Sample records for surface topography surface

  1. Time-domain full-waveform inversion of Rayleigh and Love waves in presence of free-surface topography

    NASA Astrophysics Data System (ADS)

    Pan, Yudi; Gao, Lingli; Bohlen, Thomas

    2018-05-01

    Correct estimation of near-surface seismic-wave velocity when encountering lateral heterogeneity and free surface topography is one of the challenges to current shallow seismic. We propose to use time-domain full-waveform inversion (FWI) of surface waves, including both Rayleigh and Love waves, to solve this problem. We adopt a 2D time-domain finite-difference method with an improved vacuum formulation (IVF) to simulate shallow-seismic Rayleigh wave in presence of free-surface topography. We modify the IVF for SH-wave equation for the simulation of Love wave in presence of topographic free surface and prove its accuracy by benchmark tests. Checkboard model tests are performed in both cases when free-surface topography is included or neglected in FWI. Synthetic model containing a dipping planar free surface and lateral heterogeneity was then tested, in both cases of considering and neglecting free-surface topography. Both checkerboard and synthetic models show that Rayleigh- and Love-wave FWI have similar ability of reconstructing near-surface structures when free-surface topography is considered, while Love-wave FWI could reconstruct near-surface structures better than Rayleigh-wave when free-surface topography is neglected.

  2. Understanding the mechanisms of solid-water reactions through analysis of surface topography.

    PubMed

    Bandstra, Joel Z; Brantley, Susan L

    2015-12-01

    The topography of a reactive surface contains information about the reactions that form or modify the surface and, therefore, it should be possible to characterize reactivity using topography parameters such as surface area, roughness, or fractal dimension. As a test of this idea, we consider a two-dimensional (2D) lattice model for crystal dissolution and examine a suite of topography parameters to determine which may be useful for predicting rates and mechanisms of dissolution. The model is based on the assumption that the reactivity of a surface site decreases with the number of nearest neighbors. We show that the steady-state surface topography in our model system is a function of, at most, two variables: the ratio of the rate of loss of sites with two neighbors versus three neighbors (d(2)/d(3)) and the ratio of the rate of loss of sites with one neighbor versus three neighbors (d(1)/d(3)). This means that relative rates can be determined from two parameters characterizing the topography of a surface provided that the two parameters are independent of one another. It also means that absolute rates cannot be determined from measurements of surface topography alone. To identify independent sets of topography parameters, we simulated surfaces from a broad range of d(1)/d(3) and d(2)/d(3) and computed a suite of common topography parameters for each surface. Our results indicate that the fractal dimension D and the average spacing between steps, E[s], can serve to uniquely determine d(1)/d(3) and d(2)/d(3) provided that sufficiently strong correlations exist between the steps. Sufficiently strong correlations exist in our model system when D>1.5 (which corresponds to D>2.5 for real 3D reactive surfaces). When steps are uncorrelated, surface topography becomes independent of step retreat rate and D is equal to 1.5. Under these conditions, measures of surface topography are not independent and any single topography parameter contains all of the available mechanistic information about the surface. Our results also indicate that root-mean-square roughness cannot be used to reliably characterize the surface topography of fractal surfaces because it is an inherently noisy parameter for such surfaces with the scale of the noise being independent of length scale.

  3. Origin of bending in uncoated microcantilever - Surface topography?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakshmoji, K.; Prabakar, K.; Tripura Sundari, S., E-mail: sundari@igcar.gov.in

    2014-01-27

    We provide direct experimental evidence to show that difference in surface topography on opposite sides of an uncoated microcantilever induces bending, upon exposure to water molecules. Examination on opposite sides of the microcantilever by atomic force microscopy reveals the presence of localized surface features on one side, which renders the induced stress non-uniform. Further, the root mean square inclination angle characterizing the surface topography shows a difference of 73° between the opposite sides. The absence of deflection in another uncoated microcantilever having similar surface topography confirms that in former microcantilever bending is indeed induced by differences in surface topography.

  4. RhoA-Mediated Functions in C3H10T1/2 Osteoprogenitors Are Substrate Topography Dependent.

    PubMed

    Ogino, Yoichiro; Liang, Ruiwei; Mendonça, Daniela B S; Mendonça, Gustavo; Nagasawa, Masako; Koyano, Kiyoshi; Cooper, Lyndon F

    2016-03-01

    Surface topography broadly influences cellular responses. Adherent cell activities are regulated, in part, by RhoA, a member of the Rho-family of GTPases. In this study, we evaluated the influence of surface topography on RhoA activity and associated cellular functions. The murine mesenchymal stem cell line C3H10T1/2 cells (osteoprogenitor cells) were cultured on titanium substrates with smooth topography (S), microtopography (M), and nanotopography (N) to evaluate the effect of surface topography on RhoA-mediated functions (cell spreading, adhesion, migration, and osteogenic differentiation). The influence of RhoA activity in the context of surface topography was also elucidated using RhoA pharmacologic inhibitor. Following adhesion, M and N adherent cells developed multiple projections, while S adherent cells had flattened and widespread morphology. RhoA inhibitor induced remarkable longer and thinner cytoplasmic projections on all surfaces. Cell adhesion and osteogenic differentiation was topography dependent with S < M and N surfaces. RhoA inhibition increased adhesion on S and M surfaces, but not N surfaces. Cell migration in a wound healing assay was greater on S versus M versus N surfaces and RhoA inhibitor increased S adherent cell migration, but not N adherent cell migration. RhoA inhibitor enhanced osteogenic differentiation in S adherent cells, but not M or N adherent cells. RhoA activity was surface topography roughness dependent (S < M, N). RhoA activity and -mediated functions are influenced by surface topography. Smooth surface adherent cells appear highly sensitive to RhoA function, while nano-scale topography adherent cell may utilize alternative cellular signaling pathway(s) to influence adherent cellular functions regardless of RhoA activity. © 2015 Wiley Periodicals, Inc.

  5. Recent advances in engineering topography mediated antibacterial surfaces

    PubMed Central

    Hasan, Jafar

    2015-01-01

    The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria–material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces. PMID:26372264

  6. Recent advances in engineering topography mediated antibacterial surfaces

    NASA Astrophysics Data System (ADS)

    Hasan, Jafar; Chatterjee, Kaushik

    2015-09-01

    The tendency of bacterial cells to adhere and colonize a material surface leading to biofilm formation is a fundamental challenge underlying many different applications including microbial infections associated with biomedical devices and products. Although, bacterial attachment to surfaces has been extensively studied in the past, the effect of surface topography on bacteria-material interactions has received little attention until more recently. We review the recent progress in surface topography based approaches for engineering antibacterial surfaces. Biomimicry of antibacterial surfaces in nature is a popular strategy. Whereas earlier endeavors in the field aimed at minimizing cell attachment, more recent efforts have focused on developing bactericidal surfaces. However, not all such topography mediated bactericidal surfaces are necessarily cytocompatible thus underscoring the need for continued efforts for research in this area for developing antibacterial and yet cytocompatible surfaces for use in implantable biomedical applications. This mini-review provides a brief overview of the current strategies and challenges in the emerging field of topography mediated antibacterial surfaces.

  7. Deconvoluting the effects of surface chemistry and nanoscale topography: Pseudomonas aeruginosa biofilm nucleation on Si-based substrates.

    PubMed

    Zhang, Jing; Huang, Jinglin; Say, Carmen; Dorit, Robert L; Queeney, K T

    2018-06-01

    The nucleation of biofilms is known to be affected by both the chemistry and topography of the underlying substrate, particularly when topography includes nanoscale (<100 nm) features. However, determining the role of topography vs. chemistry is complicated by concomitant variation in both as a result of typical surface modification techniques. Analyzing the behavior of biofilm-forming bacteria exposed to surfaces with systematic, independent variation of both topography and surface chemistry should allow differentiation of the two effects. Silicon surfaces with reproducible nanotopography were created by anisotropic etching in deoxygenated water. Surface chemistry was varied independently to create hydrophilic (OH-terminated) and hydrophobic (alkyl-terminated) surfaces. The attachment and proliferation of Psuedomonas aeruginosa to these surfaces was characterized over a period of 12 h using fluorescence and confocal microscopy. The number of attached bacteria as well as the structural characteristics of the nucleating biofilm were influenced by both surface nanotopography and surface chemistry. In general terms, the presence of both nanoscale features and hydrophobic surface chemistry enhance bacterial attachment and colonization. However, the structural details of the resulting biofilms suggest that surface chemistry and topography interact differently on each of the four surface types we studied. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Surface Topography Hinders Bacterial Surface Motility.

    PubMed

    Chang, Yow-Ren; Weeks, Eric R; Ducker, William A

    2018-03-21

    We demonstrate that the surface motility of the bacterium, Pseudomonas aeruginosa, is hindered by a crystalline hemispherical topography with wavelength in the range of 2-8 μm. The motility was determined by the analysis of time-lapse microscopy images of cells in a flowing growth medium maintained at 37 °C. The net displacement of bacteria over 5 min is much lower on surfaces containing 2-8 μm hemispheres than on flat topography, but displacement on the 1 μm hemispheres is not lower. That is, there is a threshold between 1 and 2 μm for response to the topography. Cells on the 4 μm hemispheres were more likely to travel parallel to the local crystal axis than in other directions. Cells on the 8 μm topography were less likely to travel across the crowns of the hemispheres and were also more likely to make 30°-50° turns than on flat surfaces. These results show that surface topography can act as a significant barrier to surface motility and may therefore hinder surface exploration by bacteria. Because surface exploration can be a part of the process whereby bacteria form colonies and seek nutrients, these results help to elucidate the mechanism by which surface topography hinders biofilm formation.

  9. An algorithm-based topographical biomaterials library to instruct cell fate

    PubMed Central

    Unadkat, Hemant V.; Hulsman, Marc; Cornelissen, Kamiel; Papenburg, Bernke J.; Truckenmüller, Roman K.; Carpenter, Anne E.; Wessling, Matthias; Post, Gerhard F.; Uetz, Marc; Reinders, Marcel J. T.; Stamatialis, Dimitrios; van Blitterswijk, Clemens A.; de Boer, Jan

    2011-01-01

    It is increasingly recognized that material surface topography is able to evoke specific cellular responses, endowing materials with instructive properties that were formerly reserved for growth factors. This opens the window to improve upon, in a cost-effective manner, biological performance of any surface used in the human body. Unfortunately, the interplay between surface topographies and cell behavior is complex and still incompletely understood. Rational approaches to search for bioactive surfaces will therefore omit previously unperceived interactions. Hence, in the present study, we use mathematical algorithms to design nonbiased, random surface features and produce chips of poly(lactic acid) with 2,176 different topographies. With human mesenchymal stromal cells (hMSCs) grown on the chips and using high-content imaging, we reveal unique, formerly unknown, surface topographies that are able to induce MSC proliferation or osteogenic differentiation. Moreover, we correlate parameters of the mathematical algorithms to cellular responses, which yield novel design criteria for these particular parameters. In conclusion, we demonstrate that randomized libraries of surface topographies can be broadly applied to unravel the interplay between cells and surface topography and to find improved material surfaces. PMID:21949368

  10. Enhanced Characterization of Niobium Surface Topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Xu, Hui Tian, Charles Reece, Michael Kelley

    2011-12-01

    Surface topography characterization is a continuing issue for the Superconducting Radio Frequency (SRF) particle accelerator community. Efforts are underway to both to improve surface topography, and its characterization and analysis using various techniques. In measurement of topography, Power Spectral Density (PSD) is a promising method to quantify typical surface parameters and develop scale-specific interpretations. PSD can also be used to indicate how chemical processes modifiesy the roughnesstopography at different scales. However, generating an accurate and meaningful topographic PSD of an SRF surface requires careful analysis and optimization. In this report, polycrystalline surfaces with different process histories are sampled with AFMmore » and stylus/white light interferometer profilometryers and analyzed to indicate trace topography evolution at different scales. evolving during etching or polishing. Moreover, Aan optimized PSD analysis protocol will be offered to serve the SRF surface characterization needs is presented.« less

  11. Analysis of high-throughput screening reveals the effect of surface topographies on cellular morphology.

    PubMed

    Hulsman, Marc; Hulshof, Frits; Unadkat, Hemant; Papenburg, Bernke J; Stamatialis, Dimitrios F; Truckenmüller, Roman; van Blitterswijk, Clemens; de Boer, Jan; Reinders, Marcel J T

    2015-03-01

    Surface topographies of materials considerably impact cellular behavior as they have been shown to affect cell growth, provide cell guidance, and even induce cell differentiation. Consequently, for successful application in tissue engineering, the contact interface of biomaterials needs to be optimized to induce the required cell behavior. However, a rational design of biomaterial surfaces is severely hampered because knowledge is lacking on the underlying biological mechanisms. Therefore, we previously developed a high-throughput screening device (TopoChip) that measures cell responses to large libraries of parameterized topographical material surfaces. Here, we introduce a computational analysis of high-throughput materiome data to capture the relationship between the surface topographies of materials and cellular morphology. We apply robust statistical techniques to find surface topographies that best promote a certain specified cellular response. By augmenting surface screening with data-driven modeling, we determine which properties of the surface topographies influence the morphological properties of the cells. With this information, we build models that predict the cellular response to surface topographies that have not yet been measured. We analyze cellular morphology on 2176 surfaces, and find that the surface topography significantly affects various cellular properties, including the roundness and size of the nucleus, as well as the perimeter and orientation of the cells. Our learned models capture and accurately predict these relationships and reveal a spectrum of topographies that induce various levels of cellular morphologies. Taken together, this novel approach of high-throughput screening of materials and subsequent analysis opens up possibilities for a rational design of biomaterial surfaces. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Significance of Thermal Fluvial Incision and Bedrock Transfer due to Ice Advection on Greenland Ice Sheet Topography

    NASA Astrophysics Data System (ADS)

    Crozier, J. A.; Karlstrom, L.; Yang, K.

    2017-12-01

    Ice sheet surface topography reflects a complicated combination of processes that act directly upon the surface and that are products of ice advection. Using recently-available high resolution ice velocity, imagery, ice surface elevation, and bedrock elevation data sets, we seek to determine the domain of significance of two important processes - thermal fluvial incision and transfer of bedrock topography through the ice sheet - on controlling surface topography in the ablation zone. Evaluating such controls is important for understanding how melting of the GIS surface during the melt season may be directly imprinted in topography through supraglacial drainage networks, and indirectly imprinted through its contribution to basal sliding that affects bedrock transfer. We use methods developed by (Karlstrom and Yang, 2016) to identify supraglacial stream networks on the GIS, and use high resolution surface digital elevation models as well as gridded ice velocity and melt rate models to quantify surface processes. We implement a numerically efficient Fourier domain bedrock transfer function (Gudmundsson, 2003) to predict surface topography due to ice advection over bedrock topography obtained from radar. Despite a number of simplifying assumptions, the bedrock transfer function predicts the observed ice sheet surface in most regions of the GIS with ˜90% accuracy, regardless of the presence or absence of supraglacial drainage networks. This supports the hypothesis that bedrock is the most significant driver of ice surface topography on wavelengths similar to ice thickness. Ice surface topographic asymmetry on the GIS is common, with slopes in the direction of ice flow steeper than those faced opposite to ice flow, consistent with bedrock transfer theory. At smaller wavelengths, topography consistent with fluvial erosion by surface hydrologic features is evident. We quantify the effect of ice advection versus fluvial thermal erosion on supraglacial longitudinal stream profiles, as a function of location on the GIS (hence ice thickness and background melt rate) using spectral techniques to quantify longitudinal stream profiles. This work should provide a predictive guide for which processes are responsible for ice sheet topography scales from several m (DEM resolution) up to several ice thicknesses.

  13. Activation of Osteoblastic Function on Titanium Surface with Titanium-Doped Hydroxyapatite Nanoparticle Coating: An In Vitro Study.

    PubMed

    Nakazawa, Masahiro; Yamada, Masahiro; Wakamura, Masato; Egusa, Hiroshi; Sakurai, Kaoru

    Titanium-doped hydroxyapatite (TiHA) nanoparticles contain titanium atoms in the hydroxyapatite lattice, which can physicochemically functionalize the titanium surface without modification of the surface topography. This study aimed to evaluate the physicochemical properties of machined or microroughened titanium surfaces coated with TiHA nanoparticles and the functions of osteoblasts cultured on them. Titanium disks with commercially available surface topography, such as machined or sandblasted, large-grit, and acid-etched (SLA) surfaces, were coated with TiHA. The disks with original or TiHA-coated surfaces were evaluated in topography, wettability, and chemical composition. Osteoblastic cells from rat femurs were cultured on the disks and evaluated in proliferation and differentiation. TiHA coating changed from hydrophobicity to hydrophilicity on both machined and SLA surfaces. Calcium and phosphate atoms were detected all over the surface with TiHA coating regardless of the surface topography. However, the considerable change in the inherent surface topographies was not observed on both types of surfaces after TiHA coating. Osteoblastic proliferative activity at day 4 was increased by TiHA coating on both types of surfaces. TiHA coating did not enhance expressions of bone matrix-related genes such as osteocalcin, osteopontin, bone sialoprotein, alkaline phosphatase, and collagen I. However, depositions of collagen, osteocalcin, and calcium in the culture at days 7 and 20 were increased on both types of surface topographies with TiHA coating. TiHA coating enhanced extracellular matrix formation on smooth and microroughened titanium surfaces by increasing osteoblastic proliferative activity without the deterioration of differentiation through hydrophilic and chemical functionalization.

  14. Bacterial resistance of self-assembled surfaces using PPOm-b-PSBMAn zwitterionic copolymer - concomitant effects of surface topography and surface chemistry on attachment of live bacteria.

    PubMed

    Hsiao, Sheng-Wen; Venault, Antoine; Yang, Hui-Shan; Chang, Yung

    2014-06-01

    Three well-defined diblock copolymers made of poly(sulfobetaine methacrylate) (poly(SBMA)) and poly(propylene oxide) (PPO) groups were synthesized by atom transfer radical polymerization (ATRP) method. They were physically adsorbed onto three types of surfaces having different topography, including smooth flat surface, convex surface, and indented surface. Chemical state of surfaces was characterized by XPS while the various topographies were examined by SEM and AFM. Hydrophilicity of surfaces was dependent on both the surface chemistry and the surface topography, suggesting that orientation of copolymer brushes can be tuned in the design of surfaces aimed at resisting bacterial attachment. Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans and Escherichia coli with green fluorescent protein (E. coli GFP) were used in bacterial tests to assess the resistance to bacterial attachment of poly(SBMA)-covered surfaces. Results highlighted a drastic improvement of resistance to bacterial adhesion with the increasing of poly(SBMA) to PPO ratio, as well as an important effect of surface topography. The chemical effect was directly related to the length of the hydrophilic moieties. When longer, more water could be entrapped, leading to improved anti-bacterial properties. The physical effect impacted on the orientation of the copolymer brushes, as well as on the surface contact area available. Convex surfaces as well as indented surfaces wafer presented the best resistance to bacterial adhesion. Indeed, bacterial attachment was more importantly reduced on these surfaces compared with smooth surfaces. It was explained by the non-orthogonal orientation of copolymer brushes, resulting in a more efficient surface coverage of zwitterionic molecules. This work suggests that not only the control of surface chemistry is essential in the preparation of surfaces resisting bacterial attachment, but also the control of surface topography and orientation of antifouling moieties. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Tuning cell adhesion on polymeric and nanocomposite surfaces: Role of topography versus superhydrophobicity.

    PubMed

    Zangi, Sepideh; Hejazi, Iman; Seyfi, Javad; Hejazi, Ehsan; Khonakdar, Hossein Ali; Davachi, Seyed Mohammad

    2016-06-01

    Development of surface modification procedures which allow tuning the cell adhesion on the surface of biomaterials and devices is of great importance. In this study, the effects of different topographies and wettabilities on cell adhesion behavior of polymeric surfaces are investigated. To this end, an improved phase separation method was proposed to impart various wettabilities (hydrophobic and superhydrophobic) on polypropylene surfaces. Surface morphologies and compositions were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cell culture was conducted to evaluate the adhesion of 4T1 mouse mammary tumor cells. It was found that processing conditions such as drying temperature is highly influential in cell adhesion behavior due to the formation of an utterly different surface topography. It was concluded that surface topography plays a more significant role in cell adhesion behavior rather than superhydrophobicity since the nano-scale topography highly inhibited the cell adhesion as compared to the micro-scale topography. Such cell repellent behavior could be very useful in many biomedical devices such as those in drug delivery and blood contacting applications as well as biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Velopharyngeal mucosal surface topography in healthy subjects and subjects with obstructive sleep apnea.

    PubMed

    Lambeth, Christopher; Amatoury, Jason; Wang, Ziyu; Foster, Sheryl; Amis, Terence; Kairaitis, Kristina

    2017-03-01

    Macroscopic pharyngeal anatomical abnormalities are thought to contribute to the pathogenesis of upper airway (UA) obstruction in obstructive sleep apnea (OSA). Microscopic changes in the UA mucosal lining of OSA subjects are reported; however, the impact of these changes on UA mucosal surface topography is unknown. This study aimed to 1 ) develop methodology to measure UA mucosal surface topography, and 2 ) compare findings from healthy and OSA subjects. Ten healthy and eleven OSA subjects were studied. Awake, gated (end expiration), head and neck position controlled magnetic resonance images (MRIs) of the velopharynx (VP) were obtained. VP mucosal surfaces were segmented from axial images, and three-dimensional VP mucosal surface models were constructed. Curvature analysis of the models was used to study the VP mucosal surface topography. Principal, mean, and Gaussian curvatures were used to define surface shape composition and surface roughness of the VP mucosal surface models. Significant differences were found in the surface shape composition, with more saddle/spherical and less flat/cylindrical shapes in OSA than healthy VP mucosal surface models ( P < 0.01). OSA VP mucosal surface models were also found to have more mucosal surface roughness ( P < 0.0001) than healthy VP mucosal surface models. Our novel methodology was utilized to model the VP mucosal surface of OSA and healthy subjects. OSA subjects were found to have different VP mucosal surface topography, composed of increased irregular shapes and increased roughness. We speculate increased irregularity in VP mucosal surface may increase pharyngeal collapsibility as a consequence of friction-related pressure loss. NEW & NOTEWORTHY A new methodology was used to model the upper airway mucosal surface topography from magnetic resonance images of patients with obstructive sleep apnea and healthy adults. Curvature analysis was used to analyze the topography of the models, and a new metric was derived to describe the mucosal surface roughness. Increased roughness was found in the obstructive sleep apnea vs. healthy group, but further research is required to determine the functional effects of the measured difference on upper airway airflow mechanics. Copyright © 2017 the American Physiological Society.

  17. Effects of Topography-based Subgrid Structures on Land Surface Modeling

    NASA Astrophysics Data System (ADS)

    Tesfa, T. K.; Ruby, L.; Brunke, M.; Thornton, P. E.; Zeng, X.; Ghan, S. J.

    2017-12-01

    Topography has major control on land surface processes through its influence on atmospheric forcing, soil and vegetation properties, network topology and drainage area. Consequently, accurate climate and land surface simulations in mountainous regions cannot be achieved without considering the effects of topographic spatial heterogeneity. To test a computationally less expensive hyper-resolution land surface modeling approach, we developed topography-based landunits within a hierarchical subgrid spatial structure to improve representation of land surface processes in the ACME Land Model (ALM) with minimal increase in computational demand, while improving the ability to capture the spatial heterogeneity of atmospheric forcing and land cover influenced by topography. This study focuses on evaluation of the impacts of the new spatial structures on modeling land surface processes. As a first step, we compare ALM simulations with and without subgrid topography and driven by grid cell mean atmospheric forcing to isolate the impacts of the subgrid topography on the simulated land surface states and fluxes. Recognizing that subgrid topography also has important effects on atmospheric processes that control temperature, radiation, and precipitation, methods are being developed to downscale atmospheric forcings. Hence in the second step, the impacts of the subgrid topographic structure on land surface modeling will be evaluated by including spatial downscaling of the atmospheric forcings. Preliminary results on the atmospheric downscaling and the effects of the new spatial structures on the ALM simulations will be presented.

  18. Effects of titanium surface topography on bone integration: a systematic review.

    PubMed

    Wennerberg, Ann; Albrektsson, Tomas

    2009-09-01

    To analyse possible effects of titanium surface topography on bone integration. Our analyses were centred on a PubMed search that identified 1184 publications of assumed relevance; of those, 1064 had to be disregarded because they did not accurately present in vivo data on bone response to surface topography. The remaining 120 papers were read and analysed, after removal of an additional 20 papers that mainly dealt with CaP-coated and Zr implants; 100 papers remained and formed the basis for this paper. The bone response to differently configurated surfaces was mainly evaluated by histomorphometry (bone-to-implant contact), removal torque and pushout/pullout tests. A huge number of the experimental investigations have demonstrated that the bone response was influenced by the implant surface topography; smooth (S(a)<0.5 microm) and minimally rough (S(a) 0.5-1 mum) surfaces showed less strong bone responses than rougher surfaces. Moderately rough (S(a)>1-2 microm) surfaces showed stronger bone responses than rough (S(a)>2 microm) in some studies. One limitation was that it was difficult to compare many studies because of the varying quality of surface evaluations; a surface termed 'rough' in one study was not uncommonly referred to as 'smooth' in another; many investigators falsely assumed that surface preparation per se identified the roughness of the implant; and many other studies used only qualitative techniques such as SEM. Furthermore, filtering techniques differed or only height parameters (S(a), R(a)) were reported. * Surface topography influences bone response at the micrometre level. * Some indications exist that surface topography influences bone response at the nanometre level. * The majority of published papers present an inadequate surface characterization. * Measurement and evaluation techniques need to be standardized. * Not only height descriptive parameters but also spatial and hybrid ones should be used.

  19. Influence of substrate preparation on the shaping of the topography of the surface of nanoceramic oxide layers

    NASA Astrophysics Data System (ADS)

    Bara, Marek; Kubica, Marek

    2014-02-01

    The paper discusses the shaping mechanism and changes occurring in the structure and topography of the surface of nanoceramic oxide layers during their formation. The paper presents the influence of substrate preparation on the surface topography of oxide layers. The layers were produced via hard anodizing on the EN AW-5251 aluminum alloy. The layers obtained were subjected to microscope examinations, image and chemical composition analyses, and stereometric examinations. Heredity of substrate properties in the topography of the surface of nanoceramic oxide layers formed as a result of electrochemical oxidation has been shown.

  20. Ocean Surface Topography Mission/Jason 2 Artist Concept

    NASA Image and Video Library

    2008-09-23

    An artist concept of the Ocean Surface Topography Mission/Jason 2 Earth satellite. The Ocean Surface Topography Mission/Jason 2 is an Earth satellite designed to make observations of ocean topography for investigations into sea-level rise and the relationship between ocean circulation and climate change. The satellite also provides data on the forces behind such large-scale climate phenomena as El Niño and La Niña. The mission is a follow-on to the French-American Jason 1 mission, which began collecting data on sea-surface levels in 1992. http://photojournal.jpl.nasa.gov/catalog/PIA18158

  1. Surface topography of hydroxyapatite promotes osteogenic differentiation of human bone marrow mesenchymal stem cells.

    PubMed

    Yang, Wanlei; Han, Weiqi; He, Wei; Li, Jianlei; Wang, Jirong; Feng, Haotian; Qian, Yu

    2016-03-01

    Effective and safe induction of osteogenic differentiation is one of the key elements of bone tissue engineering. Surface topography of scaffold materials was recently found to promote osteogenic differentiation. Utilization of this topography may be a safer approach than traditional induction by growth factors or chemicals. The aim of this study is to investigate the enhancement of osteogenic differentiation by surface topography and its mechanism of action. Hydroxyapatite (HA) discs with average roughness (Ra) of surface topography ranging from 0.2 to 1.65 μm and mean distance between peaks (RSm) ranging from 89.7 to 18.6 μm were prepared, and human bone-marrow mesenchymal stem cells (hBMSCs) were cultured on these discs. Optimal osteogenic differentiation was observed on discs with surface topography characterized by Ra ranging from 0.77 to 1.09 μm and RSm ranging from 53.9 to 39.3 μm. On this surface configuration of HA, hBMSCs showed oriented attachment, F-actin arrangement, and a peak in the expression of Yes-associated protein (YAP) and PDZ binding motif (TAZ) (YAP/TAZ). These results indicated that the surface topography of HA promoted osteogenic differentiation of hBMSCs, possibly by increasing cell attachment and promoting the YAP/TAZ signaling pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Nanotubular topography enhances the bioactivity of titanium implants.

    PubMed

    Huang, Jingyan; Zhang, Xinchun; Yan, Wangxiang; Chen, Zhipei; Shuai, Xintao; Wang, Anxun; Wang, Yan

    2017-08-01

    Surface modification on titanium implants plays an important role in promoting mesenchymal stem cell (MSC) response to enhance osseointegration persistently. In this study, nano-scale TiO 2 nanotube topography (TNT), micro-scale sand blasted-acid etched topography (SLA), and hybrid sand blasted-acid etched/nanotube topography (SLA/TNT) were fabricated on the surfaces of titanium implants. Although the initial cell adherence at 60 min among TNT, SLA and TNT/SLA was not different, SLA and SLA/TNT presented to be rougher and suppressed the proliferation of MSC. TNT showed hydrophilic surface and balanced promotion of cellular functions. After being implanted in rabbit femur models, TNT displayed the best osteogenesis inducing ability as well as strong bonding strength to the substrate. These results indicate that nano-scale TNT provides favorable surface topography for improving the clinical performance of endosseous implants compared with micro and hybrid micro/nano surfaces, suggesting a promising and reliable surface modification strategy of titanium implants for clinical application. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Measuring surface topography with scanning electron microscopy. I. EZEImage: a program to obtain 3D surface data.

    PubMed

    Ponz, Ezequiel; Ladaga, Juan Luis; Bonetto, Rita Dominga

    2006-04-01

    Scanning electron microscopy (SEM) is widely used in the science of materials and different parameters were developed to characterize the surface roughness. In a previous work, we studied the surface topography with fractal dimension at low scale and two parameters at high scale by using the variogram, that is, variance vs. step log-log graph, of a SEM image. Those studies were carried out with the FERImage program, previously developed by us. To verify the previously accepted hypothesis by working with only an image, it is indispensable to have reliable three-dimensional (3D) surface data. In this work, a new program (EZEImage) to characterize 3D surface topography in SEM has been developed. It uses fast cross correlation and dynamic programming to obtain reliable dense height maps in a few seconds which can be displayed as an image where each gray level represents a height value. This image can be used for the FERImage program or any other software to obtain surface topography characteristics. EZEImage also generates anaglyph images as well as characterizes 3D surface topography by means of a parameter set to describe amplitude properties and three functional indices for characterizing bearing and fluid properties.

  4. Importance of Including Topography in Numerical Simulations of Venus' Atmospheric Circulation

    NASA Astrophysics Data System (ADS)

    Parish, H. F.; Schubert, G.; Lebonnois, S.; Covey, C. C.; Walterscheid, R. L.; Grossman, A.

    2012-12-01

    Venus' atmosphere is characterized by strong superrotation, in which the wind velocities at cloud heights are around 60 times faster than the surface rotation rate. The reasons for this strong superrotation are still not well understood. Since the surface of the planet is both a source and sink of atmospheric angular momentum it is important to understand and properly account for the interactions at the surface-atmosphere boundary. A key aspect of the surface-atmosphere interaction is the topography. Topography has been introduced into different general circulation models (GCMs) of Venus' atmosphere, producing significant, but widely varying effects on the atmospheric circulation. The reasons for the inconsistencies among model results are not well known, but our studies suggest they might be related to the influences of different dynamical cores. In our recent study, we have analyzed the angular momentum budget for two Venus GCMs, the Venus Community Atmosphere model (Venus CAM) and the Laboratoire de Meteorologie Dynamique (LMD) Venus GCM. Because of Venus' low magnitude surface winds, surface friction alone supplies only a relatively weak angular momentum forcing to the atmosphere. We find that if surface friction is introduced without including surface topography, the angular momentum balance of the atmosphere may be dominated by effects such as numerical diffusion, a sponge layer, or other numerical residuals that are generally included in all GCMs, and can themselves be sources of angular momentum. However, we find the mountain torque associated with realistic Venus surface topography supplies a much larger source of angular momentum than the surface friction, and dominates nonphysical numerical terms. (A similar effect occurs for rapidly rotating planets like Earth, but in this case numerical errors in the angular momentum budget are relatively small even in the absence of mountain torque). Even if surface friction dominates numerical terms in the angular momentum budgets of simulations without realistic topography, it must be remembered that there are no observational constraints on model parameterizations of the real surface friction on Venus. It is essential for a planet such as Venus, for which surface friction alone supplies only weak angular momentum forcing, to include surface topography to generate realistic forcing of angular momentum and avoid the influences of numerical artifacts, which can be significant. Venus' topography, as mapped using measurements from the Magellan mission, shows significant hemispheric asymmetry. In this work we examine the impact of this asymmetry using simulations of Venus' circulation with and without topography, within the latest version of the Venus CAM GCM.

  5. Surface topography analysis and performance on post-CMP images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Jusang; Bello, Abner F.; Kakita, Shinichiro; Pieniazek, Nicholas; Johnson, Timothy A.

    2017-03-01

    Surface topography on post-CMP processing can be measured with white light interference microscopy to determine the planarity. Results are used to avoid under or over polishing and to decrease dishing. The numerical output of the surface topography is the RMS (root-mean-square) of the height. Beyond RMS, the topography image is visually examined and not further quantified. Subjective comparisons of the height maps are used to determine optimum CMP process conditions. While visual comparison of height maps can determine excursions, it's only through manual inspection of the images. In this work we describe methods of quantifying post-CMP surface topography characteristics that are used in other technical fields such as geography and facial-recognition. The topography image is divided into small surface patches of 7x7 pixels. Each surface patch is fitted to an analytic surface equation, in this case a third order polynomial, from which the gradient, directional derivatives, and other characteristics are calculated. Based on the characteristics, the surface patch is labeled as peak, ridge, flat, saddle, ravine, pit or hillside. The number of each label and thus the associated histogram is then used as a quantified characteristic of the surface topography, and could be used as a parameter for SPC (statistical process control) charting. In addition, the gradient for each surface patch is calculated, so the average, maximum, and other characteristics of the gradient distribution can be used for SPC. Repeatability measurements indicate high confidence where individual labels can be lower than 2% relative standard deviation. When the histogram is considered, an associated chi-squared value can be defined from which to compare other measurements. The chi-squared value of the histogram is a very sensitive and quantifiable parameter to determine the within wafer and wafer-to-wafer topography non-uniformity. As for the gradient histogram distribution, the chi-squared could again be calculated and used as yet another quantifiable parameter for SPC. In this work we measured the post Cu CMP of a die designed for 14nm technology. A region of interest (ROI) known to be indicative of the CMP processing is chosen for the topography analysis. The ROI, of size 1800 x 2500 pixels where each pixel represents 2um, was repeatably measured. We show the sensitivity based on measurements and the comparison between center and edge die measurements. The topography measurements and surface patch analysis were applied to hundreds of images representing the periodic process qualification runs required to control and verify CMP performance and tool matching. The analysis is shown to be sensitive to process conditions that vary in polishing time, type of slurry, CMP tool manufacturer, and CMP pad lifetime. Keywords: Keywords: CMP, Topography, Image Processing, Metrology, Interference microscopy, surface processing [1] De Lega, Xavier Colonna, and Peter De Groot. "Optical topography measurement of patterned wafers." Characterization and Metrology for ULSI Technology 2005 788 (2005): 432-436. [2] de Groot, Peter. "Coherence scanning interferometry." Optical Measurement of Surface Topography. Springer Berlin Heidelberg, 2011. 187-208. [3] Watson, Layne T., Thomas J. Laffey, and Robert M. Haralick. "Topographic classification of digital image intensity surfaces using generalized splines and the discrete cosine transformation." Computer Vision, Graphics, and Image Processing 29.2 (1985): 143-167. [4] Wang, Jun, et al. "3D facial expression recognition based on primitive surface feature distribution." Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on. Vol. 2. IEEE, 2006.

  6. Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography

    USGS Publications Warehouse

    Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.

    2006-01-01

    It has been long known that land surface topography governs both groundwater flow patterns at the regional-to-continental scale and on smaller scales such as in the hyporheic zone of streams. Here we show that the surface topography can be separated in a Fourier-series spectrum that provides an exact solution of the underlying three-dimensional groundwater flows. The new spectral solution offers a practical tool for fast calculation of subsurface flows in different hydrological applications and provides a theoretical platform for advancing conceptual understanding of the effect of landscape topography on subsurface flows. We also show how the spectrum of surface topography influences the residence time distribution for subsurface flows. The study indicates that the subsurface head variation decays exponentially with depth faster than it would with equivalent two-dimensional features, resulting in a shallower flow interaction. Copyright 2006 by the American Geophysical Union.

  7. The differential regulation of osteoblast and osteoclast activity by surface topography of hydroxyapatite coatings.

    PubMed

    Costa, Daniel O; Prowse, Paul D H; Chrones, Tom; Sims, Stephen M; Hamilton, Douglas W; Rizkalla, Amin S; Dixon, S Jeffrey

    2013-10-01

    The behavior of bone cells is influenced by the surface chemistry and topography of implants and scaffolds. Our purpose was to investigate how the topography of biomimetic hydroxyapatite (HA) coatings influences the attachment and differentiation of osteoblasts, and the resorptive activity of osteoclasts. Using strategies reported previously, we directly controlled the surface topography of HA coatings on polycaprolactone discs. Osteoblasts and osteoclasts were incubated on HA coatings having distinct isotropic topographies with submicrometer and micro-scale features. Osteoblast attachment and differentiation were greater on more complex, micro-rough HA surfaces (Ra ~2 μm) than on smoother topographies (Ra ~1 μm). In contrast, activity of the osteoclast marker tartrate-resistant acid phosphatase was greater on smoother than on micro-rough surfaces. Furthermore, scanning electron microscopy revealed the presence of resorption lacunae exclusively on smoother HA coatings. Inhibition of resorption on micro-rough surfaces was associated with disruption of filamentous actin sealing zones. In conclusion, HA coatings can be prepared with distinct topographies, which differentially regulate responses of osteoblasts, as well as osteoclastic activity and hence susceptibility to resorption. Thus, it may be possible to design HA coatings that induce optimal rates of bone formation and degradation specifically tailored for different applications in orthopedics and dentistry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Development of a surface topography instrument for automotive textured steel plate

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Wang, Shenghuai; Chen, Yurong; Xie, Tiebang

    2010-08-01

    The surface topography of automotive steel plate is decisive to its stamping, painting and image clarity performances. For measuring this kind of surface topography, an instrument has been developed based on the principle of vertical scanning white light microscopy interference principle. The microscopy interference system of this instrument is designed based on the structure of Linnik interference microscopy. The 1D worktable of Z direction is designed and introduced in details. The work principle of this instrument is analyzed. In measuring process, the interference microscopy is derived as a whole and the measured surface is scanned in vertical direction. The measurement accuracy and validity is verified by templates. Surface topography of textured steel plate is also measured by this instrument.

  9. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui Tian, Guilhem Ribeill, Chen Xu, Charles E. Reece, Michael J. Kelley

    2011-03-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. Amore » more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.« less

  10. Bactericidal effects of plasma-modified surface chemistry of silicon nanograss

    NASA Astrophysics Data System (ADS)

    Ostrikov, Kola; Macgregor-Ramiasa, Melanie; Cavallaro, Alex; (Ken Ostrikov, Kostya; Vasilev, Krasimir

    2016-08-01

    The surface chemistry and topography of biomaterials regulate the adhesion and growth of microorganisms in ways that are still poorly understood. Silicon nanograss structures prepared via inductively coupled plasma etching were coated with plasma deposited nanometer-thin polymeric films to produce substrates with controlled topography and defined surface chemistry. The influence of surface properties on Staphylococcus aureus proliferation is demonstrated and explained in terms of nanograss substrate wetting behaviour. With the combination of the nanograss topography; hydrophilic plasma polymer coatings enhanced antimicrobial activity while hydrophobic coatings reduced it. This study advances the understanding of the effects of surface wettability on the bactericidal properties of reactive nano-engineered surfaces.

  11. [Influence of different surface treatments on porcelain surface topography].

    PubMed

    Tai, Yinxia; Zhu, Xianchun; Sen, Yan; Liu, Chang; Zhang, Xian; Shi, Xueming

    2013-02-01

    To evaluate the influence of different surface treatments on porcelain surface topography. Metal ceramic prostheses in 6 groups were treated according to the different surface treatment methods, and the surface topography was observed through scanning electron microscope (SEM). Group A was the control one (untreated), group B was etched by 9.6% hydrofluoric acid(HF), group C was deglazed by grinding and then etched by 9.6% HF, group D was treated with Nd: YAG laser irradiation(0.75 W) and HF etching, group E was treated with Nd: YAG laser irradiation (1.05 W) and HF etching, and group F was treated with laser irradiation (1.45 W) and HF etching. Surface topography was different in different groups. A lot of inerratic cracks with the shapes of rhombuses and grid, and crater with a shape of circle were observed on the ceramic surface after treatment with energy parameters of 1.05 W Nd: YAG laser irradiation and 9.6% HF etching (group E). Surface topography showed a lot of concaves on the inner wall of the cracks, and the concaves with diameter of 1-5 microm could be observed on the inner wall of the holes, which had a diameter of 20 microm under SEM. The use of Nd: YAG laser irradiation with the energy parameters of 1.05 W and the HF with a concentration of 9.6% can evenly coarsen the porcelain surface, that is an effective surface treatment method.

  12. Sintered silver joints via controlled topography of electronic packaging subcomponents

    DOEpatents

    Wereszczak, Andrew A.

    2014-09-02

    Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.

  13. Topography and surface energy dependent calcium phosphate formation on Sol-Gel derived TiO2 coatings.

    PubMed

    Järn, Mikael; Areva, Sami; Pore, Viljami; Peltonen, Jouko; Linden, Mika

    2006-09-12

    Heterogeneous nucleation and growth of calcium phosphate (CaP) on sol-gel derived TiO(2) coatings was investigated in terms of surface topography and surface energy. The topography of the coatings was derived from AFM measurements, while the surface energy was determined with contact angle measurements. The degree of precipitation was examined with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The precipitation of CaP was found to be dependent on both topography and surface energy. A high roughness value when combining the RMS roughness parameter S(q) with the number of local maxima per unit area parameter S(ds) enhances CaP formation. The hydrophilicity of the coating was also found to be of importance for CaP formation. We suggest that the water contact angle, which is a direct measure of the hydrophilicity of the surface, may be used to evaluate the surface energy dependent precipitation kinetics rather than using the often applied Lewis base parameter.

  14. Effect of Micro- and Nanoscale Topography on the Adhesion of Bacterial Cells to Solid Surfaces

    PubMed Central

    Hsu, Lillian C.; Fang, Jean; Borca-Tasciuc, Diana A.; Worobo, Randy W.

    2013-01-01

    Attachment and biofilm formation by bacterial pathogens on surfaces in natural, industrial, and hospital settings lead to infections and illnesses and even death. Minimizing bacterial attachment to surfaces using controlled topography could reduce the spreading of pathogens and, thus, the incidence of illnesses and subsequent human and financial losses. In this context, the attachment of key microorganisms, including Escherichia coli, Listeria innocua, and Pseudomonas fluorescens, to silica and alumina surfaces with micron and nanoscale topography was investigated. The results suggest that orientation of the attached cells occurs preferentially such as to maximize their contact area with the surface. Moreover, the bacterial cells exhibited different morphologies, including different number and size of cellular appendages, depending on the topographical details of the surface to which they attached. This suggests that bacteria may utilize different mechanisms of attachment in response to surface topography. These results are important for the design of novel microbe-repellant materials. PMID:23416997

  15. The Role of Titanium Surface Microtopography on Adhesion, Proliferation, Transformation, and Matrix Deposition of Corneal Cells.

    PubMed

    Zhou, Chengxin; Lei, Fengyang; Chodosh, James; Paschalis, Eleftherios I

    2016-04-01

    Titanium (Ti) is an excellent implantable biomaterial that can be further enhanced by surface topography optimization. Despite numerous data from orthopedics and dentistry, the effect of Ti surface topography on ocular cells is still poorly understood. In light of the recent adaptation of Ti in the Boston Keratoprosthesis artificial cornea, we attempted to perform an extended evaluation of the effect of Ti surface topography on corneal cell adhesion, proliferation, cytotoxicity, transformation, and matrix deposition. Different surface topographies were generated on medical grade Ti-6Al-4V-ELI (extra-low interstitial), with linearly increased roughness (polished to grit blasted). Biological response was evaluated in vitro using human corneal limbal epithelial (HCLE) cells, stromal fibroblasts (HCF), and endothelial cells (HCEnC). None of the Ti surface topographies caused cytotoxicity to any of the three corneal cell types. However, rough Ti surface inhibited HCLE and HCF cell adhesion and proliferation, while HCEnC proliferation was unaffected. Long-term experiments with HCF revealed that rough Ti surface with R(a) (the arithmetic average of the profile height from the mean line) ≥ 1.15 μm suppressed HCF focal adhesion kinase phosphorylation, changed fibroblast morphology, and caused less aligned and reduced deposition of collagen matrix as compared to smooth Ti (R(a) ≤ 0.08 μm). In the presence of transforming growth factor β1 (TGFβ1) stimulation, rough Ti inhibited alpha-smooth muscle actin (α-SMA) expression and collagen deposition, leading to decreased myofibroblast transformation and disorganization of the collagen fibrils as compared to smooth Ti. This study suggests that Ti surface topography regulates corneal cell behavior in a tissue-dependent manner that varies across the corneal strata. Contrary to the accepted paradigm, smooth surface topography can enhance cell adhesion and proliferation and increase matrix deposition by corneal cells.

