost effectiveness, 3. high spatial resolution and coverage compared to ground sampling, and 4. relatively high temporal coverage on a long term basis. Remotely sensed images contain both spectral and spatial information. The spectral information provides various properties and characteristics about the surface cover at a given location or pixel (that is, vegetation and/or soil type). The spatial information gives the distribution, variation, and topographic relief of the cover types from pixel to pixel. Therefore, the main characteristics that determine a pixel's brightness/reflectance and, consequently, the digital number (DN) assigned to the pixel, are the physical properties of the surface and near surface, the cover type, and the topographic slope. In this application, the ability to detect and map lineaments, especially those related to fractures and faults, is critical. Therefore, the extraction of spatial information from the digital images was of prime interest in this project. The spatial information varies among the different spectral bands available; in particular, a near infrared spectral band is better than a visible band when extracting spatial information in highly vegetated areas. In this study, both visible and near infrared bands were analyzed and used to extract the desired spatial information from the images. The wide swath coverage of remotely sensed satellite digital images makes them ideal for regional analysis and mapping. Since locating and mapping highly fractured and faulted areas is a major requirement for ground water resource evaluation and exploration this aspect of satellite images was considered critical; it allowed us to stand back (actually up about 440 miles), look at, and map the regional structural setting of the area. The main focus of the remote sensing and digital image processing component of this project was to use both remotely sensed digital satellite images and a Digital Elevation Model (DEM) to extract spatial information related to the structural and topographic patterns in the area. The data types used were digital satellite images collected by the United States' Landsat Thematic Mapper (TM) and French Systeme Probatoire d'Observation de laTerre (SPOT) imaging systems, along with a DEM of the Flagstaff region. The USGS Mini Image Processing Sy
Tawse-Smith, A; Atieh, M A; Tompkins, G; Duncan, W J; Reid, M R; Stirling, C H
2016-08-01
To evaluate in vitro topographical and composition changes by piezoelectric ultrasonic instrumentation with metallic and plastic tips on machined and moderately roughened titanium surfaces. Twenty machined and moderately roughened laser-marked titanium discs were ultrasonically instrumented with metallic and plastic tips. Surface instrumentation was carried out with controlled pressure for 20 and 30 seconds at two power settings. For each time and power setting, instrumentation was repeated four times with one instrumentation per disc quadrant. Surface topography analysis was performed using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Surface roughness measurements were compared between instrumented and non-instrumented surfaces. Surface element composition and rinsing solutions were evaluated using energy-dispersive spectroscopy (EDS) and trace elemental analysis using inductively coupled plasma mass spectrometry (ICPMS), respectively. SEM photomicrographs and CLSM 3D surface plot images of instrumented machined and moderately roughened surfaces demonstrated severe surface topographical alterations with metallic tips and mild to moderate changes for plastic tip instrumented sites. ICPMS analysis of the rinsing solutions identified titanium and other metal traces with the use of metallic tips, and mainly titanium and carbon when plastic tips were used. Surface EDS analysis showed elemental traces of the ultrasonic tips. Ultrasonic instrumentation with metallic or plastic tips created surface topographical and compositional changes. Different changes in surface topography were noted between the surfaces, as the roughness of the machined surfaces increased while the extent of roughness of the moderately roughened surfaces decreased. The clinical relevance of these changes is yet to be determined. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Creation of next generation U.S. Geological Survey topographic maps
Craun, Kari J.
2010-01-01
The U.S. Geological Survey (USGS) is 2 years into a 3-year cycle to create new digital topographic map products for the conterminous United States from data acquired and maintained as part of The National Map databases. These products are in the traditional, USGS topographic quadrangle, 7.5-minute (latitude and longitude) cell format. The 3-year cycle was conceived to follow the acquisition of National Aerial Imagery Program (NAIP) orthorectified imagery, a key layer in the new product. In fiscal year (FY) 2009 (ending September 30, 2009), the first year of the 3-year cycle, the USGS produced 13,200 products. These initial products of the “Digital MapBeta” series had limited feature content, including only the NAIP image, some roads, geographic names, and grid and collar information. The products were created in layered georegistered Portable Document Format (PDF) files, allowing users with freely available Adobe® Reader® software to view, print, and perform simple Geographic Information System-like functions. In FY 2010 (ending September 30, 2010), the USGS produced 20,380 products. These products of the “US Topo” series added hydrography (surface water features), contours, and some boundaries. In FY 2011 (ending September 30, 2011), the USGS will complete the initial coverage with US Topo products and will add additional feature content to the maps. The design, development, and production associated with the US Topo products provide management and technical challenges for the USGS and its public and private sector partners. One challenge is the acquisition and maintenance of nationally consistent base map data from multiple sources. Another is the use of these data to create a consistent, current series of cartographic products that can be used by the broad spectrum of traditional topographic map users. Although the USGS and its partners have overcome many of these challenges, many, such as establishing and funding a sustainable base data-maintenance program, remain to be resolved for the long term.
Topographical Context of Phoenix Landing Region
2007-08-02
This area was designated Region D in the process of evaluating potential landing sites for NASA Phoenix Mars Lander. The topographical information is from the Mars Orbiter Laser Altimeter on NASA Mars Global Surveyor orbiter.
Topographic Corona Gravity Survey Results
NASA Technical Reports Server (NTRS)
Comstock, R. L.; Smrekar, S. E.; Anderson, F. S.
2001-01-01
We present estimates for elastic and crustal thickness obtained from a gravity survey of Venusian topographic coronae, and characterize advantages and disadvantages for generating spectral admittance. Additional information is contained in the original extended abstract.
Susong, D.; Marks, D.; Garen, D.
1999-01-01
Topographically distributed energy- and water-balance models can accurately simulate both the development and melting of a seasonal snowcover in the mountain basins. To do this they require time-series climate surfaces of air temperature, humidity, wind speed, precipitation, and solar and thermal radiation. If data are available, these parameters can be adequately estimated at time steps of one to three hours. Unfortunately, climate monitoring in mountain basins is very limited, and the full range of elevations and exposures that affect climate conditions, snow deposition, and melt is seldom sampled. Detailed time-series climate surfaces have been successfully developed using limited data and relatively simple methods. We present a synopsis of the tools and methods used to combine limited data with simple corrections for the topographic controls to generate high temporal resolution time-series images of these climate parameters. Methods used include simulations, elevational gradients, and detrended kriging. The generated climate surfaces are evaluated at points and spatially to determine if they are reasonable approximations of actual conditions. Recommendations are made for the addition of critical parameters and measurement sites into routine monitoring systems in mountain basins.Topographically distributed energy- and water-balance models can accurately simulate both the development and melting of a seasonal snowcover in the mountain basins. To do this they require time-series climate surfaces of air temperature, humidity, wind speed, precipitation, and solar and thermal radiation. If data are available, these parameters can be adequately estimated at time steps of one to three hours. Unfortunately, climate monitoring in mountain basins is very limited, and the full range of elevations and exposures that affect climate conditions, snow deposition, and melt is seldom sampled. Detailed time-series climate surfaces have been successfully developed using limited data and relatively simple methods. We present a synopsis of the tools and methods used to combine limited data with simple corrections for the topographic controls to generate high temporal resolution time-series images of these climate parameters. Methods used include simulations, elevational gradients, and detrended kriging. The generated climate surfaces are evaluated at points and spatially to determine if they are reasonable approximations of actual conditions. Recommendations are made for the addition of critical parameters and measurement sites into routine monitoring systems in mountain basins.
NASA Astrophysics Data System (ADS)
Murphy, Shane; Bauer, Karl; Sloan, Peter A.; Lawton, James J.; Tang, Lin; Palmer, Richard E.
2015-12-01
We demonstrate plasmon mapping of Ag nanostructures on graphite using scanning probe energy loss spectroscopy (SPELS) with a spatial resolution of 100 nm. In SPELS, an STM tip is used as a localized source of field-emitted electrons to probe the sample surface. The energy loss spectrum of the backscattered electrons is measured to provide a chemical signature of the surface under the tip. We acquire three images simultaneously with SPELS: i) constant-current field-emission images, which provide topographical information; ii) backscattered electron images, which display material contrast; and iii) SPELS images, where material-dependent features such as plasmons are mapped.
Water wells on St. Thomas, U.S. Virgin Islands
Steiger, J.I.; Kessler, Richard
1993-01-01
This report is a compilation of well-inventory data collected from December 1989 to December 1990 on St. Thomas, U.S. Virgin Islands from 367 wells. The report includes well locations on 1982, 7.5 minute series, USGS topographic maps, which are published to scale, and tables of selected well data. The report includes the following well information; well name, U.S. Geological Survey Ground Water Site Identification number, use of water, year well constructed, reported depth of well, measured depth of well, casing diameter, type of well finish and finish interval, land surface altitude of well, depth to water below land surface, date water level measured, and well yield. (USGS)
CASTp 3.0: computed atlas of surface topography of proteins.
Tian, Wei; Chen, Chang; Lei, Xue; Zhao, Jieling; Liang, Jie
2018-06-01
Geometric and topological properties of protein structures, including surface pockets, interior cavities and cross channels, are of fundamental importance for proteins to carry out their functions. Computed Atlas of Surface Topography of proteins (CASTp) is a web server that provides online services for locating, delineating and measuring these geometric and topological properties of protein structures. It has been widely used since its inception in 2003. In this article, we present the latest version of the web server, CASTp 3.0. CASTp 3.0 continues to provide reliable and comprehensive identifications and quantifications of protein topography. In addition, it now provides: (i) imprints of the negative volumes of pockets, cavities and channels, (ii) topographic features of biological assemblies in the Protein Data Bank, (iii) improved visualization of protein structures and pockets, and (iv) more intuitive structural and annotated information, including information of secondary structure, functional sites, variant sites and other annotations of protein residues. The CASTp 3.0 web server is freely accessible at http://sts.bioe.uic.edu/castp/.
NASA Technical Reports Server (NTRS)
Treuhaft, Robert N.
1996-01-01
This paper first gives a heuristic description of the sensitivity of Interferometric Synthetic Aperture Radar to vertical vegetation distributions and underlying surface topography. A parameter estimation scenario is then described in which the Interferometric Synthetic Aperture Radar cross-correlation amplitude and phase are the observations from which vegetation and surface topographic parameters are estimated. It is shown that, even in the homogeneous-layer model of the vegetation, the number of parameters needed to describe the vegetation and underlying topography exceeds the number of Interferometric Synthetic Aperture Radar observations for single-baseline, single-frequency, single-incidence-angle, single-polarization Interferometric Synthetic Aperture Radar. Using ancillary ground-truth data to compensate for the underdetermination of the parameters, forest depths are estimated from the INSAR data. A recently-analyzed multibaseline data set is also discussed and the potential for stand-alone Interferometric Synthetic Aperture Radar parameter estimation is assessed. The potential of combining the information content of Interferometric Synthetic Aperture Radar with that of infrared/optical remote sensing data is briefly discussed.
NASA Technical Reports Server (NTRS)
Treuhaft, Robert N.
1996-01-01
Drawing from recently submitted work, this paper first gives a heuristic description of the sensitivity of interferometric synthetic aperture radar (INSAR) to vertical vegetation distribution and under laying surface topography. A parameter estimation scenario is then described in which the INSAR cross correlation amplitude and phase are the observations from which vegetation and surface topographic parameters are estimated. It is shown that, even in the homogeneous layer model of the vegetation, the number of parameters needed to describe the vegetation and underlying topography exceeds the number of INSAR observations for single baseline, single frequency, single incidence-angle, single polarization INSAR. Using ancillary ground truth data to compensate for the under determination of the parameters, forest depths are estimated from the INSAR data. A recently analyzed multi-baseline data set is also discussed and the potential for stand alone INSAR parameter estimation is assessed. The potential of combining the information content of INSAR with that of infrared/optical remote sensing data is briefly discussed.
An Evaluation of ALOS Data in Disaster Applications
NASA Astrophysics Data System (ADS)
Igarashi, Tamotsu; Igarashi, Tamotsu; Furuta, Ryoich; Ono, Makoto
ALOS is the advanced land observing satellite, providing image data from onboard sensors; PRISM, AVNIR-2 and PALSAR. PRISM is the sensor of panchromatic stereo, high resolution three-line-scanner to characterize the earth surface. The accuracy of position in image and height of Digital Surface Model (DSM) are high, therefore the geographic information extraction is improved in the field of disaster applications with providing images of disaster area. Especially pan-sharpened 3D image composed with PRISM and the four-band visible near-infrared radiometer AVNIR-2 data is expected to provide information to understand the geographic and topographic feature. PALSAR is the advanced multi-functional synthetic aperture radar (SAR) operated in L-band, appropriate for the use of land surface feature characterization. PALSAR has many improvements from JERS-1/SAR, such as high sensitivity, having high resolution, polarimetric and scan SAR observation modes. PALSAR is also applicable for SAR interferometry processing. This paper describes the evaluation of ALOS data characteristic from the view point of disaster applications, through some exercise applications.
Surface Fitting Filtering of LIDAR Point Cloud with Waveform Information
NASA Astrophysics Data System (ADS)
Xing, S.; Li, P.; Xu, Q.; Wang, D.; Li, P.
2017-09-01
Full-waveform LiDAR is an active technology of photogrammetry and remote sensing. It provides more detailed information about objects along the path of a laser pulse than discrete-return topographic LiDAR. The point cloud and waveform information with high quality can be obtained by waveform decomposition, which could make contributions to accurate filtering. The surface fitting filtering method with waveform information is proposed to present such advantage. Firstly, discrete point cloud and waveform parameters are resolved by global convergent Levenberg Marquardt decomposition. Secondly, the ground seed points are selected, of which the abnormal ones are detected by waveform parameters and robust estimation. Thirdly, the terrain surface is fitted and the height difference threshold is determined in consideration of window size and mean square error. Finally, the points are classified gradually with the rising of window size. The filtering process is finished until window size is larger than threshold. The waveform data in urban, farmland and mountain areas from "WATER (Watershed Allied Telemetry Experimental Research)" are selected for experiments. Results prove that compared with traditional method, the accuracy of point cloud filtering is further improved and the proposed method has highly practical value.
Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.
2008-01-01
The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh-dominated coasts. Such datasets can be instrumental in effective coastal-resource management.
NASA Astrophysics Data System (ADS)
Kleber, E.; Arrowsmith, R.; DeVecchio, D. E.; Johnstone, S. A.; Rittenour, T. M.
2015-12-01
Wheeler Ridge is an asymmetric east-propagating anticline (10km axis, 330m relief) above a north-vergent blind thrust deforming Quaternary alluvial fan and shallow marine rocks at the northern front of the Transverse Ranges, San Joaquin Valley, CA. This area was a research foci in the 1990's when the soils, u-series soil carbonate dating, and subsurface structure of deformed strata identified from oil wells were used to create a kinematic model of deformation, and estimates of fault slip, uplift, and lateral propagation rates. A recent collection of light detection and ranging (lidar) topographic data and optically stimulated luminescence (OSL) data allow us to complete meter scale topographic analyses of the fluvial networks and hillslopes and correlate geomorphic response to tectonics. We interpret these results using a detailed morphological map and observe drainage network and hillslope process transitions both along and across the fold axis. With lidar topography, we extract common morphometrics (e.g., channel steepness-- ksn, eroded volume, hillslope relief) to illustrate how the landscape is responding to variations in uplift rate along the fold axis and show asymmetry of surface response on the forelimb and backlimb. The forelimb is dominated by large drainages with landslides initiating in the marine units at the core of the fold. Our topographic analysis shows that the stream channel indices values on the forelimb increase along the fold axis, away from the propagation tip. The backlimb drainages are dominantly long and linear with broad ridgelines. Using lidar and fieldwork, we see that uplifted backlimb surfaces preserve the deformed fan surface. The preliminary OSL results from alluvial fan units improve age control of previously defined surfaces, refining our understanding of the deposition and uplift of alluvial fan units on preserved on backlimb.
NASA Astrophysics Data System (ADS)
Shi, Y.; Davis, K. J.; Eissenstat, D. M.; Kaye, J. P.; Duffy, C.; Yu, X.; He, Y.
2014-12-01
Belowground carbon processes are affected by soil moisture and soil temperature, but current biogeochemical models are 1-D and cannot resolve topographically driven hill-slope soil moisture patterns, and cannot simulate the nonlinear effects of soil moisture on carbon processes. Coupling spatially-distributed physically-based hydrologic models with biogeochemical models may yield significant improvements in the representation of topographic influence on belowground C processes. We will couple the Flux-PIHM model to the Biome-BGC (BBGC) model. Flux-PIHM is a coupled physically-based land surface hydrologic model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. The coupled Flux-PIHM-BBGC model will be tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, above ground carbon stock, and soil carbon efflux, make SSHCZO an ideal test bed for the coupled model. In the coupled model, each Flux-PIHM model grid will couple a BBGC cell. Flux-PIHM will provide BBGC with soil moisture and soil temperature information, while BBGC provides Flux-PIHM with leaf area index. Preliminary results show that when Biome- BGC is driven by PIHM simulated soil moisture pattern, the simulated soil carbon is clearly impacted by topography.
High-resolution AFM topographs of Rubrivivax gelatinosus light-harvesting complex LH2
Scheuring, Simon; Reiss-Husson, Francoise; Engel, Andreas; Rigaud, Jean-Louis; Ranck, Jean-Luc
2001-01-01
Light-harvesting complexes 2 (LH2) are the accessory antenna proteins in the bacterial photosynthetic apparatus and are built up of αβ-heterodimers containing three bacteriochlorophylls and one carotenoid each. We have used atomic force microscopy (AFM) to investigate reconstituted LH2 from Rubrivivax gelatinosus, which has a C-terminal hydrophobic extension of 21 amino acids on the α-subunit. High-resolution topographs revealed a nonameric organization of the regularly packed cylindrical complexes incorporated into the membrane in both orientations. Native LH2 showed one surface which protruded by ∼6 Å and one that protruded by ∼14 Å from the membrane. Topographs of samples reconstituted with thermolysin-digested LH2 revealed a height reduction of the strongly protruding surface to ∼9 Å, and a change of its surface appearance. These results suggested that the α-subunit of R.gelatinosus comprises a single transmembrane helix and an extrinsic C-terminus, and allowed the periplasmic surface to be assigned. Occasionally, large rings (∼120 Å diameter) surrounded by LH2 rings were observed. Their diameter and appearance suggest the large rings to be LH1 complexes. PMID:11406579
Richard H. Odom; W. Henry McNab
2000-01-01
Relationships between overstory composition and topographic conditions were studied in high-elevation (>1300 meters) forests in the Balsam Mountains of western North Carolina to determine whether models could be developed to predict the occurrence of number vegetative communities in relation to topographic variables (elevation, landscape position, surface geometry,...
Application of digital terrain data to quantify and reduce the topographic effect on LANDSAT data
NASA Technical Reports Server (NTRS)
Justice, C. O.; Wharton, S. W.; Holben, B. N. (Principal Investigator)
1980-01-01
Integration of LANDSAT multispectral scanner (MSS) data with 30 m U.S. Geological Survey (USGS) digital terrain data was undertaken to quantify and reduce the topographic effect on imagery of a forested mountain ridge test site in central Pennsylvania. High Sun angle imagery revealed variation of as much as 21 pixel values in data for slopes of different angles and aspects with uniform surface cover. Large topographic effects were apparent in MSS 4 and 5 was due to a combination of high absorption by the forest cover and the MSS quantization. Four methods for reducing the topographic effect were compared. Band ratioing of MSS 6/5 and MSS 7/5 did not eliminate the topographic effect because of the lack of variation in MSS 4 and 5 radiances. The three radiance models examined to reduce the topographic effect required integration of the digital terrain data. Two Lambertian models increased the variation in the LANDSAT radiances. The nonLambertian model considerably reduced (86 per cent) the topographic effect in the LANDSAT data. The study demonstrates that high quality digital terrain data, as provided by the USGS digital elevation model data, can be used to enhance the utility of multispectral satellite data.
Lunar Observer Laser Altimeter observations for lunar base site selection
NASA Technical Reports Server (NTRS)
Garvin, James B.; Bufton, Jack L.
1992-01-01
One of the critical datasets for optimal selection of future lunar landing sites is local- to regional-scale topography. Lunar base site selection will require such data for both engineering and scientific operations purposes. The Lunar Geoscience Orbiter or Lunar Observer is the ideal precursory science mission from which to obtain this required information. We suggest that a simple laser altimeter instrument could be employed to measure local-scale slopes, heights, and depths of lunar surface features important to lunar base planning and design. For this reason, we have designed and are currently constructing a breadboard of a Lunar Observer Laser Altimeter (LOLA) instrument capable of acquiring contiguous-footprint topographic profiles with both 30-m and 300-m along-track resolution. This instrument meets all the severe weight, power, size, and data rate limitations imposed by Observer-class spacecraft. In addition, LOLA would be capable of measuring the within-footprint vertical roughness of the lunar surface, and the 1.06-micron relative surface reflectivity at normal incidence. We have used airborne laser altimeter data for a few representative lunar analog landforms to simulate and analyze LOLA performance in a 100-km lunar orbit. We demonstrate that this system in its highest resolution mode (30-m diameter footprints) would quantify the topography of all but the very smallest lunar landforms. At its global mapping resolution (300-m diameter footprints), LOLA would establish the topographic context for lunar landing site selection by providing the basis for constructing a 1-2 km spatial resolution global, geodetic topographic grid that would contain a high density of observations (e.g., approximately 1000 observations per each 1 deg by 1 deg cell at the lunar equator). The high spatial and vertical resolution measurements made with a LOLA-class instrument on a precursory Lunar Observer would be highly synergistic with high-resolution imaging datasets, and will allow for direct quantification of critical slopes, heights, and depths of features visible in images of potential lunar base sites.
Salerno, Marco; Itri, Angelo; Frezzato, Marco; Rebaudi, Alberto
2015-06-01
The surface microstructure of dental implants affects osseointegration, which makes their accurate topographic characterization important. We defined a procedure for evaluation of implant topography before (pre-) and after (post-) in vitro implantation test in bovine bone. The apical morphology of ten implants was analyzed in pre- and post-conditions using atomic force microscopy or 3D profilometry. We extracted four topographical parameters (two amplitude, 1 spatial, and 1 hybrid) and assessed the differences by analysis of variance. The implant with coating (Spline Twist MP-1 HA) was damaged. The two implants with highest pre-amplitude parameters (Pitt Easy VTPS, TLR3815) maintained their character on testing. Pitt Easy PURETEX and OT-F1 were the only nondamaged implants whose amplitude parameters increased. The surface area underwent minor changes even when the texture changed (Tri-Vent, Pitt Easy PURETEX, Exp #1). The implants that ranked the lowest in all parameters before implantation were DT4013TI, Tri-Vent, OT-F1, and Exp #2. On testing, DT4013TI showed the highest decrease in values, whereas Tri-Vent showed the highest increase in surface area. All the experimental implants showed similar topographic properties both pre- and post-test. For most implants, no major changes occurred in surface topography on implantation. The procedure applied seems promising to evaluate the degradation of implant surface on insertion.
Semantic 3d City Model to Raster Generalisation for Water Run-Off Modelling
NASA Astrophysics Data System (ADS)
Verbree, E.; de Vries, M.; Gorte, B.; Oude Elberink, S.; Karimlou, G.
2013-09-01
Water run-off modelling applied within urban areas requires an appropriate detailed surface model represented by a raster height grid. Accurate simulations at this scale level have to take into account small but important water barriers and flow channels given by the large-scale map definitions of buildings, street infrastructure, and other terrain objects. Thus, these 3D features have to be rasterised such that each cell represents the height of the object class as good as possible given the cell size limitations. Small grid cells will result in realistic run-off modelling but with unacceptable computation times; larger grid cells with averaged height values will result in less realistic run-off modelling but fast computation times. This paper introduces a height grid generalisation approach in which the surface characteristics that most influence the water run-off flow are preserved. The first step is to create a detailed surface model (1:1.000), combining high-density laser data with a detailed topographic base map. The topographic map objects are triangulated to a set of TIN-objects by taking into account the semantics of the different map object classes. These TIN objects are then rasterised to two grids with a 0.5m cell-spacing: one grid for the object class labels and the other for the TIN-interpolated height values. The next step is to generalise both raster grids to a lower resolution using a procedure that considers the class label of each cell and that of its neighbours. The results of this approach are tested and validated by water run-off model runs for different cellspaced height grids at a pilot area in Amersfoort (the Netherlands). Two national datasets were used in this study: the large scale Topographic Base map (BGT, map scale 1:1.000), and the National height model of the Netherlands AHN2 (10 points per square meter on average). Comparison between the original AHN2 height grid and the semantically enriched and then generalised height grids shows that water barriers are better preserved with the new method. This research confirms the idea that topographical information, mainly the boundary locations and object classes, can enrich the height grid for this hydrological application.
NASA Astrophysics Data System (ADS)
Meunier Cardinal, G.; Demuth, M. N.; Kinnard, C.
2016-12-01
Glaciers are an important source of fresh water in the headwaters of the Canadian Rocky Mountains, and ongoing climate warming could reduce their future hydrological contribution. Unmanned Aerial Vehicles UAVs) are an emergent technology that allow studying glacial processes with an unprecedented level of detail, but their usefulness for deriving accurate topographic data on glaciers has not yet been fully assessed. In this perspective we tested the use of a UAV platform to acquire images at a very high spatial resolution (<10cm) in order to estimate topographical and dynamic changes over a one year period on the ablation zone of Saskatchewan glacier, the main outlet of the Columbia Icefield in Alberta, Canada (52°06N, 117°15W). Two data acquisition campaigns were carried out, in August 2014 and 2015. Orthomosaics and digital elevation models (DEMs) with a high spatial resolution (<10cm) were produced for each year, using the Structure from Motion (SfM) algorithm. A detailed assessment of DEM errors was performed by cross-validation of an network of ground control points (GCPs) deployed on the glacier surface. The influence of checkpoint position in the network, border effects, number of photos calibrated and GPS accuracy were examined. Topographical changes were measured from the DEM difference and surface displacements estimated by applying feature tracking techniques to the orthomosaics. Further, the dominant scales of topographic spatial variability were examined using a semivariogram analysis of the DEMs. Results show that UAV-based photogrammetry is promising to further our understanding of high-resolution glacier surface processes and to perform repeat, on-demand monitoring of glacier changes, but their application on remote glaciers remains challenging.
Recognition of surface lithologic and topographic patterns in southwest Colorado with ADP techniques
NASA Technical Reports Server (NTRS)
Melhorn, W. N.; Sinnock, S.
1973-01-01
Analysis of ERTS-1 multispectral data by automatic pattern recognition procedures is applicable toward grappling with current and future resource stresses by providing a means for refining existing geologic maps. The procedures used in the current analysis already yield encouraging results toward the eventual machine recognition of extensive surface lithologic and topographic patterns. Automatic mapping of a series of hogbacks, strike valleys, and alluvial surfaces along the northwest flank of the San Juan Basin in Colorado can be obtained by minimal man-machine interaction. The determination of causes for separable spectral signatures is dependent upon extensive correlation of micro- and macro field based ground truth observations and aircraft underflight data with the satellite data.
Factors that influence the hydrologic recovery of wetlands in the Northern Tampa Bay area, Florida
Metz, P.A.
2011-01-01
Although of less importance than the other three factors, a low-lying topographical position benefited the hydrologic condition of several of the study wetlands (S-68 Cypress and W-12 Cypress) both before and after the reductions in groundwater withdrawals. Compared to wetlands in a higher topographical position, those in a lower position had longer hydroperiods because of their greater ability to receive more runoff from higher elevation wetlands and to establish surface-water connections to other isolated wetlands and surface-water bodies through low-lying surface-water channels during wet conditions. In addition, wetlands in low-lying areas benefited from groundwater inflow when groundwater levels were higher than wetland water levels.
Modeling of light distribution in the brain for topographical imaging
NASA Astrophysics Data System (ADS)
Okada, Eiji; Hayashi, Toshiyuki; Kawaguchi, Hiroshi
2004-07-01
Multi-channel optical imaging system can obtain a topographical distribution of the activated region in the brain cortex by a simple mapping algorithm. Near-infrared light is strongly scattered in the head and the volume of tissue that contributes to the change in the optical signal detected with source-detector pair on the head surface is broadly distributed in the brain. This scattering effect results in poor resolution and contrast in the topographic image of the brain activity. We report theoretical investigations on the spatial resolution of the topographic imaging of the brain activity. The head model for the theoretical study consists of five layers that imitate the scalp, skull, subarachnoid space, gray matter and white matter. The light propagation in the head model is predicted by Monte Carlo simulation to obtain the spatial sensitivity profile for a source-detector pair. The source-detector pairs are one dimensionally arranged on the surface of the model and the distance between the adjoining source-detector pairs are varied from 4 mm to 32 mm. The change in detected intensity caused by the absorption change is obtained by Monte Carlo simulation. The position of absorption change is reconstructed by the conventional mapping algorithm and the reconstruction algorithm using the spatial sensitivity profiles. We discuss the effective interval between the source-detector pairs and the choice of reconstruction algorithms to improve the topographic images of brain activity.
1979-12-01
required of the Army aviator. The successful accomplishment of many of these activities depends upon the aviator’s ability to extract information from maps...Cruise NOE VBI Determine Position VB2 Crew Coordination (Topographic) VB3 Radio Communication VI . TERM4INATION C. Post-Flight VIC1 Debriefing 11LA 1I...NOE FUNCTION: VBI DETERMINE POSITION INFORMATION REQUIREMENT SPECIFICS SOURCE COMMENTS See Function IIIAl ! FUNCTION: VB2 CREW COORDINATION
Noll, Michael L.; Chu, Anthony
2017-08-14
In 2005, the U.S. Geological Survey began a cooperative study with New York City Department of Environmental Protection to characterize the local groundwater-flow system and identify potential sources of seeps on the southern embankment at the Hillview Reservoir in southern Westchester County, New York. Monthly site inspections at the reservoir indicated an approximately 90-square-foot depression in the land surface directly upslope from a seep that has episodically flowed since 2007. In July 2008, the U.S. Geological Survey surveyed the topography of land surface in this depression area by collecting high-accuracy (resolution less than 1 inch) measurements. A point of origin was established for the topographic survey by using differentially corrected positional data collected by a global navigation satellite system. Eleven points were surveyed along the edge of the depression area and at arbitrary locations within the depression area by using robotic land-surveying techniques. The points were surveyed again in March 2012 to evaluate temporal changes in land-surface altitude. Survey measurements of the depression area indicated that the land-surface altitude at 8 of the 11 points decreased beyond the accepted measurement uncertainty during the 44 months from July 2008 to March 2012. Two additional control points were established at stable locations along Hillview Avenue, which runs parallel to the embankment. These points were measured during the July 2008 survey and measured again during the March 2012 survey to evaluate the relative accuracy of the altitude measurements. The relative horizontal and vertical (altitude) accuracies of the 11 topographic measurements collected in March 2012 were ±0.098 and ±0.060 feet (ft), respectively. Changes in topography at 8 of the 11 points ranged from 0.09 to 0.63 ft and topography remained constant, or within the measurement uncertainty, for 3 of the 11 points.Two cross sections were constructed through the depression area by using land-surface altitude data that were interpolated from positional data collected during the two topographic surveys. Cross section A–A′ was approximately 8.5 ft long and consisted of three surveyed points that trended north to south across the depression. Land-surface altitude change decreased along the entire north-south trending cross section during the 44 months, and ranged from 0.2 to more than 0.6 ft. In general, greater land-surface altitude change was measured north of the midpoint as compared to south of the midpoint of the cross section. Cross section B–B′ was 18 ft long and consisted of six surveyed points that trended east to west across the depression. Land-surface altitude change generally decreased or remained constant along the east-west trending cross section during the 44 months and ranged from 0.0 to 0.3 ft. Volume change of the depression area was calculated by using a three-dimensional geographic information system utility that subtracts interpolated surfaces. The results indicated a net volume loss of approximately 38 ±5 cubic feet of material from the depression area during the 44 months.
Elements of the Chicxulub Impact Structure as Revealed in SRTM and Surface GPS Topographic Data
NASA Technical Reports Server (NTRS)
Kinsland, Gary L.; Sanchez, Gary; Kobrick, Michael; Cardador, Manuel Hurtado
2003-01-01
Pope et al. [1] utilized the elevations from the Petroleos Mexicanos (PEMEX) gravity data files to show that the main component of the surface expression of the Chicxulub Impact Structure is a roughly semi-circular, lowrelief depression about 90 km in diameter. They also identified other topographic features and the elements of the buried impact, which possibly led to the development of these features. These are summarized in Table 1. Kinsland et al. [2] presented a connection between these topographic anomalies, small gravity anomalies and buried structure of the impact. Very recently we have acquired digital topography data from NASA s Shuttle Radar Topography Mission (SRTM). Our subset covers 6 square degrees from 20deg N 91degW to 22deg N 88degW (corner to corner) with a pixel size of about 90m. This area includes all of the identified portion of the crater on land.
Radar studies of the planets. [radar measurements of lunar surface, Mars, Mercury, and Venus
NASA Technical Reports Server (NTRS)
Ingalls, R. P.; Pettengill, G. H.; Rogers, A. E. E.; Sebring, P. B. (Editor); Shapiro, I. I.
1974-01-01
The radar measurements phase of the lunar studies involving reflectivity and topographic mapping of the visible lunar surface was ended in December 1972, but studies of the data and production of maps have continued. This work was supported by Manned Spacecraft Center, Houston. Topographic mapping of the equatorial regions of Mars has been carried out during the period of each opposition since that of 1967. The method comprised extended precise traveling time measurements to a small area centered on the subradar point. As measurements continued, planetary motions caused this point to sweep out extensive areas in both latitude and longitude permitting the development of a fairly extensive topographical map in the equatorial region. Radar observations of Mercury and Venus have also been made over the past few years. Refinements of planetary motions, reflectivity maps and determinations of rotation rates have resulted.
Quantitative analysis of osteoblast behavior on microgrooved hydroxyapatite and titanium substrata.
Lu, Xiong; Leng, Yang
2003-09-01
The effects of implant surface topography and chemistry on osteoblast behavior have been a research focus because of their potential importance in orthopedic and dental applications. This work focused on the topographic effects of hydroxyapatite (HA) and titanium (Ti) surface that had identical micropatterns to determine whether there was synergistic interaction between surface chemistry and surface topography. Surface microgrooves with six different groove widths (4, 8, 16, 24, 30, and 38 microm) and three different groove depths (2, 4, and 10 microm) were made on single crystalline silicon wafers using microfabrication techniques. Ti and HA thin films were coated on the microgrooves by radio-frequency magnetron sputtering. After that, human osteoblast-like cells were seeded and cultured on the microgrooved surfaces for up to 7 days. The cells' behavior was examined using scanning electron microscopy after cells were fixed and dehydrated. Statistical analysis was based on quantitative data of orientation angle, evaluating the contact guidance, and form index, describing cell shape or cell morphology changes. The contact guidance and cell shape changes were observed on the HA and Ti microgrooves. No difference in orientation angle between HA and Ti microgrooves was found. This might suggest that surface chemistry was not a significant influence on cell guidance. However, the form index analysis indicated an interaction between topographic effects and surface chemistry. Thus, conclusions about surface topographic effects on cell behavior drawn from one type of material cannot simply be applied to another type of material. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 66A: 677-687, 2003
NASA Astrophysics Data System (ADS)
Skinner, C. H.; Kaita, R.; Koel, B. E.; Chrobak, C. P.; Wampler, W. R.
2017-10-01
Tokamak plasma facing components (PFCs) have surface roughness that can cause microscopic spatial variations in erosion and deposition and hence influence material migration. Previous RBS measurements showed indirect evidence for this but the spatial (0.5mm) resolution was insufficient for direct imaging. We will present elemental images at sub-micron resolution of deposition on NSTX-U and DiMES samples that show strong microscopic variations and correlate this with 3D topographical maps of surface irregularities. The elemental imaging is performed with a Scanning Auger Microprobe (SAM) that measures element-specific Auger electrons excited by an SEM electron beam. 3D topographical maps of the samples are performed with a Leica DCM 3D confocal light microscope and compared to the elemental deposition pattern. The initial results appear consistent with erosion at the downstream edges of the surface pores exposed to the incident ion flux, whereas the deeper regions are shadowed and serve as deposition traps. Support was provided through DOE Contract Numbers DE-AC02-09CH11466, DE-FC02-04ER54698 and DE-NA0003525.
Characterization of water bodies for mosquito habitat using a multi-sensor approach
NASA Astrophysics Data System (ADS)
Midekisa, A.; Wimberly, M. C.; Senay, G. B.
2012-12-01
Malaria is a major health problem in Ethiopia. Anopheles arabiensis, which inhabits and breeds in a variety of aquatic habitats, is the major mosquito vector for malaria transmission in the region. In the Amhara region of Ethiopia, mosquito breeding sites are heterogeneously distributed. Therefore, accurate characterization of aquatic habitats and potential breeding sites can be used as a proxy to measure the spatial distribution of malaria risk. Satellite remote sensing provides the ability to map the spatial distribution and monitor the temporal dynamics of surface water. The objective of this study is to map the probability of surface water accumulation to identify potential vector breeding sites for Anopheles arabiensis using remote sensing data from sensors at multiple spatial and temporal resolutions. The normalized difference water index (NDWI), which is based on reflectance in the green and the near infrared (NIR) bands were used to estimate fractional cover of surface water. Temporal changes in surface water were mapped using NDWI indices derived from MODIS surface reflectance product (MOD09A1) for the period 2001-2012. Landsat TM and ETM+ imagery were used to train and calibrate model results from MODIS. Results highlighted interannual variation and seasonal changes in surface water that were observed from the MODIS time series. Static topographic indices that estimate the potential for water accumulation were generated from 30 meter Shuttle Radar Topography Mission (SRTM) elevation data. Integrated fractional surface water cover was developed by combining the static topographic indices and dynamic NDWI indices using Geographic Information System (GIS) overlay methods. Accuracy of the results was evaluated based on ground truth data that was collected on presence and absence of surface water immediately after the rainy season. The study provided a multi-sensor approach for mapping areas with a high potential for surface water accumulation that are potential breeding habitats for anopheline mosquitoes. The resulting products are useful for public health decision making towards effective prevention and control of the malaria burden in the Amhara region of Ethiopia.
Fairchild, Gillian M.; Lane, John W.; Voytek, Emily B.; LeBlanc, Denis R.
2013-01-01
This report presents a topographic map of the bedrock surface beneath western Cape Cod, Massachusetts, that was prepared for use in groundwater-flow models of the Sagamore lens of the Cape Cod aquifer. The bedrock surface of western Cape Cod had been characterized previously through seismic refraction surveys and borings drilled to bedrock. The borings were mostly on and near the Massachusetts Military Reservation (MMR). The bedrock surface was first mapped by Oldale (1969), and mapping was updated in 2006 by the Air Force Center for Environmental Excellence (AFCEE, 2006). This report updates the bedrock-surface map with new data points collected by using a passive seismic technique based on the horizontal-to-vertical spectral ratio (HVSR) of ambient seismic noise (Lane and others, 2008) and from borings drilled to bedrock since the 2006 map was prepared. The HVSR method is based on a relationship between the resonance frequency of ambient seismic noise as measured at land surface and the thickness of the unconsolidated sediments that overlie consolidated bedrock. The HVSR method was shown by Lane and others (2008) to be an effective method for determining sediment thickness on Cape Cod owing to the distinct difference in the acoustic impedance between the sediments and the underlying bedrock. The HVSR data for 164 sites were combined with data from 559 borings to bedrock in the study area to create a spatially distributed dataset that was manually contoured to prepare a topographic map of the bedrock surface. The interpreted bedrock surface generally slopes downward to the southeast as was shown on the earlier maps by Oldale (1969) and AFCEE (2006). The surface also has complex small-scale topography characteristic of a glacially eroded surface. More information about the methods used to prepare the map is given in the pamphlet that accompanies this plate.
Annunziata, Marco; Oliva, Adriana; Basile, Maria Assunta; Giordano, Michele; Mazzola, Nello; Rizzo, Antonietta; Lanza, Alessandro; Guida, Luigi
2011-11-01
Titanium nitride (TiN) coating has been proposed as an adjunctive surface treatment aimed to increase the physico-mechanical and aesthetic properties of dental implants. In this study we investigated the surface characteristics of TiN-coated titanium plasma sprayed (TiN-TPS) and uncoated titanium plasma sprayed (TPS) surfaces and their biological features towards both primary human bone marrow mesenchymal stem cells (BM-MSC) and bacterial cultures. 15 mm×1 mm TPS and TiN-TPS disks (P.H.I. s.r.l., San Vittore Olona, Milano, Italy) were topographically analysed by confocal optical profilometry. Primary human BM-MSC were obtained from healthy donors, isolated and expanded. Cells were seeded on the titanium disks and cell adhesion, proliferation, protein synthesis and osteoblastic differentiation in terms of alkaline phosphatase activity, osteocalcin synthesis and extracellular mineralization, were evaluated. Furthermore, adhesion and proliferation of Streptococcus pyogenes and Streptococcus sanguinis on both surfaces were also analysed. TiN-TPS disks showed a decreased roughness (about 50%, p < 0.05) and a decreased bacterial adhesion and proliferation compared to TPS ones. No difference (p > 0.05) in terms of BM-MSC adhesion, proliferation and osteoblastic differentiation between TPS and TiN-TPS surfaces was found. TiN coating showed to modify the topographical characteristics of TPS titanium surfaces and to significantly reduce bacterial adhesion and proliferation, although maintaining their biological affinity towards bone cell precursors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Reverse switching of surface roughness in a self-organized polydomain liquid crystal coating.
Liu, Danqing; Liu, Ling; Onck, Patrick R; Broer, Dirk J
2015-03-31
In this work we propose randomly ordered polydomain nematic liquid crystal polymer networks to reversibly generate notable jagged relief patterns at a polymer coating surface by light illumination. The domain size is controlled by the addition of traces of partly insoluble fluorinated acrylate. The photoresponse of the coating is induced by a small amount of copolymerized azobenzene monomers. Upon exposure to UV light, azobenzene undergoes trans to cis isomerization, resulting in a change in molecular order and packing within each domain. The extent of this effect and its directionality depends on the domain orientation. Localized to domain level, this morphological change forms large 3D spikes at the surface with a modulation amplitude of more than 20% of the initial thickness. The process is reversible; the surface topographical patterns erase within 10 s by stopping the light exposure. A finite element model is applied to simulate the surface topography changes of the polydomain coating. The simulations describe the formation of the topographic features in terms of light absorption and isomerization process as a function of the director orientation. The random director distribution leads to surface structures which were found to be in close agreement with the ones measured by interference microscopy. The effect of domain size on surface roughness and depth modulation was explored and related to the internal mechanical constraints. The use of nematic liquid crystal polydomains confined in a polymer network largely simplifies the fabrication of smart coatings with a prominent triggered topographic response.
Correlative light-electron fractography for fatigue striations characterization in metallic alloys.
Hein, Luis Rogerio de Oliveira; de Oliveira, José Alberto; de Campos, Kamila Amato
2013-09-01
The correlative light-electron fractography technique combines correlative microscopy concepts to the extended depth-from-focus reconstruction method, associating the reliable topographic information of 3-D maps from light microscopy ordered Z-stacks to the finest lateral resolution and large focus depth from scanning electron microscopy. Fatigue striations spacing analysis can be precisely measured, by correcting the mean surface tilting with the knowledge of local elevation data from elevation maps. This new technique aims to improve the accuracy of quantitative fractography in fatigue fracture investigations. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wu, Wei; Tang, Xiao-Ping; Ma, Xue-Qing; Liu, Hong-Bin
2016-08-01
Soil temperature variability data provide valuable information on understanding land-surface ecosystem processes and climate change. This study developed and analyzed a spatial dataset of monthly mean soil temperature at a depth of 10 cm over a complex topographical region in southwestern China. The records were measured at 83 stations during the period of 1961-2000. Nine approaches were compared for interpolating soil temperature. The accuracy indicators were root mean square error (RMSE), modelling efficiency (ME), and coefficient of residual mass (CRM). The results indicated that thin plate spline with latitude, longitude, and elevation gave the best performance with RMSE varying between 0.425 and 0.592 °C, ME between 0.895 and 0.947, and CRM between -0.007 and 0.001. A spatial database was developed based on the best model. The dataset showed that larger seasonal changes of soil temperature were from autumn to winter over the region. The northern and eastern areas with hilly and low-middle mountains experienced larger seasonal changes.
NASA Astrophysics Data System (ADS)
Clucas, T.; Wirth, G. S.; Broderson, D.
2014-12-01
Traditional geospatial education tools such as maps and computer screens don't convey the rich topography present on Earth. Translating lines on a contour lines on a topo map to relief in a landscape can be a challenging concept to convey.A partnership between Alaska EPSCoR and the Geographic Information Network of Alaska has successfully constructed an Interactive Virtual Reality Sandbox, an education tool that in real-time projects and updates topographic contours on the surface of a sandbox. The sandbox has been successfully deployed at public science events as well as professional geospatial and geodesy conferences. Landscape change, precipitation, and evaporation can all be modeled, much to the delight of our enthusiasts, who range in age from 3 to 90. Visually, as well as haptically, demonstrating the effects of events (such as dragging a hand through the sand) on a landscape, as well as the intuitive realization of meaning of topographic contour lines, has proven to be engaging.
Analysis of open-pit mines using high-resolution topography from UAV
NASA Astrophysics Data System (ADS)
Chen, Jianping; Li, Ke; Sofia, Giulia; Tarolli, Paolo
2015-04-01
Among the anthropogenic topographic signatures on the Earth, open-pit mines deserve a great importance, since they significantly affect the Earth's surface and its related processes (e.g. erosion, pollution). Their geomorphological analysis, therefore, represents a real challenge for the Earth science community. The purpose of this research is to characterize the open-pit mining features using a recently published landscape metric, the Slope Local Length of Auto-Correlation (SLLAC) (Sofia et al., 2014), and high-resolution DEMs (Digital Elevation Models) derived from drone surveyed topography. The research focuses on two main case studies of iron mines located in the Beijing district (P.R. China). The main topographic information (Digital Surface Models, DSMs) was derived using Unmanned Aerial Vehicle (UAV) and the Structure from Motion (SfM) photogrammetric technique. The results underline the effectiveness of the adopted methodologies and survey techniques in the characterization of the main geomorphic features of the mines. Thanks to the SLLAC, the terraced area given by multi-benched sideways-moving method for the iron extraction is automatically depicted, and using some SLLAC derived parameters, the related terraces extent is automatically estimated. The analysis of the correlation length orientation, furthermore, allows to identify the terraces orientation respect to the North, and to understand as well the shape of the open-pit area. This provides a basis for a large scale and low cost topographic survey for a sustainable environmental planning and, for example, for the mitigation of environmental anthropogenic impact due to mining. References Sofia G., Marinello F, Tarolli P. 2014. A new landscape metric for the identification of terraced sites: the Slope Local Length of Auto-Correlation (SLLAC). ISPRS Journal of Photogrammetry and Remote Sensing, doi:10.1016/j.isprsjprs.2014.06.018
Effects of topographic features on postfire exposed mineral soil in small watersheds
Mariana Dobre; Joan Q. Wu; William J. Elliot; Ina S. Miller; Theresa B. Jain
2014-01-01
Exposed mineral soil is an immediate result of forest fires with direct relevance on surface runoff and soil erosion. The goal of this study was to determine which topographic features influence the distribution of exposed mineral soil following wildfire in forested watersheds. In a field investigation 2 months after a simulated wildfire, ground cover was measured and...
A numerical test of the topographic bias
NASA Astrophysics Data System (ADS)
Sjöberg, L. E.; Joud, M. S. S.
2018-02-01
In 1962 A. Bjerhammar introduced the method of analytical continuation in physical geodesy, implying that surface gravity anomalies are downward continued into the topographic masses down to an internal sphere (the Bjerhammar sphere). The method also includes analytical upward continuation of the potential to the surface of the Earth to obtain the quasigeoid. One can show that also the common remove-compute-restore technique for geoid determination includes an analytical continuation as long as the complete density distribution of the topography is not known. The analytical continuation implies that the downward continued gravity anomaly and/or potential are/is in error by the so-called topographic bias, which was postulated by a simple formula of L E Sjöberg in 2007. Here we will numerically test the postulated formula by comparing it with the bias obtained by analytical downward continuation of the external potential of a homogeneous ellipsoid to an inner sphere. The result shows that the postulated formula holds: At the equator of the ellipsoid, where the external potential is downward continued 21 km, the computed and postulated topographic biases agree to less than a millimetre (when the potential is scaled to the unit of metre).
NASA Astrophysics Data System (ADS)
Khan, Afed U.; Jiang, Jiping; Wang, Peng; Zheng, Yi
2017-10-01
Surface waters exhibit regionalization due to various climatic conditions and anthropogenic activities. Here we assess the impact of topographic and socio-economic factors on the climate sensitivity of surface water quality, estimated using an elasticity approach (climate elasticity of water quality (CEWQ)), and identify potential risks of instability in different regions and climatic conditions. Large global datasets were used for 12 main water quality parameters from 43 water quality monitoring stations located at large major rivers. The results demonstrated that precipitation elasticity shows higher sensitivity to topographic and socio-economic determinants as compared to temperature elasticity. In tropical climate class (A), gross domestic product (GDP) played an important role in stabilizing the CEWQ. In temperate climate class (C), GDP played the same role in stability, while the runoff coefficient, slope, and population density fuelled the risk of instability. The results implied that watersheds with lower runoff coefficient, thick population density, over fertilization and manure application face a higher risk of instability. We discuss the socio-economic and topographic factors that cause instability of CEWQ parameters and conclude with some suggestions for watershed managers to bring sustainability in freshwater bodies.
Three dimensional topography correction applied to magnetotelluric data from Sikkim Himalayas
NASA Astrophysics Data System (ADS)
Kumar, Sushil; Patro, Prasanta K.; Chaudhary, B. S.
2018-06-01
Magnetotelluric (MT) method is one of the powerful tools to investigate the deep crustal image of mountainous regions such as Himalayas. Topographic variations due to irregular surface terrain distort the resistivity curves and hence may not give accurate interpretation of magnetotelluric data. The two-dimensional (2-D) topographic effects in Transverse Magnetic (TM) mode is only galvanic whereas inductive in Transverse Electric (TE) mode, thus TM mode responses is much more important than TE mode responses in 2-D. In three-dimensional (3-D), the topography effect is both galvanic and inductive in each element of impedance tensor and hence the interpretation is complicated. In the present work, we investigate the effects of three-dimensional (3-D) topography for a hill model. This paper presents the impedance tensor correction algorithm to reduce the topographic effects in MT data. The distortion caused by surface topography effectively decreases by using homogeneous background resistivity in impedance correction method. In this study, we analyze the response of ramp, distance from topographic edges, conductive and resistive dykes. The new correction method is applied to the real data from Sikkim Himalayas, which brought out the true nature of the basement in this region.
SRF Cavity Surface Topography Characterization Using Replica Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Xu, M.J. Kelley, C.E. Reece
2012-07-01
To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosenmore » at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.« less
Using Topographic Engineering to Achieve Dominance in Urban and Complex Terrain
2005-03-01
Information dominance and dominant maneuver are harder to achieve in urban and complex terrain, but there are measures we can take to give our soldiers important advantages. Engineer solutions include physical measures to interdict threat forces, such as countermine operations and emplacement of barriers, as well as command and control (C2) measures that can enhance our information dominance . This article focuses on how the topographic engineering component of information dominance helps achieve dominant maneuver in urban and
Location of Viking 1 Lander on the surface of Mars
Morris, E.C.; Jones, K.L.; Berger, J.P.
1978-01-01
A location of the Viking 1 Lander on the surface of Mars has been determined by correlating topographic features in the lander pictures with similar features in the Viking orbiter pictures. Radio tracking data narrowed the area of search for correlating orbiter and lander features and an area was found on the orbiter pictures in which there is good agreement with topographic features on the lander pictures. This location, when plotted on the 1:250,000 scale photomosaic of the Yorktown Region of Mars (U.S. Geological Survey, 1977) is at 22.487??N latitude and 48.041??W longitude. ?? 1978.
Friction Anisotropy with Respect to Topographic Orientation
Yu, Chengjiao; Wang, Q. Jane
2012-01-01
Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties. PMID:23248751
Hein, Luis Rogerio de Oliveira; de Oliveira, José Alberto; de Campos, Kamila Amato
2013-04-01
Correlative fractography is a new expression proposed here to describe a new method for the association between scanning electron microscopy (SEM) and light microscopy (LM) for the qualitative and quantitative analysis of fracture surfaces. This article presents a new method involving the fusion of one elevation map obtained by extended depth from focus reconstruction from LM with exactly the same area by SEM and associated techniques, as X-ray mapping. The true topographic information is perfectly associated to local fracture mechanisms with this new technique, presented here as an alternative to stereo-pair reconstruction for the investigation of fractured components. The great advantage of this technique resides in the possibility of combining any imaging methods associated with LM and SEM for the same observed field from fracture surface.
Photogrammetry and altimetry. Part A: Apollo 16 laser altimeter
NASA Technical Reports Server (NTRS)
Wollenhaupt, W. R.; Sjogren, W. L.
1972-01-01
The laser altimeter measures precise altitudes of the command and service module above the lunar surface and can function either with the metric (mapping) camera or independently. In the camera mode, the laser altimeter ranges at each exposure time, which varies between 20 and 28 sec (i.e., 30 to 43 km on the lunar surface). In the independent mode, the laser altimeter ranges every 20 sec. These altitude data and the spacecraft attitudes that are derived from simultaneous stellar photography are used to constrain the photogrammetric reduction of the lunar surface photographs when cartographic products are generated. In addition, the altimeter measurements alone provide broad-scale topographic relief around the entire circumference of the moon. These data are useful in investigating the selenodetic figure of the moon and may provide information regarding gravitational anomalies on the lunar far side.
The balance between keystone clustering and bed roughness in experimental step-pool stabilization
NASA Astrophysics Data System (ADS)
Johnson, J. P.
2016-12-01
Predicting how mountain channels will respond to environmental perturbations such as floods requires an improved quantitative understanding of morphodynamic feedbacks among bed topography, surface grain size and sediment sorting. In boulder-rich gravel streams, transport and sorting often lead to the development of step pool morphologies, which are expressed both in bed topography and coarse grain clustering. Bed stability is difficult to measure, and is sometimes inferred from the presence of step pools. I use scaled flume experiments to explore feedbacks among surface grain sizes, coarse grain clustering, bed roughness and hydraulic roughness during progressive bed stabilization and over a range of sediment transport rates. While grain clusters are sometimes identified by subjective interpretation, I quantify the degree of coarse surface grain clustering using spatial statistics, including a novel normalization of Ripley's K function. This approach is objective and provides information on the strength of clustering over a range of length scales. Flume experiments start with an initial bed surface with a broad grain size distribution and spatially random positions. Flow causes the bed surface to progressively stabilize in response to erosion, surface coarsening, roughening and grain reorganization. At 95% confidence, many but not all beds stabilized with coarse grains becoming more clustered than complete spatial randomness (CSR). I observe a tradeoff between topographic roughness and clustering. Beds that stabilized with higher degrees of coarse-grain clustering were topographically smoother, and vice-versa. Initial conditions influenced the degree of clustering at stability: Beds that happened to have fewer initial coarse grains had more coarse grain reorganization during stabilization, leading to more clustering. Finally, regressions demonstrate that clustering statistics actually predict hydraulic roughness significantly better than does D84 (the size at which 84% of grains are smaller). In the experimental data, the spatial organization of surface grains is a stronger control on flow characteristics than the size of surface grains.
Evaluating topographic effects on ground deformation: Insights from finite element modeling
NASA Astrophysics Data System (ADS)
Ronchin, Erika; Geyer, Adelina; Marti, Joan
2015-04-01
Ground deformation has been demonstrated to be one of the most common signals of volcanic unrest. Although volcanoes are commonly associated with significant topographic relief, most analytical models assumed the Earth's surface as flat. In the last years, it has been confirmed that this approximation can lead to important misinterpretations of the recorded surface deformation data. Here we perform a systematic and quantitative analysis of how topography may influence ground deformation signals and how these variations correlate with the different topographic parameters characterizing the terrain form (e.g. slope, aspect, curvature, etc.). For this, we bring together the results exposed in previous published papers and complement them with new axisymmetric and 3D Finite Elements (FE) models results. First, we study, in a parametric way, the influence of a volcanic edifice centered above the pressure source axis. Second, we carry out new 3D FE models simulating the real topography of three different volcanic areas representative of topographic scenarios common in volcanic regions: Rabaul caldera (Papua New Guinea) and the volcanic islands of Tenerife and El Hierro (Canary Islands). The calculated differences are then correlated with a series of topographic parameters. The final aim is to investigate the artifacts that might arise from the use of half-space models at volcanic areas considering their diverse topographic features (e.g. collapse caldera structures, prominent central edifices, large landslide scars, etc.). Final conclusions may be also useful for the design of an optimal geodetic monitoring network. This research was partially funded by the European Commission (FP7 Theme: ENV.2011.1.3.3-1; Grant 282759: "VUELCO")and RYC-2012-11024.
Elements of the Chicxulub Impact Structure as revealed in SRTM and surface GPS topographic data
NASA Astrophysics Data System (ADS)
Kobrick, M.; Kinsland, G. L.; Sanchez, G.; Cardador, M. H.
2003-04-01
Pope et al have utilized elevations from the Petroleos Mexicanos (PEMEX) gravity data files to show that the main component of the surface expression of the Chicxu-lub Impact Structure is a roughly semi-circular, low-relief depression about 90 km in diameter. They also identified other topographic features and the elements of the buried impact which possibly led to the development of these features. Kinsland et al presented a connection between these topographic anomalies, small gravity anomalies and buried structure of the impact. Shaded relief images from recently acquired SRTM elevation data clearly show the circular depression of the crater and the moat/cenote ring. In addition we can readily identify Inner trough 1, Inner trough 2 and Outer trough as defined by Pope et al. The agreement between the topographic maps of Pope et al, Kinsland et al and SRTM data are remarkable considering that the distribution and types of data in the sets are so different. We also have ground topographic data collected with a special "autonomous differ-ential GPS" system during summer 2002. Profiles from these data generally agree with both the gravity data based topographic maps and profiles extracted from the SRTM data. Preliminary analyses of our new data, SRTM and GPS, have uncovered features not previously recognized: 1) as shown by the GPS data the moat/cenote ring consists of two distinct depressions separated by about 10 km...perhaps separate ring faults, 2) in the SRTM data over the southern part of the crater and on southward for perhaps 20 km beyond the moat/ cenote ring there exists a pattern, as yet unexplained, of roughly concentric topographic features whose center lies at about 21deg 40min N and 89deg 25min W, about 50km NNE of the moat/cenote ring center. The corroboration and better definition of the previously recognized topographic features yielded by the two new forms of data strengthens the cases for these fea-tures and for their relevance to the underlying collapsed crater structure.
NASA Astrophysics Data System (ADS)
Lendzioch, Theodora; Langhammer, Jakub; Hartvich, Filip
2015-04-01
Fusion of remote sensing data is a common and rapidly developing discipline, which combines data from multiple sources with different spatial and spectral resolution, from satellite sensors, aircraft and ground platforms. Fusion data contains more detailed information than each of the source and enhances the interpretation performance and accuracy of the source data and produces a high-quality visualisation of the final data. Especially, in fluvial geomorphology it is essential to get valuable images in sub-meter resolution to obtain high quality 2D and 3D information for a detailed identification, extraction and description of channel features of different river regimes and to perform a rapid mapping of changes in river topography. In order to design, test and evaluate a new approach for detection of river morphology, we combine different research techniques from remote sensing products to drone-based photogrammetry and LiDAR products (aerial LiDAR Scanner and TLS). Topographic information (e.g. changes in river channel morphology, surface roughness, evaluation of floodplain inundation, mapping gravel bars and slope characteristics) will be extracted either from one single layer or from combined layers in accordance to detect fluvial topographic changes before and after flood events. Besides statistical approaches for predictive geomorphological mapping and the determination of errors and uncertainties of the data, we will also provide 3D modelling of small fluvial features.
Technologies Enabling Scientific Exploration of Asteroids and Moons
NASA Astrophysics Data System (ADS)
Shaw, A.; Fulford, P.; Chappell, L.
2016-12-01
Scientific exploration of moons and asteroids is enabled by several key technologies that yield topographic information, allow excavation of subsurface materials, and allow delivery of higher-mass scientific payloads to moons and asteroids. These key technologies include lidar systems, robotics, and solar-electric propulsion spacecraft buses. Many of these technologies have applications for a variety of planetary targets. Lidar systems yield high-resolution shape models of asteroids and moons. These shape models can then be combined with radio science information to yield insight into density and internal structure. Further, lidar systems allow investigation of topographic surface features, large and small, which yields information on regolith properties. Robotic arms can be used for a variety of purposes, especially to support excavation, revealing subsurface material and acquiring material from depth for either in situ analysis or sample return. Robotic arms with built-in force sensors can also be used to gauge the strength of materials as a function of depth, yielding insight into regolith physical properties. Mobility systems allow scientific exploration of multiple sites, and also yield insight into regolith physical properties due to the interaction of wheels with regolith. High-power solar electric propulsion (SEP) spacecraft bus systems allow more science instruments to be included on missions given their ability to support greater payload mass. In addition, leveraging a cost-effective commercially-built SEP spacecraft bus can significantly reduce mission cost.
NASA Technical Reports Server (NTRS)
Webb, Charles E.; Zwally H. Jay; Abdalati, Waleed
2012-01-01
The Ice, Cloud and land Elevation Satellite (ICESat) mission was conceived, primarily, to quantify the spatial and temporal variations in the topography of the Greenland and Antarctic ice sheets. It carried on board the Geoscience Laser Altimeter System (GLAS), which measured the round-trip travel time of a laser pulse emitted from the satellite to the surface of the Earth and back. Each range derived from these measurements was combined with precise, concurrent orbit and pointing information to determine the location of the laser spot centroid on the Earth. By developing a time series of precise topographic maps for each ice sheet, changes in their surface elevations can be used to infer their mass balances.
Global multi-resolution terrain elevation data 2010 (GMTED2010)
Danielson, Jeffrey J.; Gesch, Dean B.
2011-01-01
In 1996, the U.S. Geological Survey (USGS) developed a global topographic elevation model designated as GTOPO30 at a horizontal resolution of 30 arc-seconds for the entire Earth. Because no single source of topographic information covered the entire land surface, GTOPO30 was derived from eight raster and vector sources that included a substantial amount of U.S. Defense Mapping Agency data. The quality of the elevation data in GTOPO30 varies widely; there are no spatially-referenced metadata, and the major topographic features such as ridgelines and valleys are not well represented. Despite its coarse resolution and limited attributes, GTOPO30 has been widely used for a variety of hydrological, climatological, and geomorphological applications as well as military applications, where a regional, continental, or global scale topographic model is required. These applications have ranged from delineating drainage networks and watersheds to using digital elevation data for the extraction of topographic structure and three-dimensional (3D) visualization exercises (Jenson and Domingue, 1988; Verdin and Greenlee, 1996; Lehner and others, 2008). Many of the fundamental geophysical processes active at the Earth's surface are controlled or strongly influenced by topography, thus the critical need for high-quality terrain data (Gesch, 1994). U.S. Department of Defense requirements for mission planning, geographic registration of remotely sensed imagery, terrain visualization, and map production are similarly dependent on global topographic data. Since the time GTOPO30 was completed, the availability of higher-quality elevation data over large geographic areas has improved markedly. New data sources include global Digital Terrain Elevation Data (DTEDRegistered) from the Shuttle Radar Topography Mission (SRTM), Canadian elevation data, and data from the Ice, Cloud, and land Elevation Satellite (ICESat). Given the widespread use of GTOPO30 and the equivalent 30-arc-second DTEDRegistered level 0, the USGS and the National Geospatial-Intelligence Agency (NGA) have collaborated to produce an enhanced replacement for GTOPO30, the Global Land One-km Base Elevation (GLOBE) model and other comparable 30-arc-second-resolution global models, using the best available data. The new model is called the Global Multi-resolution Terrain Elevation Data 2010, or GMTED2010 for short. This suite of products at three different resolutions (approximately 1,000, 500, and 250 meters) is designed to support many applications directly by providing users with generic products (for example, maximum, minimum, and median elevations) that have been derived directly from the raw input data that would not be available to the general user or would be very costly and time-consuming to produce for individual applications. The source of all the elevation data is captured in metadata for reference purposes. It is also hoped that as better data become available in the future, the GMTED2010 model will be updated.
Titan's Xanadu region: Geomorphology and formation scenario
NASA Astrophysics Data System (ADS)
Langhans, Migrjam; Lunine, Jonathan I.; Mitri, Giuseppe
2013-04-01
Based on comprehensive mapping of the region, the recent theories of Xanadu's origin are examined and a chronology of geologic processes is proposed. The geologic history of Titan's Xanadu region is different from that of the other surface units on Saturn's moon. A previously proposed origin of western Xanadu from a giant impact in the early history of the moon is difficult to confirm given the scarcity of morphologic indications of an impact basin. The basic topographic structure of the landscape is controlled by tectonic processes that date back to the early history of Titan. More recently, the surface is intensely reworked and resurfaced by fluvial processes, which seem to have leveled out and compensated height differences. Although the surface age seems young at first view, the underlying processes that created this surface and the topographic structure appear to be ancient.
Documentation of a digital spatial data base for hydrologic investigations, Broward County, Florida
Sonenshein, R.S.
1992-01-01
Geographic information systems have become an important tool in planning for the protection and development of natural resources, including ground water and surface water. A digital spatial data base consisting of 18 data layers that can be accessed by a geographic information system was developed for Broward County, Florida. Five computer programs, including one that can be used to create documentation files for each data layer and four that can be used to create data layers from data files not already in geographic information system format, were also developed. Four types of data layers have been developed. Data layers for manmade features include major roads, municipal boundaries, the public land-survey section grid, land use, and underground storage tank facilities. The data layer for topographic features consists of surveyed point land-surface elevations. Data layers for hydrologic features include surface-water and rainfall data-collection stations, surface-water bodies, water-control district boundaries, and water-management basins. Data layers for hydrogeologic features include soil associations, transmissivity polygons, hydrogeologic unit depths, and a finite-difference model grid for south-central Broward County. Each data layer is documented as to the extent of the features, number of features, scale, data sources, and a description of the attribute tables where applicable.
Multi-scale characterization of topographic anisotropy
NASA Astrophysics Data System (ADS)
Roy, S. G.; Koons, P. O.; Osti, B.; Upton, P.; Tucker, G. E.
2016-05-01
We present the every-direction variogram analysis (EVA) method for quantifying orientation and scale dependence of topographic anisotropy to aid in differentiation of the fluvial and tectonic contributions to surface evolution. Using multi-directional variogram statistics to track the spatial persistence of elevation values across a landscape, we calculate anisotropy as a multiscale, direction-sensitive variance in elevation between two points on a surface. Tectonically derived topographic anisotropy is associated with the three-dimensional kinematic field, which contributes (1) differential surface displacement and (2) crustal weakening along fault structures, both of which amplify processes of surface erosion. Based on our analysis, tectonic displacements dominate the topographic field at the orogenic scale, while a combination of the local displacement and strength fields are well represented at the ridge and valley scale. Drainage network patterns tend to reflect the geometry of underlying active or inactive tectonic structures due to the rapid erosion of faults and differential uplift associated with fault motion. Regions that have uniform environmental conditions and have been largely devoid of tectonic strain, such as passive coastal margins, have predominantly isotropic topography with typically dendritic drainage network patterns. Isolated features, such as stratovolcanoes, are nearly isotropic at their peaks but exhibit a concentric pattern of anisotropy along their flanks. The methods we provide can be used to successfully infer the settings of past or present tectonic regimes, and can be particularly useful in predicting the location and orientation of structural features that would otherwise be impossible to elude interpretation in the field. Though we limit the scope of this paper to elevation, EVA can be used to quantify the anisotropy of any spatially variable property.
Anticipated Electrical Environment Within Permanently Shadowed Lunar Craters
NASA Technical Reports Server (NTRS)
Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.; Killen, R. M.; Delory, G. T.; Collier, M. R.; Vondrak, R. R.
2010-01-01
Shadowed locations ncar the lunar poles arc almost certainly electrically complex regions. At these locations near the terminator, the local solar wind flows nearly tangential to the surface and interacts with large-scale topographic features such as mountains and deep large craters, In this work, we study the solar wind orographic effects from topographic obstructions along a rough lunar surface, On the leeward side of large obstructions, plasma voids are formed in the solar wind because of the absorption of plasma on the upstream surface of these obstacles, Solar wind plasma expands into such voids) producing an ambipolar potential that diverts ion flow into the void region. A surface potential is established on these leeward surfaces in order to balance the currents from the expansion-limited electron and ion populations, Wc find that there arc regions ncar the leeward wall of the craters and leeward mountain faces where solar wind ions cannot access the surface, leaving an electron-rich plasma previously identified as an "electron cloud." In this case, some new current is required to complete the closure for current balance at the surface, and we propose herein that lofted negatively charged dust is one possible (nonunique) compensating current source. Given models for both ambipolar and surface plasma processes, we consider the electrical environment around the large topographic features of the south pole (including Shoemaker crater and the highly varied terrain near Nobile crater), as derived from Goldstone radar data, We also apply our model to moving and stationary objects of differing compositions located on the surface and consider the impact of the deflected ion flow on possible hydrogen resources within the craters
Topographic effects on flow path and surface water chemistry of the Llyn Brianne catchments in Wales
Wolock, D.M.; Hornberger, G.M.; Musgrove, T.J.
1990-01-01
Topographic shape is a watershed attribute thought to influence the flow path followed by water as it traverses a catchment. Flow path, in turn, may affect the chemical composition of surface waters. Topography is quantified in the hydrological model TOPMODEL as the relative frequency distribution of the index ln( a tanB), where a is the upslope area per unit contour that drains past a point and tanB is the local surface slope. Spatial distributions of ln( a tanB) were calculated for eight catchments in Wales on a 25 m ?? 25 m grid. Among the catchments, mean observed stream H+ concentration during high flow periods was highly correlated with the mean of the ln( a tanB) distribution. The steady-state gain of a transfer function (time series) model relating H+ to discharge was positively correlated with the mean of the ln( a tanB) distribution. These results suggest that during high flow periods, both the average stream acidity and the magnitude of fluctuations in H+ are conditioned by the topographic shape of the catchment. By performing a sensitivity analysis on TOPMODEL, we also show that as the mean of the ln( a tanB) distribution for a catchment increases, so does its theoretical likelihood to produce significant quantities of surface and near-surface runoff. Our observed results in the Llyn Brianne catchments are consistent with this theoretical expectation in that surface or near-surface runoff is often higher in acidity than are deeper sources of hillslope runoff. ?? 1990.
Surface models for coupled modelling of runoff and sewer flow in urban areas.
Ettrich, N; Steiner, K; Thomas, M; Rothe, R
2005-01-01
Traditional methods fail for the purpose of simulating the complete flow process in urban areas as a consequence of heavy rainfall and as required by the European Standard EN-752 since the bi-directional coupling between sewer and surface is not properly handled. The new methodology, developed in the EUREKA-project RisUrSim, solves this problem by carrying out the runoff on the basis of shallow water equations solved on high-resolution surface grids. Exchange nodes between the sewer and the surface, like inlets and manholes, are located in the computational grid and water leaving the sewer in case of surcharge is further distributed on the surface. Dense topographical information is needed to build a model suitable for hydrodynamic runoff calculations; in urban areas, in addition, many line-shaped elements like houses, curbs, etc. guide the runoff of water and require polygonal input. Airborne data collection methods offer a great chance to economically gather densely sampled input data.
Walke, Peter; Fujita, Yasuhiko; Peeters, Wannes; Toyouchi, Shuichi; Frederickx, Wout; De Feyter, Steven; Uji-I, Hiroshi
2018-04-26
Tip-enhanced Raman scattering (TERS) microscopy is a unique analytical tool to provide complementary chemical and topographic information of surfaces with nanometric resolution. However, difficulties in reliably producing the necessary metallized scanning probe tips has limited its widespread utilisation, particularly in the case of cantilever-based atomic force microscopy. Attempts to alleviate tip related issues using colloidal or bottom-up engineered tips have so far not reported consistent probes for both Raman and topographic imaging. Here we demonstrate the reproducible fabrication of cantilever-based high-performance TERS probes for both topographic and Raman measurements, based on an approach that utilises noble metal nanowires as the active TERS probe. The tips show 10 times higher TERS contrasts than the most typically used electrochemically-etched tips, and show a reproducibility for TERS greater than 90%, far greater than found with standard methods. We show that TERS can be performed in tapping as well as contact AFM mode, with optical resolutions around or below 15 nm, and with a maximum resolution achieved in tapping-mode of 6 nm. Our work illustrates that superior TERS probes can be produced in a fast and cost-effective manner using simple wet-chemistry methods, leading to reliable and reproducible high-resolution and high-sensitivity TERS, and thus renders the technique applicable for a broad community.
Basis and methods of NASA airborne topographic mapper lidar surveys for coastal studies
Brock, John C.; Wright, C. Wayne; Sallenger, Asbury H.; Krabill, William B.; Swift, Robert N.
2002-01-01
This paper provides an overview of the basic principles of airborne laser altimetry for surveys of coastal topography, and describes the methods used in the acquisition and processing of NASA Airborne Topographic Mapper (ATM) surveys that cover much of the conterminous US coastline. This form of remote sensing, also known as "topographic lidar", has undergone extremely rapid development during the last two decades, and has the potential to contribute within a wide range of coastal scientific investigations. Various airborne laser surveying (ALS) applications that are relevant to coastal studies are being pursued by researchers in a range of Earth science disciplines. Examples include the mapping of "bald earth" land surfaces below even moderately dense vegetation in studies of geologic framework and hydrology, and determination of the vegetation canopy structure, a key variable in mapping wildlife habitats. ALS has also proven to be an excellent method for the regional mapping of geomorphic change along barrier island beaches and other sandy coasts due to storms or long-term sedimentary processes. Coastal scientists are adopting ALS as a basic method in the study of an array of additional coastal topics. ALS can provide useful information in the analysis of shoreline change, the prediction and assessment of landslides along seacliffs and headlands, examination of subsidence causing coastal land loss, and in predicting storm surge and tsunami inundation.
Hawaiian Islands Captured by Shuttle Radar Topographic Mission (SRTM)
NASA Technical Reports Server (NTRS)
2000-01-01
Launched February 11, 2000, the STS-99 Shuttle Radar Topographic Mission (SRTM) was the most ambitious Earth mapping mission to date. A 200-ft long (60 meter) mast supporting the SRTM jutted into space from the Space Shuttle Endeavour. Orbiting some 145 miles (233 kilometers) above Earth, the giant structure was deployed on February 12, 2000 and the C-band and X-band anternae mounted on it quickly went to work mapping parts of the Earth. The SRTM radar was able to penetrate clouds as well as provide its own illumination, independent of daylight, and obtained 3-dimentional topographic images of the world's surface up to the Arctic and Antarctic Circles. The mission completed 222 hours of around the clock radar mapping, gathering enough information to fill more than 20,000 CDs. This image is an example of the data required by the SRTM. This is a view of the three Hawaiian Islands; Molokai (lower left), Lanai (right), and the northwest tip of Maui (upper left). The image brightness corresponds to the strength of radar signal reflected from the ground, while colors show the elevation as measured by SRTM, ranging from blue at the lowest elevations to white at the highest elevations. This image contains 5900 feet (1800 meters) of total relief. SRTM will help local officials to better understand and prepare for volcanic, tidal wave, and earthquake activities.
Elevations and distances in the United States
,
1991-01-01
The information in this booklet was compiled to answer inquiries received by the U.S. Geological Survey from students; teachers; writers; editors; publishers of encyclopedias, almanacs, and other reference books; and people in many other fields of work. The elevations of features and distances between points in the United States were determined from surveys and topographic maps of the U.S. Geological Survey or obtained from other sources. In most cases, the elevations were determined from surveys and from 1:24,000- and 1:25,000-scale, 7.5-minute topographic quadrangle maps. In Alaska, information was taken from 1:63,360-scale, 15-minute topographic quadrangle maps. In a few cases, data were obtained from older, 1:62,500-scale, 15-minute maps; these maps are being replaced with larger-scale 7.5-minute coverage. Further information about U.S. Geological Survey products can be obtained from: U.S. Geological Survey, Earth Science Information Center, 507 National Center, Reston, VA 22092 or phone 703-860-6045.
Polcicová, Gabriela; Tino, Peter
2004-01-01
We introduce topographic versions of two latent class models (LCM) for collaborative filtering. Latent classes are topologically organized on a square grid. Topographic organization of latent classes makes orientation in rating/preference patterns captured by the latent classes easier and more systematic. The variation in film rating patterns is modelled by multinomial and binomial distributions with varying independence assumptions. In the first stage of topographic LCM construction, self-organizing maps with neural field organized according to the LCM topology are employed. We apply our system to a large collection of user ratings for films. The system can provide useful visualization plots unveiling user preference patterns buried in the data, without loosing potential to be a good recommender model. It appears that multinomial distribution is most adequate if the model is regularized by tight grid topologies. Since we deal with probabilistic models of the data, we can readily use tools from probability and information theories to interpret and visualize information extracted by our system.
Photogrammetric portrayal of Mars topography.
Wu, S.S.C.
1979-01-01
Special photogrammetric techniques have been developed to portray Mars topography, using Mariner and Viking imaging and nonimaging topographic information and earth-based radar data. Topography is represented by the compilation of maps at three scales: global, intermediate, and very large scale. The global map is a synthesis of topographic information obtained from Mariner 9 and earth-based radar, compiled at a scale of 1:25,000,000 with a contour interval of 1 km; it gives a broad quantitative view of the planet. At intermediate scales, Viking Orbiter photographs of various resolutions are used to compile detailed contour maps of a broad spectrum of prominent geologic features; a contour interval as small as 20 m has been obtained from very high resolution orbital photography. Imagery from the Viking lander facsimile cameras permits construction of detailed, very large scale (1:10) topographic maps of the terrain surrounding the two landers; these maps have a contour interval of 1 cm. This paper presents several new detailed topographic maps of Mars.-Author
Photogrammetric portrayal of Mars topography
NASA Technical Reports Server (NTRS)
Wu, S. S. C.
1979-01-01
Special photogrammetric techniques have been developed to portray Mars topography, using Mariner and Viking imaging and nonimaging topographic information and earth-based radar data. Topography is represented by the compilation of maps at three scales: global, intermediate, and very large scale. The global map is a synthesis of topographic information obtained from Mariner 9 and earth-based radar, compiled at a scale of 1:25,000,000 with a contour interval of 1 km; it gives a broad quantitative view of the planet. At intermediate scales, Viking Orbiter photographs of various resolutions are used to compile detailed contour maps of a broad spectrum of prominent geologic features; a contour interval as small as 20 m has been obtained from very high resolution orbital photography. Imagery from the Viking lander facsimile cameras permits construction of detailed, very large scale (1:10) topographic maps of the terrain surrounding the two landers; these maps have a contour interval of 1 cm. This paper presents several new detailed topographic maps of Mars.
Xu, Chen; Reece, Charles E.; Kelley, Michael J.
2016-03-22
A simplified numerical model has been developed to simulate nonlinear superconducting radiofrequency (SRF) losses on Nb surfaces. This study focuses exclusively on excessive surface resistance (R s) losses due to the microscopic topographical magnetic field enhancements. When the enhanced local surface magnetic field exceeds the superconducting critical transition magnetic field H c, small volumes of surface material may become normal conducting and increase the effective surface resistance without inducing a quench. We seek to build an improved quantitative characterization of this qualitative model. Using topographic data from typical buffered chemical polish (BCP)- and electropolish (EP)-treated fine grain niobium, we havemore » estimated the resulting field-dependent losses and extrapolated this model to the implications for cavity performance. The model predictions correspond well to the characteristic BCP versus EP high field Q 0 performance differences for fine grain niobium. Lastly, we describe the algorithm of the model, its limitations, and the effects of this nonlinear loss contribution on SRF cavity performance.« less
Das, Sayantan; Patel, Priyank Pravin; Sengupta, Somasis
2016-01-01
With myriad geospatial datasets now available for terrain information extraction and particularly streamline demarcation, there arises questions regarding the scale, accuracy and sensitivity of the initial dataset from which these aspects are derived, as they influence all other parameters computed subsequently. In this study, digital elevation models (DEM) derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER V2), Shuttle Radar Topography Mission (SRTM V4, C-Band, 3 arc-second), Cartosat -1 (CartoDEM 1.0) and topographical maps (R.F. 1:250,000 and 1:50,000), have been used to individually extract and analyze the relief, surface, size, shape and texture properties of a mountainous drainage basin. Nestled inside a mountainous setting, the basin is a semi-elongated one with high relief ratio (>90), steep slopes (25°-30°) and high drainage density (>3.5 km/sq km), as computed from the different DEMs. The basin terrain and stream network is extracted from each DEM, whose morphometric attributes are compared with the surveyed stream networks present in the topographical maps, with resampling of finer DEM datasets to coarser resolutions, to reduce scale-implications during the delineation process. Ground truth verifications for altitudinal accuracy have also been done by a GPS survey. DEMs derived from the 1:50,000 topographical map and ASTER GDEM V2 data are found to be more accurate and consistent in terms of absolute accuracy, than the other generated or available DEM data products, on basis of the morphometric parameters extracted from each. They also exhibit a certain degree of proximity to the surveyed topographical map.
NASA Technical Reports Server (NTRS)
Anderson, K. A.
1974-01-01
Papers are presented which were published as a result of a project involving the preparation of a topographical elevation contour map of Mars from all data sources available through 1969, as well as the observation of Mars by spectroscopic methods in 1971 to provide additional pressure data for topographic information. Topics of the papers include: the analysis of large-scale Martian topography variations - data preparation from earth based radar, earth based CO2 spectroscopy, and Mariners 6 and 7 CO2 spectroscopy; the analysis of water content in observed Martian white clouds; and Martian, lunar, and terrestrial crusts - a three-dimensional exercise in comparative geophysics.
Uncertainty in surface water flood risk modelling
NASA Astrophysics Data System (ADS)
Butler, J. B.; Martin, D. N.; Roberts, E.; Domuah, R.
2009-04-01
Two thirds of the flooding that occurred in the UK during summer 2007 was as a result of surface water (otherwise known as ‘pluvial') rather than river or coastal flooding. In response, the Environment Agency and Interim Pitt Reviews have highlighted the need for surface water risk mapping and warning tools to identify, and prepare for, flooding induced by heavy rainfall events. This need is compounded by the likely increase in rainfall intensities due to climate change. The Association of British Insurers has called for the Environment Agency to commission nationwide flood risk maps showing the relative risk of flooding from all sources. At the wider European scale, the recently-published EC Directive on the assessment and management of flood risks will require Member States to evaluate, map and model flood risk from a variety of sources. As such, there is now a clear and immediate requirement for the development of techniques for assessing and managing surface water flood risk across large areas. This paper describes an approach for integrating rainfall, drainage network and high-resolution topographic data using Flowroute™, a high-resolution flood mapping and modelling platform, to produce deterministic surface water flood risk maps. Information is provided from UK case studies to enable assessment and validation of modelled results using historical flood information and insurance claims data. Flowroute was co-developed with flood scientists at Cambridge University specifically to simulate river dynamics and floodplain inundation in complex, congested urban areas in a highly computationally efficient manner. It utilises high-resolution topographic information to route flows around individual buildings so as to enable the prediction of flood depths, extents, durations and velocities. As such, the model forms an ideal platform for the development of surface water flood risk modelling and mapping capabilities. The 2-dimensional component of Flowroute employs uniform flow formulae (Manning's Equation) to direct flow over the model domain, sourcing water from the channel or sea so as to provide a detailed representation of river and coastal flood risk. The initial development step was to include spatially-distributed rainfall as a new source term within the model domain. This required optimisation to improve computational efficiency, given the ubiquity of ‘wet' cells early on in the simulation. Collaboration with UK water companies has provided detailed drainage information, and from this a simplified representation of the drainage system has been included in the model via the inclusion of sinks and sources of water from the drainage network. This approach has clear advantages relative to a fully coupled method both in terms of reduced input data requirements and computational overhead. Further, given the difficulties associated with obtaining drainage information over large areas, tests were conducted to evaluate uncertainties associated with excluding drainage information and the impact that this has upon flood model predictions. This information can be used, for example, to inform insurance underwriting strategies and loss estimation as well as for emergency response and planning purposes. The Flowroute surface-water flood risk platform enables efficient mapping of areas sensitive to flooding from high-intensity rainfall events due to topography and drainage infrastructure. As such, the technology has widespread potential for use as a risk mapping tool by the UK Environment Agency, European Member States, water authorities, local governments and the insurance industry. Keywords: Surface water flooding, Model Uncertainty, Insurance Underwriting, Flood inundation modelling, Risk mapping.
NASA Astrophysics Data System (ADS)
Shi, Y.; Eissenstat, D. M.; Davis, K. J.; He, Y.
2016-12-01
Forest carbon processes are affected by, among other factors, soil moisture, soil temperature, soil nutrients and solar radiation. Most of the current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve the topographically driven hill-slope land surface heterogeneity or the spatial pattern of nutrient availability. A spatially distributed forest ecosystem model, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while soil nitrogen is transported among model grids via subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation information, while BBGC provides Flux-PIHM with leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). Model results suggest that the vegetation and soil carbon distribution is primarily constrained by nitorgen availability (affected by nitorgen transport via topographically driven subsurface flow), and also constrained by solar radiation and root zone soil moisture. The predicted vegetation and soil carbon distribution generally agrees with the macro pattern observed within the watershed. The coupled ecosystem-hydrologic model provides an important tool to study the impact of topography on watershed carbon processes, as well as the impact of climate change on water resources.
Unravelling earth flow dynamics with 3-D time series derived from UAV-SfM models
NASA Astrophysics Data System (ADS)
Clapuyt, François; Vanacker, Veerle; Schlunegger, Fritz; Van Oost, Kristof
2017-12-01
Accurately assessing geo-hazards and quantifying landslide risks in mountainous environments are gaining importance in the context of the ongoing global warming. For an in-depth understanding of slope failure mechanisms, accurate monitoring of the mass movement topography at high spatial and temporal resolutions remains essential. The choice of the acquisition framework for high-resolution topographic reconstructions will mainly result from the trade-off between the spatial resolution needed and the extent of the study area. Recent advances in the development of unmanned aerial vehicle (UAV)-based image acquisition combined with the structure-from-motion (SfM) algorithm for three-dimensional (3-D) reconstruction make the UAV-SfM framework a competitive alternative to other high-resolution topographic techniques. In this study, we aim at gaining in-depth knowledge of the Schimbrig earthflow located in the foothills of the Central Swiss Alps by monitoring ground surface displacements at very high spatial and temporal resolution using the efficiency of the UAV-SfM framework. We produced distinct topographic datasets for three acquisition dates between 2013 and 2015 in order to conduct a comprehensive 3-D analysis of the landslide. Therefore, we computed (1) the sediment budget of the hillslope, and (2) the horizontal and (3) the three-dimensional surface displacements. The multitemporal UAV-SfM based topographic reconstructions allowed us to quantify rates of sediment redistribution and surface movements. Our data show that the Schimbrig earthflow is very active, with mean annual horizontal displacement ranging between 6 and 9 m. Combination and careful interpretation of high-resolution topographic analyses reveal the internal mechanisms of the earthflow and its complex rotational structure. In addition to variation in horizontal surface movements through time, we interestingly showed that the configuration of nested rotational units changes through time. Although there are major changes in the internal structure of the earthflow in the 2013-2015 period, the sediment budget of the drainage basin is nearly in equilibrium. As a consequence, our data show that the time lag between sediment mobilization by landslides and enhanced sediment fluxes in the river network can be considerable.
On the topographic bias and density distribution in modelling the geoid and orthometric heights
NASA Astrophysics Data System (ADS)
Sjöberg, Lars E.
2018-03-01
It is well known that the success in precise determinations of the gravimetric geoid height (N) and the orthometric height (H) rely on the knowledge of the topographic mass distribution. We show that the residual topographic bias due to an imprecise information on the topographic density is practically the same for N and H, but with opposite signs. This result is demonstrated both for the Helmert orthometric height and for a more precise orthometric height derived by analytical continuation of the external geopotential to the geoid. This result leads to the conclusion that precise gravimetric geoid heights cannot be validated by GNSS-levelling geoid heights in mountainous regions for the errors caused by the incorrect modelling of the topographic mass distribution, because this uncertainty is hidden in the difference between the two geoid estimators.
Meter-Scale 3-D Models of the Martian Surface from Combining MOC and MOLA Data
NASA Technical Reports Server (NTRS)
Soderblom, Laurence A.; Kirk, Randolph L.
2003-01-01
We have extended our previous efforts to derive through controlled photoclinometry, accurate, calibrated, high-resolution topographic models of the martian surface. The process involves combining MGS MOLA topographic profiles and MGS MOC Narrow Angle images. The earlier work utilized, along with a particular MOC NA image, the MOLA topographic profile that was acquired simultaneously, in order to derive photometric and scattering properties of the surface and atmosphere so as to force the low spatial frequencies of a one-dimensional MOC photoclinometric model to match the MOLA profile. Both that work and the new results reported here depend heavily on successful efforts to: 1) refine the radiometric calibration of MOC NA; 2) register the MOC to MOLA coordinate systems and refine the pointing; and 3) provide the ability to project into a common coordinate system, simultaneously acquired MOC and MOLA with a single set of SPICE kernels utilizing the USGS ISIS cartographic image processing tools. The approach described in this paper extends the MOC-MOLA integration and cross-calibration procedures from one-dimensional profiles to full two-dimensional photoclinometry and image simulations. Included are methods to account for low-frequency albedo variations within the scene.
Estimating net solar radiation using Landsat Thematic Mapper and digital elevation data
NASA Technical Reports Server (NTRS)
Dubayah, R.
1992-01-01
A radiative transfer algorithm is combined with digital elevation and satellite reflectance data to model spatial variability in net solar radiation at fine spatial resolution. The method is applied to the tall-grass prairie of the 16 x 16 sq km FIFE site (First ISLSCP Field Experiment) of the International Satellite Land Surface Climatology Project. Spectral reflectances as measured by the Landsat Thematic Mapper (TM) are corrected for atmospheric and topographic effects using field measurements and accurate 30-m digital elevation data in a detailed model of atmosphere-surface interaction. The spectral reflectances are then integrated to produce estimates of surface albedo in the range 0.3-3.0 microns. This map of albedo is used in an atmospheric and topographic radiative transfer model to produce a map of net solar radiation. A map of apparent net solar radiation is also derived using only the TM reflectance data, uncorrected for topography, and the average field-measured downwelling solar irradiance. Comparison with field measurements at 10 sites on the prairie shows that the topographically derived radiation map accurately captures the spatial variability in net solar radiation, but the apparent map does not.
Laser electro-optic system for rapid three-dimensional /3-D/ topographic mapping of surfaces
NASA Technical Reports Server (NTRS)
Altschuler, M. D.; Altschuler, B. R.; Taboada, J.
1981-01-01
It is pointed out that the generic utility of a robot in a factory/assembly environment could be substantially enhanced by providing a vision capability to the robot. A standard videocamera for robot vision provides a two-dimensional image which contains insufficient information for a detailed three-dimensional reconstruction of an object. Approaches which supply the additional information needed for the three-dimensional mapping of objects with complex surface shapes are briefly considered and a description is presented of a laser-based system which can provide three-dimensional vision to a robot. The system consists of a laser beam array generator, an optical image recorder, and software for controlling the required operations. The projection of a laser beam array onto a surface produces a dot pattern image which is viewed from one or more suitable perspectives. Attention is given to the mathematical method employed, the space coding technique, the approaches used for obtaining the transformation parameters, the optics for laser beam array generation, the hardware for beam array coding, and aspects of image acquisition.
Basal-topographic control of stationary ponds on a continuously moving landslide
Coe, J.A.; McKenna, J.P.; Godt, J.W.; Baum, R.L.
2009-01-01
The Slumgullion landslide in the San Juan Mountains of southwestern Colorado has been moving for at least the last few hundred years and has multiple ponds on its surface. We have studied eight ponds during 30 trips to the landslide between July 1998 and July 2007. During each trip, we have made observations on the variability in pond locations and water levels, taken ground-based photographs to document pond water with respect to moving landslide material and vegetation, conducted Global Positioning System surveys of the elevations of water levels and mapped pond sediments on the landslide surface. Additionally, we have used stereo aerial photographs taken in October 1939, October 1940 and July 2000 to measure topographic profiles of the eight pond locations, as well as a longitudinal profile along the approximate centerline of the landslide, to examine topographic changes over a 60- to 61-year period of time. Results from field observations, analyses of photographs, mapping and measurements indicate that all pond locations have remained spatially stationary for 60-300 years while landslide material moves through these locations. Water levels during the observation period were sensitive to changes in the local, spring-fed, stream network, and to periodic filling of pond locations by sediment from floods, hyperconcentrated flows, mud flows and debris flows. For pond locations to remain stationary, the locations must mimic depressions along the basal surface of the landslide. The existence of such depressions indicates that the topography of the basal landslide surface is irregular. These results suggest that, for translational landslides that have moved distances larger than the dimensions of the largest basal topographic irregularities (about 200 m at Slumgullion), landslide surface morphology can be used as a guide to the morphology of the basal slip surface. Because basal slip surface morphology can affect landslide stability, kinematic models and stability analyses of translational landslides should attempt to incorporate irregular basal surface topography. Additional implications for moving landslides where basal topography controls surface morphology include the following: dateable sediments or organic material from basal layers of stationary ponds will yield ages that are younger than the date of landslide initiation, and it is probable that other landslide surface features such as faults, streams, springs and sinks are also controlled by basal topography. The longitudinal topographic profile indicated that the upper part of the Slumgullion landslide was depleted at a mean vertical lowering rate of 5.6 cm/yr between 1939 and 2000, while the toe advanced at an average rate of 1.5 m/yr during the same period. Therefore, during this 61-year period, neither the depletion of material at the head of the landslide nor continued growth of the landslide toe has decreased the overall movement rate of the landslide. Continued depletion of the upper part of the landslide, and growth of the toe, should eventually result in stabilization of the landslide. Copyright ?? 2008 John Wiley & Sons, Ltd.
The influence of topography on Titan’s atmospheric circulation and hydrologic cycle
NASA Astrophysics Data System (ADS)
Lora, Juan M.; Faulk, Sean; Mitchell, Jonathan
2017-10-01
Titan’s atmospheric circulation is a dominant driver of the global methane hydrologic cycle—producing weather and a seasonal climate cycle—while interactions between the surface and the troposphere strongly constrain regional climates, and contribute to the differentiation between Titan’s low latitude deserts and high latitude lake districts. Yet the influence of surface topography on the atmospheric circulation has only been studied in a few instances, and no published work has investigated the coupling between topographical forcing and Titan’s hydrologic cycle. In this work, we examine the impacts of global topography in the Titan Atmospheric Model (TAM), which includes a robust representation of the methane cycle. We focus in particular on the influence of large-scale topographical features on the atmospheric flow, atmospheric moisture transport, and cloud formation. High latitude transient weather systems have previously been identified as important contributors to global atmospheric methane transport, and here we examine whether topographically-forced stationary or quasi-permanent systems are also important, as they are in Earth’s hydrologic cycle.
Tuning and predicting the wetting of nanoengineered material surface
NASA Astrophysics Data System (ADS)
Ramiasa-MacGregor, M.; Mierczynska, A.; Sedev, R.; Vasilev, K.
2016-02-01
The wetting of a material can be tuned by changing the roughness on its surface. Recent advances in the field of nanotechnology open exciting opportunities to control macroscopic wetting behaviour. Yet, the benchmark theories used to describe the wettability of macroscopically rough surfaces fail to fully describe the wetting behaviour of systems with topographical features at the nanoscale. To shed light on the events occurring at the nanoscale we have utilised model gradient substrata where surface nanotopography was tailored in a controlled and robust manner. The intrinsic wettability of the coatings was varied from hydrophilic to hydrophobic. The measured water contact angle could not be described by the classical theories. We developed an empirical model that effectively captures the experimental data, and further enables us to predict the wetting of surfaces with nanoscale roughness by considering the physical and chemical properties of the material. The fundamental insights presented here are important for the rational design of advanced materials having tailored surface nanotopography with predictable wettability.The wetting of a material can be tuned by changing the roughness on its surface. Recent advances in the field of nanotechnology open exciting opportunities to control macroscopic wetting behaviour. Yet, the benchmark theories used to describe the wettability of macroscopically rough surfaces fail to fully describe the wetting behaviour of systems with topographical features at the nanoscale. To shed light on the events occurring at the nanoscale we have utilised model gradient substrata where surface nanotopography was tailored in a controlled and robust manner. The intrinsic wettability of the coatings was varied from hydrophilic to hydrophobic. The measured water contact angle could not be described by the classical theories. We developed an empirical model that effectively captures the experimental data, and further enables us to predict the wetting of surfaces with nanoscale roughness by considering the physical and chemical properties of the material. The fundamental insights presented here are important for the rational design of advanced materials having tailored surface nanotopography with predictable wettability. Electronic supplementary information (ESI) available: Detailed characterization of the nanorough substrates and model derivation. See DOI: 10.1039/c5nr08329j
Ceres Topographic Globe Animation
2015-07-28
This frame from an animation shows a color-coded map from NASA Dawn mission revealing the highs and lows of topography on the surface of dwarf planet Ceres. The color scale extends 3.7 miles (6 kilometers) below the surface in purple to 3.7 miles (6 kilometers) above the surface in brown. The brightest features (those appearing nearly white) -- including the well-known bright spots within a crater in the northern hemisphere -- are simply reflective areas, and do not represent elevation. The topographic map was constructed from analyzing images from Dawn's framing camera taken from varying sun and viewing angles. The map was combined with an image mosaic of Ceres and projected onto a 3-D shape model of the dwarf planet to create the animation. http://photojournal.jpl.nasa.gov/catalog/PIA19605
Mapping visual cortex in monkeys and humans using surface-based atlases
NASA Technical Reports Server (NTRS)
Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.
2001-01-01
We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.
Geomorphometry in coastal morphodynamics
NASA Astrophysics Data System (ADS)
Guisado-Pintado, Emilia; Jackson, Derek
2017-04-01
Geomorphometry is a cross-cutting discipline that has interwoven itself into multiple research themes due to its ability to encompass topographic quantification on many fronts. Its operational focus is largely defined as the extraction of land-surface parameters and earth surface characterisation. In particular, the coastal sciences have been enriched by the use of digital terrain production techniques both on land and in the nearshore/marine area. Numerous examples exist in which the utilisation of field instrumentation (e.g. LIDAR, GPS, Terrestrial Laser Scanning, multi-beam echo-sounders) are used for surface sampling and development of Digital Terrain Models, monitoring topographic change and creation of nearshore bathymetry, and have become central elements in modern investigations of coastal morphodynamics. The coastal zone is a highly dynamic system that embraces variable and at times, inter-related environments (sand dunes, sandy beaches, shoreline and nearshore) all of which require accurate and integrated monitoring. Although coastal studies can be widely diverse (with interconnected links to other related disciplines such as geology or biology), the characterisation of the landforms (coastal geomorphology) and associated processes (morphodynamics, hydrodynamics, aeolian processes) is perhaps where geomorphometry (topo-bathymetry quantification) is best highlighted. In this respect, many tools have been developed (or improved upon) for the acquisition of topographic data that now commands a high degree of accuracy, simplicity, and ultimately acquisition cost reduction. We present a series of field data acquisitions examples that have produced land surface characterisation using a range of techniques including traditional GPS surveys to more recent Terrestrial Laser Scanning and airborne LIDAR. These have been conducted within beach and dune environments and have helped describe erosion and depositional processes driven by wind and wave energy (high-energy events). Other examples include long-term monitoring of beach dynamics and evolution, examining the impact of natural hazards (surges, storms, sea-level rise) on coastal areas using GPS-linked drones to acquire repeat topographic (point clouds) surveys over inter-tidal and dune edge/back beach zones. Nearshore 3D bathymetric information generated from navigation charts, echo-sonar instruments or more recently from Satellite (LANDSAT) imagery is also highlighted as a key dataset in geomorphometry. The recent technological developments in 3D data acquisition within the coastal and marine environment now offers exciting opportunities in which to reveal how these systems function across multiple time and space scales. Whilst this can offer new insights, it also presents significant analytical challenges due to the sheer volume of data generated, the necessity of specialist personnel and software to process the data. Geomorphometry can help play a key role in this progression and take analysis within coastal science to new levels.
Topographic attributes as a guide for automated detection or highlighting of geological features
NASA Astrophysics Data System (ADS)
Viseur, Sophie; Le Men, Thibaud; Guglielmi, Yves
2015-04-01
Photogrammetry or LIDAR technology combined with photography allow geoscientists to obtain 3D high-resolution numerical representations of outcrops, generally termed as Digital Outcrop Models (DOM). For over a decade, these 3D numerical outcrops serve as support for precise and accurate interpretations of geological features such as fracture traces or plans, strata, facies mapping, etc. These interpretations have the benefit to be directly georeferenced and embedded into the 3D space. They are then easily integrated into GIS or geomodeler softwares for modelling in 3D the subsurface geological structures. However, numerical outcrops generally represent huge data sets that are heavy to manipulate and hence to interpret. This may be particularly tedious as soon as several scales of geological features must be investigated or as geological features are very dense and imbricated. Automated tools for interpreting geological features from DOMs would be then a significant help to process these kinds of data. Such technologies are commonly used for interpreting seismic or medical data. However, it may be noticed that even if many efforts have been devoted to easily and accurately acquire 3D topographic point clouds and photos and to visualize accurate 3D textured DOMs, few attentions have been paid to the development of algorithms for automated detection of the geological structures from DOMs. The automatic detection of objects on numerical data generally assumes that signals or attributes computed from this data allows the recognition of the targeted object boundaries. The first step consists then in defining attributes that highlight the objects or their boundaries. For DOM interpretations, some authors proposed to use differential operators computed on the surface such as normal or curvatures. These methods generally extract polylines corresponding to fracture traces or bed limits. Other approaches rely on the PCA technology to segregate different topographic plans. This approach assume that structural or sedimentary features coincide with topographic surface parts. In this work, several topographic attributes are proposed to highlight geological features on outcrops. Among them, differential operators are used but also combined and processed to display particular topographic shapes. Moreover, two kinds of attributes are used: unsupervised and supervised attributes. The supervised attributes integrate an a priori knowledge about the objects to extract (e.g.: a preferential orientation of fracture surfaces, etc.). This strategy may be compared to the one used for seismic interpretation. Indeed, many seismic attributes have been proposed to highlight geological structures hardly observable due to data noise. The same issue exist with topographic data: plants, erosions, etc. generate noise that make interpretation sometimes hard. The proposed approach has been applied on real case studies to show how it could help the interpretation of geological features. The obtained 'topographic attributes' are shown and discussed.