  16. Macrophage responses to 316L stainless steel and cobalt chromium alloys with different surface topographies.

    PubMed

    Anderson, Jordan A; Lamichhane, Sujan; Mani, Gopinath

    2016-11-01

    The surface topography of a biomaterial plays a vital role in determining macrophage interactions and influencing immune response. In this study, we investigated the effect of smooth and microrough topographies of commonly used metallic biomaterials such as 316 L stainless steel (SS) and cobalt-chromium (CoCr) alloys on macrophage interactions. The macrophage adhesion was greater on CoCr compared to SS, irrespective of their topographies. The macrophage activation and the secretion of most pro-inflammatory cytokines (TNF-α, IL-6, and IP-10) were greater on microrough surfaces than on smooth surfaces by day-1. However, by day-2, the macrophage activation on smooth surfaces was also significantly increased up to the same level as observed on the microrough surfaces, with more amount of cytokines secreted. The secretion of anti-inflammatory cytokine (IL-10) was significantly increased from day-1 to day-2 on all the alloy surfaces with the effect most prominently observed on microrough surfaces. The production of nitric oxide by the macrophages did not show any major substrate-dependent effect. The foreign body giant cells formed by macrophages were least observed on the microrough surfaces of CoCr. Thus, this study demonstrated that the nature of material (SS or CoCr) and their surface topographies (smooth or microrough) strongly influence the macrophage responses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2658-2672, 2016. © 2016 Wiley Periodicals, Inc.

  17. Evaluation of modified titanium surfaces physical and chemical characteristics

    NASA Astrophysics Data System (ADS)

    Lukaszewska-Kuska, Magdalena; Leda, Bartosz; Gajdus, Przemyslaw; Hedzelek, Wieslaw

    2017-11-01

    Development of dental implantology is focused, among other things, on devising active surface of the implant, conditioning acceleration of the implant's integration with the bone. Increased roughness, characteristic for group of implants with developed surface, altered topography and chemically modified implant's surface determines increased implants stability. In this study four different titanium surfaces modifications: turned (TS); aluminium oxide-blasted (Al2O3); resorbable material blasted (RBM); sandblast and then etched with a mixture of acids (SAE), were evaluated in terms of surfaces topography and chemical composition prior to in vivo analysis. Topography analysis revealed two groups: one with smooth, anisotropic, undeveloped TS surface and the second group with remaining surfaces presenting rough, isotropic, developed surfaces with added during blasting procedure aluminium for Al2O3 and calcium and phosphorus for RBM. Physical and chemical modifications of titanium surface change its microstructure (typical for SAE) and increase its roughness (highest for Al2O3-blasted and RBM surfaces). The introduced modifications develop titanium surface - 10 times for SAE surfaces, 16 times for Al2O3-blasted surfaces, and 20 times for RBM surfaces.

  18. Production of hybrid macro/micro/nano surface structures on Ti6Al4V surfaces by picosecond laser surface texturing and their antifouling characteristics.

    PubMed

    Rajab, Fatema H; Liauw, Christopher M; Benson, Paul S; Li, Lin; Whitehead, Kathryn A

    2017-12-01

    The development of surfaces which reduce biofouling has attracted much interest in practical applications. Three picosecond laser generated surface topographies (Ti1, Ti2, Ti3) on titanium were produced, treated with fluoroalkylsilane (FAS), then characterised using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Raman Spectroscopy, Fourier Transform Infra-Red (FTIR) spectroscopy, contact angle measurements and white light interference microscopy. The surfaces had a range of different macro/micro/nano topographies. Ti2 had a unique, surface topography with large blunt conical peaks and was predominantly a rutile surface with closely packed, self-assembled FAS; this was the most hydrophobic sample (water contact angle 160°; ΔG iwi was -135.29mJm -2 ). Bacterial attachment, adhesion and retention to the surfaces demonstrated that all the laser generated surfaces retained less bacteria than the control surface. This also occurred following the adhesion and retention assays when the bacteria were either not rinsed from the surfaces or were retained in static conditions for one hour. This work demonstrated that picosecond laser generated surfaces may be used to produce antiadhesive surfaces that significantly reduced surface fouling. It was determined that a tri-modally dimensioned surface roughness, with a blunt conical macro-topography, combined with a close-packed fluoroalkyl monolayer was required for an optimised superhydrophobic surface. These surfaces were effective even following surface immersion and static conditions for one hour, and thus may have applications in a number of food or medical industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Development of antifouling surfaces to reduce bacterial attachment

    NASA Astrophysics Data System (ADS)

    Graham, Mary Viola

    Bacteria are exceptionally good at adhering to surfaces and forming complex structures known as biofilms. This process, known as biofouling, can cause problems for infrastructure (eg, clogging and damaging pipes), for the food industry (eg, contamination of processing surfaces and equipment, and for the medical industry (eg, contamination of indwelling medical devices). Accordingly, multiple strategies have been explored to combat biofouling, including chemical modification of surfaces, development of antibiotic coatings, and more recently, the use of engineered surface topography. When designed properly, engineered surface topographies can significantly reduce bacterial surface attachment, ultimately limiting surface colonization. In this work, we hypothesized that the morphology, size, spacing, and surface pre-treatment of topographical features should directly correlate with the size and shape of target organisms, in order to reduce biofouling. Topographical features with size and spacing from 0.25 to 2 mum were fabricated in silicone elastomer and tested against rod shaped bacteria with an average size of 0.5 x 2 mum and spherical bacteria (cocci) ranging from 0.5 - 1 μm in diameter. Antifouling properties of the different topographical features were tested in both static and flow-based assays, and under oxygen plasma-treated (hydrophilic) and untreated (hydrophobic) surface conditions. We found that surface pre-treatment universally affects the ability bacteria to attach to surfaces, while surface topography limits attachment in a manner dependent on the bacterial size/shape and the size/spacing of the topography.

  20. Quantitative surface topography assessment of directly compressed and roller compacted tablet cores using photometric stereo image analysis.

    PubMed

    Allesø, Morten; Holm, Per; Carstensen, Jens Michael; Holm, René

    2016-05-25

    Surface topography, in the context of surface smoothness/roughness, was investigated by the use of an image analysis technique, MultiRay™, related to photometric stereo, on different tablet batches manufactured either by direct compression or roller compaction. In the present study, oblique illumination of the tablet (darkfield) was considered and the area of cracks and pores in the surface was used as a measure of tablet surface topography; the higher a value, the rougher the surface. The investigations demonstrated a high precision of the proposed technique, which was able to rapidly (within milliseconds) and quantitatively measure the obtained surface topography of the produced tablets. Compaction history, in the form of applied roll force and tablet punch pressure, was also reflected in the measured smoothness of the tablet surfaces. Generally it was found that a higher degree of plastic deformation of the microcrystalline cellulose resulted in a smoother tablet surface. This altogether demonstrated that the technique provides the pharmaceutical developer with a reliable, quantitative response parameter for visual appearance of solid dosage forms, which may be used for process and ultimately product optimization. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Quantitative study of Xanthosoma violaceum leaf surfaces using RIMAPS and variogram techniques.

    PubMed

    Favret, Eduardo A; Fuentes, Néstor O; Molina, Ana M

    2006-08-01

    Two new imaging techniques (rotated image with maximum averaged power spectrum (RIMAPS) and variogram) are presented for the study and description of leaf surfaces. Xanthosoma violaceum was analyzed to illustrate the characteristics of both techniques. Both techniques produce a quantitative description of leaf surface topography. RIMAPS combines digitized images rotation with Fourier transform, and it is used to detect patterns orientation and characteristics of surface topography. Variogram relates the mathematical variance of a surface with the area of the sample window observed. It gives the typical scale lengths of the surface patterns. RIMAPS detects the morphological variations of the surface topography pattern between fresh and dried (herbarium) samples of the leaf. The variogram method finds the characteristic dimensions of the leaf microstructure, i.e., cell length, papillae diameter, etc., showing that there are not significant differences between dry and fresh samples. The results obtained show the robustness of RIMAPS and variogram analyses to detect, distinguish, and characterize leaf surfaces, as well as give scale lengths. Both techniques are tools for the biologist to study variations of the leaf surface when different patterns are present. The use of RIMAPS and variogram opens a wide spectrum of possibilities by providing a systematic, quantitative description of the leaf surface topography.

  2. Patterning of novel breast implant surfaces by enhancing silicone biocompatibility, using biomimetic topographies.

    PubMed

    Barr, S; Hill, E; Bayat, A

    2010-04-26

    Silicone biocompatibility is dictated by cell-surface interaction and its understanding is important in the field of implantation. The role of surface topography and its associated cellular morphology needs investigation to identify qualities that enhance silicone surface biocompatability. This study aims to create well-defined silicone topographies and examine how breast tissue-derived fibroblasts react and align to these surfaces. Photolithographic microelectronic techniques were modified to produce naturally inspired topographies in silicone, which were cultured with breast tissue-derived human fibroblasts. Using light, immunofluorescent and atomic force microscopy, the cytoskeletal reaction of fibroblasts to these silicone surfaces was investigated. Numerous, well-defined micron-sized pillars, pores, grooves, and ridges were manufactured and characterized in medical grade silicone. Inimitable immunofluorescent microscopy represented in our high magnification images of vinculin, vimentin, and the actin cytoskeleton highlights the differences in fibroblast adhesion between fabricated silicone surfaces. These unique figures illustrate that fibroblast adhesion and the reactions these cells have to silicone can be manipulated to enhance biointegration between the implant and the breast tissue. An alteration of fibroblast phenotype was also observed, exhibiting the propensity of these surfaces to induce categorical remodeling of fibroblasts. This unique study shows that fibroblast reactions to silicone topographies can be tailored to induce physiological changes in cells. This paves the way for further research necessary to develop more biocompatible constructs capable of eliminating capsular contracture by subverting the foreign body response.

  3. Laser-based nanoengineering of surface topographies for biomedical applications

    NASA Astrophysics Data System (ADS)

    Schlie, Sabrina; Fadeeva, Elena; Koroleva, Anastasia; Ovsianikov, Aleksandr; Koch, Jürgen; Ngezahayo, Anaclet; Chichkov, Boris. N.

    2011-04-01

    In this study femtosecond laser systems were used for nanoengineering of special surface topographies in silicon and titanium. Besides the control of feature sizes, we demonstrated that laser structuring caused changes in material wettability due to a reduced surface contact area. These laser-engineered topographies were tested for their capability to control cellular behavior of human fibroblasts, SH-SY5Y neuroblastoma cells, and MG-63 osteoblasts. We found that fibroblasts reduced cell growth on the structures, while the other cell types proliferated at the same rate. These findings make laser-surface structuring very attractive for biomedical applications. Finally, to explain the results the correlation between topography and the biophysics of cellular adhesion, which is the key step of selective cell control, is discussed.

  4. Effect of surface topography and bioactive properties on early adhesion and growth behavior of mouse preosteoblast MC3T3-E1 cells.

    PubMed

    Li, Na; Chen, Gang; Liu, Jue; Xia, Yang; Chen, Hanbang; Tang, Hui; Zhang, Feimin; Gu, Ning

    2014-10-08

    The effects of bioactive properties and surface topography of biomaterials on the adhesion and spreading properties of mouse preosteoblast MC3T3-E1 cells was investigated by preparation of different surfaces. Poly lactic-co-glycolic acid (PLGA) electrospun fibers (ES) were produced as a porous rough surface. In our study, coverslips were used as a substrate for the immobilization of 3,4-dihydroxyphenylalanine (DOPA) and collagen type I (COL I) in the preparation of bioactive surfaces. In addition, COL I was immobilized onto porous electrospun fibers surfaces (E-COL) to investigate the combined effects of bioactive molecules and topography. Untreated coverslips were used as controls. Early adhesion and growth behavior of MC3T3-E1 cells cultured on the different surfaces were studied at 6, 12, and 24 h. Evaluation of cell adhesion and morphological changes showed that the all the surfaces were favorable for promoting the adhesion and spreading of cells. CCK-8 assays and flow cytometry revealed that both topography and bioactive properties were favorable for cell growth. Analysis of β1, α1, α2, α5, α10 and α11 integrin expression levels by immunofluorescence, real-time RT-PCR, and Western blot and indicated that surface topography plays an important role in the early stage of cell adhesion. However, the influence of topography and bioactive properties of surfaces on integrins is variable. Compared with any of the topographic or bioactive properties in isolation, the combined effect of both types of properties provided an advantage for the growth and spreading of MC3T3-E1 cells. This study provides a new insight into the functions and effects of topographic and bioactive modifications of surfaces at the interface between cells and biomaterials for tissue engineering.

  5. Cell adhesion on nanotopography

    NASA Astrophysics Data System (ADS)

    Tsai, Irene; Kimura, Masahiro; Stockton, Rebecca; Jacobson, Bruce; Russell, Thomas

    2003-03-01

    Cell adhesion, a key element in understanding the cell-biomaterial interactions, underpins proper cell growth, function and survival. Understanding the parameters influencing cell adhesion is critical for applications in biosensors, implants and bioreactors. A gradient surface is used to study the effect of the surface topography on cell adhesion. A gradient surface is generated by block copolymer and homopolymer blends. The two homopolymers will phase separate on the micron scale and gradually decrease to nano-scale by the microphase separation of the diblock. Gradient surfaces offer a unique opportunity to probe lateral variations in the topography and interactions. Using thin films of mixtures of diblock copolymers of PS-b-MMA with PS and PMMA homopolymers, where the concentration of the PS-b-MMA varies across the surface, a gradient in the size scale of the morphology, from the nanoscopic to microscopic, was produced. By UV exposure, the variation in morphology translated into a variation in topography. The extent of cell spreading and cytoskeleton formation was investigated and marked dependence on the length scale of the surface topography was found.

  6. Facile synthesis of biphasic calcium phosphate microspheres with engineered surface topography for controlled delivery of drugs and proteins.

    PubMed

    Zarkesh, Ibrahim; Ghanian, Mohammad Hossein; Azami, Mahmoud; Bagheri, Fatemeh; Baharvand, Hossein; Mohammadi, Javad; Eslaminejad, Mohamadreza Baghaban

    2017-09-01

    Biphasic calcium phosphate (BCP) microspheres are of great interest due to their high stability and osteoinductive properties at specific compositions. However, the need for optimal performance at a unique composition limits their flexibility for tuning drug release by modulation of bulk properties and presents the question of engineering surface topography as an alternative. It is necessary to have a facile method to control surface topography at a defined bulk composition. Here, we have produced BCP microspheres with different surface topographies that have the capability to be used as tunable drug release systems. We synthesized calcium deficient hydroxyapatite (CDHA) microparticles by precipitating calcium and phosphate ions onto ethylenediaminetetraacetic acid (EDTA) templates. The morphology and surface topography of CDHA microparticles were controlled using process parameters, which governed nucleation and growth. These parameters included template concentration, heat rate, and stirring speed. Under low heat rate and static conditions, we could obtain spherical microparticles with long and short nanosheets on their surfaces at low and high EDTA concentrations, respectively. These nanostructured microspheres were subsequently crystallized by thermal treatment to produce EDTA-free BCP microspheres with intact morphology. These biocompatible BCP microspheres were highly effective in loading and prolonged release of both small molecule [dexamethasone (Dex)] and protein [bovine serum albumin (BSA)] models. This strategy has enabled us to control the surface topography of BCP microspheres at defined compositions and holds tremendous promise for drug delivery and tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Localization of burn mark under an abnormal topography on MOSFET chip surface using liquid crystal and emission microscopy tools.

    PubMed

    Lau, C K; Sim, K S; Tso, C P

    2011-01-01

    This article focuses on the localization of burn mark in MOSFET and the scanning electron microscope (SEM) inspection on the defect location. When a suspect abnormal topography is shown on the die surface, further methods to pin-point the defect location is necessary. Fault localization analysis becomes important because an abnormal spot on the chip surface may and may not have a defect underneath it. The chip surface topography can change due to the catastrophic damage occurred at layers under the chip surface, but it could also be due to inconsistency during metal deposition in the wafer fabrication process. Two localization techniques, liquid crystal thermography and emission microscopy, were performed to confirm that the abnormal topography spot is the actual defect location. The tiny burn mark was surfaced by performing a surface decoration at the defect location using hot hydrochloric acid. SEM imaging, which has the high magnification and three-dimensional capabilities, was used to capture the images of the burn mark. Copyright © 2011 Wiley Periodicals, Inc.

  8. Quantitative characterization of surface topography using spectral analysis

    NASA Astrophysics Data System (ADS)

    Jacobs, Tevis D. B.; Junge, Till; Pastewka, Lars

    2017-03-01

    Roughness determines many functional properties of surfaces, such as adhesion, friction, and (thermal and electrical) contact conductance. Recent analytical models and simulations enable quantitative prediction of these properties from knowledge of the power spectral density (PSD) of the surface topography. The utility of the PSD is that it contains statistical information that is unbiased by the particular scan size and pixel resolution chosen by the researcher. In this article, we first review the mathematical definition of the PSD, including the one- and two-dimensional cases, and common variations of each. We then discuss strategies for reconstructing an accurate PSD of a surface using topography measurements at different size scales. Finally, we discuss detecting and mitigating artifacts at the smallest scales, and computing upper/lower bounds on functional properties obtained from models. We accompany our discussion with virtual measurements on computer-generated surfaces. This discussion summarizes how to analyze topography measurements to reconstruct a reliable PSD. Analytical models demonstrate the potential for tuning functional properties by rationally tailoring surface topography—however, this potential can only be achieved through the accurate, quantitative reconstruction of the PSDs of real-world surfaces.

  9. The absolute dynamic ocean topography (ADOT)

    NASA Astrophysics Data System (ADS)

    Bosch, Wolfgang; Savcenko, Roman

    The sea surface slopes relative to the geoid (an equipotential surface) basically carry the in-formation on the absolute velocity field of the surface circulation. Pure oceanographic models may remain unspecific with respect to the absolute level of the ocean topography. In contrast, the geodetic approach to estimate the ocean topography as difference between sea level and the geoid gives by definition an absolute dynamic ocean topography (ADOT). This approach requires, however, a consistent treatment of geoid and sea surface heights, the first being usually derived from a band limited spherical harmonic series of the Earth gravity field and the second observed with much higher spectral resolution by satellite altimetry. The present contribution shows a procedure for estimating the ADOT along the altimeter profiles, preserving as much sea surface height details as the consistency w.r.t. the geoid heights will allow. The consistent treatment at data gaps and the coast is particular demanding and solved by a filter correction. The ADOT profiles are inspected for their innocent properties towards the coast and compared to external estimates of the ocean topography or the velocity field of the surface circulation as derived, for example, by ARGO floats.

  10. Nonlinear analysis and dynamic compensation of stylus scanning measurement with wide range

    NASA Astrophysics Data System (ADS)

    Hui, Heiyang; Liu, Xiaojun; Lu, Wenlong

    2011-12-01

    Surface topography is an important geometrical feature of a workpiece that influences its quality and functions such as friction, wearing, lubrication and sealing. Precision measurement of surface topography is fundamental for product quality characterizing and assurance. Stylus scanning technique is a widely used method for surface topography measurement, and it is also regarded as the international standard method for 2-D surface characterizing. Usually surface topography, including primary profile, waviness and roughness, can be measured precisely and efficiently by this method. However, by stylus scanning method to measure curved surface topography, the nonlinear error is unavoidable because of the difference of horizontal position of the actual measured point from given sampling point and the nonlinear transformation process from vertical displacement of the stylus tip to angle displacement of the stylus arm, and the error increases with the increasing of measuring range. In this paper, a wide range stylus scanning measurement system based on cylindrical grating interference principle is constructed, the originations of the nonlinear error are analyzed, the error model is established and a solution to decrease the nonlinear error is proposed, through which the error of the collected data is dynamically compensated.

  11. The effect of asteroid topography on surface ablation deflection

    NASA Astrophysics Data System (ADS)

    McMahon, Jay W.; Scheeres, Daniel J.

    2017-02-01

    Ablation techniques for deflecting hazardous asteroids deposit energy into the asteroid's surface, causing an effective thrust on the asteroid as the ablating material leaves normal to the surface. Although it has long been recognized that surface topography plays an important role in determining the deflection capabilities, most studies to date have ignored this aspect of the model. This paper focuses on understanding the topography for real asteroid shapes, and how this topography can change the deflection performance of an ablation technique. The near Earth asteroids Golevka, Bennu, and Itokawa are used as the basis for this study, as all three have high-resolution shape models available. This paper shows that naive targeting of an ablation method without accounting for the surface topography can lower the deflection performance by up to 20% in the cases studied in terms of the amount of acceleration applied in the desired direction. If the ablation thrust level is assumed to be 100 N, as used elsewhere in the literature, this misapplication of thrust translates to tens of kilometers per year in decreased semimajor axis change. However, if the ablation method can freely target any visible point on the surface of the asteroid, almost all of this performance can be recovered.

  12. Influence of additive laser manufacturing parameters on surface using density of partially melted particles

    NASA Astrophysics Data System (ADS)

    Rosa, Benoit; Brient, Antoine; Samper, Serge; Hascoët, Jean-Yves

    2016-12-01

    Mastering the additive laser manufacturing surface is a real challenge and would allow functional surfaces to be obtained without finishing. Direct Metal Deposition (DMD) surfaces are composed by directional and chaotic textures that are directly linked to the process principles. The aim of this work is to obtain surface topographies by mastering the operating process parameters. Based on experimental investigation, the influence of operating parameters on the surface finish has been modeled. Topography parameters and multi-scale analysis have been used in order to characterize the DMD obtained surfaces. This study also proposes a methodology to characterize DMD chaotic texture through topography filtering and 3D image treatment. In parallel, a new parameter is proposed: density of particles (D p). Finally, this study proposes a regression modeling between process parameters and density of particles parameter.

  13. Biological Response of Human Bone Marrow-Derived Mesenchymal Stem Cells to Commercial Tantalum Coatings with Microscale and Nanoscale Surface Topographies

    NASA Astrophysics Data System (ADS)

    Skoog, Shelby A.; Kumar, Girish; Goering, Peter L.; Williams, Brian; Stiglich, Jack; Narayan, Roger J.

    2016-06-01

    Tantalum is a promising orthopaedic implant coating material due to its robust mechanical properties, corrosion resistance, and excellent biocompatibility. Previous studies have demonstrated improved biocompatibility and tissue integration of surface-treated tantalum coatings compared to untreated tantalum. Surface modification of tantalum coatings with biologically inspired microscale and nanoscale features may be used to evoke optimal tissue responses. The goal of this study was to evaluate commercial tantalum coatings with nanoscale, sub-microscale, and microscale surface topographies for orthopaedic and dental applications using human bone marrow-derived mesenchymal stem cells (hBMSCs). Tantalum coatings with different microscale and nanoscale surface topographies were fabricated using a diffusion process or chemical vapor deposition. Biological evaluation of the tantalum coatings using hBMSCs showed that tantalum coatings promote cellular adhesion and growth. Furthermore, hBMSC adhesion to the tantalum coatings was dependent on surface feature characteristics, with enhanced cell adhesion on sub-micrometer- and micrometer-sized surface topographies compared to hybrid nano-/microstructures. Nanostructured and microstructured tantalum coatings should be further evaluated to optimize the surface coating features to promote osteogenesis and enhance osseointegration of tantalum-based orthopaedic implants.

  14. Surface topography characterization of brass alloys: lead brass (CuZn39Pb3) and lead free brass (CuZn21Si3P)

    NASA Astrophysics Data System (ADS)

    Reddy, Vijeth V.; Vedantha Krishna, Amogh; Schultheiss, Fredrik; Rosén, B.-G.

    2017-06-01

    Manufactured surfaces usually consist of topographical features which include both those put forth by the manufacturing process, and micro-features caused by disturbances during this process. Surface characterization basically involves study of these features which influence the functionality of the surface. This article focuses on characterization of the surface topography of machined lead brass and lead free brass. The adverse effect of lead on human health and the environment has led the manufacturing sector to focus on sustainable manufacturing of lead free brass, as well as how to maintain control of the surface integrity when substituting the lead content in the brass with silicon. The investigation includes defined areal surface parameters measured on the turned samples of lead- and lead free brass using an optical coherence scanning interferometer, CSI. This paper deals with the study of surface topography of turned samples of lead- and lead free brass. It is important to study the topographical characteristics of the brass samples which are the intermediate link between the manufacturing process variables and the functional behaviour of the surface. To numerically evaluate the sample’s surface topography and to validate the measurements for a significant study, a general statistical methodology is implemented. The results indicate higher surface roughness in turned samples of lead brass compared to lead free brass.

  15. The Relationship of the MOLA Topography of Mars to the Mean Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria T.

    1999-01-01

    The MOLA topography of Mars is based on a new mean radius of the planet and new equipotential surface for the areoid. The mean atmospheric pressure surface of 6.1mbars that has been used in the past as a reference level for topography does not apply to the zero level of MOLA elevations. The MOLA mean radius of the planet is 3389508 meters and the mean equatorial radius is 339600 meters. The areoid of the zero level of the MOLA altimetry is defined to be the potential surface with the same potential as the mean equatorial radius. The MOLA topography differs from the USGS digital elevation data by approximately 1.6 km, with MOLA higher. The average pressure on the MOLA reference surface for Ls =0 is approximately 5.1 mbars and has been derived from occultation data obtained from the tracking of Viking, Mariner, and MGS spacecraft and interpolated with the aid of the Ames Mars GCM. The new topography and the new occultation data are providing a more reliable relationship between elevation and surface pressure.

  16. Dynamic Topography at Earth's Surface: Fact or Fiction? (Invited)

    NASA Astrophysics Data System (ADS)

    Lithgow-Bertelloni, C. R.; Silver, P. G.

    2009-12-01

    Contributions to Earth’s surface topography range from short-wavelength uncompensated features due to tectonic activity, to variations in crustal structure and long-wavelength deflections of the lithosphere caused by mantle dynamics. The latter we call dynamic topography. Dynamic topography elevates or depresses the surface even if the density anomaly giving rise to flow is deep in the mantle. Dynamic topography is also a major contributor to Earth’s gravitational potential and to surface deformation. However, direct observations of dynamic topography are elusive, because signals are obscured by the isostatic contribution due to crustal and lithospheric structure. The only seemingly unequivocal signals of dynamically supported topography have been found over mantle upwellings on both continents (Africa [Lithgow-Bertelloni and Silver, 1998] and Arabia [Daradich et al., 2004]) and oceanic basins (North-Atlantic [Conrad et al., 2004]). Recent work on Africa’s geomorphic history [Moore et al., 2009] and North Atlantic gravity and topography have called even these results into questions. In downwelling regions (near slabs) no clear signals have been found. I will explore why this dichotomy may exist and relate it to the need for dynamic topography in mantle flow models, with an eye towards the effects of phase transitions, lateral variations in viscosity and layered convection. I will also present recent results on dynamic topography over flat slab segments that overturn the conventional wisdom and explain basin topography in the Andean foreland. Along with the new models I will discuss a recent global lithospheric structure model with which to compute the residual topography, i.e. the “observed” dynamic topography.

  17. 3D surface topography study of the biofunctionalized nanocrystalline Ti-6Zr-4Nb/Ca-P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakubowicz, J., E-mail: jaroslaw.jakubowicz@put.poznan.pl; Adamek, G.; Jurczyk, M.U.

    2012-08-15

    In this work surface of the sintered Ti-6Zr-4Nb nanocrystalline alloy was electrochemically biofunctionalized. The porous surface was produced by anodic oxidation in 1 M H{sub 3}PO{sub 4} + 2%HF electrolyte at 10 V for 30 min. Next the calcium-phosphate (Ca-P) layer was deposited, onto the formed porous surface, using cathodic potential - 5 V kept for 60 min in 0.042 M Ca(NO{sub 3}){sub 2} + 0.025 M (NH{sub 4}){sub 2}HPO{sub 4} + 0.1 M HCl electrolyte. The deposited Ca-P layer anchored in the pores. The biofunctionalized surface was studied by XRD, SEM and EDS. In vitro tests culture of normalmore » human osteoblast (NHOst) cells showed very good cells proliferation, colonization and multilayering. Using optical profiler, roughness and hybrid 3D surface topography parameters were estimated. Correlation between surface composition, morphology, roughness and biocompatibility results was done. It has been shown by us that surface with appropriate chemical composition and topography, after combined electrochemical anodic and cathodic surface treatment, supports osteoblast adhesion and proliferation. 3D topography measurements using optical profiler play a key role in the biomaterials surface analysis. - Highlights: Black-Right-Pointing-Pointer Nanocrystalline Ti-6Zr-4Nb/Ca-P material was produced for hard tissue implant applications. Black-Right-Pointing-Pointer Calcium-phosphate results in surface biofunctionalization. Black-Right-Pointing-Pointer The biofunctionalized surface shows good in-vitro behavior.« less

  18. In Situ Scanning Tunneling Microscopy Topography Changes of Gold (111) in Aqueous Sulfuric Acid Produced by Electrochemical Surface Oxidation and Reduction and Relaxation Phenomena

    NASA Astrophysics Data System (ADS)

    Pasquale, M. A.; Nieto, F. J. Rodríguez; Arvia, A. J.

    The electrochemical formation and reduction of O-layers on gold (111) films in 1 m sulfuric acid under different potentiodynamic routines are investigated utilizing in situ scanning tunneling microscopy. The surface dynamics is interpreted considering the anodic and cathodic reaction pathways recently proposed complemented with concurrent relaxation phenomena occurring after gold (111) lattice mild disruption (one gold atom deep) and moderate disruption (several atoms deep). The dynamics of both oxidized and reduced gold topographies depends on the potentiodynamic routine utilized to form OH/O surface species. The topography resulting from a mild oxidative disruption is dominated by quasi-2D holes and hillocks of the order of 5 nm, involving about 500-600 gold atoms each, and their coalescence. A cooperative turnover process at the O-layer, in which the anion ad-layer and interfacial water play a key role, determines the oxidized surface topography. The reduction of these O-layers results in gold clusters, their features depending on the applied potential routine. A moderate oxidative disruption produces a surface topography of hillocks and holes several gold atoms high and deep, respectively. The subsequent reduction leads to a spinodal gold pattern. Concurrent coalescence appears to be the result of an Ostwald ripening that involves the surface diffusion of both gold atoms and clusters. These processes produce an increase in surface roughness and an incipient gold faceting. The dynamics of different topographies can be qualitatively explained employing the arguments from colloidal science theory. For 1.1 V ≤ E ≅ Epzc weak electrostatic repulsions favor gold atom/cluster coalescence, whereas for E < Epzc the attenuated electrostatic repulsions among gold surfaces stabilize small clusters over the substrate producing string-like patterns.

  19. Patterning of Novel Breast Implant Surfaces by Enhancing Silicone Biocompatibility, Using Biomimetic Topographies

    PubMed Central

    Barr, S.; Hill, E.; Bayat, A.

    2010-01-01

    Introduction and Aims: Silicone biocompatibility is dictated by cell-surface interaction and its understanding is important in the field of implantation. The role of surface topography and its associated cellular morphology needs investigation to identify qualities that enhance silicone surface biocompatability. This study aims to create well-defined silicone topographies and examine how breast tissue–derived fibroblasts react and align to these surfaces. Methods: Photolithographic microelectronic techniques were modified to produce naturally inspired topographies in silicone, which were cultured with breast tissue–derived human fibroblasts. Using light, immunofluorescent and atomic force microscopy, the cytoskeletal reaction of fibroblasts to these silicone surfaces was investigated. Results: Numerous, well-defined micron-sized pillars, pores, grooves, and ridges were manufactured and characterized in medical grade silicone. Inimitable immunofluorescent microscopy represented in our high magnification images of vinculin, vimentin, and the actin cytoskeleton highlights the differences in fibroblast adhesion between fabricated silicone surfaces. These unique figures illustrate that fibroblast adhesion and the reactions these cells have to silicone can be manipulated to enhance biointegration between the implant and the breast tissue. An alteration of fibroblast phenotype was also observed, exhibiting the propensity of these surfaces to induce categorical remodeling of fibroblasts. Conclusions: This unique study shows that fibroblast reactions to silicone topographies can be tailored to induce physiological changes in cells. This paves the way for further research necessary to develop more biocompatible constructs capable of eliminating capsular contracture by subverting the foreign body response. PMID:20458346

  20. Human Fetal Osteoblast Response on Poly(Methyl Methacrylate)/Polystyrene Demixed Thin Film Blends: Surface Chemistry Vs Topography Effects.

    PubMed

    D'Sa, Raechelle A; Raj, Jog; Dickinson, Peter J; McCabe, Fiona; Meenan, Brian J

    2016-06-22

    Recent advances in materials sciences have allowed for the development and fabrication of biomaterials that are capable of providing requisite cues to instigate cells to respond in a predictable fashion. We have developed a series of poly(methyl methacrylate)/polystyrene (PMMA/PS) polymer demixed thin films with nanotopographies ranging from nanoislands to nanopits to study the response of human fetal osteoblast cells (hFOBs). When PMMA was in excess in the blend composition, a nanoisland topography dominated, whereas a nanopit topography dominated when PS was in excess. PMMA was found to segregate to the top of the nanoisland morphology with PS preferring the substrate interface. To further ascertain the effects of surface chemistry vs topography, we plasma treated the polymer demixed films using an atmospheric pressure dielectric barrier discharge reactor to alter the surface chemistry. Our results have shown that hFOBs did not have an increased short-term cellular response on pristine polymer demixed surfaces. However, increasing the hydrophilicty/wettability of the surfaces by oxygen functionalization causes an increase in the cellular response. These results indicate that topography alone is not sufficient to induce a positive cellular response, but the underlying surface chemistry is also important in regulating cell function.

  1. Reconstruction of Laser-Induced Surface Topography from Electron Backscatter Diffraction Patterns.

    PubMed

    Callahan, Patrick G; Echlin, McLean P; Pollock, Tresa M; De Graef, Marc

    2017-08-01

    We demonstrate that the surface topography of a sample can be reconstructed from electron backscatter diffraction (EBSD) patterns collected with a commercial EBSD system. This technique combines the location of the maximum background intensity with a correction from Monte Carlo simulations to determine the local surface normals at each point in an EBSD scan. A surface height map is then reconstructed from the local surface normals. In this study, a Ni sample was machined with a femtosecond laser, which causes the formation of a laser-induced periodic surface structure (LIPSS). The topography of the LIPSS was analyzed using atomic force microscopy (AFM) and reconstructions from EBSD patterns collected at 5 and 20 kV. The LIPSS consisted of a combination of low frequency waviness due to curtaining and high frequency ridges. The morphology of the reconstructed low frequency waviness and high frequency ridges matched the AFM data. The reconstruction technique does not require any modification to existing EBSD systems and so can be particularly useful for measuring topography and its evolution during in situ experiments.

  2. Effect of Hydrofluoric Acid Etching Time on Titanium Topography, Chemistry, Wettability, and Cell Adhesion

    PubMed Central

    Zahran, R.; Rosales Leal, J. I.; Rodríguez Valverde, M. A.; Cabrerizo Vílchez, M. A.

    2016-01-01

    Titanium implant surface etching has proven an effective method to enhance cell attachment. Despite the frequent use of hydrofluoric (HF) acid, many questions remain unresolved, including the optimal etching time and its effect on surface and biological properties. The objective of this study was to investigate the effect of HF acid etching time on Ti topography, surface chemistry, wettability, and cell adhesion. These data are useful to design improved acid treatment and obtain an improved cell response. The surface topography, chemistry, dynamic wetting, and cell adhesiveness of polished Ti surfaces were evaluated after treatment with HF acid solution for 0, 2; 3, 5, 7, or 10 min, revealing a time-dependent effect of HF acid on their topography, chemistry, and wetting. Roughness and wetting increased with longer etching time except at 10 min, when roughness increased but wetness decreased. Skewness became negative after etching and kurtosis tended to 3 with longer etching time. Highest cell adhesion was achieved after 5–7 min of etching time. Wetting and cell adhesion were reduced on the highly rough surfaces obtained after 10-min etching time. PMID:27824875

  3. Effects of various etching protocols on the flexural properties and surface topography of fiber-reinforced composite dental posts.

    PubMed

    Aksornmuang, Juthatip; Chuenarrom, Chanya; Chittithaworn, Natjira

    2017-09-26

    The purpose of this study was to evaluate the flexural properties and surface topography of fiber posts surface-treated with various etching protocols. Seventy each of three types of fiber posts: RelyX Fiber Post, Tenax Fiber Trans, and D.T. Light-Post Illusion X-Ro, were randomly divided into 7 groups: no surface treatment, surface treated with hydrofluoric acid (HF) 4.5% for 60 s, HF 4.5% for 120 s, HF 9.6% for 15 s, HF 9.6% for 60 s, HF 9.6% for 120 s, and treated with H 2 O 2 24% for 10 min. The specimens were then subjected to a three-point bending test. Surface topographies of the posts were observed using a SEM. The results indicate that fiber post surface pretreatments had no adverse effects on the flexural properties. However, the fiber posts treated with high HF concentrations or long etching times seemed to have more surface irregularities.

  4. How Escherichia coli lands and forms cell clusters on a surface: a new role of surface topography

    PubMed Central

    Gu, Huan; Chen, Aaron; Song, Xinran; Brasch, Megan E.; Henderson, James H.; Ren, Dacheng

    2016-01-01

    Bacterial response to surface topography during biofilm formation was studied using 5 μm tall line patterns of poly (dimethylsiloxane) (PDMS). Escherichia coli cells attached on top of protruding line patterns were found to align more perpendicularly to the orientation of line patterns when the pattern narrowed. Consistently, cell cluster formation per unit area on 5 μm wide line patterns was reduced by 14-fold compared to flat PDMS. Contrasting the reduced colony formation, cells attached on narrow patterns were longer and had higher transcriptional activities, suggesting that such unfavorable topography may present a stress to attached cells. Results of mutant studies indicate that flagellar motility is involved in the observed preference in cell orientation on narrow patterns, which was corroborated by the changes in cell rotation pattern before settling on different surface topographies. These findings led to a set of new design principles for creating antifouling topographies, which was validated using 10 μm tall hexagonal patterns. PMID:27412365

  5. Influence of nanophase titania topography on bacterial attachment and metabolism

    PubMed Central

    Park, Margaret R; Banks, Michelle K; Applegate, Bruce; Webster, Thomas J

    2008-01-01

    Surfaces with nanophase compared to conventional (or nanometer smooth) topographies are known to have different properties of area, charge, and reactivity. Previously published research indicates that the attachment of certain bacteria (such as Pseudomonas fluorescens 5RL) is higher on surfaces with nanophase compared to conventional topographies, however, their effect on bacterial metabolism is unclear. Results presented here show that the adhesion of Pseudomonas fluorescens 5RL and Pseudomonas putida TVA8 was higher on nanophase than conventional titania. Importantly, in terms of metabolism, bacteria attached to the nanophase surfaces had higher bioluminescence rates than on the conventional surfaces under all nutrient conditions. Thus, the results from this study show greater select bacterial metabolism on nanometer than conventional topographies, critical results with strong consequences for the design of improved biosensors for bacteria detection. PMID:19337418

  6. Applications of corneal topography and tomography: a review.

    PubMed

    Fan, Rachel; Chan, Tommy Cy; Prakash, Gaurav; Jhanji, Vishal

    2018-03-01

    Corneal imaging is essential for diagnosing and management of a wide variety of ocular diseases. Corneal topography is used to characterize the shape of the cornea, specifically, the anterior surface of the cornea. Most corneal topographical systems are based on Placido disc that analyse rings that are reflected off the corneal surface. The posterior corneal surface cannot be characterized using Placido disc technology. Imaging of the posterior corneal surface is useful for diagnosis of corneal ectasia. Unlike corneal topographers, tomographers generate a three-dimensional recreation of the anterior segment and provide information about the corneal thickness. Scheimpflug imaging is one of the most commonly used techniques for corneal tomography. The cross-sectional images generated by a rotating Scheimpflug camera are used to locate the anterior and posterior corneal surfaces. The clinical uses of corneal topography include, diagnosis of corneal ectasia, assessment of corneal astigmatism, and refractive surgery planning. This review will discuss the applications of corneal topography and tomography in clinical practice. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  7. Optical properties and surface topography of CdCl2 activated CdTe thin films

    NASA Astrophysics Data System (ADS)

    Patel, S. L.; Purohit, A.; Chander, S.; Dhaka, M. S.

    2018-05-01

    The effect of post-CdCl2 heat treatment on optical properties and surface topography of evaporated CdTe thin films is investigated. The pristine and thermally annealed films were subjected to UV-Vis spectrophotometer and atomic force microscopy (AFM) to investigate the optical properties and surface topography, respectively. The absorbance is found to be maximum (˜90%) at 320°C temperature and transmittance found to be minimum and almost constant in ultraviolet and visible regions. The direct band gap is increased from 1.42 eV to 2.12 eV with post-CdCl2 annealing temperature. The surface topography revealed that the uniformity is improved with annealing temperature and average surface roughness is found in the range of 83.3-144.3 nm as well as grains have cylindrical hill-like shapes. The investigated results indicate that the post-CdCl2 treated films annealed at 320°C may be well-suitable for thin film solar cells as an absorber layer.

  8. The impact of runoff and surface hydrology on Titan's climate

    NASA Astrophysics Data System (ADS)

    Faulk, Sean; Lora, Juan; Mitchell, Jonathan

    2017-10-01

    Titan’s surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane “wetlands” reservoirs realistically produce many observed features of Titan’s atmosphere, whereas “aquaplanet” simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan’s surface. The wetlands configuration is, in part, motivated by Titan’s large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. To isolate the singular impact of surface runoff on Titan’s climatology, we run simulations without parameterizations of subsurface flow and topography-atmosphere interactions. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan’s hydrology provides new insight into the complex interaction between Titan’s atmosphere and surface, demonstrates the influence of surface runoff on Titan’s global climate, and lays the groundwork for further surface hydrology developments in Titan GCMs.

  9. Synergistic responses of superficial chemistry and micro topography of titanium created by wire-type electric discharge machining.

    PubMed

    Kataoka, Yu; Tamaki, Yukimichi; Miyazaki, Takashi

    2011-01-01

    Wire-type electric discharge machining has been applied to the manufacture of endosseous titanium implants as this computer associated technique allows extremely accurate complex sample shaping with an optimal micro textured surface during the processing. Since the titanium oxide layer is sensitively altered by each processing, the authors hypothesized that this technique also up-regulates biological responses through the synergistic effects of the superficial chemistry and micro topography. To evaluate the respective in vitro cellular responses on the superficial chemistry and micro topography of titanium surface processed by wire-type electric discharge, we used titanium-coated epoxy resin replica of the surface. An oxide layer on the titanium surface processed by wire-type electric discharge activated the initial responses of osteoblastic cells through an integrin-mediated mechanism. Since the mRNA expression of ALP on those replicas was up-regulated compared to smooth titanium samples, the micro topography of a titanium surface processed by wire-type electric discharge promotes the osteogenic potential of cells. The synergistic response of the superficial chemistry and micro topography of titanium processed by wire-type electric discharge was demonstrated in this study.

  10. Topography of Vesta Surface

    NASA Image and Video Library

    2011-08-26

    This view of the topography of asteroid Vesta surface is composed of several images obtained with the framing camera on NASA Dawn spacecraft on August 6, 2011. The image mosaic is shown superimposed on a digital terrain model.

  11. Geophysical imaging reveals topographic stress control of bedrock weathering

    NASA Astrophysics Data System (ADS)

    St. Clair, J.; Moon, S.; Holbrook, W. S.; Perron, J. T.; Riebe, C. S.; Martel, S. J.; Carr, B.; Harman, C.; Singha, K.; Richter, D. deB.

    2015-10-01

    Bedrock fracture systems facilitate weathering, allowing fresh mineral surfaces to interact with corrosive waters and biota from Earth’s surface, while simultaneously promoting drainage of chemically equilibrated fluids. We show that topographic perturbations to regional stress fields explain bedrock fracture distributions, as revealed by seismic velocity and electrical resistivity surveys from three landscapes. The base of the fracture-rich zone mirrors surface topography where the ratio of horizontal compressive tectonic stresses to near-surface gravitational stresses is relatively large, and it parallels the surface topography where the ratio is relatively small. Three-dimensional stress calculations predict these results, suggesting that tectonic stresses interact with topography to influence bedrock disaggregation, groundwater flow, chemical weathering, and the depth of the “critical zone” in which many biogeochemical processes occur.

  12. Effect of metal surface topography on mechanical bonding at simulated total hip stem-cement interfaces.

    PubMed

    Chen, C Q; Scott, W; Barker, T M

    1999-01-01

    Bonding and loosening mechanisms between bone cement and joint prostheses have not been well identified. In this study, the effects of simulated hip stem surface topography on the interfacial shear strength were examined. Six different surface topographies were used. They were described by several surface characterization parameters that may directly relate to the interfacial bonding strength: average surface roughness R(a), root mean square slope R(Deltaq), correlation length beta, and fluid retention index R(ri). The shear strengths between Palacos E bone cement and stainless steel rods were measured using an Instron materials testing machine. We found that cement can "flow" into the surface microtopography and establish good contact with the metal surface. The results show that the interfacial strength increases monotonically with the increase of R(Deltaq) instead of with R(a). The relationship between interfacial strength and surface parameters shows that a metal stem with an isotropic surface texture, higher R(Deltaq), and greater R(ri) gives a higher interfacial strength. Copyright 1999 John Wiley & Sons, Inc.

  13. Early human bone response to laser metal sintering surface topography: a histologic report.

    PubMed

    Mangano, Carlo; Piattelli, Adriano; d'Avila, Susana; Iezzi, Giovanna; Mangano, Francesco; Onuma, Tatiana; Shibli, Jamil Awad

    2010-01-01

    This histologic report evaluated the early human bone response to a direct laser metal sintering implant surface retrieved after a short period of healing. A selective laser sintering procedure using a Ti-6Al-4V alloy powder with a particle size of 25-45 microm prepared this surface topography. One experimental microimplant was inserted into the anterior mandible of a patient during conventional implant surgery of the jaw. The microimplant and surrounding tissues were removed after 2 months of unloaded healing and were prepared for histomorphometric analysis. Histologically, the peri-implant bone appeared in close contact with the implant surface, whereas marrow spaces could be detected in other areas along with prominently stained cement lines. The mean of bone-to-implant contact was 69.51%. The results of this histologic report suggest that the laser metal sintering surface could be a promising alternative to conventional implant surface topographies.

  14. Surface texture measurement for dental wear applications

    NASA Astrophysics Data System (ADS)

    Austin, R. S.; Mullen, F.; Bartlett, D. W.