Elevation maps of the San Francisco Bay region, California, a digital database
Graham, Scott E.; Pike, Richard J.
1998-01-01
PREFACE: Topography, the configuration of the land surface, plays a major role in various natural processes that have helped shape the ten-county San Francisco Bay region and continue to affect its development. Such processes include a dangerous type of landslide, the debris flow (Ellen and others, 1997) as well as other modes of slope failure that damage property but rarely threaten life directly?slumping, translational sliding, and earthflow (Wentworth and others, 1997). Different types of topographic information at both local and regional scales are helpful in assessing the likelihood of slope failure and the mapping the extent of its past activity, as well as addressing other issues in hazard mitigation and land-use policy. The most useful information is quantitative.
Geologic and mineral and water resources investigations in western Colorado using ERTS-1 data
NASA Technical Reports Server (NTRS)
Knepper, D. H., Jr. (Compiler)
1973-01-01
The author has identified the following significant results. Geologic interpretation of ERTS-1 imagery is dependent on recognition of the distribution, continuity, trend, and geometry of key surface features. In the examination of ERTS-1 imagery, lithology must be interpreted largely from the geomorphic expression of the terrain. ERTS-1 imagery is extremely useful in detecting local structures. Most mapped structures are topographically-expressed. Consequently, ERTS-1 imagery acquired during mid-winter, when the solar illumination angle is low, provides the largest amount of structural information. Stereoscopic analyses of ERTS-1 images significantly aid geologic interpretation. Positive transparencies of ERTS-1 images (1:1,000,000) commonly contain more geologic information than can be adequately annotated during geologic interpretation.
Covariance of biophysical data with digital topograpic and land use maps over the FIFE site
NASA Technical Reports Server (NTRS)
Davis, F. W.; Schimel, D. S.; Friedl, M. A.; Michaelsen, J. C.; Kittel, T. G. F.; Dubayah, R.; Dozier, J.
1992-01-01
This paper discusses the biophysical stratification of the FIFE site, implementation of the stratification utilizing geographic information system methods, and validation of the stratification with respect to field measurements of biomass, Bowen ratio, soil moisture, and the greenness vegetation index (GVI) derived from TM satellite data. Maps of burning and topographic position were significantly associated with variation in GVI, biomass, and Bowen ratio. The stratified design did not significantly alter the estimated site-wide means for surface climate parameters but accounted for between 25 and 45 percent of the sample variance depending on the variable.
Definition of Physical Height Systems for Telluric Planets and Moons
NASA Astrophysics Data System (ADS)
Tenzer, Robert; Foroughi, Ismael; Sjöberg, Lars E.; Bagherbandi, Mohammad; Hirt, Christian; Pitoňák, Martin
2018-01-01
In planetary sciences, the geodetic (geometric) heights defined with respect to the reference surface (the sphere or the ellipsoid) or with respect to the center of the planet/moon are typically used for mapping topographic surface, compilation of global topographic models, detailed mapping of potential landing sites, and other space science and engineering purposes. Nevertheless, certain applications, such as studies of gravity-driven mass movements, require the physical heights to be defined with respect to the equipotential surface. Taking the analogy with terrestrial height systems, the realization of height systems for telluric planets and moons could be done by means of defining the orthometric and geoidal heights. In this case, however, the definition of the orthometric heights in principle differs. Whereas the terrestrial geoid is described as an equipotential surface that best approximates the mean sea level, such a definition for planets/moons is irrelevant in the absence of (liquid) global oceans. A more natural choice for planets and moons is to adopt the geoidal equipotential surface that closely approximates the geometric reference surface (the sphere or the ellipsoid). In this study, we address these aspects by proposing a more accurate approach for defining the orthometric heights for telluric planets and moons from available topographic and gravity models, while adopting the average crustal density in the absence of reliable crustal density models. In particular, we discuss a proper treatment of topographic masses in the context of gravimetric geoid determination. In numerical studies, we investigate differences between the geodetic and orthometric heights, represented by the geoidal heights, on Mercury, Venus, Mars, and Moon. Our results reveal that these differences are significant. The geoidal heights on Mercury vary from - 132 to 166 m. On Venus, the geoidal heights are between - 51 and 137 m with maxima on this planet at Atla Regio and Beta Regio. The largest geoid undulations between - 747 and 1685 m were found on Mars, with the extreme positive geoidal heights under Olympus Mons in Tharsis region. Large variations in the geoidal geometry are also confirmed on the Moon, with the geoidal heights ranging from - 298 to 461 m. For comparison, the terrestrial geoid undulations are mostly within ± 100 m. We also demonstrate that a commonly used method for computing the geoidal heights that disregards the differences between the gravity field outside and inside topographic masses yields relatively large errors. According to our estimates, these errors are - 0.3/+ 3.4 m for Mercury, 0.0/+ 13.3 m for Venus, - 1.4/+ 125.6 m for Mars, and - 5.6/+ 45.2 m for the Moon.
Kilometer-Scale Topographic Roughness of Mercury: Correlation with Geologic Features and Units
NASA Technical Reports Server (NTRS)
Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.
2014-01-01
We present maps of the topographic roughness of the northern circumpolar area of Mercury at kilometer scales. The maps are derived from range profiles obtained by the Mercury Laser Altimeter (MLA) instrument onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. As measures of roughness, we used the interquartile range of profile curvature at three baselines: 0.7 kilometers, 2.8 kilometers, and 11 kilometers. The maps provide a synoptic overview of variations of typical topographic textures. They show a dichotomy between the smooth northern plains and rougher, more heavily cratered terrains. Analysis of the scale dependence of roughness indicates that the regolith on Mercury is thicker than on the Moon by approximately a factor of three. Roughness contrasts within northern volcanic plains of Mercury indicate a younger unit inside Goethe basin and inside another unnamed stealth basin. These new data permit interplanetary comparisons of topographic roughness.
NASA Astrophysics Data System (ADS)
Ustione, A.; Cricenti, A.; Piacentini, M.; Felici, A. C.
2006-09-01
A new implementation of a shear-force microscope is described that uses a shear-force detection system to perform topographical imaging of large areas (˜1×1mm2). This implementation finds very interesting application in the study of archeological or artistic samples. Three dc motors are used to move a sample during a scan, allowing the probe tip to follow the surface and to face height differences of several tens of micrometers. This large-area topographical imaging mode exploits new subroutines that were added to the existing homemade software; these subroutines were created in Microsoft VISUAL BASIC 6.0 programming language. With this new feature our shear-force microscope can be used to study topographical details over large areas of archaeological samples in a nondestructive way. We show results detecting worn reliefs over a coin.
The TOPSAR interferometric radar topographic mapping instrument
NASA Technical Reports Server (NTRS)
Zebker, Howard A.; Madsen, Soren N.; Martin, Jan; Alberti, Giovanni; Vetrella, Sergio; Cucci, Alessandro
1992-01-01
The NASA DC-8 AIRSAR instrument was augmented with a pair of C-band antennas displaced across track to form an interferometer sensitive to topographic variations of the Earth's surface. The antennas were developed by the Italian consortium Co.Ri.S.T.A., under contract to the Italian Space Agency (ASI), while the AIRSAR instrument and modifications to it supporting TOPSAR were sponsored by NASA. A new data processor was developed at JPL for producing the topographic maps, and a second processor was developed at Co.Ri.S.T.A. All the results presented below were processed at JPL. During the 1991 DC-8 flight campaign, data were acquired over several sites in the United States and Europe, and topographic maps were produced from several of these flight lines. Analysis of the results indicate that statistical errors are in the 2-3 m range for flat terrain and in the 4-5 m range for mountainous areas.
Mazet, Lucie; Jesse, Stephen; Niu, Gang; ...
2016-06-20
Here, all scanning probe microscopies are subjected to topographic cross-talk, meaning the topography-related contrast in functional images. Here, we investigate the signatures of indirect topographic cross-talk in piezoresponse force microscopy (PFM) imaging and spectroscopy and its decoupling using band excitation (BE) method in ferroelectric BaTiO 3 deposited on the Si substrates with free standing nanopillars of diameter 50 nm. Comparison between the single-frequency PFM and BE-PFM results shows that the measured signal can be significantly distorted by topography-induced shifts in the contact resonance frequency and cantilever transfer function. However, with proper correction, such shifts do not affect PFM imaging andmore » hysteresis loop measurements. This suggests the necessity of an advanced approach, such as BE-PFM, for detection of intrinsic sample piezoresponse on the topographically non-uniform surfaces.« less
Modelling topographic potential for erosion and deposition using GIS
Helena Mitasova; Louis R. Iverson
1996-01-01
Modelling of erosion and deposition in complex terrain within a geographical information system (GIS) requires a high resolution digital elevation model (DEM), reliable estimation of topographic parameters, and formulation of erosion models adequate for digital representation of spatially distributed parameters. Regularized spline with tension was integrated within a...
NASA Technical Reports Server (NTRS)
Hughes, S. S.; Sakimoto, S. E.H.; Gregg, T. K. P.; Chadwick, D. J.; Brady, S. B.; Farley, M. A.; Holmes, A. A. .; Semple, A. M.; Weren, S.L.
2004-01-01
Topographic profiles and surface characteristics of small (5 - 25 km diameter) plains-style shield volcanoes on the eastern Snake River Plain (ESRP) provide a method to evaluate eruptive processes and magmatic evolution on Martian volcanic plains. The ESRP is an ideal place to observe Mars-like volcanic features where hundreds of small monogenetic basaltic shields dominate the volcanic-sedimentary depositional sequence, and numerous planetary analogues are evident: coalescent mafic shields, hydromagmatic explosive eruptions, the interaction of lava flows with surficial water and glacial ice, and abundant eolian sand and loess. Single flows cannot be correlated over great distances, and are spatially restricted. These relations are useful for planetary exploration when inferring volcanic evolutionary patterns in lava plains represented by numerous eruptive vents. High spatial resolution imagery and digital topographic data for Mars from MOC, MOLA, and THEMIS is allowing for improvements in the level of detail of stratigraphic mapping of fields of small (< 25 km in diameter) volcanoes as well as studies of the morphological characteristics of individual volcanoes. In order to compare Mars and Earth volcanic features, elevation data from U.S.G.S. 10-meter digital elevation models (DEMs) and high-precision GPS field measurements are used in this study to generate approx. 20m spacing topographic profiles from which slope and surface morphology can be extracted. Average ESRP flank and crater slopes are calculated using 100 - 200 m spacing for optimum comparison to MOLA data, and to reduce the effects of surface irregularities.
Surface area and topographical complexity are fundamental attributes of shallow tropical coral reefs and can be used to estimate habitat for fish and invertebrates. This study presents empirical methods for estimating surface area provided by sponges and gorgonians in the Central...
Bora Bora, Tahaa, and Raiatea, French Polynesia, Landsat and SIR-C Images Compared to SRTM Shaded
NASA Technical Reports Server (NTRS)
2005-01-01
Bora Bora, Tahaa, and Raiatea (top to bottom) are Polynesian Islands about 220 kilometers (135 miles) west-northwest of Tahiti in the South Pacific. Each of the islands is surrounded by a coral reef and its associated islets ('motus') that enclose a lagoon. Actually, as seen here, Tahaa and Raiatea are close enough together to share a common lagoon and reef. These islands are volcanic in origin and were built up from the sea floor by lava extrusions millions of years ago. None is now active, and all are deeply eroded. This display compares three differing 'views from space' of these islands. On the left, an image from the Landsat 7 satellite shows the islands as they might have appeared to an astronaut in orbit in 1999 (but a little sharper and with atmospheric haze suppressed). In the middle is an image created from data gathered by the third-generation Shuttle Imaging Radar (SIR-C), flown in 1994. On the right is a graphic illustrating elevation data gathered by the Shuttle Radar Topography Mission (SRTM) in 2000. Each of these images shows very different information as compared to the other two. Landsat sees clouds, which are almost always above these islands, blocking the view of the terrain. It also readily sees through shallow water down to the reefs. SIR-C sees the waves and other effects of winds upon the ocean surface. It does not look through water to see the reefs, but it clearly separates land and water. It also provides a bolder (but distorted) view of the islands' topographic patterns. With the ability of radar to see through clouds and provision of its own illumination, the SIR-C view is not limited by clouds nor their shadows. SRTM was designed to provide new information that is missing in the Landsat and SIR-C views. Specifically, SRTM created the world's first near-global, detailed elevation model. Natural topographic shading in Landsat imagery and radar topographic shadowing of SIR-C give some evidence of the shape of the ground but do not actually measure topographic height. They therefore have not fully characterized the three-dimensional shape of landforms. The shape and height of Earth's landforms affects nearly every natural process and human activity that occurs at Earth's surface, including vegetative growth, water supply, transportation, and radio communication. Thus, the new information provided by SRTM is highly valuable in understanding and interacting with our environment. The Landsat image is an enhanced display of natural visible color (Landsat bands 1,2,3 in blue, green, red). As is evident from the cloud shadows, the morning sun shines from the northeast (upper right). The SIR-C image displays the L-band radar data (23.5 centimeter wavelength, vertical transmit and receive) in red, C-band radar data (5.8 centimeter wavelength, vertical transmit and receive) in green, and a difference of the two (L minus C) in blue. Cosmetic color adjustments were used to enhance the green and blue display of land and water. The 'side-looking' transmitted radar illumination was from the northeast as the Space Shuttle Endeavour passed from northwest to southeast on a descending orbit. Two visualization methods were combined to produce the SRTM image: color coding of topographic height plus shading of the topographic model. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. Shading was derived by computing topographic slope in the northeast-southwest direction, so that northeast slopes appear bright and southwest slopes appear dark, generally consistent with the Landsat and SIR-C illumination directions. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C. Size: 73 kilometers (45 miles) by 42 kilometers (26 miles) Location: 16.7 degrees South latitude, 151.5 degrees West longitude Orientation: North toward the top right Image Data: Landsat (left), SIR-C (middle), shaded and colored SRTM elevation (right) Date Acquired: July 20, 1999 (Landsat), October 1994 (SIR-C), February 2000 (SRTM)NASA Astrophysics Data System (ADS)
Mura, José C.; Paradella, Waldir R.; Gama, Fabio F.; Santos, Athos R.; Galo, Mauricio; Camargo, Paulo O.; Silva, Arnaldo Q.; Silva, Guilherme G.
2014-10-01
We present an investigation of surface deformation using Differential SAR Interferometry (DInSAR) time-series carried out in an active open pit iron mine, the N5W, located in the Carajás Mineral Province (Brazilian Amazon region), using 33 TerraSAR-X (TSX-1) scenes. This mine has presented a historical of instability and surface monitoring measurements over sectors of the mine (pit walls) have been done based on ground based radar. Two complementary approaches were used: the standard DInSAR configuration, as an early warning of the slope instability conditions, and the DInSAR timeseries analysis. In order to decrease the topographic phase error a high resolution DEM was generated based on a stereo GeoEye-1 pair. Despite the fact that a DinSAR contains atmospheric and topographic phase artifacts and noise, it was possible to detect deformation in some interferometric pairs, covering pit benches, road ramps and waste piles. The timeseries analysis was performed using the 31 interferometric pairs, which were selected based on the highest mean coherence of a stack of 107 interferograms, presenting less phase unwrapping errors. The time-series deformation was retrieved by the Least-Squares (LS) solution using an extension of the Singular Value Decomposition (SVD), with a set of additional weighted constrain on the acceleration deformation. The atmospheric phase artifacts were filtered in the space-time domain and the DEM height errors were estimated based on the normal baseline diversity. The DInSAR time-series investigation showed good results for monitoring surface displacement in the N5W mine located in a tropical rainforest environment, providing very useful information about the ground movement for alarm, planning and risk assessment.
NASA Astrophysics Data System (ADS)
Menapace, Joseph A.
2010-11-01
Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm2 at 1053 nm), visible (>18 J/cm2 at 527 nm), and ultraviolet (>10 J/cm2 at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chain or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture largeaperture damage resistant optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menapace, J A
2010-10-27
Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm{sup 2} at 1053 nm), visible (>18 J/cm{sup 2} at 527 nm), and ultraviolet (>10 J/cm{sup 2} at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chainmore » or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large-aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture large-aperture damage resistant optics.« less
FEX: A Knowledge-Based System For Planimetric Feature Extraction
NASA Astrophysics Data System (ADS)
Zelek, John S.
1988-10-01
Topographical planimetric features include natural surfaces (rivers, lakes) and man-made surfaces (roads, railways, bridges). In conventional planimetric feature extraction, a photointerpreter manually interprets and extracts features from imagery on a stereoplotter. Visual planimetric feature extraction is a very labour intensive operation. The advantages of automating feature extraction include: time and labour savings; accuracy improvements; and planimetric data consistency. FEX (Feature EXtraction) combines techniques from image processing, remote sensing and artificial intelligence for automatic feature extraction. The feature extraction process co-ordinates the information and knowledge in a hierarchical data structure. The system simulates the reasoning of a photointerpreter in determining the planimetric features. Present efforts have concentrated on the extraction of road-like features in SPOT imagery. Keywords: Remote Sensing, Artificial Intelligence (AI), SPOT, image understanding, knowledge base, apars.
NASA Technical Reports Server (NTRS)
Hood, Robbie E.; Radley, C.D.; LaFontaine, F.J.
2008-01-01
Inland flooding from tropical cyclones can be a significant factor in storm-related deaths in the United States and other countries. Information collected during NASA tropical cyclone field studies suggest surface water and flooding induced by tropical cyclone precipitation can be detected and therefore monitored using passive microwave airborne radiometers. In particular, the 10.7 GHz frequency of the NASA Advanced Microwave Precipitation Radiometer (AMPR) flown on the NASA ER-2 has demonstrated high resolution detection of anomalous surface water and flooding in numerous situations. This presentation will highlight the analysis of three cases utilizing primarily satellite and airborne radiometer data. Radiometer data from the 1998 Third Convection and Moisture Experiment (CAMEX-3) are utilized to detect surface water during landfalling Hurricane Georges in both the Dominican Republic and Louisiana. A third case is landfalling Tropical Storm Gert in Eastern Mexico during the Tropical Cloud Systems and Processes (TCSP) experiment in 2005. AMPR data are compared to topographic data and vegetation indices to evaluate the significance of the surface water signature visible in the 10.7 GHz information. The results of this study suggest the benefit of an aircraft 10 GHz radiometer to provide real-time observations of surface water conditions as part of a multi-sensor flood monitoring network.
Bsat, Suzan; Amin Yavari, Saber; Munsch, Maximilian; Valstar, Edward R.; Zadpoor, Amir A.
2015-01-01
Advanced additive manufacturing techniques such as electron beam melting (EBM), can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be bio-functionalized to promote bone growth. In the current work, EBM porous Ti6Al4V alloy was exposed to an alkali acid heat (AlAcH) treatment to bio-functionalize the surface of the porous structure. Various molar concentrations (3, 5, 10M) and immersion times (6, 24 h) of the alkali treatment were used to determine optimal parameters. The apatite forming ability of the samples was evaluated using simulated body fluid (SBF) immersion testing. The micro-topography and surface chemistry of AlAcH treated samples were evaluated before and after SBF testing using scanning electron microscopy and energy dispersive X-ray spectroscopy. The AlAcH treatment successfully modified the topographical and chemical characteristics of EBM porous titanium surface creating nano-topographical features ranging from 200–300 nm in size with a titania layer ideal for apatite formation. After 1 and 3 week immersion in SBF, there was no Ca or P present on the surface of as manufactured porous titanium while both elements were present on all AlAcH treated samples except those exposed to 3M, 6 h alkali treatment. An increase in molar concentration and/or immersion time of alkali treatment resulted in an increase in the number of nano-topographical features per unit area as well as the amount of titania on the surface. PMID:28788021
Bsat, Suzan; Yavari, Saber Amin; Munsch, Maximilian; Valstar, Edward R; Zadpoor, Amir A
2015-04-08
Advanced additive manufacturing techniques such as electron beam melting (EBM), can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be bio-functionalized to promote bone growth. In the current work, EBM porous Ti6Al4V alloy was exposed to an alkali acid heat (AlAcH) treatment to bio-functionalize the surface of the porous structure. Various molar concentrations (3, 5, 10M) and immersion times (6, 24 h) of the alkali treatment were used to determine optimal parameters. The apatite forming ability of the samples was evaluated using simulated body fluid (SBF) immersion testing. The micro-topography and surface chemistry of AlAcH treated samples were evaluated before and after SBF testing using scanning electron microscopy and energy dispersive X-ray spectroscopy. The AlAcH treatment successfully modified the topographical and chemical characteristics of EBM porous titanium surface creating nano-topographical features ranging from 200-300 nm in size with a titania layer ideal for apatite formation. After 1 and 3 week immersion in SBF, there was no Ca or P present on the surface of as manufactured porous titanium while both elements were present on all AlAcH treated samples except those exposed to 3M, 6 h alkali treatment. An increase in molar concentration and/or immersion time of alkali treatment resulted in an increase in the number of nano-topographical features per unit area as well as the amount of titania on the surface.
NASA Astrophysics Data System (ADS)
Burov, E.; Guillou-Frottier, L.
2005-05-01
Current debates on the existence of mantle plumes largely originate from interpretations of supposed signatures of plume-induced surface topography that are compared with predictions of geodynamic models of plume-lithosphere interactions. These models often inaccurately predict surface evolution: in general, they assume a fixed upper surface and consider the lithosphere as a single viscous layer. In nature, the surface evolution is affected by the elastic-brittle-ductile deformation, by a free upper surface and by the layered structure of the lithosphere. We make a step towards reconciling mantle- and tectonic-scale studies by introducing a tectonically realistic continental plate model in large-scale plume-lithosphere interaction. This model includes (i) a natural free surface boundary condition, (ii) an explicit elastic-viscous(ductile)-plastic(brittle) rheology and (iii) a stratified structure of continental lithosphere. The numerical experiments demonstrate a number of important differences from predictions of conventional models. In particular, this relates to plate bending, mechanical decoupling of crustal and mantle layers and tension-compression instabilities, which produce transient topographic signatures such as uplift and subsidence at large (>500 km) and small scale (300-400, 200-300 and 50-100 km). The mantle plumes do not necessarily produce detectable large-scale topographic highs but often generate only alternating small-scale surface features that could otherwise be attributed to regional tectonics. A single large-wavelength deformation, predicted by conventional models, develops only for a very cold and thick lithosphere. Distinct topographic wavelengths or temporarily spaced events observed in the East African rift system, as well as over French Massif Central, can be explained by a single plume impinging at the base of the continental lithosphere, without evoking complex asthenospheric upwelling.
Thickness and topographic inspection of RPG contact lenses by optical triangulation
NASA Astrophysics Data System (ADS)
Costa, Manuel F. M.
2001-06-01
Optical triangulation as a non-destructive test method extensively proved its usefulness on the dimensional and topographic inspection of a large range of objects and surfaces. In this communication the issue of microtopographic and thickness inspection of hard contact lenses (RPG) is addressed. The use of optical triangulation is discussed based on the results of the application of our MICROTOP.03.MFC microtopographer to this kind of tasks will be presented.
Modelling rating curves using remotely sensed LiDAR data
Nathanson, Marcus; Kean, Jason W.; Grabs, Thomas J.; Seibert, Jan; Laudon, Hjalmar; Lyon, Steve W.
2012-01-01
Accurate stream discharge measurements are important for many hydrological studies. In remote locations, however, it is often difficult to obtain stream flow information because of the difficulty in making the discharge measurements necessary to define stage-discharge relationships (rating curves). This study investigates the feasibility of defining rating curves by using a fluid mechanics-based model constrained with topographic data from an airborne LiDAR scanning. The study was carried out for an 8m-wide channel in the boreal landscape of northern Sweden. LiDAR data were used to define channel geometry above a low flow water surface along the 90-m surveyed reach. The channel topography below the water surface was estimated using the simple assumption of a flat streambed. The roughness for the modelled reach was back calculated from a single measurment of discharge. The topographic and roughness information was then used to model a rating curve. To isolate the potential influence of the flat bed assumption, a 'hybrid model' rating curve was developed on the basis of data combined from the LiDAR scan and a detailed ground survey. Whereas this hybrid model rating curve was in agreement with the direct measurements of discharge, the LiDAR model rating curve was equally in agreement with the medium and high flow measurements based on confidence intervals calculated from the direct measurements. The discrepancy between the LiDAR model rating curve and the low flow measurements was likely due to reduced roughness associated with unresolved submerged bed topography. Scanning during periods of low flow can help minimize this deficiency. These results suggest that combined ground surveys and LiDAR scans or multifrequency LiDAR scans that see 'below' the water surface (bathymetric LiDAR) could be useful in generating data needed to run such a fluid mechanics-based model. This opens a realm of possibility to remotely sense and monitor stream flows in channels in remote locations.
Linking erosion history and mantle processes in southern Africa
NASA Astrophysics Data System (ADS)
Stanley, J. R.; Braun, J.; Flowers, R. M.; Baby, G.; Wildman, M.; Guillocheau, F.; Robin, C.; Beucher, R.; Brown, R. W.
2017-12-01
The large, low relief, high elevation plateau of southern Africa has been the focus of many studies, but there is still considerable debate about how it formed. Lack of tectonic convergence and crustal thickening suggests mantle dynamics play an important role in the evolution of topography there, but the time and specific mechanisms of topographic development are still contested. Many mantle mechanisms of topographic support have been suggested including dynamic topography associated with either deep or shallow mantle thermal anomalies, thermochemical modification of the lithosphere, and plume tails related to Mesozoic magmatic activity. These mechanisms predict different timing and patterns of surface uplift such that better constraints on the uplift history have the potential to constrain the nature of the source of topographic support. Here we test several of these geodynamic hypotheses using a landscape evolution model that is used to predict the erosional response to surface uplift. Several recent studies have provided a clearer picture of the erosion history of the plateau surface and margins using low temperature thermochronology and the geometries of the surrounding offshore depositional systems. Model results are directly compared with these data. We use an inversion method (the Neighborhood Algorithm) to constrain the range in erosional and uplift parameters that can best reproduce the observed data. The combination of different types of geologic information including sedimentary flux, landscape shape, and thermochronolology is valuable for constraining many of these parameters. We show that both the characteristics of the geodynamic forcing as well as the physical characteristics of the eroding plateau have significant control on the plateau erosion patterns. Models that match the erosion history data well suggest uplift of the eastern margin in the Cretaceous ( 100 Ma) followed by uplift of the western margin 20 Myr later. The amplitude of this uplift is on the order of 1000 m. The data cannot resolve whether there was smaller amplitude phase of uplift in the Cenozoic. These results suggest that the scenario proposed by Braun et al. (2014) of uplift caused by the continent moving over the African superswell is viable. We are currently investigating the compatibility of other uplift geometries.
Analysis of ERTS-1 linear features in New York State
NASA Technical Reports Server (NTRS)
Isachsen, Y. W. (Principal Investigator); Fakundiny, R. H.; Forster, S. W.
1974-01-01
The author has identified the following significant results. All ERTS-1 linears confirmed to date have topographic expression although they may appear as featureless tonal linears on the imagery. A bias is unavoidably introduced against any linears which may parallel raster lines, lithological trends, or the azimuth of solar illumination. Ground study of ERTS-1 topographic lineaments in the Adirondacks indicates: outcrops along linears are even more rare than expected, fault breccias are found along some NNE lineaments, chloritization and slickensiding without brecciation characterize one EW lineament whereas closely-spaced jointing plus a zone of plastic shear define another. Field work in the Catskills suggests that the prominent new NNE lineaments may be surface manifestations of normal faulting in the basement, and that it may become possible to map major joint sets over extensive plateau regions directly on the imagery. Fall and winter images each display some unique linears, and long linears on the fall image commonly appear as aligned segments on the winter scene. A computer-processed color composite image permitted the extraction or additional information on the shaded side of mountains.
NASA Technical Reports Server (NTRS)
Isachsen, Y. W. (Principal Investigator); Fakundiny, R. H.; Forster, S. W.
1974-01-01
The author has identified the following significant results. Linear anomalies dominate the new geological information derived from ERTS-1 imagery, total lengths now exceeding 26,500 km. Maxima on rose diagrams for ERTS-1 anomalies correspond well with those for mapped faults and topographic lineaments. Multi-scale analysis of linears shows that single topographic linears at 1:2,500,000 may become dashed linears at 1:1,000,000 aligned zones of shorter parallel, en echelon, or conjugate linears at 1:5000,000, and shorter linears lacking any conspicuous zonal alignment at 1:250,000. Field work in the Catskills suggests that the prominent new NNE lineaments may be surface manifestations of dip slip faulting in the basement, and that it may become possible to map major joint sets over extensive plateau regions directly on the imagery. Most circular features found were explained away by U-2 airfoto analysis but several remain as anomalies. Visible glacial features include individual drumlins, drumlinoids, eskers, ice-marginal drainage channels, glacial lake shorelines, sand plains, and end moraines.
OPTIC: Orbiting Plutonian Topographic Image Craft Proposal for an Unmanned Mission to Pluto
NASA Technical Reports Server (NTRS)
Kelly, Jonathan E.; Hein, Randall John; Meyer, David Lee; Robinson, David Mark; Endre, Mark James; Summers, Eric W.
1990-01-01
The proposal for an unmanned probe to Pluto is presented and described. The Orbiting Plutonian Topographic Image Craft's (OPTIC's) trip will take twenty years and after its arrival, will begin its data collection which includes image and radar mapping, surface spectral analysis, and magnetospheric studies. This probe's design was developed based on the request for proposal of an unmanned probe to Pluto requirements. The distinct problems which an orbiter causes for each subsystem of the craft are discussed. The final design revolved around two important factors: (1) the ability to collect and return the maximum quantity of information on the Plutonian system; and (2) the weight limitations which the choice of an orbiting craft implied. The velocity requirements of this type of mission severely limited the weight available for mission execution-owing to the large portion of overall weight required as fuel to fly the craft with present technology. The topics covered include: (1) scientific instrumentation; (2) mission management; (3) power and propulsion; (4) attitude and articulation control; (5) structural subsystems; and (6) command, control, and communication.
Localized damage caused by topographic amplification during the 2010 M7.0 Haiti earthquake
Hough, S.E.; Altidor, J.R.; Anglade, D.; Given, D.; Janvier, M.G.; Maharrey, J.Z.; Meremonte, M.; Mildor, B.S.-L.; Prepetit, C.; Yong, A.
2010-01-01
Local geological conditions, including both near-surface sedimentary layers and topographic features, are known to significantly influence ground motions caused by earthquakes. Microzonation maps use local geological conditions to characterize seismic hazard, but commonly incorporate the effect of only sedimentary layers. Microzonation does not take into account local topography, because significant topographic amplification is assumed to be rare. Here we show that, although the extent of structural damage in the 2010 Haiti earthquake was primarily due to poor construction, topographic amplification contributed significantly to damage in the district of Petionville, south of central Port-au-Prince. A large number of substantial, relatively well-built structures situated along a foothill ridge in this district sustained serious damage or collapse. Using recordings of aftershocks, we calculate the ground motion response at two seismic stations along the topographic ridge and at two stations in the adjacent valley. Ground motions on the ridge are amplified relative to both sites in the valley and a hard-rock reference site, and thus cannot be explained by sediment-induced amplification. Instead, the amplitude and predominant frequencies of ground motion indicate the amplification of seismic waves by a narrow, steep ridge. We suggest that microzonation maps can potentially be significantly improved by incorporation of topographic effects. ?? 2010 Macmillan Publishers Limited. All rights reserved.
Terrain-analysis procedures for modeling radar backscatter
Schaber, Gerald G.; Pike, Richard J.; Berlin, Graydon Lennis
1978-01-01
The collection and analysis of detailed information on the surface of natural terrain are important aspects of radar-backscattering modeling. Radar is especially sensitive to surface-relief changes in the millimeter- to-decimeter scale four conventional K-band (~1-cm wavelength) to L-band (~25-cm wavelength) radar systems. Surface roughness statistics that characterize these changes in detail have been generated by a comprehensive set of seven programmed calculations for radar-backscatter modeling from sets of field measurements. The seven programs are 1) formatting of data in readable form for subsequent topographic analysis program; 2) relief analysis; 3) power spectral analysis; 4) power spectrum plots; 5) slope angle between slope reversals; 6) slope angle against slope interval plots; and 7) base length slope angle and curvature. This complete Fortran IV software package, 'Terrain Analysis', is here presented for the first time. It was originally developed a decade ago for investigations of lunar morphology and surface trafficability for the Apollo Lunar Roving Vehicle.
Adaptive cornea modeling from keratometric data.
Martínez-Finkelshtein, Andrei; López, Darío Ramos; Castro, Gracia M; Alió, Jorge L
2011-07-01
To introduce an iterative, multiscale procedure that allows for better reconstruction of the shape of the anterior surface of the cornea from altimetric data collected by a corneal topographer. The report describes, first, an adaptive, multiscale mathematical algorithm for the parsimonious fit of the corneal surface data that adapts the number of functions used in the reconstruction to the conditions of each cornea. The method also implements a dynamic selection of the parameters and the management of noise. Then, several numerical experiments are performed, comparing it with the results obtained by the standard Zernike-based procedure. The numerical experiments showed that the algorithm exhibits steady exponential error decay, independent of the level of aberration of the cornea. The complexity of each anisotropic Gaussian-basis function in the functional representation is the same, but the parameters vary to fit the current scale. This scale is determined only by the residual errors and not by the number of the iteration. Finally, the position and clustering of the centers, as well as the size of the shape parameters, provides additional spatial information about the regions of higher irregularity. The methodology can be used for the real-time reconstruction of both altimetric data and corneal power maps from the data collected by keratoscopes, such as the Placido ring-based topographers, that will be decisive in early detection of corneal diseases such as keratoconus.
Optical measurements of paintings and the creation of an artwork database for authenticity
Hwang, Seonhee; Song, Hyerin; Cho, Soon-Woo; Kim, Chang Eun; Kim, Chang-Seok; Kim, Kyujung
2017-01-01
Paintings have high cultural and commercial value, so that needs to be preserved. Many techniques have been attempted to analyze properties of paintings, including X-ray analysis and optical coherence tomography (OCT) methods, and enable conservation of paintings from forgeries. In this paper, we suggest a simple and accurate optical analysis system to protect them from counterfeit which is comprised of fiber optics reflectance spectroscopy (FORS) and line laser-based topographic analysis. The system is designed to fully cover the whole area of paintings regardless of its size for the accurate analysis. For additional assessments, a line laser-based high resolved OCT was utilized. Some forgeries were created by the experts from the three different styles of genuine paintings for the experiments. After measuring surface properties of paintings, we could observe the results from the genuine works and the forgeries have the distinctive characteristics. The forgeries could be distinguished maximally 76.5% with obtained RGB spectra by FORS and 100% by topographic analysis. Through the several executions, the reliability of the system was confirmed. We could verify that the measurement system is worthwhile for the conservation of the valuable paintings. To store the surface information of the paintings in micron scale, we created a numerical database. Consequently, we secured the databases of three different famous Korean paintings for accurate authenticity. PMID:28151981
Optical measurements of paintings and the creation of an artwork database for authenticity.
Hwang, Seonhee; Song, Hyerin; Cho, Soon-Woo; Kim, Chang Eun; Kim, Chang-Seok; Kim, Kyujung
2017-01-01
Paintings have high cultural and commercial value, so that needs to be preserved. Many techniques have been attempted to analyze properties of paintings, including X-ray analysis and optical coherence tomography (OCT) methods, and enable conservation of paintings from forgeries. In this paper, we suggest a simple and accurate optical analysis system to protect them from counterfeit which is comprised of fiber optics reflectance spectroscopy (FORS) and line laser-based topographic analysis. The system is designed to fully cover the whole area of paintings regardless of its size for the accurate analysis. For additional assessments, a line laser-based high resolved OCT was utilized. Some forgeries were created by the experts from the three different styles of genuine paintings for the experiments. After measuring surface properties of paintings, we could observe the results from the genuine works and the forgeries have the distinctive characteristics. The forgeries could be distinguished maximally 76.5% with obtained RGB spectra by FORS and 100% by topographic analysis. Through the several executions, the reliability of the system was confirmed. We could verify that the measurement system is worthwhile for the conservation of the valuable paintings. To store the surface information of the paintings in micron scale, we created a numerical database. Consequently, we secured the databases of three different famous Korean paintings for accurate authenticity.
Topographical Hill Shading Map Production Based Tianditu (map World)
NASA Astrophysics Data System (ADS)
Wang, C.; Zha, Z.; Tang, D.; Yang, J.
2018-04-01
TIANDITU (Map World) is the public version of National Platform for Common Geospatial Information Service, and the terrain service is an important channel for users on the platform. With the development of TIANDITU, topographical hill shading map production for providing and updating global terrain map on line becomes necessary for the characters of strong intuition, three-dimensional sense and aesthetic effect. As such, the terrain service of TIANDITU focuses on displaying the different scales of topographical data globally. And this paper mainly aims to research the method of topographical hill shading map production globally using DEM (Digital Elevation Model) data between the displaying scales about 1 : 140,000,000 to 1 : 4,000,000, corresponded the display level from 2 to 7 on TIANDITU website.
Martin, Aiden A.; Bahm, Alan; Bishop, James; ...
2015-12-15
Here, we report highly ordered topographic patterns that form on the surface of diamond, span multiple length scales, and have a symmetry controlled by the precursor gas species used in electron-beam-induced etching (EBIE). The pattern formation dynamics reveals an etch rate anisotropy and an electron energy transfer pathway that is overlooked by existing EBIE models. Therefore, we, modify established theory such that it explains our results and remains universally applicable to EBIE. Furthermore, the patterns can be exploited in controlled wetting, optical structuring, and other emerging applications that require nano- and microscale surface texturing of a wide band-gap material.
MOLA Topographic Evidence for a Massive Noachian Ocean on Mars
NASA Technical Reports Server (NTRS)
Parker, T. J.; Grant, J. A.; Anderson, F. S.; Franklin, B. J.
2002-01-01
If the topographic terraces described are coastal, an ocean upwards of 5 to 7 km deep would be required by the maximum elevation of terraces identified south of Elysium Planitia. The highest terrace identified to date is at 2200 m elevation. Additional information is contained in the original extended abstract.
NASA Technical Reports Server (NTRS)
Veverka, J.; Thomas, P.
1984-01-01
Global and regional patterns on Mars were inferred from surface aeolian features, such as wind streaks and dune deposits, which were visible in Viking Orbiter images. Precise measurements of the dimensions of topographic obstacles, i.e., craters, hills, ridges, on Mars as well as their associated wind streaks were used to determine the aerodynamic shape of an obstacle affects near surface airflow. A classification of Martian wind streaks was developed on the basis of albedo contrast and the presence or absence of either topographic obstacles or sediment deposits at the point of origin of the wind streaks. It was concluded that local meteorological conditions, such as the stability of the atmospheric boundary layer, play a major role in determining why some Martian craters produce depositional wind streaks while others produce erosional ones.
NASA Astrophysics Data System (ADS)
Kawaguchi, Hiroshi; Hayashi, Toshiyuki; Kato, Toshinori; Okada, Eiji
2004-06-01
Near-infrared (NIR) topography can obtain a topographical distribution of the activated region in the brain cortex. Near-infrared light is strongly scattered in the head, and the volume of tissue sampled by a source-detector pair on the head surface is broadly distributed in the brain. This scattering effect results in poor resolution and contrast in the topographic image of the brain activity. In this study, a one-dimensional distribution of absorption change in a head model is calculated by mapping and reconstruction methods to evaluate the effect of the image reconstruction algorithm and the interval of measurement points for topographic imaging on the accuracy of the topographic image. The light propagation in the head model is predicted by Monte Carlo simulation to obtain the spatial sensitivity profile for a source-detector pair. The measurement points are one-dimensionally arranged on the surface of the model, and the distance between adjacent measurement points is varied from 4 mm to 28 mm. Small intervals of the measurement points improve the topographic image calculated by both the mapping and reconstruction methods. In the conventional mapping method, the limit of the spatial resolution depends upon the interval of the measurement points and spatial sensitivity profile for source-detector pairs. The reconstruction method has advantages over the mapping method which improve the results of one-dimensional analysis when the interval of measurement points is less than 12 mm. The effect of overlapping of spatial sensitivity profiles indicates that the reconstruction method may be effective to improve the spatial resolution of a two-dimensional reconstruction of topographic image obtained with larger interval of measurement points. Near-infrared topography with the reconstruction method potentially obtains an accurate distribution of absorption change in the brain even if the size of absorption change is less than 10 mm.
Glacier Surface Lowering and Stagnation in the Manaslu Region of Nepal
NASA Astrophysics Data System (ADS)
Robson, B. A.; Nuth, C.; Nielsen, P. R.; Hendrickx, M.; Dahl, S. O.
2015-12-01
Frequent and up-to-date glacier outlines are needed for many applications of glaciology, not only glacier area change analysis, but also for masks in volume or velocity analysis, for the estimation of water resources and as model input data. Remote sensing offers a good option for creating glacier outlines over large areas, but manual correction is frequently necessary, especially in areas containing supraglacial debris. We show three different workflows for mapping clean ice and debris-covered ice within Object Based Image Analysis (OBIA). By working at the object level as opposed to the pixel level, OBIA facilitates using contextual, spatial and hierarchical information when assigning classes, and additionally permits the handling of multiple data sources. Our first example shows mapping debris-covered ice in the Manaslu Himalaya, Nepal. SAR Coherence data is used in combination with optical and topographic data to classify debris-covered ice, obtaining an accuracy of 91%. Our second example shows using a high-resolution LiDAR derived DEM over the Hohe Tauern National Park in Austria. Breaks in surface morphology are used in creating image objects; debris-covered ice is then classified using a combination of spectral, thermal and topographic properties. Lastly, we show a completely automated workflow for mapping glacier ice in Norway. The NDSI and NIR/SWIR band ratio are used to map clean ice over the entire country but the thresholds are calculated automatically based on a histogram of each image subset. This means that in theory any Landsat scene can be inputted and the clean ice can be automatically extracted. Debris-covered ice can be included semi-automatically using contextual and morphological information.
McBride, J.H.; Stephenson, W.J.; Thompson, T.J.; Harper, M.P.; Eipert, A.A.; Hoopes, J.C.; Tingey, D.G.; Keach, R.W.; Okojie-Ayoro, A. O.; Gunderson, K.L.; Meirovitz, C.D.; Hicks, T.C.; Spencer, C.J.; Yaede, J.R.; Worley, D.M.
2008-01-01
We report the results of a geophysical study of the Wasatch fault zone near the Provo and Salt Lake City segment boundary. This area is anomalous because the fault zone strikes more east-west than north-south. Vibroseis was used to record a common mid-point (CMP) profile that provides information to depths of ???500 m. A tomographic velocity model, derived from first breaks, constrained source and receiver static corrections; this was required due to complex terrain and significant lateral velocity contrasts. The profile reveals an ???250-m-wide graben in the hanging wall of the main fault that is associated with both synthetic and antithetic faults. Faults defined by apparent reflector offsets propagate upward toward topographic gradients. Faults mapped from a nearby trench and the seismic profile also appear to correlate with topographic alignments on LiDAR gradient maps. The faults as measured in the trench show a wide range of apparent dips, 20??-90??, and appear to steepen with depth on the seismic section. Although the fault zone is likely composed of numerous small faults, the broad asymmetric structure in the hanging wall is fairly simple and dominated by two inward-facing ruptures. Our results indicate the feasibility of mapping fault zones in rugged terrain and complex near-surface geology using low-frequency vibroseis. Further, the integration of geologic mapping and seismic reflection can extend surface observations in areas where structural deformation is obscured by poorly stratified or otherwise unmappable deposits. Therefore, the vibroseis technique, when integrated with geological information, provides constraints for assessing geologic hazards in areas of potential development.
A Web-based Visualization System for Three Dimensional Geological Model using Open GIS
NASA Astrophysics Data System (ADS)
Nemoto, T.; Masumoto, S.; Nonogaki, S.
2017-12-01
A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.
Characterization of a conical null-screen corneal topographer
NASA Astrophysics Data System (ADS)
Osorio-Infante, Arturo I.; Campos-García, Manuel; Cossio-Guerrero, Cesar
2017-06-01
In this work, we perform the characterization of a conical null-screen corneal topographer. For this, we design a custom null-screens for testing a reference spherical surfaces with a radius of curvature of 7.8 mm. We also test a 1/2-inch (12.7 mm) diameter stainless steel sphere and an aspherical surface with a radius of curvature of 7.77 mm. We designed some different target distributions with the same target size to evaluate the shape of the reference surfaces. The shape of each surface was recovered by fitting the experimental data to a custom shape using the least square methods with an iterative algorithm. The target distributions were modified to improve the accuracy of the measurements. We selected a distribution and evaluate the accuracy of the algorithms to measure spherical surfaces with a radius of curvature from 6 mm to 8.2 mm by simulating the reflected pattern. We also simulate the reflected patter by changing the position of the surface along the optical axis and then we measure the resulting radius of curvature.
Hudnutt, K.W.; Borsa, A.; Glennie, C.; Minster, J.-B.
2002-01-01
In order to document surface rupture associated with the Hector Mine earthquake, in particular, the area of maximum slip and the deformed surface of Lavic Lake playa, we acquired high-resolution data using relatively new topographic-mapping methods. We performed a raster-laser scan of the main surface breaks along the entire rupture zone, as well as along an unruptured portion of the Bullion fault. The image of the ground surface produced by this method is highly detailed, comparable to that obtained when geologists make particularly detailed site maps for geomorphic or paleoseismic studies. In this case, however, for the first time after a surface-rupturing earthquake, the detailed mapping is along the entire fault zone rather than being confined to selected sites. These data are geodetically referenced, using the Global Positioning System, thus enabling more accurate mapping of the rupture traces. In addition, digital photographs taken along the same flight lines can be overlaid onto the precise topographic data, improving terrain visualization. We demonstrate the potential of these techniques for measuring fault-slip vectors.
Usery, E. Lynn
2011-01-01
The U.S. Geological Survey (USGS) produces geospatial databases and topographic maps for the United States of America. A part of that mission includes conducting research in geographic information science (GIScience) and cartography to support mapping and improve the design, quality, delivery, and use of geospatial data and topographic maps. The Center of Excellence for Geospatial Information Science (CEGIS) was established by the USGS in January 2006 as a part of the National Geospatial Program Office. CEGIS (http://cegis.usgs.gov) evolved from a team of cartographic researchers at the Mid-Continent Mapping Center. The team became known as the Cartographic Research group and was supported by the Cooperative Topographic Mapping, Geographic Analysis and Monitoring, and Land Remote Sensing programs of the Geography Discipline of the USGS from 1999-2005. In 2006, the Cartographic Research group and its projects (http://carto-research.er.usgs.gov/) became the core of CEGIS staff and research. In 2006, CEGIS research became focused on The National Map (http://nationalmap.gov).
Design and Optimization of Nanomaterials for Sensing Applications
NASA Astrophysics Data System (ADS)
Sanderson, Robert Noboru
Nanomaterials, materials with one or more of their dimensions on the nanoscale, have emerged as an important field in the development of next-generation sensing systems. Their high surface-to-volume ratio makes them useful for sensing, but also makes them sensitive to processing defects and inherent material defects. To develop and optimize these systems, it is thus necessary to characterize these defects to understand their origin and how to work around them. Scanning probe microscopy (SPM) techniques like atomic force microscopy (AFM) and scanning tunneling microscopy (STM) are important characterization methods which can measure nanoscale topography and electronic structure. These methods are appealing in nanomaterial systems because they are non-damaging and provide local, high-resolution data, and so are capable of detecting nanoscale features such as single defect sites. There are difficulties, however, in the interpretation of SPM data. For instance, AFM-based methods are prone to experimental artifacts due to long-range interactions, such as capacitive crosstalk in Kelvin probe force microscopy (KPFM), and artifacts due to the finite size of the probe tip, such as incorrect surface tracking at steep topographical features. Mechanical characterization (via force spectroscopy) of nanomaterials with significant nanoscale variations, such as tethered lipid bilayer membranes (tLBMs), is also difficult since variations in the bulk system's mechanical behavior must be distinguished from local fluctuations. Additionally, interpretation of STM data is non-trivial due to local variations in electron density in addition to topographical variations. In this thesis we overcome some limitations of SPM methods by supplementing them with additional surface analytical methods as well as computational methods, and we characterize several nanomaterial systems. Current-carrying vapor-liquid-solid Si nanowires (useful for interdigitated-electrode-based sensors) are characterized using finite-element-method (FEM)-supplemented KPFM to retrieve useful information about processing defects, contact resistance, and the primary charge carriers. Next, a tLBM system's stiffness and the stiffness' dependence on tethering molecule concentration is measured using statistical analysis of thousands of AFM force spectra, demonstrating a biosensor-compatible system with a controllable bulk rigidity. Finally, we utilize surface analytical techniques to inform the development of a novel three-dimensional graphene system for sensing applications.
Derivation of surface properties from Magellan altimetry data
NASA Astrophysics Data System (ADS)
Lovell, Amy J.; Schloerb, F. Peter; McGill, George E.
1992-12-01
The fit of the Hagfors model to the Magellan altimetry data provides a means to characterize the surface properties of Venus. However, the derived surface properties are only meaningful if the model provides a good representation of the data. The Hagfors model provides a good representation of the data. The Hagfors model is generally a realistic fit to surface scattering properties of a nadir-directed antenna such as the Magellan altimeter; however, some regions of the surface of Venus are poorly described by the existing model, according to the goodness of fit parameter provided on the ARCDR CD-ROMs. Poorly characterized regions need to be identified and fit to new models in order to derive more accurate surface properties for use in inferring the geological processes that affect the surface in those regions. We have compared the goodness of fit of the Hagfors model to the distribution of features across the planet, and preliminary results show a correlation between steep topographic slopes and poor fits to the standard model, as has been noticed by others. In this paper, we investigate possible relations between many classes of features and the ability of the Hagfors model to fit the observed echo profiles. In the regions that are not well characterized by existing models, we calculate new models that compensate for topographic relief in order to derive improved estimates of surface properties. Areas investigated to date span from longitude 315 through 45, at all latitudes covered by Magellan. A survey of those areas yields preliminary results that suggest that topographically high regions are well suited to the current implementation of the Hagfors model. Striking examples of such large-scale good fits are Alpha Regio, the northern edges of Lada Terra, and the southern edge of Ishtar Terra. Other features that are typically well fit are the rims of coronae such as Heng-O and the peaks of volcanos such as Gula Mons. Surprisingly, topographically low regions, such as the ubiquitous plains areas, are modeled poorly in comparison. However, this generalization has has exceptions: Lakshmi Planum is an elevated region that is not well fit compared to the rest of neighboring Ishtar, while the southern parts of topographically low Guinevere Planitia are characterized quite well by the Hagfors model. Features that are candidates for improved models are impact craters, coronae, ridges of significant scale, complex ridged terrains, moderate-sized mountains, and sharp terrain boundaries. These features are chosen because the goodness of fit is likely to be most affected either by departures from normal incidence angles or by sharp changes in terrain type within a single footprint. Most large features that are elevated with respect to their surroundings will suffer from steep slope effects, and smaller coronae and impact craters will probably suffer due to rapid changes in their appearance within a single footprint (10-20 km).
Derivation of surface properties from Magellan altimetry data
NASA Technical Reports Server (NTRS)
Lovell, Amy J.; Schloerb, F. Peter; Mcgill, George E.