    2015-06-01

    The application of surface topography measurement and characterization within dental materials science is highly active and rapidly developing, in line with many modern industries. Surface measurement and structuring is used extensively within oral and dental science to optimize the optical, tribological and biological performance of natural and biomimetic dental materials. Although there has historically been little standardization in the use and reporting of surface metrology instrumentation and software, the dental industry is beginning to adopt modern areal measurement and characterization techniques, especially as the dental industry is increasingly adopting digital impressioning techniques in order to leverage CAD/CAM technologies for the design and construction of dental restorations. As dental treatment becomes increasingly digitized and reliant on advanced technologies such as dental implants, wider adoption of standardized surface topography and characterization techniques will become evermore essential. The dental research community welcomes the advances that are being made in surface topography measurement science towards realizing this ultimate goal.

  15. Mining for osteogenic surface topographies: In silico design to in vivo osseo-integration.

    PubMed

    Hulshof, Frits F B; Papenburg, Bernke; Vasilevich, Aliaksei; Hulsman, Marc; Zhao, Yiping; Levers, Marloes; Fekete, Natalie; de Boer, Meint; Yuan, Huipin; Singh, Shantanu; Beijer, Nick; Bray, Mark-Anthony; Logan, David J; Reinders, Marcel; Carpenter, Anne E; van Blitterswijk, Clemens; Stamatialis, Dimitrios; de Boer, Jan

    2017-08-01

    Stem cells respond to the physicochemical parameters of the substrate on which they grow. Quantitative material activity relationships - the relationships between substrate parameters and the phenotypes they induce - have so far poorly predicted the success of bioactive implant surfaces. In this report, we screened a library of randomly selected designed surface topographies for those inducing osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Cell shape features, surface design parameters, and osteogenic marker expression were strongly correlated in vitro. Furthermore, the surfaces with the highest osteogenic potential in vitro also demonstrated their osteogenic effect in vivo: these indeed strongly enhanced bone bonding in a rabbit femur model. Our work shows that by giving stem cells specific physicochemical parameters through designed surface topographies, differentiation of these cells can be dictated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Airborne Lidar Simulator for the Lidar Surface Topography (LIST) Mission

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Abshire, James B.; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis

    2010-01-01

    In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global surface height mapping within a few years. NASA Goddard conducted an initial mission concept study for the LIST mission in 2007, and developed the initial measurement requirements for the mission.

  17. Biomechanical properties of jaw periosteum-derived mineralized culture on different titanium topography.

    PubMed

    Att, Wael; Kubo, Katsutoshi; Yamada, Masahiro; Maeda, Hatsuhiko; Ogawa, Takahiro

    2009-01-01

    This study evaluated the biomechanical properties of periosteum-derived mineralized culture on different surface topographies of titanium. Titanium surfaces modified by machining or by acid etching were analyzed using scanning electron microscopy (SEM). Rat mandibular periosteum-derived cells were cultured on either of the titanium surfaces. Cell proliferation was evaluated by cell counts, and gene expression was analyzed using a reverse-transcriptase polymerase chain reaction. Alkaline phosphatase (ALP) stain assay was employed to evaluate osteoblastic activity. Matrix mineralization was examined via von Kossa stain assay, total calcium deposition, and SEM. The hardness and elastic modulus of mineralized cultures were measured using a nano-indenter. The machined surface demonstrated a flat topographic configuration, while the acid-etched surface revealed a uniform micron-scale roughness. Both cell density and ALP activity were significantly higher on the machined surface than on the acid-etched surface. The expression of bone-related genes was up-regulated or enhanced on the acid-etched surface compared to the machined surface. Von Kossa stain showed significantly greater positive areas for the machined surface compared to the acid-etched surface, while total calcium deposition was statistically similar. Mineralized culture on the acid-etched surface was characterized by denser calcium deposition, more mature collagen deposition on the superficial layer, and larger and denser globular matrices inside the matrix than the culture on the machined surface. The mineralized matrix on the acid-etched surface was two times harder than on the machined surface, whereas the elastic modulus was comparable between the two surfaces. The design of this study can be used as a model to evaluate the effect of implant surface topography on the biomechanical properties of periosteum-derived mineralized culture. The results suggest that mandibular periosteal cells respond to different titanium surface topographies differently enough to produce mineralized matrices with different biomechanical qualities.

  18. Quantifying the pattern of microbial cell dispersion, density and clustering on surfaces of differing chemistries and topographies using multifractal analysis.

    PubMed

    Wickens, David; Lynch, Stephen; West, Glen; Kelly, Peter; Verran, Joanna; Whitehead, Kathryn A

    2014-09-01

    The effects of surface topography on bacterial distribution across a surface are of extreme importance when designing novel, hygienic or antimicrobial surface coatings. The majority of methods that are deployed to describe the pattern of cell dispersion, density and clustering across surfaces are currently qualitative. This paper presents a novel application of multifractal analysis to quantitatively measure these factors using medically relevant microorganisms (Staphylococcus aureus or Staphylococcus epidermidis). Surfaces (medical grade 316 stainless steel) and coatings (Ti-ZrN, Ti-ZrN/6.0%Ag, Ti-ZrN/15.6%Ag, TiZrN/24.7%Ag) were used in microbiological retention assays. Results demonstrated that S. aureus displayed a more heterogeneous cell dispersion (∆αAS<1) whilst the dispersion of S. epidermidis was more symmetric and homogeneous (∆αAS≥1). Further, although the surface topography and chemistry had an effect on cell dispersion, density and clustering, the type of bonding that occurred at the surface interface was also important. Both types of cells were influenced by both surface topographical and chemical effects; however, S. aureus was influenced marginally more by surface chemistry whilst S. epidermidis cells was influenced marginally more by surface topography. Thus, this effect was bacterially species specific. The results demonstrate that multifractal analysis is a method that can be used to quantitatively analyse the cell dispersion, density and clustering of retained microorganisms on surfaces. Using quantitative descriptors has the potential to aid the understanding the effect of surface properties on the production of hygienic and antimicrobial coatings. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Evapotranspiration and runoff from large land areas: Land surface hydrology for atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, Eric F.

    1993-01-01

    A land surface hydrology parameterization for use in atmospheric GCM's is presented. The parameterization incorporates subgrid scale variability in topography, soils, soil moisture and precipitation. The framework of the model is the statistical distribution of a topography-soils index, which controls the local water balance fluxes, and is therefore taken to represent the large land area. Spatially variable water balance fluxes are integrated with respect to the topography-soils index to yield our large topography-soils distribution, and interval responses are weighted by the probability of occurrence of the interval. Grid square averaged land surface fluxes result. The model functions independently as a macroscale water balance model. Runoff ratio and evapotranspiration efficiency parameterizations are derived and are shown to depend on the spatial variability of the above mentioned properties and processes, as well as the dynamics of land surface-atmosphere interactions.

  20. Multiscale analysis of replication technique efficiency for 3D roughness characterization of manufactured surfaces

    NASA Astrophysics Data System (ADS)

    Jolivet, S.; Mezghani, S.; El Mansori, M.

    2016-09-01

    The replication of topography has been generally restricted to optimizing material processing technologies in terms of statistical and single-scale features such as roughness. By contrast, manufactured surface topography is highly complex, irregular, and multiscale. In this work, we have demonstrated the use of multiscale analysis on replicates of surface finish to assess the precise control of the finished replica. Five commercial resins used for surface replication were compared. The topography of five standard surfaces representative of common finishing processes were acquired both directly and by a replication technique. Then, they were characterized using the ISO 25178 standard and multiscale decomposition based on a continuous wavelet transform, to compare the roughness transfer quality at different scales. Additionally, atomic force microscope force modulation mode was used in order to compare the resins’ stiffness properties. The results showed that less stiff resins are able to replicate the surface finish along a larger wavelength band. The method was then tested for non-destructive quality control of automotive gear tooth surfaces.

  1. Topography compensation for haptization of a mesh object and its stiffness distribution.

    PubMed

    Yim, Sunghoon; Jeon, Seokhee; Choi, Seungmoon

    2015-01-01

    This work was motivated by the need for perceptualizing nano-scale scientific data, e.g., those acquired by a scanning probe microscope, where collocated topography and stiffness distribution of a surface can be measured. Previous research showed that when the topography of a surface with spatially varying stiffness is rendered using the conventional penalty-based haptic rendering method, the topography perceived by the user could be significantly distorted from its original model. In the worst case, a higher region with a smaller stiffness value can be perceived to be lower than a lower region with a larger stiffness value. This problem was explained by the theory of force constancy: the user tends to maintain an invariant contact force when s/he strokes the surface to perceive its topography. In this paper, we present a haptization algorithm that can render the shape of a mesh surface and its stiffness distribution with high perceptual accuracy. Our algorithm adaptively changes the surface topography on the basis of the force constancy theory to deliver adequate shape information to the user while preserving the stiffness perception. We also evaluated the performance of the proposed haptization algorithm in comparison to the constraint-based algorithm by examining relevant proximal stimuli and carrying out a user experiment. Results demonstrated that our algorithm could improve the perceptual accuracy of shape and reduce the exploration time, thereby leading to more accurate and efficient haptization.

  2. Surface topography and roughness of high-speed milled AlMn1Cu

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhua; Yuan, Juntang; Yin, Zengbin; Hu, Xiaoqiu

    2016-10-01

    The aluminum alloy AlMn1Cu has been broadly applied for functional parts production because of its good properties. But few researches about the machining mechanism and the surface roughness were reported. The high-speed milling experiments are carried out in order to improve the machining quality and reveal the machining mechanism. The typical topography features of machined surface are observed by scan electron microscope(SEM). The results show that the milled surface topography is mainly characterized by the plastic shearing deformation surface and material piling zone. The material flows plastically along the end cutting edge of the flat-end milling tool and meanwhile is extruded by the end cutting edge, resulting in that materials partly adhere to the machined surface and form the material piling zone. As the depth of cut and the feed per tooth increase, the plastic flow of materials is strengthened and the machined surface becomes rougher. However, as the cutting speed increases, the plastic flow of materials is weakened and the milled surface becomes smoother. The cutting parameters (e.g. cutting speed, feed per tooth and depth of cut) influencing the surface roughness are analyzed. It can be concluded that the roughness of the machined surface formed by the end cutting edge is less than that by the cylindrical cutting edge when a cylindrical flat-end mill tool is used for milling. The proposed research provides the typical topography features of machined surface of the anti-rust aluminum alloy AlMn1Cu in high speed milling.

  3. Surface finish measurement studies

    NASA Technical Reports Server (NTRS)

    Teague, E. C.

    1983-01-01

    The performance of stylus instruments for measuring the topography of National Transonic Facility (NTF) model surfaces both for monitoring during fabrication and as an absolute measurement of topography was evaluated. It was found that the shop-grade instruments can damage the surface of models and that their use for monitoring fabrication procedures can lead to surface finishes that are substantially out of range in critical areas of the leading edges. The development of a prototype light-scattering instrument which would allow for rapid assessment of the surface finish of a model is also discussed.

  4. Impact of plasma chemistry versus titanium surface topography on osteoblast orientation.

    PubMed

    Rebl, Henrike; Finke, Birgit; Lange, Regina; Weltmann, Klaus-Dieter; Nebe, J Barbara

    2012-10-01

    Topographical and chemical modifications of biomaterial surfaces both influence tissue physiology, but unfortunately little knowledge exists as to their combined effect. There are many indications that rough surfaces positively influence osteoblast behavior. Having determined previously that a positively charged, smooth titanium surface boosts osteoblast adhesion, we wanted to investigate the combined effects of topography and chemistry and elucidate which of these properties is dominant. Polished, machined and corundum-blasted titanium of increasing microroughness was additionally coated with plasma-polymerized allylamine (PPAAm). Collagen I was then immobilized using polyethylene glycol diacid and glutar dialdehyde. On all PPAAm-modified surfaces (i) adhesion of human MG-63 osteoblastic cells increased significantly in combination with roughness, (ii) cells resemble the underlying structure and melt with the surface, and (iii) cells overcome the restrictions of a grooved surface and spread out over a large area as indicated by actin staining. Interestingly, the cellular effects of the plasma-chemical surface modification are predominant over surface topography, especially in the initial phase. Collagen I, although it is the gold standard, does not improve surface adhesion features comparably. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. White Light Used to Enable Enhanced Surface Topography, Geometry, and Wear Characterization of Oil-Free Bearings

    NASA Technical Reports Server (NTRS)

    Lucero, John M.

    2003-01-01

    A new optically based measuring capability that characterizes surface topography, geometry, and wear has been employed by NASA Glenn Research Center s Tribology and Surface Science Branch. To characterize complex parts in more detail, we are using a three-dimensional, surface structure analyzer-the NewView5000 manufactured by Zygo Corporation (Middlefield, CT). This system provides graphical images and high-resolution numerical analyses to accurately characterize surfaces. Because of the inherent complexity of the various analyzed assemblies, the machine has been pushed to its limits. For example, special hardware fixtures and measuring techniques were developed to characterize Oil- Free thrust bearings specifically. We performed a more detailed wear analysis using scanning white light interferometry to image and measure the bearing structure and topography, enabling a further understanding of bearing failure causes.

  6. Novel Zirconia Surface Treatments for Enhanced Osseointegration: Laboratory Characterization

    PubMed Central

    Ewais, Ola H.; Al Abbassy, Fayza; Ghoneim, Mona M.; Aboushelib, Moustafa N.

    2014-01-01

    Purpose. The aim of this study was to evaluate three novel surface treatments intended to improve osseointegration of zirconia implants: selective infiltration etching treatment (SIE), fusion sputtering (FS), and low pressure particle abrasion (LPPA). The effects of surface treatments on roughness, topography, hardness, and porosity of implants were also assessed. Materials and Methods. 45 zirconia discs (19 mm in diameter × 3 mm in thickness) received 3 different surface treatments: selective infiltration etching, low pressure particle abrasion with 30 µm alumina, and fusion sputtering while nontreated surface served as control. Surface roughness was evaluated quantitatively using profilometery, porosity was evaluated using mercury prosimetry, and Vickers microhardness was used to assess surface hardness. Surface topography was analyzed using scanning and atomic force microscopy (α = 0.05). Results. There were significant differences between all groups regarding surface roughness (F = 1678, P < 0.001), porosity (F = 3278, P < 0.001), and hardness (F = 1106.158, P < 0.001). Scanning and atomic force microscopy revealed a nanoporous surface characteristic of SIE, and FS resulted in the creation of surface microbeads, while LPPA resulted in limited abrasion of the surface. Conclusion. Within the limitations of the study, changes in surface characteristics and topography of zirconia implants have been observed after different surface treatment approaches. Thus possibilities for enhanced osseointegration could be additionally offered. PMID:25349610

  7. Surface topography due to convection in a variable viscosity fluid - Application to short wavelength gravity anomalies in the central Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Lin, J.; Parmentier, E. M.

    1985-01-01

    Finite difference calculations of thermal convection in a fluid layer with a viscosity exponentially decreasing with temperature are performed in the context of examining the topography and gravity anomalies due to mantle convection. The surface topography and gravity anomalies are shown to be positive over regions of ascending flow and negative over regions of descending flow; at large Rayleigh numbers the amplitude of surface topography is inferred to depend on Rayleigh number to the power of 7/9. Compositional stratifications of the mantle is proposed as a mechanism for confining small-scale convection to a thin layer. A comparative analysis of the results with other available models is included.

  8. Open questions in surface topography measurement: a roadmap

    NASA Astrophysics Data System (ADS)

    Leach, Richard; Evans, Christopher; He, Liangyu; Davies, Angela; Duparré, Angela; Henning, Andrew; Jones, Christopher W.; O'Connor, Daniel

    2015-03-01

    Control of surface topography has always been of vital importance for manufacturing and many other engineering and scientific disciplines. However, despite over one hundred years of quantitative surface topography measurement, there are still many open questions. At the top of the list of questions is ‘Are we getting the right answer?’ This begs the obvious question ‘How would we know?’ There are many other questions relating to applications, the appropriateness of a technique for a given scenario, or the relationship between a particular analysis and the function of the surface. In this first ‘open questions’ article we have gathered together some experts in surface topography measurement and asked them to address timely, unresolved questions about the subject. We hope that their responses will go some way to answer these questions, address areas where further research is required, and look at the future of the subject. The first section ‘Spatial content characterization for precision surfaces’ addresses the need to characterise the spatial content of precision surfaces. Whilst we have been manufacturing optics for centuries, there still isn’t a consensus on how to specify the surface for manufacture. The most common three methods for spatial characterisation are reviewed and compared, and the need for further work on quantifying measurement uncertainties is highlighted. The article is focussed on optical surfaces, but the ideas are more pervasive. Different communities refer to ‘figure, mid-spatial frequencies, and finish’ and ‘form, waviness, and roughness’, but the mathematics are identical. The second section ‘Light scattering methods’ is focussed on light scattering techniques; an important topic with in-line metrology becoming essential in many manufacturing scenarios. The potential of scattering methods has long been recognized; in the ‘smooth surface limit’ functionally significant relationships can be derived from first principles for statistically stationary, random surfaces. For rougher surfaces, correlations can be found experimentally for specific manufacturing processes. Improvements in computational methods encourage us to revisit light scattering as a powerful and versatile tool to investigate surface and thin film topographies, potentially providing information on both topography and defects over large areas at high speed. Future scattering techniques will be applied for complex film systems and for sub-surface damage measurement, but more research is required to quantify and standardise such measurements. A fundamental limitation of all topography measurement systems is their finite spatial bandwidth, which limits the slopes that they can detect. The third section ‘Optical measurements of surfaces containing high slope angles’ discusses this limitation and potential methods to overcome it. In some cases, a rough surface can allow measurement of slopes outside the classical optics limit, but more research is needed to fully understand this process. The last section ‘What are the challenges for high dynamic range surface measurement?’ presents the challenge facing metrologists by the use of surfaces that need measurement systems with very high spatial and temporal bandwidths, for example, those found in roll-to-roll manufacturing. High resolution, large areas and fast measurement times are needed, and these needs are unlikely to be fulfilled by developing a single all-purpose instrument. A toolbox of techniques needs to be developed which can be applied for any specific manufacturing scenario. The functional significance of surface topography has been known for centuries. Mirrors are smooth. Sliding behaviour depends on roughness. We have been measuring surfaces for centuries, but we still face many challenges. New manufacturing paradigms suggest that we need to make rapid measurements online that relate to the functional performance of the surface. This first ‘open questions’ collection addresses a subset of the challenges facing the surface metrology community. There are many more challenges which we would like to address in future ‘open questions’ articles. We welcome your feedback and your suggestions.

  9. Elastic Reverse Time Migration (RTM) From Surface Topography

    NASA Astrophysics Data System (ADS)

    Akram, Naveed; Chen, Xiaofei

    2017-04-01

    Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.

  10. Elastic Reverse Time Migration (RTM) From Surface Topography

    NASA Astrophysics Data System (ADS)

    Naveed, A.; Chen, X.

    2016-12-01

    Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.

  11. Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis.

    PubMed

    Zhang, Jingwei; Dalbay, Melis T; Luo, Xiaoman; Vrij, Erik; Barbieri, Davide; Moroni, Lorenzo; de Bruijn, Joost D; van Blitterswijk, Clemens A; Chapple, J Paul; Knight, Martin M; Yuan, Huipin

    2017-07-15

    The surface topography of synthetic biomaterials is known to play a role in material-driven osteogenesis. Recent studies show that TGFβ signalling also initiates osteogenic differentiation. TGFβ signalling requires the recruitment of TGFβ receptors (TGFβR) to the primary cilia. In this study, we hypothesize that the surface topography of calcium phosphate ceramics regulates stem cell morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation. We developed a 2D system using two types of tricalcium phosphate (TCP) ceramic discs with identical chemistry. One sample had a surface topography at micron-scale (TCP-B, with a bigger surface structure dimension) whilst the other had a surface topography at submicron scale (TCP-S, with a smaller surface structure dimension). In the absence of osteogenic differentiation factors, human bone marrow stromal cells (hBMSCs) were more spread on TCP-S than on TCP-B with alterations in actin organization and increased primary cilia prevalence and length. The cilia elongation on TCP-S was similar to that observed on glass in the presence of osteogenic media and was followed by recruitment of transforming growth factor-β RII (p-TGFβ RII) to the cilia axoneme. This was associated with enhanced osteogenic differentiation of hBMSCs on TCP-S, as shown by alkaline phosphatase activity and gene expression for key osteogenic markers in the absence of additional osteogenic growth factors. Similarly, in vivo after a 12-week intramuscular implantation in dogs, TCP-S induced bone formation while TCP-B did not. It is most likely that the surface topography of calcium phosphate ceramics regulates primary cilia length and ciliary recruitment of p-TGFβ RII associated with osteogenesis and bone formation. This bioengineering control of osteogenesis via primary cilia modulation may represent a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery applications. The surface topography of synthetic biomaterials plays important roles in material-driven osteogenesis. The data presented herein have shown that the surface topography of calcium phosphate ceramics regulates mesenchymal stromal cells (e.g., human bone marrow mesenchymal stromal cells, hBMSCs) with respect to morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation in vitro. Together with bone formation in vivo, our results suggested a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery by the bioengineering control of osteogenesis via primary cilia modulation. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Preliminary estimates of Gulf Stream characteristics from TOPEX data and a precise gravimetric geoid

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.; Smith, Dru A.

    1994-01-01

    TOPEX sea surface height data has been used, with a gravimetric geoid, to calculate sea surface topography across the Gulf Stream. This topography was initially computed for nine tracks on cycles 21 to 29. Due to inaccurate geoid undulations on one track, results for eight tracks are reported. The sea surface topography estimates were used to calculate parameters that describe Gulf Stream characteristics from two models of the Gulf Stream. One model was based on a Gaussian representation of the velocity while the other was a hyperbolic representation of velocity or the sea surface topography. The parameters of the Gaussian velocity model fit were a width parameter, a maximum velocity value, and the location of the maximum velocity. The parameters of the hyperbolic sea surface topography model were the width, the height jump, position, and sea surface topography at the center of the stream. Both models were used for the eight tracks and nine cycles studied. Comparisons were made between the width parameters, the maximum velocities, and the height jumps. Some of the parameter estimates were found to be highly (0.9) correlated when the hyperbolic sea surface topography fit was carried out, but such correlations were reduced for either the Gaussian velocity fits or the hyperbolic velocity model fit. A comparison of the parameters derived from 1-year TOPEX data showed good agreement with values derived by Kelly (1991) using 2.5 years of Geosat data near 38 deg N, 66 deg W longitude. Accuracy of the geoid undulations used in the calculations was of order of +/- 16 cm with the accuracy of a geoid undulation difference equal to +/- 15 cm over a 100-km line in areas with good terrestrial data coverage. This paper demonstrates that our knowledge or geoid undulations and undulation differences, in a portion of the Gulf Stream region, is sufficiently accurate to determine characteristics of the jet when used with TOPEX altimeter data. The method used here has not been shown to be more accurate than methods that average altimeter data to form a reference surface used in analysis to obtain the Gulf Stream characteristics. However, the results show the geoid approach may be used in areas where lack of current meandering reduces the accuracy of the average surface procedure.

  13. Dynamic sea surface topography from GEOS-3 altimetry - Determination of some dominant parameters

    NASA Technical Reports Server (NTRS)

    Mather, R. S.; Lerch, F. J.; Rizos, C.; Masters, E. G.; Hirsch, B.

    1979-01-01

    The second, third and fourth degree zonal harmonics of the quasi-stationary dynamic sea surface topography can be recovered from the GEOS-3 altimetry despite the adverse levels of noise indicated by the crossover discrepancies generated from the best orbits available at the end of 1977 and the GEOS-3 altimetry. Techniques for modelling the global sea surface topography are discussed along with methods for signal recovery in the presence of significant levels of noise. The analysis also provides a means of defining the geocentricity of the system of reference used in preparing the GEOS-3 ephemeris.

  14. The effects of topography on magma chamber deformation models: Application to Mt. Etna and radar interferometry

    NASA Astrophysics Data System (ADS)

    Williams, Charles A.; Wadge, Geoff

    We have used a three-dimensional elastic finite element model to examine the effects of topography on the surface deformation predicted by models of magma chamber deflation. We used the topography of Mt. Etna to control the geometry of our model, and compared the finite element results to those predicted by an analytical solution for a pressurized sphere in an elastic half-space. Topography has a significant effect on the predicted surface deformation for both displacement profiles and synthetic interferograms. Not only are the predicted displacement magnitudes significantly different, but also the map-view patterns of displacement. It is possible to match the predicted displacement magnitudes fairly well by adjusting the elevation of a reference surface; however, the horizontal pattern of deformation is still significantly different. Thus, inversions based on constant-elevation reference surfaces may not properly estimate the horizontal position of a magma chamber. We have investigated an approach where the elevation of the reference surface varies for each computation point, corresponding to topography. For vertical displacements and tilts this method provides a good fit to the finite element results, and thus may form the basis for an inversion scheme. For radial displacements, a constant reference elevation provides a better fit to the numerical results.

  15. Effect of Surface Modifications of Ti40Zr10Cu38Pd12 Bulk Metallic Glass and Ti-6Al-4V Alloy on Human Osteoblasts In Vitro Biocompatibility

    PubMed Central

    Blanquer, Andreu; Hynowska, Anna; Nogués, Carme; Ibáñez, Elena; Sort, Jordi; Baró, Maria Dolors; Özkale, Berna; Pané, Salvador; Pellicer, Eva

    2016-01-01

    The use of biocompatible materials, including bulk metallic glasses (BMGs), for tissue regeneration and transplantation is increasing. The good mechanical and corrosion properties of Ti40Zr10Cu38Pd12 BMG and its previously described biocompatibility makes it a potential candidate for medical applications. However, it is known that surface properties like topography might play an important role in regulating cell adhesion, proliferation and differentiation. Thus, in the present study, Ti40Zr10Cu38Pd12 BMG and Ti6-Al-4V alloy were surface-modified electrochemically (nanomesh) or physically (microscratched) to investigate the effect of material topography on human osteoblasts cells (Saos-2) adhesion, proliferation and differentiation. For comparative purposes, the effect of mirror-like polished surfaces was also studied. Electrochemical treatments led to a highly interconnected hierarchical porous structure rich in oxides, which have been described to improve corrosion resistance, whereas microscratched surfaces showed a groove pattern with parallel trenches. Cell viability was higher than 96% for the three topographies tested and for both alloy compositions. In all cases, cells were able to adhere, proliferate and differentiate on the alloys, hence indicating that surface topography plays a minor role on these processes, although a clear cell orientation was observed on microscratched surfaces. Overall, our results provide further evidence that Ti40Zr10Cu38Pd12 BMG is an excellent candidate, in the present two topographies, for bone repair purposes. PMID:27243628

  16. Modification of the Surface Properties of Polyimide Films using POSS Deposition and Oxygen Plasma Exposure

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Belcher, Marcus A.; Ghose, Sayata; Connell, John W.

    2008-01-01

    Topographically rich surfaces were generated by spray-coating organic solutions of a polyhedral oligomeric silsesquioxane, octakis (dimethylsilyloxy) silsesquioxane (POSS), on Kapton HN films and exposing them to radio frequency generated oxygen plasma. Changes in both surface chemistry and topography were observed. High-resolution scanning electron microscopy indicated substantial modification of the POSS-coated polyimide surface topographies as a result of oxygen plasma exposure. Water contact angles varied from 104 deg for unexposed POSS-coated surfaces to approximately 5 deg, for samples exposed for 5 h. Modulation of the dispersive and polar contributions to the surface energy was determined using van Oss Good Chaudhury theory.

  17. Measuring topographies from conventional SEM acquisitions.

    PubMed

    Shi, Qiwei; Roux, Stéphane; Latourte, Félix; Hild, François; Loisnard, Dominique; Brynaert, Nicolas

    2018-04-27

    The present study extends the stereoscopic imaging principle for estimating the surface topography to two orientations, namely, normal to the electron beam axis and inclined at 70° as suited for EBSD analyses. In spite of the large angle difference, it is shown that the topography can be accurately determined using regularized global Digital Image Correlation. The surface topography is compared to another estimate issued from a 3D FIB-SEM procedure where the sample surface is first covered by a Pt layer, and its initial topography is progressively revealed from successive FIB-milling. These two methods are successfully compared on a 6% strained steel specimen in an in situ mechanical test. This analysis is supplemented by a third approach estimating the change of topography from crystal rotations as measured from successive EBSD images. This last technique ignores plastic deformation, and thus only holds in an elastic regime. For the studied example, despite the large plastic flow, it is shown that crystal rotation already accounts for a significant part of the deformation-induced topography. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Silk Film Topography Directs Collective Epithelial Cell Migration

    PubMed Central

    Rosenblatt, Mark I.

    2012-01-01

    The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography’s edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization. PMID:23185573

  19. Engineered microtopographies and surface chemistries direct cell attachment and function

    NASA Astrophysics Data System (ADS)

    Magin, Chelsea Marie

    Harrison, in 1914, first recognized that cells respond to physicochemical cues such as substratum topography when he observed that fibroblasts elongated while cultured on spider silk. Recently, techniques developed in the micro-electronics industry have been used to create molds for producing microscaled topographies with various shapes and spatial arrangements. Although these patterning techniques are well-established, very little is known about the mechanisms underlying cell sensing and response to microtopographies. In this work cellular micro-environments with varying surface topographies and chemistries were evaluated with marine organisms and mammalian cells to investigate cellular sensing and response. Biofouling---the accumulation of micro-organisms, plants, and animals on submerged surfaces---is an environmental and economic concern. Engineered topographies, replicated in polydimethylsiloxane elastomer (PDMSe) and functionalized poly(ethylene glycol)-dimethacrylate (PEGDMA) hydrogels, were evaluated for inhibition of marine fouling organism attachment. Microtopographies replicated in PDMSe inhibited attachment of the marine bacterium, Cobetia marina up to 99% versus smooth. The average normalized attachment densities of cells of C. marina and zoospores of the green algae Ulva on PDMSe topographies scaled inversely with the Engineered Roughness Index (ERIII), a representation of surface energy. Attachment densities of Ulva from four assays and C. marina from two growth phases to PDMSe surfaces scaled inversely with one equation: ERI II multiplied by the Reynolds number of the organism (Re) (R 2 = 0.77). The same microtopographies created in PDMSe reduced the initial attachment density and attachment strength of cells of the diatoms Navicula incerta and Seminavis robusta compared to smooth PDMSe. The average normalized attachment density of Navicula after exposure to shear stress (48 Pa) was correlated with the contact area between the diatom and a topographically modified surface (R2=0.82). Functionalized PEGDMA hydrogels significantly reduced attachment and attachment strength of Navicula and C. marina. These hydrogels also reduced attachment of zoospores of Ulva compared to PDMSe. Attachment of Ulva to microtopographies in PDMSe and PEGDMA-co-HEMA negatively correlated with ERIII*Re (R2 = 0.94 and R2 = 0.99, respectively). Incorporating a surface energy term into this equation created a correlation between the attachment densities of cells from two evolutionarily diverse groups on substrates of two surface chemistries with an equation that describes the various microtopographies and surface chemistries in terms of surface energy (R2 = 0.80). The current Attachment Model can now be used to design engineered antifouling surface microtopographies and chemistries that inhibit the attachment of organisms from three evoluntionarily diverse groups. Hydrogels based on PEGDMA were also chosen as a substratum material for mammalian cell culture. Capturing endothelial progenitor cells (EPCs) and inducing differentiation into the endothelial cell (EC) phenotype is the ideal way to re-endothelialize a small-diameter vascular graft. Substratum elasticity has been reported to direct stem cell differentiation into specific lineages. Functionalized PEGDMA hydrogels provided good compliance, high fidelity of topographic features and sites for surface modification with biomolecules. Fibronectin grafting and topography both increased EC attachment. This combination of adjustable elasticity, surface chemistry and topography has the potential to promote the capture and differentiation of EPCs into a confluent EC monolayer. Engineered microtopographies replicated in PDMSe directed elongation and alignment of human coronary artery endothelial cells (HCAECs) and human coronary artery smooth muscle cells (HCASMCs) compared to smooth surfaces. Engineered cellular micro-environments were created with specific surface energies defined by chemistry and topography to successfully direct cell attachment and function.

  20. Membrane fouling in a submerged membrane bioreactor: An unified approach to construct topography and to evaluate interaction energy between two randomly rough surfaces.

    PubMed

    Cai, Xiang; Shen, Liguo; Zhang, Meijia; Chen, Jianrong; Hong, Huachang; Lin, Hongjun

    2017-11-01

    Quantitatively evaluating interaction energy between two randomly rough surfaces is the prerequisite to quantitatively understand and control membrane fouling in membrane bioreactors (MBRs). In this study, a new unified approach to construct rough topographies and to quantify interaction energy between a randomly rough particle and a randomly rough membrane was proposed. It was found that, natural rough topographies of both foulants and membrane could be well constructed by a modified two-variable Weierstrass-Mandelbrot (WM) function included in fractal theory. Spatial differential relationships between two constructed surfaces were accordingly established. Thereafter, a new approach combining these relationships, surface element integration (SEI) approach and composite Simpson's rule was deduced to calculate the interaction energy between two randomly rough surfaces in a submerged MBR. The obtained results indicate the profound effects of surface morphology on interaction energy and membrane fouling. This study provided a basic approach to investigate membrane fouling and interface behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Evolutionary computation applied to the reconstruction of 3-D surface topography in the SEM.

    PubMed

    Kodama, Tetsuji; Li, Xiaoyuan; Nakahira, Kenji; Ito, Dai

    2005-10-01

    A genetic algorithm has been applied to the line profile reconstruction from the signals of the standard secondary electron (SE) and/or backscattered electron detectors in a scanning electron microscope. This method solves the topographical surface reconstruction problem as one of combinatorial optimization. To extend this optimization approach for three-dimensional (3-D) surface topography, this paper considers the use of a string coding where a 3-D surface topography is represented by a set of coordinates of vertices. We introduce the Delaunay triangulation, which attains the minimum roughness for any set of height data to capture the fundamental features of the surface being probed by an electron beam. With this coding, the strings are processed with a class of hybrid optimization algorithms that combine genetic algorithms and simulated annealing algorithms. Experimental results on SE images are presented.

  2. Understanding how surface chemistry and topography enhance fog harvesting based on the superwetting surface with patterned hemispherical bulges.

    PubMed

    Zhong, Lieshuang; Zhu, Hai; Wu, Yang; Guo, Zhiguang

    2018-09-01

    The Namib Desert beetle-Stenocara can adapt to the arid environment by its fog harvesting ability. A series of samples with different topography and wettability that mimicked the elytra of the beetle were fabricated to study the effect of these factors on fog harvesting. The superhydrophobic bulgy sample harvested 1.5 times the amount of water than the sample with combinational pattern of hydrophilic bulgy/superhydrophobic surrounding and 2.83 times than the superhydrophobic surface without bulge. These bulges focused the droplets around them which endowed droplets with higher velocity and induced the highest dynamic pressure atop them. Superhydrophobicity was beneficial for the departure of harvested water on the surface of sample. The bulgy topography, together with surface wettability, dominated the process of water supply and water removal. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Cellular Responses Evoked by Different Surface Characteristics of Intraosseous Titanium Implants

    PubMed Central

    Feller, Liviu; Jadwat, Yusuf; Khammissa, Razia A. G.; Meyerov, Robin; Lemmer, Johan

    2015-01-01

    The properties of biomaterials, including their surface microstructural topography and their surface chemistry or surface energy/wettability, affect cellular responses such as cell adhesion, proliferation, and migration. The nanotopography of moderately rough implant surfaces enhances the production of biological mediators in the peri-implant microenvironment with consequent recruitment of differentiating osteogenic cells to the implant surface and stimulates osteogenic maturation. Implant surfaces with moderately rough topography and with high surface energy promote osteogenesis, increase the ratio of bone-to-implant contact, and increase the bonding strength of the bone to the implant at the interface. Certain features of implant surface chemistry are also important in enhancing peri-implant bone wound healing. It is the purpose of this paper to review some of the more important features of titanium implant surfaces which have an impact on osseointegration. PMID:25767803

  4. Titania-polymeric powder coatings with nano-topography support enhanced human mesenchymal cell responses.

    PubMed

    Mozumder, Mohammad Sayem; Zhu, Jesse; Perinpanayagam, Hiran

    2012-10-01

    Titanium implant osseointegration is dependent on the cellular response to surface modifications and coatings. Titania-enriched nanocomposite polymeric resin coatings were prepared through the application of advanced ultrafine powder coating technology. Their surfaces were readily modified to create nano-rough (<100 nm) surface nano-topographies that supported human embryonic palatal mesenchymal cell responses. Energy dispersive x-ray spectroscopy confirmed continuous and homogenous coatings with a similar composition and even distribution of titanium. Scanning electron microscopy (SEM) showed complex micro-topographies, and atomic force microscopy revealed intricate nanofeatures and surface roughness. Cell counts, mitochondrial enzyme activity reduction of yellow 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) to dark purple, SEM, and inverted fluorescence microscopy showed a marked increase in cell attachment, spreading, proliferation, and metabolic activity on the nanostructured surfaces. Reverse Transcription- Polymerase Chain Reaction (RT-PCR) analysis showed that type I collagen and Runx2 expression were induced, and Alizarin red staining showed that mineral deposits were abundant in the cell cultures grown on nanosurfaces. This enhancement in human mesenchymal cell attachment, growth, and osteogenesis were attributed to the nanosized surface topographies, roughness, and moderate wetting characteristics of the coatings. Their dimensional similarity to naturally occurring matrix proteins and crystals, coupled with their increased surface area for protein adsorption, may have facilitated the response. Therefore, this application of ultrafine powder coating technology affords highly biocompatible surfaces that can be readily modified to accentuate the cellular response. Copyright © 2012 Wiley Periodicals, Inc.

  5. Simulation of foulant bioparticle topography based on Gaussian process and its implications for interface behavior research

    NASA Astrophysics Data System (ADS)

    Zhao, Leihong; Qu, Xiaolu; Lin, Hongjun; Yu, Genying; Liao, Bao-Qiang

    2018-03-01

    Simulation of randomly rough bioparticle surface is crucial to better understand and control interface behaviors and membrane fouling. Pursuing literature indicated a lack of effective method for simulating random rough bioparticle surface. In this study, a new method which combines Gaussian distribution, Fourier transform, spectrum method and coordinate transformation was proposed to simulate surface topography of foulant bioparticles in a membrane bioreactor (MBR). The natural surface of a foulant bioparticle was found to be irregular and randomly rough. The topography simulated by the new method was quite similar to that of real foulant bioparticles. Moreover, the simulated topography of foulant bioparticles was critically affected by parameters correlation length (l) and root mean square (σ). The new method proposed in this study shows notable superiority over the conventional methods for simulation of randomly rough foulant bioparticles. The ease, facility and fitness of the new method point towards potential applications in interface behaviors and membrane fouling research.

  6. The Effect of Surface Ice and Topography on the Atmospheric Circulation and Distribution of Nitrogen Ice on Pluto

    NASA Astrophysics Data System (ADS)

    Rafkin, Scot C. R.; Soto, Alejandro; Michaels, Timothy I.

    2016-10-01

    A newly developed general circulation model (GCM) for Pluto is used to investigate the impact of a heterogeneous distribution of nitrogen surface ice and large scale topography on Pluto's atmospheric circulation. The GCM is based on the GFDL Flexible Modeling System (FSM). Physics include a gray model radiative-conductive scheme, subsurface conduction, and a nitrogen volatile cycle. The radiative-conductive model takes into account the 2.3, 3.3 and 7.8 μm bands of CH4 and CO, including non-local thermodynamic equilibrium effects. including non-local thermodynamic equilibrium effects. The nitrogen volatile cycle is based on a vapor pressure equilibrium assumption between the atmosphere and surface. Prior to the arrival of the New Horizons spacecraft, the expectation was that the volatile ice distribution on the surface of Pluto would be strongly controlled by the latitudinal temperature gradient. If this were the case, then Pluto would have broad latitudinal bands of both ice covered surface and ice free surface, as dictated by the season. Further, the circulation, and the thus the transport of volatiles, was thought to be driven almost exclusively by sublimation and deposition flows associated with the volatile cycle. In contrast to expectations, images from New Horizon showed an extremely complex, heterogeneous distribution of surface ices draped over substantial and variable topography. To produce such an ice distribution, the atmospheric circulation and volatile transport must be more complex than previously envisioned. Simulations where topography, surface ice distributions, and volatile cycle physics are added individually and in various combinations are used to individually quantify the importance of the general circulation, topography, surface ice distributions, and condensation flows. It is shown that even regional patches of ice or large craters can have global impacts on the atmospheric circulation, the volatile cycle, and hence, the distribution of surface ices. The work demonstrates that explaining Pluto's volatile cycle and the expression of that cycle in the surface ice distributions requires consideration of atmospheric processes beyond simple vapor pressure equilibrium arguments.

  7. Reversible switching of wetting properties and erasable patterning of polymer surfaces using plasma oxidation and thermal treatment

    NASA Astrophysics Data System (ADS)

    Rashid, Zeeshan; Atay, Ipek; Soydan, Seren; Yagci, M. Baris; Jonáš, Alexandr; Yilgor, Emel; Kiraz, Alper; Yilgor, Iskender

    2018-05-01

    Polymer surfaces reversibly switchable from superhydrophobic to superhydrophilic by exposure to oxygen plasma and subsequent thermal treatment are demonstrated. Two inherently different polymers, hydrophobic segmented polydimethylsiloxane-urea copolymer (TPSC) and hydrophilic poly(methyl methacrylate) (PMMA) are modified with fumed silica nanoparticles to prepare superhydrophobic surfaces with roughness on nanometer to micrometer scale. Smooth TPSC and PMMA surfaces are also used as control samples. Regardless of their chemical structure and surface topography, all surfaces display completely reversible wetting behavior changing from hydrophobic to hydrophilic and back for many cycles upon plasma oxidation followed by thermal annealing. Influence of plasma power, plasma exposure time, annealing temperature and annealing time on the wetting behavior of polymeric surfaces are investigated. Surface compositions, textures and topographies are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and white light interferometry (WLI), before and after oxidation and thermal annealing. Wetting properties of the surfaces are determined by measuring their static, advancing and receding water contact angle. We conclude that the chemical structure and surface topography of the polymers play a relatively minor role in reversible wetting behavior, where the essential factors are surface oxidation and migration of polymer molecules to the surface upon thermal annealing. Reconfigurable water channels on polymer surfaces are produced by plasma treatment using a mask and thermal annealing cycles. Such patterned reconfigurable hydrophilic regions can find use in surface microfluidics and optofluidics applications.

  8. Allometric scaling of infraorbital surface topography in Homo.

    PubMed

    Maddux, Scott D; Franciscus, Robert G

    2009-02-01

    Infraorbital morphology is often included in phylogenetic and functional analyses of Homo. The inclusion of distinct infraorbital configurations, such as the "canine fossa" in Homo sapiens or the "inflated" maxilla in Neandertals, is generally based on either descriptive or qualitative assessments of this morphology, or simple linear chord and subtense measurements. However, the complex curvilinear surface of the infraorbital region has proven difficult to quantify through these traditional methods. In this study, we assess infraorbital shape and its potential allometric scaling in fossil Homo (n=18) and recent humans (n=110) with a geometric morphometric method well-suited for quantifying complex surface topographies. Our results indicate that important aspects of infraorbital shape are correlated with overall infraorbital size across Homo. Specifically, individuals with larger infraorbital areas tend to exhibit relatively flatter infraorbital surface topographies, taller and narrower infraorbital areas, sloped inferior orbital rims, anteroinferiorly oriented maxillary body facies, posteroinferiorly oriented maxillary processes of the zygomatic, and non-everted lateral nasal margins. In contrast, individuals with smaller infraorbital regions generally exhibit relatively depressed surface topographies, shorter and wider infraorbital areas, projecting inferior orbital rims, posteroinferiorly oriented maxillary body facies, anteroinferiorly oriented maxillary processes, and everted lateral nasal margins. These contrasts form a continuum and only appear dichotomized at the ends of the infraorbital size spectrum. In light of these results, we question the utility of incorporating traditionally polarized infraorbital morphologies in phylogenetic and functional analyses without due consideration of continuous infraorbital and facial size variation in Homo. We conclude that the essentially flat infraorbital surface topography of Neandertals is not unique and can be explained, in part, as a function of possessing large infraorbital regions, the ancestral condition for Homo. Furthermore, it appears likely that the diminutive infraorbital region of anatomically modern Homo sapiens is a primary derived trait, with related features such as depressed infraorbital surface topography expressed as correlated secondary characters.

  9. Method and Apparatus for Creating a Topography at a Surface

    DOEpatents

    Adams, David P.; Sinclair, Michael B.; Mayer, Thomas M.; Vasile, Michael J.; Sweatt, William C.

    2008-11-11

    Methods and apparatus whereby an optical interferometer is utilized to monitor and provide feedback control to an integrated energetic particle column, to create desired topographies, including the depth, shape and/or roughness of features, at a surface of a specimen. Energetic particle columns can direct energetic species including, ions, photons and/or neutral particles to a surface to create features having in-plane dimensions on the order of 1 micron, and a height or depth on the order of 1 nanometer. Energetic processes can include subtractive processes such as sputtering, ablation, focused ion beam milling and, additive processes, such as energetic beam induced chemical vapor deposition. The integration of interferometric methods with processing by energetic species offers the ability to create desired topographies at surfaces, including planar and curved shapes.