1992-01-01
The fit of the Hagfors model to the Magellan altimetry data provides a means to characterize the surface properties of Venus. However, the derived surface properties are only meaningful if the model provides a good representation of the data. The Hagfors model provides a good representation of the data. The Hagfors model is generally a realistic fit to surface scattering properties of a nadir-directed antenna such as the Magellan altimeter; however, some regions of the surface of Venus are poorly described by the existing model, according to the goodness of fit parameter provided on the ARCDR CD-ROMs. Poorly characterized regions need to be identified and fit to new models in order to derive more accurate surface properties for use in inferring the geological processes that affect the surface in those regions. We have compared the goodness of fit of the Hagfors model to the distribution of features across the planet, and preliminary results show a correlation between steep topographic slopes and poor fits to the standard model, as has been noticed by others. In this paper, we investigate possible relations between many classes of features and the ability of the Hagfors model to fit the observed echo profiles. In the regions that are not well characterized by existing models, we calculate new models that compensate for topographic relief in order to derive improved estimates of surface properties. Areas investigated to date span from longitude 315 through 45, at all latitudes covered by Magellan. A survey of those areas yields preliminary results that suggest that topographically high regions are well suited to the current implementation of the Hagfors model. Striking examples of such large-scale good fits are Alpha Regio, the northern edges of Lada Terra, and the southern edge of Ishtar Terra. Other features that are typically well fit are the rims of coronae such as Heng-O and the peaks of volcanos such as Gula Mons. Surprisingly, topographically low regions, such as the ubiquitous plains areas, are modeled poorly in comparison. However, this generalization has has exceptions: Lakshmi Planum is an elevated region that is not well fit compared to the rest of neighboring Ishtar, while the southern parts of topographically low Guinevere Planitia are characterized quite well by the Hagfors model. Features that are candidates for improved models are impact craters, coronae, ridges of significant scale, complex ridged terrains, moderate-sized mountains, and sharp terrain boundaries. These features are chosen because the goodness of fit is likely to be most affected either by departures from normal incidence angles or by sharp changes in terrain type within a single footprint. Most large features that are elevated with respect to their surroundings will suffer from steep slope effects, and smaller coronae and impact craters will probably suffer due to rapid changes in their appearance within a single footprint (10-20 km).
NASA Astrophysics Data System (ADS)
Pawłuszek, Kamila; Borkowski, Andrzej
2016-06-01
Since the availability of high-resolution Airborne Laser Scanning (ALS) data, substantial progress in geomorphological research, especially in landslide analysis, has been carried out. First and second order derivatives of Digital Terrain Model (DTM) have become a popular and powerful tool in landslide inventory mapping. Nevertheless, an automatic landslide mapping based on sophisticated classifiers including Support Vector Machine (SVM), Artificial Neural Network or Random Forests is often computationally time consuming. The objective of this research is to deeply explore topographic information provided by ALS data and overcome computational time limitation. For this reason, an extended set of topographic features and the Principal Component Analysis (PCA) were used to reduce redundant information. The proposed novel approach was tested on a susceptible area affected by more than 50 landslides located on Rożnów Lake in Carpathian Mountains, Poland. The initial seven PCA components with 90% of the total variability in the original topographic attributes were used for SVM classification. Comparing results with landslide inventory map, the average user's accuracy (UA), producer's accuracy (PA), and overall accuracy (OA) were calculated for two models according to the classification results. Thereby, for the PCA-feature-reduced model UA, PA, and OA were found to be 72%, 76%, and 72%, respectively. Similarly, UA, PA, and OA in the non-reduced original topographic model, was 74%, 77% and 74%, respectively. Using the initial seven PCA components instead of the twenty original topographic attributes does not significantly change identification accuracy but reduce computational time.
ERIC Educational Resources Information Center
Smith, Garon C.; Hossain, Md Mainul; MacCarthy, Patrick
2014-01-01
3-D topographic surfaces ("topos") can be generated to visualize how pH behaves during titration and dilution procedures. The surfaces are constructed by plotting computed pH values above a composition grid with volume of base added in one direction and overall system dilution on the other. What emerge are surface features that…
Calculating landscape surface area from digital elevation models
Jeff S. Jenness
2004-01-01
There are many reasons to want to know the true surface area of the landscape, especially in landscape analysis and studies of wildlife habitat. Surface area provides a better estimate of the land area available to an animal than planimetric area, and the ratio of this surface area to planimetric area provides a useful measure of topographic roughness of the landscape...
Cellular Scale Anisotropic Topography Guides Schwann Cell Motility
Mitchel, Jennifer A.; Hoffman-Kim, Diane
2011-01-01
Directed migration of Schwann cells (SC) is critical for development and repair of the peripheral nervous system. Understanding aspects of motility specific to SC, along with SC response to engineered biomaterials, may inform strategies to enhance nerve regeneration. Rat SC were cultured on laminin-coated microgrooved poly(dimethyl siloxane) platforms that were flat or presented repeating cellular scale anisotropic topographical cues, 30 or 60 µm in width, and observed with timelapse microscopy. SC motion was directed parallel to the long axis of the topography on both the groove floor and the plateau, with accompanying differences in velocity and directional persistence in comparison to SC motion on flat substrates. In addition, feature dimension affected SC morphology, alignment, and directional persistence. Plateaus and groove floors presented distinct cues which promoted differential motility and variable interaction with the topographical features. SC on the plateau surfaces tended to have persistent interactions with the edge topography, while SC on the groove floors tended to have infrequent contact with the corners and walls. Our observations suggest the capacity of SC to be guided without continuous contact with a topographical cue. SC exhibited a range of distinct motile morphologies, characterized by their symmetry and number of extensions. Across all conditions, SC with a single extension traveled significantly faster than cells with more or no extensions. We conclude that SC motility is complex, where persistent motion requires cellular asymmetry, and that anisotropic topography with cellular scale features can direct SC motility. PMID:21949703
NASA Astrophysics Data System (ADS)
Widyaningrum, E.; Gorte, B. G. H.
2017-05-01
LiDAR data acquisition is recognized as one of the fastest solutions to provide basis data for large-scale topographical base maps worldwide. Automatic LiDAR processing is believed one possible scheme to accelerate the large-scale topographic base map provision by the Geospatial Information Agency in Indonesia. As a progressive advanced technology, Geographic Information System (GIS) open possibilities to deal with geospatial data automatic processing and analyses. Considering further needs of spatial data sharing and integration, the one stop processing of LiDAR data in a GIS environment is considered a powerful and efficient approach for the base map provision. The quality of the automated topographic base map is assessed and analysed based on its completeness, correctness, quality, and the confusion matrix.
Jacobson, Robert B.; Elliott, Caroline M.; Huhmann, Brittany L.
2010-01-01
This report documents development of a spatially explicit river and flood-plain classification to evaluate potential for cottonwood restoration along the Sharpe and Fort Randall segments of the Middle Missouri River. This project involved evaluating existing topographic, water-surface elevation, and soils data to determine if they were sufficient to create a classification similar to the Land Capability Potential Index (LCPI) developed by Jacobson and others (U.S. Geological Survey Scientific Investigations Report 2007–5256) and developing a geomorphically based classification to apply to evaluating restoration potential.Existing topographic, water-surface elevation, and soils data for the Middle Missouri River were not sufficient to replicate the LCPI. The 1/3-arc-second National Elevation Dataset delineated most of the topographic complexity and produced cumulative frequency distributions similar to a high-resolution 5-meter topographic dataset developed for the Lower Missouri River. However, lack of bathymetry in the National Elevation Dataset produces a potentially critical bias in evaluation of frequently flooded surfaces close to the river. High-resolution soils data alone were insufficient to replace the information content of the LCPI. In test reaches in the Lower Missouri River, soil drainage classes from the Soil Survey Geographic Database database correctly classified 0.8–98.9 percent of the flood-plain area at or below the 5-year return interval flood stage depending on state of channel incision; on average for river miles 423–811, soil drainage class correctly classified only 30.2 percent of the flood-plain area at or below the 5-year return interval flood stage. Lack of congruence between soil characteristics and present-day hydrology results from relatively rapid incision and aggradation of segments of the Missouri River resulting from impoundments and engineering. The most sparsely available data in the Middle Missouri River were water-surface elevations. Whereas hydraulically modeled water-surface elevations were available at 1.6-kilometer intervals in the Lower Missouri River, water-surface elevations in the Middle Missouri River had to be interpolated between streamflow-gaging stations spaced 3–116 kilometers. Lack of high-resolution water-surface elevation data precludes development of LCPI-like classification maps.An hierarchical river classification framework is proposed to provide structure for a multiscale river classification. The segment-scale classification presented in this report is deductive and based on presumed effects of dams, significant tributaries, and geological (and engineered) channel constraints. An inductive reach-scale classification, nested within the segment scale, is based on multivariate statistical clustering of geomorphic data collected at 500-meter intervals along the river. Cluster-based classifications delineate reaches of the river with similar channel and flood-plain geomorphology, and presumably, similar geomorphic and hydrologic processes. The dominant variables in the clustering process were channel width (Fort Randall) and valley width (Sharpe), followed by braiding index (both segments).Clusters with multithread and highly sinuous channels are likely to be associated with dynamic channel migration and deposition of fresh, bare sediment conducive to natural cottonwood germination. However, restoration potential within these reaches is likely to be mitigated by interaction of cottonwood life stages with the highly altered flow regime.
NASA Astrophysics Data System (ADS)
Grombein, Thomas; Seitz, Kurt; Heck, Bernhard
2010-05-01
The basic observables of the recently launched satellite gravity gradiometry mission GOCE are the second derivatives of the earth gravitational potential (components of the full Marussi tensor). These gravity gradients are highly sensitive to mass anomalies and mass transports in the earth system. The high- and mid-frequency components of the gradients are mainly affected by the topographic and isostatic masses whereby the downward continuation of the gradients is a rather difficult task. In order to stabilize this process the gradients have to be smoothed by applying topographic and isostatic reductions. In the space domain the modelling of topographic effects is based on the evaluation of functionals of the Newton integral. In the case of GOCE the second-order derivatives are required. Practical numerical computations rely on a discretisation of the earth's topography and a subdivision into different mass elements. Considering geographical gridlines tesseroids (spherical prisms) are well suited for the modelling of the topographic masses. Since the respective volume integrals cannot be solved in an elementary way in the case of tesseroids numerical approaches such as Taylor series expansion, Gauss-Legendre cubature or a point-mass approximation have to be applied. In this paper the topography is represented by the global Digital Terrain Model DTM2006.0 which was also used for the compilation of the Earth Gravitation Model EGM2008. In addition, each grid element of the DTM is classified as land, see or ice providing further information on the density within the evaluation of topographic effects. The computation points are located on a GOCE-like circular orbit. The mass elements are arranged on a spherical earth of constant radius and, in a more realistic composition, on the surface of an ellipsoid of revolution. The results of the modelling of each version are presented and compared to each other with regard to computation time and accuracy. Acknowledgements: This research has been financially supported by the German Federal Ministry of Education and Research (BMBF) within the REAL-GOCE project of the GEOTECHNOLOGIEN Programme.
Kolind, K; Kraft, D; Bøggild, T; Duch, M; Lovmand, J; Pedersen, F S; Bindslev, D A; Bünger, C E; Foss, M; Besenbacher, F
2014-02-01
The ability to control the behavior of stem cells provides crucial benefits, for example, in tissue engineering and toxicity/drug screening, which utilize the stem cell's capacity to engineer new tissues for regenerative purposes and the testing of new drugs in vitro. Recently, surface topography has been shown to influence stem cell differentiation; however, general trends are often difficult to establish due to differences in length scales, surface chemistries and detailed surface topographies. Here we apply a highly versatile screening approach to analyze the interplay of surface topographical parameters on cell attachment, morphology, proliferation and osteogenic differentiation of human mesenchymal dental-pulp-derived stem cells (DPSCs) cultured with and without osteogenic differentiation factors in the medium (ODM). Increasing the inter-pillar gap size from 1 to 6 μm for surfaces with small pillar sizes of 1 and 2 μm resulted in decreased proliferation and in more elongated cells with long pseudopodial protrusions. The same alterations of pillar topography, up to an inter-pillar gap size of 4 μm, also resulted in enhanced mineralization of DPSCs cultured without ODM, while no significant trend was observed for DPSCs cultured with ODM. Generally, cells cultured without ODM had a larger deposition of osteogenic markers on structured surfaces relative to the unstructured surfaces than what was found when culturing with ODM. We conclude that the topographical design of biomaterials can be optimized for the regulation of DPSC differentiation and speculate that the inclusion of ODM alters the ability of the cells to sense surface topographical cues. These results are essential in order to transfer the use of this highly proliferative, easily accessible stem cell into the clinic for use in cell therapy and regenerative medicine. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
The Lunar Orbiter Laser Altimeter (LOLA) on NASA's Lunar Reconnaissance Orbiter (LRO) mission
NASA Astrophysics Data System (ADS)
Riris, H.; Cavanaugh, J.; Sun, X.; Liiva, P.; Rodriguez, M.; Neuman, G.
2017-11-01
The Lunar Orbiter Laser Altimeter (LOLA) instrument [1-3] on NASA's Lunar Reconnaissance Orbiter (LRO) mission, launched on June 18th, 2009, from Kennedy Space Center, Florida, will provide a precise global lunar topographic map using laser altimetry. LOLA will assist in the selection of landing sites on the Moon for future robotic and human exploration missions and will attempt to detect the presence of water ice on or near the surface, which is one of the objectives of NASA's Exploration Program. Our present knowledge of the topography of the Moon is inadequate for determining safe landing areas for NASA's future lunar exploration missions. Only those locations, surveyed by the Apollo missions, are known with enough detail. Knowledge of the position and characteristics of the topographic features on the scale of a lunar lander are crucial for selecting safe landing sites. Our present knowledge of the rest of the lunar surface is at approximately 1 km kilometer level and in many areas, such as the lunar far side, is on the order of many kilometers. LOLA aims to rectify that and provide a precise map of the lunar surface on both the far and near side of the moon. LOLA uses short (6 ns) pulses from a single laser through a Diffractive Optical Element (DOE) to produce a five-beam pattern that illuminates the lunar surface. For each beam, LOLA measures the time of flight (range), pulse spreading (surface roughness), and transmit/return energy (surface reflectance). LOLA will produce a high-resolution global topographic model and global geodetic framework that enables precise targeting, safe landing, and surface mobility to carry out exploratory activities. In addition, it will characterize the polar illumination environment, and image permanently shadowed regions of the lunar surface to identify possible locations of surface ice crystals in shadowed polar craters.
Site-conditions map for Portugal based on VS measurements: methodology and final model
NASA Astrophysics Data System (ADS)
Vilanova, Susana; Narciso, João; Carvalho, João; Lopes, Isabel; Quinta Ferreira, Mario; Moura, Rui; Borges, José; Nemser, Eliza; Pinto, carlos
2017-04-01
In this paper we present a statistically significant site-condition model for Portugal based on shear-wave velocity (VS) data and surface geology. We also evaluate the performance of commonly used Vs30 proxies based on exogenous data and analyze the implications of using those proxies for calculating site amplification in seismic hazard assessment. The dataset contains 161 Vs profiles acquired in Portugal in the context of research projects, technical reports, academic thesis and academic papers. The methodologies involved in characterizing the Vs structure at the sites in the database include seismic refraction, multichannel analysis of seismic waves and refraction microtremor. Invasive measurements were performed in selected locations in order to compare the Vs profiles obtained from both invasive and non-invasive techniques. In general there was good agreement in the subsurface structure of Vs30 obtained from the different methodologies. The database flat-file includes information on Vs30, surface geology at 1:50.000 and 1:500.000 scales, elevation and topographic slope and based on SRTM30 topographic dataset. The procedure used to develop the site-conditions map is based on a three-step process that includes defining a preliminary set of geological units based on the literature, performing statistical tests to assess whether or not the differences in the distributions of Vs30 are statistically significant, and merging of the geological units accordingly. The dataset was, to some extent, affected by clustering and/or preferential sampling and therefore a declustering algorithm was applied. The final model includes three geological units: 1) Igneous, metamorphic and old (Paleogene and Mesozoic) sedimentary rocks; 2) Neogene and Pleistocene formations, and 3) Holocene formations. The evaluation of proxies indicates that although geological analogues and topographic slope are in general unbiased, the latter shows significant bias for particular geological units and subsequently for some geographical regions.
NASA Astrophysics Data System (ADS)
Delin, Geoffrey N.; Landon, Matthew K.
2002-08-01
Geochemical data were collected to investigate the effects of topography and focused recharge on the transport of agricultural chemicals to groundwater through sandy soils. The research was done at a topographically high (upland) site and a depressional (lowland) site within a corn field. Agricultural chemicals that move readily with water were most directly affected by focused recharge to the lowland site. Surface runoff of water to the lowland site was the primary cause for the generally greater flux of chloride, nitrate nitrogen, and sulfate compared with the upland site. Based on data from the unsaturated zone, for example, the average annual fluxes of these chemicals in 1992-1993 were 5.1, 3.4, and 1.7 times greater, respectively, at the lowland site. Study results indicate that consideration should be given to modifying site-specific management farming technology to account for varying recharge rates in different topographic settings. By reducing chemical application rates in topographic depressions, where focused recharge of chemicals occurs because of surface runoff, farmers could improve ground-water quality as well as reduce expenditures for agricultural chemicals.
Delin, G.N.; Landon, M.K.
2002-01-01
Geochemical data were collected to investigate the effects of topography and focused recharge on the transport of agricultural chemicals to groundwater through sandy soils. The research was done at a topographically high (upland) site and a depressional (lowland) site within a corn field. Agricultural chemicals that move readily with water were most directly affected by focused recharge to the lowland site. Surface runoff of water to the lowland site was the primary cause for the generally greater flux of chloride, nitrate nitrogen, and sulfate compared with the upland site. Based on data from the unsaturated zone, for example, the average annual fluxes of these chemicals in 1992–1993 were 5.1, 3.4, and 1.7 times greater, respectively, at the lowland site. Study results indicate that consideration should be given to modifying site-specific management farming technology to account for varying recharge rates in different topographic settings. By reducing chemical application rates in topographic depressions, where focused recharge of chemicals occurs because of surface runoff, farmers could improve ground-water quality as well as reduce expenditures for agricultural chemicals.
Atomic force microscope image contrast mechanisms on supported lipid bilayers.
Schneider, J; Dufrêne, Y F; Barger, W R; Lee, G U
2000-08-01
This work presents a methodology to measure and quantitatively interpret force curves on supported lipid bilayers in water. We then use this method to correlate topographic imaging contrast in atomic force microscopy (AFM) images of phase-separated Langmuir-Blodgett bilayers with imaging load. Force curves collected on pure monolayers of both distearoylphosphatidylethanolamine (DSPE) and monogalactosylethanolamine (MGDG) and dioleoylethanolamine (DOPE) deposited at similar surface pressures onto a monolayer of DSPE show an abrupt breakthrough event at a repeatable, material-dependent force. The breakthrough force for DSPE and MGDG is sizable, whereas the breakthrough force for DOPE is too small to measure accurately. Contact-mode AFM images on 1:1 mixed monolayers of DSPE/DOPE and MGDG/DOPE have a high topographic contrast at loads between the breakthrough force of each phase, and a low topographic contrast at loads above the breakthrough force of both phases. Frictional contrast is inverted and magnified at loads above the breakthrough force of both phases. These results emphasize the important role that surface forces and mechanics can play in imaging multicomponent biomembranes with AFM.
NASA Astrophysics Data System (ADS)
Ajami, H.; Sharma, A.
2016-12-01
A computationally efficient, semi-distributed hydrologic modeling framework is developed to simulate water balance at a catchment scale. The Soil Moisture and Runoff simulation Toolkit (SMART) is based upon the delineation of contiguous and topologically connected Hydrologic Response Units (HRUs). In SMART, HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are distributed cross sections or equivalent cross sections (ECS) delineated in first order sub-basins. ECSs are formulated by aggregating topographic and physiographic properties of the part or entire first order sub-basins to further reduce computational time in SMART. Previous investigations using SMART have shown that temporal dynamics of soil moisture are well captured at a HRU level using the ECS delineation approach. However, spatial variability of soil moisture within a given HRU is ignored. Here, we examined a number of disaggregation schemes for soil moisture distribution in each HRU. The disaggregation schemes are either based on topographic based indices or a covariance matrix obtained from distributed soil moisture simulations. To assess the performance of the disaggregation schemes, soil moisture simulations from an integrated land surface-groundwater model, ParFlow.CLM in Baldry sub-catchment, Australia are used. ParFlow is a variably saturated sub-surface flow model that is coupled to the Common Land Model (CLM). Our results illustrate that the statistical disaggregation scheme performs better than the methods based on topographic data in approximating soil moisture distribution at a 60m scale. Moreover, the statistical disaggregation scheme maintains temporal correlation of simulated daily soil moisture while preserves the mean sub-basin soil moisture. Future work is focused on assessing the performance of this scheme in catchments with various topographic and climate settings.
NASA Astrophysics Data System (ADS)
Wang, Dongxiao; Shu, Yeqiang; Xue, Huijie; Hu, Jianyu; Chen, Ju; Zhuang, Wei; Zu, TingTing; Xu, Jindian
2014-04-01
Topographically induced upwelling caused by the interaction between large-scale currents and topography was observed during four cruises in the northern South China Sea (NSCS) when the upwelling favorable wind retreated. Using a high-resolution version of the Princeton Ocean Model, we investigate relative contributions of local wind and topography to the upwelling intensity in the NSCS. The results show that the topographically induced upwelling is sensitive to alongshore large-scale currents, which have an important contribution to the upwelling intensity. The topographically induced upwelling is comparable with the wind-driven upwelling at surface and has a stronger contribution to the upwelling intensity than the local wind does at bottom in the near-shore shelf region. The widened shelf to the southwest of Shanwei and west of the Taiwan Banks intensifies the bottom friction, especially off Shantou, which is a key factor for topographically induced upwelling in terms of bottom Ekman transport and Ekman pumping. The local upwelling favorable wind enhances the bottom friction as well as net onshore transport along the 50 m isobath, whereas it has less influence along the 30 m isobath. This implies the local wind is more important in upwelling intensity in the offshore region than in the nearshore region. The contribution of local upwelling favorable wind on upwelling intensity is comparable with that of topography along the 50 m isobath. The effects of local upwelling favorable wind on upwelling intensity are twofold: on one hand, the wind transports surface warm water offshore, and as a compensation of mass the bottom current transports cold water onshore; on the other hand, the wind enhances the coastal current, and the bottom friction in turn increases the topographically induced upwelling intensity.
Topography of the Moon from the Clementine Lidar
NASA Technical Reports Server (NTRS)
Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Lemoine, Frank G.
1997-01-01
Range measurements from the lidar instrument carried aboard the Clementine spacecraft have been used to produce an accurate global topographic model of the Moon. This paper discusses the function of the lidar; the acquisition, processing, and filtering of observations to produce a global topographic model; and the determination of parameters that define the fundamental shape of the Moon. Our topographic model: a 72nd degree and order spherical harmonic expansion of lunar radii, is designated Goddard Lunar Topography Model 2 (GLTM 2). This topographic field has an absolute vertical accuracy of approximately 100 m and a spatial resolution of 2.5 deg. The field shows that the Moon can be described as a sphere with maximum positive and negative deviations of approx. 8 km, both occurring on the farside, in the areas of the Korolev and South Pole-Aitken (S.P.-Aitken) basins. The amplitude spectrum of the topography shows more power at longer wavelengths as compared to previous models, owing to more complete sampling of the surface, particularly the farside. A comparison of elevations derived from the Clementine lidar to control point elevations from the Apollo laser altimeters indicates that measured relative topographic heights generally agree to within approx. 200 in over the maria. While the major axis of the lunar gravity field is aligned in the Earth-Moon direction, the major axis of topography is displaced from this line by approximately 10 deg to the cast and intersects the farside 24 deg north of the equator. The magnitude of impact basin topography is greater than the lunar flattening (approx. 2 km) and equatorial ellipticity (approx. 800 m), which imposes a significant challenge to interpreting the lunar figure. The floors of mare basins are shown to lie close to an equipotential surface, while the floors of unflooded large basins, except for S.P.-Aitken, lie above this equipotential. The radii of basin floors are thus consistent with a hydrostatic mechanism for the absence of significant farside maria except for S.P.-Aitken, whose depth and lack of mare require significant internal compositional and/or thermal heterogeneity. A macroscale surface roughness map shows that roughness at length scales of 10(exp 1) - 10(exp 2) km correlates with elevation and surface age.
MOLA Topographic Constraints on Lava Tube Effusion Rates for Alba Patera, Mars
NASA Technical Reports Server (NTRS)
Riedel, S. J.; Sakimoto, S. E. H.
2002-01-01
Using high resolution MOLA (Mars Orbiter Laser Altimeter) topographic data to accurately model flow rates, we find that Alba Patera tube-fed flows within the mid to lower flanks could accommodate flow rates between 10 Pa s to 1.308 x 10(exp 6) Pa s. Additional information is contained in the original extended abstract.
NASA Technical Reports Server (NTRS)
Parada, N. D. J.; Novo, E. M. L. M.
1983-01-01
Two sets of MSS/LANDSAT data with solar elevation ranging from 22 deg to 41 deg were used at the Image-100 System to implement the Eliason et alii technique for extracting the topographic modulation component. An unsupervised cluster analysis was used to obtain an average brightness image for each channel. Analysis of the enhanced imaged shows that the technique for extracting topographic modulation component is more appropriated to MSS data obtained under high sun elevation ngles. Low sun elevation increases the variance of each cluster so that the average brightness doesn't represent its albedo proprties. The topographic modulation component applied to low sun elevation angle damages rather than enhance topographic information. Better results were produced for channels 4 and 5 than for channels 6 and 7.
Application of aerial photography to water-related programs in Michigan
NASA Technical Reports Server (NTRS)
Enslin, W. R.; Hill-Rowley, R.; Tilmann, S. E.
1977-01-01
The paper describes the use of aerial photography and information system technology in the provision of information required for the effective operation of three water-related programs in Michigan. Potential mosquito breeding sites were identified from specially acquired low altitude 70 mm color photography for the City of Lansing Vector Control Area. A comprehensive inventory of surface water sources and potential access sites was prepared to assist fire departments in Antrim County with fire truck water-recharge operations. Remotely-sensed land cover/use data for Windsor Township, Eaton County were integrated with other resource data into a computer-based information system for regional water quality studies. Eleven thematic maps specifically focussed on landscape features affecting non-point water pollution and waste disposal were generated from analyses of a four-hectare grid-based data file containing land cover/use, soils, topographic and geologic (well-log) data.
Method and apparatus for chemical and topographical microanalysis
NASA Technical Reports Server (NTRS)
Kossakovski, Dmitri A. (Inventor); Baldeschwieler, John D. (Inventor); Beauchamp, Jesse L. (Inventor)
2002-01-01
A scanning probe microscope is combined with a laser induced breakdown spectrometer to provide spatially resolved chemical analysis of the surface correlated with the surface topography. Topographical analysis is achieved by scanning a sharp probe across the sample at constant distance from the surface. Chemical analysis is achieved by the means of laser induced breakdown spectroscopy by delivering pulsed laser radiation to the sample surface through the same sharp probe, and consequent collection and analysis of emission spectra from plasma generated on the sample by the laser radiation. The method comprises performing microtopographical analysis of the sample with a scanning probe, selecting a scanned topological site on the sample, generating a plasma plume at the selected scanned topological site, and measuring a spectrum of optical emission from the plasma at the selected scanned topological site. The apparatus comprises a scanning probe, a pulsed laser optically coupled to the probe, an optical spectrometer, and a controller coupled to the scanner, laser and spectrometer for controlling the operation of the scanner, laser and spectrometer. The probe and scanner are used for topographical profiling the sample. The probe is also used for laser radiation delivery to the sample for generating a plasma plume from the sample. Optical emission from the plasma plume is collected and delivered to the optical spectrometer so that analysis of emission spectrum by the optical spectrometer allows for identification of chemical composition of the sample at user selected sites.
Yang, Yong; Kulangara, Karina; Lam, Ruby T S; Dharmawan, Rena; Leong, Kam W
2012-10-23
Polymeric substrates intended for cell culture and tissue engineering are often surface-modified to facilitate cell attachment of most anchorage-dependent cell types. The modification alters the surface chemistry and possibly topography. However, scant attention has been paid to other surface property alterations. In studying oxygen plasma treatment of polydimethylsiloxane (PDMS), we show that oxygen plasma treatment alters the surface chemistry and, consequently, the topography and elasticity of PDMS at the nanoscale level. The elasticity factor has the predominant effect, compared with the chemical and topographical factors, on cell adhesions of human mesenchymal stem cells (hMSCs). The enhanced focal adhesions favor cell spreading and osteogenesis of hMSCs. Given the prevalent use of PDMS in biomedical device construction and cell culture experiments, this study highlights the importance of understanding how oxygen plasma treatment would impact subsequent cell-substrate interactions. It helps explain inconsistency in the literature and guides preparation of PDMS-based biomedical devices in the future.
Insight into large-scale topography on analysis of high-frequency Rayleigh waves
NASA Astrophysics Data System (ADS)
Ping, Ping; Chu, Risheng; Chong, Jiajun; Ni, Sidao; Zhang, Yu
2018-03-01
The dispersion of surface waves could be biased in regions where topography is comparable to the wavelength. We investigate the effects on high-frequency Rayleigh waves propagating in a typical massif model through numerical simulations. High-frequency Rayleigh waves have relatively higher signal-to-noise ratios (SNR) using the Q component in the LQT coordinate system, perpendicular to the local free surface in these topographic models. When sources and stations are located at different sides of the massif, the conventional dispersion image overestimates phase velocities of Rayleigh waves, as much as 25% with topographic height/width ratio (H/r) > 0.5. The dispersion perturbation is more distinctive for fundamental modes. Using a two-layer model, the thickness deviation (ΔD/D) may be significant in surface-wave inversion due to the variation of H/r and the thickness of the first layer. These phenomena cannot be ignored in surface-wave interpretations, nevertheless they are trivial for the source and stations located at the same side of the massif.
Kilometer-scale topographic roughness of Mercury: Correlation with geologic features and units
NASA Astrophysics Data System (ADS)
Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.
2014-12-01
We present maps of the topographic roughness of the northern circumpolar area of 30 Mercury at kilometer scales. The maps are derived from range profiles obtained by the 31 Mercury Laser Altimeter (MLA) instrument onboard the MErcury Surface, Space 32 ENvironment, Geochemistry, and Ranging (MESSENGER) mission. As measures of 33 roughness, we used the interquartile range of profile curvature at three baselines: 0.7 km, 34 2.8 km, and 11 km. The maps provide a synoptic overview of variations of typical 35 topographic textures. They show a dichotomy between the smooth northern plains and 36 rougher, more heavily cratered terrains. Analysis of the scale dependence of roughness 37 indicates that the regolith on Mercury is thicker than on the Moon by approximately a 38 factor of three. Roughness contrasts within northern volcanic plains of Mercury indicate a 39 younger unit inside Goethe basin and inside another unnamed stealth basin. These new 40 data permit interplanetary comparisons of topographic roughness.
X-ray topography using the forward transmitted beam under multiple-beam diffraction conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsusaka, Y., E-mail: tsusaka@sci.u-hyogo.ac.jp; Takano, H.; Takeda, S.
2016-02-15
X-ray topographs are taken for a sapphire wafer with the [0001] surface normal, as an example, by forward transmitted synchrotron x-ray beams combined with two-dimensional electronic arrays in the x-ray detector having a spatial resolution of 1 μm. They exhibit no shape deformation and no position shift of the dislocation lines on the topographs. Since the topography is performed under multiple-beam diffraction conditions, the topographic images of a single diffraction (two-wave approximation condition) or plural diffractions (six-wave approximation condition) can be recorded without large specimen position changes. As usual Lang topographs, it is possible to determine the Burgers vector ofmore » each dislocation line. Because of high parallelism of the incoming x-rays and linear sensitivity of the electronic arrays to the incident x-rays, the present technique can be used to visualize individual dislocations in single crystals of the dislocation density as high as 1 × 10{sup 5} cm{sup −2}.« less
Characterization of Structural and Configurational Properties of DNA by Atomic Force Microscopy.
Meroni, Alice; Lazzaro, Federico; Muzi-Falconi, Marco; Podestà, Alessandro
2018-01-01
We describe a method to extract quantitative information on DNA structural and configurational properties from high-resolution topographic maps recorded by atomic force microscopy (AFM). DNA molecules are deposited on mica surfaces from an aqueous solution, carefully dehydrated, and imaged in air in Tapping Mode. Upon extraction of the spatial coordinates of the DNA backbones from AFM images, several parameters characterizing DNA structure and configuration can be calculated. Here, we explain how to obtain the distribution of contour lengths, end-to-end distances, and gyration radii. This modular protocol can be also used to characterize other statistical parameters from AFM topographies.
DESDynI Lidar for Solid Earth Applications
NASA Technical Reports Server (NTRS)
Sauber, Jeanne; Hofton, Michelle; Bruhn, Ronald; Lutchke, Scott; Blair, Bryan
2011-01-01
As part of the NASA's DESDynI mission, global elevation profiles from contiguous 25 m footprint Lidar measurements will be made. Here we present results of a performance simulation of a single pass of the multi-beam Lidar instrument over uplifted marine terraces in southern Alaska. The significance of the Lidar simulations is that surface topography would be captured at sufficient resolution for mapping uplifted terraces features but it will be hard to discern I-2m topographic change over features less than tens of meters in width. Since Lidar would penetrate most vegetation, the accurate bald Earth elevation profiles will give new elevation information beyond the standard 30-m OEM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikova, Olga S.; Tai, Tamin; Bocharova, Vera
The advancement of a hybrid atomic force microscopy/mass spectrometry imaging platform demonstrating for the first time co-registered topographical, band excitation nanomechanical, and mass spectral imaging of a surface using a single instrument is reported. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for pyrolytic surface sampling followed by atmospheric pressure chemical ionization of the gas phase species produced with subsequent mass analysis. We discuss the basic instrumental setup and operation and the multimodal imaging capability and utility are demonstrated using a phase separated polystyrene/poly(2-vinylpyridine) polymer blend thin film. The topography and band excitation images showedmore » that the valley and plateau regions of the thin film surface were comprised primarily of one of the two polymers in the blend with the mass spectral chemical image used to definitively identify the polymers at the different locations. Data point pixel size for the topography (390 nm x 390 nm), band excitation (781 nm x 781 nm), mass spectrometry (690 nm x 500 nm) images was comparable and submicrometer in all three cases, but the data voxel size for each of the three images was dramatically different. The topography image was uniquely a surface measurement, whereas the band excitation image included information from an estimated 10 nm deep into the sample and the mass spectral image from 110-140 nm in depth. Moreover, because of this dramatic sampling depth variance, some differences in the band excitation and mass spectrometry chemical images were observed and were interpreted to indicate the presence of a buried interface in the sample. The spatial resolution of the mass spectral image was estimated to be between 1.5 m 2.6 m, based on the ability to distinguish surface features in that image that were also observed in the other images.« less
NASA Technical Reports Server (NTRS)
Moore, Jeffrey Morgan; Howard, Alan D.; Schenk, Paul M.
2013-01-01
Mass movement and landform degradation reduces topographic relief by moving surface materials to a lower gravitational potential. In addition to the obvious role of gravity, abrasive mechanical erosion plays a role, often in combination with the lowering of cohesion, which allows disaggregation of the relief-forming material. The identification of specific landform types associated with mass movement and landform degradation provides information about local sediment particle size and abundance and transportation processes. Generally, mass movements can be classified in terms of the particle sizes of the transported material and the speed the material moved during transport. Most degradation on outer planet satellites appears consistent with sliding or slumping, impact erosion, and regolith evolution. Some satellites, such as Callisto and perhaps Hyperion and Iapetus, have an appearance that implies that some additional process is at work, most likely sublimation-driven landform modification and mass wasting. A variant on this process is thermally driven frost segregation as seen on all three icy Galilean satellites and perhaps elsewhere. Titan is unique among outer planet satellites in that Aeolian and fluvial processes also operate to erode, transport, and deposit material. We will evaluate the sequence and extent of various landform-modifying erosional and volatile redistribution processes that have shaped these icy satellites using a 3-D model that simulates the following surface and subsurface processes: 1) sublimation and re-condensation of volatiles; 2) development of refractory lag deposits; 3) disaggregation and downward sloughing of surficial material; 4) radiative heating/cooling of the surface (including reflection, emission, and shadowing by other surface elements); 5) thermal diffusion; and 6) vapor diffusion. The model will provide explicit simulations of landform development and thusly predicts the topographic and volatile evolution of the surface and final landscape form as constrained by DEMs. We have also simulated fluvial and lacustrine modification of icy satellites landscapes to evaluate the degree to which fluvial erosion of representative initial landscapes can replicate the present Titan landscape.
Ovchinnikova, Olga S.; Tai, Tamin; Bocharova, Vera; ...
2015-03-18
The advancement of a hybrid atomic force microscopy/mass spectrometry imaging platform demonstrating for the first time co-registered topographical, band excitation nanomechanical, and mass spectral imaging of a surface using a single instrument is reported. The mass spectrometry-based chemical imaging component of the system utilized nanothermal analysis probes for pyrolytic surface sampling followed by atmospheric pressure chemical ionization of the gas phase species produced with subsequent mass analysis. We discuss the basic instrumental setup and operation and the multimodal imaging capability and utility are demonstrated using a phase separated polystyrene/poly(2-vinylpyridine) polymer blend thin film. The topography and band excitation images showedmore » that the valley and plateau regions of the thin film surface were comprised primarily of one of the two polymers in the blend with the mass spectral chemical image used to definitively identify the polymers at the different locations. Data point pixel size for the topography (390 nm x 390 nm), band excitation (781 nm x 781 nm), mass spectrometry (690 nm x 500 nm) images was comparable and submicrometer in all three cases, but the data voxel size for each of the three images was dramatically different. The topography image was uniquely a surface measurement, whereas the band excitation image included information from an estimated 10 nm deep into the sample and the mass spectral image from 110-140 nm in depth. Moreover, because of this dramatic sampling depth variance, some differences in the band excitation and mass spectrometry chemical images were observed and were interpreted to indicate the presence of a buried interface in the sample. The spatial resolution of the mass spectral image was estimated to be between 1.5 m 2.6 m, based on the ability to distinguish surface features in that image that were also observed in the other images.« less
Sputnik Planum, Pluto: Composition, Geology, and Origin
NASA Astrophysics Data System (ADS)
McKinnon, William B.; Moore, Jeffrey M.; Spencer, John R.; Singer, Kelsi N.; Protopapa, Silvia; Grundy, Will; White, Oliver; Schenk, Paul M.; Olkin, Catherine B.; Young, Leslie; Ennico, Kimberly; Weaver, Harold A.; Stern, S. Alan; New Horizons Geology, Geophysics, and Imaging Theme Team, New Horizons Composition Theme Team
2016-10-01
Large-grained nitrogen ice dominates Sputnik Planum (SP, all names herein being informal), both spectroscopically and rheologically, but spectroscopic evidence also exists for a considerable volume fraction of methane ice (Protopapa et al., Icarus, submitted). If true, this considerably broadens the range of possible viscosity contrasts controlling cellular convection within SP (see McKinnon et al., Nature 2016), while potentially complicating buoyancy arguments regarding the numerous "icebergs," especially for those at the western margin where the Hillary and Norgay Montes sources must be predominantly water-ice owing to their great topographic heights (Moore et al., Science 2016). Bergs carried into SP by glacial flow from the Tombaugh Regio uplands to the east must themselves also be erodible at the downwelling margins of convection cells, for otherwise the entire planum surface would become choked, Sargasso-like, over geologic time. Within SP, the cellular pattern loses its distinctive trough-bounded topographic signature towards the northwest, which is apparently not simply a solar incidence angle effect; this transition coincides with a lower surface N2 and greater CH4 abundance. Towards the south, the cellular pattern ceases, presumably due to a shallowing of the nitrogen-rich layer (which decreases the Rayleigh number, or convective drive), and which is consistent with the water-ice basement topography expected from an oblique, basin-forming impact on a sphere. The "stability" of the southern SP surface apparently promotes development of pits by sublimation, but both relict cell boundaries and pit ensembles show evidence of shear flow to the south. Upwelling centers within cells also show photometric evidence for elongation to the south, meaning these cells are not simply plumes, but longitudinal convective rolls. Simple scaling arguments suggest surface velocities on the order of 1 cm/yr to the south. This suggests a surface age for southern SP in excess of 10 Myr, but likely consistent with an impactor population deficient in smaller crater-forming bodies (see talk by Singer et al., this meeting).
Topographic Ceres Map With Crater Names
2015-07-28
This color-coded map from NASA Dawn mission shows the highs and lows of topography on the surface of dwarf planet Ceres. It is labeled with names of features approved by the International Astronomical Union. Occator, the mysterious crater containing Ceres' mysterious bright spots, is named after the Roman agriculture deity of harrowing, a method of leveling soil. They retain their bright appearance in this map, although they are color-coded in the same green elevation of the crater floor in which they sit. The color scale extends about 5 miles (7.5 kilometers) below the surface in indigo to 5 miles (7.5 kilometers) above the surface in white. The topographic map was constructed from analyzing images from Dawn's framing camera taken from varying sun and viewing angles. The map was combined with an image mosaic of Ceres and projected as an simple cylindrical projection. http://photojournal.jpl.nasa.gov/catalog/PIA19606
NASA Technical Reports Server (NTRS)
Wohl, Christopher J.; Atkins, Brad M.; Belcher, Marcus A.; Connell, John W.
2012-01-01
Novel copoly(imide siloxane)s were synthesized from commercially available aminopropyl terminated siloxane oligomers, aromatic dianhydrides, and diamines. This synthetic approach produced copolymers with well-defined siloxane blocks linked with imide units in a random fashion. The copoly(amide acid)s were characterized by solution viscosity and subsequently used to cast thin films followed by thermal imidization in an inert atmosphere. Thin films were characterized using contact angle goniometry, attenuated total reflection Fourier transform infrared spectroscopy, confocal and optical microscopy, and tensile testing. Adhesion of micronsized particles was determined quantitatively using a sonication device. The polydimethylsiloxane (PDMS) moieties lowered the copolymer surface energy due to migration of siloxane moieties to the film s surface, resulting in a notable reduction in particle adhesion. A further reduction in particle adhesion was achieved by introducing topographical features on a scale of several to tens of microns by a laser ablation technique.
Harkins, Joe R.; Green, Mark E.
1981-01-01
Drainage areas for about 1,600 surface-water sites on streams and lakes in Florida are contained in this report. The sites are generally either U.S. Geological Survey gaging stations or the mouths of gaged streas. Each site is identified by latitude and longitude, by the general stream type, and by the U.S. Geological Survey 7.5-minute topographic map on which it can be located. The gaging stations are furhter identified by a downstream order number, a county code, and a nearby city or town. In addition to drainage areas, the surface areas of lakes are shown for the elevation given on the topographic map. These data were retrieved from the Surface Water Index developed and maintained by the Hydrologic Surveillance section of the Florida District Office, U.S. Geological Survey. (USGS)
Reassessing the Ancient Martian Ocean Hypothesis using Global Distribution of Valley Networks
NASA Astrophysics Data System (ADS)
Chan, Ngai-Ham; Perron, J. Taylor; Mitrovica, Jerry X.
2016-04-01
We re-examine the connection between true polar wander and the Martian ocean hypothesis. Previous studies have investigated the plausibility of an ancient ocean on Mars by examining the ancient putative sea-level markers on the planet's surface. One such study has argued that topographic benches, or contacts, are ancient shorelines, and that these contacts display long-wavelength topographic variations consistent with post-depositional true polar wander (Perron et al., Nature, 2007). In contrast, a second study has argued that the topography of ancient deltaic deposits associated with an ocean on early Mars are not consistent with the true polar wander scenario (Achille & Hynek, Nature Geosci., 2010). We revisit this issue by examining another marker of ancient shorelines --- the fluvial valley networks observed on the surface of Mars. Our results provide further evidence that a true polar wander event drove significant post-depositional deflection of surface features related to an ancient Martian ocean.
Reassessing the Ancient Martian Ocean Hypothesis using Global Distribution of Valley Networks
NASA Astrophysics Data System (ADS)
Chan, N. H.; Perron, J. T.; Mitrovica, J. X.
2015-12-01
We re-examine the connection between true polar wander and the Martian ocean hypothesis. Previous studies have investigated the plausibility of an ancient ocean on Mars by examining the topography of ancient putative sea-level markers on the planet's surface. A previous study has argued that topographic benches, or contacts, are ancient shorelines, and that these contacts display long-wavelength topographic variations consistent with post-depositional true polar wander (Perron et al., Nature, 2007). In contrast, a second study has argued that the topography of ancient deltaic deposits associated with an ocean on early Mars are not consistent with the true polar wander scenario (Achille & Hynek, Nature Geosci., 2010). We revisit this issue by examining another marker of ancient shorelines --- the fluvial valley networks observed on the surface of Mars. Our results provide further evidence that a true polar wander event drove significant post-depositional deflection of surface features related to an ancient Martian ocean.
Parot, Vicente; Lim, Daryl; González, Germán; Traverso, Giovanni; Nishioka, Norman S; Vakoc, Benjamin J; Durr, Nicholas J
2013-07-01
While color video endoscopy has enabled wide-field examination of the gastrointestinal tract, it often misses or incorrectly classifies lesions. Many of these missed lesions exhibit characteristic three-dimensional surface topographies. An endoscopic system that adds topographical measurements to conventional color imagery could therefore increase lesion detection and improve classification accuracy. We introduce photometric stereo endoscopy (PSE), a technique which allows high spatial frequency components of surface topography to be acquired simultaneously with conventional two-dimensional color imagery. We implement this technique in an endoscopic form factor and demonstrate that it can acquire the topography of small features with complex geometries and heterogeneous optical properties. PSE imaging of ex vivo human gastrointestinal tissue shows that surface topography measurements enable differentiation of abnormal shapes from surrounding normal tissue. Together, these results confirm that the topographical measurements can be obtained with relatively simple hardware in an endoscopic form factor, and suggest the potential of PSE to improve lesion detection and classification in gastrointestinal imaging.
Feedbacks Between Topographic Stress and Drainage Basin Evolution
NASA Astrophysics Data System (ADS)
Perron, J.; Martel, S. J.; Singha, K.; Slim, M. I.
2013-12-01
Theoretical calculations imply that stresses produced by gravity acting on topography may be large enough in some scenarios to fracture rock. Predicted stress fields beneath ridges and valleys can differ dramatically, which has led several authors to hypothesize feedbacks between topographic stress, rock fracture and landscape evolution. However, there have been few attempts to explore these feedbacks. We use a coupled model to identify possible feedbacks between topographic stress and drainage basin evolution. The domain is a cross-section of a valley consisting of a bedrock channel and adjacent soil-mantled hillslopes. The bedrock surface evolves due to channel incision, soil production, and rock uplift, and soil thickness evolves due to soil production and transport. Plane stresses at and below the bedrock surface are calculated with a boundary element method that accounts for both ambient tectonic stress and topographic stress. We assume that the stress field experienced by rock as it is exhumed influences the likelihood that it will develop fractures, which make the rock more susceptible to weathering, disaggregation and erosion. A measure of susceptibility to shear fracture, the most likely failure mode under regional compression, serves as a proxy for rock damage. We couple the landscape evolution model to the stress model by assuming that rock damage accelerates the rates of soil production and channel incision, with two endmember cases: rates scale with the magnitude of the damage proxy at the bedrock surface, or with cumulative damage acquired during rock exhumation. The stress-induced variations in soil production and channel incision alter the soil thickness and topography, which in turn alter the stress field. Comparing model simulations with and without these feedbacks, we note several predicted consequences of topographic stress for drainage basin evolution. Rock damage is typically focused at or near the foot of hillslopes, which creates thicker soils near the valley bottom than near the ridgetop. This gradient in soil thickness is largest, and the thickest soil furthest downslope, if most rock damage is assumed to occur near the surface. Ambient tectonic stress also has a strong effect on hillslopes, with more compressive horizontal stress steepening the soil thickness gradient and displacing the thickest soil farther downslope. Rock damage in the valley bottom scales with valley depth, creating a positive feedback between relief and channel incision. This produces higher relief during transient channel incision, but steady-state relief is insensitive to stress effects because the positive feedback is limited by reduction of the channel slope. However, the fact that valleys are typically deepest in the middle of a drainage basin implies that channel profiles will be more concave if stresses enhance channel incision. Observational tests of these qualitative predictions will help evaluate the significance of suspected feedbacks between topographic stress and landscape evolution.
Nmor, Jephtha C; Sunahara, Toshihiko; Goto, Kensuke; Futami, Kyoko; Sonye, George; Akweywa, Peter; Dida, Gabriel; Minakawa, Noboru
2013-01-16
Identification of malaria vector breeding sites can enhance control activities. Although associations between malaria vector breeding sites and topography are well recognized, practical models that predict breeding sites from topographic information are lacking. We used topographic variables derived from remotely sensed Digital Elevation Models (DEMs) to model the breeding sites of malaria vectors. We further compared the predictive strength of two different DEMs and evaluated the predictability of various habitat types inhabited by Anopheles larvae. Using GIS techniques, topographic variables were extracted from two DEMs: 1) Shuttle Radar Topography Mission 3 (SRTM3, 90-m resolution) and 2) the Advanced Spaceborne Thermal Emission Reflection Radiometer Global DEM (ASTER, 30-m resolution). We used data on breeding sites from an extensive field survey conducted on an island in western Kenya in 2006. Topographic variables were extracted for 826 breeding sites and for 4520 negative points that were randomly assigned. Logistic regression modelling was applied to characterize topographic features of the malaria vector breeding sites and predict their locations. Model accuracy was evaluated using the area under the receiver operating characteristics curve (AUC). All topographic variables derived from both DEMs were significantly correlated with breeding habitats except for the aspect of SRTM. The magnitude and direction of correlation for each variable were similar in the two DEMs. Multivariate models for SRTM and ASTER showed similar levels of fit indicated by Akaike information criterion (3959.3 and 3972.7, respectively), though the former was slightly better than the latter. The accuracy of prediction indicated by AUC was also similar in SRTM (0.758) and ASTER (0.755) in the training site. In the testing site, both SRTM and ASTER models showed higher AUC in the testing sites than in the training site (0.829 and 0.799, respectively). The predictability of habitat types varied. Drains, foot-prints, puddles and swamp habitat types were most predictable. Both SRTM and ASTER models had similar predictive potentials, which were sufficiently accurate to predict vector habitats. The free availability of these DEMs suggests that topographic predictive models could be widely used by vector control managers in Africa to complement malaria control strategies.
Nature of the South Pole on Mars Determined by Topographic Forcing of Atmosphere Dynamics
NASA Technical Reports Server (NTRS)
Colaprete, A.; Barnes, Jeffrey R.; Haberle, Robert M.; Hollingsworth, Jeffery L.; Kieffer, Hugh H.; Titus, Timothy N.
2005-01-01
Introduction: The observed Springtime (Ls approx. 200) surface albedo in the Martian southern polar region is shown in Figure 1. In general, the hemisphere west of Hellas is marked by relatively high values of surface albedo. In contrast, the hemisphere east of Hellas contains extensive regions of very low surface albedo. One of the brightest features within the western hemisphere is the South Pole Residual Cap (SPRC). The dark region, which dominates the eastern hemisphere, is the "Cryptic" region[1]. The nature of the SPRC has been the source of considerable debate since its identification as CO2 ice by the Viking spacecraft. Two fundamental questions still exist regarding the SPRC s formation, location and stability. First, why is the SPRC offset from the geographic pole? There are no local topographic features or surface properties that can account for the offset in the SPRC. Second, does the SPRC represent a large or a small reservoir of CO2? If the former, then it could possibly buffer the surface pressure. If the latter, then the SPRC may not survive every year.
Geomorphometry-based method of landform assessment for geodiversity
NASA Astrophysics Data System (ADS)
Najwer, Alicja; Zwoliński, Zbigniew
2015-04-01
Climate variability primarily induces the variations in the intensity and frequency of surface processes and consequently, principal changes in the landscape. As a result, abiotic heterogeneity may be threatened and the key elements of the natural diversity even decay. The concept of geodiversity was created recently and has rapidly gained the approval of scientists around the world. However, the problem recognition is still at an early stage. Moreover, little progress has been made concerning its assessment and geovisualisation. Geographical Information System (GIS) tools currently provide wide possibilities for the Earth's surface studies. Very often, the main limitation in that analysis is acquisition of geodata in appropriate resolution. The main objective of this study was to develop a proceeding algorithm for the landform geodiversity assessment using geomorphometric parameters. Furthermore, final maps were compared to those resulting from thematic layers method. The study area consists of two peculiar valleys, characterized by diverse landscape units and complex geological setting: Sucha Woda in Polish part of Tatra Mts. and Wrzosowka in Sudetes Mts. Both valleys are located in the National Park areas. The basis for the assessment is a proper selection of geomorphometric parameters with reference to the definition of geodiversity. Seven factor maps were prepared for each valley: General Curvature, Topographic Openness, Potential Incoming Solar Radiation, Topographic Position Index, Topographic Wetness Index, Convergence Index and Relative Heights. After the data integration and performing the necessary geoinformation analysis, the next step with a certain degree of subjectivity is score classification of the input maps using an expert system and geostatistical analysis. The crucial point to generate the final maps of geodiversity by multi-criteria evaluation (MCE) with GIS-based Weighted Sum technique is to assign appropriate weights for each factor map by determining the incoherence of the pairwise comparison matrices. The widely accepted rule of inconsistency is according to Saaty's ratio. The accuracy of the obtained final maps is strongly influenced by: the quality of the raw data and the cell size of the basic assessment. Furthermore, it can be stated that selected parameters: Topographic Position Index, Topographic Wetness Index and Total Incoming Solar Radiation could be a relevant choice for geodiversity assessment. The remaining ones are characterized by certain linear correlation and therefore their validity in the weighting process was lower. Geodiversity assessment method based on the geomorphometric parameters provides results at a level similar to the method using thematic layers. What is more significant, it is much less labor-intensive and does not require a whole set of geodata. Recognizing parts of the territory that are the most vulnerable to changes turns out to be very crucial for management and planning of natural protected areas. The proposed methodology meets these proposals well.
Duarte, Adam; Wolcott, Daniel M.; Chow, T. Edwin
2012-01-01
The Aleutian shield fern Polystichum aleuticum is endemic to the Aleutian archipelago of Alaska and is listed as endangered pursuant to the U.S. Endangered Species Act. Despite numerous efforts to discover new populations of this species, only four known populations are documented to date, and information is needed to prioritize locations for future surveys. Therefore, we incorporated topographical habitat characteristics (elevation, slope, aspect, distance from coastline, and anthropogenic footprint) found at known Aleutian shield fern locations into a Geographical Information System (GIS) model to create a habitat suitability map for the entirety of the Andreaonof Islands. A total of 18 islands contained 489.26 km2 of highly suitable and moderately suitable habitat when weighting each factor equally. This study reports a habitat suitability map for the endangered Aleutian shield fern using topographical characteristics, which can be used to assist current and future recovery efforts for the species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui Tian, Guilhem Ribeill, Chen Xu, Charles E. Reece, Michael J. Kelley
2011-03-01
As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. Amore » more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.« less
NASA Astrophysics Data System (ADS)
Galland, Olivier; Polteau, Stephane; Werner, Stephanie C.
2013-04-01
Coronae on the surface of Venus are unique volcano-tectonic structures in the solar systems. Their circular morphology is associated with various topographic signatures, from bell-shape domes, flat-topped plateaus, to uplifted rings surrounding a subsided centre similar to caldera. Their extensive size and associated lava flows erupting from their periphery, indicate that they result from deep processes in the Venus mantle. Understanding their origin is thus essential for unraveling the dynamics of Venus through time. There are several scenarios explaining the formation of coronae, the most popular being the interaction between an upwelling mantle plume and the lithosphere, creating dynamic topography. In this contribution, we propose that coronae can result from the emplacement of giant magma intrusions below the Venus' lithosphere, on the basis of laboratory experiments. The experimental apparatus consists of a square box filled with compacted fine-grained silica flour (model crust), in which a low viscosity vegetable oil (model magma) is injected at constant flow rate. The initial conditions are such that magma initially flows horizontally, forming a sill-like body, to simulate magmatic underplating. During the experiments, oil injection triggers deformation of the model surface, which is monitored periodically using a moiré projection device, producing time series topographic maps of the model surface. Our results show that the surface evolution of the models follows three stages: (1) initial bell-shaped doming occurs above the injection inlet, producing radial open fractures at the model surfaces; (2) the bell-shape dome evolves to a flat-topped plateau, at the rim of which the oil erupts; (3) after the injection stops, the centre of the plateau subsides, and a positive topographic ring surrounding a depression, like a caldera, remains. The collapse of the plateau also generates concentric extensional fractures at the rims of the caldera. After the dynamic experiment, the oil solidifies and we extracted the intrusion, which exhibits a sill-shape, feeding outward circular inclined sheets at its external edges (i.e. a saucer-shaped sill). From a series of experiments in which the depth of injection h was varied, we show that the diameter of the intrusion and its associated topographic structure correlates linearly with h. The three evolutionary stages simulated in the experiments reproduce remarkably well (1) the three main corona morphologies observed on Venus, and (2) their established succession through time. In addition, the relationships between the structures and the oil flow in our experiments are also similar to those observed on Venus. Therefore, our experimental results suggest that corona structures are the result of giant magma intrusions in the lithosphere of Venus. In addition, our experiments suggest that the diameters of coronae are related to the depth of emplacement of the underlying intrusions, which might be controlled by the rheological architecture of the Venus' lithosphere. Therefore, the analysis of the dimensions and morphologies of coronae are likely to provide crucial information of the structure of the lithosphere of Venus.
Titan's topography as a clue to geologic processes and landscape evolution
NASA Astrophysics Data System (ADS)
Kirk, R. L.
2012-12-01
Cassini has revealed a diversity of surface features on Titan rivaled by few bodies in the Solar System. Some of these features are readily identified: dunes, channels, lakes, seas, fresh impact craters, and mountains. Others are enigmatic and in some cases have sparked debate about their mode of origin. Given the limited resolution of the Cassini images, at best 300 m for synthetic aperture RADAR (SAR) images, it can be difficult to identify details that might confirm a particular mode of origin. Supplementing the images with topographic information provides an important and sometimes crucial clue to the origin and evolution of landforms. Topographic profiles from altimetry and SARTopo analysis of the images can shed light on simpler features (e.g., dunes) and led to the surprising conclusion that Titan's largest feature, Xanadu, is not elevated as had been supposed. For more complex structures, digital topographic models (DTMs) provide a full three-dimensional view. About 10% of Titan's surface has been imaged in stereo by RADAR, and we have produced DTMs of about 2% by analyzing these stereopairs. Analysis of the results within the Cassini RADAR team has shed light on a number of geologic problems: * Some putative volcanic features (e.g., the supposed dome Ganesa Macula and various diffuse surface flows) have been shown to lack the expected relief, greatly weakening the case for their volcanic origin. * Conversely, flows in Hotei Regio have been shown to tower over nearby fluvial channels, and those near Sotra Facula are associated with multiple edifices and caldera-like pits, strengthening the case for a volcanic origin. * Depths of the handful of definite impact craters measured so far range from Ganymede-like to nearly zero, and are statistically consistent with a process such as eolian deposition that would steadily reduce the crater depth rather than a process such as surface erosion that would tend to leave craters only partially filled. * Clustering of the small north-polar lakes at a few discrete levels, all of which are hundreds of meters above the major seas, suggests that these bodies of liquid are connected locally but not (over relevant timescales) regionally by subsurface flow. * Evidence for topographic "benches" at multiple levels around the seas suggests that the liquid level has fluctuated over time, perhaps as a result of inter-hemispheric transport of volatiles over multi-seasonal timescales. These examples come primarily from Titan's northern hemisphere and equatorial zone. Cassini's extended mission to date has yielded extensive coverage of the southern hemisphere that we have recently integrated into a global control network, allowing us to begin producing DTMs of multiple southern hemisphere sites with consistent absolute elevations. Of particular interest are apparent basins, for the most part empty of surface liquid, near the South Pole. Are the basin floors or possible shoreline features at consistent elevations? How do the depths and absolute elevations compare to Ontario Lacus and the other small lakes (including transient ones) in the south, and to the lakes and seas of the northern hemisphere? Topomapping now under way will help address these and other questions about the evolution of Titan's southern hemisphere and its volatile distribution over time.
We determined geomorphic and hydrologic parameters for 144 forested, lake watersheds in the Northeast (NE) of the United States based primarily on measurements from topographic maps. hese parameters were used to test for relationships with selected surface water chemistry relevan...
USGS standard quadrangle maps for emergency response
Moore, Laurence R.
2009-01-01
The 1:24,000-scale topographic quadrangle was the primary product of the U.S. Geological Survey's (USGS) National Mapping Program from 1947-1992. This map series includes about 54,000 map sheets for the conterminous United States, and is the only uniform map series ever produced that covers this area at such a large scale. This map series partially was revised under several programs, starting as early as 1968, but these programs were not adequate to keep the series current. Through the 1990s the emphasis of the USGS mapping program shifted away from topographic maps and toward more specialized digital data products. Topographic map revision dropped off rapidly after 1999, and stopped completely by 2004. Since 2001, emergency-response and homeland security requirement have revived the question of whether a standard national topographic series is needed. Emergencies such as Hurricane Katrina in 2005 and California wildfires in 2007-08 demonstrated that familiar maps are important to first responders. Maps that have a standard scale, extent, and grids help reduce confusion and save time in emergencies. Traditional maps are designed to allow the human brain to quickly process large amounts of information, and depend on artistic layout and design that cannot be fully automated. In spite of technical advances, creating a traditional, general-purpose topographic map is still expensive. Although the content and layout of traditional topographic maps probably is still desirable, the preferred packaging and delivery of maps has changed. Digital image files are now desired by most users, but to be useful to the emergency-response community, these files must be easy to view and easy to print without specialized geographic information system expertise or software.
Volunteer map data collection at the USGS
Eric, B. Wolf; Poore, Barbara S.; Caro, Holly K.; Matthews, Greg D.
2011-01-01
Since 1994, citizen volunteers have helped the U.S. Geological Survey (USGS) improve its topographic maps. Through the Earth Science Corps program, citizens were able to "adopt a quad" and collect new information and update existing map features. Until its conclusion in 2001, as many as 300 volunteers annotated paper maps which were incorporated into the USGS topographic-map revision process.
Topographic controls on the regional-scale biodiversity of the south-western USA
David D. Coblentz; Kurt H. Riitters
2004-01-01
Aim Topography is a fundamental geophysical observable that contains valuable information about the geodynamic, tectonic and climatic history of a region. Here, we extend the traditional uses of topographic analysis to evaluate the role played by topography in the distribution of regional-scale biodiversity in the south-western USA. An important aspect of our study is...
Topographic mapping using a monopulse SAR system
NASA Technical Reports Server (NTRS)
Zink, M.; Oettl, H.; Freeman, A.
1993-01-01
Terrain height variations in mountainous areas cause two problems in the radiometric correction of SAR images: the first being that the wrong elevation angle may be used in correcting for the radiometric variation of the antenna pattern; the second that the local incidence angle used in correcting the projection of the pixel area from slant range to ground range coordinates may vary from that given by the flat earth assumption. We propose a novel design of a SAR system which exploits the monopulse principle to determine the elevation angle and thus the height at the different parts of the image. The key element of such a phase monopulse system is an antenna, which can be divided into a lower and upper half in elevation using a monopulse comparator. In addition to the usual sum pattern, the elevation difference pattern can be generated by a -pi phase shift on one half of the antenna. From the ratios of images radiometrically modulated by the difference and sum antenna pattern in cross-track direction, we can derive the appropriate elevation angle at any point in the image. Together with the slant range we can calculate the height of the platform above this point using information on the antenna pointing and the platform attitude. This operation, repeated at many locations throughout the image, allows us to build up a topographic map of the height of the aircraft above each location. Inversion of this map, using the precisely determined aircraft altitude and the accurate flight path, leads to the actual topography of the imaged surface. The precise elevation of one point in the image could also be used to convert the height map to a topographic map. In this paper, we present design considerations for a corresponding airborne SAR system in X-Band and give estimates of the error due to system noise and azimuth ambiguities as well as the expected performance and precision in topographic mapping.
Effective Utilization of Commercial Wireless Networking Technology in Planetary Environments
NASA Technical Reports Server (NTRS)
Caulev, Michael (Technical Monitor); Phillip, DeLeon; Horan, Stephen; Borah, Deva; Lyman, Ray
2005-01-01
The purpose of this research is to investigate the use of commercial, off-the-shelf wireless networking technology in planetary exploration applications involving rovers and sensor webs. The three objectives of this research project are to: 1) simulate the radio frequency environment of proposed landing sites on Mars using actual topographic data, 2) analyze the performance of current wireless networking standards in the simulated radio frequency environment, and 3) propose modifications to the standards for more efficient utilization. In this annual report, we present our results for the second year of research. During this year, the effort has focussed on the second objective of analyzing the performance of the IEEE 802.11a and IEEE 802.1lb wireless networking standards in the simulated radio frequency environment of Mars. The approach builds upon our previous results which deterministically modelled the RF environment at selected sites on Mars using high-resolution topographical data. These results provide critical information regarding antenna coverage patterns, maximum link distances, effects of surface clutter, and multipath effects. Using these previous results, the physical layer of these wireless networking standards has now been simulated and analyzed in the Martian environment. We are looking to extending these results to the and medium access layer next. Our results give us critical information regarding the performance (data rates, packet error rates, link distances, etc.) of IEEE 802.1 la/b wireless networks. This information enables a critical examination of how these wireless networks may be utilized in future Mars missions and how they may be possibly modified for more optimal usage.
A Critical Comparison of Some Methods for Interpolation of Scattered Data
1979-12-01
because faster evaluation of the local interpolants is possible. KAll things considered, the method of choice here seems to be the Modified Quadratic...topography and other irregular surfaces," J. of Geophysical Research 76 ( 1971 ) 1905-1915I’ [23) HARDY, Rolland L. - "Analytical topographic surfaces by
A new method for solid surface topographical studies using nematic liquid crystals
NASA Astrophysics Data System (ADS)
Baber, N.; Strugalski, Z.
1984-03-01
A new simple method has been developed to investigate the topography of a wide range of solid surfaces using nematic liquid crystals. Polarizing microscopy is employed. The usefulness of the method for detecting weak mechanical effects has been demonstrated. An application in criminology is foreseen.
Substrate Topography Induces a Crossover from 2D to 3D Behavior in Fibroblast Migration
Ghibaudo, Marion; Trichet, Léa; Le Digabel, Jimmy; Richert, Alain; Hersen, Pascal; Ladoux, Benoît
2009-01-01
Abstract In a three-dimensional environment, cells migrate through complex topographical features. Using microstructured substrates, we investigate the role of substrate topography in cell adhesion and migration. To do so, fibroblasts are plated on chemically identical substrates composed of microfabricated pillars. When the dimensions of the pillars (i.e., the diameter, length, and spacing) are varied, migrating cells encounter alternating flat and rough surfaces that depend on the spacing between the pillars. Consequently, we show that substrate topography affects cell shape and migration by modifying cell-to-substrate interactions. Cells on micropillar substrates exhibit more elongated and branched shapes with fewer actin stress fibers compared with cells on flat surfaces. By analyzing the migration paths in various environments, we observe different mechanisms of cell migration, including a persistent type of migration, that depend on the organization of the topographical features. These responses can be attributed to a spatial reorganization of the actin cytoskeleton due to physical constraints and a preferential formation of focal adhesions on the micropillars, with an increased lifetime compared to that observed on flat surfaces. By changing myosin II activity, we show that actomyosin contractility is essential in the cellular response to micron-scale topographic signals. Finally, the analysis of cell movements at the frontier between flat and micropillar substrates shows that cell transmigration through the micropillar substrates depends on the spacing between the pillars. PMID:19580774
In situ nanoscale observations of gypsum dissolution by digital holographic microscopy.
Feng, Pan; Brand, Alexander S; Chen, Lei; Bullard, Jeffrey W
2017-06-01
Recent topography measurements of gypsum dissolution have not reported the absolute dissolution rates, but instead focus on the rates of formation and growth of etch pits. In this study, the in situ absolute retreat rates of gypsum (010) cleavage surfaces at etch pits, at cleavage steps, and at apparently defect-free portions of the surface are measured in flowing water by reflection digital holographic microscopy. Observations made on randomly sampled fields of view on seven different cleavage surfaces reveal a range of local dissolution rates, the local rate being determined by the topographical features at which material is removed. Four characteristic types of topographical activity are observed: 1) smooth regions, free of etch pits or other noticeable defects, where dissolution rates are relatively low; 2) shallow, wide etch pits bounded by faceted walls which grow gradually at rates somewhat greater than in smooth regions; 3) narrow, deep etch pits which form and grow throughout the observation period at rates that exceed those at the shallow etch pits; and 4) relatively few, submicrometer cleavage steps which move in a wave-like manner and yield local dissolution fluxes that are about five times greater than at etch pits. Molar dissolution rates at all topographical features except submicrometer steps can be aggregated into a continuous, mildly bimodal distribution with a mean of 3.0 µmolm -2 s -1 and a standard deviation of 0.7 µmolm -2 s -1 .
Impact of topography on groundwater salinization due to ocean surge inundation
NASA Astrophysics Data System (ADS)
Yu, Xuan; Yang, Jie; Graf, Thomas; Koneshloo, Mohammad; O'Neal, Michael A.; Michael, Holly A.
2016-08-01
Sea-level rise and increases in the frequency and intensity of ocean surges caused by climate change are likely to exacerbate adverse effects on low-lying coastal areas. The landward flow of water during ocean surges introduces salt to surficial coastal aquifers and threatens groundwater resources. Coastal topographic features (e.g., ponds, dunes, barrier islands, and channels) likely have a strong impact on overwash and salinization processes, but are generally highly simplified in modeling studies. To understand topographic impacts on groundwater salinization, we modeled a theoretical overwash event and variable-density groundwater flow and salt transport in 3-D using the fully coupled surface and subsurface numerical simulator, HydroGeoSphere. The model simulates the coastal aquifer as an integrated system considering overland flow, coupled surface and subsurface exchange, variably saturated flow, and variable-density groundwater flow. To represent various coastal landscape types, we simulated both synthetic fields and real-world coastal topography from Delaware, USA. The groundwater salinization assessment suggested that the topographic connectivity promoting overland flow controls the volume of aquifer that is salinized. In contrast, the amount of water that can be stored in surface depressions determines the amount of seawater that infiltrates the subsurface and the time for seawater to flush from the aquifer. Our study suggests that topography has a significant impact on groundwater salinization due to ocean surge overwash, with important implications for coastal land management and groundwater vulnerability assessment.
ERIC Educational Resources Information Center
Smith, Garon C.; Hossain, Md Mainul
2017-01-01
Species TOPOS is a free software package for generating three-dimensional (3-D) topographic surfaces ("topos") for acid-base equilibrium studies. This upgrade adds 3-D species distribution topos to earlier surfaces that showed pH and buffer capacity behavior during titration and dilution procedures. It constructs topos by plotting…
Topographic and Other Influences on Pluto's Volatile Ices
NASA Astrophysics Data System (ADS)
Lewis, Briley Lynn; Stansberry, John; Grundy, William M.; Schmitt, Bernard; Protopapa, Silvia; Trafton, Laurence M.; Holler, Bryan J.; McKinnon, William B.; Schenk, Paul M.; Stern, S. Alan; Young, Leslie; Weaver, Harold A.; Olkin, Catherine; Ennico, Kimberly; New Horizons Science Team, The New Horizons Composition Team
2018-01-01
Pluto’s surface is known to consist of various volatile ices, mostly N2, CH4, and CO, which sublimate and condense on varying timescales, generally moving from points of high insolation to those of low insolation. The New Horizons Pluto encounter data provide multiple lenses through which to view Pluto’s detailed surface topography and composition and to investigate the distribution of volatiles on its surface, including albedo and elevation maps from the imaging instruments and composition maps from the LEISA spectral imager. The volatile surface ice is expected to be generally isothermal, due to the fact that their vapor pressures are in equilibrium with the atmosphere. Although secular topographic transport mechanisms suggest that points at low elevation should slowly fill with volatile ices (Trafton 2015 DPS abstract, Bertrand and Forget 2017), there are counter-examples of this across the surface, implying that energy discrepancies caused by insolation differences, albedo variations, local slopes, and other effects may take precedence at shorter timescales. Using data from the 2015 New Horizons flyby, we present our results of this investigation into the effects of variations in insolation, albedo, and topography on the presence of the different volatile ices across the surface of Pluto.
Topographic and Other Influences on Pluto's Volatile Ices
NASA Astrophysics Data System (ADS)
Lewis, Briley Lynn; Stansberry, John; Grundy, William M.; Schmitt, Bernard; Protopapa, Silvia; Trafton, Laurence M.; Holler, Bryan J.; McKinnon, William B.; Schenk, Paul M.; Stern, S. Alan; Young, Leslie; Weaver, Harold A.; Olkin, Catherine; Ennico, Kimberly; New Horizons Science Team
2017-10-01
Pluto’s surface is known to consist of various volatile ices, mostly N2, CH4, and CO, which sublimate and condense on varying timescales, generally moving from points of high insolation to those of low insolation. The New Horizons Pluto encounter data provide multiple lenses through which to view Pluto’s detailed surface topography and composition and to investigate the distribution of volatiles on its surface, including albedo and elevation maps from the imaging instruments and composition maps from the LEISA spectral imager. The volatile surface ice is expected to be generally isothermal, due to the fact that their vapor pressures are in equilibrium with the atmosphere. Although secular topographic transport mechanisms suggest that points at low elevation should slowly fill with volatile ices (Trafton 2015 DPS abstract, Bertrand and Forget 2017), there are counter-examples of this across the surface, implying that energy discrepancies caused by insolation differences, albedo variations, local slopes, and other effects may take precedence at shorter timescales. Using data from the 2015 New Horizons flyby, we present our results of this investigation into the effects of variations in insolation, albedo, and topography on the presence of the different volatile ices across the surface of Pluto.
Tracking geomorphic signatures of watershed suburbanization with multi-temporal LiDAR
Jones, Daniel K.; Baker, Matthew E.; Miller, Andrew J.; Jarnagin, S. Taylor; Hogan, Dianna M.
2014-01-01
Urban development practices redistribute surface materials through filling, grading, and terracing, causing drastic changes to the geomorphic organization of the landscape. Many studies document the hydrologic, biologic, or geomorphic consequences of urbanization using space-for-time comparisons of disparate urban and rural landscapes. However, no previous studies have documented geomorphic changes from development using multiple dates of high-resolution topographic data at the watershed scale. This study utilized a time series of five sequential light detection and ranging (LiDAR) derived digital elevation models (DEMs) to track watershed geomorphic changes within two watersheds throughout development (2002–2008) and across multiple spatial scales (0.01–1 km2). Development-induced changes were compared against an undeveloped forested watershed during the same time period. Changes in elevations, slopes, hypsometry, and surface flow pathways were tracked throughout the development process to assess watershed geomorphic alterations. Results suggest that development produced an increase in sharp topographic breaks between relatively flat surfaces and steep slopes, replacing smoothly varying hillslopes and leading to greater variation in slopes. Examinations of flowpath distributions highlight systematic modifications that favor rapid convergence in unchanneled upland areas. Evidence of channel additions in the form of engineered surface conduits is apparent in comparisons of pre- and post-development stream maps. These results suggest that topographic modification, in addition to impervious surfaces, contributes to altered hydrologic dynamics observed in urban systems. This work highlights important considerations for the use of repeat LiDAR flights in analyzing watershed change through time. Novel methods introduced here may allow improved understanding and targeted mitigation of the processes driving geomorphic changes during development and help guide future research directions for development-based watershed studies.
NASA Astrophysics Data System (ADS)
West, A.; Fox, M.; Walker, R. T.; Carter, A.; Watts, A. B.; Gantulga, B.
2012-12-01
Potential feedbacks between climate-driven erosion and the development of intra-continental topography have received relatively little attention, particularly compared to the significant efforts to understand the interplay of climate, erosion, and uplift in orogenic settings. But such links may be vital for understanding the topographic evolution of epeirogenic topography and for making inferences about geodynamic processes based on associated sedimentary and geomorphic signals. In this study, we consider the role of orographically-driven climate variability in shaping continental topography by focusing on the Hangay mountain range, a uplifted dome in central Mongolia. The work presented here is based on results from a topographic analysis of the Hangay, making use of the flat-topped peaks that effectively represent preserved remnants of a pre-erosional surface. We have determined the scale and distribution of erosion by recreating this pre-erosional surface and subtracting the present-day, dissected topography. Our results show that the extent of erosion correlates with spatial variation in mean annual precipitation, but not with the extent of total surface uplift. The morphology of the range reflects the higher, climate-driven fluvial erosion rates by northern rivers that receive higher precipitation when compared to the southern rivers, which have steeper relief as a result of the asymmetric main drainage divide. Overall asymmetry in inferred isostatic response to erosional unloading is not mirrored in asymmetry of total surface uplift, hinting at interaction between surface erosion and the forces sustaining topography. This has important implications for understanding the geodynamics of epeirogenic uplift. In addition to these main outcomes from our topographic analysis, we will also present preliminary findings from detrital thermochronology and cosmogenic analyses that help to pinpoint the location of erosion and provide a basis for quantifying rates.
Kournetas, N; Spintzyk, S; Schweizer, E; Sawada, T; Said, F; Schmid, P; Geis-Gerstorfer, J; Eliades, G; Rupp, F
2017-08-01
Comparability of topographical data of implant surfaces in literature is low and their clinical relevance often equivocal. The aim of this study was to investigate the ability of scanning electron microscopy and optical interferometry to assess statistically similar 3-dimensional roughness parameter results and to evaluate these data based on predefined criteria regarded relevant for a favorable biological response. Four different commercial dental screw-type implants (NanoTite Certain Prevail, TiUnite Brånemark Mk III, XiVE S Plus and SLA Standard Plus) were analyzed by stereo scanning electron microscopy and white light interferometry. Surface height, spatial and hybrid roughness parameters (Sa, Sz, Ssk, Sku, Sal, Str, Sdr) were assessed from raw and filtered data (Gaussian 50μm and 5μm cut-off-filters), respectively. Data were statistically compared by one-way ANOVA and Tukey-Kramer post-hoc test. For a clinically relevant interpretation, a categorizing evaluation approach was used based on predefined threshold criteria for each roughness parameter. The two methods exhibited predominantly statistical differences. Dependent on roughness parameters and filter settings, both methods showed variations in rankings of the implant surfaces and differed in their ability to discriminate the different topographies. Overall, the analyses revealed scale-dependent roughness data. Compared to the pure statistical approach, the categorizing evaluation resulted in much more similarities between the two methods. This study suggests to reconsider current approaches for the topographical evaluation of implant surfaces and to further seek after proper experimental settings. Furthermore, the specific role of different roughness parameters for the bioresponse has to be studied in detail in order to better define clinically relevant, scale-dependent and parameter-specific thresholds and ranges. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Sommers, A D
2011-05-03
Liquid droplets on micropatterned surfaces consisting of parallel grooves tens of micrometers in width and depth are considered, and a method for calculating the droplet volume on these surfaces is presented. This model, which utilizes the elongated and parallel-sided nature of droplets condensed on these microgrooved surfaces, requires inputs from two droplet images at ϕ = 0° and ϕ = 90°--namely, the droplet major axis, minor axis, height, and two contact angles. In this method, a circular cross-sectional area is extruded the length of the droplet where the chord of the extruded circle is fixed by the width of the droplet. The maximum apparent contact angle is assumed to occur along the side of the droplet because of the surface energy barrier to wetting imposed by the grooves--a behavior that was observed experimentally. When applied to water droplets condensed onto a microgrooved aluminum surface, this method was shown to calculate the actual droplet volume to within 10% for 88% of the droplets analyzed. This method is useful for estimating the volume of retained droplets on topographically modified, anisotropic surfaces where both heat and mass transfer occur and the surface microchannels are aligned parallel to gravity to assist in condensate drainage.
Surface quality and topographic inspection of variable compliance part after precise turning
NASA Astrophysics Data System (ADS)
Nieslony, P.; Krolczyk, G. M.; Wojciechowski, S.; Chudy, R.; Zak, K.; Maruda, R. W.
2018-03-01
The paper presents the problem of precise turning of the mould parts with variable compliance and demonstrates a topographic inspection of the machined surface quality. The study was conducted for the cutting tools made of cemented carbide with coatings, in a range of variable cutting parameters. The long shaft with special axial hole, made of hardened 55NiCrMoV6 steel was selected as a workpiece. The carried out study included the stiffness measurement of the machining system, as well as the investigation of cutting force components. In this context, the surface topography parameters were evaluated using the stylus profile meter and analysed. The research revealed that the surface topography, alongside the 3D functional parameters, and PSD influences the performance of the machined surface. The lowest surface roughness parameters values, equalled to Sa = 1 μm and Sz = 4.3 μm have been obtained during turning with cutting speed vc = 90 m/min. The stable turning of variable compliance part affects the surface texture formation with a unidirectional perpendicular, anisotropic structure. Nevertheless, in case of unstable turning, the characteristic chatter marks are observed, and process dynamics has greater contribution in formation of surface finish than turning kinematics and elastic plastic deformation of workpiece.
Geologic information from satellite images
NASA Technical Reports Server (NTRS)
Lee, K.; Knepper, D. H.; Sawatzky, D. L.
1974-01-01
Extracting geologic information from ERTS and Skylab/EREP images is best done by a geologist trained in photo-interpretation. The information is at a regional scale, and three basic types are available: rock and soil, geologic structures, and landforms. Discrimination between alluvium and sedimentary or crystalline bedrock, and between units in thick sedimentary sequences is best, primarily because of topographic expression and vegetation differences. Discrimination between crystalline rock types is poor. Folds and fractures are the best displayed geologic features. They are recognizable by topographic expression, drainage patterns, and rock or vegetation tonal patterns. Landforms are easily discriminated by their familiar shapes and patterns. Several examples demonstrate the applicability of satellite images to tectonic analysis and petroleum and mineral exploration.
Beyond the Bottom of the Foot: Topographic Organization of the Foot Dorsum in Walking.
Klarner, Taryn; Pearcey, Gregory E P; Sun, Yao; Barss, Trevor S; Kaupp, Chelsea; Munro, Bridget; Frank, Nick; Zehr, E Paul
2017-12-01
Sensory feedback from the foot dorsum during walking has only been studied globally by whole nerve stimulation. Stimulating the main nerve innervating the dorsal surface produces a functional stumble corrective response that is phase-dependently modulated. We speculated that effects evoked by activation of discrete skin regions on the foot dorsum would be topographically organized, as with the foot sole. Nonnoxious electrical stimulation was delivered to five discrete locations on the dorsal surface of the foot during treadmill walking. Muscle activity from muscles acting at the ankle, knee, hip, and shoulder were recorded along with ankle, knee, and hip kinematics and kinetic information from forces under the foot. All data were sorted on the basis of stimulus occurrence in 12 step cycle phases, before being averaged together within a phase for subsequent analysis. Results reveal dynamic changes in reflex amplitudes and kinematics that are site specific and phase dependent. Most responses from discrete sites on the foot dorsum were seen in the swing phase suggesting function to conform foot trajectory to maintain stability of the moving limb. In general, responses from lateral stimulation differed from medial stimulation, and effects were largest from stimulation at the distal end of the foot at the metatarsals; that is, in anatomical locations where actual impact with an object in the environment is most likely during swing. Responses to stimulation extend to include muscles at the hip and shoulder. We reveal that afferent feedback from specific cutaneous locations on the foot dorsum influences stance and swing phase corrective responses. This emphasizes the critical importance of feedback from the entire foot surface in locomotor control and has application for rehabilitation after neurological injury and in footwear development.
NASA Astrophysics Data System (ADS)
Reddy, Vijeth V.; Vedantha Krishna, Amogh; Schultheiss, Fredrik; Rosén, B.-G.
2017-06-01
Manufactured surfaces usually consist of topographical features which include both those put forth by the manufacturing process, and micro-features caused by disturbances during this process. Surface characterization basically involves study of these features which influence the functionality of the surface. This article focuses on characterization of the surface topography of machined lead brass and lead free brass. The adverse effect of lead on human health and the environment has led the manufacturing sector to focus on sustainable manufacturing of lead free brass, as well as how to maintain control of the surface integrity when substituting the lead content in the brass with silicon. The investigation includes defined areal surface parameters measured on the turned samples of lead- and lead free brass using an optical coherence scanning interferometer, CSI. This paper deals with the study of surface topography of turned samples of lead- and lead free brass. It is important to study the topographical characteristics of the brass samples which are the intermediate link between the manufacturing process variables and the functional behaviour of the surface. To numerically evaluate the sample’s surface topography and to validate the measurements for a significant study, a general statistical methodology is implemented. The results indicate higher surface roughness in turned samples of lead brass compared to lead free brass.
Global detection of large lunar craters based on the CE-1 digital elevation model
NASA Astrophysics Data System (ADS)
Luo, Lei; Mu, Lingli; Wang, Xinyuan; Li, Chao; Ji, Wei; Zhao, Jinjin; Cai, Heng
2013-12-01
Craters, one of the most significant features of the lunar surface, have been widely researched because they offer us the relative age of the surface unit as well as crucial geological information. Research on crater detection algorithms (CDAs) of the Moon and other planetary bodies has concentrated on detecting them from imagery data, but the computational cost of detecting large craters using images makes these CDAs impractical. This paper presents a new approach to crater detection that utilizes a digital elevation model instead of images; this enables fully automatic global detection of large craters. Craters were delineated by terrain attributes, and then thresholding maps of terrain attributes were used to transform topographic data into a binary image, finally craters were detected by using the Hough Transform from the binary image. By using the proposed algorithm, we produced a catalog of all craters ⩾10 km in diameter on the lunar surface and analyzed their distribution and population characteristics.
The Design and Product of National 1:1000000 Cartographic Data of Topographic Map
NASA Astrophysics Data System (ADS)
Wang, Guizhi
2016-06-01
National administration of surveying, mapping and geoinformation started to launch the project of national fundamental geographic information database dynamic update in 2012. Among them, the 1:50000 database was updated once a year, furthermore the 1:250000 database was downsized and linkage-updated on the basis. In 2014, using the latest achievements of 1:250000 database, comprehensively update the 1:1000000 digital line graph database. At the same time, generate cartographic data of topographic map and digital elevation model data. This article mainly introduce national 1:1000000 cartographic data of topographic map, include feature content, database structure, Database-driven Mapping technology, workflow and so on.
Scalability of grid- and subbasin-based land surface modeling approaches for hydrologic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesfa, Teklu K.; Ruby Leung, L.; Huang, Maoyi
2014-03-27
This paper investigates the relative merits of grid- and subbasin-based land surface modeling approaches for hydrologic simulations, with a focus on their scalability (i.e., abilities to perform consistently across a range of spatial resolutions) in simulating runoff generation. Simulations produced by the grid- and subbasin-based configurations of the Community Land Model (CLM) are compared at four spatial resolutions (0.125o, 0.25o, 0.5o and 1o) over the topographically diverse region of the U.S. Pacific Northwest. Using the 0.125o resolution simulation as the “reference”, statistical skill metrics are calculated and compared across simulations at 0.25o, 0.5o and 1o spatial resolutions of each modelingmore » approach at basin and topographic region levels. Results suggest significant scalability advantage for the subbasin-based approach compared to the grid-based approach for runoff generation. Basin level annual average relative errors of surface runoff at 0.25o, 0.5o, and 1o compared to 0.125o are 3%, 4%, and 6% for the subbasin-based configuration and 4%, 7%, and 11% for the grid-based configuration, respectively. The scalability advantages of the subbasin-based approach are more pronounced during winter/spring and over mountainous regions. The source of runoff scalability is found to be related to the scalability of major meteorological and land surface parameters of runoff generation. More specifically, the subbasin-based approach is more consistent across spatial scales than the grid-based approach in snowfall/rainfall partitioning, which is related to air temperature and surface elevation. Scalability of a topographic parameter used in the runoff parameterization also contributes to improved scalability of the rain driven saturated surface runoff component, particularly during winter. Hence this study demonstrates the importance of spatial structure for multi-scale modeling of hydrological processes, with implications to surface heat fluxes in coupled land-atmosphere modeling.« less
To the National Map and beyond
Kelmelis, J.
2003-01-01
Scientific understanding, technology, and social, economic, and environmental conditions have driven a rapidly changing demand for geographic information, both digital and analog. For more than a decade, the U.S. Geological Survey (USGS) has been developing innovative partnerships with other government agencies and private industry to produce and distribute geographic information efficiently; increase activities in remote sensing to ensure ongoing monitoring of the land surface; and develop new understanding of the causes and consequences of land surface change. These activities are now contributing to a more robust set of geographic information called The National Map (TNM). The National Map is designed to provide an up-to-date, seamless, horizontally and vertically integrated set of basic digital geographic data, a frequent monitoring of changes on the land surface, and an understanding of the condition of the Earth's surface and many of the processes that shape it. The USGS has reorganized its National Mapping Program into three programs to address the continuum of scientific activities-describing (mapping), monitoring, understanding, modeling, and predicting. The Cooperative Topographic Mapping Program focuses primarily on the mapping and revision aspects of TNM. The National Map also includes results from the Land Remote Sensing and Geographic Analysis and Monitoring Programs that provide continual updates, new insights, and analytical tools. The National Map is valuable as a framework for current research, management, and operational activities. It also provides a critical framework for the development of distributed, spatially enabled decision support systems.
NASA Astrophysics Data System (ADS)
Jin, Huaan; Li, Ainong; Bian, Jinhu; Nan, Xi; Zhao, Wei; Zhang, Zhengjian; Yin, Gaofei
2017-03-01
The validation study of leaf area index (LAI) products over rugged surfaces not only gives additional insights into data quality of LAI products, but deepens understanding of uncertainties regarding land surface process models depended on LAI data over complex terrain. This study evaluated the performance of MODIS and GLASS LAI products using the intercomparison and direct validation methods over southwestern China. The spatio-temporal consistencies, such as the spatial distributions of LAI products and their statistical relationship as a function of topographic indices, time, and vegetation types, respectively, were investigated through intercomparison between MODIS and GLASS products during the period 2011-2013. The accuracies and change ranges of these two products were evaluated against available LAI reference maps over 10 sampling regions which standed for typical vegetation types and topographic gradients in southwestern China. The results show that GLASS LAI exhibits higher percentage of good quality data (i.e. successful retrievals) and smoother temporal profiles than MODIS LAI. The percentage of successful retrievals for MODIS and GLASS is vulnerable to topographic indices, especially to relief amplitude. Besides, the two products do not capture seasonal dynamics of crop, especially in spring over heterogeneously hilly regions. The yearly mean LAI differences between MODIS and GLASS are within ±0.5 for 64.70% of the total retrieval pixels over southwestern China. The spatial distribution of mean differences and temporal profiles of these two products are inclined to be dominated by vegetation types other than topographic indices. The spatial and temporal consistency of these two products is good over most area of grasses/cereal crops; however, it is poor for evergreen broadleaf forest. MODIS presents more reliable change range of LAI than GLASS through comparison with fine resolution reference maps over most of sampling regions. The accuracies of direct validation are obtained for GLASS LAI (r = 0.35, RMSE = 1.72, mean bias = -0.71) and MODIS LAI (r = 0.49, RMSE = 1.75, mean bias = -0.67). GLASS performs similarly to MODIS, but may be marginally inferior to MODIS based on our direct validation results. The validation experience demonstrates the necessity and importance of topographic consideration for LAI estimation over mountain areas. Considerable attention will be paid to the improvements of surface reflectance, retrieval algorithm and land cover types so as to enhance the quality of LAI products in topographically complex terrain.
NASA Technical Reports Server (NTRS)
Taylor, K.; Sakimoto, S. E. H.; Mitchell, D.
2002-01-01
MOLA (Mars Orbiter Laser Altimeter) data from small, topographically fresh volcanoes from the Elysium and Borealis regions were gridded and analyzed using GMT (Generic Mapping Tools) programs. Results compare eruptive styles of the two regions, and draw conclusions about the different volcanic regions. Additional information is contained in the original extended abstract.
Back-scattered electron imaging of skeletal tissues.
Boyde, A; Jones, S J
The use of solid-state back-scattered electron (BSE) detectors in the scanning electron microscopic study of skeletal tissues has been investigated. To minimize the topographic element in the image, flat samples and a ring detector configuration with the sample at normal incidence to the beam and the detector are used. Very flat samples are prepared by diamond micromilling or diamond polishing plastic-embedded tissue. Density discrimination in the image is so good that different density phases within mineralized bone can be imaged. For unembedded spongy bone, cut surfaces can be discriminated from natural surfaces by a topographic contrast mechanism. BSE imaging also presents advantages for unembedded samples with rough topography, such as anorganic preparations of the mineralization zone in cartilage, which give rise to severe charging problems with conventional secondary electron imaging.
NASA Astrophysics Data System (ADS)
Menéndez Duarte, Rosana; Marquínez, Jorge
2002-02-01
Analysis of the spatial distribution of rockfall deposits at a regional scale (over an area of 250 km 2 of northern Spain) using a cartographic database supported by a Geographic Information System (GIS) reveals several relationships between rockfall activity and environmental variables. Recent rockfall activity is inferred when recent scree is preserved at the bottom of the rock slopes. In order to identify the slope source areas of the scree we have mapped the deposit's drainage basin, applying topographic criteria, and we have combined these basins with the rock slopes map. A method for setting the basin boundaries automatically will replace manual cartography. This method is based on algorithms available within many commercial software programs and originally planned to analyse the behaviour of fluids over a topographic surface. The results obtained by combining the rockfall area source map with the geology and DTM show the relationships between the distribution of rockfall deposits and lithology, elevation and slope of the rockwall and a strong control of the joint type and density. Elevation influence on rockfall has been associated with climatic variations with elevation. Other variables, such as orientation, show complex influences that are difficult to interpret.
Spaceborne imaging radar research in the 90's
NASA Technical Reports Server (NTRS)
Elachi, Charles
1986-01-01
The imaging radar experiments on SEASAT and on the space shuttle (SIR-A and SIR-B) have led to a wide interest in the use of spaceborne imaging radars in Earth and planetary sciences. The radar sensors provide unique and complimentary information to what is acquired with visible and infrared imagers. This includes subsurface imaging in arid regions, all weather observation of ocean surface dynamic phenomena, structural mapping, soil moisture mapping, stereo imaging and resulting topographic mapping. However, experiments up to now have exploited only a very limited range of the generic capability of radar sensors. With planned sensor developments in the late 80's and early 90's, a quantum jump will be made in our ability to fully exploit the potential of these sensors. These developments include: multiparameter research sensors such as SIR-C and X-SAR, long-term and global monitoring sensors such as ERS-1, JERS-1, EOS, Radarsat, GLORI and the spaceborne sounder, planetary mapping sensors such as the Magellan and Cassini/Titan mappers, topographic three-dimensional imagers such as the scanning radar altimeter and three-dimensional rain mapping. These sensors and their associated research are briefly described.
Volumetrical Characterization of Sheet Molding Compounds
Calvimontes, Alfredo; Grundke, Karina; Müller, Anett
2010-01-01
For a comprehensive study of Sheet Molding Compound (SMC) surfaces, topographical data obtained by chromatic confocal imaging were submitted systematically for the development of a profile model to understand the formation of cavities on the surface. In order to qualify SMC surfaces and to predict their coatability, a characterization of cavities is applied. To quantify the effect of surface modification treatments, a new parameter (Surface Relative Smooth) is presented, applied and probed. The parameter proposed can be used for any surface modification of any solid material. PMID:28883370
NASA Astrophysics Data System (ADS)
Pearson, E.; Smith, M. W.; Klaar, M. J.; Brown, L. E.
2017-09-01
High resolution topographic surveys such as those provided by Structure-from-Motion (SfM) contain a wealth of information that is not always exploited in the generation of Digital Elevation Models (DEMs). In particular, several authors have related sub-metre scale topographic variability (or 'surface roughness') to sediment grain size by deriving empirical relationships between the two. In fluvial applications, such relationships permit rapid analysis of the spatial distribution of grain size over entire river reaches, providing improved data to drive three-dimensional hydraulic models, allowing rapid geomorphic monitoring of sub-reach river restoration projects, and enabling more robust characterisation of riverbed habitats. However, comparison of previously published roughness-grain-size relationships shows substantial variability between field sites. Using a combination of over 300 laboratory and field-based SfM surveys, we demonstrate the influence of inherent survey error, irregularity of natural gravels, particle shape, grain packing structure, sorting, and form roughness on roughness-grain-size relationships. Roughness analysis from SfM datasets can accurately predict the diameter of smooth hemispheres, though natural, irregular gravels result in a higher roughness value for a given diameter and different grain shapes yield different relationships. A suite of empirical relationships is presented as a decision tree which improves predictions of grain size. By accounting for differences in patch facies, large improvements in D50 prediction are possible. SfM is capable of providing accurate grain size estimates, although further refinement is needed for poorly sorted gravel patches, for which c-axis percentiles are better predicted than b-axis percentiles.
Carson, Bobb; Seke, Erol; Paskevich, Valerie F.; Holmes, Mark L.
1994-01-01
Point-discharge fluid expulsion on accretionary prisms is commonly indicated by diagenetic deposition of calcium carbonate cements and gas hydrates in near-surface (<10 m below seafloor; mbsf) hemipelagic sediment. The contrasting clastic and diagenetic lithologies should be apparent in side scan images. However, sonar also responds to variations in bottom slope, so unprocessed images mix topographic and lithologic information. We have processed GLORIA imagery from the Oregon continental margin to remove topographic effects. A synthetic side scan image was created initially from Sea Beam bathymetric data and then was subtracted iteratively from the original GLORIA data until topographic features disappeared. The residual image contains high-amplitude backscattering that we attribute to diagenetic deposits associated with fluid discharge, based on submersible mapping, Ocean Drilling Program drilling, and collected samples. Diagenetic deposits are concentrated (1) near an out-of-sequence thrust fault on the second ridge landward of the base of the continental slope, (2) along zones characterized by deep-seated strikeslip faults that cut transversely across the margin, and (3) in undeformed Cascadia Basin deposits which overlie incipient thrust faults seaward of the toe of the prism. There is no evidence of diagenetic deposition associated with the frontal thrust that rises from the dècollement. If the dècollement is an important aquifer, apparently the fluids are passed either to the strike-slip faults which intersect the dècollement or to the incipient faults in Cascadia Basin for expulsion. Diagenetic deposits seaward of the prism toe probably consist dominantly of gas hydrates.
Assessing the Impact of Topography on Groundwater Salinization Due to Storm Surge Inundation
NASA Astrophysics Data System (ADS)
Yu, X.; Yang, J.; Graf, T.; Koneshloo, M.; O'Neal, M. A.; Michael, H. A.
2015-12-01
The sea-level rise and increase in the frequency and intensity of coastal storms due to climate change are likely to exacerbate adverse effects of storm surges on low-lying coastal areas. The landward flow of water during storm surges introduces salt to surficial coastal aquifers and threatens groundwater resources. Coastal topography (e.g. ponds, dunes, canals) likely has a strong impact on overwash and salinization processes, but is generally highly simplified in modeling studies. To understand the topographic impacts on groundwater salinization, we modeled overwash and variable-density groundwater flow and salt transport in 3D using the fully coupled surface and subsurface numerical simulator, HydroGeoSphere. The model simulates the coastal aquifer as an integrated system considering processes such as overland flow, coupled surface and subsurface exchange, variably saturated flow, and variable-density flow. To represent various coastal landscape types, we started with realistic coastal topography from Delaware, USA, and then generated synthetic fields with differing shore-perpendicular connectivity and surface depressions. The groundwater salinization analysis suggested that the topographic connectivity promoting overland flow controls the volume of aquifer that is salinized. In contrast, depression storage of surface water mainly controls the time for infiltrated salt to flush from the aquifer. The results indicate that for a range of synthetic conditions, topography increases the flushing time of salt by 20-300% relative to an equivalent "simple slope" in which topographic variation is absent. Our study suggests that topography have a significant impact on overwash salinization, with important implications for land management at local scales and groundwater vulnerability assessment at regional to global scales.
Stern, Carrie S; Schreiber, Jillian E; Surek, Chris C; Garfein, Evan S; Jelks, Elizabeth B; Jelks, Glenn W; Tepper, Oren M
2016-05-01
Given the widespread use of facial fillers and recent identification of distinct facial fat compartments, a better understanding of three-dimensional surface changes in response to volume augmentation is needed. Advances in three-dimensional imaging technology now afford an opportunity to elucidate these morphologic changes for the first time. A cadaver study was undertaken in which volumization of the deep medial cheek compartment was performed at intervals up to 4 cc (n = 4). Three-dimensional photographs were taken after each injection to analyze the topographic surface changes, which the authors define as the "augmentation zone." Perimeter, diameter, and projection were studied. The arcus marginalis of the inferior orbit consistently represented a fixed boundary of the augmentation zone, and additional cadavers underwent similar volumization following surgical release of this portion of the arcus marginalis (n = 4). Repeated three-dimensional computer analysis was performed comparing the augmentation zone with and without arcus marginalis release. Volumization of the deep medial cheek led to unique topographic changes of the malar region defined by distinct boundaries. Interestingly, the cephalic border of the augmentation zone was consistently noted to be at the level of the arcus marginalis in all specimens. When surgical release of the arcus marginalis was performed, the cephalic border of the augmentation zone was no longer restricted. Using advances in three-dimensional photography and computer analysis, the authors demonstrate characteristic surface anatomy changes in response to volume augmentation of facial compartments. This novel concept of the augmentation zone can be applied to volumization of other distinct facial regions. Therapeutic, V.
A topo-graph model for indistinct target boundary definition from anatomical images.
Cui, Hui; Wang, Xiuying; Zhou, Jianlong; Gong, Guanzhong; Eberl, Stefan; Yin, Yong; Wang, Lisheng; Feng, Dagan; Fulham, Michael
2018-06-01
It can be challenging to delineate the target object in anatomical imaging when the object boundaries are difficult to discern due to the low contrast or overlapping intensity distributions from adjacent tissues. We propose a topo-graph model to address this issue. The first step is to extract a topographic representation that reflects multiple levels of topographic information in an input image. We then define two types of node connections - nesting branches (NBs) and geodesic edges (GEs). NBs connect nodes corresponding to initial topographic regions and GEs link the nodes at a detailed level. The weights for NBs are defined to measure the similarity of regional appearance, and weights for GEs are defined with geodesic and local constraints. NBs contribute to the separation of topographic regions and the GEs assist the delineation of uncertain boundaries. Final segmentation is achieved by calculating the relevance of the unlabeled nodes to the labels by the optimization of a graph-based energy function. We test our model on 47 low contrast CT studies of patients with non-small cell lung cancer (NSCLC), 10 contrast-enhanced CT liver cases and 50 breast and abdominal ultrasound images. The validation criteria are the Dice's similarity coefficient and the Hausdorff distance. Student's t-test show that our model outperformed the graph models with pixel-only, pixel and regional, neighboring and radial connections (p-values <0.05). Our findings show that the topographic representation and topo-graph model provides improved delineation and separation of objects from adjacent tissues compared to the tested models. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Dongmiao; He, Xiaotong; Wang, Yanling; Zhou, Guangchao; Sun, Chao; Yang, Lianfeng; Bai, Jianling; Gao, Jun; Wu, Yunong; Cheng, Jie
2016-01-01
The present study was aimed to determine the topographic relationship between root apex of the mesially and horizontally impacted mandibular third molar and lingual plate of mandible. The original cone beam computed tomography (CBCT) data of 364 teeth from 223 patients were retrospectively collected and analyzed. The topographic relationship between root apex and lingual plate on cross-sectional CBCT images was classified as non-contact (99), contact (145) and perforation (120). The cross-sectional morphology of lingual plate at the level of root apex was defined as parallel (28), undercut (38), slanted (29) and round (4). The distribution of topographic relationship between root apex and lingual plate significantly associated with gender, impaction depth, root number and lingual plate morphology. Moreover, the average bone thickness of lingual cortex and distance between root apex and the outer surface of lingual plate were 1.02 and 1.39 mm, respectively. Furthermore, multivariate regression analyses identified impaction depth and lingual plate morphology as the risk factors for the contact and perforation subtypes between root apex and lingual plate. Collectively, our findings reveal the topographic proximity of root apex of impacted mandibular third molar to the lingual plate, which might be associated with intraoperative and postoperative complications during tooth extraction. PMID:27991572
Slope maps of the San Francisco Bay region, California a digital database
Graham, Scott E.; Pike, Richard J.