  10. Engineering a Biocompatible Scaffold with Either Micrometre or Nanometre Scale Surface Topography for Promoting Protein Adsorption and Cellular Response

    PubMed Central

    Le, Xuan; Poinern, Gérrard Eddy Jai; Ali, Nurshahidah; Berry, Cassandra M.; Fawcett, Derek

    2013-01-01

    Surface topographical features on biomaterials, both at the submicrometre and nanometre scales, are known to influence the physicochemical interactions between biological processes involving proteins and cells. The nanometre-structured surface features tend to resemble the extracellular matrix, the natural environment in which cells live, communicate, and work together. It is believed that by engineering a well-defined nanometre scale surface topography, it should be possible to induce appropriate surface signals that can be used to manipulate cell function in a similar manner to the extracellular matrix. Therefore, there is a need to investigate, understand, and ultimately have the ability to produce tailor-made nanometre scale surface topographies with suitable surface chemistry to promote favourable biological interactions similar to those of the extracellular matrix. Recent advances in nanoscience and nanotechnology have produced many new nanomaterials and numerous manufacturing techniques that have the potential to significantly improve several fields such as biological sensing, cell culture technology, surgical implants, and medical devices. For these fields to progress, there is a definite need to develop a detailed understanding of the interaction between biological systems and fabricated surface structures at both the micrometre and nanometre scales. PMID:23533416

  11. Fluid surface compensation in digital holographic microscopy for topography measurement

    NASA Astrophysics Data System (ADS)

    Lin, Li-Chien; Tu, Han-Yen; Lai, Xin-Ji; Wang, Sheng-Shiun; Cheng, Chau-Jern

    2012-06-01

    A novel technique is presented for surface compensation and topography measurement of a specimen in fluid medium by digital holographic microscopy (DHM). In the measurement, the specimen is preserved in a culture dish full of liquid culture medium and an environmental vibration induces a series of ripples to create a non-uniform background on the reconstructed phase image. A background surface compensation algorithm is proposed to account for this problem. First, we distinguish the cell image from the non-uniform background and a morphological image operation is used to reduce the noise effect on the background surface areas. Then, an adaptive sampling from the background surface is employed, taking dense samples from the high-variation area while leaving the smooth region mostly untouched. A surface fitting algorithm based on the optimal bi-cubic functional approximation is used to establish a whole background surface for the phase image. Once the background surface is found, the background compensated phase can be obtained by subtracting the estimated background from the original phase image. From the experimental results, the proposed algorithm performs effectively in removing the non-uniform background of the phase image and has the ability to obtain the specimen topography inside fluid medium under environmental vibrations.

  12. Topography measurements and applications in ballistics and tool mark identifications*

    PubMed Central

    Vorburger, T V; Song, J; Petraco, N

    2016-01-01

    The application of surface topography measurement methods to the field of firearm and toolmark analysis is fairly new. The field has been boosted by the development of a number of competing optical methods, which has improved the speed and accuracy of surface topography acquisitions. We describe here some of these measurement methods as well as several analytical methods for assessing similarities and differences among pairs of surfaces. We also provide a few examples of research results to identify cartridge cases originating from the same firearm or tool marks produced by the same tool. Physical standards and issues of traceability are also discussed. PMID:27182440

  13. Correlation between three-dimentional surface topography and color stability of different nanofilled composites.

    PubMed

    Öztürk, Elif; Güder, Gizem

    2015-01-01

    The aim of this study was to evaluate the 3-dimensional (3D) surface topography and color stability of four different resin composites after immersion in different soft-beverages. One hundred sixty disk-shaped specimens (diameter: 10 mm, and thickness: 2 mm) were made from four different resin composites (i.e., Filtek Z550, Tetric N-Ceram, Clearfil Majesty Esthetic, and Cavex Quadrant Universal LC). Each specimen was cured under mylar strips for 20 sec for both top and bottom surfaces. All of the specimens were stored in distilled water for 24 h at 37°C. Surface measurements were carried out using a noncontact 3D-optical-profilometer in terms of surface topography (Ra values). Color measurements of each specimen were performed with Vita Easy Shade system. All the measurements were performed at baseline and after 30 days of immersion in the selected soft-beverages (Redbull, Coca-Cola and Dimes-Lemonade). Control groups were stored in distilled water during the study. Ra values and color changes (ΔE values) of the groups were recorded. The data were statistically analyzed using a one way ANOVA and Tukey's post-hoc tests (SPSS 18.0). The tested soft-beverages in the present study caused color changes at a 30-day evaluation period for the tested resin composites (p < 0.05). However, 3D surface topography of resin composites was not influenced by the tested soft-beverages (p > 0.05). There was no significant interaction between the composite and beverage type on the Ra values of the resin composites (p > 0.05). No correlation was found between color stability and 3D surface topography of the resin composites. Color stability of resin composites may be affected by soft beverages. © Wiley Periodicals, Inc.

  14. Payload topography camera of Chang'e-3

    NASA Astrophysics Data System (ADS)

    Yu, Guo-Bin; Liu, En-Hai; Zhao, Ru-Jin; Zhong, Jie; Zhou, Xiang-Dong; Zhou, Wu-Lin; Wang, Jin; Chen, Yuan-Pei; Hao, Yong-Jie

    2015-11-01

    Chang'e-3 was China's first soft-landing lunar probe that achieved a successful roving exploration on the Moon. A topography camera functioning as the lander's “eye” was one of the main scientific payloads installed on the lander. It was composed of a camera probe, an electronic component that performed image compression, and a cable assembly. Its exploration mission was to obtain optical images of the lunar topography in the landing zone for investigation and research. It also observed rover movement on the lunar surface and finished taking pictures of the lander and rover. After starting up successfully, the topography camera obtained static images and video of rover movement from different directions, 360° panoramic pictures of the lunar surface around the lander from multiple angles, and numerous pictures of the Earth. All images of the rover, lunar surface, and the Earth were clear, and those of the Chinese national flag were recorded in true color. This paper describes the exploration mission, system design, working principle, quality assessment of image compression, and color correction of the topography camera. Finally, test results from the lunar surface are provided to serve as a reference for scientific data processing and application.

  15. Characterizing Arctic Sea Ice Topography Using High-Resolution IceBridge Data

    NASA Technical Reports Server (NTRS)

    Petty, Alek; Tsamados, Michel; Kurtz, Nathan; Farrell, Sinead; Newman, Thomas; Harbeck, Jeremy; Feltham, Daniel; Richter-Menge, Jackie

    2016-01-01

    We present an analysis of Arctic sea ice topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009-2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes.

  16. Simultaneous tuning of chemical composition and topography of copolymer surfaces: micelles as building blocks.

    PubMed

    Zhao, Ning; Zhang, Xiaoyan; Zhang, Xiaoli; Xu, Jian

    2007-05-14

    A simple method is described for controlling the surface chemical composition and topography of the diblock copolymer poly(styrene)-b-poly(dimethylsiloxane)(PS-b-PDMS) by casting the copolymer solutions from solvents with different selectivities. The surface morphology and chemical composition were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively, and the wetting behavior was studied by water contact angle (CA) and sliding angle (SA) and by CA hysteresis. Chemical composition and morphology of the surface depend on solvent properties, humidity of the air, solution concentration, and block lengths. If the copolymer is cast from a common solvent, the resultant surface is hydrophobic, with a flat morphology, and dominated by PDMS on the air side. From a PDMS-selective solvent, the surface topography depends on the morphology of the micelles. Starlike micelles give rise to a featureless surface nearly completely covered by PDMS, while crew-cut-like micelles lead to a rough surface with a hierarchical structure that consists partly of PDMS. From a PS-selective solvent, however, surface segregation of PDMS was restricted, and the surface morphology can be controlled by vapor-induced phase separation. On the basis of the tunable surface roughness and PDMS concentration on the air side, water repellency of the copolymer surface could be tailored from hydrophobic to superhydrophobic. In addition, reversible switching behavior between hydrophobic and superhydrophobic can be achieved by exposing the surface to solvents with different selectivities.

  17. Micro-Topographies Promote Late Chondrogenic Differentiation Markers in the ATDC5 Cell Line.

    PubMed

    Le, Bach Q; Vasilevich, Aliaksei; Vermeulen, Steven; Hulshof, Frits; Stamatialis, Dimitrios F; van Blitterswijk, Clemens A; de Boer, Jan

    2017-05-01

    Chemical and mechanical cues are well-established influencers of in vitro chondrogenic differentiation of ATDC5 cells. Here, we investigate the role of topographical cues in this differentiation process, a study not been explored before. Previously, using a library of surface micro-topographies we found some distinct patterns that induced alkaline phosphatase (ALP) production in human mesenchymal stromal cells. ALP is also a marker for hypertrophy, the end stage of chondrogenic differentiation preceding bone formation. Thus, we hypothesized that these patterns could influence end-stage chondrogenic differentiation of ATDC5 cells. In this study, we randomly selected seven topographies among the ALP influencing hits. Cells grown on these surfaces displayed varying nuclear shape and actin filament structure. When stimulated with insulin-transferrin-selenium (ITS) medium, nodule formation occurred and in some cases showed alignment to the topographical patterns. Gene expression analysis of cells growing on topographical surfaces in the presence of ITS medium revealed a downregulation of early markers and upregulation of late markers of chondrogenic differentiation compared to cells grown on a flat surface. In conclusion, we demonstrated that surface topography in addition to other cues can promote hypertrophic differentiation suitable for bone tissue engineering.

  18. Distribution of curvature of 3D nonrotational surfaces approximating the corneal topography

    NASA Astrophysics Data System (ADS)

    Kasprzak, Henryk T.

    1998-10-01

    The first part of the paper presents the analytical curves used to approximate the corneal profile. Next, some definition of 3D surfaces curvature, like main normal sections, main radii of curvature and their orientations are given. The examples of four nonrotational 3D surfaces such as: ellipsoidal, surface based on hyperbolic cosine function, sphero-cylindrical and toroidal, approximating the corneal topography are proposed. The 3D surface and the contour plots of main radii of curvature and their orientation for four nonrotational approximation of the cornea are shown. Results of calculations are discussed from the point of view of videokeratometric images.

  19. Characterizing Arctic sea ice topography and atmospheric form drag using high-resolution IceBridge data

    NASA Astrophysics Data System (ADS)

    Petty, A.; Tsamados, M.; Kurtz, N. T.; Farrell, S. L.; Newman, T.; Harbeck, J.; Feltham, D. L.; Richter-Menge, J.

    2015-12-01

    Here we present a detailed analysis of Arctic sea ice topography using high resolution, three-dimensional surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter. We derive novel ice topography statistics from 2009-2014 across both first-year and multiyear ice regimes - including the height, area coverage, orientation and spacing of distinct surface features. The sea ice topography exhibits strong spatial variability, including increased surface feature (e.g. pressure ridge) height and area coverage within the multi-year ice regions. The ice topography also shows a strong coastal dependency, with the feature height and area coverage increasing as a function of proximity to the nearest coastline, especially north of Greenland and the Canadian Archipelago. The ice topography data have also been used to explicitly calculate atmospheric drag coefficients over Arctic sea ice; utilizing existing relationships regarding ridge geometry and their impact on form drag. The results are being used to calibrate the recent drag parameterization scheme included in the sea ice model CICE.

  20. The effect of skin surface topography and skin colouration cues on perception of male facial age, health and attractiveness.

    PubMed

    Fink, B; Matts, P J; Brauckmann, C; Gundlach, S

    2018-04-01

    Previous studies investigating the effects of skin surface topography and colouration cues on the perception of female faces reported a differential weighting for the perception of skin topography and colour evenness, where topography was a stronger visual cue for the perception of age, whereas skin colour evenness was a stronger visual cue for the perception of health. We extend these findings in a study of the effect of skin surface topography and colour evenness cues on the perceptions of facial age, health and attractiveness in males. Facial images of six men (aged 40 to 70 years), selected for co-expression of lines/wrinkles and discolouration, were manipulated digitally to create eight stimuli, namely, separate removal of these two features (a) on the forehead, (b) in the periorbital area, (c) on the cheeks and (d) across the entire face. Omnibus (within-face) pairwise combinations, including the original (unmodified) face, were presented to a total of 240 male and female judges, who selected the face they considered younger, healthier and more attractive. Significant effects were detected for facial image choice, in response to skin feature manipulation. The combined removal of skin surface topography resulted in younger age perception compared with that seen with the removal of skin colouration cues, whereas the opposite pattern was found for health preference. No difference was detected for the perception of attractiveness. These perceptual effects were seen particularly on the forehead and cheeks. Removing skin topography cues (but not discolouration) in the periorbital area resulted in higher preferences for all three attributes. Skin surface topography and colouration cues affect the perception of age, health and attractiveness in men's faces. The combined removal of these features on the forehead, cheeks and in the periorbital area results in the most positive assessments. © 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  1. Interferometer for measuring dynamic corneal topography

    NASA Astrophysics Data System (ADS)

    Micali, Jason Daniel

    The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. It is desirable to possess an instrument that can measure the corneal shape and tear film surface with the same accuracy and resolution that is currently performed on common optical elements. A dual interferometer system for measuring the dynamic corneal topography is designed, built, and verified. The completed system is validated by testing on human subjects. The system consists of two co-aligned polarization splitting Twyman-Green interferometers designed to measure phase instantaneously. The primary interferometer measures the surface of the tear film while the secondary interferometer simultaneously tracks the absolute position of the cornea. Eye motion, ocular variation, and a dynamic tear film surface will result in a non-null configuration of the surface with respect to the interferometer system. A non-null test results in significant interferometer induced errors that add to the measured phase. New algorithms are developed to recover the absolute surface topography of the tear film and corneal surface from the simultaneous interferometer measurements. The results are high-resolution and high-accuracy surface topography measurements of the in vivo cornea that are captured at standard camera frame rates. This dissertation will cover the development and construction of an interferometer system for measuring the dynamic corneal topography of the human eye. The discussion starts with the completion of an interferometer for measuring the tear film. The tear film interferometer is part of an ongoing research project that has spanned multiple dissertations. For this research, the instrument was tested on human subjects and resulted in refinements to the interferometer design. The final configuration of the tear film interferometer and results from human subjects testing are presented. Feedback from this instrument was used to support the development and construction of the interferometric corneal topographer system. A calibration is performed on the instrument, and then verified against simulated eye surfaces. Finally, the instrument is validated by testing on human subjects. The result is an interferometer system that can non-invasively measure the dynamic corneal topography with greater accuracy and resolution than existing technologies.

  2. Enhanced Arctic Mean Sea Surface and Mean Dynamic Topography including retracked CryoSat-2 Data

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Jain, M.; Stenseng, L.; Knudsen, P.

    2014-12-01

    A reliable mean sea surface (MSS) is essential to derive a good mean dynamic topography (MDT) and for the estimation of short and long-term changes in the sea surface. The lack of satellite radar altimetry observations above 82 degrees latitude means that existing mean sea surface models have been unreliable in the Arctic Ocean. We here present the latest DTU mean sea surface and mean dynamic topography models combining conventional altimetry with retracked CryoSat-2 data to improve the reliability in the Arctic Ocean. For the derivation of a mean dynamic topography the ESA GOCE derived geoid model have been used to constrain the longer wavelength. We present the retracking of C2 SAR data using various retrackes and how we have been able to combine data from various retrackers under various sea ice conditions. DTU13MSS and DTU13MDT are the newest state of the art global high-resolution models including CryoSat-2 data to extend the satellite radar altimetry coverage up to 88 degrees latitude and through combination with a GOCE geoid model completes coverage all the way to the North Pole. Furthermore the SAR and SARin capability of CryoSat-2 dramatically increases the amount of useable sea surface returns in sea-ice covered areas compared to conventional radar altimeters like ENVISAT and ERS-1/2. With the inclusion of CryoSat-2 data the new mean sea surface is improved by more than 20 cm above 82 degrees latitude compared with the previous generation of mean sea surfaces.

  3. Surface interactions, thermodynamics and topography of binary monolayers of Insulin with dipalmitoylphosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylcholine at the air/water interface.

    PubMed

    Grasso, E J; Oliveira, R G; Maggio, B

    2016-02-15

    The molecular packing, thermodynamics and surface topography of binary Langmuir monolayers of Insulin and DPPC (dipalmitoylphosphatidylcholine) or POCP (1-palmitoyl-2-oleoylphosphatidylcholine) at the air/water interface on Zn(2+) containing solutions were studied. Miscibility and interactions were ascertained by the variation of surface pressure-mean molecular area isotherms, surface compressional modulus and surface (dipole) potential with the film composition. Brewster Angle Microscopy was used to visualize the surface topography of the monolayers. Below 20mN/m Insulin forms stable homogenous films with DPPC and POPC at all mole fractions studied (except for films with XINS=0.05 at 10mN/m where domain coexistence was observed). Above 20mN/m, a segregation process between mixed phases occurred in all monolayers without squeezing out of individual components. Under compression the films exhibit formation of a viscoelastic or kinetically trapped organization leading to considerable composition-dependent hysteresis under expansion that occurs with entropic-enthalpic compensation. The spontaneously unfavorable interactions of Insulin with DPPC are driven by favorable enthalpy that is overcome by unfavorable entropic ordering; in films with POPC both the enthalpic and entropic effects are unfavorable. The surface topography reveals domain coexistence at relatively high pressure showing a striped appearance. The interactions of Insulin with two major membrane phospholipids induces composition-dependent and long-range changes of the surface organization that ought to be considered in the context of the information-transducing capabilities of the hormone for cell functioning. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide).

    PubMed

    Wan, Yuqing; Wang, Yong; Liu, Zhimin; Qu, Xue; Han, Buxing; Bei, Jianzhong; Wang, Shenguo

    2005-07-01

    The impact of the surface topography of polylactone-type polymer on cell adhesion was to be concerned because the micro-scale texture of a surface can provide a significant effect on the adhesion behavior of cells on the surface. Especially for the application of tissue engineering scaffold, the pore size could have an influence on cell in-growth and subsequent proliferation. Micro-fabrication technology was used to generate specific topography to investigate the relationship between the cells and surface. In this study the pits-patterned surfaces of polystyrene (PS) film with diameters 2.2 and 0.45 microm were prepared by phase-separation, and the corresponding scale islands-patterned PLLA surface was prepared by a molding technique using the pits-patterned PS as a template. The adhesion and proliferation behavior of OCT-1 osteoblast-like cells morphology on the pits- and islands-patterned surface were characterized by SEM observation, cell attachment efficiency measurement and MTT assay. The results showed that the cell adhesion could be enhanced on PLLA and PS surface with nano-scale and micro-scale roughness compared to the smooth surfaces of the PLLA and PS. The OCT-1 osteoblast-like cells could grow along the surface with two different size islands of PLLA and grow inside the micro-scale pits of the PS. However, the proliferation of cells on the micro- and nano-scale patterned surface has not been enhanced compared with the controlled smooth surface.

  5. Reproducibility of UAV-based earth surface topography based on structure-from-motion algorithms.

    NASA Astrophysics Data System (ADS)

    Clapuyt, François; Vanacker, Veerle; Van Oost, Kristof

    2014-05-01

    A representation of the earth surface at very high spatial resolution is crucial to accurately map small geomorphic landforms with high precision. Very high resolution digital surface models (DSM) can then be used to quantify changes in earth surface topography over time, based on differencing of DSMs taken at various moments in time. However, it is compulsory to have both high accuracy for each topographic representation and consistency between measurements over time, as DSM differencing automatically leads to error propagation. This study investigates the reproducibility of reconstructions of earth surface topography based on structure-from-motion (SFM) algorithms. To this end, we equipped an eight-propeller drone with a standard reflex camera. This equipment can easily be deployed in the field, as it is a lightweight, low-cost system in comparison with classic aerial photo surveys and terrestrial or airborne LiDAR scanning. Four sets of aerial photographs were created for one test field. The sets of airphotos differ in focal length, and viewing angles, i.e. nadir view and ground-level view. In addition, the importance of the accuracy of ground control points for the construction of a georeferenced point cloud was assessed using two different GPS devices with horizontal accuracy at resp. the sub-meter and sub-decimeter level. Airphoto datasets were processed with SFM algorithm and the resulting point clouds were georeferenced. Then, the surface representations were compared with each other to assess the reproducibility of the earth surface topography. Finally, consistency between independent datasets is discussed.

  6. The effect of glycerin solution density and viscosity on vibration amplitude of oblique different piezoelectric MC near the surface in 3D modeling

    NASA Astrophysics Data System (ADS)

    Korayem, A. H.; Abdi, M.; Korayem, M. H.

    2018-06-01

    The surface topography in nanoscale is one of the most important applications of AFM. The analysis of piezoelectric microcantilevers vibration behavior is essential to improve the AFM performance. To this end, one of the appropriate methods to simulate the dynamic behavior of microcantilever (MC) is a numerical solution with FEM in the 3D modeling using COMSOL software. The present study aims to simulate different geometries of the four-layered AFM piezoelectric MCs in 2D and 3D modeling in a liquid medium using COMSOL software. The 3D simulation was done in a spherical container using FSI domain in COMSOL. In 2D modeling by applying Hamilton's Principle based on Euler-Bernoulli Beam theory, the governing motion equation was derived and discretized with FEM. In this mode, the hydrodynamic force was assumed with a string of spheres. The effect of this force along with the squeezed-film force was considered on MC equations. The effect of fluid density and viscosity on the MC vibrations that immersed in different glycerin solutions was investigated in 2D and 3D modes and the results were compared with the experimental results. The frequencies and time responses of MC close to the surface were obtained considering tip-sample forces. The surface topography of MCs different geometries were compared in the liquid medium and the comparison was done in both tapping and non-contact mode. Various types of surface roughness were considered in the topography for MC different geometries. Also, the effect of geometric dimensions on the surface topography was investigated. In liquid medium, MC is installed at an oblique position to avoid damaging the MC due to the squeezed-film force in the vicinity of MC surface. Finally, the effect of MC's angle on surface topography and time response of the system was investigated.

  7. Reducing Ice Adhesion on Nonsmooth Metallic Surfaces: Wettability and Topography Effects.

    PubMed

    Ling, Edwin Jee Yang; Uong, Victor; Renault-Crispo, Jean-Sébastien; Kietzig, Anne-Marie; Servio, Phillip

    2016-04-06

    The effects of ice formation and accretion on external surfaces range from being mildly annoying to potentially life-threatening. Ice-shedding materials, which lower the adhesion strength of ice to its surface, have recently received renewed research attention as a means to circumvent the problem of icing. In this work, we investigate how surface wettability and surface topography influence the ice adhesion strength on three different surfaces: (i) superhydrophobic laser-inscribed square pillars on copper, (ii) stainless steel 316 Dutch-weave meshes, and (iii) multiwalled carbon nanotube-covered steel meshes. The finest stainless steel mesh displayed the best performance with a 93% decrease in ice adhesion relative to polished stainless steel, while the superhydrophobic square pillars exhibited an increase in ice adhesion by up to 67% relative to polished copper. Comparisons of dynamic contact angles revealed little correlation between surface wettability and ice adhesion. On the other hand, by considering the ice formation process and the fracture mechanics at the ice-substrate interface, we found that two competing mechanisms governing ice adhesion strength arise on nonplanar surfaces: (i) mechanical interlocking of the ice within the surface features that enhances adhesion, and (ii) formation of microcracks that act as interfacial stress concentrators, which reduce adhesion. Our analysis provides insight toward new approaches for the design of ice-releasing materials through the use of surface topographies that promote interfacial crack propagation.

  8. Calculation of Seismic Waves from Explosions with Tectonic Stresses and Topography

    NASA Astrophysics Data System (ADS)

    Stevens, J. L.; O'Brien, M.

    2017-12-01

    We investigate the effects of explosion depth, tectonic stresses and topography on seismic waves from underground nuclear explosions. We perform three-dimensional nonlinear calculations of an explosion at several depths in the topography of the North Korean test site. We also perform a large number of two-dimensional axisymmetric calculations of explosions at depths from 150 to 1000 meters in four earth structures, with compressive and tensile tectonic stresses and with no tectonic stresses. We use the representation theorem to propagate the results of these calculations and calculate seismic waves at regional and teleseismic distances. We find that P-waves are not strongly affected by any of these effects because the initial downgoing P-wave is unaffected by interaction with the free surface. Surface waves, however, are strongly affected by all of these effects. There is an optimal depth at which surface waves are maximized at the base of a mountain and at or slightly below normal containment depth. At deeper depths, increasing overburden pressure reduces the surface waves. At shallower depths, interaction with the free surface reduces the surface waves. For explosions inside a mountain, displacement of the sides of the mountain reduces surface waves. Compressive prestress reduces surface waves substantially, while tensile prestress increases surface waves. The North Korean explosions appear to be at an optimal depth, in a region of extension, and beneath a mountain, all of which increase surface wave amplitudes.

  9. Surface properties of beached plastics.

    PubMed

    Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K

    2015-07-01

    Studying plastic characteristics in the marine environment is important to better understand interaction between plastics and the environment. In the present study, high-density polyethylene (HDPE), polyethylene terephalate (PET), and polyvinyl chloride (PVC) samples were collected from the coastal environment in order to study their surface properties. Surface properties such as surface functional groups, surface topography, point of zero charge, and color change are important factors that change during degradation. Eroded HDPE demonstrated an altered surface topography and color and new functional groups. Eroded PET surface was uneven, yellow, and occasionally, colonized by microbes. A decrease in Fourier transform infrared (FTIR) peaks was observed for eroded PET suggesting that degradation had occurred. For eroded PVC, its surface became more lamellar and a new FTIR peak was observed. These surface properties were obtained due to degradation and could be used to explain the interaction between plastics, microbes, and pollutants.

  10. Can weak crust explain the correlation of geoid and topography on Venus?

    NASA Technical Reports Server (NTRS)

    Buck, W. Roger

    1993-01-01

    The effect on geoid and topography of low viscosity crust overlying a steady-state convecting mantle is estimated under the assumption that the shear between crust and mantle does not alter the mantle flow. The weak crustal layer can change the sign of the geoid to topography ratio (admittance). The positive long wavelength admittance for Venus is consistent with a weak crust overlying a mantle with a viscosity that increases strongly with depth. The accepted interpretation of the strong positive correlation of geoid and topography on Venus, is that the convecting mantle of Venus has a constant viscosity with depth. Topography results from vertical normal stresses caused by mantle convection and highlands occur where mantle upwells. For topography to be supported by normal stress, the time scale for crustal flow must be long compared to the time scale for changes in the pattern of mantle flow. Because the high surface temperature of Venus may cause the crust to have a low viscosity, this assumption may be false. Topography should then be dominated by shear coupling between the crust and mantle. In the absence of a crustal layer, convection in a constant viscosity layer gives rise to a geoid anomaly that correlates positively with surface topography. When the viscosity in the layer increases with depth by several orders of magnitude, the surface topography and geoid anomaly become anti-correlated.

  11. Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors.

    PubMed

    Bain, Lauren E; Collazo, Ramon; Hsu, Shu-Han; Latham, Nicole Pfiester; Manfra, Michael J; Ivanisevic, Albena

    2014-06-01

    The chemical stability and electrical properties of gallium nitride make it a promising material for the development of biocompatible electronics, a range of devices including biosensors as well as interfaces for probing and controlling cellular growth and signaling. To improve the interface formed between the probe material and the cell or biosystem, surface topography and chemistry can be applied to modify the ways in which the device interacts with its environment. PC12 cells are cultured on as-grown planar, unidirectionally polished, etched nanoporous and nanowire GaN surfaces with and without a physisorbed peptide sequence that promotes cell adhesion. While cells demonstrate preferential adhesion to roughened surfaces over as-grown flat surfaces, the topography of that roughness also influences the morphology of cellular adhesion and differentiation in neurotypic cells. Addition of the peptide sequence generally contributes further to cellular adhesion and promotes development of stereotypic long, thin neurite outgrowths over alternate morphologies. The dependence of cell behavior on both the topographic morphology and surface chemistry is thus demonstrated, providing further evidence for the importance of surface modification for modulating bio-inorganic interfaces. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Cold Gas-Sprayed Deposition of Metallic Coatings onto Ceramic Substrates Using Laser Surface Texturing Pre-treatment

    NASA Astrophysics Data System (ADS)

    Kromer, R.; Danlos, Y.; Costil, S.

    2018-04-01

    Cold spraying enables a variety of metals dense coatings onto metal surfaces. Supersonic gas jet accelerates particles which undergo with the substrate plastic deformation. Different bonding mechanisms can be created depending on the materials. The particle-substrate contact time, contact temperature and contact area upon impact are the parameters influencing physicochemical and mechanical bonds. The resultant bonding arose from plastic deformation of the particle and substrate and temperature increasing at the interface. The objective was to create specific topography to enable metallic particle adhesion onto ceramic substrates. Ceramic did not demonstrate deformation during the impact which minimized the intimate bonds. Laser surface texturing was hence used as prior surface treatment to create specific topography and to enable mechanical anchoring. Particle compressive states were necessary to build up coating. The coating deposition efficiency and adhesion strength were evaluated. Textured surface is required to obtain strong adhesion of metallic coatings onto ceramic substrates. Consequently, cold spray coating parameters depend on the target material and a methodology was established with particle parameters (diameters, velocities, temperatures) and particle/substrate properties to adapt the surface topography. Laser surface texturing is a promising tool to increase the cold spraying applications.

  13. Shape-from-shading using Landsat 8 and airborne laser altimetry over ice sheets: toward new regional DEMs of Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Moussavi, M. S.; Scambos, T.; Haran, T. M.; Klinger, M. J.; Abdalati, W.

    2015-12-01

    We investigate the capability of Landsat 8's Operational Land Imager (OLI) instrument to quantify subtle ice sheet topography of Greenland and Antarctica. We use photoclinometry, or 'shape-from-shading', a method of deriving surface topography from local variations in image brightness due to varying surface slope. Photoclinomeetry is applicable over ice sheet areas with highly uniform albedo such as regions covered by recent snowfall. OLI imagery is available from both ascending and descending passes near the summer solstice period for both ice sheets. This provides two views of the surface features from two distinct solar azimuth illumination directions. Airborne laser altimetry data from the Airborne Topographic Mapper (ATM) instrument (flying on the Operation Ice Bridge program) are used to quantitatively convert the image brightness variations of surface undulations to surface slope. To validate the new DEM products, we use additional laser altimetry profiles collected over independent sites from Ice Bridge and ICESat, and high-resolution WorldView-2 DEMs. The photoclinometry-derived DEM products will be useful for studying surface elevation changes, enhancing bedrock elevation maps through inversion of surface topography, and inferring local variations in snow accumulation rates.

  14. Snap evaporation of droplets on smooth topographies.

    PubMed

    Wells, Gary G; Ruiz-Gutiérrez, Élfego; Le Lirzin, Youen; Nourry, Anthony; Orme, Bethany V; Pradas, Marc; Ledesma-Aguilar, Rodrigo

    2018-04-11

    Droplet evaporation on solid surfaces is important in many applications including printing, micro-patterning and cooling. While seemingly simple, the configuration of evaporating droplets on solids is difficult to predict and control. This is because evaporation typically proceeds as a "stick-slip" sequence-a combination of pinning and de-pinning events dominated by static friction or "pinning", caused by microscopic surface roughness. Here we show how smooth, pinning-free, solid surfaces of non-planar topography promote a different process called snap evaporation. During snap evaporation a droplet follows a reproducible sequence of configurations, consisting of a quasi-static phase-change controlled by mass diffusion interrupted by out-of-equilibrium snaps. Snaps are triggered by bifurcations of the equilibrium droplet shape mediated by the underlying non-planar solid. Because the evolution of droplets during snap evaporation is controlled by a smooth topography, and not by surface roughness, our ideas can inspire programmable surfaces that manage liquids in heat- and mass-transfer applications.

  15. Optimal leveling of flow over one-dimensional topography by Marangoni stresses

    NASA Astrophysics Data System (ADS)

    Gramlich, C. M.; Kalliadasis, Serafim; Homsy, G. M.; Messer, C.

    2002-06-01

    A thin viscous film flowing over a step down in topography exhibits a capillary ridge preceding the step. In applications, a planar liquid surface is often desired and hence there is a need to level the ridge. This paper investigates optimal leveling of the ridge by means of a Marangoni stress such as might be produced by a localized heater creating temperature variations at the film surface. The differential equation for the free surface based on lubrication theory and incorporating the effects of topography and temperature gradients is solved numerically for steps down in topography with different temperature profiles. Both rectangular "top-hat" and parabolic profiles, chosen to model physically realizable heaters, were found to be effective in reducing the height of the capillary ridge. Leveling the ridge is formulated as an optimization problem to minimize the maximum free-surface height by varying the heater strength, position, and width. With the optimized heaters, the variation in surface height is reduced by more than 50% compared to the original isothermal ridge. For more effective leveling, we consider an asymmetric n-step temperature distribution. The optimal n-step heater in this case results in (n+1) ridges of equal size; 2- and 3-step heaters reduce the variation in surface height by about 70% and 77%, respectively. Finally, we explore the potential of coolers and step temperature profiles for still more effective leveling.

  16. Coevolution of bed surface patchiness and channel morphology: 2. Numerical experiments

    USGS Publications Warehouse

    Nelson, Peter A.; McDonald, Richard R.; Nelson, Jonathan M.; Dietrich, William E.

    2015-01-01

    In gravel bed rivers, bed topography and the bed surface grain size distribution evolve simultaneously, but it is not clear how feedbacks between topography and grain sorting affect channel morphology. In this, the second of a pair of papers examining interactions between bed topography and bed surface sorting in gravel bed rivers, we use a two-dimensional morphodynamic model to perform numerical experiments designed to explore the coevolution of both free and forced bars and bed surface patches. Model runs were carried out on a computational grid simulating a 200 m long, 2.75 m wide, straight, rectangular channel, with an initially flat bed at a slope of 0.0137. Over five numerical experiments, we varied (a) whether an obstruction was present, (b) whether the sediment was a gravel mixture or a single size, and (c) whether the bed surface grain size feeds back on the hydraulic roughness field. Experiments with channel obstructions developed a train of alternate bars that became stationary and were connected to the obstruction. Freely migrating alternate bars formed in the experiments without channel obstructions. Simulations incorporating roughness feedbacks between the bed surface and flow field produced flatter, broader, and longer bars than simulations using constant roughness or uniform sediment. Our findings suggest that patches are not simply a by-product of bed topography, but they interact with the evolving bed and influence morphologic evolution.

  17. Development of Nomarski microscopy for quantitative determination of surface topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, J. S.; Gordon, R. L.; Lessor, D. L.

    1979-01-01

    The use of Nomarski differential interference contrast (DIC) microscopy has been extended to provide nondestructive, quantitative analysis of a sample's surface topography. Theoretical modeling has determined the dependence of the image intensity on the microscope's optical components, the sample's optical properties, and the sample's surface orientation relative to the microscope. Results include expressions to allow the inversion of image intensity data to determine sample surface slopes. A commercial Nomarski system has been modified and characterized to allow the evaluation of the optical model. Data have been recorded with smooth, planar samples that verify the theoretical predictions.

  18. Airborne Instrument Simulator for the Lidar Surface Topography (LIST) Mission

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis

    2010-01-01

    In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global coverage with a few years. NASA Goddard conducted an initial mission concept study for the LIST mission 2007, and developed the initial measurement requirements for the mission.

  19. In vitro study on bone formation and surface topography from the standpoint of biomechanics.

    PubMed

    Kawahara, H; Soeda, Y; Niwa, K; Takahashi, M; Kawahara, D; Araki, N

    2004-12-01

    Effect of surface topography upon cell-adhesion, -orientation and -differentiation was investigated by in vitro study on cellular responses to titanium substratum with different surface roughness. Cell-shape, -function and -differentiation depending upon the surface topography were clarified by use of bone formative group cells (BFGCs) derived from bone marrow of beagle's femur. BFGCs consisted of hematopoietic stem cells (HSC) and osteogenetic stem cells (OSC). Cell differentiation of BFGCs was expressed and promoted by structural changes of cytoskeleton, and cell-organella, which was caused by mechanical stress with cytoplasmic stretching of cell adhesions to the substratum. Phagocytic monocytes of HSC differentiated to osteomediator cells (OMC) by cytoplasmic stretching with cell adhesion to the substratum. The OMC mediated and promoted cell differentiation from OSC to osteoblast through osteoblastic phenotype cell (OBC) by cell-aggregation of nodules with "pile up" phenomenon of OBC onto OMC. The osteogenesis might be performed by coupling work of both cells, OMC originated from monocyte of HSC and OBC originated from OSC, which were explained by SEM, TEM and fluorescent probe investigation on BFGCs on the test plate of cp titanium plates with different topographies. This osteogenetic process was proved by investigating cell proliferation, DNA contents, cell-adhesion, alkaline phosphatase activity and osteocalcine productivity for cells on the titanium plates with different topographies. The study showed increased osteogenic effects for cells cultured on Ti with increased surface roughness. Possible mechanisms were discussed from a biomechanical perspective.

  20. Quantitative surface topography determination by Nomarski reflection microscopy I. Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lessor, D.L.; Hartman, J.S.; Gordon, R.L.

    1979-02-01

    The Nomarksi differential interference contrast microscope is examined as a tool for determination of metallic mirror surface topography. This discussion includes the development of an optical model for the Nomarski system, an examination of the key results of the model's application to sloped sample surfaces, and recommended procedures for implementation. The functional relationship is developed between image intensity and the component of surface slope along the Nomarski shear direction, the fixed parameters in the Nimarksi system, and the adjustable phase shifts related to Nomarski prism position. Equations are also developed to allow the determination of surface slope from relative imagemore » intensity when sample reflectively is uniform and slopes are small.« less

  1. Photometric stereo endoscopy.

    PubMed

    Parot, Vicente; Lim, Daryl; González, Germán; Traverso, Giovanni; Nishioka, Norman S; Vakoc, Benjamin J; Durr, Nicholas J

    2013-07-01

    While color video endoscopy has enabled wide-field examination of the gastrointestinal tract, it often misses or incorrectly classifies lesions. Many of these missed lesions exhibit characteristic three-dimensional surface topographies. An endoscopic system that adds topographical measurements to conventional color imagery could therefore increase lesion detection and improve classification accuracy. We introduce photometric stereo endoscopy (PSE), a technique which allows high spatial frequency components of surface topography to be acquired simultaneously with conventional two-dimensional color imagery. We implement this technique in an endoscopic form factor and demonstrate that it can acquire the topography of small features with complex geometries and heterogeneous optical properties. PSE imaging of ex vivo human gastrointestinal tissue shows that surface topography measurements enable differentiation of abnormal shapes from surrounding normal tissue. Together, these results confirm that the topographical measurements can be obtained with relatively simple hardware in an endoscopic form factor, and suggest the potential of PSE to improve lesion detection and classification in gastrointestinal imaging.

  2. Surface polishing of niobium for superconducting radio frequency (SRF) cavity applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Liang

    2014-08-01

    Niobium cavities are important components in modern particle accelerators based on superconducting radio frequency (SRF) technology. The interior of SRF cavities are cleaned and polished in order to produce high accelerating field and low power dissipation on the cavity wall. Current polishing methods, buffered chemical polishing (BCP) and electro-polishing (EP), have their advantages and limitations. We seek to improve current methods and explore laser polishing (LP) as a greener alternative of chemical methods. The topography and removal rate of BCP at different conditions (duration, temperature, sample orientation, flow rate) was studied with optical microscopy, scanning electron microscopy (SEM), and electronmore » backscatter diffraction (EBSD). Differential etching on different crystal orientations is the main contributor to fine grain niobium BCP topography, with gas evolution playing a secondary role. The surface of single crystal and bi-crystal niobium is smooth even after heavy BCP. The topography of fine grain niobium depends on total removal. The removal rate increases with temperature and surface acid flow rate within the rage of 0~20 °C, with chemical reaction being the possible dominate rate control mechanism. Surface flow helps to regulate temperature and avoid gas accumulation on the surface. The effect of surface flow rate on niobium EP was studied with optical microscopy, atomic force microscopy (AFM), and power spectral density (PSD) analysis. Within the range of 0~3.7 cm/s, no significant difference was found on the removal rate and the macro roughness. Possible improvement on the micro roughness with increased surface flow rate was observed. The effect of fluence and pulse accumulation on niobium topography during LP was studied with optical microscopy, SEM, AFM, and PSD analysis. Polishing on micro scale was achieved within fluence range of 0.57~0.90 J/cm2, with pulse accumulation adjusted accordingly. Larger area treatment was proved possible by overlapping laser tracks at proper ratio. Comparison of topography and PSD indicates that LP smooths the surface in a way similar to EP. The optimized LP parameters were applied to different types of niobium surfaces representing different stages in cavity fabrication. LP reduces the sharpness on rough surfaces effectively, while doing no harm to smooth surfaces. Secondary ion mass spectrometer (SIMS) analysis showed that LP reduces the oxide layer slightly and no contamination occurred from LP. EBSD showed no significant change on crystal structure after LP.« less

  3. Topographic forcing and related uncertainties on glacier surface energy balance in High Mountain Asia

    NASA Astrophysics Data System (ADS)

    Olson, M.; Rupper, S.; Shean, D. E.

    2017-12-01

    Topography directly influences the amount of global radiation, as well as other key energy flux terms, arriving on a glacier surface. This is particularly important in regions of variable and complex topography such as High Mountain Asia (HMA). In this region surface energy and mass balance estimates often rely heavily on modeling, and thus require accurate accounting of topography through available remote sensing platforms. Our previous work shows that topographic shading from surrounding terrain can alter the mean daily potential direct shortwave radiation by upwards of 20% for some valley glaciers. In this work, we find in regions of high topographic relief that shading frequently dominates in the ablation zone rather than the accumulation zone, contrary to the findings of some previous studies. This however, is largely dependent on the valley aspect and relative relief of nearby terrain. In addition, we examine the impact of topography, primarily topographic shading, on components of surface energy balance for a large sample of glaciers across different regions in HMA. Our results show that while the impact of topographic shading is highly variable throughout HMA, the magnitude of influence can often be predicted based on simple characteristics such as latitude, valley aspect, and orientation of the immediate surrounding topography. We also explore the uncertainty in topographic shading and in calculated surface energy due to the spatial resolution and accuracy of DEMs. In particular, we compare the shading and energy balance results utilizing a suite of DEMs, including 2 m, 8 m, and 30 m World View DEMs, 30 m ASTER GDEM, 30 m SRTM DEM, and 30 m ALOS DEM. These results will help us improve glacier energy and mass balance modeling accuracy, and demonstrate limitations and uncertainties when modeling changes in surface energy fluxes due to surrounding topography for mountain glaciers.

  4. Surface treated polypropylene (PP) fibres for reinforced concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Buendía, Angel M., E-mail: buendia@uv.es; Romero-Sánchez, María Dolores; Climent, Verónica

    Surface treatments on a polypropylene (PP) fibre have contributed to the improvement of fibre/concrete adhesion in fibre-reinforced concrete. The treatments to the PP fibre were characterized by contact angle measurements, ATR-IR and XPS to analyse chemical alterations. The surface topography and fibre/concrete interaction were analysed by several microscopic techniques, namely optical petrographic, and scanning electron microscopy. Treatment modified the surface chemistry and topography of the fibre by introducing sodium moieties and created additional fibre surface roughness. Modifications in the fibre surface led to an increase in the adhesion properties between the treated fibres and concrete and an improvement in themore » mechanical properties of the fibre-reinforced concrete composite as compared to the concrete containing untreated PP fibres. Compatibility with the concrete and increased roughness and mineral surface was also improved by nucleated portlandite and ettringite mineral association anchored on the alkaline PP fibre surface, which is induced during treatment.« less

  5. Spatial distribution of erosion in the Hangay Mountains of Mongolia and implications for the development of epeirogenic topography

    NASA Astrophysics Data System (ADS)

    West, A.; Fox, M.; Walker, R. T.; Carter, A.; Watts, A. B.; Gantulga, B.

    2012-12-01

    Potential feedbacks between climate-driven erosion and the development of intra-continental topography have received relatively little attention, particularly compared to the significant efforts to understand the interplay of climate, erosion, and uplift in orogenic settings. But such links may be vital for understanding the topographic evolution of epeirogenic topography and for making inferences about geodynamic processes based on associated sedimentary and geomorphic signals. In this study, we consider the role of orographically-driven climate variability in shaping continental topography by focusing on the Hangay mountain range, a uplifted dome in central Mongolia. The work presented here is based on results from a topographic analysis of the Hangay, making use of the flat-topped peaks that effectively represent preserved remnants of a pre-erosional surface. We have determined the scale and distribution of erosion by recreating this pre-erosional surface and subtracting the present-day, dissected topography. Our results show that the extent of erosion correlates with spatial variation in mean annual precipitation, but not with the extent of total surface uplift. The morphology of the range reflects the higher, climate-driven fluvial erosion rates by northern rivers that receive higher precipitation when compared to the southern rivers, which have steeper relief as a result of the asymmetric main drainage divide. Overall asymmetry in inferred isostatic response to erosional unloading is not mirrored in asymmetry of total surface uplift, hinting at interaction between surface erosion and the forces sustaining topography. This has important implications for understanding the geodynamics of epeirogenic uplift. In addition to these main outcomes from our topographic analysis, we will also present preliminary findings from detrital thermochronology and cosmogenic analyses that help to pinpoint the location of erosion and provide a basis for quantifying rates.

  6. Impacts of land cover changes on climate trends in Jiangxi province China.

    PubMed

    Wang, Qi; Riemann, Dirk; Vogt, Steffen; Glaser, Rüdiger

    2014-07-01

    Land-use/land-cover (LULC) change is an important climatic force, and is also affected by climate change. In the present study, we aimed to assess the regional scale impact of LULC on climate change using Jiangxi Province, China, as a case study. To obtain reliable climate trends, we applied the standard normal homogeneity test (SNHT) to surface air temperature and precipitation data for the period 1951-1999. We also compared the temperature trends computed from Global Historical Climatology Network (GHCN) datasets and from our analysis. To examine the regional impacts of land surface types on surface air temperature and precipitation change integrating regional topography, we used the observation minus reanalysis (OMR) method. Precipitation series were found to be homogeneous. Comparison of GHCN and our analysis on adjusted temperatures indicated that the resulting climate trends varied slightly from dataset to dataset. OMR trends associated with surface vegetation types revealed a strong surface warming response to land barrenness and weak warming response to land greenness. A total of 81.1% of the surface warming over vegetation index areas (0-0.2) was attributed to surface vegetation type change and regional topography. The contribution of surface vegetation type change decreases as land cover greenness increases. The OMR precipitation trend has a weak dependence on surface vegetation type change. We suggest that LULC integrating regional topography should be considered as a force in regional climate modeling.

  7. The influence of chemical structure on thermal properties and surface morphology of polyurethane materials.

    PubMed

    Brzeska, Joanna; Morawska, Magda; Heimowska, Aleksandra; Sikorska, Wanda; Wałach, Wojciech; Hercog, Anna; Kowalczuk, Marek; Rutkowska, Maria

    2018-01-01

    The surface morphology and thermal properties of polyurethanes can be correlated to their chemical composition. The hydrophilicity, surface morphology, and thermal properties of polyurethanes (differed in soft segments and in linear/cross-linked structure) were investigated. The influence of poly([ R , S ]-3-hydroxybutyrate) presence in soft segments and blending of polyurethane with polylactide on surface topography were also estimated. The linear polyurethanes (partially crystalline) had the granular surface, whereas the surface of cross-linked polyurethanes (almost amorphous) was smooth. Round aggregates of polylactide un-uniformly distributed in matrix of polyurethane were clearly visible. It was concluded that some modification of soft segment (by mixing of poly([ R , S ]-3-hydroxybutyrate) with different polydiols and polytriol) and blending of polyurethanes with small amount of polylactide influence on crystallinity and surface topography of obtained polyurethanes.

  8. Optimal leveling of flow over one-dimensional topography by Marangoni stresses

    NASA Astrophysics Data System (ADS)

    Gramlich, C. M.; Homsy, G. M.; Kalliadasis, Serafim

    2001-11-01

    A thin viscous film flowing over a step down in topography exhibits a capillary ridge near the step, which may be undesirable in applications. This paper investigates optimal leveling of the ridge by means of a Marangoni stress such as might be produced by a localized heater creating temperature variations at the film surface. Lubrication theory results in a differential equation for the free surface, which can be solved numerically for any given topography and temperature profile. Leveling the ridge is then formulated as an optimization problem to minimize the maximum free-surface height by varying the heater strength, position, and width. Optimized heaters with 'top-hat' or parabolic temperature profiles replace the original ridge with two smaller ridges of equal size, achieving leveling of better than 50%. An optimized asymmetric n-step temperature distribution results in (n+1) ridges and reduces the variation in surface height by a factor of better than 1/(n+1).

  9. KSC-08pd1656

    NASA Image and Video Library

    2008-05-06

    VANDENBERG AIR FORCE BASE, Calif. – The Ocean Surface Topography Mission, or OSTM/Jason 2, spacecraft is being prepared for bagging before encapsulation and transfer to the launch pad. The launch of the Ocean Surface Topography Mission, or OSTM/Jason 2, aboard a Delta II rocket is scheduled for Friday, June 20, from Vandenberg Air Force Base in California. The launch window extends from 12:46 a.m. to 12:55 a.m. PDT. The satellite will be placed in an 830-mile-high orbit at an inclination of 66 degrees after separating from the Delta II 55 minutes after liftoff. The five primary science instruments of the Ocean Surface Topography Mission aboard the Jason 2 spacecraft are dedicated to measuring ocean surface height. These measurements will be used to evaluate and forecast climate changes and improve weather forecasting. The results also are expected to help forecasters better predict hurricane intensity. Photo credit: NASA

  10. KSC-08pd1658

    NASA Image and Video Library

    2008-05-06

    VANDENBERG AIR FORCE BASE, Calif. – The Ocean Surface Topography Mission, or OSTM/Jason 2, spacecraft is being prepared for bagging before encapsulation and transfer to the launch pad. The launch of the Ocean Surface Topography Mission, or OSTM/Jason 2, aboard a Delta II rocket is scheduled for Friday, June 20, from Vandenberg Air Force Base in California. The launch window extends from 12:46 a.m. to 12:55 a.m. PDT. The satellite will be placed in an 830-mile-high orbit at an inclination of 66 degrees after separating from the Delta II 55 minutes after liftoff. The five primary science instruments of the Ocean Surface Topography Mission aboard the Jason 2 spacecraft are dedicated to measuring ocean surface height. These measurements will be used to evaluate and forecast climate changes and improve weather forecasting. The results also are expected to help forecasters better predict hurricane intensity. Photo credit: NASA

  11. KSC-08pd1655

    NASA Image and Video Library

    2008-05-06

    VANDENBERG AIR FORCE BASE, Calif. – The Ocean Surface Topography Mission, or OSTM/Jason 2, spacecraft is being prepared for bagging before encapsulation and transfer to the launch pad. The launch of the Ocean Surface Topography Mission, or OSTM/Jason 2, aboard a Delta II rocket is scheduled for Friday, June 20, from Vandenberg Air Force Base in California. The launch window extends from 12:46 a.m. to 12:55 a.m. PDT. The satellite will be placed in an 830-mile-high orbit at an inclination of 66 degrees after separating from the Delta II 55 minutes after liftoff. The five primary science instruments of the Ocean Surface Topography Mission aboard the Jason 2 spacecraft are dedicated to measuring ocean surface height. These measurements will be used to evaluate and forecast climate changes and improve weather forecasting. The results also are expected to help forecasters better predict hurricane intensity. Photo credit: NASA

  12. KSC-08pd1657

    NASA Image and Video Library

    2008-05-06

    VANDENBERG AIR FORCE BASE, Calif. – The Ocean Surface Topography Mission, or OSTM/Jason 2, spacecraft is being prepared for bagging before encapsulation and transfer to the launch pad. The launch of the Ocean Surface Topography Mission, or OSTM/Jason 2, aboard a Delta II rocket is scheduled for Friday, June 20, from Vandenberg Air Force Base in California. The launch window extends from 12:46 a.m. to 12:55 a.m. PDT. The satellite will be placed in an 830-mile-high orbit at an inclination of 66 degrees after separating from the Delta II 55 minutes after liftoff. The five primary science instruments of the Ocean Surface Topography Mission aboard the Jason 2 spacecraft are dedicated to measuring ocean surface height. These measurements will be used to evaluate and forecast climate changes and improve weather forecasting. The results also are expected to help forecasters better predict hurricane intensity. Photo credit: NASA

  13. The relationship between surface topography, gravity anomalies, and temperature structure of convection

    NASA Technical Reports Server (NTRS)

    Parsons, B.; Daly, S.

    1983-01-01

    Consideration is given to the relationship between the temperature structure of mantle convection and the resulting surface topography and gravity anomalies, which are used in its investigation. Integral expressions relating the three variables as a function of wavelength are obtained with the use of Green's function solutions to the equations of motion for the case of constant-viscosity convection in a plane layer subject to a uniform gravitational field. The influence of the boundary conditions, particularly at large wavelengths, is pointed out, and surface topographies and gravity produced by convection are illustrated for a number of simple temperature distributions. It is shown that the upper thermal boundary layer plays an important role in determining the surface observables, while temperatures near the bottom of the layer affect mainly that boundary. This result is consistent with an explanation of geoid anomalies over mid-ocean swells in terms of convection beneath the lithosphere.

  14. Role of the unfolded protein response in topography-induced osteogenic differentiation in rat bone marrow mesenchymal stem cells.

    PubMed

    Shi, Mengqi; Song, Wen; Han, Tianxiao; Chang, Bei; Li, Guangwen; Jin, Jianfeng; Zhang, Yumei

    2017-05-01

    The topography of biomaterials can significantly influence the osteogenic differentiation of cells. Understanding topographical signal transduction is critical for developing biofunctional surfaces, but the current knowledge is insufficient. Recently, numerous reports have suggested that the unfolded protein response (UPR) and osteogenic differentiation are inter-linked. Therefore, we hypothesize that the UPR pathway may be involved in the topography-induced osteogenesis. In the present study, different surface topographies were fabricated on pure titanium foils and the endoplasmic reticulum (ER) stress and UPR pathway were systematically investigated. We found that ER stress and the PERK-eIF2α-ATF4 pathway were activated in a time- and topography-dependent manner. Additionally, the activation of the PERK-eIF2α-ATF4 pathway by different topographies was in line with their osteogenic induction capability. More specifically, the osteogenic differentiation could be enhanced or weakened when the PERK-eIF2α-ATF4 pathway was promoted or inhibited, respectively. Furthermore, tuning of the degree of ER stress with different concentrations of thapsigargin revealed that mild ER stress promotes osteogenic differentiation, whereas excessive ER stress inhibits osteogenic differentiation and causes apoptosis. Taken together, our findings suggest that the UPR may play a critical role in topography-induced osteogenic differentiation, which may help to provide new insights into topographical signal transduction. Suitable implant surface topography can effectively improve bioactivity and eventual bone affinity. However, the mechanism of topographical signaling transduction is unclear and criteria for designation of an appropriate implant surface topography is lacking. This study shows that the ER stress and PERK-eIF2α-ATF4 pathway were activated by micro- and micro/nano-topographies, which is corresponding to the osteogenic induction abilities of these topographies. Furthermore, we have found that mild ER stress improves osteogenic differentiation, whereas excessive ER stress inhibits osteogenic differentiation and causes apoptosis. Our findings demonstrate that the UPR plays a critical role in the topography induced osteogenic differentiation, which may help to provide new insights into the topographical signaling transduction. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Radial orbit error reduction and sea surface topography determination using satellite altimetry

    NASA Technical Reports Server (NTRS)

    Engelis, Theodossios

    1987-01-01

    A method is presented in satellite altimetry that attempts to simultaneously determine the geoid and sea surface topography with minimum wavelengths of about 500 km and to reduce the radial orbit error caused by geopotential errors. The modeling of the radial orbit error is made using the linearized Lagrangian perturbation theory. Secular and second order effects are also included. After a rather extensive validation of the linearized equations, alternative expressions of the radial orbit error are derived. Numerical estimates for the radial orbit error and geoid undulation error are computed using the differences of two geopotential models as potential coefficient errors, for a SEASAT orbit. To provide statistical estimates of the radial distances and the geoid, a covariance propagation is made based on the full geopotential covariance. Accuracy estimates for the SEASAT orbits are given which agree quite well with already published results. Observation equations are develped using sea surface heights and crossover discrepancies as observables. A minimum variance solution with prior information provides estimates of parameters representing the sea surface topography and corrections to the gravity field that is used for the orbit generation. The simulation results show that the method can be used to effectively reduce the radial orbit error and recover the sea surface topography.

  16. Controlling flows in microchannels with patterned surface charge and topography.

    PubMed

    Stroock, Abraham D; Whitesides, George M

    2003-08-01

    This Account reviews two procedures for controlling the flow of fluids in microchannels. The first procedure involves patterning the density of charge on the inner surfaces of a channel. These patterns generate recirculating electroosmotic flows in the presence of a steady electric field. The second procedure involves patterning topography on an inner surface of a channel. These patterns generate recirculation in the cross-section of steady, pressure-driven flows. This Account summarizes applications of these flow to mixing and to controlling dispersion (band broadening).

  17. Correcting for surface topography in X-ray fluorescence imaging

    PubMed Central

    Geil, E. C.; Thorne, R. E.

    2014-01-01

    Samples with non-planar surfaces present challenges for X-ray fluorescence imaging analysis. Here, approximations are derived to describe the modulation of fluorescence signals by surface angles and topography, and suggestions are made for reducing this effect. A correction procedure is developed that is effective for trace element analysis of samples having a uniform matrix, and requires only a fluorescence map from a single detector. This procedure is applied to fluorescence maps from an incised gypsum tablet. PMID:25343805

  18. Feature-based characterisation of signature topography in laser powder bed fusion of metals

    NASA Astrophysics Data System (ADS)

    Senin, Nicola; Thompson, Adam; Leach, Richard

    2018-04-01

    The use of state-of-the-art areal topography measurement instrumentation allows for a high level of detail in the acquisition of topographic information at micrometric scales. The 3D geometric models of surface topography obtained from measured data create new opportunities for the investigation of manufacturing processes through characterisation of the surfaces of manufactured parts. Conventional methods for quantitative assessment of topography usually only involve the computation of texture parameters, summary indicators of topography-related characteristics that are computed over the investigated area. However, further useful information may be obtained through characterisation of signature topographic formations, as more direct indicators of manufacturing process behaviour and performance. In this work, laser powder bed fusion of metals is considered. An original algorithmic method is proposed to isolate relevant topographic formations and to quantify their dimensional and geometric properties, using areal topography data acquired by state-of-the-art areal topography measurement instrumentation.

  19. Ground-based LiDAR Measurements of Actively Inflating Pahoehoe Flows, Kilauea Volcano, Hawaii: Implications for Emplacement of Basaltic Units on Mars

    NASA Astrophysics Data System (ADS)

    Byrnes, J. M.; Finnegan, D. C.; Nicoll, K.; Anderson, S. W.

    2007-05-01

    Remote sensing datasets enable planetary volcanologists to extract information regarding eruption processes. Long-lived effusive eruptions at sites such as Kilauea Volcano (HI) provide opportunities to collect rich observational data sets, including detailed measurements of topography and extrusion rates, that allow comparisons between lava flow surface morphologies and emplacement conditions for use in interpreting similar morphological features associated with planetary lava flows. On Mars, the emplacement of basaltic lava flows is a volumetrically and spatially important process, creating both large-scale and small-scale surface morphologies. On Earth, low effusion rate eruptions on relatively horizontal slopes tend to create inflated lava flows that display hummocky topography. To better understand the processes involved in creating observed surface characteristics, we repeatedly measured the surface topography of an actively flowing and inflating basaltic unit within the Pu'u O'o flow field over a 5-day period. We used a ground-based laser-scanner (LiDAR) system that provided vertical and horizontal accuracies of 4 mm. Comparing DEMs from repeated laser scans yielded the magnitudes and styles of constructional processes, allowing us to quantify the relationship between pre- and post-emplacement surface topography. Our study site (roughly 200 m x 200 m) experienced about 5 m of vertical inflation over a 3 day period and created a new hummocky surface containing several tumuli. The temporal and spatial patterns of inflation were complex and showed no obvious relationship with underlying topography. High-precision morphometric measurements acquired using ground-based LiDAR affords us the opportunity to capture the essential boundary conditions necessary for evaluating and comparing high-resolution planetary data sets, such as those acquired by the MOC, HRSC, and HiRISE instruments.

  20. Effects of high-temperature gas dealkalization on surface mechanical properties of float glass

    NASA Astrophysics Data System (ADS)

    Senturk, Ufuk

    The surface topography, and the near-surface structure and mechanical property changes on float glass, that was treated in atmospheres containing SOsb2, HCl, and 1,1 difluoroethane (DFE) gases, at temperatures in the glass transition region, were studied. Structure was investigated using surface sensitive infrared spectroscopy techniques (attenuated total reflectance (ATR) and diffuse reflectance (DRIFT)) and the topography was evaluated using atomic force microscopy (AFM). The results obtained from the two FTIR methods were in agreement with each other. Mechanical property characteristics of the surface were determined by measuring microhardness using a recording microindentation set-up. A simple analysis performed on the three hardness calculation methods-LVH, LVHsb2, and Lsb2VH-indicated that LVH and LVHsb2 are less effected by measurement errors and are better suited for the calculation of hardness. Contact damage characteristics of the treated glass was also studied by monitoring the crack initiation behavior during indentation, using acoustic emission. The results of the studies, aiming for the understanding of the structure, topography, and hardness property changes indicate that the treatment parameters-temperature, time, and treatment atmosphere conditions-are significant factors influencing these properties. The analysis of these results suggest a relation to exist between the three properties. This relation is used in understanding the surface mechanical properties of the treated float glasses. The difference in the thermal expansion coefficients between the dealkalized surface and bulk, the nature of surface structure changes, structural relaxation, surface water content, and glass transformation temperature are identified as the major factors having an influence on the properties. A model connecting these features is suggested. A difference in the structure, hardness, and topography on the air and tin sides of float glass is also shown to exist. The contact damage behavior of the treated surfaces is shown to differ from those of untreated surfaces, for SOsb2-treated float glass, where the crack initiation characteristics indicate crack formation from the surface and the indenter tip, different than the expected anomalous deformation. This behavior resembles that of a silica glass deformation on the surface, which is in agreement with the other foundations in this study.

  1. High-Frequency Focused Water-Coupled Ultrasound Used for Three-Dimensional Surface Depression Profiling

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    2001-01-01

    To interface with other solids, many surfaces are engineered via methods such as plating, coating, and machining to produce a functional surface ensuring successful end products. In addition, subsurface properties such as hardness, residual stress, deformation, chemical composition, and microstructure are often linked to surface characteristics. Surface topography, therefore, contains the signatures of the surface and possibly links to volumetric properties, and as a result serves as a vital link between surface design, manufacturing, and performance. Hence, surface topography can be used to diagnose, monitor, and control fabrication methods. At the NASA Glenn Research Center, the measurement of surface topography is important in developing high-temperature structural materials and for profiling the surface changes of materials during microgravity combustion experiments. A prior study demonstrated that focused air-coupled ultrasound at 1 MHz could profile surfaces with a 25-m depth resolution and a 400-m lateral resolution over a 1.4-mm depth range. In this work, we address the question of whether higher frequency focused water-coupled ultrasound can improve on these specifications. To this end, we employed 10- and 25-MHz focused ultrasonic transducers in the water-coupled mode. The surface profile results seen in this investigation for 25-MHz water-coupled ultrasound, in comparison to those for 1-MHz air-coupled ultrasound, represent an 8 times improvement in depth resolution (3 vs. 25 m seen in practice), an improvement of at least 2 times in lateral resolution (180 vs. 400 m calculated and observed in practice), and an improvement in vertical depth range of 4 times (calculated).

  2. Integrated approach to estimate the ocean's time variable dynamic topography including its covariance matrix

    NASA Astrophysics Data System (ADS)

    Müller, Silvia; Brockmann, Jan Martin; Schuh, Wolf-Dieter

    2015-04-01

    The ocean's dynamic topography as the difference between the sea surface and the geoid reflects many characteristics of the general ocean circulation. Consequently, it provides valuable information for evaluating or tuning ocean circulation models. The sea surface is directly observed by satellite radar altimetry while the geoid cannot be observed directly. The satellite-based gravity field determination requires different measurement principles (satellite-to-satellite tracking (e.g. GRACE), satellite-gravity-gradiometry (GOCE)). In addition, hydrographic measurements (salinity, temperature and pressure; near-surface velocities) provide information on the dynamic topography. The observation types have different representations and spatial as well as temporal resolutions. Therefore, the determination of the dynamic topography is not straightforward. Furthermore, the integration of the dynamic topography into ocean circulation models requires not only the dynamic topography itself but also its inverse covariance matrix on the ocean model grid. We developed a rigorous combination method in which the dynamic topography is parameterized in space as well as in time. The altimetric sea surface heights are expressed as a sum of geoid heights represented in terms of spherical harmonics and the dynamic topography parameterized by a finite element method which can be directly related to the particular ocean model grid. Besides the difficult task of combining altimetry data with a gravity field model, a major aspect is the consistent combination of satellite data and in-situ observations. The particular characteristics and the signal content of the different observations must be adequately considered requiring the introduction of auxiliary parameters. Within our model the individual observation groups are combined in terms of normal equations considering their full covariance information; i.e. a rigorous variance/covariance propagation from the original measurements to the final product is accomplished. In conclusion, the developed integrated approach allows for estimating the dynamic topography and its inverse covariance matrix on arbitrary grids in space and time. The inverse covariance matrix contains the appropriate weights for model-data misfits in least-squares ocean model inversions. The focus of this study is on the North Atlantic Ocean. We will present the conceptual design and dynamic topography estimates based on time variable data from seven satellite altimeter missions (Jason-1, Jason-2, Topex/Poseidon, Envisat, ERS-2, GFO, Cryosat2) in combination with the latest GOCE gravity field model and in-situ data from the Argo floats and near-surface drifting buoys.

  3. Modelling of surface roughness effects on impurity erosion and deposition in TEXTOR with a code package SURO/ERO/SDPIC

    NASA Astrophysics Data System (ADS)

    Dai, Shuyu; Kirschner, A.; Sun, Jizhong; Tskhakaya, D.; Wang, Dezhen

    2014-12-01

    The roughness-induced uneven erosion-deposition behaviour is widely observed on plasma-wetted surfaces in tokamaks. The three-dimensional (3D) angular distribution of background plasma and impurities is expected to have an impact on the local erosion-deposition characteristic on rough surfaces. The investigations of 13C deposition on rough surfaces in TEXTOR experiments have been re-visited by 3D treatment of surface morphology to evaluate the effect of 3D angular distribution and its connection with surface topography by the code package SURO/ERO/SDPIC. The simulation results show that the erosion/deposition patterns and evolution of surface topography are strongly affected by the azimuthal direction of incident flux. A reduced aspect ratio of rough surface leads to an increase in 13C deposition due to the enhanced trapping ability at surface recessions. The shadowing effect of rough surface has been revealed based on the relationship between 3D incident direction and surface topography properties. The more realistic surface structures used by 3D SURO can well reproduce the experimental results of the increase in the 13C deposition efficiency by a factor of 3-5 on a rough surface compared with a smooth one. The influence of sheath electric field on the local impact angle and resulting 13C deposition has been studied, which indicates that the difference in 13C deposition caused by sheath electric field can be alleviated by the use of more realistic surface structures. The difference in 13C deposition on smooth graphite and tungsten substrates has been specified by consideration of effects of kinetic reflection, enhanced physical sputtering and nucleation.

  4. The dynamical control of subduction parameters on surface topography

    NASA Astrophysics Data System (ADS)

    Crameri, F.; Lithgow-Bertelloni, C. R.; Tackley, P. J.

    2017-04-01

    The long-wavelength surface deflection of Earth's outermost rocky shell is mainly controlled by large-scale dynamic processes like isostasy or mantle flow. The largest topographic amplitudes are therefore observed at plate boundaries due to the presence of large thermal heterogeneities and strong tectonic forces. Distinct vertical surface deflections are particularly apparent at convergent plate boundaries mostly due to the convergence and asymmetric sinking of the plates. Having a mantle convection model with a free surface that is able to reproduce both realistic single-sided subduction and long-wavelength surface topography self-consistently, we are now able to better investigate this interaction. We separate the topographic signal into distinct features and quantify the individual topographic contribution of several controlling subduction parameters. Results are diagnosed by splitting the topographic signal into isostatic and residual components, and by considering various physical aspects like viscous dissipation during plate bending. Performing several systematic suites of experiments, we are then able to quantify the topographic impact of the buoyancy, rheology, and geometry of the subduction-zone system to each and every topographic feature at a subduction zone and to provide corresponding scaling laws. We identify slab dip and, slightly less importantly, slab buoyancy as the major agents controlling surface topography at subduction zones on Earth. Only the island-arc high and the back-arc depression extent are mainly controlled by plate strength. Overall, his modeling study sets the basis to better constrain deep-seated mantle structures and their physical properties via the observed surface topography on present-day Earth and back through time.

  5. The behavior of MC3T3-E1 cells on chitosan/poly-L-lysine composite films: effect of nanotopography, surface chemistry, and wettability.

    PubMed

    Zheng, Zhenhuan; Zhang, Ling; Kong, Lijun; Wang, Aijun; Gong, Yandao; Zhang, Xiufang

    2009-05-01

    In the present work, a series of composite films were produced from chitosan/poly-L-lysine blend solutions. The surface topography, chemistry, and wettability of composite films were characterized by atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and contact angle assay, respectively. For all composite films, blending with poly-L-lysine induced changes in surface chemistry and wettability. Interestingly, it was also found that increasing poly-L-lysine weight fraction in blend solutions could result in different nanoscaled surface topographic features, which displayed particle-, granule-, or fiber-dominant morphologies. MC3T3-E1 osteoblast-like cells were cultured on all composite films to evaluate the effects of surface nanotopography, chemistry, and wettability on cell behavior. The observations indicated that MC3T3-E1 cell behavior was affected by surface topography, chemistry, and wettability simultaneously and that cells showed strong responses to surface topography. On fiber-dominant surface, cells fully spread with obvious cytoskeleton organization and exhibited significantly higher level of adhesion and proliferation compared with particle- or granule-dominant surfaces. Furthermore, fiber-dominant surface also induced greater expression of mature osteogenic marker osteocalcin and higher mineralization based on RT-PCR and von Kossa staining. The results suggest that topographic modification of chitosan substratum at the nanoscale may be exploited in regulating cell behavior for its applications in tissue engineering.

  6. Noise evaluation of a point autofocus surface topography measuring instrument

    NASA Astrophysics Data System (ADS)

    Maculotti, Giacomo; Feng, Xiaobing; Galetto, Maurizio; Leach, Richard

    2018-06-01

    In this work, the measurement noise of a point autofocus surface topography measuring instrument is evaluated, as the first step towards establishing a route to traceability for this type of instrument. The evaluation is based on the determination of the metrological characteristics for noise as outlined in draft ISO specification standards by using a calibrated optical flat. The static noise and repeatability of the autofocus sensor are evaluated. The influence of environmental disturbances on the measured surface topography and the built-in software to compensate for such influences are also investigated. The instrument was found to have a measurement noise of approximately 2 nm or, when expressed with the measurement bandwidth, 0.4 nm for a single-point measurement.

  7. A method for surface topography measurement using a new focus function based on dual-tree complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Li, Shimiao; Guo, Tong; Yuan, Lin; Chen, Jinping

    2018-01-01

    Surface topography measurement is an important tool widely used in many fields to determine the characteristics and functionality of a part or material. Among existing methods for this purpose, the focus variation method has proved high performance particularly in large slope scenarios. However, its performance depends largely on the effectiveness of focus function. This paper presents a method for surface topography measurement using a new focus measurement function based on dual-tree complex wavelet transform. Experiments are conducted on simulated defocused images to prove its high performance in comparison with other traditional approaches. The results showed that the new algorithm has better unimodality and sharpness. The method was also verified by measuring a MEMS micro resonator structure.

  8. On the ratio of dynamic topography and gravity anomalies in a dynamic Earth

    NASA Astrophysics Data System (ADS)

    Colli, L.; Ghelichkhan, S.; Bunge, H. P.

    2016-12-01

    Growing evidence from a variety of geologic indicators points to significant topography maintained convectively by viscous stresses in the mantle. However, while gravity is sensitive to dynamically supported topography, there are only small free-air gravity anomalies (<30 mGal) associated with Earth's long-wavelength topography. This has been used to suggest that surface heights computed assuming a complete isostatic equilibrium provide a good approximation to observed topography. Here we show that the apparent paradox is resolved by the well-established formalism of global, self-gravitating, viscously stratified Earth models. The models predict a complex relation between dynamic topography, mass, and gravity anomalies that is not summarized by a constant admittance—i.e., ratio of gravity anomalies to surface deflections—as one would infer from analytic flow solutions formulated in a half-space.

  9. Effects of Polishing Bur Application Force and Reuse on Sintered Zirconia Surface Topography.

    PubMed

    Fischer, N G; Tsujimoto, A; Baruth, A G

    2018-03-16

    Limited information is available on how to polish and finish zirconia surfaces following computer-aided design/computer-aided manufacturing (CAD/CAM), specifically, how differing application forces and reuse of zirconia polishing systems affect zirconia topography. To determine the effect of differing, clinically relevant, polishing application forces and multiple usages of polishing burs on the surface topography of CAD/CAM zirconia. One hundred twenty 220-grit carbide finished zirconia disks were sintered according to manufacturer's directions and divided into two groups for the study of two coarse polishing bur types. Each group was divided into subgroups for polishing (15,000 rpm) at 15 seconds for 1.0 N, 4.5 N, or 11 N of force using a purpose-built fixture. Subgroups were further divided to study the effects of polishing for the first, fifth, 15th, and 30th bur use, simulating clinical procedures. Unpolished surfaces served as a control group. Surfaces were imaged with noncontact optical profilometry (OP) and atomic force microscopy (AFM) to measure average roughness values (Ra). Polishing burs were optically examined for wear. Scanning electron microscopy (SEM) was performed on burs and zirconia surfaces. One-way ANOVA with post hoc Tukey HSD (honest significant difference) tests (α=0.05) were used for statistical analyses. AFM and OP Ra values of all polished surfaces were significantly lower than those of the unpolished control. Different polishing forces and bur reuse showed no significant differences in AFM Ra. However, significant differences in OP Ra were found due to differing application forces and bur reuse between the first and subsequent uses. SEM and optical micrographs revealed notable bur wear, increasing with increasing reuse. SEM and AFM micrographs clearly showed polished, periodic zirconia surfaces. Nanoscale topography, as analyzed with kurtosis and average groove depth, was found dependent on the specific polishing bur type. These in vitro results suggest changes in OP Ra due to bur reuse and polishing application force. Within the parameters of this study, the resultant topography of zirconia polishing is force-dependent and the reuse of coarse polishing burs is possible without statistically significant differences in Ra values after initial use. Nanoscale and microscale topography were shown to depend on specific polishing bur type.

  10. Asymmetric three-dimensional topography over mantle plumes.

    PubMed

    Burov, Evgueni; Gerya, Taras

    2014-09-04

    The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.

  11. A normalisation framework for (hyper-)spectral imagery

    NASA Astrophysics Data System (ADS)

    Grumpe, Arne; Zirin, Vladimir; Wöhler, Christian

    2015-06-01

    It is well known that the topography has an influence on the observed reflectance spectra. This influence is not compensated by spectral ratios, i.e. the effect is wavelength dependent. In this work, we present a complete normalisation framework. The surface temperature is estimated based on the measured surface reflectance. To normalise the spectral reflectance with respect to a standard illumination geometry, spatially varying reflectance parameters are estimated based on a non-linear reflectance model. The reflectance parameter estimation has one free parameter, i.e. a low-pass function, which sets the scale of the spatial-variance, i.e. the lateral resolution of the reflectance parameter maps. Since the local surface topography has a major influence on the measured reflectance, often neglected shading information is extracted from the spectral imagery and an existing topography model is refined to image resolution. All methods are demonstrated on the Moon Mineralogy Mapper dataset. Additionally, two empirical methods are introduced that deal with observed systematic reflectance changes in co-registered images acquired at different phase angles. These effects, however, may also be caused by the sensor temperature, due to its correlation with the phase angle. Surface temperatures above 300 K are detected and are very similar to a reference method. The proposed method, however, seems more robust in case of absorptions visible in the reflectance spectrum near 2000 nm. By introducing a low-pass into the computation of the reflectance parameters, the reflectance behaviour of the surfaces may be derived at different scales. This allows for an iterative refinement of the local surface topography using shape from shading and the computation reflectance parameters. The inferred parameters are derived from all available co-registered images and do not show significant influence of the local surface topography. The results of the empirical correction show that both proposed methods greatly reduce the influence of different phase angles or sensor temperatures.

  12. Nano- and Micro-Scale Oxidative Patterning of Titanium Implant Surfaces for Improved Surface Wettability.

    PubMed

    Kim, In-hye; Son, Jun Sik; Choi, Seok Hwa; Kim, Kyo-han; Kwon, Tae-yub

    2016-02-01

    A simple and scalable surface modification treatment is demonstrated, in which nano- and microscale features are introduced into the surface of titanium (Ti) substrates by means of a novel and eco-friendly oxidative aqueous solution composed of hydrogen peroxide (H202) and sodium bicarbonate (NaHCO3). By immersing mirror-polished Ti discs in an aqueous mixture of 30 wt% H2O2/5 wt% NaHCO3 at 23 +/- 3 degrees C for 4 h, it was confirmed that this mixture is capable of generating microscale topographies on Ti surfaces. It also simultaneously formed nanochannels that were regularly arranged in a comb-like pattern on the Ti surface, thus forming a hierarchical surface structure. Further, these nano/micro-textured Ti surfaces showed great surface roughness and excellent wettability when compared with control Ti surfaces. This study demonstrates that a H2O2/NaHCO3 mixture can be effectively utilized to create reproducible nano/microscale topographies on Ti implant surfaces, thus providing an economical new oxidative solution that may be used effectively and safely as a Ti surface modification treatment.

  13. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.

    PubMed

    Long, Jiangyou; Fan, Peixun; Gong, Dingwei; Jiang, Dafa; Zhang, Hongjun; Li, Lin; Zhong, Minlin

    2015-05-13

    Superhydrophobic surfaces with tunable water adhesion have attracted much interest in fundamental research and practical applications. In this paper, we used a simple method to fabricate superhydrophobic surfaces with tunable water adhesion. Periodic microstructures with different topographies were fabricated on copper surface via femtosecond (fs) laser irradiation. The topography of these microstructures can be controlled by simply changing the scanning speed of the laser beam. After surface chemical modification, these as-prepared surfaces showed superhydrophobicity combined with different adhesion to water. Surfaces with deep microstructures showed self-cleaning properties with extremely low water adhesion, and the water adhesion increased when the surface microstructures became flat. The changes in surface water adhesion are attributed to the transition from Cassie state to Wenzel state. We also demonstrated that these superhydrophobic surfaces with different adhesion can be used for transferring small water droplets without any loss. We demonstrate that our approach provides a novel but simple way to tune the surface adhesion of superhydrophobic metallic surfaces for good potential applications in related areas.

  14. Full-field measurement of surface topographies and thin film stresses at elevated temperatures by digital gradient sensing method.

    PubMed

    Zhang, Changxing; Qu, Zhe; Fang, Xufei; Feng, Xue; Hwang, Keh-Chih

    2015-02-01

    Thin film stresses in thin film/substrate systems at elevated temperatures affect the reliability and safety of such structures in microelectronic devices. The stresses result from the thermal mismatch strain between the film and substrate. The reflection mode digital gradient sensing (DGS) method, a real-time, full-field optical technique, measures deformations of reflective surface topographies. In this paper, we developed this method to measure topographies and thin film stresses of thin film/substrate systems at elevated temperatures. We calibrated and compensated for the air convection at elevated temperatures, which is a serious problem for optical techniques. We covered the principles for surface topography measurements by the reflection mode DGS method at elevated temperatures and the governing equations to remove the air convection effects. The proposed method is applied to successfully measure the full-field topography and deformation of a NiTi thin film on a silicon substrate at elevated temperatures. The evolution of thin film stresses obtained by extending Stoney's formula implies the "nonuniform" effect the experimental results have shown.

  15. Human Corneal Limbal-Epithelial Cell Response to Varying Silk Film Geometric Topography In Vitro

    PubMed Central

    Lawrence, Brian D.; Pan, Zhi; Liu, Aihong; Kaplan, David L.; Rosenblatt, Mark I.

    2012-01-01

    Silk fibroin films are a promising class of biomaterials that have a number of advantages for use in ophthalmic applications due to their transparent nature, mechanical properties and minimal inflammatory response upon implantation. Freestanding silk films with parallel line and concentric ring topographies were generated for in vitro characterization of human corneal limbal-epithelial (HCLE) cell response upon differing geometric patterned surfaces. Results indicated that silk film topography significantly affected initial HCLE culture substrate attachment, cellular alignment, cell-to-cell contact formation, actin cytoskeleton alignment, and focal adhesion (FA) localization. Most notably, parallel line patterned surfaces displayed a 36%–54% increase on average in initial cell attachment, which corresponded to an over 2-fold increase in FA localization when compared to other silk film surfaces and controls. In addition, distinct localization of FA formation was observed along the edges for all patterned silk film topographies. In conclusion, silk film feature topography appears to help direct corneal epithelial cell response and cytoskeleton development, especially in regards to FA distribution, in vitro. PMID:22705042

  16. The Effect of Surface Patterning on Corrosion Resistance of Biomedical Devices

    NASA Astrophysics Data System (ADS)

    Guo, Mengnan; Toloei, Alisina; Rotermund, Harm H.

    2016-10-01

    In this study, two styles of surface topographies have been created on stainless steel wires to test their corrosion resistance as simulated implanted biomedical devices. Grade 316 LVM stainless steel wire was initially polished to G1500 surface finish before treatment to produce the two different topographies: 1. Unidirectional roughness was created using SiC papers and 2. Various patterns were created with specific hole diameter and inter-hole spacing using focused ion beam (FIB). In order to simulate the environment of implanted biomedical devices, a three-electrode electrochemical cell with 0.9% (by mass) NaCl solution has been used to test the corrosion resistance of the samples by potentiodynamic polarization test method. SEM and EDS analyzed the appearance and chemical composition of different elements including oxygen on the surface. The potential of stable pitting, time related to the initiation of the stable pitting, and the highest corrosion current associated with stable pitting have been compared for samples with the two styles of topography. It was found that surfaces with patterns have a relatively higher pitting potential and it takes longer time to initiate stable pitting than the surface without any patterns.

  17. The Influence of Runoff and Surface Hydrology on Titan's Weather and Climate

    NASA Astrophysics Data System (ADS)

    Faulk, S.; Lora, J. M.; Mitchell, J.; Moon, S.

    2017-12-01

    Titan's surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle, producing characteristic weather and seasonal climate patterns. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane "wetlands" reservoirs realistically produce observed cloud features and temperature profiles of Titan's atmosphere, whereas "aquaplanet" simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan's surface. The wetlands configuration is, in part, motivated by Titan's large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow of a global or regional methane table. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan's hydrology provides new insight into the complex interaction between Titan's atmosphere and surface, demonstrates the influence of surface runoff on Titan's global climate, and lays the groundwork for further surface hydrology developments in Titan GCMs, including infiltration and subsurface flow.

  18. Evaluation of methods for characterizing surface topography of models for high Reynolds number wind-tunnels

    NASA Technical Reports Server (NTRS)

    Teague, E. C.; Vorburger, T. V.; Scire, F. E.; Baker, S. M.; Jensen, S. W.; Gloss, B. B.; Trahan, C.

    1982-01-01

    Current work by the National Bureau of Standards at the NASA National Transonic Facility (NTF) to evaluate the performance of stylus instruments for determining the topography of models under investigation is described along with instrumentation for characterization of the surface microtopography. Potential areas of surface effects are reviewed, and the need for finer surfaced models for the NTF high Reynolds number flows is stressed. Current stylus instruments have a radii as large as 25 microns, and three models with surface finishes of 4-6, 8-10, and 12-15 micro-in. rms surface finishes were fabricated for tests with a stylus with a tip radius of 1 micron and a 50 mg force. Work involving three-dimensional stylus profilometry is discussed in terms of stylus displacement being converted to digital signals, and the design of a light scattering instrument capable of measuring the surface finish on curved objects is presented.

  19. Effects of surface topography and vibrations on wetting: Superhydrophobicity, icephobicity and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Ramachandran, Rahul

    Concrete and metallic materials are widely used in construction and water industry. The interaction of both these materials with water and ice (or snow) produces undesirable results and is therefore of interest. Water that gets absorbed into the pores of dry concrete expands on freezing and can lead to crack formation. Also, the ice accretion on concrete surfaces such as roadways can have disastrous consequence. Metallic components used in the water industry undergo corrosion due to contact with aqueous corrosive solutions. Therefore, it is desirable to make concrete water/ice-repellent, and to make metallic surfaces corrosion-resistant. Recent advances in micro/nanotechnology have made it possible to design functional micro/nanostructured surfaces with micro/nanotopography providing low adhesion. Some examples of such surfaces are superhydrophobic surfaces, which are extremely water repellent, and icephobic surfaces, which have low ice adhesion, repel incoming water droplets before freezing, or delay ice nucleation. This dissertation investigates the effects of surface micro/nanotopography and small amplitude fast vibrations on the wetting and adhesion of concrete with the goal of producing hydrophobic and icephobic concrete, and on the wetting of metallic surfaces to prevent corrosion. The relationship between surface micro/nanotopography and small fast vibrations is established using the method of separation of motions. Both these small scale effects can be substituted by an effective force or energy. The structure-property relationships in materials and surfaces are established. Both vibrations as well as surface micro/nanopatterns can affect wetting properties such as contact angle and surface free energy. Hydrophobic engineered cementitious composite samples are produced by controlling their surface topography and surface free energy. The surface topography is controlled by varying the concrete mixture composition. The surface free energy of concrete is lowered using a hydrophobic emulsion. The hydrophobic concrete samples were able to repel incoming water droplets as well as resist droplet pinning. Corrosion resistance is achieved in cast iron samples by rendering them superhydrophobic. The corrosion resistance of superhydrophobic surfaces with micro/nanotopography may be explained by the low effective contact area with the electrolyte. The experimental results matched the theoretical predictions based on surface roughness and wettability. The icephobicity of engineered cementitious composite samples is achieved by hydrophobization, by using coatings containing dielectric material (such as polyvinyl alcohol fibers), and by controlling the surface topography. Two aspects of the icephobicity of concrete, namely, the repulsion of incoming water droplets before freezing and the ice adhesion strength, are investigated experimentally. It is found that icephobic performance of concrete depends on these parameters --- the hydrophobic emulsion concentration, the polyvinyl alcohol fiber content, the water to cement ratio, and the sand to cement ratio. The potential for biomimetic icephobicity of thermogenic skunk cabbage plant is investigated, and it is found that the surface topography of its leaves can affect the heat transfer from the plant to the surrounding snow. The hierarchical microstructure of the leaf surface coupled with its high adhesion to water suggests the presence of an impregnated wetting state, which can minimize the heat loss. Thus functional materials and surfaces, such as hydrophobic and icephobic engineered cementitious composites and corrosion resistant metallic surfaces, can be produced by controlling the surface micro/nanotopography.

  20. Microscopic asperity contact and deformation of ultrahigh molecular weight polyethylene bearing surfaces.

    PubMed

    Wang, F C; Jin, Z M; McEwen, H M J; Fisher, J

    2003-01-01

    The effect of the roughness and topography of ultrahigh molecular weight polyethylene (UHMWPE) bearing surfaces on the microscopic contact mechanics with a metallic counterface was investigated in the present study. Both simple sinusoidal roughness forms, with a wide range of amplitudes and wavelengths, and real surface topographies, measured before and after wear testing in a simple pin-on-plate machine, were considered in the theoretical analysis. The finite difference method was used to solve the microscopic contact between the rough UHMWPE bearing surface and a smooth hard counterface. The fast Fourier transform (FFT) was used to cope with the large number of mesh points required to represent the surface topography of the UHMWPE bearing surface. It was found that only isolated asperity contacts occurred under physiological loading, and the real contact area was only a small fraction of the nominal contact area. Consequently, the average contact pressure experienced at the articulating surfaces was significantly higher than the nominal contact pressure. Furthermore, it was shown that the majority of asperities on the worn UHMWPE pin were deformed in the elastic region, and consideration of the plastic deformation only resulted in a negligible increase in the predicted asperity contact area. Microscopic asperity contact and deformation mechanisms may play an important role in the understanding of the wear mechanisms of UHMWPE bearing surfaces.

  1. Finite difference elastic wave modeling with an irregular free surface using ADER scheme

    NASA Astrophysics Data System (ADS)

    Almuhaidib, Abdulaziz M.; Nafi Toksöz, M.

    2015-06-01

    In numerical modeling of seismic wave propagation in the earth, we encounter two important issues: the free surface and the topography of the surface (i.e. irregularities). In this study, we develop a 2D finite difference solver for the elastic wave equation that combines a 4th- order ADER scheme (Arbitrary high-order accuracy using DERivatives), which is widely used in aeroacoustics, with the characteristic variable method at the free surface boundary. The idea is to treat the free surface boundary explicitly by using ghost values of the solution for points beyond the free surface to impose the physical boundary condition. The method is based on the velocity-stress formulation. The ultimate goal is to develop a numerical solver for the elastic wave equation that is stable, accurate and computationally efficient. The solver treats smooth arbitrary-shaped boundaries as simple plane boundaries. The computational cost added by treating the topography is negligible compared to flat free surface because only a small number of grid points near the boundary need to be computed. In the presence of topography, using 10 grid points per shortest shear-wavelength, the solver yields accurate results. Benchmark numerical tests using several complex models that are solved by our method and other independent accurate methods show an excellent agreement, confirming the validity of the method for modeling elastic waves with an irregular free surface.

  2. Dual interferometer for dynamic measurement of corneal topography

    NASA Astrophysics Data System (ADS)

    Micali, Jason D.; Greivenkamp, John E.

    2016-08-01

    The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface, where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. A dual interferometer system for measuring the dynamic corneal topography is designed, built, verified, and qualified by testing on human subjects. The system consists of two coaligned simultaneous phase-shifting polarization-splitting Twyman-Green interferometers. The primary interferometer measures the surface of the tear film while the secondary interferometer tracks the absolute position of the cornea, which provides enough information to reconstruct the absolute shape of the cornea. The results are high-resolution and high-accuracy surface topography measurements of the in vivo tear film and cornea that are captured at standard camera frame rates.

  3. Fabrication of Superhydrophobic Surfaces with Controllable Electrical Conductivity and Water Adhesion.

    PubMed

    Ye, Lijun; Guan, Jipeng; Li, Zhixiang; Zhao, Jingxin; Ye, Cuicui; You, Jichun; Li, Yongjin

    2017-02-14

    A facile and versatile strategy for fabricating superhydrophobic surfaces with controllable electrical conductivity and water adhesion is reported. "Vine-on-fence"-structured and cerebral cortex-like superhydrophobic surfaces are constructed by filtering a suspension of multiwalled carbon nanotubes (MWCNTs), using polyoxymethylene nonwovens as the filter paper. The nonwovens with micro- and nanoporous two-tier structures act as the skeleton, introducing a microscale structure. The MWCNTs act as nanoscale structures, creating hierarchical surface roughness. The surface topography and the electrical conductivity of the superhydrophobic surfaces are controlled by varying the MWCNT loading. The vine-on-fence-structured surfaces exhibit "sticky" superhydrophobicity with high water adhesion. The cerebral cortex-like surfaces exhibit self-cleaning properties with low water adhesion. The as-prepared superhydrophobic surfaces are chemically resistant to acidic and alkaline environments of pH 2-12. They therefore have potential in applications such as droplet-based microreactors and thin-film microextraction. These findings aid our understanding of the role that surface topography plays in the design and fabrication of superhydrophobic surfaces with different water-adhesion properties.

  4. Design and construction of a novel tribometer with online topography and wear measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korres, Spyridon; Dienwiebel, Martin

    2010-06-15

    We present a novel experimental platform that links topographical and material changes with the friction and wear behavior of oil-lubricated metal surfaces. This concept combines state-of-the-art methods for the analysis of the surface topography on the micro- and nanoscale with the online measurement of wear. At the same time, it allows for frictional and lateral force detection. Information on the topography of one of the two surfaces is gathered in situ with a three-dimensional (3D) holography microscope at a maximum frequency of 15 frames/s and higher resolution images are provided at defined time intervals by an atomic force microscope. Themore » wear measurement is conducted online by means of radio nuclide technique. The quantitative measurement of the lateral and frictional forces is conducted with a custom-built 3D force sensor. The surfaces can be lubricated with an optically transparent oil or water. The stability and precision of the setup have been tested in a model experiment. The results show that the exact same position can be relocated and examined after each load cycle. Wear and topography measurements were performed with a radioactive labeled iron pin sliding against an iron plate.« less

  5. Enhancing the Arctic Mean Sea Surface and Mean Dynamic Topography with CryoSat-2 Data

    NASA Astrophysics Data System (ADS)

    Stenseng, Lars; Andersen, Ole B.; Knudsen, Per

    2014-05-01

    A reliable mean sea surface (MSS) is essential to derive a good mean dynamic topography (MDT) and for the estimation of short and long-term changes in the sea surface. The lack of satellite radar altimetry observations above 82 degrees latitude means that existing mean sea surface models have been unreliable in the Arctic Ocean. We here present the latest DTU mean sea surface and mean dynamic topography models that includes CryoSat-2 data to improve the reliability in the Arctic Ocean. In an attempt to extrapolate across the gap above 82 degrees latitude the previously models included ICESat data, gravimetrical geoids, ocean circulation models and various combinations hereof. Unfortunately cloud cover and the short periods of operation has a negative effect on the number of ICESat sea surface observations. DTU13MSS and DTU13MDT are the new generation of state of the art global high-resolution models that includes CryoSat-2 data to extend the satellite radar altimetry coverage up to 88 degrees latitude. Furthermore the SAR and SARin capability of CryoSat-2 dramatically increases the amount of useable sea surface returns in sea-ice covered areas compared to conventional radar altimeters like ENVISAT and ERS-1/2. With the inclusion of CryoSat-2 data the new mean sea surface is improved by more than 20 cm above 82 degrees latitude compared with the previous generation of mean sea surfaces.