1998-01-01
PREFACE: Topography, the configuration of the land surface, plays a major role in various natural processes that have helped shape the ten-county San Francisco Bay region and continue to affect its development. Such processes include a dangerous type of landslide, the debris flow (Ellen and others, 1997) as well as other modes of slope failure that damage property but rarely threaten life directly?slumping, translational sliding, and earthflow (Wentworth and others, 1997). Different types of topographic information at both local and regional scales are helpful in assessing the likelihood of slope failure and the mapping the extent of its past activity, as well as addressing other issues in hazard mitigation and land-use policy. The most useful information is quantitative. This report provides detailed digital data and plottable map files that depict in detail the most important single measure of ground-surface form for the Bay region, slope angle. We computed slope data for the entire region and each of its constituent counties from a new set of 35,000,000 digital elevations assembled from 200 local contour maps.
Zimmermann, Mark; Reid, Jane A.; Golden, Nadine
2016-01-01
In this analysis we demonstrate how preferred fish habitat can be predicted and mapped for juveniles of two Alaskan groundfish species – Pacific halibut (Hippoglossus stenolepis) and flathead sole (Hippoglossoides elassodon) – at five sites (Kiliuda Bay, Izhut Bay, Port Dick, Aialik Bay, and the Barren Islands) in the central Gulf of Alaska. The method involves using geographic information system (GIS) software to extract appropriate information from National Ocean Service (NOS) smooth sheets that are available from NGDC (the National Geophysical Data Center). These smooth sheets are highly detailed charts that include more soundings, substrates, shoreline and feature information than the more commonly-known navigational charts. By bringing the information from smooth sheets into a GIS, a variety of surfaces, such as depth, slope, rugosity and mean grain size were interpolated into raster surfaces. Other measurements such as site openness, shoreline length, proportion of bay that is near shore, areas of rocky reefs and kelp beds, water volumes, surface areas and vertical cross-sections were also made in order to quantify differences between the study sites. Proper GIS processing also allows linking the smooth sheets to other data sets, such as orthographic satellite photographs, topographic maps and precipitation estimates from which watersheds and runoff can be derived. This same methodology can be applied to larger areas, taking advantage of these free data sets to describe predicted groundfish essential fish habitat (EFH) in Alaskan waters.
MarsSI: Martian surface data processing information system
NASA Astrophysics Data System (ADS)
Quantin-Nataf, C.; Lozac'h, L.; Thollot, P.; Loizeau, D.; Bultel, B.; Fernando, J.; Allemand, P.; Dubuffet, F.; Poulet, F.; Ody, A.; Clenet, H.; Leyrat, C.; Harrisson, S.
2018-01-01
MarsSI (Acronym for Mars System of Information, https://emars.univ-lyon1.fr/MarsSI/, is a web Geographic Information System application which helps managing and processing martian orbital data. The MarsSI facility is part of the web portal called PSUP (Planetary SUrface Portal) developed by the Observatories of Paris Sud (OSUPS) and Lyon (OSUL) to provide users with efficient and easy access to data products dedicated to the martian surface. The portal proposes 1) the management and processing of data thanks to MarsSI and 2) the visualization and merging of high level (imagery, spectral, and topographic) products and catalogs via a web-based user interface (MarsVisu). The portal PSUP as well as the facility MarsVisu is detailed in a companion paper (Poulet et al., 2018). The purpose of this paper is to describe the facility MarsSI. From this application, users are able to easily and rapidly select observations, process raw data via automatic pipelines, and get back final products which can be visualized under Geographic Information Systems. Moreover, MarsSI also contains an automatic stereo-restitution pipeline in order to produce Digital Terrain Models (DTM) on demand from HiRISE (High Resolution Imaging Science Experiment) or CTX (Context Camera) pair-images. This application is funded by the European Union's Seventh Framework Programme (FP7/2007-2013) (ERC project eMars, No. 280168) and has been developed in the scope of Mars, but the design is applicable to any other planetary body of the solar system.
NASA Astrophysics Data System (ADS)
Zimmermann, Mark; Reid, Jane A.; Golden, Nadine
2016-10-01
In this analysis we demonstrate how preferred fish habitat can be predicted and mapped for juveniles of two Alaskan groundfish species - Pacific halibut (Hippoglossus stenolepis) and flathead sole (Hippoglossoides elassodon) - at five sites (Kiliuda Bay, Izhut Bay, Port Dick, Aialik Bay, and the Barren Islands) in the central Gulf of Alaska. The method involves using geographic information system (GIS) software to extract appropriate information from National Ocean Service (NOS) smooth sheets that are available from NGDC (the National Geophysical Data Center). These smooth sheets are highly detailed charts that include more soundings, substrates, shoreline and feature information than the more commonly-known navigational charts. By bringing the information from smooth sheets into a GIS, a variety of surfaces, such as depth, slope, rugosity and mean grain size were interpolated into raster surfaces. Other measurements such as site openness, shoreline length, proportion of bay that is near shore, areas of rocky reefs and kelp beds, water volumes, surface areas and vertical cross-sections were also made in order to quantify differences between the study sites. Proper GIS processing also allows linking the smooth sheets to other data sets, such as orthographic satellite photographs, topographic maps and precipitation estimates from which watersheds and runoff can be derived. This same methodology can be applied to larger areas, taking advantage of these free data sets to describe predicted groundfish essential fish habitat (EFH) in Alaskan waters.
Ontology patterns for complex topographic feature yypes
Varanka, Dalia E.
2011-01-01
Complex feature types are defined as integrated relations between basic features for a shared meaning or concept. The shared semantic concept is difficult to define in commonly used geographic information systems (GIS) and remote sensing technologies. The role of spatial relations between complex feature parts was recognized in early GIS literature, but had limited representation in the feature or coverage data models of GIS. Spatial relations are more explicitly specified in semantic technology. In this paper, semantics for topographic feature ontology design patterns (ODP) are developed as data models for the representation of complex features. In the context of topographic processes, component assemblages are supported by resource systems and are found on local landscapes. The topographic ontology is organized across six thematic modules that can account for basic feature types, resource systems, and landscape types. Types of complex feature attributes include location, generative processes and physical description. Node/edge networks model standard spatial relations and relations specific to topographic science to represent complex features. To demonstrate these concepts, data from The National Map of the U. S. Geological Survey was converted and assembled into ODP.
Powell, Robert E.
2001-01-01
This data set maps and describes the geology of the Porcupine Wash 7.5 minute quadrangle, Riverside County, southern California. The quadrangle, situated in Joshua Tree National Park in the eastern Transverse Ranges physiographic and structural province, encompasses parts of the Hexie Mountains, Cottonwood Mountains, northern Eagle Mountains, and south flank of Pinto Basin. It is underlain by a basement terrane comprising Proterozoic metamorphic rocks, Mesozoic plutonic rocks, and Mesozoic and Mesozoic or Cenozoic hypabyssal dikes. The basement terrane is capped by a widespread Tertiary erosion surface preserved in remnants in the Eagle and Cottonwood Mountains and buried beneath Cenozoic deposits in Pinto Basin. Locally, Miocene basalt overlies the erosion surface. A sequence of at least three Quaternary pediments is planed into the north piedmont of the Eagle and Hexie Mountains, each in turn overlain by successively younger residual and alluvial deposits. The Tertiary erosion surface is deformed and broken by north-northwest-trending, high-angle, dip-slip faults and an east-west trending system of high-angle dip- and left-slip faults. East-west trending faults are younger than and perhaps in part coeval with faults of the northwest-trending set. The Porcupine Wash database was created using ARCVIEW and ARC/INFO, which are geographical information system (GIS) software products of Envronmental Systems Research Institute (ESRI). The database consists of the following items: (1) a map coverage showing faults and geologic contacts and units, (2) a separate coverage showing dikes, (3) a coverage showing structural data, (4) a scanned topographic base at a scale of 1:24,000, and (5) attribute tables for geologic units (polygons and regions), contacts (arcs), and site-specific data (points). The database, accompanied by a pamphlet file and this metadata file, also includes the following graphic and text products: (1) A portable document file (.pdf) containing a navigable graphic of the geologic map on a 1:24,000 topographic base. The map is accompanied by a marginal explanation consisting of a Description of Map and Database Units (DMU), a Correlation of Map and Database Units (CMU), and a key to point-and line-symbols. (2) Separate .pdf files of the DMU and CMU, individually. (3) A PostScript graphic-file containing the geologic map on a 1:24,000 topographic base accompanied by the marginal explanation. (4) A pamphlet that describes the database and how to access it. Within the database, geologic contacts , faults, and dikes are represented as lines (arcs), geologic units as polygons and regions, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum and link it to other tables (.rel) that provide more detailed geologic information.
Geologic interpretation of new observations of the surface of Venus
NASA Technical Reports Server (NTRS)
Saunders, R. S.; Malin, M. C.
1977-01-01
New radar observations of the surface of Venus provide further evidence of a diverse and complex geologic evolution. The radar bright feature 'Beta' (24 deg N, 85 deg W) is seen to be a 700 km diameter region elevated a maximum of approximately 10 km relative to its surroundings with a 60 x 90 km wide depression at its summit. 'Beta' is interpreted to be a large volcanic construct, analogous to terrestrial and Martian shield volcanoes. Two large, quasi-circular areas of low reflectivity, examples of a class of features interpreted to be impact basins by previous investigators who were without the benefit of actual topographic information, are shown in altimetry maps to be depressions. Thus the term 'basin' can be applied, although we urge a non-genetic usage until more complete understanding of their origin is achieved through analysis of future observations.
NASA Astrophysics Data System (ADS)
Walmsley, Alena; Vachová, Pavla; Vach, Marek
2016-04-01
This research was investigating whether topographic features, which determine soil nutrient and moisture distribution, in combination with soil fauna (wireworm and earthworm) presence, affect plant community composition at a spontaneously revegetated post mining area with an undulating surface. Two sites of different age with 3 types of topographic features were selected, soil moisture and nutrient content were measured, plant community composition and soil macrofauna community was sampled at each position. Wireworms were present at all positions and were most abundant at bottoms of waves at the younger site; their presence was correlated with several plant species, but the direction of the interaction isn't clear. Earthworms were only present at the older site and had highest abundance at flat sections. Earthworm presence affected the amount of nitrogen in soil - the most nitrogen content was at the site with highest earthworm density and was followed by higher diversity of plant community. The plant community composition was generally correlated with plant available nutrient content - especially P and N. We infer that topographic features affect nutrient and soil fauna distribution, which consequently influences plant community composition.
Ground motion in the presence of complex Topography II: Earthquake sources and 3D simulations
Hartzell, Stephen; Ramirez-Guzman, Leonardo; Meremonte, Mark; Leeds, Alena L.
2017-01-01
Eight seismic stations were placed in a linear array with a topographic relief of 222 m over Mission Peak in the east San Francisco Bay region for a period of one year to study topographic effects. Seventy‐two well‐recorded local earthquakes are used to calculate spectral amplitude ratios relative to a reference site. A well‐defined fundamental resonance peak is observed with individual station amplitudes following the theoretically predicted progression of larger amplitudes in the upslope direction. Favored directions of vibration are also seen that are related to the trapping of shear waves within the primary ridge dimensions. Spectral peaks above the fundamental one are also related to topographic effects but follow a more complex pattern. Theoretical predictions using a 3D velocity model and accurate topography reproduce many of the general frequency and time‐domain features of the data. Shifts in spectral frequencies and amplitude differences, however, are related to deficiencies of the model and point out the importance of contributing factors, including the shear‐wave velocity under the topographic feature, near‐surface velocity gradients, and source parameters.
Hollow-core screw dislocations in 6H-SiC single crystals: A test of Frank`s theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Si, W.; Dudley, M.; Glass, R.
1997-03-01
Hollow-core screw dislocations, also known as `micropipes`, along the [0001] axis in 6H-SiC single crystals, have been studied by synchrotron white beam x-ray topography (SWBXT), scanning electron microscopy (SEM), and Nomarski optical microscopy (NOM). Using SWBXT, the magnitude of the burgers vector of screw dislocations has been determined by measuring the following four parameters: (1) the diameter of dislocation images in back-reflection topographs; (2) the width of bimodal dislocation images in transmission topographs; (3) the magnitude of the tilt of lattice planes on both sides of dislocation core in projection topographs; and (4) the magnitude of the tilt of latticemore » planes in section topographs. The four methods show good agreement. The burgers vector magnitude of screw dislocations, b, and the diameter of associated micropipes, D, were fitted to Frank`s prediction for hollow-core screw dislocations: D = {mu}b{sup 2}/4{pi}{sup 2}{gamma}, where {mu} is shear modulus, and {gamma} is specific surface energy. 15 refs., 17 figs.« less
NASA Astrophysics Data System (ADS)
Sun, L. Qing; Feng, Feng X.
2014-11-01
In this study, we first built and compared two different climate datasets for Wuling mountainous area in 2010, one of which considered topographical effects during the ANUSPLIN interpolation was referred as terrain-based climate dataset, while the other one did not was called ordinary climate dataset. Then, we quantified the topographical effects of climatic inputs on NPP estimation by inputting two different climate datasets to the same ecosystem model, the Boreal Ecosystem Productivity Simulator (BEPS), to evaluate the importance of considering relief when estimating NPP. Finally, we found the primary contributing variables to the topographical effects through a series of experiments given an overall accuracy of the model output for NPP. The results showed that: (1) The terrain-based climate dataset presented more reliable topographic information and had closer agreements with the station dataset than the ordinary climate dataset at successive time series of 365 days in terms of the daily mean values. (2) On average, ordinary climate dataset underestimated NPP by 12.5% compared with terrain-based climate dataset over the whole study area. (3) The primary climate variables contributing to the topographical effects of climatic inputs for Wuling mountainous area were temperatures, which suggest that it is necessary to correct temperature differences for estimating NPP accurately in such a complex terrain.
Reduction of Topographic Effect for Curve Number Estimated from Remotely Sensed Imagery
NASA Astrophysics Data System (ADS)
Zhang, Wen-Yan; Lin, Chao-Yuan
2016-04-01
The Soil Conservation Service Curve Number (SCS-CN) method is commonly used in hydrology to estimate direct runoff volume. The CN is the empirical parameter which corresponding to land use/land cover, hydrologic soil group and antecedent soil moisture condition. In large watersheds with complex topography, satellite remote sensing is the appropriate approach to acquire the land use change information. However, the topographic effect have been usually found in the remotely sensed imageries and resulted in land use classification. This research selected summer and winter scenes of Landsat-5 TM during 2008 to classified land use in Chen-You-Lan Watershed, Taiwan. The b-correction, the empirical topographic correction method, was applied to Landsat-5 TM data. Land use were categorized using K-mean classification into 4 groups i.e. forest, grassland, agriculture and river. Accuracy assessment of image classification was performed with national land use map. The results showed that after topographic correction, the overall accuracy of classification was increased from 68.0% to 74.5%. The average CN estimated from remotely sensed imagery decreased from 48.69 to 45.35 where the average CN estimated from national LULC map was 44.11. Therefore, the topographic correction method was recommended to normalize the topographic effect from the satellite remote sensing data before estimating the CN.
Variability in soil CO2 production and surface CO2 efflux across riparian-hillslope transitions
Vincent Jerald Pacific
2007-01-01
The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as an outstanding gap in our understanding of carbon cycling. I investigated both the spatial and temporal variability of soil CO2 concentrations and surface CO2 efflux across eight topographically distinct riparian-hillslope transitions in the ~300 ha subalpine upper-...
ERIC Educational Resources Information Center
Smith, Garon C.; Hossain, Md Mainul
2016-01-01
BufCap TOPOS is free software that generates 3-D topographical surfaces ("topos") for acid-base equilibrium studies. It portrays pH and buffer capacity behavior during titration and dilution procedures. Topo surfaces are created by plotting computed pH and buffer capacity values above a composition grid with volume of NaOH as the x axis…
TOPEX watershed coming in oceanography
NASA Technical Reports Server (NTRS)
Cleven, G. C.; Neilson, R. A.; Yamarone, C. A., Jr.
1983-01-01
The NASA Ocean Topography Experiment (TOPEX) will use precision radar altimetry to determine topographic features of the global oceans from which currents may be deduced. TOPEX will coincide with the World Ocean Circulation Experiment (WOCE), which will be conducted at the end of this decade and shall involve ships, fixed and drifting buoys, aircraft observations, and satellite remote sensing, to resolve fundamental questions about the flow of water in the global ocean. TOPEX will contribute to WOCE the measurement of satellite height above the sea surface, and the precise radial position above a reference ellipsoid for the earth. The combination of these two measurements with the marine geoid yields the topographic data sought. Three years of topographic data, together with conventional oceanographic data and theoretical ocean models, will be needed to derive the mean and variable components of ocean circulation.
43 CFR 3482.1 - Exploration and resource recovery and protection plans.
Code of Federal Regulations, 2012 CFR
2012-10-01
...; earth- or debris-disposal areas; existing bodies of surface water; and topographic and drainage features... to, mining sequence, production rate, estimated recovery factors, stripping ratios, highwall limits...
Multipolarization radar images for geologic mapping and vegetation discrimination
NASA Technical Reports Server (NTRS)
Evans, D. L.; Farr, T. G.; Ford, J. P.; Thompson, T. W.; Werner, C. L.
1986-01-01
NASA has developed an airborne SAR that simultaneously yields image data in four linear polarizations in L-band with 10-m resolution over a swath of about 10 km. Signal data are recorded both optically and digitally and annotated in each of the channels to facilitate completely automated digital correlation. Comparison of the relative intensities of the different polarizations furnishes discriminatory mapping information. Local intensity variations in like-polarization images result from topographic effects, while strong cross polarization responses denote the effects of vegetation cover and, in some cases, possible scattering from the subsurface. In each of the areas studied, multiple polarization data led to the discrimination and mapping of unique surface unit features.
Shi, Mengqi; Song, Wen; Han, Tianxiao; Chang, Bei; Li, Guangwen; Jin, Jianfeng; Zhang, Yumei
2017-05-01
The topography of biomaterials can significantly influence the osteogenic differentiation of cells. Understanding topographical signal transduction is critical for developing biofunctional surfaces, but the current knowledge is insufficient. Recently, numerous reports have suggested that the unfolded protein response (UPR) and osteogenic differentiation are inter-linked. Therefore, we hypothesize that the UPR pathway may be involved in the topography-induced osteogenesis. In the present study, different surface topographies were fabricated on pure titanium foils and the endoplasmic reticulum (ER) stress and UPR pathway were systematically investigated. We found that ER stress and the PERK-eIF2α-ATF4 pathway were activated in a time- and topography-dependent manner. Additionally, the activation of the PERK-eIF2α-ATF4 pathway by different topographies was in line with their osteogenic induction capability. More specifically, the osteogenic differentiation could be enhanced or weakened when the PERK-eIF2α-ATF4 pathway was promoted or inhibited, respectively. Furthermore, tuning of the degree of ER stress with different concentrations of thapsigargin revealed that mild ER stress promotes osteogenic differentiation, whereas excessive ER stress inhibits osteogenic differentiation and causes apoptosis. Taken together, our findings suggest that the UPR may play a critical role in topography-induced osteogenic differentiation, which may help to provide new insights into topographical signal transduction. Suitable implant surface topography can effectively improve bioactivity and eventual bone affinity. However, the mechanism of topographical signaling transduction is unclear and criteria for designation of an appropriate implant surface topography is lacking. This study shows that the ER stress and PERK-eIF2α-ATF4 pathway were activated by micro- and micro/nano-topographies, which is corresponding to the osteogenic induction abilities of these topographies. Furthermore, we have found that mild ER stress improves osteogenic differentiation, whereas excessive ER stress inhibits osteogenic differentiation and causes apoptosis. Our findings demonstrate that the UPR plays a critical role in the topography induced osteogenic differentiation, which may help to provide new insights into the topographical signaling transduction. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kolbe, T.; Abbott, B. W.; Marçais, J.; Thomas, Z.; Aquilina, L.; Labasque, T.; Pinay, G.; De Dreuzy, J. R.
2016-12-01
Groundwater transit time and flow path are key factors controlling nitrogen retention and removal capacity at the catchment scale (Abbott et al., 2016), but the relative importance of hydrogeological and topographical factors in determining these parameters remains uncertain (Kolbe et al., 2016). To address this unknown, we used numerical modelling techniques calibrated with CFC groundwater age data to quantify transit time and flow path in an unconfined aquifer in Brittany, France. We assessed the relative importance of parameters (aquifer depth, porosity, arrangement of geological layers, and permeability profile), hydrology (recharge rate), and topography in determining characteristic flow distances (Leray et al., 2016). We found that groundwater flow was highly local (mean travel distance of 350 m) but also relatively old (mean CFC age of 40 years). Sensitivity analysis revealed that groundwater travel distances were not sensitive to geological parameters within the constraints of the CFC age data. However, circulation was sensitive to topography in lowland areas where the groundwater table was close to the land surface, and to recharge rate in upland areas where water input modulated the free surface of the aquifer. We quantified these differences with a local groundwater ratio (rGW-LOCAL) defined as the mean groundwater travel distance divided by the equivalent surface distance water would have traveled along the land surface. Lowland rGW-LOCAL was near 1, indicating primarily topographic controls. Upland rGW-LOCALwas 1.6, meaning the groundwater recharge area was substantially larger than the topographically-defined catchment. This ratio was applied to other catchments in Brittany to test its relevance in comparing controls on groundwater circulation within and among catchments. REFERENCES Abbott et al., 2016, Using multi-tracer inference to move beyond single-catchment ecohydrology. Earth-Science Reviews. Kolbe et al., 2016, Coupling 3D groundwater modeling with CFC-based age dating to classify local groundwater circulation in an unconfined crystalline aquifer. J. Hydrol. Leray et al., 2016, Residence time distributions for hydrologic systems: Mechanistic foundations and steady-state analytical solutions. J. Hydrol.
The NEAR laser ranging investigation
NASA Astrophysics Data System (ADS)
Zuber, M. T.; Smith, D. E.; Cheng, A. F.; Cole, T. D.
1997-10-01
The objective of the NEAR-Earth Asteriod Rendezvous (NEAR) laser ranging investigation is to obtain high integrity profiles and grids of topography for use in geophysical, geodetic and geological studies of asteroid 433 Eros. The NEAR laser rangefinder (NLR) will determine the slant range of the NEAR spacecraft to the asteroid surface by measuring precisely the round trip time of flight of individual laser pulses. Ranges will be converted to planetary radii measured with respect to the asteroid center of mass by subtracting the spacecraft orbit determined from X band Doppler tracking. The principal components of the NLR include a 1064 nm Cr:Nd:YAG laser, a gold-coated aluminum Dall-Kirkham Cassegrain telescope, an enhanced silicon avalanche photodiode hybrid detector, a 480-MHz crystal oscillator, and a digital processing unit. The instrument has a continuous in-flight calibration capability using a fiber-optic delay assembly. The single shot vertical resolution of the NLR is <6m, and the absolute accuracy of the global grid will be ~10m with respect to the asteroid center of mass. For the current mission orbital scenario, the laser spot size on the surface of Eros will vary from ~4-11m, and the along-track resolution for the nominal pulse repetition rate of 1 Hz will be approximately comparable to the spot size, resulting in contiguous along-track profiles. The across-track resolution will depend on the orbital mapping scenario, but will likely be <500m, which will define the spatial resolution of the global topographic model. Planned science investigations include global-scale analyses related to collisional and impact history and internal density distribution that utilize topographic grids as well as spherical harmonic topographic models that will be analyzed jointly with gravity at commensurate resolution. Attempts will be made to detect possible subtle time variations in internal structure that may be present if Eros is not a single coherent body, by analysis of low degree and order spherical harmonic coefficients. Local- to regional-scale analyses will utilize high-resolution three-dimensional topographic maps of specific surface structures to address surface geologic processes. Results from the NLR investigation will contribute significantly to understanding the origin, structure, and evolution of Eros and other asteroidal bodies.
Linking Surface and Subsurface Processes: Implications for Seismic Hazards in Southern California
NASA Astrophysics Data System (ADS)
Lin, J. C.; Moon, S.; Yong, A.; Meng, L.; Martin, A. J.; Davis, P. M.
2017-12-01
Earth's surface and subsurface processes such as bedrock weathering, soil production, and river incision can influence and be influenced by spatial variations in the mechanical strength of surface material. Mechanically weakened rocks tend to have reduced seismic velocity, which can result in larger ground-motion amplification and greater potential for earthquake-induced damages. However, the influence and extent of surface and subsurface processes on the mechanical strength of surface material and seismic site conditions in southern California remain unclear. In this study, we examine whether physics-based models of surface and subsurface processes can explain the spatial variability and non-linearity of near-surface seismic velocity in southern California. We use geophysical measurements (Yong et al., 2013; Ancheta et al., 2014), consisting of shear-wave velocity (Vs) tomography data, Vs profiles, and the time-averaged Vs in the upper 30 m of the crust (Vs30) to infer lateral and vertical variations of surface material properties. Then, we compare Vs30 values with geologic and topographic attributes such as rock type, slope, elevation, and local relief, as well as metrics for surface processes such as soil production and bedrock weathering from topographic stress, frost cracking, chemical reactions, and vegetation presence. Results from this study will improve our understanding of physical processes that control subsurface material properties and their influences on local variability in seismic site conditions.
NASA Astrophysics Data System (ADS)
Chen, Xiuyong; He, Xiaoyan; Suo, Xinkun; Huang, Jing; Gong, Yongfeng; Liu, Yi; Li, Hua
2016-12-01
Biofouling is one of the major problems for the coatings used for protecting marine infrastructures during their long-term services. Regulation in surface structure and local chemistry is usually the key for adjusting antifouling performances of the coatings. In this study, flame sprayed multi-layered aluminum coatings with micropatterned surfaces were constructed and the effects of their surface structure and chemistry on the settlement of typical marine diatoms were investigated. Micropatterned topographical morphology of the coatings was constructed by employing steel mesh as a shielding plate during the coating deposition. A silicone elastomer layer for sealing and interconnection was further brush-coated on the micropatterned coatings. Additional surface modification was made using zwitterionic molecules via DOPA linkage. The surface-modified coatings resist effectively colonization of Cylindrotheca closterium. This is explained by the quantitative examination of a simplified conditioning layer that deteriorated adsorption of bovine calf serum proteins on the zwitterionic molecule-treated samples is revealed. The colonization behaviors of the marine diatoms are markedly influenced by the micropatterned topographical morphology. Either the surface micropatterning or the surface modification by zwitterionic molecules enhances antimicrobial ability of the coatings. However, the combined micropatterned structure and zwitterionic modification do not show synergistic effect. The results give insight into anti-corrosion/fouling applications of the modified aluminum coatings in the marine environment.
NASA Astrophysics Data System (ADS)
Sangeetha, Neralagatta M.; Moutet, Pierre; Lagarde, Delphine; Sallen, Gregory; Urbaszek, Bernhard; Marie, Xavier; Viau, Guillaume; Ressier, Laurence
2013-09-01
Formation of 3D close-packed assemblies of upconverting NaYF4 colloidal nanocrystals (NCs) on surfaces, by Atomic Force Microscopy (AFM) nanoxerography is presented. The surface potential of the charge patterns, the NC concentration, the polarizability of the NCs and the polarity of the dispersing solvent are identified as the key parameters controlling the assembly of NaYF4 NCs into micropatterns of the desired 3D architecture. This insight allowed us to fabricate micrometer sized Quick Response (QR) codes encoded in terms of upconversion luminescence intensity or color. Topographically hidden messages could also be readily incorporated within these microtags. This work demonstrates that AFM nanoxerography has enormous potential for generating high-security anti-counterfeiting microtags.Formation of 3D close-packed assemblies of upconverting NaYF4 colloidal nanocrystals (NCs) on surfaces, by Atomic Force Microscopy (AFM) nanoxerography is presented. The surface potential of the charge patterns, the NC concentration, the polarizability of the NCs and the polarity of the dispersing solvent are identified as the key parameters controlling the assembly of NaYF4 NCs into micropatterns of the desired 3D architecture. This insight allowed us to fabricate micrometer sized Quick Response (QR) codes encoded in terms of upconversion luminescence intensity or color. Topographically hidden messages could also be readily incorporated within these microtags. This work demonstrates that AFM nanoxerography has enormous potential for generating high-security anti-counterfeiting microtags. Electronic supplementary information (ESI) available: Detailed experimental procedures for the synthesis of upconverting NaYF4 nanocrystals and their transmission electron microscopy images. KFM and AFM images corresponding to the assembly of positively charged β-NaYF4:Er3+,Yb3+ nanocrystals from water suspensions by AFM nanoxerography. Photoluminescence spectra of β-NaYF4:Er3+,Yb3+ nanocrystals in a hexane suspension and assembled on charge patterns. See DOI: 10.1039/c3nr02734a
van de Ven, Vincent; Jacobs, Christianne; Sack, Alexander T
2012-01-04
The neural correlates for retention of visual information in visual short-term memory are considered separate from those of sensory encoding. However, recent findings suggest that sensory areas may play a role also in short-term memory. We investigated the functional relevance, spatial specificity, and temporal characteristics of human early visual cortex in the consolidation of capacity-limited topographic visual memory using transcranial magnetic stimulation (TMS). Topographically specific TMS pulses were delivered over lateralized occipital cortex at 100, 200, or 400 ms into the retention phase of a modified change detection task with low or high memory loads. For the high but not the low memory load, we found decreased memory performance for memory trials in the visual field contralateral, but not ipsilateral to the side of TMS, when pulses were delivered at 200 ms into the retention interval. A behavioral version of the TMS experiment, in which a distractor stimulus (memory mask) replaced the TMS pulses, further corroborated these findings. Our findings suggest that retinotopic visual cortex contributes to the short-term consolidation of topographic visual memory during early stages of the retention of visual information. Further, TMS-induced interference decreased the strength (amplitude) of the memory representation, which most strongly affected the high memory load trials.
Wang, Zhongying; Tonderys, Daniel; Leggett, Susan E.; Williams, Evelyn Kendall; Kiani, Mehrdad T.; Steinberg, Ruben Spitz; Qiu, Yang; Wong, Ian Y.; Hurt, Robert H.
2015-01-01
Textured surfaces with periodic topographical features and long-range order are highly attractive for directing cell-material interactions. They mimic physiological environments more accurately than planar surfaces and can fundamentally alter cell alignment, shape, gene expression, and cellular assembly into superstructures or microtissues. Here we demonstrate for the first time that wrinkled graphene-based surfaces are suitable as textured cell attachment substrates, and that engineered wrinkling can dramatically alter cell alignment and morphology. The wrinkled surfaces are fabricated by graphene oxide wet deposition onto pre-stretched elastomers followed by relaxation and mild thermal treatment to stabilize the films in cell culture medium. Multilayer graphene oxide films form periodic, delaminated buckle textures whose wavelengths and amplitudes can be systematically tuned by variation in the wet deposition process. Human and murine fibroblasts attach to these textured films and remain viable, while developing pronounced alignment and elongation relative to those on planar graphene controls. Compared to lithographic patterning of nanogratings, this method has advantages in the simplicity and scalability of fabrication, as well as the opportunity to couple the use of topographic cues with the unique conductive, adsorptive, or barrier properties of graphene materials for functional biomedical devices. PMID:25848137
History of the topographic branch (division)
Evans, Richard T.; Frye, Helen M.
2009-01-01
From a very early period of the world's existence, man has endeavored to represent the earth's surface in a graphic form for the information of his fellow men, realizing that no oral or written description is capable of setting forth topographic facts so vividly and so clearly as a map. Mapping of the areas of the United States began with the charting of portions of its coast line by early explorers; the need for topographic maps was first recognized during the war of the Colonies for independence from Great Britain. On July 22, 1777, Congress authorized General Washington to appoint: 'Mr. Robert Erskine, or any other person that he may think proper, geographer and surveyor of the roads, to take sketches of the country and the seat of war.' By several acts during the Revolutionary War, Congress provided 'geographers' for the armies of the United States, some of them with the pay of a colonel, amounting to $60 a month and allowances. At the end of the War, a resolution of May 27, 1785, continued in service the 'geographer of the United States' for a period of 3 years. The War Department recognized the necessity of 'geographical engineers' and requested Congress to authorize their appointment, but it was not until the next war that Congress authorized on March 3, 1813, the appointment of eight topographic engineers and eight assistant topographic engineers under the direction of the General Staff of the Army. These officers formed the nucleus of the first Corps of Topographic Engineers in the Army, and that Corps continued to function as an independent unit until it was absorbed by the Corps of Engineers in 1863, during the Civil War between the States. Between the Louisiana Purchase in 1803, and the outbreak of the Civil War, more than a hundred exploring and mapping expeditions were sent into the vast territory lying west of the Mississippi River to investigate the natural resources of this newly acquired country and to find possible locations for wagon roads to the Pacific Coast. These expeditions were sent out by the War Department and were in charge of Army officers. It is interesting to note that such generals as George G. Meade, J.C. Fremont, Joseph E. Johnston, W.F. Smith, John Pope, A.W. Whipple, J.G. Parke, G.K. Warren, and H.L. Abbott, all officers of the Corps of Topographic Engineers, had charge of expeditions and were among our earliest map makers. Unfortunately, the data obtained by these editions were not of sufficient accuracy to serve as a basis for topographic maps of value other than in illustrating their voluminous reports. During this early period, numerous surveys were undertaken within the original Thirteen States, by the Federal government and by the States. The most important were those carried on by the U.S. Coast and Geodetic Survey, which made an accurate survey of the Atlantic Coastline and established a triangulation system that was of so high a standard as to constitute the first and only accurate data for topographic mapping obtained before the Civil War. The Coast and Geodetic Survey, while charting the coast and rivers, also mapped a strip of country extending a few miles inland, the relief being shown by means of hachures, together with contour lines, until 1846 when the first government topographic map on which the relief was shown by contours alone was made, covering an area in the vicinity of Boston Harbor. In 1835, however, the Geological and Topographical Survey of Maryland had issued a map on which the relief was shown by contours, and this is believed to be the first contoured map issued in this country. The outbreak of the Civil War stopped all mapping activities other than those needed by the U.S. Army. During the war, topographic surveys were carried on throughout the war zone under the supervision of the Corps of Engineers, the topographers being civilian employees. After the war, the country west of the Mississippi again became the center of the mapping activities
Parot, Vicente; Lim, Daryl; González, Germán; Traverso, Giovanni; Nishioka, Norman S.; Vakoc, Benjamin J.
2013-01-01
Abstract. While color video endoscopy has enabled wide-field examination of the gastrointestinal tract, it often misses or incorrectly classifies lesions. Many of these missed lesions exhibit characteristic three-dimensional surface topographies. An endoscopic system that adds topographical measurements to conventional color imagery could therefore increase lesion detection and improve classification accuracy. We introduce photometric stereo endoscopy (PSE), a technique which allows high spatial frequency components of surface topography to be acquired simultaneously with conventional two-dimensional color imagery. We implement this technique in an endoscopic form factor and demonstrate that it can acquire the topography of small features with complex geometries and heterogeneous optical properties. PSE imaging of ex vivo human gastrointestinal tissue shows that surface topography measurements enable differentiation of abnormal shapes from surrounding normal tissue. Together, these results confirm that the topographical measurements can be obtained with relatively simple hardware in an endoscopic form factor, and suggest the potential of PSE to improve lesion detection and classification in gastrointestinal imaging. PMID:23864015
Topography: dusting for the fingerprints of mantle dynamics
NASA Astrophysics Data System (ADS)
Faccenna, C.; Becker, T. W.
2016-12-01
The surface of the Earth is an ever-changing expression of the dynamic processes occurring deep in the mantle and at and above its surface, but our ability to "read" landscapes in terms of their underlying tectonic or climatic forcing is rudimentary. During the last decade, particular attention has been drawn to the deep, convection-related component of topography, induced by the stress produced at the base of the lithosphere by mantle flow, and its relevance compared to the (iso)static component. Despite much progress, several issues, including the magnitude and rate of this dynamic component, remain open. Here, we use key sites from convergent margins (e.g., the Apennines) and from intraplate settings (e.g., Ethiopia) to estimate the amplitude and rate of topography change and to disentangle the dynamic from the static component. On the base of those and other examples, we introduce the concept of a Topographic Fingerprint: any combination of mantle, crustal and surface processes that will result in a distinctive, thus predictable, topographic expression.
Object-Based Classification and Change Detection of Hokkaido, Japan
NASA Astrophysics Data System (ADS)
Park, J. G.; Harada, I.; Kwak, Y.
2016-06-01
Topography and geology are factors to characterize the distribution of natural vegetation. Topographic contour is particularly influential on the living conditions of plants such as soil moisture, sunlight, and windiness. Vegetation associations having similar characteristics are present in locations having similar topographic conditions unless natural disturbances such as landslides and forest fires or artificial disturbances such as deforestation and man-made plantation bring about changes in such conditions. We developed a vegetation map of Japan using an object-based segmentation approach with topographic information (elevation, slope, slope direction) that is closely related to the distribution of vegetation. The results found that the object-based classification is more effective to produce a vegetation map than the pixel-based classification.
NASA Astrophysics Data System (ADS)
Thomas, Ian; Murphy, Paul; Fenton, Owen; Shine, Oliver; Mellander, Per-Erik; Dunlop, Paul; Jordan, Phil
2015-04-01
A new phosphorus index (PI) tool is presented which aims to improve the identification of critical source areas (CSAs) of phosphorus (P) losses from agricultural land to surface waters. In a novel approach, the PI incorporates topographic indices rather than watercourse proximity as proxies for runoff risk, to account for the dominant control of topography on runoff-generating areas and P transport pathways. Runoff propensity and hydrological connectivity are modelled using the Topographic Wetness Index (TWI) and Network Index (NI) respectively, utilising high resolution digital elevation models (DEMs) derived from Light Detection and Ranging (LiDAR) to capture the influence of micro-topographic features on runoff pathways. Additionally, the PI attempts to improve risk estimates of particulate P losses by incorporating an erosion factor that accounts for fine-scale topographic variability within fields. Erosion risk is modelled using the Unit Stream Power Erosion Deposition (USPED) model, which integrates DEM-derived upslope contributing area and Universal Soil Loss Equation (USLE) factors. The PI was developed using field, sub-field and sub-catchment scale datasets of P source, mobilisation and transport factors, for four intensive agricultural catchments in Ireland representing different agri-environmental conditions. Datasets included soil test P concentrations, degree of P saturation, soil attributes, land use, artificial subsurface drainage locations, and 2 m resolution LiDAR DEMs resampled from 0.25 m resolution data. All factor datasets were integrated within a Geographical Information System (GIS) and rasterised to 2 m resolution. For each factor, values were categorised and assigned relative risk scores which ranked P loss potential. Total risk scores were calculated for each grid cell using a component formulation, which summed the products of weighted factor risk scores for runoff and erosion pathways. Results showed that the new PI was able to predict in-field risk variability and hence was able to identify CSAs at the sub-field scale. PI risk estimates and component scores were analysed at catchment and subcatchment scales, and validated using measured dissolved, particulate and total P losses at subcatchment snapshot sites and gauging stations at catchment outlets. The new PI provides CSA delineations at higher precision compared to conventional PIs, and more robust P transport risk estimates. The tool can be used to target cost-effective mitigation measures for P management within single farm units and wider catchments.
NASA Astrophysics Data System (ADS)
Chigira, Masahiro; Tsou, Ching-Ying; Matsushi, Yuki
2013-04-01
Typhoon Talas crossed the Japanese Islands between 2 and 5 September 2011, causing more than 70 deep-seated catastrophic landslides in a Jurassic to Paleogene-Early Miocene accretion complex. Detailed examination of the topographic features of 10 large landslides before the event, recorded on DEMs with a resolution of 1 m (based on airborne laser scanner surveys), showed that all of the landslides had small scarplets near their future crowns prior to the slide, and one landslide had linear depressions along its future crown as precursor topographic features. These scarplets and linear depressions were caused by gravitational slope deformation that preceded the catastrophic failure. Strains, defined by the ratio of the length of a scarplet to the length of the whole slope (as measured along the slope line), ranged from 5% to 21%, and are the first reliable numerical data relating to the topographic precursor features of large and catastrophic landslides. Careful examination of aerial photographs from another four large landslides, for which no high-resolution DEMs were available, suggested that they also developed scarplets at their heads beforehand, which are not precisely quantified. Twelve of the 14 landslides we surveyed in the field had sliding surfaces with wedge-shaped discontinuities that consisted of faults, shear surfaces that formed during accretion, and bedding, suggesting that the buildup of pore pressure occurs readily in a gravitationally deformed rock body containing wedge-shaped discontinuities. Other types of gravitational deformation were also active; e.g., flexural toppling and buckling were each observed to have preceded one landslide.
43 CFR 23.7 - Approval of exploration plan.
Code of Federal Regulations, 2010 CFR
2010-10-01
... showing topographic, cultural and drainage features; (3) A statement of proposed exploration methods, i.e... measures to be taken to prevent or control fire, soil erosion, pollution of surface and ground water...
Surface expression of the Chicxulub crater
Pope, K O; Ocampo, A C; Kinsland, G L; Smith, R
1996-06-01
Analyses of geomorphic, soil, and topographic data from the northern Yucatan Peninsula, Mexico, confirm that the buried Chicxulub impact crater has a distinct surface expression and that carbonate sedimentation throughout the Cenozoic has been influenced by the crater. Late Tertiary sedimentation was mostly restricted to the region within the buried crater, and a semicircular moat existed until at least Pliocene time. The topographic expression of the crater is a series of features concentric with the crater. The most prominent is an approximately 83-km-radius trough or moat containing sinkholes (the Cenote ring). Early Tertiary surfaces rise abruptly outside the moat and form a stepped topography with an outer trough and ridge crest at radii of approximately 103 and approximately 129 km, respectively. Two discontinuous troughs lie within the moat at radii of approximately 41 and approximately 62 km. The low ridge between the inner troughs corresponds to the buried peak ring. The moat corresponds to the outer edge of the crater floor demarcated by a major ring fault. The outer trough and the approximately 62-km-radius inner trough also mark buried ring faults. The ridge crest corresponds to the topographic rim of the crater as modified by postimpact processes. These interpretations support previous findings that the principal impact basin has a diameter of approximately 180 km, but concentric, low-relief slumping extends well beyond this diameter and the eroded crater rim may extend to a diameter of approximately 260 km.
Song, Jiho; Shawky, Joseph H; Kim, YongTae; Hazar, Melis; LeDuc, Philip R; Sitti, Metin; Davidson, Lance A
2015-07-01
Cells in tissues encounter a range of physical cues as they migrate. Probing single cell and collective migratory responses to physically defined three-dimensional (3D) microenvironments and the factors that modulate those responses are critical to understanding how tissue migration is regulated during development, regeneration, and cancer. One key physical factor that regulates cell migration is topography. Most studies on surface topography and cell mechanics have been carried out with single migratory cells, yet little is known about the spreading and motility response of 3D complex multi-cellular tissues to topographical cues. Here, we examine the response to complex topographical cues of microsurgically isolated tissue explants composed of epithelial and mesenchymal cell layers from naturally 3D organized embryos of the aquatic frog Xenopus laevis. We control topography using fabricated micropost arrays (MPAs) and investigate the collective 3D migration of these multi-cellular systems in these MPAs. We find that the topography regulates both collective and individual cell migration and that dense MPAs reduce but do not eliminate tissue spreading. By modulating cell size through the cell cycle inhibitor Mitomycin C or the spacing of the MPAs we uncover how 3D topographical cues disrupt collective cell migration. We find surface topography can direct both single cell motility and tissue spreading, altering tissue-scale processes that enable efficient conversion of single cell motility into collective movement. Copyright © 2015 Elsevier Ltd. All rights reserved.
A LiDAR application for the study of taxiway surface evenness and slope
NASA Astrophysics Data System (ADS)
Barbarella, M.; De Blasiis, M. R.; Fiani, M.; Santoni, M.
2014-05-01
Pavement roughness evaluation of airport runways/taxiways and scheduling of maintenance operations should be done according to well-defined procedures. Survey of geometric features of airport pavements is performed to verify the flow of water from the surface and to assure a level of roughness that allows the airplane to maneuver in the safest and most comfortable conditions. In particular the evaluation of longitudinal and transversal evenness of the runway and taxiway is carried out through topographic survey. The tachymetric survey has been carried out according to traditional topographic technique, which allows the evaluation of geometric position of isolated points with very high accuracy, but it is not very productive. Moreover it returns the pavement surface model through only few measured points. An alternative survey method, characterized by a good accuracy, high speed of acquisition and very high surveyed point density, is Terrestrial Laser Scanning (TLS), in static mode. In this paper we describe our experience aimed to validate the use of time-of-flight (TOF) TLS, based on a survey on a 200 m length segment of an international airport taxiway. From the acquired data we extracted the parameters of interest, especially the slope, and compared them with the values obtained from the traditional topographic survey. We also developed a proprietary software package to evaluate the slope and to analyze the statistical data. The software allows users to manage the flow of a semi-automatic calculation.
Effects of Topography-based Subgrid Structures on Land Surface Modeling
NASA Astrophysics Data System (ADS)
Tesfa, T. K.; Ruby, L.; Brunke, M.; Thornton, P. E.; Zeng, X.; Ghan, S. J.
2017-12-01
Topography has major control on land surface processes through its influence on atmospheric forcing, soil and vegetation properties, network topology and drainage area. Consequently, accurate climate and land surface simulations in mountainous regions cannot be achieved without considering the effects of topographic spatial heterogeneity. To test a computationally less expensive hyper-resolution land surface modeling approach, we developed topography-based landunits within a hierarchical subgrid spatial structure to improve representation of land surface processes in the ACME Land Model (ALM) with minimal increase in computational demand, while improving the ability to capture the spatial heterogeneity of atmospheric forcing and land cover influenced by topography. This study focuses on evaluation of the impacts of the new spatial structures on modeling land surface processes. As a first step, we compare ALM simulations with and without subgrid topography and driven by grid cell mean atmospheric forcing to isolate the impacts of the subgrid topography on the simulated land surface states and fluxes. Recognizing that subgrid topography also has important effects on atmospheric processes that control temperature, radiation, and precipitation, methods are being developed to downscale atmospheric forcings. Hence in the second step, the impacts of the subgrid topographic structure on land surface modeling will be evaluated by including spatial downscaling of the atmospheric forcings. Preliminary results on the atmospheric downscaling and the effects of the new spatial structures on the ALM simulations will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozhukhov, A. S., E-mail: antonkozhukhov@yandex.ru; Sheglov, D. V.; Latyshev, A. V.
A technique for reversible surface modification with an atomic-force-microscope (AFM) probe is suggested. In this method, no significant mechanical or topographic changes occur upon a local variation in the surface potential of a sample under the AFM probe. The method allows a controlled relative change in the ohmic resistance of a channel in a Hall bridge within the range 20–25%.
Methods of Determining Playa Surface Conditions Using Remote Sensing
1987-10-08
NO. 11. TITLE (include Security Classification) METHODS OF DETERMINING PLAYA SURFACE CONDITIONS USING REMOTE SENSING 12. PERSONAL AUTHOR(S) J. PONDER...PLAYA SURFACE CONDITIONS USING REMOTE SENSING J. Ponder Henley U. S. Army Engineer Topographic Laboratories Fort Belvoir, Virginia 22060-5546 "ABSTRACT...geochemistry, hydrology and remote sensing but all of these are important to the understanding of these unique geomorphic features. There is a large body
Quaternary history of the Kiseiba Oasis region, southern Egypt
NASA Astrophysics Data System (ADS)
Maxwell, Ted A.; Haynes, C. Vance; Nicoll, Kathleen; Johnston, Andrew K.; Grant, John A.; Kilani, Ali
2017-12-01
Kiseiba Oasis and depression are located in southern Egypt between the Selima Sand Sheet to the west and the Nile to the east, an important area that hosted Late Cenozoic drainage, Middle Pleistocene lakes, and numerous Paleolithic and Neolithic cultural sites. A synthesis of orbital data, field surveying and near-surface stratigraphy provides new insights into the Quaternary history of this region. Shuttle Imaging Radar data show a complex of fluvial channels that are due to stringers of surficial fluvial lag, subsurface fluvial deposits, and areas of deep alluvium. Three topographic surfaces are described: 1) the Atmur El-Kibeish, above 230 m elevation, which displays a linear pattern of light radar returns, possibly formed from northeast drainage; 2) the Acheulean Surface, at 200 m elevation, that has dark radar patterns resulting from thick alluvium bounded by pebble sand and calcrete strata, and 3) the Kiseiba Surface, below 190 m, that has a complex series of surface and subsurface fluvial and aeolian sediments. Initial drainage from the Early through Middle Pleistocene was to the northeast, which may have lasted through the Last Interglacial. Later reworking of sediments during the Last Glacial Maximum and the Holocene resulted in topographic inversion, with any subsequent local drainage on the Kiseiba Surface to the southwest, towards the Kiseiba Scarp.
Nair, Ashish Shashikant; Tilakchand, Mahima; Naik, Balaram Damodar
2015-01-01
Aims: To observe and study the effect of multiple autoclave sterilization cycles, on the surface of nickel-titanium (NiTi) files. Materials and Methods: The file used for this study was the Mtwo file (VDW) and ProTaper (Dentsply). The apical 5 mm of the files were attached to a silicon wafer and subjected to autoclave cycles under standardized conditions. They were scanned with an AFM after 1, 5, and 10 cycles. The unsterilized files were used as control, before start of the study. Three vertical topographic parameters namely maximum height (MH), root mean square (RMS) of surface roughness, and arithmetic mean roughness (AMR)were measured with the atomic force microscope (AFM). Analysis of variance along with Tukey's test was used to test the differences. Results: The vertical topographic parameters were higher for both the files, right after the first cycle, when compared with the control (P < 0.01). The surface roughness increased sharply for Mtwo when compared to ProTaper, though ProTaper had a rougher surface initially. Conclusions: The study confirmed that the irregularities present on the surface of the file became more prominent with multiple autoclave cycles, a fact that should be kept in mind during their reuse. PMID:26069408
Nair, Ashish Shashikant; Tilakchand, Mahima; Naik, Balaram Damodar
2015-01-01
To observe and study the effect of multiple autoclave sterilization cycles, on the surface of nickel-titanium (NiTi) files. The file used for this study was the Mtwo file (VDW) and ProTaper (Dentsply). The apical 5 mm of the files were attached to a silicon wafer and subjected to autoclave cycles under standardized conditions. They were scanned with an AFM after 1, 5, and 10 cycles. The unsterilized files were used as control, before start of the study. Three vertical topographic parameters namely maximum height (MH), root mean square (RMS) of surface roughness, and arithmetic mean roughness (AMR)were measured with the atomic force microscope (AFM). Analysis of variance along with Tukey's test was used to test the differences. The vertical topographic parameters were higher for both the files, right after the first cycle, when compared with the control (P < 0.01). The surface roughness increased sharply for Mtwo when compared to ProTaper, though ProTaper had a rougher surface initially. The study confirmed that the irregularities present on the surface of the file became more prominent with multiple autoclave cycles, a fact that should be kept in mind during their reuse.