  6. Surface topography and ordering-variant segregation in GaInP[sub 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, D.J.; Zhu, J.G.; Kibbler, A.E.

    1993-09-27

    Using transmission electron diffraction dark-field imaging, atomic force microscopy (AFM), and Nomarski microscopy, we demonstrate a direct connection between surface topography and cation site ordering in GaInP[sub 2]. We study epilayers grown by organometallic vapor-phase epitaxy on GaAs substrates oriented 2[degree] off (100) towards (110). Nomarski microscopy shows that, as growth proceeds, the surface of ordered material forms faceted structures aligned roughly along [011]. A comparison with the dark-field demonstrates that the [1[bar 1]1] and [11[bar 1

  7. Effects of a hybrid micro/nanorod topography-modified titanium implant on adhesion and osteogenic differentiation in rat bone marrow mesenchymal stem cells.

    PubMed

    Zhang, Wenjie; Li, Zihui; Huang, Qingfeng; Xu, Ling; Li, Jinhua; Jin, Yuqin; Wang, Guifang; Liu, Xuanyong; Jiang, Xinquan

    2013-01-01

    Various methods have been used to modify titanium implant surfaces with the aim of achieving better osseointegration. In this study, we fabricated a clustered nanorod structure on an acid-etched, microstructured titanium plate surface using hydrogen peroxide. We also evaluated biofunctionalization of the hybrid micro/nanorod topography on rat bone marrow mesenchymal stem cells. Scanning electron microscopy and x-ray diffraction were used to investigate the surface topography and phase composition of the modified titanium plate. Rat bone marrow mesenchymal stem cells were cultured and seeded on the plate. The adhesion ability of the cells was then assayed by cell counting at one, 4, and 24 hours after cell seeding, and expression of adhesion-related protein integrin β1 was detected by immunofluorescence. In addition, a polymerase chain reaction assay, alkaline phosphatase and Alizarin Red S staining assays, and osteopontin and osteocalcin immunofluorescence analyses were used to evaluate the osteogenic differentiation behavior of the cells. The hybrid micro/nanoscale texture formed on the titanium surface enhanced the initial adhesion activity of the rat bone marrow mesenchymal stem cells. Importantly, the hierarchical structure promoted osteogenic differentiation of these cells. This study suggests that a hybrid micro/nanorod topography on a titanium surface fabricated by treatment with hydrogen peroxide followed by acid etching might facilitate osseointegration of a titanium implant in vivo.

  8. A three-dimensional Dirichlet-to-Neumann operator for water waves over topography

    NASA Astrophysics Data System (ADS)

    Andrade, D.; Nachbin, A.

    2018-06-01

    Surface water waves are considered propagating over highly variable non-smooth topographies. For this three dimensional problem a Dirichlet-to-Neumann (DtN) operator is constructed reducing the numerical modeling and evolution to the two dimensional free surface. The corresponding Fourier-type operator is defined through a matrix decomposition. The topographic component of the decomposition requires special care and a Galerkin method is provided accordingly. One dimensional numerical simulations, along the free surface, validate the DtN formulation in the presence of a large amplitude, rapidly varying topography. An alternative, conformal mapping based, method is used for benchmarking. A two dimensional simulation in the presence of a Luneburg lens (a particular submerged mound) illustrates the accurate performance of the three dimensional DtN operator.

  9. Measuring floodplain spatial patterns using continuous surface metrics at multiple scales

    USGS Publications Warehouse

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.

    2015-01-01

    Interactions between fluvial processes and floodplain ecosystems occur upon a floodplain surface that is often physically complex. Spatial patterns in floodplain topography have only recently been quantified over multiple scales, and discrepancies exist in how floodplain surfaces are perceived to be spatially organised. We measured spatial patterns in floodplain topography for pool 9 of the Upper Mississippi River, USA, using moving window analyses of eight surface metrics applied to a 1 × 1 m2 DEM over multiple scales. The metrics used were Range, SD, Skewness, Kurtosis, CV, SDCURV,Rugosity, and Vol:Area, and window sizes ranged from 10 to 1000 m in radius. Surface metric values were highly variable across the floodplain and revealed a high degree of spatial organisation in floodplain topography. Moran's I correlograms fit to the landscape of each metric at each window size revealed that patchiness existed at nearly all window sizes, but the strength and scale of patchiness changed within window size, suggesting that multiple scales of patchiness and patch structure exist in the topography of this floodplain. Scale thresholds in the spatial patterns were observed, particularly between the 50 and 100 m window sizes for all surface metrics and between the 500 and 750 m window sizes for most metrics. These threshold scales are ~ 15–20% and 150% of the main channel width (1–2% and 10–15% of the floodplain width), respectively. These thresholds may be related to structuring processes operating across distinct scale ranges. By coupling surface metrics, multi-scale analyses, and correlograms, quantifying floodplain topographic complexity is possible in ways that should assist in clarifying how floodplain ecosystems are structured.

  10. Effects of laser shock peening with contacting foil on micro laser texturing surface of Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Dai, Fengze; Zhang, Zidong; Ren, Xudong; Lu, Jinzhong; Huang, Shu

    2018-02-01

    Ti6Al4V samples with micro-dimple arrays were subjected to laser shock peening in contact with foil (HCLSP). The surface roughness, micro-hardness, the residual stress distribution and the surface morphology of the micro-dimple arrays were studied to evaluate the effects of HCLSP. Moreover, the surface topography of the foils in contact was also analyzed. The gap existence between the foil and the to-be treated surface led the mechanism of HCLSP to be different compared to regular laser shock peening. The surface roughness reduction, the work-hardening effects, the compressive residual stress and the micro crack enclosure were achieved. A simplified ball-hitting-surface model was utilized to analyze the HCLSP impact. The model could well explain the experimental results. When treated by the HCLSP with H62 foil at the laser power density of 4.24 GW/cm2, the Ti6Al4V samples with micro-dimple arrays exhibit well surface topography and mechanical performance.

  11. Deciphering fine molecular details of proteins' structure and function with a Protein Surface Topography (PST) method.

    PubMed

    Koromyslova, Anna D; Chugunov, Anton O; Efremov, Roman G

    2014-04-28

    Molecular surfaces are the key players in biomolecular recognition and interactions. Nowadays, it is trivial to visualize a molecular surface and surface-distributed properties in three-dimensional space. However, such a representation trends to be biased and ambiguous in case of thorough analysis. We present a new method to create 2D spherical projection maps of entire protein surfaces and manipulate with them--protein surface topography (PST). It permits visualization and thoughtful analysis of surface properties. PST helps to easily portray conformational transitions, analyze proteins' properties and their dynamic behavior, improve docking performance, and reveal common patterns and dissimilarities in molecular surfaces of related bioactive peptides. This paper describes basic usage of PST with an example of small G-proteins conformational transitions, mapping of caspase-1 intersubunit interface, and intrinsic "complementarity" in the conotoxin-acetylcholine binding protein complex. We suggest that PST is a beneficial approach for structure-function studies of bioactive peptides and small proteins.

  12. Three-channel false colour AFM images for improved interpretation of complex surfaces: a study of filamentous cyanobacteria.

    PubMed

    Kurk, Toby; Adams, David G; Connell, Simon D; Thomson, Neil H

    2010-05-01

    Imaging signals derived from the atomic force microscope (AFM) are typically presented as separate adjacent images with greyscale or pseudo-colour palettes. We propose that information-rich false-colour composites are a useful means of presenting three-channel AFM image data. This method can aid the interpretation of complex surfaces and facilitate the perception of information that is convoluted across data channels. We illustrate this approach with images of filamentous cyanobacteria imaged in air and under aqueous buffer, using both deflection-modulation (contact) mode and amplitude-modulation (tapping) mode. Topography-dependent contrast in the error and tertiary signals aids the interpretation of the topography signal by contributing additional data, resulting in a more detailed image, and by showing variations in the probe-surface interaction. Moreover, topography-independent contrast and topography-dependent contrast in the tertiary data image (phase or friction) can be distinguished more easily as a consequence of the three dimensional colour-space.

  13. Facile Synthesis of Conductive Polypyrrole Wrinkle Topographies on Polydimethylsiloxane via a Swelling-Deswelling Process and Their Potential Uses in Tissue Engineering.

    PubMed

    Aufan, M Rifqi; Sumi, Yang; Kim, Semin; Lee, Jae Young

    2015-10-28

    Electrically conducting biomaterials have gained great attention in various biomedical studies especially to influence cell and tissue responses. In addition, wrinkling can present a unique topography that can modulate cell-material interactions. In this study, we developed a simple method to create wrinkle topographies of conductive polypyrrole (wPPy) on soft polydimethylsiloxane surfaces via a swelling-deswelling process during and after PPy polymerization and by varying the thickness of the PPy top layers. As a result, various features of wPPy in the range of the nano- and microscales were successfully obtained. In vitro cell culture studies with NIH 3T3 fibroblasts and PC12 neuronal cells indicated that the conductive wrinkle topographies promote cell adhesion and neurite outgrowth of PC12 cells. Our studies help to elucidate the design of the surface coating and patterning of conducting polymers, which will enable us to simultaneously provide topographical and electrical signals to improve cell-surface interactions for potential tissue-engineering applications.

  14. Anomalous topography on the continental shelf around Hudson Canyon

    USGS Publications Warehouse

    Knebel, H.J.

    1979-01-01

    Recent seismic-reflection data show that the topography on the Continental Shelf around Hudson Canyon is composed of a series of depressions having variable spacings (< 100 m to 2 km), depths (1-10 m), outlines, and bottom configurations that give the sea floor an anomalous "jagged" appearance in profile. The acoustic and sedimentary characteristics, the proximity to relict shores, and the areal distribution indicate that this rough topography is an erosional surface formed on Upper Pleistocene silty sands about 13,000 to 15,000 years ago by processes related to Hudson Canyon. The pronounced southward extension of the surface, in particular, may reflect a former increase in the longshore-current erosion capacity caused by the loss of sediments over the canyon. Modern erosion or nondeposition of sediments has prevented the ubiquitous sand sheet on the Middle Atlantic shelf from covering the surface. The "anomalous" topography may, in fact, be characteristic of areas near other submarine canyons that interrupt or have interrupted the longshore drift of sediments. ?? 1979.

  15. Photometric stereo endoscopy

    PubMed Central

    Parot, Vicente; Lim, Daryl; González, Germán; Traverso, Giovanni; Nishioka, Norman S.; Vakoc, Benjamin J.

    2013-01-01

    Abstract. While color video endoscopy has enabled wide-field examination of the gastrointestinal tract, it often misses or incorrectly classifies lesions. Many of these missed lesions exhibit characteristic three-dimensional surface topographies. An endoscopic system that adds topographical measurements to conventional color imagery could therefore increase lesion detection and improve classification accuracy. We introduce photometric stereo endoscopy (PSE), a technique which allows high spatial frequency components of surface topography to be acquired simultaneously with conventional two-dimensional color imagery. We implement this technique in an endoscopic form factor and demonstrate that it can acquire the topography of small features with complex geometries and heterogeneous optical properties. PSE imaging of ex vivo human gastrointestinal tissue shows that surface topography measurements enable differentiation of abnormal shapes from surrounding normal tissue. Together, these results confirm that the topographical measurements can be obtained with relatively simple hardware in an endoscopic form factor, and suggest the potential of PSE to improve lesion detection and classification in gastrointestinal imaging. PMID:23864015

  16. Effect of surface characteristics on retention and removal of Escherichia coli O157:H7 on surfaces of spinach

    USDA-ARS?s Scientific Manuscript database

    The topography and the spatial heterogeneity of produce surfaces may impact the attachment of microbial cells onto produce surfaces and affect disinfection efficacy. In this study, the effects of produce surface characteristics on the removal of bacteria were studied. Fresh spinach leaves were sp...

  17. Welcome to Surface Topography: Metrology and Properties

    NASA Astrophysics Data System (ADS)

    Leach, Richard

    2013-11-01

    I am delighted to welcome readers to this inaugural issue of Surface Topography: Metrology and Properties (STMP). In these days of citation indexes and academic reviews, it is a tough, and maybe a brave, job to start a new journal. But the subject area has never been more active and we are seeing genuine breakthroughs in the use of surfaces to control functional performance. Most manufactured parts rely on some form of control of their surface characteristics. The surface is usually defined as that feature on a component or device, which interacts with either the environment in which it is housed (or in which the device operates), or with another surface. The surface topography and material characteristics of a part can affect how fluids interact with it, how the part looks and feels and how two bearing parts will slide together. The need to control, and hence measure, surface features is becoming increasingly important as we move into a miniaturized world. Surface features can become the dominant functional features of a part and may become large in comparison to the overall size of an object. Research into surface texture measurement and characterization has been carried out for over a century and is now more active than ever, especially as new areal surface texture specification standards begin to be introduced. The range of disciplines for which the function of a surface relates to its topography is very diverse; from metal sheet manufacturing to art restoration, from plastic electronics to forensics. Until now, there has been no obvious publishing venue to bring together all these applications with the underlying research and theory, or to unite those working in academia with engineering and industry. Hence the creation of Surface Topography: Metrology and Properties . STMP will publish the best work being done across this broad discipline in one journal, helping researchers to share common themes and highlighting and promoting the extraordinary benefits this field yields across an array of applications in the modern world. To this end, we have gathered leading experts from across our scope to form our inaugural editorial board. Their broad subject knowledge and experience will help to guide the journal and ensure we meet our goal of high-quality research, published quickly, across the breadth of the subject. We are committed to providing a rapid and yet rigorous peer review process. As a launch promotion, all STMP's published content will be free to readers during 2013. The editorial board and I hope you will be as excited by the possibilities of this new journal as we are, and that you will choose to both submit your research and read STMP in the months and years to come. We look forward to reading your papers!

  18. Fabrication of planarised conductively patterned diamond for bio-applications.

    PubMed

    Tong, Wei; Fox, Kate; Ganesan, Kumaravelu; Turnley, Ann M; Shimoni, Olga; Tran, Phong A; Lohrmann, Alexander; McFarlane, Thomas; Ahnood, Arman; Garrett, David J; Meffin, Hamish; O'Brien-Simpson, Neil M; Reynolds, Eric C; Prawer, Steven

    2014-10-01

    The development of smooth, featureless surfaces for biomedical microelectronics is a challenging feat. Other than the traditional electronic materials like silicon, few microelectronic circuits can be produced with conductive features without compromising the surface topography and/or biocompatibility. Diamond is fast becoming a highly sought after biomaterial for electrical stimulation, however, its inherent surface roughness introduced by the growth process limits its applications in electronic circuitry. In this study, we introduce a fabrication method for developing conductive features in an insulating diamond substrate whilst maintaining a planar topography. Using a combination of microwave plasma enhanced chemical vapour deposition, inductively coupled plasma reactive ion etching, secondary diamond growth and silicon wet-etching, we have produced a patterned substrate in which the surface roughness at the interface between the conducting and insulating diamond is approximately 3 nm. We also show that the patterned smooth topography is capable of neuronal cell adhesion and growth whilst restricting bacterial adhesion. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Surface topography of 1€ coin measured by stereo-PIXE

    NASA Astrophysics Data System (ADS)

    Gholami-Hatam, E.; Lamehi-Rachti, M.; Vavpetič, P.; Grlj, N.; Pelicon, P.

    2013-07-01

    We demonstrate the stereo-PIXE method by measurement of surface topography of the relief details on 1€ coin. Two X-ray elemental maps were simultaneously recorded by two X-ray detectors positioned at the left and the right side of the proton microbeam. The asymmetry of the yields in the pixels of the two X-ray maps occurs due to different photon attenuation on the exit travel path of the characteristic X-rays from the point of emission through the sample into the X-ray detectors. In order to calibrate the inclination angle with respect to the X-ray asymmetry, a flat inclined surface model was at first applied for the sample in which the matrix composition and the depth elemental concentration profile is known. After that, the yield asymmetry in each image pixel was transferred into corresponding local inclination angle using calculated dependence of the asymmetry on the surface inclination. Finally, the quantitative topography profile was revealed by integrating the local inclination angle over the lateral displacement of the probing beam.

  20. Atomic force microscopy study on topography of films produced by ion-based techniques

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, X. H.; Zou, S. C.; Martin, P. J.; Bendavid, A.

    1996-09-01

    The evolution of surface morphologies of films prepared by ion-based deposition techniques has been investigated by atomic force microscopy. Two deposition processes, filtered arc deposition (FAD) and ion-beam-assisted deposition, where low-energy (<100 eV) ion irradiation and high-energy (several tens of keV) ion-beam bombardment concurrent with film growth were involved, respectively, have been employed to prepare TiN and Al films. Comparative studies on the effect of energetic ions on the development of topography have been performed between the low-ion-energy regime and high-ion-energy regime. In addition, the relationship between topography and mechanical properties of thin films has been revealed, by involving thin films prepared by thermal evaporation deposition (TED), where almost all depositing particles are neutral. In the images of the TED TiN and Al films, a large number of porous and deep boundaries between columnar grains was observed, suggesting a very rough and loose surface. In contrast, the FAD films exhibited much denser surface morphologies, although still columnar. The root-mean-square roughness of the FAD films was less than 1 Å. Hardness test and optical parameter measurement indicated that the FAD films were much harder and, in the case of optical films, much more transparent than the TED films, which was considered to arise from the denser surface morphologies rather than crystallization of the films. The high density and super smoothness of the FAD films, and the resultant mechanical and optical properties superior to those of the TED films, were attributed to the enhancement of surface migration of the deposited adatoms in the FAD process, which could provide intensive low-energy ion irradiation during film growth. As for topography modification by high-energy ion-beam bombardment concurrent with film growth, in addition to the increase of surface diffusion due to elastic collision and thermal spikes, physical sputtering must be considered while explaining the development of the film topography. Both surface migration enhancement and sputtering played important roles in the case of high-energy heavy-ion-beam bombardment, under which condition surface morphology characterized by dense columns with larger dimension and deep clean boundaries was formed. However, under high-energy light-ion-beam bombardment, the sputtering was dominant, and the variation of sputtering coefficient with position on the surface of growing film led to the formation of cones.

  1. Engineering design of sub-micron topographies for simultaneously adherent and reflective metal-polymer interfaces

    NASA Technical Reports Server (NTRS)

    Brown, Christopher A.

    1993-01-01

    The approach of the project is to base the design of multi-function, reflective topographies on the theory that topographically dependent phenomena react with surfaces and interfaces at certain scales. The first phase of the project emphasizes the development of methods for understanding the sizes of topographic features which influence reflectivity. Subsequent phases, if necessary, will address the scales of interaction for adhesion and manufacturing processes. A simulation of the interaction of electromagnetic radiation, or light, with a reflective surface is performed using specialized software. Reflectivity of the surface as a function of scale is evaluated and the results from the simulation are compared with reflectivity measurements made on multi-function, reflective surfaces.

  2. The Role of Membrane Curvature in Nanoscale Topography-Induced Intracellular Signaling.

    PubMed

    Lou, Hsin-Ya; Zhao, Wenting; Zeng, Yongpeng; Cui, Bianxiao

    2018-05-15

    Over the past decade, there has been growing interest in developing biosensors and devices with nanoscale and vertical topography. Vertical nanostructures induce spontaneous cell engulfment, which enhances the cell-probe coupling efficiency and the sensitivity of biosensors. Although local membranes in contact with the nanostructures are found to be fully fluidic for lipid and membrane protein diffusions, cells appear to actively sense and respond to the surface topography presented by vertical nanostructures. For future development of biodevices, it is important to understand how cells interact with these nanostructures and how their presence modulates cellular function and activities. How cells recognize nanoscale surface topography has been an area of active research for two decades before the recent biosensor works. Extensive studies show that surface topographies in the range of tens to hundreds of nanometers can significantly affect cell functions, behaviors, and ultimately the cell fate. For example, titanium implants having rough surfaces are better for osteoblast attachment and host-implant integration than those with smooth surfaces. At the cellular level, nanoscale surface topography has been shown by a large number of studies to modulate cell attachment, activity, and differentiation. However, a mechanistic understanding of how cells interact and respond to nanoscale topographic features is still lacking. In this Account, we focus on some recent studies that support a new mechanism that local membrane curvature induced by nanoscale topography directly acts as a biochemical signal to induce intracellular signaling, which we refer to as the curvature hypothesis. The curvature hypothesis proposes that some intracellular proteins can recognize membrane curvatures of a certain range at the cell-to-material interface. These proteins then recruit and activate downstream components to modulate cell signaling and behavior. We discuss current technologies allowing the visualization of membrane deformation at the cell membrane-to-substrate interface with nanometer precision and demonstrate that vertical nanostructures induce local curvatures on the plasma membrane. These local curvatures enhance the process of clathrin-mediated endocytosis and affect actin dynamics. We also present evidence that vertical nanostructures can induce significant deformation of the nuclear membrane, which can affect chromatin distribution and gene expression. Finally, we provide a brief perspective on the curvature hypothesis and the challenges and opportunities for the design of nanotopography for manipulating cell behavior.

  3. Impact of the rheological layering of the lithosphere on the topography generated by sublithospheric density anomalies: Insights from analog modeling

    NASA Astrophysics Data System (ADS)

    Sembroni, A.; Globig, J.; Rozel, A.; Faccenna, C.; Funiciello, F.; Fernandez, M.

    2013-12-01

    Density anomalies located beneath the lithosphere are thought to generate dynamic topography at the surface of the Earth. Tomographic models are often used to infer the later variations of the density field in the mantle. Surface topography can then be computed using analytical solutions or numerical simulations of mantle convection. It has been shown that the viscosity profile of the upper mantle has a strong influence on the magnitude and spectral signature of surface topography and uplift rate. Here we present results from analogue modeling of the interaction between a rising ball-shaped density anomaly and the lithosphere in an isoviscous, isothermal Newtonian mantle system. Preliminary data show that surface topography is strongly influenced not only by mantle viscosity but also by density and viscosity profiles of the lithosphere. Our apparatus consists of a plexiglass square box (40x40x50 cm3) filled with glucose syrup. From the bottom a silicon ball was free to rise up until impinging a silicon plate floating on top of the syrup, mimicking the lithosphere. In order to investigate the role of lithospheric thickness and layered continental crust on stress partitioning, maximum dynamic topography, uplift rate and signal wavelength, two different configurations were tested: homogeneous lithosphere and stratified lithosphere including a low-viscosity lower crust. The topographic evolution of the surface was tracked using a laser scanning the top of the apparatus. The rise of the density anomaly was recorded by a side camera. We observe that a thick and then more resistant lithosphere makes up to 2 times lower and laterally wider topographic signatures. Layered lithospheres including a decoupling lower crust decrease the equilibrium topography and its lateral extend by ~30% to 40%. Most importantly, the uplift rate is strongly affected by the choice of lithosphere model. Both lithosphere width and the presence of a decoupling lower crust may modify the uplift rate by a factor 3. Thus, depending on the lithosphere rheology, we show that uplift rate may vary by one order of magnitude, for the same density anomaly and mantle viscosity. This result shows that surface uplift rate can be used to infer the viscosity of the upper mantle in specific Earth regions only if the rheology of the lithosphere is well constrained. With respect to previous approaches, whether numerical or analog modeling of dynamic topography, our experiments represent a new attempt to investigate the propagation of normal stresses generated by mantle flow through a rheologically stratified lithosphere and its resulting topographic signal.

  4. Coupling surface and mantle dynamics: A novel experimental approach

    NASA Astrophysics Data System (ADS)

    Kiraly, Agnes; Faccenna, Claudio; Funiciello, Francesca; Sembroni, Andrea

    2015-05-01

    Recent modeling shows that surface processes, such as erosion and deposition, may drive the deformation of the Earth's surface, interfering with deeper crustal and mantle signals. To investigate the coupling between the surface and deep process, we designed a three-dimensional laboratory apparatus, to analyze the role of erosion and sedimentation, triggered by deep mantle instability. The setup is constituted and scaled down to natural gravity field using a thin viscous sheet model, with mantle and lithosphere simulated by Newtonian viscous glucose syrup and silicon putty, respectively. The surface process is simulated assuming a simple erosion law producing the downhill flow of a thin viscous material away from high topography. The deep mantle upwelling is triggered by the rise of a buoyant sphere. The results of these models along with the parametric analysis show how surface processes influence uplift velocity and topography signals.

  5. Research of Adhesion Bonds Between Gas-Thermal Coating and Pre-Modified Base

    NASA Astrophysics Data System (ADS)

    Kovalevskaya, Z.; Zaitsev, K.; Klimenov, V.

    2016-08-01

    Nature of adhesive bonds between gas-thermal nickel alloy coating and carbon steel base was examined using laser profilometry, optical metallography, transmission and scanning electron microscopy. The steel surface was plastically pre-deformed by an ultrasonic tool. Proved that ultrasound pre-treatment modifies the steel surface. Increase of dislocation density and formation of sub micro-structure are base elements of surface modification. While using high-speed gas-flame, plasma and detonation modes of coatings, surface activation occurs and durable adhesion is formed. Ultrasonic pre-treatment of base material is effective when sprayed particles and base material interact through physical-chemical bond formation. Before applying high-speed gas flame and plasma sprayed coatings, authors recommend ultrasonic pretreatment, which creates periodic wavy topography with a stroke of 250 microns on the steel surface. Before applying detonation sprayed coatings, authors recommend ultrasound pretreatment that create modified surface with a uniform micro-topography.

  6. Verification of Geosat sea surface topography in the Gulf Stream extension with surface drifting buoys and hydrographic measurements

    NASA Astrophysics Data System (ADS)

    Willebrand, J.; KäSe, R. H.; Stammer, D.; Hinrichsen, H.-H.; Krauss, W.

    1990-03-01

    Altimeter data from Geosat have been analyzed in the Gulf Stream extension area. Horizontal maps of the sea surface height anomaly relative to an annual mean for various 17-day intervals were constructed using an objective mapping procedure. The mean sea level was approximated by the dynamic topography from climatological hydrographic data. Geostrophic surface velocities derived from the composite maps (mean plus anomaly) are significantly correlated with surface drifter velocities observed during an oceanographie experiment in the spring of 1987. The drifter velocities contain much energy on scales less than 100 km which are not resolved in the altimetric maps. It is shown that the composite sea surface height also agrees well with ground verification from hydrographic data along sections in a triangle between the Azores, Newfoundland, and Bermuda, except in regions of high mean gradients.

  7. Control of surface topography in biomimetic calcium phosphate coatings.

    PubMed

    Costa, Daniel O; Allo, Bedilu A; Klassen, Robert; Hutter, Jeffrey L; Dixon, S Jeffrey; Rizkalla, Amin S

    2012-02-28

    The behavior of cells responsible for bone formation, osseointegration, and bone bonding in vivo are governed by both the surface chemistry and topography of scaffold matrices. Bone-like apatite coatings represent a promising method to improve the osteoconductivity and bonding of synthetic scaffold materials to mineralized tissues for regenerative procedures in orthopedics and dentistry. Polycaprolactone (PCL) films were coated with calcium phosphates (CaP) by incubation in simulated body fluid (SBF). We investigated the effect of SBF ion concentration and soaking time on the surface properties of the resulting apatite coatings. CaP coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and energy dispersive X-ray spectrometry (EDX). Young's modulus (E(s)) was determined by nanoindentation, and surface roughness was assessed by atomic force microscopy (AFM) and mechanical stylus profilometry. CaP such as carbonate-substituted apatite were deposited onto PCL films. SEM and AFM images of the apatite coatings revealed an increase in topographical complexity and surface roughness with increasing ion concentration of SBF solutions. Young's moduli (E(s)) of various CaP coatings were not significantly different, regardless of the CaP phase or surface roughness. Thus, SBF with high ion concentrations may be used to coat synthetic polymers with CaP layers of different surface topography and roughness to improve the osteoconductivity and bone-bonding ability of the scaffold. © 2012 American Chemical Society

  8. Surface Modification of Ti-35Nb-10Ta-1.5Fe by the Double Acid-Etching Process

    PubMed Central

    Amigó, Angélica

    2018-01-01

    Surface topography and composition influence the osteoblastic proliferation and osseointegration rates, which favor the biomechanical stability of bone anchoring and implants. In recent years, beta titanium alloys have been developed, and are composed of biocompatible elements, have low elastic modulus, high corrosion resistance, and mechanical properties to improve the long performance behavior of biomaterials. In the present research, the influence of the acid-etching process was studied in Ti6Al4V ELI and Ti35Nb10Ta1.5Fe. Samples were etched in a two-step acid treatment. Surface roughness parameters were quantified under a confocal microscope, topography was studied by scanning electron microscopy, and surface composition was analyzed with energy dispersive X-ray spectroscopy. The results revealed that the two-step acid treatment changes the topography of the β alloy, increases the surface area, and changes the chemical composition of the surface. Two differentiated regions were identified in the Ti35Nb10Ta1.5Fe alloy after the acid-etching process: The α + β region with higher values of mean roughness due to the lower chemical resistance of this region; and the β region with lower values of roughness parameters. PMID:29587427

  9. Effect of rotary cutting instruments on the resin-tooth interfacial ultra structure: An in vivo study.

    PubMed

    Sherawat, Sudhir; Tewari, Sanjay; Duhan, Jigyasa; Gupta, Alpa; Singla, Rakesh

    2014-12-01

    To evaluate the effect of cutting teeth with different types of burs at various speeds on surface topography of tooth surface and interfacial gap formation at resin-tooth interface. The human molars were divided into seven groups: Diamond bur in airrotor (DA) & micromotor (DM), crosscut carbide bur in airrotor (CCA) & micromotor (CCM), plain carbide bur in airrotor (CA) & micromotor (CM) and #600-grit silicon carbide paper (SiC). In five samples from each group Class II box-only cavities were restored. The occlusal surface of four teeth per group was flattened. Two out of four teeth were acid etched. Teeth were subjected for scanning electron microscopy (SEM). Interfacial gap was observed in all groups with no significant difference. SEM observations revealed CA, CCA & DA were coarser than CM, CCM, DM and SiC. SEM of etched tooth surfaces revealed complete removal of amorphous smear layer in CA & CM, partial removal in CCA, CCM, DA & DM and no removal in SiC. Selecting an appropriate bur and its speed may not play an important role in bonding in terms of interfacial gap formation. Variable changes were observed in surface topography with different burs before and after acid etching. Key words:Surface topography, resin-tooth interface, interfacial gap, bonding.

  10. Effect of rotary cutting instruments on the resin-tooth interfacial ultra structure: An in vivo study

    PubMed Central

    Sherawat, Sudhir; Tewari, Sanjay; Duhan, Jigyasa; Singla, Rakesh

    2014-01-01

    Objectives: To evaluate the effect of cutting teeth with different types of burs at various speeds on surface topography of tooth surface and interfacial gap formation at resin-tooth interface. Material and Methods: The human molars were divided into seven groups: Diamond bur in airrotor (DA) & micromotor (DM), crosscut carbide bur in airrotor (CCA) & micromotor (CCM), plain carbide bur in airrotor (CA) & micromotor (CM) and #600-grit silicon carbide paper (SiC). In five samples from each group Class II box-only cavities were restored. The occlusal surface of four teeth per group was flattened. Two out of four teeth were acid etched. Teeth were subjected for scanning electron microscopy (SEM). Results: Interfacial gap was observed in all groups with no significant difference. SEM observations revealed CA, CCA & DA were coarser than CM, CCM, DM and SiC. SEM of etched tooth surfaces revealed complete removal of amorphous smear layer in CA & CM, partial removal in CCA, CCM, DA & DM and no removal in SiC. Conclusions: Selecting an appropriate bur and its speed may not play an important role in bonding in terms of interfacial gap formation. Variable changes were observed in surface topography with different burs before and after acid etching. Key words:Surface topography, resin-tooth interface, interfacial gap, bonding. PMID:25674310

  11. Computer-assisted design and finite element simulation of braces for the treatment of adolescent idiopathic scoliosis using a coronal plane radiograph and surface topography.

    PubMed

    Pea, Rany; Dansereau, Jean; Caouette, Christiane; Cobetto, Nikita; Aubin, Carl-Éric

    2018-05-01

    Orthopedic braces made by Computer-Aided Design and Manufacturing and numerical simulation were shown to improve spinal deformities correction in adolescent idiopathic scoliosis while using less material. Simulations with BraceSim (Rodin4D, Groupe Lagarrigue, Bordeaux, France) require a sagittal radiograph, not always available. The objective was to develop an innovative modeling method based on a single coronal radiograph and surface topography, and assess the effectiveness of braces designed with this approach. With a patient coronal radiograph and a surface topography, the developed method allowed the 3D reconstruction of the spine, rib cage and pelvis using geometric models from a database and a free form deformation technique. The resulting 3D reconstruction converted into a finite element model was used to design and simulate the correction of a brace. The developed method was tested with data from ten scoliosis cases. The simulated correction was compared to analogous simulations performed with a 3D reconstruction built using two radiographs and surface topography (validated gold standard reference). There was an average difference of 1.4°/1.7° for the thoracic/lumbar Cobb angle, and 2.6°/5.5° for the kyphosis/lordosis between the developed reconstruction method and the reference. The average difference of the simulated correction was 2.8°/2.4° for the thoracic/lumbar Cobb angles and 3.5°/5.4° the kyphosis/lordosis. This study showed the feasibility to design and simulate brace corrections based on a new modeling method with a single coronal radiograph and surface topography. This innovative method could be used to improve brace designs, at a lesser radiation dose for the patient. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Geoid, topography, and convection-driven crustal deformation on Venus

    NASA Technical Reports Server (NTRS)

    Simons, Mark; Hager, Bradford H.; Solomon, Sean C.

    1992-01-01

    High-resolution Magellan images and altimetry of Venus reveal a wide range of styles and scales of surface deformation that cannot readily be explained within the classical terrestrial plate tectonic paradigm. The high correlation of long-wavelength topography and gravity and the large apparent depths of compensation suggest that Venus lacks an upper-mantle low-viscosity zone. A key difference between Earth and Venus may be the degree of coupling between the convecting mantle and the overlying lithosphere. Mantle flow should then have recognizable signatures in the relationships between surface topography, crustal deformation, and the observed gravity field.

  13. Classification of journal surfaces using surface topography parameters and software methods to compensate for stylus geometry

    NASA Technical Reports Server (NTRS)

    Li, C. J.; Devries, W. R.; Ludema, K. C.

    1983-01-01

    Measurements made with a stylus surface tracer which provides a digitized representation of a surface profile are discussed. Parameters are defined to characterize the height (e.g., RMS roughness, skewness, and kurtosis) and length (e.g., autocorrelation) of the surface topography. These are applied to the characterization of crank shaft journals which were manufactured by different grinding and lopping procedures known to give significant differences in crank shaft bearing life. It was found that three parameters (RMS roughness, skewness, and kurtosis) are necessary to adequately distinguish the character of these surfaces. Every surface specimen has a set of values for these three parameters. They can be regarded as a set coordinate in a space constituted by three characteristics axes. The various journal surfaces can be classified along with the determination of a proper wavelength cutoff (0.25 mm) by using a method of separated subspace. The finite radius of the stylus used for profile tracing gives an inherent measurement error as it passes over the fine structure of the surface. A mathematical model is derived to compensate for this error.

  14. Time-dependent effects of heat advection and topography on cooling histories during erosion

    NASA Astrophysics Data System (ADS)

    Mancktelow, Neil S.; Grasemann, Bernhard

    1997-03-01

    Both erosion and surface topography cause a time-dependent variation in isotherm geometry that can result in significant errors in estimating natural exhumation rates from geochronologic data. Analytical solutions and two-dimensional numerical modelling are used to investigate the magnitude of these inaccuracies for conditions appropriate to many rapidly exhumed mountain chains of rugged relief. It is readily demonstrated that uplift of the topographic surface has a negligible effect on the cooling history of an exhumed rock sample and cannot be quantified by current geochronologic methods. The topography itself perturbs the isotherms to a depth that depends on both the vertical and horizontal scale of the surface relief. Estimations employing different isotopic systems in the same sample with higher closure temperatures (> 200°C) are not generally influenced by topography. However, direct conversion of cooling rates to exhumation rates assuming a simple constant linear geotherm markedly underestimates peak rates, due to variation of the geothermal gradient in time and space and to the time lag between exhumation and cooling. Estimations based on the altitude variation in apatite fission-track ages are less prone to such inaccuracies in geothermal gradient but are affected by near-surface time-dependent variation in isotherm depth due to advection and topography. In tectonically active mountain belts, high exhumation rates are coupled with rugged topography, and exhumation rates may be markedly overestimated, by factors of 2 or more. Even at lower exhumation rates on the order of 1 mm/a, the shape of the cooling curve is modified by advection and topography. A convex-concave shape to the cooling curve does not necessarily imply a change of exhumation rate; it may also be attained by a more complicated geothermal gradient induced by topographic relief. Very fast cooling below 100°C, often interpreted as reflecting faster exhumation, can be more simply explained by the lateral cooling effect of topographic relief, with samples exhumed in valleys displaying a different near-surface cooling history to those on ridge crests.

  15. To attach or not to attach? The effect of carrier surface morphology and topography on attachment of phoretic deutonymphs of Uropoda orbicularis (Acari).

    PubMed

    Bajerlein, Daria; Adamski, Zbigniew; Kacalak, Wojciech; Tandecka, Katarzyna; Wiesner, Maciej; Jurga, Stefan

    2016-08-01

    Previous studies on preferences of phoretic deutonymphs of Uropodina for attachment sites have shown that they frequently select smooth and hydrophobic surfaces. The aim of our study was to provide the detailed morphological and topographical characteristics of beetle body surfaces to which deutonymphs frequently attach and to verify how the presence of setae and surface sculpture affects deutonymph attachment. The study was conducted on Uropoda orbicularis (Müller, 1776) and its common beetle carriers: Aphodius prodromus (Brahm, 1790), Aphodius fimetarius (Linnaeus, 1758), Onthophagus nuchicornis (Linnaeus, 1758) and Margarinotus carbonarius (Hoffmann, 1803). Morphology and topography of elytra, femora, propygidia and pygidia of beetles were analysed mainly using SEM methods supported with CLSM and AFM techniques. The hypothesis that deutonymphs may attach to surfaces covered with setae, if seta density is low enough not to disturb mite movement, was tested. The study revealed that deutonymphs attach to surfaces of various types as follows: (i) smooth, (ii) hairy, i.e., covered with setae, (iii) flat and (iv) sculptured. Smooth body parts and body parts covered with setae of low density were most frequently and intensively occupied with deutonymphs. Surfaces of high seta density were avoided by mites. Within elytra of Aphodius beetles, deutonymphs definitely preferred flat surfaces of elytral intervals. On the contrary, densely punctuated propygidium and pygidium in M. carbonarius were heavily infested with deutonymphs. We conclude that carrier surface morphology and topography are important for Uropodina deutonymph attachment, but these two factors cannot fully explain the observed relation.

  16. Thermally tailored gradient topography surface on elastomeric thin films.

    PubMed

    Roy, Sudeshna; Bhandaru, Nandini; Das, Ritopa; Harikrishnan, G; Mukherjee, Rabibrata

    2014-05-14

    We report a simple method for creating a nanopatterned surface with continuous variation in feature height on an elastomeric thin film. The technique is based on imprinting the surface of a film of thermo-curable elastomer (Sylgard 184), which has continuous variation in cross-linking density introduced by means of differential heating. This results in variation of viscoelasticity across the length of the surface and the film exhibits differential partial relaxation after imprinting with a flexible stamp and subjecting it to an externally applied stress for a transient duration. An intrinsic perfect negative replica of the stamp pattern is initially created over the entire film surface as long as the external force remains active. After the external force is withdrawn, there is partial relaxation of the applied stresses, which is manifested as reduction in amplitude of the imprinted features. Due to the spatial viscoelasticity gradient, the extent of stress relaxation induced feature height reduction varies across the length of the film (L), resulting in a surface with a gradient topography with progressively varying feature heights (hF). The steepness of the gradient can be controlled by varying the temperature gradient as well as the duration of precuring of the film prior to imprinting. The method has also been utilized for fabricating wettability gradient surfaces using a high aspect ratio biomimetic stamp. The use of a flexible stamp allows the technique to be extended for creating a gradient topography on nonplanar surfaces as well. We also show that the gradient surfaces with regular structures can be used in combinatorial studies related to pattern directed dewetting.

  17. To attach or not to attach? The effect of carrier surface morphology and topography on attachment of phoretic deutonymphs of Uropoda orbicularis (Acari)

    NASA Astrophysics Data System (ADS)

    Bajerlein, Daria; Adamski, Zbigniew; Kacalak, Wojciech; Tandecka, Katarzyna; Wiesner, Maciej; Jurga, Stefan

    2016-08-01

    Previous studies on preferences of phoretic deutonymphs of Uropodina for attachment sites have shown that they frequently select smooth and hydrophobic surfaces. The aim of our study was to provide the detailed morphological and topographical characteristics of beetle body surfaces to which deutonymphs frequently attach and to verify how the presence of setae and surface sculpture affects deutonymph attachment. The study was conducted on Uropoda orbicularis (Müller, 1776) and its common beetle carriers: Aphodius prodromus (Brahm, 1790), Aphodius fimetarius (Linnaeus, 1758), Onthophagus nuchicornis (Linnaeus, 1758) and Margarinotus carbonarius (Hoffmann, 1803). Morphology and topography of elytra, femora, propygidia and pygidia of beetles were analysed mainly using SEM methods supported with CLSM and AFM techniques. The hypothesis that deutonymphs may attach to surfaces covered with setae, if seta density is low enough not to disturb mite movement, was tested. The study revealed that deutonymphs attach to surfaces of various types as follows: (i) smooth, (ii) hairy, i.e., covered with setae, (iii) flat and (iv) sculptured. Smooth body parts and body parts covered with setae of low density were most frequently and intensively occupied with deutonymphs. Surfaces of high seta density were avoided by mites. Within elytra of Aphodius beetles, deutonymphs definitely preferred flat surfaces of elytral intervals. On the contrary, densely punctuated propygidium and pygidium in M. carbonarius were heavily infested with deutonymphs. We conclude that carrier surface morphology and topography are important for Uropodina deutonymph attachment, but these two factors cannot fully explain the observed relation.

  18. The global topography of Mars and implications for surface evolution

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Zuber, M. T.; Solomon, S. C.; Phillips, R. J.; Head, J. W.; Garvin, J. B.; Banerdt, W. B.; Muhleman, D. O.; Pettengill, G. H.; Neumann, G. A.; hide

    1999-01-01

    Elevations measured by the Mars Orbiter Laser Altimeter have yielded a high-accuracy global map of the topography of Mars. Dominant features include the low northern hemisphere, the Tharsis province, and the Hellas impact basin. The northern hemisphere depression is primarily a long-wavelength effect that has been shaped by an internal mechanism. The topography of Tharsis consists of two broad rises. Material excavated from Hellas contributes to the high elevation of the southern hemisphere and to the scarp along the hemispheric boundary. The present topography has three major drainage centers, with the northern lowlands being the largest. The two polar cap volumes yield an upper limit of the present surface water inventory of 3.2 to 4.7 million cubic kilometers.

  19. The Use of Atomic-Force Microscopy for Studying the Crystallization Process of Amorphous Alloys

    NASA Astrophysics Data System (ADS)

    Elmanov, G. N.; Ivanitskaya, E. A.; Dzhumaev, P. S.; Skrytniy, V. I.

    The crystallization process of amorphous alloys is accompanied by the volume changes as a result of structural phase transitions. This leads to changes in the surface topography, which was studied by atomic force microscopy (AFM). The changes of the surface topography, structure and phase composition during multistage crystallization process of the metallic glasses with composition Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 (AWS BNi2) has been investigated. The obtained results on changing of the surface topography in crystallization process are in good agreement with the data of X-ray diffraction analysis (XRD). The nature of redistribution of some alloy components in the crystallization process has been suggested.

  20. OCT 3-D surface topography of isolated human crystalline lenses

    PubMed Central

    Sun, Mengchan; Birkenfeld, Judith; de Castro, Alberto; Ortiz, Sergio; Marcos, Susana

    2014-01-01

    Quantitative 3-D Optical Coherence Tomography was used to measure surface topography of 36 isolated human lenses, and to evaluate the relationship between anterior and posterior lens surface shape and their changes with age. All lens surfaces were fitted to 6th order Zernike polynomials. Astigmatism was the predominant surface aberration in anterior and posterior lens surfaces (accounting for ~55% and ~63% of the variance respectively), followed by spherical terms, coma, trefoil and tetrafoil. The amount of anterior and posterior surface astigmatism did not vary significantly with age. The relative angle between anterior and posterior surface astigmatism axes was on average 36.5 deg, tended to decrease with age, and was >45 deg in 36.1% lenses. The anterior surface RMS spherical term, RMS coma and 3rd order RMS decreased significantly with age. In general, there was a statistically significant correlation between the 3rd and 4th order terms of the anterior and posterior surfaces. Understanding the coordination of anterior and posterior lens surface geometries and their topographical changes with age sheds light into the role of the lens in the optical properties of the eye and the lens aging mechanism. PMID:25360371

  1. OCT 3-D surface topography of isolated human crystalline lenses.

    PubMed

    Sun, Mengchan; Birkenfeld, Judith; de Castro, Alberto; Ortiz, Sergio; Marcos, Susana

    2014-10-01

    Quantitative 3-D Optical Coherence Tomography was used to measure surface topography of 36 isolated human lenses, and to evaluate the relationship between anterior and posterior lens surface shape and their changes with age. All lens surfaces were fitted to 6th order Zernike polynomials. Astigmatism was the predominant surface aberration in anterior and posterior lens surfaces (accounting for ~55% and ~63% of the variance respectively), followed by spherical terms, coma, trefoil and tetrafoil. The amount of anterior and posterior surface astigmatism did not vary significantly with age. The relative angle between anterior and posterior surface astigmatism axes was on average 36.5 deg, tended to decrease with age, and was >45 deg in 36.1% lenses. The anterior surface RMS spherical term, RMS coma and 3rd order RMS decreased significantly with age. In general, there was a statistically significant correlation between the 3rd and 4th order terms of the anterior and posterior surfaces. Understanding the coordination of anterior and posterior lens surface geometries and their topographical changes with age sheds light into the role of the lens in the optical properties of the eye and the lens aging mechanism.

  2. Engineered Surfaces for Mitigation of Insect Residue Adhesion

    NASA Technical Reports Server (NTRS)

    Siochi, Emilie J.; Smith, Joseph G.; Wohl, Christopher J.; Gardner, J. M.; Penner, Ronald K.; Connell, John W.

    2013-01-01

    Maintenance of laminar flow under operational flight conditions is being investigated under NASA s Environmentally Responsible Aviation (ERA) Program. Among the challenges with natural laminar flow is the accretion of residues from insect impacts incurred during takeoff or landing. Depending on air speed, temperature, and wing structure, the critical residue height for laminar flow disruption can be as low as 4 microns near the leading edge. In this study, engineered surfaces designed to minimize insect residue adhesion were examined. The coatings studied included chemical compositions containing functional groups typically associated with abhesive (non-stick) surfaces. To reduce surface contact by liquids and enhance abhesion, the engineered surfaces consisted of these coatings doped with particulate additives to generate random surface topography, as well as coatings applied to laser ablated surfaces having precision patterned topographies. Performance evaluation of these surfaces included contact angle goniometry of pristine coatings and profilometry of surfaces after insect impacts were incurred in laboratory scale tests, wind tunnel tests and flight tests. The results illustrate the complexity of designing antifouling surfaces for effective insect contamination mitigation under dynamic conditions and suggest that superhydrophobic surfaces may not be the most effective solution for preventing insect contamination on aircraft wing leading edges.

  3. The impact of using area-averaged land surface properties —topography, vegetation condition, soil wetness—in calculations of intermediate scale (approximately 10 km 2) surface-atmosphere heat and moisture fluxes

    NASA Astrophysics Data System (ADS)

    Sellers, Piers J.; Heiser, Mark D.; Hall, Forrest G.; Verma, Shashi B.; Desjardins, Raymond L.; Schuepp, Peter M.; Ian MacPherson, J.

    1997-03-01

    It is commonly assumed that biophysically based soil-vegetation-atmosphere transfer (SVAT) models are scale-invariant with respect to the initial boundary conditions of topography, vegetation condition and soil moisture. In practice, SVAT models that have been developed and tested at the local scale (a few meters or a few tens of meters) are applied almost unmodified within general circulation models (GCMs) of the atmosphere, which have grid areas of 50-500 km 2. This study, which draws much of its substantive material from the papers of Sellers et al. (1992c, J. Geophys. Res., 97(D17): 19033-19060) and Sellers et al. (1995, J. Geophys. Res., 100(D12): 25607-25629), explores the validity of doing this. The work makes use of the FIFE-89 data set which was collected over a 2 km × 15 km grassland area in Kansas. The site was characterized by high variability in soil moisture and vegetation condition during the late growing season of 1989. The area also has moderate topography. The 2 km × 15 km 'testbed' area was divided into 68 × 501 pixels of 30 m × 30 m spatial resolution, each of which could be assigned topographic, vegetation condition and soil moisture parameters from satellite and in situ observations gathered in FIFE-89. One or more of these surface fields was area-averaged in a series of simulation runs to determine the impact of using large-area means of these initial or boundary conditions on the area-integrated (aggregated) surface fluxes. The results of the study can be summarized as follows: 1. analyses and some of the simulations indicated that the relationships describing the effects of moderate topography on the surface radiation budget are near-linear and thus largely scale-invariant. The relationships linking the simple ratio vegetation index ( SR), the canopy conductance parameter (▽ F) and the canopy transpiration flux are also near-linear and similarly scale-invariant to first order. Because of this, it appears that simple area-averaging operations can be applied to these fields with relatively little impact on the calculated surface heat flux. 2. The relationships linking surface and root-zone soil wetness to the soil surface and canopy transpiration rates are non-linear. However, simulation results and observations indicate that soil moisture variability decreases significantly as an area dries out, which partially cancels out the effects of these non-linear functions.In conclusion, it appears that simple averages of topographic slope and vegetation parameters can be used to calculate surface energy and heat fluxes over a wide range of spatial scales, from a few meters up to many kilometers at least for grassland sites and areas with moderate topography. Although the relationships between soil moisture and evapotranspiration are non-linear for intermediate soil wetnesses, the dynamics of soil drying act to progressively reduce soil moisture variability and thus the impacts of these non-linearities on the area-averaged surface fluxes. These findings indicate that we may be able to use mean values of topography, vegetation condition and soil moisture to calculate the surface-atmosphere fluxes of energy, heat and moisture at larger length scales, to within an acceptable accuracy for climate modeling work. However, further tests over areas with different vegetation types, soils and more extreme topography are required to improve our confidence in this approach.

  4. New Technology-Large-Area Three- Dimensional Surface Profiling Using Only Focused Air-Coupled Ultrasound-Given 1999 R&D 100 Award

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kautz, Harold E.; Abel, Phillip B.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    2000-01-01

    Surface topography, which significantly affects the performance of many industrial components, is normally measured with diamond-tip profilometry over small areas or with optical scattering methods over larger areas. To develop air-coupled surface profilometry, the NASA Glenn Research Center at Lewis Field initiated a Space Act Agreement with Sonix, Inc., through two Glenn programs, the Advanced High Temperature Engine Materials Program (HITEMP) and COMMTECH. The work resulted in quantitative surface topography profiles obtained using only high-frequency, focused ultrasonic pulses in air. The method is nondestructive, noninvasive, and noncontact, and it does not require light-reflective surfaces. Air surface profiling may be desirable when diamond-tip or laserbased methods are impractical, such as over large areas, when a significant depth range is required, or for curved surfaces. When the configuration is optimized, the method is reasonably rapid and all the quantitative analysis facilities are online, including two- and three-dimensional visualization, extreme value filtering (for faulty data), and leveling.

  5. Quantified Differentiation of Surface Topography for Nano-materials As-Obtained from Atomic Force Microscopy Images

    NASA Astrophysics Data System (ADS)

    Gupta, Mousumi; Chatterjee, Somenath

    2018-04-01

    Surface texture is an important issue to realize the nature (crest and trough) of surfaces. Atomic force microscopy (AFM) image is a key analysis for surface topography. However, in nano-scale, the nature (i.e., deflection or crack) as well as quantification (i.e., height or depth) of deposited layers is essential information for material scientist. In this paper, a gradient-based K-means algorithm is used to differentiate the layered surfaces depending on their color contrast of as-obtained from AFM images. A transformation using wavelet decomposition is initiated to extract the information about deflection or crack on the material surfaces from the same images. Z-axis depth analysis from wavelet coefficients provides information about the crack present in the material. Using the above method corresponding surface information for the material is obtained. In addition, the Gaussian filter is applied to remove the unwanted lines, which occurred during AFM scanning. Few known samples are taken as input, and validity of the above approaches is shown.

  6. Stress distribution and topography of Tellus Regio, Venus

    NASA Technical Reports Server (NTRS)

    Williams, David R.; Greeley, Ronald

    1989-01-01

    The Tellus Regio area of Venus represents a subset of a narrow latitude band where Pioneer Venus Orbiter (PVO) altimetry data, line-of-sight (LOS) gravity data, and Venera 15/16 radar images have all been obtained with good resolution. Tellus Regio also has a wide variety of surface morphologic features, elevations ranging up to 2.5 km, and a relatively low LOS gravity anomaly. This area was therefore chosen in order to examine the theoretical stress distributions resulting from various models of compensation of the observed topography. These surface stress distributions are then compared with the surface morphology revealed in the Venera 15/16 radar images. Conclusions drawn from these comparisons will enable constraints to be put on various tectonic parameters relevant to Tellus Regio. The stress distribution is calculated as a function of the topography, the equipotential anomaly, and the assumed model parameters. The topography data is obtained from the PVO altimetry. The equipotential anomaly is estimated from the PVO LOS gravity data. The PVO LOS gravity represents the spacecraft accelerations due to mass anomalies within the planet. These accelerations are measured at various altitudes and angles to the local vertical and therefore do not lend themselves to a straightforward conversion. A minimum variance estimator of the LOS gravity data is calculated, taking into account the various spacecraft altitudes and LOS angles and using the measured PVO topography as an a priori constraint. This results in an estimated equivalent surface mass distribution, from which the equipotential anomaly is determined.

  7. Simulation of extreme rainfall event of November 2009 over Jeddah, Saudi Arabia: the explicit role of topography and surface heating

    NASA Astrophysics Data System (ADS)

    Almazroui, Mansour; Raju, P. V. S.; Yusef, A.; Hussein, M. A. A.; Omar, M.

    2018-04-01

    In this paper, a nonhydrostatic Weather Research and Forecasting (WRF) model has been used to simulate the extreme precipitation event of 25 November 2009, over Jeddah, Saudi Arabia. The model is integrated in three nested (27, 9, and 3 km) domains with the initial and boundary forcing derived from the NCEP reanalysis datasets. As a control experiment, the model integrated for 48 h initiated at 0000 UTC on 24 November 2009. The simulated rainfall in the control experiment depicts in well agreement with Tropical Rainfall Measurement Mission rainfall estimates in terms of intensity as well as spatio-temporal distribution. Results indicate that a strong low-level (850 hPa) wind over Jeddah and surrounding regions enhanced the moisture and temperature gradient and created a conditionally unstable atmosphere that favored the development of the mesoscale system. The influences of topography and heat exchange process in the atmosphere were investigated on the development of extreme precipitation event; two sensitivity experiments are carried out: one without topography and another without exchange of surface heating to the atmosphere. The results depict that both surface heating and topography played crucial role in determining the spatial distribution and intensity of the extreme rainfall over Jeddah. The topography favored enhanced uplift motion that further strengthened the low-level jet and hence the rainfall over Jeddah and adjacent areas. On the other hand, the absence of surface heating considerably reduced the simulated rainfall by 30% as compared to the observations.

  8. Biological evaluation of ultrananocrystalline and nanocrystalline diamond coatings.

    PubMed

    Skoog, Shelby A; Kumar, Girish; Zheng, Jiwen; Sumant, Anirudha V; Goering, Peter L; Narayan, Roger J

    2016-12-01

    Nanostructured biomaterials have been investigated for achieving desirable tissue-material interactions in medical implants. Ultrananocrystalline diamond (UNCD) and nanocrystalline diamond (NCD) coatings are the two most studied classes of synthetic diamond coatings; these materials are grown using chemical vapor deposition and are classified based on their nanostructure, grain size, and sp 3 content. UNCD and NCD are mechanically robust, chemically inert, biocompatible, and wear resistant, making them ideal implant coatings. UNCD and NCD have been recently investigated for ophthalmic, cardiovascular, dental, and orthopaedic device applications. The aim of this study was (a) to evaluate the in vitro biocompatibility of UNCD and NCD coatings and (b) to determine if variations in surface topography and sp 3 content affect cellular response. Diamond coatings with various nanoscale topographies (grain sizes 5-400 nm) were deposited on silicon substrates using microwave plasma chemical vapor deposition. Scanning electron microscopy and atomic force microscopy revealed uniform coatings with different scales of surface topography; Raman spectroscopy confirmed the presence of carbon bonding typical of diamond coatings. Cell viability, proliferation, and morphology responses of human bone marrow-derived mesenchymal stem cells (hBMSCs) to UNCD and NCD surfaces were evaluated. The hBMSCs on UNCD and NCD coatings exhibited similar cell viability, proliferation, and morphology as those on the control material, tissue culture polystyrene. No significant differences in cellular response were observed on UNCD and NCD coatings with different nanoscale topographies. Our data shows that both UNCD and NCD coatings demonstrate in vitro biocompatibility irrespective of surface topography.

  9. Quantifying the Mechanical Properties of Materials and the Process of Elastic-Plastic Deformation under External Stress on Material

    PubMed Central

    Valíček, Jan; Harničárová, Marta; Öchsner, Andreas; Hutyrová, Zuzana; Kušnerová, Milena; Tozan, Hakan; Michenka, Vít; Šepelák, Vladimír; Mitaľ, Dušan; Zajac, Jozef

    2015-01-01

    The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ. PMID:28793645

  10. Quantifying the Mechanical Properties of Materials and the Process of Elastic-Plastic Deformation under External Stress on Material.

    PubMed

    Valíček, Jan; Harničárová, Marta; Öchsner, Andreas; Hutyrová, Zuzana; Kušnerová, Milena; Tozan, Hakan; Michenka, Vít; Šepelák, Vladimír; Mitaľ, Dušan; Zajac, Jozef

    2015-11-03

    The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ.

  11. Correlation between surface topography and lubricant migration in steel sheets for the autobody manufacturing process

    NASA Astrophysics Data System (ADS)

    Benati, F.; Sacerdotti, F.; Griffiths, B. J.; Butler, C.; Karila, J. M.; Vermeulen, M.; Holtkamp, H.; Gatti, S.

    2002-05-01

    Material for the production of autobody panels is usually dispatched in the form of coils. Because of their weight, they tend to `compress' the lubricant applied for rust protection and some of it leaks from the coil. Those areas affected by lubricant starvation are known as `dry-spots' and are a cause of a number of product rejections during the subsequent forming operation. A test was deployed with the combined work of Ocas, CORUS IJmuiden and Renault that proved that surface topography controls, amongst other factors, affects lubricant migration. The test consists of compressing a stack of lubricated steel sheets at known pressure for a known time using different lubricants in different amounts. It was observed that, because of the `compression', the lubricant tends to migrate to the side of the sheet, and its migration was quantified using a Fischer Betascope MMS module. Analysis consisted of analysis of variance on several designs of experiments and subsequent correlation with surface topography 3D parameters. These experiments showed the importance of standard amplitude surface parameters and new closed area surface parameters to characterize lubricant migration under pressure.

  12. The Effect of Topographic Shadowing by Ice on Irradiance in the Greenland Ice Sheet Ablation Zone

    NASA Astrophysics Data System (ADS)

    Leidman, S. Z.; Rennermalm, A. K.; Ryan, J.; Cooper, M. G.; Smith, L. C.

    2017-12-01

    Accurately predicting runoff contributions to global sea level rise requires more refined surface mass balance (SMB) models of the Greenland Ice Sheet (GrIS). Topographic shadowing has shown to be important in the SMB of snow-covered regions, yet SMB models for the GrIS generally ignore how surface topography affects spatial variability of incoming solar radiation on a surface. In the ablation zone of Southwest Greenland, deeply incised supraglacial drainage features, fracturing, and large-scale bed deformation result in extensive areas of rough surface topography. This topography blocks direct radiation such that shadowed areas receive less energy for melting while other topographic features such as peaks recieve more energy. In this study, we quantify how shadowing from local topography features changes incoming solar radiation. We apply the ArcGIS Pro Solar Radiation Toolset to calculate the direct and diffuse irradiance in sunlit and shadowed areas by determining the sun's movement for every half hour increment of 2016. Multiple digital elevation models (DEMs) with spatial resolutions ranging from 0.06 to 5m were derived from fixed wing and quadcopter UAV imagery collected in summer 2016 and the ArcticDEM dataset. Our findings show that shadowing significantly decreases irradiance compared to smoothed surfaces where local topography is removed. This decrease is exponentially proportional to the DEM pixel sized with 5m DEMs only able to capture a small percentage of the effect. Applying these calculations to the ArcticDEM to cover a larger study area indicates that decreases in irradiance are nonlinearly proportional to elevation with highly crevassed areas showing a larger effect from shadowing. Even so, shading at higher elevations reduces irradiance enough to result in several centimeters snow water equivalence (SWE) per year of over-prediction of runoff in SMB models. Furthermore, analysis of solar radiation products shows that shadowing predicts albedo variability far better than a range of variables derived from UAV imagery mosaics including slope, aspect, elevation, or the distance to dark surface features. In summary, implementation of the effect of shadowing on irradiance should therefore be considered for accurate surface mass balance calculations for the Greenland ice sheet.

  13. Topographic characterisation of dental implants for commercial use

    PubMed Central

    Mendoza-Arnau, Amparo; Vallecillo-Capilla, Manuel-Francisco; Cabrerizo-Vílchez, Miguel-Ángel

    2016-01-01

    Background To characterize the surface topography of several dental implants for commercial use. Material and Methods Dental implants analyzed were Certain (Biomet 3i), Tissue Level (Straumann), Interna (BTI), MG-InHex (MozoGrau), SPI (Alphabio) and Hikelt (Bioner). Surface topography was ascertained using a confocal microscope with white light. Roughness parameters obtained were: Ra, Rq, Rv, Rp, Rt, Rsk and Rku. The results were analysed using single-factor ANOVA and Student-Neuman-Keuls(p<0.05) tests. Results Certain and Hikelt obtained the highest Ra and Rq scores, followed by Tissue Level. Interna and SPI obtained lower scores, and MG-InHex obtained the lowest score. Rv scores followed the same trend. Certain obtained the highest Rp score, followed by SPI and Hikelt, then Interna and Tissue Level. MG-InHex obtained the lowest scores. Certain obtained the highest Rt score, followed by Interna and Hikelt, then SPI and Tissue Level. The lowest scores were for MG-InHex. Rsk was negative (punctured surface) in the MG-InHex, SPI and Tissue Level systems, and positive (pointed surface) in the other systems. Rku was higher than 3 (Leptokurtic) in Tissue Level, Interna, MG-InHex and SPI, and lower than 3 (Platykurtic) in Certain and Hikelt. Conclusions The type of implant determines surface topography, and there are differences in the roughness parameters of the various makes of implants for clinical use. Key words:Implants for clinical use, topography, confocal microscopy. PMID:27475680

  14. Charon's Surface in Detail

    NASA Image and Video Library

    2017-07-14

    On July 14, 2015, NASA's New Horizons spacecraft made its historic flight through the Pluto system. This detailed, high-quality global mosaic of Pluto's largest moon, Charon, was assembled from nearly all of the highest-resolution images obtained by the Long-Range Reconnaissance Imager (LORRI) and the Multispectral Visible Imaging Camera (MVIC) on New Horizons. The mosaic is the most detailed and comprehensive global view yet of Charon's surface using New Horizons data. It includes topography data of the hemisphere visible to New Horizons during the spacecraft's closest approach. The topography is derived from digital stereo-image mapping tools that measure the parallax -- or the difference in the apparent relative positions -- of features on the surface obtained at different viewing angles during the encounter. Scientists use these parallax displacements of high and low terrain to estimate landform heights. The global mosaic has been overlain with transparent, colorized topography data wherever on the surface stereo data is available. Terrain south of about 30°S was in darkness leading up to and during the flyby, so is shown in black. All feature names on Pluto and Charon are informal. The global mosaic has been overlain with transparent, colorized topography data wherever on their surfaces stereo data is available. Standing out on Charon is the Caleuche Chasma ("C") in the far north, an enormous trough at least 350 kilometers (nearly 220 miles) long, and reaching 14 kilometers (8.5 miles) deep -- more than seven times as deep as the Grand Canyon. https://photojournal.jpl.nasa.gov/catalog/PIA21860

  15. Mechanisms of Cdc42-mediated rat MSC differentiation on micro/nano-textured topography.

    PubMed

    Li, Guangwen; Song, Yanyan; Shi, Mengqi; Du, Yuanhong; Wang, Wei; Zhang, Yumei

    2017-02-01

    Micro/nano-textured titanium surface topography promotes osteoblast differentiation and the Wnt/β-catenin signaling pathway. However, the response of rat bone mesenchymal stem cells (MSCs) to micro/nano-textured topography, and the underlying mechanisms of its effects, are not well understood. We hypothesized that cell division cycle 42 protein (Cdc42), a key member of the Rho GTPases family, may regulate rat MSCs morphology and osteogenic differentiation by micro/nano-textured topography, and that crosstalk between Cdc42 and Wnt/β-catenin is the underlying mechanism. To confirm the hypothesis, we first tested rat MSCs' morphology, cytoskeleton, and osteogenic differentiation on micro/nano-textured topography. We then examined the cells' Wnt pathway and Cdc42 signaling activity. The results show that micro/nano-textured topography enhances MSCs' osteogenic differentiation. In addition, the cells' morphology and cytoskeletal reorganization were dramatically different on smooth surfaces and micropitted/nanotubular topography. Ligands of the canonical Wnt pathway, as well as accumulation of β-catenin in the nucleus, were up-regulated by micro/nano-textured topography. Cdc42 protein expression was markedly increased under these conditions; conversely, Cdc42 silencing significantly depressed the enhancement of MSCs osteogenic differentiation by micro/nano-textured topography. Moreover, Cdc42si attenuated p-GSK3β activation and resulted in β-catenin cytoplasmic degradation on the micro/nano-textured topography. Our results indicate that Cdc42 is a key modulator of rat MSCs morphology and cytoskeletal reorganization, and that crosstalk between Cdc42 and Wnt/β-catenin signaling though GSK3β regulates MSCs osteogenic differentiation by implant topographical cues. Topographical modification at micro- and nanoscale is widely applied to enhance the tissue integration properties of biomaterials. However, the response of bone mesenchymal stem cells (MSCs) to the micro/nano-textured topography and the underlying mechanisms are not well understood. This study shows that the micropitted/nanotubular hierarchical topography produced by etching and anodic oxidation treatment drives fusiform cell morphology, cytoskeletal reorganization as well as better MSCs osteogenic differentiation. The cross-talk between Cdc42 pathway and Wnt/β-catenin pathway though GSK3β modulates the osteoinductive effect of the micro/nano-textured topography on MSCs. This finding sheds light on a novel mechanism involved in micro/nano-textured surface-mediated MSCs osteogenic differentiation and is a major step in the development of new surface modifications aiming to accelerate and enhance the process of osseointegration. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Insect Wing Membrane Topography Is Determined by the Dorsal Wing Epithelium

    PubMed Central

    Belalcazar, Andrea D.; Doyle, Kristy; Hogan, Justin; Neff, David; Collier, Simon

    2013-01-01

    The Drosophila wing consists of a transparent wing membrane supported by a network of wing veins. Previously, we have shown that the wing membrane cuticle is not flat but is organized into ridges that are the equivalent of one wing epithelial cell in width and multiple cells in length. These cuticle ridges have an anteroposterior orientation in the anterior wing and a proximodistal orientation in the posterior wing. The precise topography of the wing membrane is remarkable because it is a fusion of two independent cuticle contributions from the dorsal and ventral wing epithelia. Here, through morphological and genetic studies, we show that it is the dorsal wing epithelium that determines wing membrane topography. Specifically, we find that wing hair location and membrane topography are coordinated on the dorsal, but not ventral, surface of the wing. In addition, we find that altering Frizzled Planar Cell Polarity (i.e., Fz PCP) signaling in the dorsal wing epithelium alone changes the membrane topography of both dorsal and ventral wing surfaces. We also examined the wing morphology of two model Hymenopterans, the honeybee Apis mellifera and the parasitic wasp Nasonia vitripennis. In both cases, wing hair location and wing membrane topography are coordinated on the dorsal, but not ventral, wing surface, suggesting that the dorsal wing epithelium also controls wing topography in these species. Because phylogenomic studies have identified the Hymenotera as basal within the Endopterygota family tree, these findings suggest that this is a primitive insect character. PMID:23316434

  17. Effect of root planing on surface topography: an in-vivo randomized experimental trial.

    PubMed

    Rosales-Leal, J I; Flores, A B; Contreras, T; Bravo, M; Cabrerizo-Vílchez, M A; Mesa, F

    2015-04-01

    The root surface topography exerts a major influence on clinical attachment and bacterial recolonization after root planing. In-vitro topographic studies have yielded variable results, and clinical studies are necessary to compare root surface topography after planing with current ultrasonic devices and with traditional manual instrumentation. The aim of this study was to compare the topography of untreated single-rooted teeth planed in vivo with a curette, a piezoelectric ultrasonic (PU) scraper or a vertically oscillating ultrasonic (VOU) scraper. In a randomized experimental trial of 19 patients, 44 single-rooted teeth were randomly assigned to one of four groups for: no treatment; manual root planing with a curette; root planing with a PU scraper; or root planing with a VOU scraper. Post-treatment, the teeth were extracted and their topography was analyzed in 124 observations with white-light confocal microscopy, measuring the roughness parameters arithmetic average height, root-mean-square roughness, maximum height of peaks, maximum depth of valleys, absolute height, skewness and kurtosis. The roughness values arithmetic average height and root-mean-square roughness were similar after each treatment and lower than after no treatment ( p < 0.05). Absolute height was lower in the VOU group than in the untreated ( p = 0.0026) and PU (p = 0.045) groups. Surface morphology was similar after the three treatments and was less irregular than in the untreated group. Values for the remaining roughness parameters were similar among all treatment groups ( p > 0.05). Both ultrasonic devices reduce the roughness, producing a similar topography to that observed after manual instrumentation with a curette, to which they appear to represent a valid alternative. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. A Synthesis and Comparison of Approaches for Quantifying Coral Reef Structure

    NASA Astrophysics Data System (ADS)

    Duvall, M. S.; Hench, J. L.

    2016-02-01

    The complex physical structures of coral reefs provide substrate for benthic organisms, surface area for material fluxes, and have been used as a predictor of reef-fish biomass and biodiversity. Coral reef topography has a first order effect on reef hydrodynamics by imposing drag forces and increasing momentum and scalar dispersion. Despite its importance, quantifying reef topography remains a challenge, as it is patchy and discontinuous while also varying over orders of magnitude in spatial scale. Previous studies have quantified reef structure using a range of 1D and 2D metrics that estimate vertical roughness, which is the departure from a flat geometric profile or surface. However, there is no general mathematical or conceptual framework by which to apply or compare these roughness metrics. While the specific calculations of different metrics vary, we propose that they can be classified into four categories based on: 1) vertical relief relative to a reference height; 2) gradients in vertical relief; 3) surface contour distance; or 4) variations in roughness with scale. We apply metrics from these four classes to idealized reef topography as well as natural reef topography data from Moorea, French Polynesia. Through the use of idealized profiles, we demonstrate the potential for reefs with different morphologies to possess the same value for some scale-dependent metrics (i.e. classes 1-3). Due to the superposition of variable-scale roughness elements in reef topography, we find that multi-scale metrics (i.e. class 4) can better characterize structural complexity by capturing surface roughness across a range of spatial scales. In particular, we provide evidence of the ability of 1D continuous wavelet transforms to detect changes in dominant roughness scales on idealized topography as well as within real reef systems.

  19. Using Measurements of Topography to Infer Rates of Crater Degradation and Surface Evolution on the Moon and Mercury

    NASA Technical Reports Server (NTRS)

    Fassett, Caleb; Crowley, Lindy; Leight, Clarissa; Dyar, Darby; Minton, David; Hirabayashi, Toshi; Thomson, Brad; Watters, Wesley

    2017-01-01

    Motivating questions: 1. How does the topography of airless bodies evolve? 2. What is the relative rate on the Moon and Mercury? 3. Can we constrain the age of features and units from their topography?

  20. Pretreatment of lubricated surfaces with sputtered cadmium oxide

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L. (Inventor)

    1991-01-01

    Cadmium oxide is used with a dry solid lubricant on a surface to improve wear resistance. The surface topography is first altered by photochemical etching to a predetermined pattern. The cadmium oxide is then sputtered onto the altered surface to form an intermediate layer to more tightly hold the dry lubricant, such as graphite.

  1. Dropwise condensation on hydrophobic bumps and dimples

    NASA Astrophysics Data System (ADS)

    Yao, Yuehan; Aizenberg, Joanna; Park, Kyoo-Chul

    2018-04-01

    Surface topography plays an important role in promoting or suppressing localized condensation. In this work, we study the growth of water droplets on hydrophobic convex surface textures such as bumps and concave surface textures such as dimples with a millimeter scale radius of curvature. We analyze the spatio-temporal droplet size distribution under a supersaturation condition created by keeping the uniform surface temperature below the dew point and show its relationship with the sign and magnitude of the surface curvature. In particular, in contrast to the well-known capillary condensation effect, we report an unexpectedly less favorable condensation on smaller, millimeter-scale dimples where the capillary condensation effect is negligible. To explain these experimental results, we numerically calculated the diffusion flux of water vapor around the surface textures, showing that its magnitude is higher on bumps and lower on dimples compared to a flat surface. We envision that our understanding of millimetric surface topography can be applied to improve the energy efficiency of condensation in applications such as water harvesting, heating, ventilation, and air conditioning systems for buildings and transportation, heat exchangers, thermal desalination plants, and fuel processing systems.

  2. Surface modification by electrolytic plasma processing for high Nb-TiAl alloys

    NASA Astrophysics Data System (ADS)

    Gui, Wanyuan; Hao, Guojian; Liang, Yongfeng; Li, Feng; Liu, Xiao; Lin, Junpin

    2016-12-01

    Metal surface modification by electrolytic plasma processing (EPP) is an innovative treatment widely commonly applied to material processing and pretreatment process of coating and galvanization. EPP involves complex processes and a great deal of parameters, such as preset voltage, current, solution temperature and processing time. Several characterization methods are presented in this paper for evaluating the micro-structure surfaces of Ti45Al8Nb alloys: SEM, EDS, XRD and 3D topography. The results showed that the oxide scale and other contaminants on the surface of Ti45Al8Nb alloys can be effectively removed via EPP. The typical micro-crater structure of the surface of Ti45Al8Nb alloys were observed by 3D topography after EPP to find that the mean diameter of the surface structure and roughness value can be effectively controlled by altering the processing parameters. The mechanical properties of the surface according to nanomechanical probe testing exhibited slight decrease in microhardness and elastic modulus after EPP, but a dramatic increase in surface roughness, which is beneficial for further processing or coating.

  3. MOLA: Seasonal Snow Variations on Mars: Slow Flyover of the Martian North Pole

    NASA Technical Reports Server (NTRS)

    2001-01-01

    MOLA: Seasonal Snow Variations on Mars: Slow Flyover of the Martian North Pole: False Color. This is a visualization of the topography near the Martian north pole as measured with the MOLA instrument. This particular animation shows a slow zoom to the surface of the pole, a flyover of the polar cap and a slow zoom out. The surface color is based on the elevation of the topography.

  4. Mapping Ocean Surface Topography with a Synthetic-Aperture Interferometry Radar

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Rodriguez, Ernesto

    2006-01-01

    We propose to apply the technique of synthetic aperture radar interferometry to the measurement of ocean surface topography at spatial resolution approaching 1 km. The measurement will have wide ranging applications in oceanography, hydrology. and marine geophysics. The oceanographic and related societal applications are briefly discussed in the paper. To meet the requirements for oceanographic applications, the instrument must be flown in an orbit with proper sampling of ocean tides.

  5. Towards Mapping the Ocean Surface Topography at 1 km Resolution

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Rodriquez, Ernesto

    2006-01-01

    We propose to apply the technique of synthetic aperture radar interferometry to the measurement of ocean surface topography at spatial resolution approaching 1 km. The measurement will have wide ranging applications in oceanography, hydrology, and marine geophysics. The oceanographic and related societal applications are briefly discussed in the paper. To meet the requirements for oceanographic applications, the instrument must be flown in an orbit with proper sampling of ocean tides.

  6. High-resolution lidar topography of the Puget Lowland, Washington - A bonanza for earth science

    USGS Publications Warehouse

    Haugerud, R.A.; Harding, D.J.; Johnson, S.Y.; Harless, J.L.; Weaver, C.S.; Sherrod, B.L.

    2003-01-01

    More than 10,000 km2 of high-resolution, public-domain topography acquired by the Puget Sound Lidar Consortium is revolutionizing investigations of active faulting, continental glaciation, landslides, and surficial processes in the seismically active Puget Lowland. The Lowland-the population and economic center of the Pacific Northwest-presents special problems for hazards investigations, with its young glacial topography, dense forest cover, and urbanization. Lidar mapping during leaf-off conditions has led to a detailed digital model of the landscape beneath the forest canopy. The surface thus revealed contains a rich and diverse record of previously unknown surface-rupturing faults, deep-seated landslides, uplifted Holocene and Pleistocene beaches, and subglacial and periglacial features. More than half a dozen suspected postglacial fault scarps have been identified to date. Five scarps that have been trenched show evidence of large, Holocene, surface-rupturing earthquakes.

  7. Influence of surface topography on depth profiles obtained with secondary-ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Walker, A. J.; Borchert, M. T.; Vriezema, C. J.; Zalm, P. C.

    1990-11-01

    Lithographically generated well-defined surface topography of submicron dimensions has been etched into silicon (100) previously implanted with 25 keV 11B to a fluence of 2×1014 atoms/cm2. The thus-obtained samples were depth profiled via secondary-ion mass spectrometry (SIMS). The boron concentration distributions measured were contrasted against those found on undisturbed flat parts of the target. From this intercomparison the otherwise trivial observation that surface topography causes profile distortion becomes suddenly alarming as an apparent improvement of depth resolution occurs. Scanning electron microscope images enable identification of the origin of this remarkable phenomenon. The present results imply that (i) the hitherto commonly accepted assumption in the interpretation of SIMS depth profiles that perceived gradients are never steeper than actual ones is subject to revision; (ii) it may prove very difficult, if not impossible, to construct SIMS equipment for reliable on-chip analysis of submicron details.

  8. Impact of topography-radiation interaction on surface energy budget of the Tibetan Plateau in GCM simulations

    NASA Astrophysics Data System (ADS)

    Lee, W. L.; Liou, K. N.; Gu, Y.; Wang, C. C.; Wu, C. H.; Hsu, H. H.

    2017-12-01

    We have develop a parameterization to quantify the effect of 3-D topography on surface solar radiation, including multiple reflection and heating difference at sunward and shaded slopes of mountains. A series of sensitivity tests using NCAR CCSM4 with and without this parameterization have been carried out to investigate this effect in climate simulations. The result indicates that missing the 3-D radiation-topography interaction could be a key factor leading to cold biases over the Tibetan Plateau in winter in all of the CMIP5 models. Consequently, the snowmelt rate in the Tibetan Plateau could be underestimated in most future projections. In addition, the topographic effect can also increase the net surface solar radiation at the southern slope of the Himalayas in summer. The temporal and spatial distribution of monsoon precipitation and circulation could also be influenced.

  9. Effect of fluoride prophylactic agents on the surface topography of NiTi and CuNiTi wires.

    PubMed

    Mane, Pratap P; Pawar, Renuka; Ganiger, Chanamallappa; Phaphe, Sandesh

    2012-05-01

    The aim of this study was to see the effect of topical fluoride on surface texture on nickel-titanium and copper-nickel-titanium orthodontic archwires. Preformed rectangular NiTi and CuNiTi wires were immersed in in fluoride solution and artificial saliva (control) for 90 minutes at 37°C. after immersion optical microscope was used to see the fluoride effect on the wire topography. The acidulated fluoride agents appeared to cause greater corrosive effects as compared to the neutral fluoride agents. The result suggest that using topical fluoride agents leads to corrosion of surface topography indirectly affecting the mechanical properties of the wire that will lead to prolonged orthodontic treatment. The use of topical fluoride agents has to be limited in patients with prolonged orthodontic treatment as it causes the corrosion of the NiTi and CuNiTi wires.

  10. Cornea and anterior eye assessment with placido-disc keratoscopy, slit scanning evaluation topography and scheimpflug imaging tomography

    PubMed Central

    Martin, Raul

    2018-01-01

    Current corneal assessment technologies make the process of corneal evaluation extremely fast and simple and several devices and technologies allow to explore and to manage patients. The purpose of this special issue is to present and also to update in the evaluation of cornea and ocular surface and this second part, reviews a description of the corneal topography and tomography techniques, providing updated information of the clinical recommendations of these techniques in eye care practice. Placido-based topographers started an exciting anterior corneal surface analysis that allows the development of current corneal tomographers that provide a full three-dimensional reconstruction of the cornea including elevation, curvature, and pachymetry data of anterior and posterior corneal surfaces. Although, there is not an accepted reference standard technology for corneal topography description and it is not possible to determine which device produces the most accurate topographic measurements, placido-based topographers are a valuable technology to be used in primary eye care and corneal tomograhers expanding the possibilities to explore cornea and anterior eye facilitating diagnosis and follow-up in several situations, raising patient follow-up, and improving the knowledge regarding to the corneal anatomy. Main disadvantages of placido-based topographers include the absence of information about the posterior corneal surface and limited corneal surface coverage without data from the para-central and/or peripheral corneal surface. However, corneal tomographers show repeatable anterior and posterior corneal surfaces measurements, providing full corneal thickness data improving cornea, and anterior surface assessment. However, differences between devices suggest that they are not interchangeable in clinical practice. PMID:29480244

  11. Cornea and anterior eye assessment with placido-disc keratoscopy, slit scanning evaluation topography and scheimpflug imaging tomography.

    PubMed

    Martin, Raul

    2018-03-01

    Current corneal assessment technologies make the process of corneal evaluation extremely fast and simple and several devices and technologies allow to explore and to manage patients. The purpose of this special issue is to present and also to update in the evaluation of cornea and ocular surface and this second part, reviews a description of the corneal topography and tomography techniques, providing updated information of the clinical recommendations of these techniques in eye care practice. Placido-based topographers started an exciting anterior corneal surface analysis that allows the development of current corneal tomographers that provide a full three-dimensional reconstruction of the cornea including elevation, curvature, and pachymetry data of anterior and posterior corneal surfaces. Although, there is not an accepted reference standard technology for corneal topography description and it is not possible to determine which device produces the most accurate topographic measurements, placido-based topographers are a valuable technology to be used in primary eye care and corneal tomograhers expanding the possibilities to explore cornea and anterior eye facilitating diagnosis and follow-up in several situations, raising patient follow-up, and improving the knowledge regarding to the corneal anatomy. Main disadvantages of placido-based topographers include the absence of information about the posterior corneal surface and limited corneal surface coverage without data from the para-central and/or peripheral corneal surface. However, corneal tomographers show repeatable anterior and posterior corneal surfaces measurements, providing full corneal thickness data improving cornea, and anterior surface assessment. However, differences between devices suggest that they are not interchangeable in clinical practice.

  12. Experiments on topographies lacking tidal conversion

    NASA Astrophysics Data System (ADS)

    Maas, Leo; Paci, Alexandre; Yuan, Bing

    2015-11-01

    In a stratified sea, internal tides are supposedly generated when the tide passes over irregular topography. It has been shown that for any given frequency in the internal wave band there are an infinite number of exceptions to this rule of thumb. This ``stealth-like'' property of the topography is due to a subtle annihilation of the internal waves generated during the surface tide's passage over the irregular bottom. We here demonstrate this in a lab-experiment. However, for any such topography, subsequently changing the surface tide's frequency does lead to tidal conversion. The upshot of this is that a tidal wave passing over an irregular bottom is for a substantial part trapped to this irregularity, and only partly converted into freely propagating internal tides. Financially supported by the European Community's 7th Framework Programme HYDRALAB IV.

  13. The support of long wavelength loads on Venus

    NASA Astrophysics Data System (ADS)

    Benerdt, W. B.; Saunders, R. S.

    1985-04-01

    One of the great surprises of the Pioneer Venus mission was the high degree of correlation between topography and gravity found at all wavelengths. This implies a close relationship between topography and lateral subsurface density anomalies, such as those due to passive or dynamic compensation. Sleep-Phillips type compensation model with a variable crustal thickness and a variable upper mantle density was developed. The thin shell theory was used to investigate three end member cases: (1) loading by topographic construction, resulting in a downward deflection of the surface (no mantle support); (2) completely compensated support of a constructional load (no surface deflection); and (3) topography due entirely to upward deflection of the surface supported by a low density upper mantle (no surface load). In general, the models imply relatively thick crust and dense upper mantle for Ishtar Terra and Ovda Regio (western Aphrodite), thinned crust and buoyant upper mantle for Tethus Regio and regions near Sappho and Alpha Regio, and a nearly uniform crust with a buoyant upper mantle for Beta Regio and Atla Regio (eastern Aphrodite).

  14. Neurogenic differentiation of human umbilical cord mesenchymal stem cells on aligned electrospun polypyrrole/polylactide composite nanofibers with electrical stimulation

    NASA Astrophysics Data System (ADS)

    Zhou, Junfeng; Cheng, Liang; Sun, Xiaodan; Wang, Xiumei; Jin, Shouhong; Li, Junxiang; Wu, Qiong

    2016-09-01

    Adult central nervous system (CNS) tissue has a limited capacity to recover after trauma or disease. Recent medical cell therapy using polymeric biomaterialloaded stem cells with the capability of differentiation to specific neural population has directed focuses toward the recovery of CNS. Fibers that can provide topographical, biochemical and electrical cues would be attractive for directing the differentiation of stem cells into electro-responsive cells such as neuronal cells. Here we report on the fabrication of an electrospun polypyrrole/polylactide composite nanofiber film that direct or determine the fate of mesenchymal stem cells (MSCs), via combination of aligned surface topography, and electrical stimulation (ES). The surface morphology, mechanical properties and electric properties of the film were characterized. Comparing with that on random surface film, expression of neurofilament-lowest and nestin of human umbilical cord mesenchymal stemcells (huMSCs) cultured on film with aligned surface topography and ES were obviously enhanced. These results suggest that aligned topography combining with ES facilitates the neurogenic differentiation of huMSCs and the aligned conductive film can act as a potential nerve scaffold.

  15. The Support of Long Wavelength Loads on Venus

    NASA Technical Reports Server (NTRS)

    Benerdt, W. B.; Saunders, R. S.

    1985-01-01

    One of the great surprises of the Pioneer Venus mission was the high degree of correlation between topography and gravity found at all wavelengths. This implies a close relationship between topography and lateral subsurface density anomalies, such as those due to passive or dynamic compensation. Sleep-Phillips type compensation model with a variable crustal thickness and a variable upper mantle density was developed. The thin shell theory was used to investigate three end member cases: (1) loading by topographic construction, resulting in a downward deflection of the surface (no mantle support); (2) completely compensated support of a constructional load (no surface deflection); and (3) topography due entirely to upward deflection of the surface supported by a low density upper mantle (no surface load). In general, the models imply relatively thick crust and dense upper mantle for Ishtar Terra and Ovda Regio (western Aphrodite), thinned crust and buoyant upper mantle for Tethus Regio and regions near Sappho and Alpha Regio, and a nearly uniform crust with a buoyant upper mantle for Beta Regio and Atla Regio (eastern Aphrodite).

  16. Effects of tooth whitening and orange juice on surface properties of dental enamel.

    PubMed

    Ren, Yan-Fang; Amin, Azadeh; Malmstrom, Hans

    2009-06-01

    To study the effects of 6% H2O2 activated with LED light on surface enamel as compared to orange juice challenges in vitro. A total of 40 human enamel discs were incubated in saliva overnight to allow pellicle formation and then divided into three groups: 15 for whitening treatments, 15 for orange juice immersions and 10 for normal saline controls. Baseline microhardness was measured with a microhardness Knoop indenter (50g, 10s) and surface topography was evaluated with a focus-variation 3D scanning microscopy. Enamel discs were treated with H2O2 or orange juice for 20 min each cycle for five cycles to simulate daily treatment with the products for 5 days. The discs were stored in saliva between treatment cycles. Microhardness and surface topography were evaluated again after treatments. Changes in microhardness and in surface area roughness (Sa), mean maximum peak-to-valley distance (Sz) and the developed surface area ratio (Sdr) were compared before and after treatments (t-test) and among groups (ANOVA). Enamel surface hardness decreased by 84% after orange juice immersion but no statistically significant changes were observed in the whitening and control groups. Surface topography changed significantly only in the orange juice group as shown by increased Sa (1.2 microm vs. 2.0 microm), Sz (7.7 microm vs. 10.2 microm) and Sdr (2.8% vs. 6.0%). No such changes were observed in the whitening and control groups. In comparison to orange juice challenges, the effects of 6% H2O2 on surface enamel are insignificant. Orange juice erosion markedly decreased hardness and increased roughness of enamel.

  17. Surface Oxide Net Charge of a Titanium Alloy; Comparison Between Effects of Treatment With Heat or Radiofrequency Plasma Glow Discharge

    PubMed Central

    MacDonald, Daniel E.; Rapuano, Bruce E.; Schniepp, Hannes C.