Electrostatic and dispersion interactions during protein adsorption on topographic nanostructures.
Elter, Patrick; Lange, Regina; Beck, Ulrich
2011-07-19
Recently, biomaterials research has focused on developing functional implant surfaces with well-defined topographic nanostructures in order to influence protein adsorption and cellular behavior. To enhance our understanding of how proteins interact with such surfaces, we analyze the adsorption of lysozyme on an oppositely charged nanostructure using a computer simulation. We present an algorithm that combines simulated Brownian dynamics with numerical field calculation methods to predict the preferred adsorption sites for arbitrarily shaped substrates. Either proteins can be immobilized at their initial adsorption sites or surface diffusion can be considered. Interactions are analyzed on the basis of Derjaguin-Landau-Verway-Overbeek (DLVO) theory, including electrostatic and London dispersion forces, and numerical solutions are derived using the Poisson-Boltzmann and Hamaker equations. Our calculations show that for a grooved nanostructure (i.e., groove and plateau width 8 nm, height 4 nm), proteins first contact the substrate primarily near convex edges because of better geometric accessibility and increased electric field strengths. Subsequently, molecules migrate by surface diffusion into grooves and concave corners, where short-range dispersion interactions are maximized. In equilibrium, this mechanism leads to an increased surface protein concentration in the grooves, demonstrating that the total amount of protein per surface area can be increased if substrates have concave nanostructures.
Fabrication and characterization of conductive anodic aluminum oxide substrates
NASA Astrophysics Data System (ADS)
Altuntas, Sevde; Buyukserin, Fatih
2014-11-01
Biomaterials that allow the utilization of electrical, chemical and topographic cues for improved neuron-material interaction and neural regeneration hold great promise for nerve tissue engineering applications. The nature of anodic aluminum oxide (AAO) membranes intrinsically provides delicate control over topographic and chemical cues for enhanced cell interaction; however their use in nerve regeneration is still very limited. Herein, we report the fabrication and characterization of conductive AAO (CAAO) surfaces for the ultimate goal of integrating electrical cues for improved nerve tissue behavior on the nanoporous substrate material. Parafilm was used as a protecting polymer film, for the first time, in order to obtain large area (50 cm2) free-standing AAO membranes. Carbon (C) was then deposited on the AAO surface via sputtering. Morphological characterization of the CAAO surfaces revealed that the pores remain open after the deposition process. The presence of C on the material surface and inside the nanopores was confirmed by XPS and EDX studies. Furthermore, I-V curves of the surface were used to extract surface resistance values and conductive AFM demonstrated that current signals can only be achieved where conductive C layer is present. Finally, novel nanoporous C films with controllable pore diameters and one dimensional (1-D) C nanostructures were obtained by the dissolution of the template AAO substrate.
Effects of uncertain topographic input data on two-dimensional flow modeling in a gravel-bed river
Legleiter, C.J.; Kyriakidis, P.C.; McDonald, R.R.; Nelson, J.M.
2011-01-01
Many applications in river research and management rely upon two-dimensional (2D) numerical models to characterize flow fields, assess habitat conditions, and evaluate channel stability. Predictions from such models are potentially highly uncertain due to the uncertainty associated with the topographic data provided as input. This study used a spatial stochastic simulation strategy to examine the effects of topographic uncertainty on flow modeling. Many, equally likely bed elevation realizations for a simple meander bend were generated and propagated through a typical 2D model to produce distributions of water-surface elevation, depth, velocity, and boundary shear stress at each node of the model's computational grid. Ensemble summary statistics were used to characterize the uncertainty associated with these predictions and to examine the spatial structure of this uncertainty in relation to channel morphology. Simulations conditioned to different data configurations indicated that model predictions became increasingly uncertain as the spacing between surveyed cross sections increased. Model sensitivity to topographic uncertainty was greater for base flow conditions than for a higher, subbankfull flow (75% of bankfull discharge). The degree of sensitivity also varied spatially throughout the bend, with the greatest uncertainty occurring over the point bar where the flow field was influenced by topographic steering effects. Uncertain topography can therefore introduce significant uncertainty to analyses of habitat suitability and bed mobility based on flow model output. In the presence of such uncertainty, the results of these studies are most appropriately represented in probabilistic terms using distributions of model predictions derived from a series of topographic realizations. Copyright 2011 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Aktaruzzaman, Md.; Schmitt, Theo G.
2011-11-01
This paper addresses the issue of a detailed representation of an urban catchment in terms of hydraulic and hydrologic attributes. Modelling of urban flooding requires a detailed knowledge of urban surface characteristics. The advancement in spatial data acquisition technology such as airborne LiDAR (Light Detection and Ranging) has greatly facilitated the collection of high-resolution topographic information. While the use of the LiDAR-derived Digital Surface Model (DSM) has gained popularity over the last few years as input data for a flood simulation model, the use of LiDAR intensity data has remained largely unexplored in this regard. LiDAR intensity data are acquired along with elevation data during the data collection mission by an aircraft. The practice of using of just aerial images with RGB (Red, Green and Blue) wavebands is often incapable of identifying types of surface under the shadow. On the other hand, LiDAR intensity data can provide surface information independent of sunlight conditions. The focus of this study is the use of intensity data in combination with aerial images to accurately map pervious and impervious urban areas. This study presents an Object-Based Image Analysis (OBIA) framework for detecting urban land cover types, mainly pervious and impervious surfaces in order to improve the rainfall-runoff modelling. Finally, this study shows the application of highresolution DSM and land cover maps to flood simulation software in order to visualize the depth and extent of urban flooding phenomena.
Terminal velocity and drag reduction measurements on superhydrophobic spheres
NASA Astrophysics Data System (ADS)
McHale, G.; Shirtcliffe, N. J.; Evans, C. R.; Newton, M. I.
2009-02-01
Super water-repellent surfaces occur naturally on plants and aquatic insects and are created in the laboratory by combining micro- or nanoscale surface topographic features with hydrophobic surface chemistry. When such types of water-repellent surfaces are submerged they can retain a film of air (a plastron). In this work, we report measurements of the terminal velocity of solid acrylic spheres with various surface treatments settling under the action of gravity in water. We observed increases in terminal velocity corresponding to drag reduction of between 5% and 15% for superhydrophobic surfaces that carry plastrons.
Early bone anchorage to micro- and nano-topographically complex implant surfaces in hyperglycemia.
Ajami, Elnaz; Bell, Spencer; Liddell, Robert S; Davies, John E
2016-07-15
The aim of this work was to investigate the effect of implant surface design on early bone anchorage in the presence of hyperglycemia. 108 Wistar rats were separated into euglycemic (EG) controls and STZ-treated hyperglycemic (HG) groups, and received bilateral femoral custom rectangular implants of two surface topographies: grit blasted (GB) and grit-blast with a superimposed calcium phosphate nanotopography (GB-DCD). The peri-implant bone was subjected to a tensile disruption test 5, 7, and 9days post-operatively (n=28/time point); the force was measured; and the residual peri-implant bone was observed by scanning electron microscopy (SEM). Disruption forces at 5days were not significantly different from zero for the GB implants (p=0.24) in either metabolic group; but were for GB+DCD implants in both metabolic groups (p<0.001). Contact osteogenesis was greater on GB-DCD than the GB surface. The nano-and micro-surfaced implants showed significantly different disruption forces at all time points (e.g. >15N and <5N respectively at 9days). Such differences were not seen within the GB implants, as all values were very low (<5N). Even in hyperglycemia the GB-DCD surface outperformed the GB surfaces in both metabolic groups. Significantly, SEM of peri-implant bone showed compromised intra-fibrillar collagen mineralization in hyperglycemia, while inter-fibrillar and cement line mineralization remained unaffected. Enhanced bone anchorage to the implant surfaces was observed on the nanotopographically complex surface independent of metabolic group. The compromised intra-fibrillar mineralization observed provides a mechanism by which early bone mineralization is affected in hyperglycemia. It is generally accepted that the hyperglycemia associated with diabetes mellitus compromises bone quality, although the mechanism by which this occurs is unknown. Uncontrolled hyperglycemia is therefore a contra-indication for bone implant placement. It is also known that nano-topographically complex implant surfaces accelerate early peri-implant healing. In this report we show that, in our experimental model, nano-topographically complex surfaces can mitigate the compromised bone healing seen in hyperglycemia. Importantly, we also provide a mechanistic explanation for compromised bone quality in hyperglycemia. We show that intra-fibrillar collagen mineralization is compromised in hyperglycemia, but that interfibrillar and cement line mineralization, remain unaffected. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Silicon cantilever functionalization for cellulose-specific chemical force imaging of switchgrass
Lee, Ida; Evans, Barbara R.; Foston, Marcus B.; ...
2015-05-08
A method for direct functionalization of silicon and silicon nitride cantilevers with bifunctional silanes was tested with model surfaces to determine adhesive forces for different hydrogen-bonding chemistries. Application for biomass surface characterization was tested by mapping switchgrass and isolated switchgrass cellulose in topographic and force-volume mode using a cellulose-specific cantilever.
a Standardized Approach to Topographic Data Processing and Workflow Management
NASA Astrophysics Data System (ADS)
Wheaton, J. M.; Bailey, P.; Glenn, N. F.; Hensleigh, J.; Hudak, A. T.; Shrestha, R.; Spaete, L.
2013-12-01
An ever-increasing list of options exist for collecting high resolution topographic data, including airborne LIDAR, terrestrial laser scanners, bathymetric SONAR and structure-from-motion. An equally rich, arguably overwhelming, variety of tools exists with which to organize, quality control, filter, analyze and summarize these data. However, scientists are often left to cobble together their analysis as a series of ad hoc steps, often using custom scripts and one-time processes that are poorly documented and rarely shared with the community. Even when literature-cited software tools are used, the input and output parameters differ from tool to tool. These parameters are rarely archived and the steps performed lost, making the analysis virtually impossible to replicate precisely. What is missing is a coherent, robust, framework for combining reliable, well-documented topographic data-processing steps into a workflow that can be repeated and even shared with others. We have taken several popular topographic data processing tools - including point cloud filtering and decimation as well as DEM differencing - and defined a common protocol for passing inputs and outputs between them. This presentation describes a free, public online portal that enables scientists to create custom workflows for processing topographic data using a number of popular topographic processing tools. Users provide the inputs required for each tool and in what sequence they want to combine them. This information is then stored for future reuse (and optionally sharing with others) before the user then downloads a single package that contains all the input and output specifications together with the software tools themselves. The user then launches the included batch file that executes the workflow on their local computer against their topographic data. This ZCloudTools architecture helps standardize, automate and archive topographic data processing. It also represents a forum for discovering and sharing effective topographic processing workflows.
Pino-Almero, Laura; Mínguez-Rey, María Fe; Cibrián-Ortiz de Anda, Rosa María; Salvador-Palmer, María Rosario; Sentamans-Segarra, Salvador
2017-04-01
Optical cross-sectional study. To study the correlation between asymmetry of the back (measured by means of surface topography) and deformity of the spine (quantified by the Cobb angle). The Cobb angle is considered the gold standard in diagnosis and follow-up of scoliosis but does not correctly characterize the three-dimensional deformity of scoliosis. Furthermore, the exposure to ionizing radiation may cause harmful effects particularly during the growth stage, including breast cancer and other tumors. Patients aged 13.15±1.96 years (range, 7-17 years; n=88) with Cobb angle greater than 10° were evaluated with X-rays and our back surface topography method through three variables: axial plane (DHOPI), coronal plane (POTSI), and profile plane (PC). Pearson's correlation was applied to determine the correlation between topographic and radiographic variables. One-way analysis of variance and Bonferroni correction were used to compare groups with different grades of scoliosis. Significance was set at p <0.01 and, in some cases, at p <0.05. We detected a positive, statistically significant correlation between Cobb angle with DHOPI ( r =0.810) and POTSI ( r =0.629) and between PC variables with thoracic kyphosis angle ( r =0.453) and lordosis lumbar angle ( r =0.275). In addition, we found statistically significant differences for DHOPI and POTSI variables according to the grade of scoliosis. Although the back surface topography method cannot substitute for radiographs in the diagnosis of scoliosis, correlations between radiographic and topographic parameters suggest that it offers additional quantitative data that may complement radiologic study.
Shimizu, Tsutomu; Yamaguchi, Takefumi; Satake, Yoshiyuki; Shimazaki, Jun
2015-03-01
The aim of this study was to investigate topographic "hot spots" on the anterior corneal surface before Descemet stripping automated endothelial keratoplasty (DSAEK) and their effects on postoperative visual acuity and hyperopic shift. Twenty-seven eyes of 27 patients with bullous keratopathy, who underwent DSAEK were studied. We defined a hot spot as a focal area with relatively high refractive power on the anterior corneal surface in eyes with bullous keratopathy. Refractive spherical equivalent, keratometric value, and corneal topography were retrospectively evaluated using anterior segment optical coherence tomography (AS-OCT). Hot spots were identified in 11 eyes (42.3%) before DSAEK and disappeared in 9 eyes of these eyes (81.8%) at 6 months after DSAEK. AS-OCT revealed focal epithelial thickening in the same areas as the hot spots. There was no significant difference in the postoperative visual acuity between eyes with and without hot spots (P > 0.05). The keratometric value of the anterior corneal surface significantly flattened from 45.7 ± 2.7 diopters (D) before DSAEK to 44.2 ± 2.7 D 1 month after DSAEK in eyes with hot spots (P = 0.01), whereas in eyes without hot spots, there were no significant differences in the keratometric values before and after DSAEK. At 6 months, the refractive change was +1.1 ± 1.3 D in eyes with hot spots and -0.2 ± 0.6 D in eyes without hot spots (P = 0.034). In eyes with focal epithelial thickening, topographic hot spots on the anterior corneal surface were observed using AS-OCT. The hot spots disappeared after DSAEK and had no influence on the postoperative visual acuity.
Airborne Laser/GPS Mapping of Assateague National Seashore Beach
NASA Technical Reports Server (NTRS)
Kradill, W. B.; Wright, C. W.; Brock, John C.; Swift, R. N.; Frederick, E. B.; Manizade, S. S.; Yungel, J. K.; Martin, C. F.; Sonntag, J. G.; Duffy, Mark;
1997-01-01
Results are presented from topographic surveys of the Assateague Island National Seashore using recently developed Airborne Topographic Mapper (ATM) and kinematic Global Positioning System (GPS) technology. In November, 1995, and again in May, 1996, the NASA Arctic Ice Mapping (AIM) group from the Goddard Space Flight Center's Wallops Flight Facility conducted the topographic surveys as a part of technology enhancement activities prior to conducting missions to measure the elevation of extensive sections of the Greenland Ice Sheet as part of NASA's Global Climate Change program. Differences between overlapping portions of both surveys are compared for quality control. An independent assessment of the accuracy of the ATM survey is provided by comparison to surface surveys which were conducted using standard techniques. The goal of these projects is to mdke these measurements to an accuracy of +/- 10 cm. Differences between the fall 1995 and 1996 surveys provides an assessment of net changes in the beach morphology over an annual cycle.
Application of Ifsar Technology in Topographic Mapping: JUPEM's Experience
NASA Astrophysics Data System (ADS)
Zakaria, Ahamad
2018-05-01
The application of Interferometric Synthetic Aperture Radar (IFSAR) in topographic mapping has increased during the past decades. This is due to the advantages that IFSAR technology offers in solving data acquisition problems in tropical regions. Unlike aerial photography, radar technology offers wave penetration through cloud cover, fog and haze. As a consequence, images can be made free of any natural phenomenon defects. In Malaysia, Department of Survey and Mapping Malaysia (JUPEM) has been utilizing the IFSAR products since 2009 to update topographic maps at 1 : 50,000 map scales. Orthorectified radar imagery (ORI), Digital Surface Models (DSM) and Digital Terrain Models (DTM) procured under the project have been further processed before the products are ingested into a revamped mapping workflow consisting of stereo and mono digitizing processes. The paper will highlight the experience of Department of Survey and Mapping Malaysia (DSMM)/ JUPEM in using such technology in order to speed up mapping production.
Jastreboff, P J; Pedersen, P E; Greer, C A; Stewart, W B; Kauer, J S; Benson, T E; Shepherd, G M
1984-08-01
A critical gap exists in our knowledge of the topographical relationship between the olfactory epithelium and olfactory bulb. The present report describes the application to this problem of a method involving horseradish peroxidase conjugated to wheat germ agglutinin. This material was iontophoretically delivered to circumscribed glomeruli in the olfactory bulb and the characteristics and distribution of retrogradely labeled receptor cells were assessed. After discrete injections into small glomerular groups in the caudomedial bulb, topographically defined populations of receptor cells were labeled. Labeled receptor cell somata appeared at several levels within the epithelium. The receptor cell apical dendrites followed a tight helical course towards the surface of the epithelium. The data thus far demonstrate that functional units within the olfactory system may include not only glomeruli as previously suggested but, in addition, a corresponding matrix of receptor cells possessing functional and topographical specificity.
Jastreboff, P J; Pedersen, P E; Greer, C A; Stewart, W B; Kauer, J S; Benson, T E; Shepherd, G M
1984-01-01
A critical gap exists in our knowledge of the topographical relationship between the olfactory epithelium and olfactory bulb. The present report describes the application to this problem of a method involving horseradish peroxidase conjugated to wheat germ agglutinin. This material was iontophoretically delivered to circumscribed glomeruli in the olfactory bulb and the characteristics and distribution of retrogradely labeled receptor cells were assessed. After discrete injections into small glomerular groups in the caudomedial bulb, topographically defined populations of receptor cells were labeled. Labeled receptor cell somata appeared at several levels within the epithelium. The receptor cell apical dendrites followed a tight helical course towards the surface of the epithelium. The data thus far demonstrate that functional units within the olfactory system may include not only glomeruli as previously suggested but, in addition, a corresponding matrix of receptor cells possessing functional and topographical specificity. Images PMID:6206495
Topographic Map of Chryse Planitia with Location of Possible Buried Basin
NASA Technical Reports Server (NTRS)
2005-01-01
This topographic map, based on data from the Mars Orbiter Laser Altimeter, shows the ground track of the 1,892nd and the 1,903rd orbits of Mars Express and the arc structures detected by that orbiter's Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS). The arc structures are interpreted to be part of a buried impact basin about 250 kilometers (155 miles) in diameter. The topographic relief represented in the image is 1 kilometer (0.6 mile), from low (purple) to high (red). The projected arcs are shown in red for orbit 1892 and white for orbit 1903. There is no obvious feature in the surface topography that corresponds to the buried feature identified with MARSIS data. NASA and the Italian Space Agency jointly funded the MARSIS instrument on the European Space Agency's Mars Express orbiter. The Mars Orbiter Laser Altimeter is an instrument on NASA's Mars Global Surveyor orbiter.Zheng, Zhenhuan; Zhang, Ling; Kong, Lijun; Wang, Aijun; Gong, Yandao; Zhang, Xiufang
2009-05-01
In the present work, a series of composite films were produced from chitosan/poly-L-lysine blend solutions. The surface topography, chemistry, and wettability of composite films were characterized by atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and contact angle assay, respectively. For all composite films, blending with poly-L-lysine induced changes in surface chemistry and wettability. Interestingly, it was also found that increasing poly-L-lysine weight fraction in blend solutions could result in different nanoscaled surface topographic features, which displayed particle-, granule-, or fiber-dominant morphologies. MC3T3-E1 osteoblast-like cells were cultured on all composite films to evaluate the effects of surface nanotopography, chemistry, and wettability on cell behavior. The observations indicated that MC3T3-E1 cell behavior was affected by surface topography, chemistry, and wettability simultaneously and that cells showed strong responses to surface topography. On fiber-dominant surface, cells fully spread with obvious cytoskeleton organization and exhibited significantly higher level of adhesion and proliferation compared with particle- or granule-dominant surfaces. Furthermore, fiber-dominant surface also induced greater expression of mature osteogenic marker osteocalcin and higher mineralization based on RT-PCR and von Kossa staining. The results suggest that topographic modification of chitosan substratum at the nanoscale may be exploited in regulating cell behavior for its applications in tissue engineering.
Large Topographic Rises on Venus: Implications for Mantle Upwelling
NASA Technical Reports Server (NTRS)
Stofan, Ellen R.; Smrekar, Suzanne E.; Bindschandler, Duane L.; Senske, David A.
1995-01-01
Topographic rises on Venus have been identified that are interpreted to be the surface manifestation of mantle upwellings. These features are classified into groups based on their dominant morphology. Atla and Beta Regiones are classified as rift-dominated, Dione, western Eistla, Bell, and Imdr Regiones as volcano-dominated, and Themis, eastern Eistla, and central Eistla Regiones as corona-dominated. At several topographic rises, geologic indicators were identified that may provide evidence of uplifted topography (e.g., volcanic flow features trending upslope). We assessed the minimum contribution of volcanic construction to the topography of each rise, which in general represents less than 5% of the volume of the rise, similar to the volumes of edifices at terrestrial hotspot swells. The total melt volume at each rise is approximated to be 10(exp 4) - 10(exp 6) cu km. The variations in morphology, topography, and gravity signatures at topographic rises are not interpreted to indicate variations in stage of evolution of a mantle upwelling. Instead, the morphologic variations between the three classes of topographic rises are interpreted to indicate the varying influences of lithospheric structure, plume characteristics, and regional tectonic environment. Within each class, variations in topography, gravity, and amount of volcanism may be indicative of differing stages of evolution. The similarity between swell and volcanic volumes for terrestrial and Venusian hotspots implies comparable time-integrated plume strengths for individual upwellings on the two planets.
Topographic coupling of surface and internal Kelvin waves. [of ocean
NASA Technical Reports Server (NTRS)
Chao, S.-Y.
1980-01-01
An analysis is presented for computing the diffraction of barotropic Kelvin waves by a localized topographical irregularity on flat-bottom ocean with an arbitrary vertical stratification. It was shown that all baroclinic Kelvin waves will be generated downstream of the bump, with the first baroclinic mode having the largest amplitude. The Poincare waves predominate in the lowest modes, and are more directionally anisotropic. It was concluded that baroclinic Poincare waves radiating offshore from the bump topography could contribute to the internal wave field in the open ocean and provide an alternative mechanism to dissipate the barotropic tides.
NASA Technical Reports Server (NTRS)
Runquist, D. C.
1985-01-01
Six spectral plots, each summarizing single-pixel reflectance for 128 channels of Airborne Imaging Spectrometer (AIS) data, were examined. The six sample pixels were located along a topographic/moisture gradient from lake surface to dune top in the Nebraska Sandhills. AIS spectra for various moisture regimes/vegetative zones appear quite logical, with a general positive relationship between increasing elevation (i.e., decreasing access of plant roots to water) and increasing reflectance in the spectral regions diagnostic of leaf-water content (i.e., bands centered on 1.65 and 2.20 microns).
Matsushita, Bunkei; Yang, Wei; Chen, Jin; Onda, Yuyichi; Qiu, Guoyu
2007-11-05
Vegetation indices play an important role in monitoring variations in vegetation.The Enhanced Vegetation Index (EVI) proposed by the MODIS Land Discipline Groupand the Normalized Difference Vegetation Index (NDVI) are both global-based vegetationindices aimed at providing consistent spatial and temporal information regarding globalvegetation. However, many environmental factors such as atmospheric conditions and soilbackground may produce errors in these indices. The topographic effect is another veryimportant factor, especially when the indices are used in areas of rough terrain. In thispaper, we theoretically analyzed differences in the topographic effect on the EVI and theNDVI based on a non-Lambertian model and two airborne-based images acquired from amountainous area covered by high-density Japanese cypress plantation were used as a casestudy. The results indicate that the soil adjustment factor "L" in the EVI makes it moresensitive to topographic conditions than is the NDVI. Based on these results, we stronglyrecommend that the topographic effect should be removed in the reflectance data beforethe EVI was calculated-as well as from other vegetation indices that similarly include a term without a band ratio format (e.g., the PVI and SAVI)-when these indices are used in the area of rough terrain, where the topographic effect on the vegetation indices having only a band ratio format (e.g., the NDVI) can usually be ignored.
Wettability of natural superhydrophobic surfaces.
Webb, Hayden K; Crawford, Russell J; Ivanova, Elena P
2014-08-01
Since the description of the 'Lotus Effect' by Barthlott and Neinhuis in 1997, the existence of superhydrophobic surfaces in the natural world has become common knowledge. Superhydrophobicity is associated with a number of possible evolutionary benefits that may be bestowed upon an organism, ranging from the ease of dewetting of their surfaces and therefore prevention of encumbrance by water droplets, self-cleaning and removal of particulates and potential pathogens, and even to antimicrobial activity. The superhydrophobic properties of natural surfaces have been attributed to the presence of hierarchical microscale (>1 μm) and nanoscale (typically below 200 nm) structures on the surface, and as a result, the generation of topographical hierarchy is usually considered of high importance in the fabrication of synthetic superhydrophobic surfaces. When one surveys the breadth of data available on naturally existing superhydrophobic surfaces, however, it can be observed that topographical hierarchy is not present on all naturally superhydrophobic surfaces; in fact, the only universal feature of these surfaces is the presence of a sophisticated nanoscale structure. Additionally, several natural surfaces, e.g. those present on rose petals and gecko feet, display high water contact angles and high adhesion of droplets, due to the pinning effect. These surfaces are not truly superhydrophobic, and lack significant degrees of nanoscale roughness. Here, we discuss the phenomena of superhydrophobicity and pseudo-superhydrophobicity in nature, and present an argument that while hierarchical surface roughness may aid in the stability of the superhydrophobic effect, it is nanoscale surface architecture alone that is the true determinant of superhydrophobicity. Copyright © 2014 Elsevier B.V. All rights reserved.
Bite mark documentation and analysis: the forensic 3D/CAD supported photogrammetry approach.
Thali, M J; Braun, M; Markwalder, Th H; Brueschweiler, W; Zollinger, U; Malik, Naseem J; Yen, K; Dirnhofer, R
2003-08-12
Bite mark identification is based on the individuality of a dentition, which is used to match a bite mark to a suspected perpetrator. This matching is based on a tooth-by-tooth and arch-to-arch comparison utilising parameters of size, shape and alignment. The most common method used to analyse bite mark are carried out in 2D space. That means that the 3D information is preserved only two dimensionally with distortions. This paper presents a new 3D documentation, analysis and visualisation approach based on forensic 3D/CAD supported photogrammetry (FPHG) and the use of a 3D surface scanner. Our photogrammetric approach and the used visualisation method is, to the best to our knowledge, the first 3D approach for bite mark analysis in an actual case. The documentation has no distortion artifacts as can be found with standard photography. All the data are documented with a metric 3D measurement, orientation and subsequent analysis in 3D space. Beside the metrical analysis between bite mark and cast, it is possible using our method to utilise the topographical 3D feature of each individual tooth. This means that the 3D features of the biting surfaces and edges of each teeth are respected which is--as shown in our case--very important especially in the front teeth which have the first contact to the skin. Based upon the 3D detailed representation of the cast with the 3D topographic characteristics of the teeth, the interaction with the 3D documented skin can be visualised and analysed on the computer screen.
NASA Astrophysics Data System (ADS)
Yatheendradas, S.; Vivoni, E.
2007-12-01
A common practice in distributed hydrological modeling is to assign soil hydraulic properties based on coarse textural datasets. For semiarid regions with poor soil information, the performance of a model can be severely constrained due to the high model sensitivity to near-surface soil characteristics. Neglecting the uncertainty in soil hydraulic properties, their spatial variation and their naturally-occurring horizonation can potentially affect the modeled hydrological response. In this study, we investigate such effects using the TIN-based Real-time Integrated Basin Simulator (tRIBS) applied to the mid-sized (100 km2) Sierra Los Locos watershed in northern Sonora, Mexico. The Sierra Los Locos basin is characterized by complex mountainous terrain leading to topographic organization of soil characteristics and ecosystem distributions. We focus on simulations during the 2004 North American Monsoon Experiment (NAME) when intensive soil moisture measurements and aircraft- based soil moisture retrievals are available in the basin. Our experiments focus on soil moisture comparisons at the point, topographic transect and basin scales using a range of different soil characterizations. We compare the distributed soil moisture estimates obtained using (1) a deterministic simulation based on soil texture from coarse soil maps, (2) a set of ensemble simulations that capture soil parameter uncertainty and their spatial distribution, and (3) a set of simulations that conditions the ensemble on recent soil profile measurements. Uncertainties considered in near-surface soil characterization provide insights into their influence on the modeled uncertainty, into the value of soil profile observations, and into effective use of on-going field observations for constraining the soil moisture response uncertainty.
Finding Your Way with Map and Compass
,
2001-01-01
A topographic map tells you where things are and how to get to them, whether you're hiking, biking, hunting, fishing, or just interested in the world around you. These maps describe the shape of the land. They define and locate natural and manmade features like woodlands, waterways, important buildings, and bridges. They show the distance between any two places, and they also show the direction from one point to another. Distances and directions take a bit of figuring, but the topography and features of the land are easy to determine. The topography is shown by contours. These are imaginary lines that follow the ground surface at a constant elevation; they are usually printed in brown, in two thicknesses. The heavier lines are called index contours, and they are usually marked with numbers that give the height in feet or meters. The contour interval, a set difference in elevation between the brown lines, varies from map to map; its value is given in the margin of each map. Contour lines that are close together represent steep slopes. Natural and manmade features are represented by colored areas and by a set of standard symbols on all U.S. Geological Survey (USGS) topographic maps. Woodlands, for instance, are shown in a green tint; waterways, in blue. Buildings may be shown on the map as black squares or outlines. Recent changes in an area may be shown by a purple overprint. A road may be printed in red or black solid or dashed lines, depending on its size and surface. A list of symbols is available from the Earth Science Information Center (ESIC).
Mazinani, Babac A E; Waberski, Till D; van Ooyen, Andre; Walter, Peter
2008-05-01
Purpose of this study was to introduce a mathematical model which allows the calculation of a source dipole as the origin of the evoked activity based on the data of three simultaneously recorded VEPs from different locations at the scalp surface to predict field potentials at any neighboring location and to validate this model by comparison with actual recordings. In 10 healthy subjects (25-38, mean 29 years) continuous VEPs were recorded via 96 channels. On the base of the recordings at the positions POz', O1' and O2', a source dipole vector was calculated for each time point of the recordings and VEP responses were back projected for any of the 96 electrode positions. Differences between the calculated and the actually recorded responses were quantified by coefficients of variation (CV). The prediction precision and response size depended on the distance between the electrode of the predicted response and the recording electrodes. After compensating this relationship using a polynomial function, the CV of the mean difference between calculated and recorded responses of the 10 subjects was 2.8 +/- 1.2%. In conclusion, the "Mini-Brainmapping" model can provide precise topographical information with minimal additional recording efforts with good reliability. The implementation of this method in a routine diagnostic setting as an "easy-to-do" procedure would allow to examine a large number of patients and normal subjects in a short time, and thus, a solid data base could be created to correlate well defined pathologies with topographical VEP changes.
Zhang, Xinming; Cen, Xi; Ravichandran, Rijuta; Hughes, Lauren A; van Benthem, Klaus
2016-06-01
The scanning electron microscope provides a platform for subnanometer resolution characterization of material morphology with excellent topographic and chemical contrast dependent on the used detectors. For imaging applications, the predominantly utilized signals are secondary electrons (SEs) and backscattered electrons (BSEs) that are emitted from the sample surface. Recent advances in detector technology beyond the traditional Everhart-Thornley geometry have enabled the simultaneous acquisition and discrimination of SE and BSE signals. This study demonstrates the imaging capabilities of a recently introduced new detector system that consists of the combination of two in-lens (I-L) detectors and one in-column (I-C) detector. Coupled with biasing the sample stage to reduce electron-specimen interaction volumes, this trinity of detector geometry allows simultaneous acquisition of signals to distinguish chemical contrast from topographical changes of the sample, including the identification of surface contamination. The I-C detector provides 4× improved topography, whereas the I-L detector closest to the sample offers excellent simultaneous chemical contrast imaging while not limiting the minimization of working distance to obtain optimal lateral resolution. Imaging capabilities and contrast mechanisms for all three detectors are discussed quantitatively in direct comparison to each other and the conventional Everhart-Thornley detector.
Relating Chemical and Topographical Modification of Materials to Macroscopic Adhesion
2011-11-14
CFRP, T800H/3900-2) and titanium alloy (Ti- 6Al - 4V ) surfaces are presented, before and after surface treatment, using a number of surface...Experimental: Titanium alloy (Ti- 6Al - 4V , an alloy consisting of 90% titanium , 6% aluminum and 4% vanadium, 0.063" thick) was purchased from...spectrum indicates a dramatic decrease in oxygen content and a concomitant increase in titanium metal alloy (Ti- 6Al - 4V ) at the surface. This
Buendía, Mateo; Cibrián, Rosa M.; Salvador, Rosario; Laguía, Manuel; Martín, Antonio; Gomar, Francisco
2006-01-01
New noninvasive techniques, amongst them structured light methods, have been applied to study rachis deformities, providing a way to evaluate external back deformities in the three planes of space. These methods are aimed at reducing the number of radiographic examinations necessary to diagnose and follow-up patients with scoliosis. By projecting a grid over the patient’s back, the corresponding software for image treatment provides a topography of the back in a color or gray scale. Visual inspection of back topographic images using this method immediately provides information about back deformity, but it is important to determine quantifier variables of the deformity to establish diagnostic criteria. In this paper, two topographic variables [deformity in the axial plane index (DAPI) and posterior trunk symmetry index (POTSI)] that quantify deformity in two different planes are analyzed. Although other authors have reported the POTSI variable, the DAPI variable proposed in this paper is innovative. The upper normality limit of these variables in a nonpathological group was determined. These two variables have different and complementary diagnostic characteristics, therefore we devised a combined diagnostic criterion: cases with normal DAPI and POTSI (DAPI ≤ 3.9% and POTSI ≤ 27.5%) were diagnosed as nonpathologic, but cases with high DAPI or POTSI were diagnosed as pathologic. When we used this criterion to analyze all the cases in the sample (56 nonpathologic and 30 with idiopathic scoliosis), we obtained 76.6% sensitivity, 91% specificity, and a positive predictive value of 82%. The interobserver, intraobserver, and interassay variability were studied by determining the variation coefficient. There was good correlation between topographic variables (DAPI and POTSI) and clinical variables (Cobb’s angle and vertebral rotation angle). PMID:16609858
NASA Astrophysics Data System (ADS)
Reiss, D.; Jaumann, R.
The topographic information provided by the Mars Orbiter Laser Altimeter has been used in combination with the Mars Observer Camera imagery to estimate the topo- graphic position of sapping pits and gully heads on the rim of Nirgal Vallis. Hence Nirgal Vallis is understood to be formed by groundwater sapping (1, 2, 3, 4) an aquifer is proposed as water supply. Gullies in the northern rim of Nirgal Vallis as discovered in Mars Observer Camera (MOC) images (5, 6) proof the existence of such an aquifer. Further evidence for sapping in Nirgal Vallis is demonstrated by short hanging tribu- taries with amphitheater-like heads. The basis of these sapping pits defines the con- tact of aquifer to aquiclude during the valley formation. The gully heads are much deeper under the local surface and the correlation of their topographic position with the valley depth indicate the subsidence of the groundwater level following the ver- tical erosion of the valley. This implies the existence of different groundwater tables over time confined by impermeable layers, whereas the gully head level is the most recent groundwater table which still may be erosional active under the conditions of increasing water pressure and ice barrier failure (5). The occurrence of more than one tilted sapping level at different topographic positions which are time-correlated with the erosional notching of the valley, either indicates different aquifers with litholog- ical aquicludes or a climate controlled subsidence of the permafrost layer acting as confining layer. References: (1) Baker et al., 1992, In: Mars, Univ. of Arizona Press. (2) Carr, 1995, JGR 100, 7479. (3) Malin and Carr, 1999, Icarus, 397, 589. (4) Jaumann and Reiss, 2002, LPSC. (5) Malin and Edgett, 2000, Science, 288, 2330. (6) Malin and Edgett, 2001, JGR 106, 23429.
NASA Astrophysics Data System (ADS)
Birch, S. P.; Hayes, A. G., Jr.; Dietrich, W. E.; Howard, A. D.; Malaska, M. J.; Moore, J. M.; Mastrogiuseppe, M.; White, O. L.; Hofgartner, J. D.; Soderblom, J. M.; Barnes, J. W.; Bristow, C.; Kirk, R. L.; Turtle, E. P.; Wood, C. A.; Stofan, E. R.
2015-12-01
Driven by an expansive atmosphere, Titan's lakes, seas and accompanied hydrological cycle hold vast amounts of information regarding the history and evolution of Titan. To understand these features, we constructed a geomorphologic map of Titan's polar terrains using a combination of the Cassini SAR, ISS, VIMS, and topographic datasets. In combining SAR, ISS, and VIMS imagery with topographic data, our geomorphic map reveals a stratigraphic sequence from which we infer formation processes. In mapping both the South and North poles with the same morphologic units, we conclude that processes that dominated the North Pole also operated in the South. Large seas, which are currently methane/ethane filled in the North and dry in the South, characterize both poles. The current day dichotomy may result only from differing initial conditions. Regions removed from the mare are dominated by smooth, undulating plains, bounded by moderately dissected uplands that are discretized into observable drainage basins. These plains contain the highest density of filled and empty lake depressions, which appear morphologically distinct from the larger mare. The thicknesses of these undulating plains are retrieved from the depths of the embedded empty depressions that are up to 800 m deep. The development of such large deposits and the surrounding hillslopes can be explained by the presence of previously vast polar oceans. Larger liquid bodies would have allowed for a sustained accumulation of soluble and insoluble sediments from Titan's lower latitudes. Two plausible evolutionary scenarios include seas that were slightly larger, followed by tectonic uplift, or oceans that were much larger, that have since lost most of their volume over time to methane photolysis. In either scenario, thick sedimentary deposits of soluble materials are required to have been emplaced prior to the formation of the small lake depressions.
NASA Astrophysics Data System (ADS)
Heldmyer, A.; Livneh, B.; Barsugli, J. J.; Dewes, C.; Ray, A. J.; Rangwala, I.; Guinotte, J. M.; Torbit, S.
2017-12-01
A major gap in research on the future of snowpack in the western United States is accounting for snow persistence in relation to topographical effects like terrain aspect and slope, which have important consequences for species that rely on snow for habitat in alpine regions, such as the wolverine (Gulo gulo). Previous work has shown a predicted loss of snow-covered area in Montana (which encompasses much of the Wolverine's extent range) ranging from 50 - 85%. However, these estimates use coarse model grid-boxes (6 - 12 km per side) that lack topographic shading, with mean elevations below the higher elevations where the wolverine tends to live. We address these informational gaps by applying a physically-based, high-resolution hydrologic model (250 m spatial resolution), the Distributed Hydrologic Soil and Vegetation Model (DHSVM), to project snow water equivalent (SWE) in two regions important to the survival of the wolverine within Glacier and Rocky Mountain National Parks. Because snowpack evolution is driven primarily by the energy balance at the surface, particularly during melt season, the inclusion of a realistic, physically-based energy balance together with topographic shading enables a clearer understanding of how projected climatic perturbations will affect future snowpack. We apply a diverse sample of future (2035-2064) climate conditions from CMIP5 General Circulation Models (GCMs) to meteorological forcing data from a baseline historical period (1998-2013) through the delta method, after validating historical simulations with SNOTEL and MODIS satellite data. Despite considerable variability across models, the results show a consistent decrease in Snow-Covered Area (SCA) across investigated future climate projections, an increased loss of snowpack during years of drought, and a fragmentation of land with deep snow available for refuge.
NASA Astrophysics Data System (ADS)
Feygels, Viktor I.; Park, Joong Yong; Wozencraft, Jennifer; Aitken, Jennifer; Macon, Christopher; Mathur, Abhinav; Payment, Andy; Ramnath, Vinod
2013-06-01
CZMIL is an integrated lidar-imagery system and software suite designed for highly automated generation of physical and environmental information products for coastal zone mapping in the framework of the US Army Corps of Engineers (USACE) National Coastal Mapping Program (NCMP). This paper presents the results of CZMIL system validation in turbid water conditions along the Gulf Coast of Mississippi and in relatively clear water conditions in Florida in late spring 2012. Results of the USACE May-October 2012 mission in Green Bay, WI and Lake Erie are presented. The system performance tests show that CZMIL successfully achieved 7-8m depth in Mississippi with Kd =0.46m-1 (Kd is the diffuse attenuation coefficient) and up to 41m in Florida when Kd=0.11m-1. Bathymetric accuracy of CZMIL was measured by comparing CZMIL depths with multi-beam sonar data from Cat Island, MS and from off the coast of Fort. Lauderdale, FL. Validation demonstrated that CZMIL meets USACE specifications (two standard deviation, 2σ, ~30 cm). To measure topographic accuracy we made direct comparisons of CZMIL elevations to GPS-surveyed ground control points and vehicle-based lidar scans of topographic surfaces. Results confirmed that CZMIL meets the USACE topographic requirements (2σ, ~15 cm). Upon completion of the Green Bay and Lake Erie mission there were 89 flights with 2231 flightlines. The general hours of aircraft engine time (which doesn't include all transit/ferry flights) was 441 hours with 173 hours of time on survey flightlines. The 4.8 billion (!) laser shots and 38.6 billion digitized waveforms covered over 1025 miles of shoreline.
Schiffer, D.M.; O'Reilly, A. M.; Phelps, G.G.; Bradner, L.A.; Halford, K.J.; Spechler, R.M.
1994-01-01
This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 1994. The map is based on water-level measurements made at approximately 1,000 wells and several springs. Data on the map were contoured using 5-foot contour intervals in most areas. The potentiometric surface of this karstic aquifer generally reflects land surface topography. Potentiometric surface highs often correspond to topographic highs, which are areas of surficial recharge to the Upper Floridan aquifer. Springs within topographic lows along with areas of more diffuse upward leakage are natural zones of discharge. Municipal, agricultural, and industrial withdrawals have lowered the potentiometric surface in some areas. The potentiometric surface ranged from 125 feet above sea level in Polk County to 32 feet below sea level in Nassau County. Water levels in May 1994 generally were 0 to 3 feet lower than those measured in May 1993. Water levels in May 1994 in northeast Florida generally were 0 to 3 feet higher than in September 1993, except in the lower St. Johns River basin, where water levels were 0 to 4 feet lower than in September 1993. In the rest of the mapped area, water levels in May 1994 generally were 0 to 4 feet lower than those measured in September 1993.
Multi-Scale Voxel Segmentation for Terrestrial Lidar Data within Marshes
NASA Astrophysics Data System (ADS)
Nguyen, C. T.; Starek, M. J.; Tissot, P.; Gibeaut, J. C.
2016-12-01
The resilience of marshes to a rising sea is dependent on their elevation response. Terrestrial laser scanning (TLS) is a detailed topographic approach for accurate, dense surface measurement with high potential for monitoring of marsh surface elevation response. The dense point cloud provides a 3D representation of the surface, which includes both terrain and non-terrain objects. Extraction of topographic information requires filtering of the data into like-groups or classes, therefore, methods must be incorporated to identify structure in the data prior to creation of an end product. A voxel representation of three-dimensional space provides quantitative visualization and analysis for pattern recognition. The objectives of this study are threefold: 1) apply a multi-scale voxel approach to effectively extract geometric features from the TLS point cloud data, 2) investigate the utility of K-means and Self Organizing Map (SOM) clustering algorithms for segmentation, and 3) utilize a variety of validity indices to measure the quality of the result. TLS data were collected at a marsh site along the central Texas Gulf Coast using a Riegl VZ 400 TLS. The site consists of both exposed and vegetated surface regions. To characterize structure of the point cloud, octree segmentation is applied to create a tree data structure of voxels containing the points. The flexibility of voxels in size and point density makes this algorithm a promising candidate to locally extract statistical and geometric features of the terrain including surface normal and curvature. The characteristics of the voxel itself such as the volume and point density are also computed and assigned to each point as are laser pulse characteristics. The features extracted from the voxelization are then used as input for clustering of the points using the K-means and SOM clustering algorithms. Optimal number of clusters are then determined based on evaluation of cluster separability criterions. Results for different combinations of the feature space vector and differences between K-means and SOM clustering will be presented. The developed method provides a novel approach for compressing TLS scene complexity in marshes, such as for vegetation biomass studies or erosion monitoring.
NASA Astrophysics Data System (ADS)
Sagy, A.; Tesei, T.; Collettini, C.
2016-12-01
Geometrical irregularity of contacting surfaces is a fundamental factor controlling friction and energy dissipation during sliding. We performed direct shear experiments on 20x20 cm limestone surfaces by applying constant normal load (40-200 kN) and sliding velocity 1-300 µm/s. Before shearing, the surfaces were polished with maximal measured amplitudes of less than 0.1 mm. After shear, elongated islands of shear zones are observed, characterized by grooves ploughed into the limestone surfaces and by layers of fine grain wear. These structures indicate that the contact areas during shear are scattered and occupy a limited portion of the entire surface area. The surfaces was scanned by a laser profilometer that measures topography using 640 parallel beams in a single run, offer up to 10 µm accuracy and working ranges of 200 mm. Two distinctive types of topographical end members are defined: rough wavy sections and smooth polished ones. The rough zones display ridges with typical amplitudes of 0.1-1 mm that cross the grooves perpendicular to the slip direction. These features are associated with penetrative brittle damage and with fragmentation. The smoother zones display reflective mirror-like surfaces bordered by topographical sharp steps at heights of 0.3-0.5 mm. These sections are localized inside the wear layer or between the wear layer and the host rock, and are not associated with observed penetrative damage. Preliminary statistical analysis suggests that the roughness of the ridges zones can be characterized using a power-low relationship between profile length and mean roughness, with relatively high values of Hurst exponents (e.g. H > 0.65) parallel to the slip direction. The polished zones, on the other hand, corresponded to lower values of Hurst exponents (e.g. H ≤ 0.6). Both structural and roughness measurements indicate that the distinctive topographic variations on the surfaces reflect competing mechanical processes which occur simultaneously during shear. The wavy ridged zone is the surface expression of penetrative cracking and fragmentation which widen the shear zone, while the smooth zones reflect localized flow and plastic deformation of the wear material. The similarity in topography of shear structures between experimental and natural faults suggests similar mechanical processes.
NASA Technical Reports Server (NTRS)
Hoffer, R. M. (Principal Investigator)
1975-01-01
The author has reported the following significant results. A data set containing SKYLAB, LANDSAT, and topographic data has been overlayed, registered, and geometrically corrected to a scale of 1:24,000. After geometrically correcting both sets of data, the SKYLAB data were overlayed on the LANDSAT data. Digital topographic data were then obtained, reformatted, and a data channel containing elevation information was then digitally overlayed onto the LANDSAT and SKYLAB spectral data. The 14,039 square kilometers involving 2,113, 776 LANDSAT pixels represents a relatively large data set available for digital analysis. The overlayed data set enables investigators to numerically analyze and compare two sources of spectral data and topographic data from any point in the scene. This capability is new and it will permit a numerical comparison of spectral response with elevation, slope, and aspect. Utilization of the spectral and topographic data together to obtain more accurate classifications of the various cover types present is feasible.
Bianchini, F; Di Vita, A; Palermo, L; Piccardi, L; Blundo, C; Guariglia, C
2014-12-01
The aim of this study was to determine whether an egocentric topographical working memory (WM) deficit is present in the early stages of Alzheimer's disease (AD) with respect to other forms of visuospatial WM. Further, we would investigate whether this deficit could be present in patients having AD without topographical disorientation (TD) signs in everyday life assessed through an informal interview to caregivers. Seven patients with AD and 20 healthy participants performed the Walking Corsi Test and the Corsi Block-Tapping Test. The former test requires memorizing a sequence of places by following a path and the latter is a well-known visuospatial memory task. Patients with AD also performed a verbal WM test to exclude the presence of general WM impairments. Preliminary results suggest that egocentric topographical WM is selectively impaired, with respect to visuospatial and verbal WM, even without TD suggesting an important role of this memory in the early stages of AD. © The Author(s) 2014.
Kyle, Daniel J T; Oikonomou, Antonios; Hill, Ernie; Bayat, Ardeshir
2015-06-01
Reproducing extracellular matrix topographical cues, such as those present within acellular dermal matrix (ADM), in synthetic implant surfaces, may augment cellular responses, independent of surface chemistry. This could lead to enhanced implant integration and performance while reducing complications. In this work, the hierarchical micro and nanoscale features of ADM were accurately and reproducibly replicated in polydimethylsiloxane (PDMS), using an innovative maskless 3D grayscale fabrication process not previously reported. Human breast derived fibroblasts (n=5) were cultured on PDMS surfaces and compared to commercially available smooth and textured silicone implant surfaces, for up to one week. Cell attachment, proliferation and cytotoxicity, in addition to immunofluorescence staining, SEM imaging, qRT-PCR and cytokine array were performed. ADM PDMS surfaces promoted cell adhesion, proliferation and survival (p=<0.05), in addition to increased focal contact formation and spread fibroblast morphology when compared to commercially available implant surfaces. PCNA, vinculin and collagen 1 were up-regulated in fibroblasts on biomimetic surfaces while IL8, TNFα, TGFβ1 and HSP60 were down-regulated (p=<0.05). A reduced inflammatory cytokine response was also observed (p=<0.05). This study represents a novel approach to the development of functionalised biomimetic prosthetic implant surfaces which were demonstrated to significantly attenuate the acute in vitro foreign body reaction to silicone. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
The Effect of Topographic Shadowing by Ice on Irradiance in the Greenland Ice Sheet Ablation Zone
NASA Astrophysics Data System (ADS)
Leidman, S. Z.; Rennermalm, A. K.; Ryan, J.; Cooper, M. G.; Smith, L. C.
2017-12-01
Accurately predicting runoff contributions to global sea level rise requires more refined surface mass balance (SMB) models of the Greenland Ice Sheet (GrIS). Topographic shadowing has shown to be important in the SMB of snow-covered regions, yet SMB models for the GrIS generally ignore how surface topography affects spatial variability of incoming solar radiation on a surface. In the ablation zone of Southwest Greenland, deeply incised supraglacial drainage features, fracturing, and large-scale bed deformation result in extensive areas of rough surface topography. This topography blocks direct radiation such that shadowed areas receive less energy for melting while other topographic features such as peaks recieve more energy. In this study, we quantify how shadowing from local topography features changes incoming solar radiation. We apply the ArcGIS Pro Solar Radiation Toolset to calculate the direct and diffuse irradiance in sunlit and shadowed areas by determining the sun's movement for every half hour increment of 2016. Multiple digital elevation models (DEMs) with spatial resolutions ranging from 0.06 to 5m were derived from fixed wing and quadcopter UAV imagery collected in summer 2016 and the ArcticDEM dataset. Our findings show that shadowing significantly decreases irradiance compared to smoothed surfaces where local topography is removed. This decrease is exponentially proportional to the DEM pixel sized with 5m DEMs only able to capture a small percentage of the effect. Applying these calculations to the ArcticDEM to cover a larger study area indicates that decreases in irradiance are nonlinearly proportional to elevation with highly crevassed areas showing a larger effect from shadowing. Even so, shading at higher elevations reduces irradiance enough to result in several centimeters snow water equivalence (SWE) per year of over-prediction of runoff in SMB models. Furthermore, analysis of solar radiation products shows that shadowing predicts albedo variability far better than a range of variables derived from UAV imagery mosaics including slope, aspect, elevation, or the distance to dark surface features. In summary, implementation of the effect of shadowing on irradiance should therefore be considered for accurate surface mass balance calculations for the Greenland ice sheet.
NASA Astrophysics Data System (ADS)
Bromley, Michael
1992-09-01
Outliers of Navajo Sandstone (Lower Jurassic Glen Canyon Group) form low paleohills east of the main body of the Formation in the Salt Anticline region of southwestern Colorado. The paleohills consist of interdune deposits which developed topographic inversion during erosion of the Jurassic J-2 unconformity owing to a tough shell of early cemented sandstones and cherty limestones. The interdune deposits accumulated over playa mudstones of the Kayenta Formation which formed in a structural low between the Uncompahgre Uplift and the Paradox Valley salt anticline. Open-framework textures indicate the early formation of quartz or chert cement in sandstone beds immediately above the impermeable playa mudstones. The mudstones enhanced the subsequent formation of wet interdune deposits keeping groundwater near the surface. Microcrystalline quartz cements and fresh feldspars suggest that groundwater was alkaline. A source of alkalinity may have been eolian dust carried from emergent Pennsylvanian evaporite intrusions upwind of the playa deposits. The high specific surface of siliceous and evaporite dusts combined with shallow groundwater and high evaporation rates resulted in the rapid formation of quartzitic silcrete crusts above the playa mudstone aquacludes. As these early silcretes were buried, the impermeable mudstone foundations beneath them continued to serve as aquacludes. The inclined potentiometric surface of perched water tables above the isolated aquacludes intersected the land surface at progressively higher levels as the mudstone lenses were buried. Groundwater moving laterally from above the aquacludes carried dissolved material towards the inclined water tables at their margins. This mobilized material was redeposited as early cement where the capillary fringe intersected the land surface. As the land surface aggraded vertically, the zone of cement formation migrated laterally in response of a change of the relative positions of the land surface and an inclined perched water table. The final products of this process were topographic remnants of Navajo Sandstone with a resistant rind of cemented material enclosing a core of leached, compacted and friable sandstones. Erosion of the J-2 unconformity left the cemented rind in relief while removing all material around it. The resulting hills survived the onlap of the Middle Jurassic Entrada Formation, leaving considerable relief beneath the unconformity.
Topographic enhancement of tidal motion in the western Barents Sea
NASA Technical Reports Server (NTRS)
Kowalik, Z.; Proshutinsky, A. YU.
1995-01-01
A high-resolution numerical lattice is used to study a topographically trapped motion around islands and shallow banks of the western Barents Sea caused both by the semidiurnal and diurnal tidal waves. Observations and model computations in the vicinity of Bear Island show well-developed trapped motion with distinctive tidal oscillatory motion. Numerical investigations demonstrate that one source of the trapped motion is tidal current rectification over shallow topgraphy. Tidal motion supports residual currents of the order of 8 cm/s around Bear Island and shallow Spitsbergenbanken. The structures of enhanced tidal currents for the semidiurnal components are generated in the shallow areas due to topographic amplification. In the diurnal band of oscillations the maximum current is associated with the shelf wave occurrence. Residual currents due to diurnal tides occur at both the shallow areas and the shelf slope in regions of maximum topographic gradients. Surface manifestation of the diurnal current enhancement is the local maximum of tidal amplitude at the shelf break of the order of 5 to 10 cm. Tidal current enhancement and tidally generated residual currents in the Bear Island and Spitsbergenabanken regions cause an increased generation of ice leads, ridges and, trapped motion of the ice floes.
NASA Astrophysics Data System (ADS)
Mackay, D. Scott; Band, Lawrence E.
1998-04-01
This paper presents a new method for extracting flow directions, contributing (upslope) areas, and nested catchments from digital elevation models in lake-dominated areas. Existing tools for acquiring descriptive variables of the topography, such as surface flow directions and contributing areas, were developed for moderate to steep topography. These tools are typically difficult to apply in gentle topography owing to limitations in explicitly handling lakes and other flat areas. This paper addresses the problem of accurately representing general topographic features by first identifying distinguishing features, such as lakes, in gentle topography areas and then using these features to guide the search for topographic flow directions and catchment marking. Lakes are explicitly represented in the topology of a watershed for use in water routing. Nonlake flat features help guide the search for topographic flow directions in areas of low signal to noise. This combined feature-based and grid-based search for topographic features yields improved contributing areas and watershed boundaries where there are lakes and other flat areas. Lakes are easily classified from remotely sensed imagery, which makes automated representation of lakes as subsystems within a watershed system tractable with widely available data sets.
Study on Site Conditions Based on Topographic Slope
NASA Astrophysics Data System (ADS)
Wu, X.; Wang, X.; Yuan, X.; Chen, M.; Dou, A.
2018-04-01
The travel-time averaged shear-wave velocity to a depth of 30m (Vs30) below the Earth's surface is widely used to classify sites in many building codes. Vs30 is also used to estimate site classification in recent ground-motion prediction equations (GMPEs), and the distribution of Vs30 has been mapped in a region or country. An alternative method has recently been proposed for evaluating global seismic site conditions or Vs30, from the SRTM (Shuttle Radar Topography Mission) DEMs (digital elevation models). The basic premise of the method is that the topographic slope can be used as a reliable proxy for Vs30 in the absence of geologically and geotechnically based site-condition maps through correlations between Vs30 measurements and topographic gradient. Here, we use different resolutions (3 arcsec, 30 arcsec) DEM data to get Vs30 data separately, analyze and compare the difference of Vs30 data and site conditions obtained from different resolution DEM data. Shandong Province in eastern China and Sichuan Province in Western China are studied respectively. It is found that the higher resolution data is better at defining spatial topographic features than the 30c data, but less improvement in its correlation with Vs30.
NASA Astrophysics Data System (ADS)
Ceres, M.; Heselton, L. R., III
1981-11-01
This manual describes the computer programs for the FIREFINDER Digital Topographic Data Verification-Library-Dubbing System (FFDTDVLDS), and will assist in the maintenance of these programs. The manual contains detailed flow diagrams and associated descriptions for each computer program routine and subroutine. Complete computer program listings are also included. This information should be used when changes are made in the computer programs. The operating system has been designed to minimize operator intervention.
Topography-Dependent Motion Compensation: Application to UAVSAR Data
NASA Technical Reports Server (NTRS)
Jones, Cathleen E.; Hensley, Scott; Michel, Thierry
2009-01-01
The UAVSAR L-band synthetic aperture radar system has been designed for repeat track interferometry in support of Earth science applications that require high-precision measurements of small surface deformations over timescales from hours to years. Conventional motion compensation algorithms, which are based upon assumptions of a narrow beam and flat terrain, yield unacceptably large errors in areas with even moderate topographic relief, i.e., in most areas of interest. This often limits the ability to achieve sub-centimeter surface change detection over significant portions of an acquired scene. To reduce this source of error in the interferometric phase, we have implemented an advanced motion compensation algorithm that corrects for the scene topography and radar beam width. Here we discuss the algorithm used, its implementation in the UAVSAR data processor, and the improvement in interferometric phase and correlation achieved in areas with significant topographic relief.
Plans for a sensitivity analysis of bridge-scour computations
Dunn, David D.; Smith, Peter N.
1993-01-01
Plans for an analysis of the sensitivity of Level 2 bridge-scour computations are described. Cross-section data from 15 bridge sites in Texas are modified to reflect four levels of field effort ranging from no field surveys to complete surveys. Data from United States Geological Survey (USGS) topographic maps will be used to supplement incomplete field surveys. The cross sections are used to compute the water-surface profile through each bridge for several T-year recurrence-interval design discharges. The effect of determining the downstream energy grade-line slope from topographic maps is investigated by systematically varying the starting slope of each profile. The water-surface profile analyses are then used to compute potential scour resulting from each of the design discharges. The planned results will be presented in the form of exceedance-probability versus scour-depth plots with the maximum and minimum scour depths at each T-year discharge presented as error bars.
Lee, K.G.
2013-01-01
The U.S. Geological Survey, in cooperation with the Rockdale County Department of Water Resources, conducted a bathymetric and topographic survey of Randy Poynter Lake in northern Georgia in 2012. The Randy Poynter Lake watershed drains surface area from Rockdale, Gwinnett, and Walton Counties. The reservoir serves as the water supply for the Conyers-Rockdale Big Haynes Impoundment Authority. The Randy Poynter reservoir was surveyed to prepare a current bathymetric map and determine storage capacities at specified water-surface elevations. Topographic and bathymetric data were collected using a marine-based mobile mapping unit to estimate storage capacity. The marine-based mobile mapping unit operates with several components: multibeam echosounder, singlebeam echosounder, light detection and ranging system, navigation and motion-sensing system, and data acquisition computer. All data were processed and combined to develop a triangulated irregular network, a reservoir capacity table, and a bathymetric contour map.
Mechanics of fold-and-thrust belts and accretionary wedges Cohesive Coulomb theory
NASA Technical Reports Server (NTRS)
Dahlen, F. A.; Suppe, J.; Davis, D.
1984-01-01
A self-consistent theory for the mechanics of thin-skinned accretionary Coulomb wedges is developed and applied to the active fold-and-thrust belt of western Taiwan. The state of stress everywhere within a critical wedge is determined by solving the static equilibrium equations subject to the appropriate boundary conditions. The influence of wedge cohesion, which gives rise to a concave curvature of the critical topographic surface and affects the orientation of the principal stresses and Coulomb fracture within the wedge, is considered. The shape of the topographic surface and the angles at which thrust faults step up from the basal decollement in the Taiwanese belt is analyzed taking into account the extensive structural and fluid-pressure data available there. It is concluded that the gross geometry and structure of the Taiwan wedge are consistent with normal laboratory frictional and fracture strengths of sedimentary rocks.
[Anatomical rationale for lingual nerve injury prevention during mandibular block].
Semkin, V A; Dydikin, S S; Kuzin, A V; Sogacheva, V V
2015-01-01
The topographic and anatomical study of lingual nerve structural features was done. It was revealed that during mandibular anesthesia possible lingual nerve injury can occur if puncture needle is lower than 1 cm. of molars occlusal surface level. The position of the lingual nerve varies withmandible movements. At the maximum open mouth lingual nerve is not mobile and is pressed against the inner surface of the mandibular ramus by the medial pterygoid muscle and the temporal muscle tendon. When closing the mouth to 1.25±0.2 cmfrom the physiological maximum, lingual nerve is displaced posteriorly from the internal oblique line of the mandible and gets mobile. On the basis of topographic and anatomic features of the lingual nervestructure the authors recommend the re-do of inferior alveolar nerve block, a semi-closed mouth position or the use the "high block techniques" (Torus anesthesia, Gow-Gates, Vazirani-Akinozi).
NASA Astrophysics Data System (ADS)
Grombein, Thomas; Seitz, Kurt; Heck, Bernhard
2017-03-01
National height reference systems have conventionally been linked to the local mean sea level, observed at individual tide gauges. Due to variations in the sea surface topography, the reference levels of these systems are inconsistent, causing height datum offsets of up to ±1-2 m. For the unification of height systems, a satellite-based method is presented that utilizes global geopotential models (GGMs) derived from ESA's satellite mission Gravity field and steady-state Ocean Circulation Explorer (GOCE). In this context, height datum offsets are estimated within a least squares adjustment by comparing the GGM information with measured GNSS/leveling data. While the GNSS/leveling data comprises the full spectral information, GOCE GGMs are restricted to long wavelengths according to the maximum degree of their spherical harmonic representation. To provide accurate height datum offsets, it is indispensable to account for the remaining signal above this maximum degree, known as the omission error of the GGM. Therefore, a combination of the GOCE information with the high-resolution Earth Gravitational Model 2008 (EGM2008) is performed. The main contribution of this paper is to analyze the benefit, when high-frequency topography-implied gravity signals are additionally used to reduce the remaining omission error of EGM2008. In terms of a spectral extension, a new method is proposed that does not rely on an assumed spectral consistency of topographic heights and implied gravity as is the case for the residual terrain modeling (RTM) technique. In the first step of this new approach, gravity forward modeling based on tesseroid mass bodies is performed according to the Rock-Water-Ice (RWI) approach. In a second step, the resulting full spectral RWI-based topographic potential values are reduced by the effect of the topographic gravity field model RWI_TOPO_2015, thus, removing the long to medium wavelengths. By using the latest GOCE GGMs, the impact of topography-implied gravity signals on the estimation of height datum offsets is analyzed in detail for representative GNSS/leveling data sets in Germany, Austria, and Brazil. Besides considerable changes in the estimated offset of up to 3 cm, the conducted analyses show that significant improvements of 30-40% can be achieved in terms of a reduced standard deviation and range of the least squares adjusted residuals.
Rocky Mountain Research Station USDA Forest Service
2004-01-01
Appropriate types of thinning and surface fuel treatments are clearly useful in reducing surface and crown fire hazards under a wide range of fuels and topographic situations. This paper provides well-established scientific principles and simulation tools that can be used to adjust fuel treatments to attain specific risk levels.
Marek K. Jakubowksi; Qinghua Guo; Brandon Collins; Scott Stephens; Maggi Kelly
2013-01-01
We compared the ability of several classification and regression algorithms to predict forest stand structure metrics and standard surface fuel models. Our study area spans a dense, topographically complex Sierra Nevada mixed-conifer forest. We used clustering, regression trees, and support vector machine algorithms to analyze high density (average 9 pulses/m
NASA Astrophysics Data System (ADS)
Praveen, K. M.; Thomas, Sabu; Grohens, Yves; Mozetič, Miran; Junkar, Ita; Primc, Gregor; Gorjanc, Marija
2016-04-01
The development of lignocellulosic natural-fibre-reinforced polymers composites are constrained by two limitations: the upper temperature at which the fibre can be processed and the significant differences between the surface energy of the fibre and the polymer matrix. Since the fibres and matrices are chemically different, strong adhesion at their interface is needed for the effective transfer of stress and bond distribution throughout the interface. The present study investigated the plasma induced effects on the surface properties of natural coir fibres. Weakly ionized oxygen plasma was created in two different discharge chambers by an inductively coupled radiofrequency (RF) discharge. The water absorption studies showed an increase of water sorption from 39% to 100%. The morphological study using scanning electron microscopy (SEM) analysis also confirmed the surface changes which were observed after the plasma treatment. The topographic measurements and phase imaging done using atomic force microscopy (AFM) indicated difference in topographic features and etching of coir wall, which points to the removal of the first layer of coir fibre. X-ray photoelectron spectroscopy (XPS) analysis revealed that the oxygen content measured for samples treated at 50 Pa increased from initial 18% to about 32%.
Powell, Robert E.
2001-01-01
This data set maps and describes the geology of the Conejo Well 7.5 minute quadrangle, Riverside County, southern California. The quadrangle, situated in Joshua Tree National Park in the eastern Transverse Ranges physiographic and structural province, encompasses part of the northern Eagle Mountains and part of the south flank of Pinto Basin. It is underlain by a basement terrane comprising Proterozoic metamorphic rocks, Mesozoic plutonic rocks, and Mesozoic and Mesozoic or Cenozoic hypabyssal dikes. The basement terrane is capped by a widespread Tertiary erosion surface preserved in remnants in the Eagle Mountains and buried beneath Cenozoic deposits in Pinto Basin. Locally, Miocene basalt overlies the erosion surface. A sequence of at least three Quaternary pediments is planed into the north piedmont of the Eagle Mountains, each in turn overlain by successively younger residual and alluvial deposits. The Tertiary erosion surface is deformed and broken by north-northwest-trending, high-angle, dip-slip faults in the Eagle Mountains and an east-west trending system of high-angle dip- and left-slip faults. In and adjacent to the Conejo Well quadrangle, faults of the northwest-trending set displace Miocene sedimentary rocks and basalt deposited on the Tertiary erosion surface and Pliocene and (or) Pleistocene deposits that accumulated on the oldest pediment. Faults of this system appear to be overlain by Pleistocene deposits that accumulated on younger pediments. East-west trending faults are younger than and perhaps in part coeval with faults of the northwest-trending set. The Conejo Well database was created using ARCVIEW and ARC/INFO, which are geographical information system (GIS) software products of Envronmental Systems Research Institute (ESRI). The database consists of the following items: (1) a map coverage showing faults and geologic contacts and units, (2) a separate coverage showing dikes, (3) a coverage showing structural data, (4) a point coverage containing line ornamentation, and (5) a scanned topographic base at a scale of 1:24,000. The coverages include attribute tables for geologic units (polygons and regions), contacts (arcs), and site-specific data (points). The database, accompanied by a pamphlet file and this metadata file, also includes the following graphic and text products: (1) A portable document file (.pdf) containing a navigable graphic of the geologic map on a 1:24,000 topographic base. The map is accompanied by a marginal explanation consisting of a Description of Map and Database Units (DMU), a Correlation of Map and Database Units (CMU), and a key to point-and line-symbols. (2) Separate .pdf files of the DMU and CMU, individually. (3) A PostScript graphic-file containing the geologic map on a 1:24,000 topographic base accompanied by the marginal explanation. (4) A pamphlet that describes the database and how to access it. Within the database, geologic contacts , faults, and dikes are represented as lines (arcs), geologic units as polygons and regions, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum and link it to other tables (.rel) that provide more detailed geologic information.
3D topography of biologic tissue by multiview imaging and structured light illumination
NASA Astrophysics Data System (ADS)
Liu, Peng; Zhang, Shiwu; Xu, Ronald
2014-02-01
Obtaining three-dimensional (3D) information of biologic tissue is important in many medical applications. This paper presents two methods for reconstructing 3D topography of biologic tissue: multiview imaging and structured light illumination. For each method, the working principle is introduced, followed by experimental validation on a diabetic foot model. To compare the performance characteristics of these two imaging methods, a coordinate measuring machine (CMM) is used as a standard control. The wound surface topography of the diabetic foot model is measured by multiview imaging and structured light illumination methods respectively and compared with the CMM measurements. The comparison results show that the structured light illumination method is a promising technique for 3D topographic imaging of biologic tissue.
Comparison of physical and semi-empirical hydraulic models for flood inundation mapping
NASA Astrophysics Data System (ADS)
Tavakoly, A. A.; Afshari, S.; Omranian, E.; Feng, D.; Rajib, A.; Snow, A.; Cohen, S.; Merwade, V.; Fekete, B. M.; Sharif, H. O.; Beighley, E.
2016-12-01
Various hydraulic/GIS-based tools can be used for illustrating spatial extent of flooding for first-responders, policy makers and the general public. The objective of this study is to compare four flood inundation modeling tools: HEC-RAS-2D, Gridded Surface Subsurface Hydrologic Analysis (GSSHA), AutoRoute and Height Above the Nearest Drainage (HAND). There is a trade-off among accuracy, workability and computational demand in detailed, physics-based flood inundation models (e.g. HEC-RAS-2D and GSSHA) in contrast with semi-empirical, topography-based, computationally less expensive approaches (e.g. AutoRoute and HAND). The motivation for this study is to evaluate this trade-off and offer guidance to potential large-scale application in an operational prediction system. The models were assessed and contrasted via comparability analysis (e.g. overlapping statistics) by using three case studies in the states of Alabama, Texas, and West Virginia. The sensitivity and accuracy of physical and semi-eimpirical models in producing inundation extent were evaluated for the following attributes: geophysical characteristics (e.g. high topographic variability vs. flat natural terrain, urbanized vs. rural zones, effect of surface roughness paratermer value), influence of hydraulic structures such as dams and levees compared to unobstructed flow condition, accuracy in large vs. small study domain, effect of spatial resolution in topographic data (e.g. 10m National Elevation Dataset vs. 0.3m LiDAR). Preliminary results suggest that semi-empericial models tend to underestimate in a flat, urbanized area with controlled/managed river channel around 40% of the inundation extent compared to the physical models, regardless of topographic resolution. However, in places where there are topographic undulations, semi-empericial models attain relatively higher level of accuracy than they do in flat non-urbanized terrain.
Lithography-Free Fabrication of Reconfigurable Substrate Topography For Contact Guidance
Pholpabu, Pitirat; Kustra, Stephen; Wu, Haosheng; Balasubramanian, Aditya; Bettinger, Christopher J.
2014-01-01
Mammalian cells detect and respond to topographical cues presented in natural and synthetic biomaterials both in vivo and in vitro. Micro- and nano-structures influence the adhesion, morphology, proliferation, migration, and differentiation of many phenotypes. Although the mechanisms that underpin cell-topography interactions remain elusive, synthetic substrates with well-defined micro- and nano-structures are important tools to elucidate the origin of these responses. Substrates with reconfigurable topography are desirable because programmable cues can be harmonized with dynamic cellular responses. Here we present a lithography-free fabrication technique that can reversibly present topographical cues using an actuation mechanism that minimizes the confounding effects of applied stimuli. This method utilizes strain-induced buckling instabilities in bi-layer substrate materials with rigid uniform silicon oxide membranes that are thermally deposited on elastomeric substrates. The resulting surfaces are capable of reversible of substrates between three distinct states: flat substrates (A = 1.53 ± 0.55 nm, Rms = 0.317 ± 0.048 nm); parallel wavy grating arrays (A|| = 483.6 ± 7.8 nm and λ|| = 4.78 ± 0.16 μm); perpendicular wavy grating arrays (A⊥ = 429.3 ± 5.8 nm; λ⊥ = 4.95 ± 0.36 μm). The cytoskeleton dynamics of 3T3 fibroblasts in response to these surfaces was measured using optical microscopy. Fibroblasts cultured on dynamic substrates that are switched from flat to topographic features (FLAT-WAVY) exhibit a robust and rapid change in gross morphology as measured by a reduction in circularity from 0.30 ± 0.13 to 0.15 ± 0.08 after 5 min. Conversely, dynamic substrate sequences of FLAT-WAVY-FLAT do not significantly alter the gross steady-state morphology. Taken together, substrates that present topographic structures reversibly can elucidate dynamic aspects of cell-topography interactions. PMID:25468368
How does landscape structure influence catchment transit time across different geomorphic provinces?
Tetzlaff, D.; Seibert, J.; McGuire, K.J.; Laudon, H.; Burns, Douglas A.; Dunn, S.M.; Soulsby, C.
2009-01-01
Despite an increasing number of empirical investigations of catchment transit times (TTs), virtually all are based on individual catchments and there are few attempts to synthesize understanding across different geographical regions. Uniquely, this paper examines data from 55 catchments in five geomorphic provinces in northern temperate regions (Scotland, United States of America and Sweden). The objective is to understand how the role of catchment topography as a control on the TTs differs in contrasting geographical settings. Catchment inverse transit time proxies (ITTPs) were inferred by a simple metric of isotopic tracer damping, using the ratio of standard deviation of ??18O in streamwater to the standard deviation of ??18O in precipitation. Quantitative landscape analysis was undertaken to characterize the catchments according to hydrologically relevant topographic indices that could be readily determined from a digital terrain model (DTM). The nature of topographic controls on transit times varied markedly in different geomorphic regions. In steeper montane regions, there are stronger gravitational influences on hydraulic gradients and TTs tend to be lower in the steepest catchments. In provinces where terrain is more subdued, direct topographic control weakened; in particular, where flatter areas with less permeable soils give rise to overland flow and lower TTs. The steeper slopes within this flatter terrain appear to have a greater coverage of freely draining soils, which increase sub-surface flow, therefore increasing TTs. Quantitative landscape analysis proved a useful tool for intercatchment comparison. However, the critical influence of sub-surface permeability and connectivity may limit the transferability of predictive tools of hydrological function based on topographic parameters alone. Copyright ?? 2009 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Nasta, Paolo; Penna, Daniele; Brocca, Luca; Zuecco, Giulia; Romano, Nunzio
2018-02-01
Indirect measurements of field-scale (hectometer grid-size) spatial-average near-surface soil moisture are becoming increasingly available by exploiting new-generation ground-based and satellite sensors. Nonetheless, modeling applications for water resources management require knowledge of plot-scale (1-5 m grid-size) soil moisture by using measurements through spatially-distributed sensor network systems. Since efforts to fulfill such requirements are not always possible due to time and budget constraints, alternative approaches are desirable. In this study, we explore the feasibility of determining spatial-average soil moisture and soil moisture patterns given the knowledge of long-term records of climate forcing data and topographic attributes. A downscaling approach is proposed that couples two different models: the Eco-Hydrological Bucket and Equilibrium Moisture from Topography. This approach helps identify the relative importance of two compound topographic indexes in explaining the spatial variation of soil moisture patterns, indicating valley- and hillslope-dependence controlled by lateral flow and radiative processes, respectively. The integrated model also detects temporal instability if the dominant type of topographic dependence changes with spatial-average soil moisture. Model application was carried out at three sites in different parts of Italy, each characterized by different environmental conditions. Prior calibration was performed by using sparse and sporadic soil moisture values measured by portable time domain reflectometry devices. Cross-site comparisons offer different interpretations in the explained spatial variation of soil moisture patterns, with time-invariant valley-dependence (site in northern Italy) and hillslope-dependence (site in southern Italy). The sources of soil moisture spatial variation at the site in central Italy are time-variant within the year and the seasonal change of topographic dependence can be conveniently correlated to a climate indicator such as the aridity index.
NASA Astrophysics Data System (ADS)
Myers, S. C.; Ford, S. R.; Mellors, R. J.; Ichinose, G.
2017-12-01
We use constraints on the location of the January 6, 2016 DPRK announced nuclear test (2016_01) and differential travel times for Pn, Pg, and teleseismic P-waves to estimate the absolute locations of the 6 announced DPRK nuclear tests, as well as other nearby events. Absolute location constraints are based on the fit of commercial InSAR-derived ground displacement and predictions of elastic displacement from an isotropic source including topographic effects. Results show that the announced tests in January and September of 2016 are under the crest of highest local topography (Mt. Mantap), while the 2009 and 2013 events are south of the topographic crest at a similar contour in local topography. The first announced test in 2006 was located near the crest of a separate topographic high approximately 2.75 km east of the 2016_01 test. The September 3, 2017 event is approximately between the two 2016 tests, under the crest of the mountain ridge. Constraints from seismic data put the events within 1 km of the surface and depths may be inferred, with caution, by differencing the elevation of tunnel entrances and the topographic surface and accounting for the rise in a tunnel elevation from the entrance to facilitate drainage. Depths for the 2006_10, 2009_05, 2013_02, 2016_01, 2016_09, and 2017_09 tests are estimated to be 500 m, 530 m, 530 m, 740 m, 750 m, and 750 m, respectively. Other nearby events are considerably lower in magnitude, resulting in location estimates that are not as well constrained as the announced nuclear tests. Analysis of all events provides a bulletin of events that may occur in the future. Prepared by LLNL under Contract DE-AC52-07NA27344.
Crater studies: Part A: lunar crater morphometry
Pike, Richard J.
1973-01-01
Morphometry, the quantitative study of shape, complements the visual observation and photointerpretation in analyzing the most outstanding landforms of the Moon, its craters (refs. 32-1 and 32-2). All three of these interpretative tools, which were developed throughout the long history of telescopic lunar study preceding the Apollo Program, will continue to be applicable to crater analysis until detailed field work becomes possible. Although no large (>17.5 km diameter) craters were examined in situ on any of the Apollo landings, the photographs acquired from the command modules will markedly strengthen results of less direct investigations of the craters. For morphometry, the most useful materials are the orbital metric and panoramic photographs from the final three Apollo missions. These photographs permit preparation of contour maps, topographic profiles, and other numerical data that accurately portray for the first time the surface geometry of lunar craters of all sizes. Interpretations of craters no longer need be compromised by inadequate topographic data. In the pre-Apollo era, hypotheses for the genesis of lunar craters usually were constructed without any numerical descriptive data. Such speculations will have little credibility unless supported by accurate, quantitative data, especially those generated from Apollo orbital photographs. This paper presents a general study of the surface geometry of 25 far-side craters and a more detailed study of rim-crest evenness for 15 near-side and far-side craters. Analysis of this preliminary sample of Apollo 15 and 17 data, which includes craters between 1.5 and 275 km in diameter, suggests that most genetic interpretations of craters made from pre-Apollo topographic measurements may require no drastic revision. All measurements were made from topographic profiles generated on a stereoplotter at the Photogrammetric Unit of the U.S. Geological Survey, Center of Astrogeology, Flagstaff, Arizona.
NASA Astrophysics Data System (ADS)
Anderson, S. W.; Finnegan, D. C.; Byrnes, J. M.; Nicoll, K.
2007-12-01
Although the extrusion of pahoehoe lava flows is one of the most dominant planetary surface-forming processes in the solar system, emplacement models remain controversial, and affect our ability to understand the implications of continental effusive eruptions. To study the detailed growth patterns of an actively inflating hummocky pahoehoe field in Hawaii, we used a Riegl LMSZ420i ground-based light detection and ranging (LiDAR) system that captures topographic data at unprecedented resolutions and speed, and co-registers the x, y and z coordinates with the RGB values of true color high-resolution (12 megapixel) photographs from an externally-mounted camera. Over a 3-day period (February 21-23, 2007) we acquired 4 surveys of surface topography over a ~200 x 200 m area within the Pu'u O'o flow field that contained actively inflating pahoehoe flows emplaced over older, hummocky pahoehoe lavas. Total scan times ranged from 6 to 19 minutes, with topographic points collected at a 0.05-0.08 degree spacing. Each scan obtained between 1.6 and 5.1 million x, y, and z data points. We acquired topographic data at a rate of 12,000 points/second, permitting repeatable digital elevation model (DEM) generation with 5mm accuracy. We differenced successive DEMs generated from our topographic data to determine the magnitude and patterns of growth. We documented uneven rates of inflation over the area, ranging from less than 0.5 m to 3.9 m, with several tumuli forming over the 3-day time period. These results are the first detailed measurements that help us constrain the movement of lava between upper and lower flow crusts.
Multisensor analysis of hydrologic features with emphasis on the Seasat SAR
NASA Technical Reports Server (NTRS)
Foster, J. L.; Hall, D. K.
1981-01-01
Synthetic aperture radar (SAR) imagery of the Wind River Range area in Wyoming is compared with visible and near-infrared imagery of the same area. Data from the Seasat L-Band SAR and an aircraft X-Band SAR are compared with Landsat Return Beam Vidicon (RBV) visible data and near-infrared aerial photography and topographic maps of the same area. It is noted that visible and near-infrared data provide more information than the SAR data when conditions are the most favorable. The SAR penetrates clouds and snow, however, and data can be acquired day or night. Drainage density detail is good on SAR imagery because individual streams show up well owing to riparian vegetation; this causes higher radar reflections which result from the 'rough' surface which vegetation creates. In the winter image, the X-Band radar data show high returns because of cracks on the lake ice surfaces. High returns can also be seen in the L-Band SAR imagery of the lakes due to ripples on the surface induced by wind. It is concluded that the use of multispectral data would optimize analysis of hydrologic features.
Atmospheric form drag over Arctic sea ice derived from high-resolution IceBridge elevation data
NASA Astrophysics Data System (ADS)
Petty, A.; Tsamados, M.; Kurtz, N. T.
2016-02-01
Here we present a detailed analysis of atmospheric form drag over Arctic sea ice, using high resolution, three-dimensional surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter. Surface features in the sea ice cover are detected using a novel feature-picking algorithm. We derive information regarding the height, spacing and orientation of unique surface features from 2009-2014 across both first-year and multiyear ice regimes. The topography results are used to explicitly calculate atmospheric form drag coefficients; utilizing existing form drag parameterizations. The atmospheric form drag coefficients show strong regional variability, mainly due to variability in ice type/age. The transition from a perennial to a seasonal ice cover therefore suggest a decrease in the atmospheric form drag coefficients over Arctic sea ice in recent decades. These results are also being used to calibrate a recent form drag parameterization scheme included in the sea ice model CICE, to improve the representation of form drag over Arctic sea ice in global climate models.
Das, Arundhati; Nagendra, Harini; Anand, Madhur; Bunyan, Milind
2015-01-01
The objective of this analysis was to identify topographic and bioclimatic factors that predict occurrence of forest and grassland patches within tropical montane forest-grassland mosaics. We further investigated whether interactions between topography and bioclimate are important in determining vegetation pattern, and assessed the role of spatial scale in determining the relative importance of specific topographic features. Finally, we assessed the role of elevation in determining the relative importance of diverse explanatory factors. The study area consists of the central and southern regions of the Western Ghats of Southern India, a global biodiversity hotspot. Random forests were used to assess prediction accuracy and predictor importance. Conditional inference classification trees were used to interpret predictor effects and examine potential interactions between predictors. GLMs were used to confirm predictor importance and assess the strength of interaction terms. Overall, topographic and bioclimatic predictors classified vegetation pattern with approximately 70% accuracy. Prediction accuracy was higher for grassland than forest, and for mosaics at higher elevations. Elevation was the most important predictor, with mosaics above 2000m dominated largely by grassland. Relative topographic position measured at a local scale (within a 300m neighbourhood) was another important predictor of vegetation pattern. In high elevation mosaics, northness and concave land surface curvature were important predictors of forest occurrence. Important bioclimatic predictors were: dry quarter precipitation, annual temperature range and the interaction between the two. The results indicate complex interactions between topography and bioclimate and among topographic variables. Elevation and topography have a strong influence on vegetation pattern in these mosaics. There were marked regional differences in the roles of various topographic and bioclimatic predictors across the range of study mosaics, indicating that the same pattern of grass and forest seems to be generated by different sets of mechanisms across the region, depending on spatial scale and elevation. PMID:26121353
Das, Arundhati; Nagendra, Harini; Anand, Madhur; Bunyan, Milind
2015-01-01
The objective of this analysis was to identify topographic and bioclimatic factors that predict occurrence of forest and grassland patches within tropical montane forest-grassland mosaics. We further investigated whether interactions between topography and bioclimate are important in determining vegetation pattern, and assessed the role of spatial scale in determining the relative importance of specific topographic features. Finally, we assessed the role of elevation in determining the relative importance of diverse explanatory factors. The study area consists of the central and southern regions of the Western Ghats of Southern India, a global biodiversity hotspot. Random forests were used to assess prediction accuracy and predictor importance. Conditional inference classification trees were used to interpret predictor effects and examine potential interactions between predictors. GLMs were used to confirm predictor importance and assess the strength of interaction terms. Overall, topographic and bioclimatic predictors classified vegetation pattern with approximately 70% accuracy. Prediction accuracy was higher for grassland than forest, and for mosaics at higher elevations. Elevation was the most important predictor, with mosaics above 2000 m dominated largely by grassland. Relative topographic position measured at a local scale (within a 300 m neighbourhood) was another important predictor of vegetation pattern. In high elevation mosaics, northness and concave land surface curvature were important predictors of forest occurrence. Important bioclimatic predictors were: dry quarter precipitation, annual temperature range and the interaction between the two. The results indicate complex interactions between topography and bioclimate and among topographic variables. Elevation and topography have a strong influence on vegetation pattern in these mosaics. There were marked regional differences in the roles of various topographic and bioclimatic predictors across the range of study mosaics, indicating that the same pattern of grass and forest seems to be generated by different sets of mechanisms across the region, depending on spatial scale and elevation.
Surface charge mapping with a nanopipette.
McKelvey, Kim; Kinnear, Sophie L; Perry, David; Momotenko, Dmitry; Unwin, Patrick R
2014-10-01
Nanopipettes are emerging as simple but powerful tools for probing chemistry at the nanoscale. In this contribution the use of nanopipettes for simultaneous surface charge mapping and topographical imaging is demonstrated, using a scanning ion conductance microscopy (SICM) format. When a nanopipette is positioned close to a surface in electrolyte solution, the direct ion current (DC), driven by an applied bias between a quasi-reference counter electrode (QRCE) in the nanopipette and a second QRCE in the bulk solution, is sensitive to surface charge. The charge sensitivity arises because the diffuse double layers at the nanopipette and the surface interact, creating a perm-selective region which becomes increasingly significant at low ionic strengths (10 mM 1:1 aqueous electrolyte herein). This leads to a polarity-dependent ion current and surface-induced rectification as the bias is varied. Using distance-modulated SICM, which induces an alternating ion current component (AC) by periodically modulating the distance between the nanopipette and the surface, the effect of surface charge on the DC and AC is explored and rationalized. The impact of surface charge on the AC phase (with respect to the driving sinusoidal signal) is highlighted in particular; this quantity shows a shift that is highly sensitive to interfacial charge and provides the basis for visualizing charge simultaneously with topography. The studies herein highlight the use of nanopipettes for functional imaging with applications from cell biology to materials characterization where understanding surface charge is of key importance. They also provide a framework for the design of SICM experiments, which may be convoluted by topographical and surface charge effects, especially for small nanopipettes.
Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces
NASA Astrophysics Data System (ADS)
Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo
2016-02-01
Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.
Fabrication of cell container arrays with overlaid surface topographies.
Truckenmüller, Roman; Giselbrecht, Stefan; Escalante-Marun, Maryana; Groenendijk, Max; Papenburg, Bernke; Rivron, Nicolas; Unadkat, Hemant; Saile, Volker; Subramaniam, Vinod; van den Berg, Albert; van Blitterswijk, Clemens; Wessling, Matthias; de Boer, Jan; Stamatialis, Dimitrios
2012-02-01
This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a micro- or nanoscale. For microthermoforming, we apply a new process on the basis of temporary back moulding of polymer films and use the novel concept of a perforated-sheet-like mould. Thermal micro- or nanoimprinting is applied for prepatterning. The novel cell container arrays are fabricated from polylactic acid (PLA) films. The thin-walled microcontainer structures have the shape of a spherical calotte merging into a hexagonal shape at their upper circumferential edges. In the arrays, the cell containers are arranged densely packed in honeycomb fashion. The inner surfaces of the highly curved container walls are provided with various topographical micro- and nanopatterns. For a first validation of the microcontainer arrays as in vitro cell culture substrates, C2C12 mouse premyoblasts are cultured in containers with microgrooved surfaces and shown to align along the grooves in the three-dimensional film substrates. In future stem-cell-biological and tissue engineering applications, microcontainers fabricated using the proposed technology may act as geometrically defined artificial microenvironments or niches.
Topographic and biomechanical evaluation of cornea in patients with ichthyosis vulgaris.
Kara, Necip; Yildirim, Yusuf; Demircan, Ali; Cankaya, Ilker; Kutlubay, Zekayi; Engin, Burhan; Serdaroglu, Server
2012-10-01
To compare the topographic and biomechanical properties of corneas in eyes of patients with ichthyosis vulgaris (IV) and eyes of healthy individuals. Thirty healthy individuals (control group) and 30 patients with IV (study group) were enrolled in this prospective study. Topographic measurements, including keratometry values, irregularity, and surface asymmetry index in the right eye of each participant were obtained using Scheimpflug camera with a Placido disc topographer (Sirius). Corneal hysteresis (CH), corneal resistance factor (CRF), corneal-compensated intraocular pressure (IOPcc) and Goldman-related intraocular pressure (IOPg) were measured using the Reichert Ocular Response Analyzer (ORA). Central corneal thickness (CCT) was also measured with ultrasonic pachymetry and the Sirius corneal topography system. Topographic parameters were not significantly different between both groups (p>0.05). Although mean CH was not significantly different between the groups, the CRF was significantly lower in patients with IV (p=0.249 and p=0.005, respectively). The CCT was significantly lower in patients with IV compared to healthy controls (p<0.001). The IOPg and IOPcc were significantly lower in the patients with ichthyosis than in healthy controls (p=0.001 and p=0.004, respectively). The study demonstrated that while the eyes of patients with IV had corneal topographic findings and corneal hysteresis similar to those of healthy controls, some of corneal biomechanical properties such CRF and CCT and IOP values such as IOPg and IOPcc were significantly lower in patients with IV. These results should be taken into account when planning a corneal refractive surgery and glaucoma screening for patients with IV. Copyright © 2012 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
A theoretical study of topographic effects on coastal upwelling and cross-shore exchange
NASA Astrophysics Data System (ADS)
Song, Y. Tony; Chao, Yi
The effects of topographic variations on coastal upwelling and cross-shore exchange are examined with a theoretical, continuously stratified, three-dimensional coastal ocean model. The model takes into account topographic variations in both alongshore and cross-shore directions and allows analytical solutions with an Ekman surface layer that faithfully represents the physical nature of the coastal upwelling system. Theoretical solutions with any analytical form of alongshore-varying topography can be solved based on the perturbation method of Killworth [J. Phys. Oceanogr. 8 (1978) 188]. Analyses of the model solutions lead to the following conclusions: The variation of upwelling fronts and currents is shown to be caused by the combined effect of topography and stratification. Topographic variation causes uneven upwelling distribution and leads to density variation, which results in a varying horizontal pressure gradient field that causes the meandering currents. The variation index is dependent upon a bilinear function of their physical parameters--the ratio of the topographic variation depth to the total depth and Burger's number of stratification. Cross-shore slope is found to play a role in maintaining the meandering structure of the alongshore currents. The anticyclonic circulations can further induce downwelling on the offshore side of the current, while the cyclonic circulations enhance upwelling and form upwelling centers on the inshore side of the current. Alongshore topography does not change the total upwelled water, i.e., the total Ekman pumping is conserved. However, it increases cross-exchange of water masses by transporting inshore (offshore) water near topographic features far offshore (inshore) from the mean position of the front. The applicability and limitations of the theory are also discussed.
Design and construction of a novel tribometer with online topography and wear measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korres, Spyridon; Dienwiebel, Martin
2010-06-15
We present a novel experimental platform that links topographical and material changes with the friction and wear behavior of oil-lubricated metal surfaces. This concept combines state-of-the-art methods for the analysis of the surface topography on the micro- and nanoscale with the online measurement of wear. At the same time, it allows for frictional and lateral force detection. Information on the topography of one of the two surfaces is gathered in situ with a three-dimensional (3D) holography microscope at a maximum frequency of 15 frames/s and higher resolution images are provided at defined time intervals by an atomic force microscope. Themore » wear measurement is conducted online by means of radio nuclide technique. The quantitative measurement of the lateral and frictional forces is conducted with a custom-built 3D force sensor. The surfaces can be lubricated with an optically transparent oil or water. The stability and precision of the setup have been tested in a model experiment. The results show that the exact same position can be relocated and examined after each load cycle. Wear and topography measurements were performed with a radioactive labeled iron pin sliding against an iron plate.« less
The nucleus of Comet Borrelly: A study of morphology and surface brightness
Oberst, J.; Howington-Kraus, E.; Kirk, R.; Soderblom, L.; Buratti, B.; Hicks, M.; Nelson, R.; Britt, D.
2004-01-01
Stereo images obtained during the DS1 flyby were analyzed to derive a topographic model for the nucleus of Comet 19P/Borrelly for morphologic and photometric studies. The elongated nucleus has an overall concave shape, resembling a peanut, with the lower end tilted towards the camera. The bimodal character of surface-slopes and curvatures support the idea that the nucleus is a gravitational aggregate, consisting of two fragments in contact. Our photometric modeling suggests that topographic shading effects on Borrelly's surface are very minor (<10%) at the given resolution of the terrain model. Instead, albedo effects are thought to dominate Borrelly's large variations in surface brightness. With 90% of the visible surface having single scattering albedos between 0.008 and 0.024, Borrelly is confirmed to be among the darkest of the known Solar System objects. Photometrically corrected images emphasize that the nucleus has distinct, contiguous terrains covered with either bright or dark, smooth or mottled materials. Also, mapping of the changes in surface brightness with phase angle suggests that terrain roughness at subpixel scale is not uniform over the nucleus. High surface roughness is noted in particular near the transition between the upper and lower end of the nucleus, as well as near the presumed source region of Borrelly's main jets. Borrelly's surface is complex and characterized by distinct types of materials that have different compositional and/or physical properties. ?? 2003 Elsevier Inc. All rights reserved.
Estimation of potential runoff-contributing areas in Kansas using topographic and soil information
Juracek, Kyle E.
1999-01-01
Digital topographic and soil information was used to estimate potential runoff-contributing areas throughout Kansas. The results then were used to compare 91 selected subbasins representing soil, slope, and runoff variability. Potential runoff-contributing areas were estimated collectively for the processes of infiltration-excess and saturation-excess overland flow using a set of environmental conditions that represented very high, high, moderate, low, very low, and extremely low potential runoff. For infiltration-excess overland flow, various rainfall-intensity and soil-permeability values were used. For saturation-excess overland flow, antecedent soil-moisture conditions and a topographic wetness index were used. Results indicated that very low potential-runoff conditions provided the best ability to distinguish the 91 selected subbasins as having relatively high or low potential runoff. The majority of the subbasins with relatively high potential runoff are located in the eastern half of the State where soil permeability generally is less and precipitation typically is greater. The ability to distinguish the subbasins as having relatively high or low potential runoff was possible mostly due to the variability of soil permeability across the State.
Surface characterization of retinal tissues for the enhancement of vitreoretinal surgical methods
NASA Astrophysics Data System (ADS)
Valentin-Rodriguez, Celimar
Diabetic retinopathy is the most common ophthalmic complication of diabetes and the leading cause of blindness among adults, ages 30 to 70. Surgery to remove scar tissue in the eye is the only corrective treatment once the retina is affected. Visual recovery is often hampered by retinal trauma during surgery and by low patient compliance. Our work in this project aimed to improve vitreoretinal surgical methods from information gathered by sensitive surface analysis of pre-retinal tissues found at the vitreoretinal interface. Atomic force microscopy characterization of human retinal tissues revealed that surgically excised inner limiting membrane (ILM) has a heterogeneous surface and is mainly composed of globular and fibrous structures. ILM tissues also show low adhesion for clean unmodified surfaces as opposed to those with functional groups attractive to those on the ILM surface, due to their charge. Based on these observations, layer-by-layer films with embedded gold nanoparticles with a positive outer charge were designed. These modifications increased the adhesion between surgical instruments and ILM by increasing the roughness and tuning the film surface charge. These films proved to be stable under physiological conditions. Finally, the effect of vital dyes on the topographical characteristics of ILMs was characterized and new imaging modes to further reveal ILM topography were utilized. Roughness and adhesion force data suggest that second generation dyes have no effect on the surface nanostructure of ILMs, but increase adhesion at the tip sample interface. This project clearly illustrates that physicochemical information from tissues can be used to rationally re-design surgical procedures, in this case for tissue removal purposes. This rational design method can be applied to other soft tissue excision procedures as is the case of cataract surgery or laparoscopic removal of endometrial tissue.
NASA Technical Reports Server (NTRS)
Garvin, J. B.; Sakimoto, S. E. H.; Schnetzler, C.; Frawley, J. J.
1999-01-01
Impact craters on Mars have been used to provide fundamental insights into the properties of the martian crust, the role of volatiles, the relative age of the surface, and on the physics of impact cratering in the Solar System. Before the three-dimensional information provided by the Mars Orbiter Laser Altimeter (MOLA) instrument which is currently operating in Mars orbit aboard the Mars Global Surveyor (MGS), impact features were characterized morphologically using orbital images from Mariner 9 and Viking. Fresh-appearing craters were identified and measurements of their geometric properties were derived from various image-based methods. MOLA measurements can now provide a global sample of topographic cross-sections of martian impact features as small as approx. 2 km in diameter, to basin-scale features. We have previously examined MOLA cross-sections of Northern Hemisphere and North Polar Region impact features, but were unable to consider the global characteristics of these ubiquitous landforms. Here we present our preliminary assessment of the geometric properties of a globally-distributed sample of martian impact craters, most of which were sampled during the initial stages of the MGS mapping mission (i.e., the first 600 orbits). Our aim is to develop a framework for reconsidering theories concerning impact cratering in the martian environment. This first global analysis is focused upon topographically-fresh impact craters, defined here on the basis of MOLA topographic profiles that cross the central cavities of craters that can be observed in Viking-based MDIM global image mosaics. We have considered crater depths, rim heights, ejecta topologies, cross-sectional "shapes", and simple physical models for ejecta emplacement. To date (May, 1999), we have measured the geometric properties of over 1300 impact craters in the 2 to 350 km diameter size interval. A large fraction of these measured craters were sampled with cavity-center cross-sections during the first two months of MGS mapping. Many of these craters are included in Nadine Barlow's Catalogue of Martian Impact Craters, although we have treated simple craters smaller than about 7 km in greater detail than all previous investigations. Additional information is contained in the original extended abstract.
Seemann, M D; Gebicke, K; Luboldt, W; Albes, J M; Vollmar, J; Schäfer, J F; Beinert, T; Englmeier, K H; Bitzer, M; Claussen, C D
2001-07-01
The aim of this study was to demonstrate the possibilities of a hybrid rendering method, the combination of a color-coded surface and volume rendering method, with the feasibility of performing surface-based virtual endoscopy with different representation models in the operative and interventional therapy control of the chest. In 6 consecutive patients with partial lung resection (n = 2) and lung transplantation (n = 4) a thin-section spiral computed tomography of the chest was performed. The tracheobronchial system and the introduced metallic stents were visualized using a color-coded surface rendering method. The remaining thoracic structures were visualized using a volume rendering method. For virtual bronchoscopy, the tracheobronchial system was visualized using a triangle surface model, a shaded-surface model and a transparent shaded-surface model. The hybrid 3D visualization uses the advantages of both the color-coded surface and volume rendering methods and facilitates a clear representation of the tracheobronchial system and the complex topographical relationship of morphological and pathological changes without loss of diagnostic information. Performing virtual bronchoscopy with the transparent shaded-surface model facilitates a reasonable to optimal, simultaneous visualization and assessment of the surface structure of the tracheobronchial system and the surrounding mediastinal structures and lesions. Hybrid rendering relieve the morphological assessment of anatomical and pathological changes without the need for time-consuming detailed analysis and presentation of source images. Performing virtual bronchoscopy with a transparent shaded-surface model offers a promising alternative to flexible fiberoptic bronchoscopy.
Observation of the Earth by radar
NASA Technical Reports Server (NTRS)
Elachi, C.
1982-01-01
Techniques and applications of radar observation from Earth satellites are discussed. Images processing and analysis of these images are discussed. Also discussed is radar imaging from aircraft. Uses of this data include ocean wave analysis, surface water evaluation, and topographic analysis.
Surface topographical and structural analysis of Ag+-implanted polymethylmethacrylate
NASA Astrophysics Data System (ADS)
Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Naab, Fabian; Toader, Ovidiu; Sagheer, Riffat; Bashir, Shazia; Zia, Rehana; Siraj, Khurram; Iqbal, Saman
2016-08-01
Specimens of polymethylmethacrylate (PMMA) were implanted with 400-keV Ag+ ions at different ion fluences ranging from 1 × 1014 to 5 × 1015 ions/cm2 using a 400-kV NEC ion implanter. The surface topographical features of the implanted PMMA were investigated by a confocal microscope. Modifications in the structural properties of the implanted specimens were analyzed in comparison with pristine PMMA by X-ray diffraction (XRD) and Raman spectroscopy. UV-Visible spectroscopy was applied to determine the effects of ion implantation on optical transmittance of the implanted PMMA. The confocal microscopic images revealed the formation of hillock-like microstructures along the ion track on the implanted PMMA surface. The increase in ion fluence led to more nucleation of hillocks. The XRD pattern confirmed the amorphous nature of pristine and implanted PMMA, while the Raman studies justified the transformation of Ag+-implanted PMMA into amorphous carbon at the ion fluence of ⩾5 × 1014 ions/cm2. Moreover, the decrease in optical transmittance of PMMA is associated with the formation of hillocks and ion-induced structural modifications after implantation.