    2010-01-01

    In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloy’s surface oxide. Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 °C, or RFGD plasma treated in pure oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness of the alloy’s surface oxide layer. In contrast, heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50–100 nm in diameter. These nanostructures exhibited a three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm cutoff wavelength. Heat treatment also produced a surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat-treated samples These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography. PMID:20880672

  18. Swept Mechanism of Micro-Milling Tool Geometry Effect on Machined Oxygen Free High Conductivity Copper (OFHC) Surface Roughness

    PubMed Central

    Shi, Zhenyu; Liu, Zhanqiang; Li, Yuchao; Qiao, Yang

    2017-01-01

    Cutting tool geometry should be very much considered in micro-cutting because it has a significant effect on the topography and accuracy of the machined surface, particularly considering the uncut chip thickness is comparable to the cutting edge radius. The objective of this paper was to clarify the influence of the mechanism of the cutting tool geometry on the surface topography in the micro-milling process. Four different cutting tools including two two-fluted end milling tools with different helix angles of 15° and 30° cutting tools, as well as two three-fluted end milling tools with different helix angles of 15° and 30° were investigated by combining theoretical modeling analysis with experimental research. The tool geometry was mathematically modeled through coordinate translation and transformation to make all three cutting edges at the cutting tool tip into the same coordinate system. Swept mechanisms, minimum uncut chip thickness, and cutting tool run-out were considered on modeling surface roughness parameters (the height of surface roughness Rz and average surface roughness Ra) based on the established mathematical model. A set of cutting experiments was carried out using four different shaped cutting tools. It was found that the sweeping volume of the cutting tool increases with the decrease of both the cutting tool helix angle and the flute number. Great coarse machined surface roughness and more non-uniform surface topography are generated when the sweeping volume increases. The outcome of this research should bring about new methodologies for micro-end milling tool design and manufacturing. The machined surface roughness can be improved by appropriately selecting the tool geometrical parameters. PMID:28772479

  19. Effect of tissue scaffold topography on protein structure monitored by fluorescence spectroscopy.

    PubMed

    Portugal, Carla A M; Truckenmüller, Roman; Stamatialis, Dimitrios; Crespo, João G

    2014-11-10

    The impact of surface topography on the structure of proteins upon adhesion was assessed through non-invasive fluorescence monitoring. This study aimed at obtaining a better understanding about the role of protein structural status on cell-scaffold interactions. The changes induced upon adsorption of two model proteins with different geometries, trypsin (globular conformation) and fibrinogen (rod-shaped conformation) on poly-l-lactic acid (PLLA) scaffolds with different surface topographies, flat, fibrous and surfaces with aligned nanogrooves, were assessed by fluorescence spectroscopy monitoring, using tryptophan as structural probe. Hence, the maximum emission blue shift and the increase of fluorescence anisotropy observed after adsorption of globular and rod-like shaped proteins on surfaces with parallel nanogrooves were ascribed to more intense protein-surface interactions. Furthermore, the decrease of fluorescence anisotropy observed upon adsorption of proteins to scaffolds with fibrous morphology was more significant for rod-shaped proteins. This effect was associated to the ability of these proteins to adjust to curved surfaces. The additional unfolding of proteins induced upon adsorption on scaffolds with a fibrous morphology may be the reason for better cell attachment there, promoting an easier access of cell receptors to initially hidden protein regions (e.g. RGDS sequence), which are known to have a determinant role in cell attaching processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Simultaneous Nanoscale Surface Charge and Topographical Mapping.

    PubMed

    Perry, David; Al Botros, Rehab; Momotenko, Dmitry; Kinnear, Sophie L; Unwin, Patrick R

    2015-07-28

    Nanopipettes are playing an increasingly prominent role in nanoscience, for sizing, sequencing, delivery, detection, and mapping interfacial properties. Herein, the question of how to best resolve topography and surface charge effects when using a nanopipette as a probe for mapping in scanning ion conductance microscopy (SICM) is addressed. It is shown that, when a bias modulated (BM) SICM scheme is used, it is possible to map the topography faithfully, while also allowing surface charge to be estimated. This is achieved by applying zero net bias between the electrode in the SICM tip and the one in bulk solution for topographical mapping, with just a small harmonic perturbation of the potential to create an AC current for tip positioning. Then, a net bias is applied, whereupon the ion conductance current becomes sensitive to surface charge. Practically this is optimally implemented in a hopping-cyclic voltammetry mode where the probe is approached at zero net bias at a series of pixels across the surface to reach a defined separation, and then a triangular potential waveform is applied and the current response is recorded. Underpinned with theoretical analysis, including finite element modeling of the DC and AC components of the ionic current flowing through the nanopipette tip, the powerful capabilities of this approach are demonstrated with the probing of interfacial acid-base equilibria and high resolution imaging of surface charge heterogeneities, simultaneously with topography, on modified substrates.

  1. A new method for the assessment of the surface topography of NiTi rotary instruments.

    PubMed

    Ferreira, F; Barbosa, I; Scelza, P; Russano, D; Neff, J; Montagnana, M; Zaccaro Scelza, M

    2017-09-01

    To describe a new method for the assessment of nanoscale alterations in the surface topography of nickel-titanium endodontic instruments using a high-resolution optical method and to verify the accuracy of the technique. Noncontact three-dimensional optical profilometry was used to evaluate defects on a size 25, .08 taper reciprocating instrument (WaveOne ® ), which was subjected to a cyclic fatigue test in a simulated root canal in a clear resin block. For the investigation, an original procedure was established for the analysis of similar areas located 3 mm from the tip of the instrument before and after canal preparation to enable the repeatability and reproducibility of the measurements with precision. All observations and analysis were taken in areas measuring 210 × 210 μm provided by the software of the equipment. The three-dimensional high-resolution image analysis showed clear alterations in the surface topography of the examined cutting blade and flute of the instrument, before and after use, with the presence of surface irregularities such as deformations, debris, grooves, cracks, steps and microcavities. Optical profilometry provided accurate qualitative nanoscale evaluation of similar surfaces before and after the fatigue test. The stability and repeatability of the technique enables a more comprehensive understanding of the effects of wear on the surface of endodontic instruments. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  2. Method and apparatus for white-light dispersed-fringe interferometric measurement of corneal topography

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor); Baroth, Edmund C. (Inventor)

    1994-01-01

    An novel interferometric apparatus and method for measuring the topography of aspheric surfaces, without requiring any form of scanning or phase shifting. The apparatus and method of the present invention utilize a white-light interferometer, such as a white-light Twyman-Green interferometer, combined with a means for dispersing a polychromatic interference pattern, using a fiber-optic bundle and a disperser such as a prism for determining the monochromatic spectral intensities of the polychromatic interference pattern which intensities uniquely define the optical path differences or OPD between the surface under test and a reference surface such as a reference sphere. Consequently, the present invention comprises a snapshot approach to measuring aspheric surface topographies such as the human cornea, thereby obviating vibration sensitive scanning which would otherwise reduce the accuracy of the measurement. The invention utilizes a polychromatic interference pattern in the pupil image plane, which is dispersed on a point-wise basis, by using a special area-to-line fiber-optic manifold, onto a CCD or other type detector comprising a plurality of columns of pixels. Each such column is dedicated to a single point of the fringe pattern for enabling determination of the spectral content of the pattern. The auto-correlation of the dispersed spectrum of the fringe pattern is uniquely characteristic of a particular optical path difference between the surface under test and a reference surface.

  3. Synergistic effect of polyaniline coverage and surface microstructure on the inhibition of Pseudomonas aeruginosa biofilm formation.

    PubMed

    Gallarato, L A; Mulko, L E; Dardanelli, M S; Barbero, C A; Acevedo, D F; Yslas, E I

    2017-02-01

    Biofilm Formation is a survival strategy for microorganisms to adapt to their environment. Microbial cells in biofilm become tolerant and resistant to antibiotics and immune responses, increasing the difficulties for the clinical treatment of microbial infections. The surface chemistry and the micro/nano-topography of solid interfaces play a major role in mediating microorganism activity and adhesion. The effect of the surface chemical composition and topography on the adhesion and viability of Pseudomonas aeruginosa was studied. Polymeric (polyethylene terephthalate) surfaces were covered with a conducting polymer (polyaniline, PANI) film by in-situ polymerization and microstructured by Direct Laser Interference Patterning (DLIP). The viability of Pseudomonas aeruginosa on the different surfaces was investigated. The physicochemical properties of the surfaces were characterized by water contact angle measurements, scanning electron microscopy and atomic force microscopy. Bacterial biofilms were imaged by atomic force and scanning electron microscopies. The bacterial viability decreased on PANI compared with the substrate (polyethylene terephthalate) and it decreased even more upon micro-structuring the PANI films. In addition, the biofilm reduction could be improved using polymers with different chemical composition and/or the same polymer with different topographies. Both methods presented diminish the bacterial attachment and biofilm formation. These findings present a high impact related to materials for biomedical engineer applications regarding medical devices, as prostheses or catheters. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Doping of the step-edge Si chain: Ag on a Si(557)-Au surface

    NASA Astrophysics Data System (ADS)

    Krawiec, M.; Jałochowski, M.

    2010-11-01

    Structural and electronic properties of monatomic Ag chains on the Au-induced, highly ordered Si(557) surface are investigated by scanning tunneling microscopy (STM)/spectroscopy and first-principles density functional theory (DFT) calculations. The STM topography data show that a small amount of Ag (0.25 ML) very weakly modifies the one-dimensional structure induced by Au atoms. However, the bias-dependent STM topography and spectroscopy point to the importance of the electronic effects in this system, which are further corroborated by the DFT calculations. The obtained results suggest that Ag atoms act as electron donors leaving the geometry of the surface almost unchanged.

  5. Growth and surface topography of WSe{sub 2} single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Vijay, E-mail: vijdix1@gmail.com; Vyas, Chirag; Pataniya, Pratik

    2016-05-06

    Tungsten Di-Selenide belongs to the family of TMDCs showing their potential applications in the fields of Optoelectronics and PEC solar cells. Here in the present investigation single crystals of WSe{sub 2} were grown by Direct Vapour Transport Technique in a dual zone furnace having temperature difference of 50 K between the two zones. These single crystals were characterized by EDAX which confirms the stiochiometry of the grown crystals. Surface topography of the crystal was studied by optical micrograph showing the left handed spirals on the surface of WSe{sub 2} crystals. Single crystalline nature of the crystals was confirmed by SAED.

  6. The effect of surface topography on the micellisation of hexadecyltrimethylammonium chloride at the silicon-aqueous interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darkins, Robert; Sushko, Maria L.; Liu, Jun

    2015-02-11

    Amphiphilic aggregation at solid-liquid interfaces can generate mesostructured micelles that can serve as soft templates. In this study we have simulated the self-assembly of hexadecyltrimethylammonium chloride (C16TAC) surfactants at the Si(100)- and Si(111)-aqueous interfaces. The surfactants are found to form semicylindrical micelles on Si(100) but hemispherical micelles on Si(111). This difference in micelle structure is shown to be a consequence of the starkly different surface topographies that result from the reconstruction of the two silicon surfaces. This reveals that micelle structure can be governed by epitaxial matching even with non-polar substrates.

  7. An Efficient Approach to Modeling the Topographic Control of Surface Hydrology for Regional and Global Climate Modeling.

    NASA Astrophysics Data System (ADS)

    Stieglitz, Marc; Rind, David; Famiglietti, James; Rosenzweig, Cynthia

    1997-01-01

    The current generation of land-surface models used in GCMs view the soil column as the fundamental hydrologic unit. While this may be effective in simulating such processes as the evolution of ground temperatures and the growth/ablation of a snowpack at the soil plot scale, it effectively ignores the role topography plays in the development of soil moisture heterogeneity and the subsequent impacts of this soil moisture heterogeneity on watershed evapotranspiration and the partitioning of surface fluxes. This view also ignores the role topography plays in the timing of discharge and the partitioning of discharge into surface runoff and baseflow. In this paper an approach to land-surface modeling is presented that allows us to view the watershed as the fundamental hydrologic unit. The analytic form of TOPMODEL equations are incorporated into the soil column framework and the resulting model is used to predict the saturated fraction of the watershed and baseflow in a consistent fashion. Soil moisture heterogeneity represented by saturated lowlands subsequently impacts the partitioning of surface fluxes, including evapotranspiration and runoff. The approach is computationally efficient, allows for a greatly improved simulation of the hydrologic cycle, and is easily coupled into the existing framework of the current generation of single column land-surface models. Because this approach uses the statistics of the topography rather than the details of the topography, it is compatible with the large spatial scales of today's regional and global climate models. Five years of meteorological and hydrological data from the Sleepers River watershed located in the northeastern United States where winter snow cover is significant were used to drive the new model. Site validation data were sufficient to evaluate model performance with regard to various aspects of the watershed water balance, including snowpack growth/ablation, the spring snowmelt hydrograph, storm hydrographs, and the seasonal development of watershed evapotranspiration and soil moisture.

  8. Hybrid micro/nano-topography of a TiO2 nanotube-coated commercial zirconia femoral knee implant promotes bone cell adhesion in vitro.

    PubMed

    Frandsen, Christine J; Noh, Kunbae; Brammer, Karla S; Johnston, Gary; Jin, Sungho

    2013-07-01

    Various approaches have been studied to engineer the implant surface to enhance bone in-growth properties, particularly using micro- and nano-topography. In this study, the behavior of osteoblast (bone) cells was analyzed in response to a titanium oxide (TiO2) nanotube-coated commercial zirconia femoral knee implant consisting of a combined surface structure of a micro-roughened surface with the nanotube coating. The osteoblast cells demonstrated high degrees of adhesion and integration into the surface of the nanotube-coated implant material, indicating preferential cell behavior on this surface when compared to the bare implant. The results of this brief study provide sufficient evidence to encourage future studies. The development of such hierarchical micro- and nano-topographical features, as demonstrated in this work, can provide insightful designs for advanced bone-inducing material coatings on ceramic orthopedic implant surfaces. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. SRF Cavity Surface Topography Characterization Using Replica Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Xu, M.J. Kelley, C.E. Reece

    2012-07-01

    To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosenmore » at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.« less

  10. Assessing the Impact of Topography on Groundwater Salinization Due to Storm Surge Inundation

    NASA Astrophysics Data System (ADS)

    Yu, X.; Yang, J.; Graf, T.; Koneshloo, M.; O'Neal, M. A.; Michael, H. A.

    2015-12-01

    The sea-level rise and increase in the frequency and intensity of coastal storms due to climate change are likely to exacerbate adverse effects of storm surges on low-lying coastal areas. The landward flow of water during storm surges introduces salt to surficial coastal aquifers and threatens groundwater resources. Coastal topography (e.g. ponds, dunes, canals) likely has a strong impact on overwash and salinization processes, but is generally highly simplified in modeling studies. To understand the topographic impacts on groundwater salinization, we modeled overwash and variable-density groundwater flow and salt transport in 3D using the fully coupled surface and subsurface numerical simulator, HydroGeoSphere. The model simulates the coastal aquifer as an integrated system considering processes such as overland flow, coupled surface and subsurface exchange, variably saturated flow, and variable-density flow. To represent various coastal landscape types, we started with realistic coastal topography from Delaware, USA, and then generated synthetic fields with differing shore-perpendicular connectivity and surface depressions. The groundwater salinization analysis suggested that the topographic connectivity promoting overland flow controls the volume of aquifer that is salinized. In contrast, depression storage of surface water mainly controls the time for infiltrated salt to flush from the aquifer. The results indicate that for a range of synthetic conditions, topography increases the flushing time of salt by 20-300% relative to an equivalent "simple slope" in which topographic variation is absent. Our study suggests that topography have a significant impact on overwash salinization, with important implications for land management at local scales and groundwater vulnerability assessment at regional to global scales.

  11. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    NASA Astrophysics Data System (ADS)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2013-09-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  12. In and Si adatoms on Si(111)5×2-Au : Scanning tunneling microscopy and first-principles density functional calculations

    NASA Astrophysics Data System (ADS)

    Stępniak, A.; Nita, P.; Krawiec, M.; Jałochowski, M.

    2009-09-01

    Structural properties of monatomic indium chains on Si(111)5×2-Au surface are investigated by scanning tunneling microscopy (STM) and first-principles density functional calculations (DFT). The STM topography data show that submonolayer coverage of indium leads to a well-ordered chain structure with the same periodicity as the Si adatoms form on Si(111)5×2-Au surface. Bias-dependent STM topography and spectroscopy reveal two different mechanisms of In-atoms adsorption on the surface: bonding to Si adatoms and substitution for Si atoms in the adatom positions. Those mechanisms are further corroborated by DFT calculations. The obtained structural model of In-modified Si(111)5×2-Au surface remains in good agreement with the experimental data.

  13. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  14. Project GEOS-C. [designed to measure the topography of ocean surface and the sea state

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An oceanographic-geodetic satellite, designated Geodynamics Experimental Ocean Satellite-C (GEOS-C), an earth-orbiting spacecraft designed to measure precisely the topography of the ocean surface and the sea state (wave height, wave period, wave propagation direction) is described. Launch operations, spacecraft description, and mission objectives are included along with a brief flight history of the NASA satellite geodesy program. Principal investigations to be performed by the GEOS-C mission are discussed.

  15. Interferometer for measuring the dynamic surface topography of a human tear film

    NASA Astrophysics Data System (ADS)

    Primeau, Brian C.; Greivenkamp, John E.

    2012-03-01

    The anterior refracting surface of the eye is the thin tear film that forms on the surface of the cornea. Following a blink, the tear film quickly smoothes and starts to become irregular after 10 seconds. This irregularity can affect comfort and vision quality. An in vivo method of characterizing dynamic tear films has been designed based upon a near-infrared phase-shifting interferometer. This interferometer continuously measures light reflected from the tear film, allowing sub-micron analysis of the dynamic surface topography. Movies showing the tear film behavior can be generated along with quantitative metrics describing changes in the tear film surface. This tear film measurement allows analysis beyond capabilities of typical fluorescein visual inspection or corneal topography and provides better sensitivity and resolution than shearing interferometry methods. The interferometer design is capable of identifying features in the tear film much less than a micron in height with a spatial resolution of about ten microns over a 6 mm diameter. This paper presents the design of the tear film interferometer along with the considerations that must be taken when designing an interferometer for on-eye diagnostics. Discussions include eye movement, design of null optics for a range of ocular geometries, and laser emission limits for on-eye interferometry.

  16. Surface topography and bond strengths of feldspathic porcelain prepared using various sandblasting pressures.

    PubMed

    Moravej-Salehi, Elham; Moravej-Salehi, Elahe; Valian, Azam

    2016-11-01

    The purpose of this study was to determine the bond strength of composite resin to feldspathic porcelain and its surface topography after sandblasting at different pressures. In this in vitro study, 68 porcelain disks were fabricated and randomly divided into four groups of 17. The porcelain surface in group 1 was etched with hydrofluoric acid. Groups 2, 3, and 4 were sandblasted at 2, 3 and 4 bars pressure, respectively. Surface topography of seven samples in each of the four groups was examined by a scanning electron microscope (SEM). The remaining 40 samples received the same silane agent, bonding agent, and composite resin and they were then subjected to 5000 thermal cycles and evaluated for shear bond strength. Data were analyzed using one-way anova. The mode of failure was determined using stereomicroscope and SEM. The highest shear bond strength was seen in group 4. however, statistically significant differences were not seen between the groups (P = 0.780). The most common mode of failure was cohesive in porcelain. The SEM showed different patterns of hydrofluoric acid etching and sandblasting. Increasing the sandblasting pressure increased the surface roughness of feldspathic porcelain but no difference in bond strength occurred. © 2015 Wiley Publishing Asia Pty Ltd.

  17. Wind-tunnel experiments of turbulent flow over a surface-mounted 2-D block in a thermally-stratified boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando

    2014-11-01

    Turbulent flows over complex surface topography have been of great interest in the atmospheric science and wind engineering communities. The geometry of the topography, surface roughness and temperature characteristics as well as the atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography models, under neutrally stratified boundary-layer conditions, have provided insights into fluid dynamics. However, atmospheric thermal stability has rarely been considered in laboratory experiments, e.g., wind-tunnel experiments. Series of wind-tunnel experiments of thermally-stratified boundary-layer flow over a surface-mounted 2-D block, in a well-controlled boundary-layer wind tunnel, will be presented. Measurements using high-resolution PIV, x-wire/cold-wire anemometry and surface heat flux sensors were conducted to quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Results will be shown to address thermal stability effects on momentum and scalar flux distribution in the wake, as well as dominant mechanism of turbulent kinetic energy generation and consumption. The authors gratefully acknowledge funding from the Swiss National Foundation (Grant 200021-132122), the National Science Foundation (Grant ATM-0854766) and NASA (Grant NNG06GE256).

  18. Dynamic wetting and spreading and the role of topography.

    PubMed

    McHale, Glen; Newton, Michael I; Shirtcliffe, Neil J

    2009-11-18

    The spreading of a droplet of a liquid on a smooth solid surface is often described by the Hoffman-de Gennes law, which relates the edge speed, v(e), to the dynamic and equilibrium contact angles θ and θ(e) through [Formula: see text]. When the liquid wets the surface completely and the equilibrium contact angle vanishes, the edge speed is proportional to the cube of the dynamic contact angle. When the droplets are non-volatile this law gives rise to simple power laws with time for the contact angle and other parameters in both the capillary and gravity dominated regimes. On a textured surface, the equilibrium state of a droplet is strongly modified due to the amplification of the surface chemistry induced tendencies by the topography. The most common example is the conversion of hydrophobicity into superhydrophobicity. However, when the surface chemistry favors partial wetting, topography can result in a droplet spreading completely. A further, frequently overlooked consequence of topography is that the rate at which an out-of-equilibrium droplet spreads should also be modified. In this report, we review ideas related to the idea of topography induced wetting and consider how this may relate to dynamic wetting and the rate of droplet spreading. We consider the effect of the Wenzel and Cassie-Baxter equations on the driving forces and discuss how these may modify power laws for spreading. We relate the ideas to both the hydrodynamic viscous dissipation model and the molecular-kinetic theory of spreading. This suggests roughness and solid surface fraction modified Hoffman-de Gennes laws relating the edge speed to the dynamic and equilibrium contact angle. We also consider the spreading of small droplets and stripes of non-volatile liquids in the capillary regime and large droplets in the gravity regime. In the case of small non-volatile droplets spreading completely, a roughness modified Tanner's law giving the dependence of dynamic contact angle on time is presented. We review existing data for the spreading of small droplets of polydimethylsiloxane oil on surfaces decorated with micro-posts. On these surfaces, the initial droplet spreads with an approximately constant volume and the edge speed-dynamic contact angle relationship follows a power law [Formula: see text]. As the surface texture becomes stronger the exponent goes from p = 3 towards p = 1 in agreement with a Wenzel roughness driven spreading and a roughness modified Hoffman-de Gennes power law. Finally, we suggest that when a droplet spreads to a final partial wetting state on a rough surface, it approaches its Wenzel equilibrium contact angle in an exponential manner with a time constant dependent on roughness.

  19. Design and implementation of optical system for Placido-disc topography

    NASA Astrophysics Data System (ADS)

    Sui, Chenghua; Wo, Shengjie; Cai, Pinggen; Gao, Nan; Xu, Danyang; Han, Yonghao; Du, Chunnian

    2017-11-01

    Corneal topography provides powerful support in the diagnosis and treatment of corneal disease by displaying the corneal surface topography in data or image format. To realize the precise detection of corneal surface topography, an optical system for the corneal topography that is based on a Placido disc is designed, which includes a ring distribution on a Placido disc, an imaging system and a collimating illumination system. First, a mathematical model that is based on the corneal topography working principles is established with MATLAB to determine the distribution of white-and-black rings on the Placido disc, in which the ellipsoid facial rings-target of the Placido disc is utilized. Second, the imaging lens structure is designed and optimized by Zemax software. Last, the collimating illumination lens structure is designed by paraxial ray trace equations. The quality of the corneal topography, which is based on our designed optical system, is evaluated. The high-contrast image of uniformly distributed white-and-black rings is observed through the CCD camera. Our optical system for the corneal topography has high precision, with a measuring region of the cornea with a diameter of approximately 10 mm. Therefore, the creation of this optical system offers guidance for designing and improving the optical system of Placido-disc topography.

  20. Impact Melt Emplacement on Mercury

    NASA Astrophysics Data System (ADS)

    Daniels, J. W.; Neish, C. D.

    2018-05-01

    This work proposes that fresh craters on rocky bodies may deposit impact melt externally ultimately according to the strength of its surface gravity, regardless of the body's surface topography and melt abundance.

  1. Deflectometry using a Hartmann screen to measure tilt, decentering and focus errors in a spherical surface

    NASA Astrophysics Data System (ADS)

    Muñoz-Potosi, A. F.; Granados-Agustín, F.; Campos-García, M.; Valdivieso-González, L. G.; Percino-Zacarias, M. E.

    2017-11-01

    Among the various techniques that can be used to assess the quality of optical surfaces, deflectometry evaluates the reflection experienced by rays impinging on a surface whose topography is under study. We propose the use of a screen spatial filter to select rays from a light source. The screen must be placed at a distance shorter than the radius of curvature of the surface under study. The location of the screen depends on the exit pupil of the system and the caustic area. The reflected rays are measured using an observation plane/screen/CCD located beyond the point of convergence of the rays. To implement an experimental design of the proposed technique and determine the topography of the surface under study, it is necessary to measure tilt, decentering and focus errors caused by mechanical misalignment, which could influence the results of this technique but are not related to the quality of the surface. The aim of this study is to analyze an ideal spherical surface with known radius of curvature to identify the variations introduced by such misalignment errors.

  2. Anomalous sea surface structures as an object of statistical topography

    NASA Astrophysics Data System (ADS)

    Klyatskin, V. I.; Koshel, K. V.

    2015-06-01

    By exploiting ideas of statistical topography, we analyze the stochastic boundary problem of emergence of anomalous high structures on the sea surface. The kinematic boundary condition on the sea surface is assumed to be a closed stochastic quasilinear equation. Applying the stochastic Liouville equation, and presuming the stochastic nature of a given hydrodynamic velocity field within the diffusion approximation, we derive an equation for a spatially single-point, simultaneous joint probability density of the surface elevation field and its gradient. An important feature of the model is that it accounts for stochastic bottom irregularities as one, but not a single, perturbation. Hence, we address the assumption of the infinitely deep ocean to obtain statistic features of the surface elevation field and the squared elevation gradient field. According to the calculations, we show that clustering in the absolute surface elevation gradient field happens with the unit probability. It results in the emergence of rare events such as anomalous high structures and deep gaps on the sea surface almost in every realization of a stochastic velocity field.

  3. Virtual surface characteristics of a tactile display using magneto-rheological fluids.

    PubMed

    Lee, Chul-Hee; Jang, Min-Gyu

    2011-01-01

    Virtual surface characteristics of tactile displays are investigated to characterize the feeling of human touch for a haptic interface application. In order to represent the tactile feeling, a prototype tactile display incorporating Magneto-Rheological (MR) fluid has been developed. Tactile display devices simulate the finger's skin to feel the sensations of contact such as compliance, friction, and topography of the surface. Thus, the tactile display can provide information on the surface of an organic tissue to the surgeon in virtual reality. In order to investigate the compliance feeling of a human finger's touch, normal force responses of a tactile display under various magnetic fields have been assessed. Also, shearing friction force responses of the tactile display are investigated to simulate the action of finger dragging on the surface. Moreover, different matrix arrays of magnetic poles are applied to form the virtual surface topography. From the results, different tactile feelings are observed according to the applied magnetic field strength as well as the arrays of magnetic poles combinations. This research presents a smart tactile display technology for virtual surfaces.

  4. Role of rough surface topography on gas slip flow in microchannels.

    PubMed

    Zhang, Chengbin; Chen, Yongping; Deng, Zilong; Shi, Mingheng

    2012-07-01

    We conduct a lattice Boltzmann simulation of gas slip flow in microchannels incorporating rough surface effects as characterized by fractal geometry with a focus on gas-solid interaction. The gas slip flow in rough microchannels, which is characterized by Poiseuille number and mass flow rate, is evaluated and compared with smooth microchannels. The effects of roughness height, surface fractal dimension, and Knudsen number on slip behavior of gas flow in microchannels are all investigated and discussed. The results indicate that the presence of surface roughness reduces boundary slip for gas flow in microchannels with respect to a smooth surface. The gas flows at the valleys of rough walls are no-slip while velocity slips are observed over the top of rough walls. We find that the gas flow behavior in rough microchannels is insensitive to the surface topography irregularity (unlike the liquid flow in rough microchannels) but is influenced by the statistical height of rough surface and rarefaction effects. In particular, decrease in roughness height or increase in Knudsen number can lead to large wall slip for gas flow in microchannels.

  5. Elucidating Dynamical Processes Relevant to Flow Encountering Abrupt Topography (FLEAT)

    DTIC Science & Technology

    2015-09-30

    Encountering Abrupt Topography (FLEAT) Bo Qiu Dept of Oceanography, University of Hawaii at Manoa 1000 Pope Rd. Honolulu, HI 96822 phone: (808) 956...c) to explore relevant dynamics by using both simplified models and OGCM output with realistic topography and surface boundary conditions...scale abyssal circulation, we propose to use the Hallberg Isopycnal Model (HIM). The HIM allows sloping isopycnals to interact with bottom topography

  6. Development of the Navy’s Next-Generation Nonhydrostatic Modeling System

    DTIC Science & Technology

    2013-09-30

    e.g. surface roughness, land- sea mask, surface albedo ) are needed by physical parameterizations. The surface values will be read and interpolated...characteristics (e.g. albedo , surface roughness) is now available to the model during the initialization stage. We have added infrastructure to the...six faces (Fig 3). 4 Figure 3: Topography (top left, in meters), surface roughness (top right, in meters), albedo (bottom left, no units

  7. Controlled surface topography regulates collective 3D migration by epithelial-mesenchymal composite embryonic tissues.

    PubMed

    Song, Jiho; Shawky, Joseph H; Kim, YongTae; Hazar, Melis; LeDuc, Philip R; Sitti, Metin; Davidson, Lance A

    2015-07-01

    Cells in tissues encounter a range of physical cues as they migrate. Probing single cell and collective migratory responses to physically defined three-dimensional (3D) microenvironments and the factors that modulate those responses are critical to understanding how tissue migration is regulated during development, regeneration, and cancer. One key physical factor that regulates cell migration is topography. Most studies on surface topography and cell mechanics have been carried out with single migratory cells, yet little is known about the spreading and motility response of 3D complex multi-cellular tissues to topographical cues. Here, we examine the response to complex topographical cues of microsurgically isolated tissue explants composed of epithelial and mesenchymal cell layers from naturally 3D organized embryos of the aquatic frog Xenopus laevis. We control topography using fabricated micropost arrays (MPAs) and investigate the collective 3D migration of these multi-cellular systems in these MPAs. We find that the topography regulates both collective and individual cell migration and that dense MPAs reduce but do not eliminate tissue spreading. By modulating cell size through the cell cycle inhibitor Mitomycin C or the spacing of the MPAs we uncover how 3D topographical cues disrupt collective cell migration. We find surface topography can direct both single cell motility and tissue spreading, altering tissue-scale processes that enable efficient conversion of single cell motility into collective movement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Quaternary Landscape Evolution and the Surface Expression of Plume-Lithosphere Interactions in the Greater Yellowstone Area.

    NASA Astrophysics Data System (ADS)

    Guerrero, E.; Meigs, A.; Kirby, E.

    2016-12-01

    Numerous investigations demonstrate that mantle convective processes such as upwelling affect the surface topography of the overriding plate and propagates through the plate accompanying its lateral motion. This deformation signal is known as transient topography and is thought to occur in the North American plate as it passes over the Yellowstone hotspot. This work explores the sensitivity of the surface of Western North America by testing the hypothesis that advection of a transient topographic wave through the North American plate is driving post-Pliocene landscape evolution of the greater Yellowstone region as the plate passes over the mantle plume. Analysis of digital elevation data reveals an asymmetric topographic swell that has an amplitude of 400-1200 m and a wavelength of 600 km which was disentangled from overlapping signals preserved in the topography. A maximum uplift rate of 0.17 mm yr-1 leads the apex of the transient topography swell by nearly 100 km. This means that presently, the western edge of the Bighorn Basin is experiencing a surface uplift rate between 0.166 and 0.302 mm yr-1 which indicates 400-800m of surface uplift in the western edge of the basin since 3 Ma and a tilt of 0.3° and 0.5° away from Yellowstone. We reinterpret the drainage evolution and erosional story of the Bighorn Basin preserved by sequences of fluvial terraces in the Bighorn Basin based on this new deformation model. We integrate this new deformation model with mapping, dating, and paleoflow data into the post-Pliocene erosional story in the basin. The change from a northward drainage to an eastward drainage through stream capture, the lateral migration of the Bighorn river away from Yellowstone, and differential incision in the basin coincides with transient topography-forced deformation.

  9. Effects of patterned topography on biofilm formation

    NASA Astrophysics Data System (ADS)

    Vasudevan, Ravikumar

    2011-12-01

    Bacterial biofilms are a population of bacteria attached to each other and irreversibly to a surface, enclosed in a matrix of self-secreted polymers, among others polysaccharides, proteins, DNA. Biofilms cause persisting infections associated with implanted medical devices and hospital acquired (nosocomial) infections. Catheter-associated urinary tract infections (CAUTIs) are the most common type of nosocomial infections accounting for up to 40% of all hospital acquired infections. Several different strategies, including use of antibacterial agents and genetic cues, quorum sensing, have been adopted for inhibiting biofilm formation relevant to CAUTI surfaces. Each of these methods pertains to certain types of bacteria, processes and has shortcomings. Based on eukaryotic cell topography interaction studies and Ulva linza spore studies, topographical surfaces were suggested as a benign control method for biofilm formation. However, topographies tested so far have not included a systematic variation of size across basic topography shapes. In this study patterned topography was systematically varied in size and shape according to two approaches 1) confinement and 2) wetting. For the confinement approach, using scanning electron microscopy and confocal microscopy, orienting effects of tested topography based on staphylococcus aureus (s. aureus) (SH1000) and enterobacter cloacae (e. cloacae) (ATCC 700258) bacterial models were identified on features of up to 10 times the size of the bacterium. Psuedomonas aeruginosa (p. aeruginosa) (PAO1) did not show any orientational effects, under the test conditions. Another important factor in medical biofilms is the identification and quantification of phenotypic state which has not been discussed in the literature concerning bacteria topography characterizations. This was done based on antibiotic susceptibility evaluation and also based on gene expression analysis. Although orientational effects occur, phenotypically no difference was observed between the patterned topography tested. Another potential strategy for biofilm control through patterned topography is based on the design of robust non-wetting surfaces with undercut feature geometries, characterized by 1) breakthrough pressure and 2) triple phase contact line model. It was found that height and presence of undercut had statistically significant effects, directly proportional to breakthrough pressures, whereas extent of undercut did not. A predictive triple phase contact line model was also developed. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  10. Variability of the temporal bone surface's topography: implications for otologic surgery

    NASA Astrophysics Data System (ADS)

    Lecoeur, Jérémy; Noble, Jack H.; Balachandran, Ramya; Labadie, Robert F.; Dawant, Benoit M.

    2012-02-01

    Otologic surgery is performed for a variety of reasons including treatment of recurrent ear infections, alleviation of dizziness, and restoration of hearing loss. A typical ear surgery consists of a tympanomastoidectomy in which both the middle ear is explored via a tympanic membrane flap and the bone behind the ear is removed via mastoidectomy to treat disease and/or provide additional access. The mastoid dissection is performed using a high-speed drill to excavate bone based on a pre-operative CT scan. Intraoperatively, the surface of the mastoid component of the temporal bone provides visual feedback allowing the surgeon to guide their dissection. Dissection begins in "safe areas" which, based on surface topography, are believed to be correlated with greatest distance from surface to vital anatomy thus decreasing the chance of injury to the brain, large blood vessels (e.g. the internal jugular vein and internal carotid artery), the inner ear, and the facial nerve. "Safe areas" have been identified based on surgical experience with no identifiable studies showing correlation of the surface with subsurface anatomy. The purpose of our study was to investigate whether such a correlation exists. Through a three-step registration process, we defined a correspondence between each of twenty five clinically-applicable temporal bone CT scans of patients and an atlas and explored displacement and angular differences of surface topography and depth of critical structures from the surface of the skull. The results of this study reflect current knowledge of osteogenesis and anatomy. Based on two features (distance and angular difference), two regions (suprahelical and posterior) of the temporal bone show the least variability between surface and subsurface anatomy.

  11. Surface topography of hairy cell leukemia cells compared to other leukemias as seen by scanning electron microscopy.

    PubMed

    Polliack, Aaron; Tadmor, Tamar

    2011-06-01

    This short review deals with the ultrastructural surface architecture of hairy cell leukemia (HCL) compared to other leukemic cells, as seen by scanning electron microscopy (SEM). The development of improved techniques for preparing blood cells for SEM in the 1970s readily enabled these features to be visualized more accurately. This review returns us to the earlier history of SEM, when the surface topography of normal and neoplastic cells was visualized and reported for the first time, in an era before the emergence and use of monoclonal antibodies and flow cytometry, now used routinely to define cells by their immunophenotype. Surface microvilli are characteristic for normal and leukemic lymphoid cells, myelo-monocytic cells lack microvilli and show surface ruffles, while leukemic plasma and myeloma cells and megakaryocytes display large surface blebs. HCL cell surfaces are complex and typically 'hybrid' in nature, displaying both lymphoid and monocytic features with florid ruffles of varying sizes interspersed with clumps of short microvilli cytoplasm. The surface features of other leukemic cells and photomicrographs of immuno-SEM labeling of cells employing antibodies and colloidal gold, reported more than 20 years ago, are shown.

  12. In-situ high-resolution visualization of laser-induced periodic nanostructures driven by optical feedback.

    PubMed

    Aguilar, Alberto; Mauclair, Cyril; Faure, Nicolas; Colombier, Jean-Philippe; Stoian, Razvan

    2017-11-28

    Optical feedback is often evoked in laser-induced periodic nanostructures. Visualizing the coupling between surfaces and light requires highly-resolved imaging methods. We propose in-situ structured-illumination-microscopy to observe ultrafast-laser-induced nanostructures during fabrication on metallic glass surfaces. This resolves the pulse-to-pulse development of periodic structures on a single irradiation site and indicates the optical feedback on surface topographies. Firstly, the quasi-constancy of the ripples pattern and the reinforcement of the surface relief with the same spatial positioning indicates a phase-locking mechanism that stabilizes and amplifies the ordered corrugation. Secondly, on sites with uncorrelated initial corrugation, we observe ripple patterns spatially in-phase. These feedback aspects rely on the electromagnetic interplay between the laser pulse and the surface relief, stabilizing the pattern in period and position. They are critically dependent on the space-time coherence of the exciting pulse. This suggests a modulation of energy according to the topography of the surface with a pattern phase imposed by the driving pulse. A scattering and interference model for ripple formation on surfaces supports the experimental observations. This relies on self-phase-stabilized far-field interaction between surface scattered wavelets and the incoming pulse front.

  13. Influence of Initial Geometry and Boundary Conditions on Flat Subduction Models and Resulting Topography

    NASA Astrophysics Data System (ADS)

    Nelson, P.; Moucha, R.

    2014-12-01

    Numerical investigations of surface deformation in response to flat slab subduction began with seminal papers by Bird (1988) and Mitrovica et al. (1989). Recently, a number of numerical studies have begun to explore the complexity in the dynamics of flat-slab subduction initiation and continuation, but did not address the corresponding surface deformation (English et al., 2003; Pérez-Campos et al., 2008; Liu et al., 2010; Jones et al., 2011; Arrial and Billen, 2013; Vogt and Gerya, 2014). Herein, we explore the conditions that lead to flat-slab subduction and characterize the resulting surface deformation using a 2D finite-difference marker-in-cell method. We specifically explore how initial model geometry and boundary conditions affect the evolution of the angle at which a slab subducts in the presence/absence of a buoyant oceanic plateau and the resulting surface topography. In our simulations, the surface is tracked through time as an internal erosion/sedimentation surface. The top boundary of the crust is overlaid by a "sticky" (viscous 10^17 Pa.s) water/air layer with correspondingly stratified densities. We apply a coupled surface processes model that solves the sediment transport/diffusion erosion equation at each time step to account for the corresponding crustal mass flux and its effect on crustal deformation. Model results show the initial angle of subduction has a substantial impact on the subduction angle of the slab and hence the evolution of topography. The results also indicate plate velocity and the presence of an oceanic plateau in a forced subduction only have a moderate effect on the angle of subduction.

  14. Photoinduced Changes of Surface Topography in Amorphous, Liquid-Crystalline, and Crystalline Films of Bent-Core Azobenzene-Containing Substance.

    PubMed

    Bobrovsky, Alexey; Mochalov, Konstantin; Oleinikov, Vladimir; Solovyeva, Daria; Shibaev, Valery; Bogdanova, Yulia; Hamplová, Vĕra; Kašpar, Miroslav; Bubnov, Alexej

    2016-06-09

    Recently, photofluidization and mass-transfer effects have gained substantial interest because of their unique abilities of photocontrolled manipulation with material structure and physicochemical properties. In this work, the surface topographies of amorphous, nematic, and crystalline films of an azobenzene-containing bent-core (banana-shaped) compound were studied using a special experimental setup combining polarizing optical microscopy and atomic force microscopy. Spin-coating or rapid cooling of the samples enabled the formation of glassy amorphous or nematic films of the substance. The effects of UV and visible-light irradiation on the surface roughness of the films were investigated. It was found that UV irradiation leads to the fast isothermal transition of nematic and crystalline phases into the isotropic phase. This effect is associated with E-Z photoisomerization of the compound accompanied by a decrease of the anisometry of the bent-core molecules. Focused polarized visible-light irradiation (457.9 nm) results in mass-transfer phenomena and induces the formation of so-called "craters" in amorphous and crystalline films of the substance. The observed photofluidization and mass-transfer processes allow glass-forming bent-core azobenzene-containing substances to be considered for the creation of promising materials with photocontrollable surface topographies. Such compounds are of principal importance for the solution of a broad range of problems related to the investigation of surface phenomena in colloid and physical chemistry, such as surface modification for chemical and catalytic reactions, predetermined morphology of surfaces and interfaces in soft matter, and chemical and biochemical sensing.

  15. Topographic modelling of haptic properties of tissue products

    NASA Astrophysics Data System (ADS)

    Rosen, B.-G.; Fall, A.; Rosen, S.; Farbrot, A.; Bergström, P.

    2014-03-01

    The way a product or material feels when touched, haptics, has been shown to be a property that plays an important role when consumers determine the quality of products For tissue products in constant touch with the skin, softness" becomes a primary quality parameter. In the present work, the relationship between topography and the feeling of the surface has been investigated for commercial tissues with varying degree of texture from the low textured crepe tissue to the highly textured embossed- and air-dried tissue products. A trained sensory panel at was used to grade perceived haptic "roughness". The technique used to characterize the topography was Digital light projection (DLP) technique, By the use of multivariate statistics, strong correlations between perceived roughness and topography were found with predictability of above 90 percent even though highly textured products were included. Characterization was made using areal ISO 25178-2 topography parameters in combination with non-contacting topography measurement. The best prediction ability was obtained when combining haptic properties with the topography parameters auto-correlation length (Sal), peak material volume (Vmp), core roughness depth (Sk) and the maximum height of the surface (Sz).

  16. Effects of topography on the interpretation of the deformation field of prominent volcanoes - Application to Etna

    USGS Publications Warehouse

    Cayol, V.; Cornet, F.H.

    1998-01-01

    We have investigated the effects of topography on the surface-deformation field of volcanoes. Our study provides limits to the use of classical half-space models. Considering axisymmetrical volcanoes, we show that interpreting ground-surface displacements with half-space models can lead to erroneous estimations of the shape of the deformation source. When the average slope of the flanks of a volcano exceeds 20??, tilting in the summit area is reversed to that expected for a flat surface. Thus, neglecting topography may lead to misinterpreting an inflation of the source as a deflation. Comparisons of Mogi's model with a three-dimensional model shows that ignoring topography may lead to an overestimate of the source-volume change by as much as 50% for a slope of 30??. This comparison also shows that the depths calculated by using Mogi's solution for prominent volcanoes should be considered as depths from the summit of the edifices. Finally, we illustrate these topographic effects by analyzing the deformation field measured by radar interferometry at Mount Etna during its 1991-1993 eruption. A three-dimensional modeling calculation shows that the flattening of the deflation field near the volcano's summit is probably a topographic effect.

  17. Characterization of perovskite film prepared by pulsed laser deposition on ferritic stainless steel using microscopic and optical methods

    NASA Astrophysics Data System (ADS)

    Durda, E.; Jaglarz, J.; Kąc, S.; Przybylski, K.; El Kouari, Y.

    2016-06-01

    The perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF48) film was deposited on Crofer 22 APU ferritic stainless steel by pulsed laser deposition (PLD). Morphological studies of the sample were performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Information about film thickness and surface topography of the film and the steel substrate were obtained using following optical methods: spectroscopic ellipsometry (SE), bidirectional reflection distribution function (BRDF) and total integrated reflectometry (TIS). In particular, the BRDF study, being complementary to atomic force microscopy, yielded information about surface topography. Using the previously mentioned methods, the following statistic surface parameters were determined: root-mean square (rms) roughness and autocorrelation length by determining the power spectral density (PSD) function of surface irregularities.

  18. On the equipotential surface hypothesis of lunar maria floors

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Jafar; Konopliv, A. S.; Sjogren, W. L.

    1999-03-01

    The equipotential surface hypothesis suggests that lunar maria floors lie on a surface parallel to the selenoid. This is examined using the spherical harmonic representations of the Clementine topography and Lunar Prospector gravity data. It is demonstrated that the floors of both circular and noncircular maria significantly deviate from an equipotential surface. Deeper circular maria and the deeper part of the noncircular Mare Tranquillitatis have been subsided under larger mass loads in the crust. We calculate the mass beneath the maria to be in excess to the mass required for isostatic compensation of the topography at 60 km depth. A global map of this excess mass shows that the noncircular maria are isostatically compensated, unlike the circular maria. The map also reveals seven new sizable mascons: the three largest are associated with Mendel-Rydberg, Mare Humboldtianum, and Mare Moscoviense.

  19. SILAR derived CdO films: Effect of triethanolamine on the surface morphology and optical bandgap energy

    NASA Astrophysics Data System (ADS)

    Sahin, B.; Aydin, R.

    2018-07-01

    Nanostructured CdO films have been successfully synthesized with different ratios of surfactant triethanolamine (TEA) under SILAR condition. The influence of addition of TEA on the physical properties of CdO nanoparticles was studied. The surface morphology of the films was studied by metallurgical microscope and SEM analysis. Surface topography of the film was studied by AFM. The structural properties of the samples were studied by X-ray diffraction (XRD). The XRD studies confirm that the deposited CdO films has cubic structure (111) preferred orientation with well-crystallinity and purity. The optical bandgap energy was estimated based on the UV-vis spectroscopies which were obtained in the range of 2.16 eV-2.46 eV. Our study is encouraging to get enhanced surface topography by surfactant TEA.

  20. Evaluation of Wear on Macro-Surface Textures Generated by ns Fiber Laser

    NASA Astrophysics Data System (ADS)

    Harish, V.; Soundarapandian, S.; Vijayaraghavan, L.; Bharatish, A.

    2018-03-01

    The demand for improved performance and long term reliability of mechanical systems dictate the use of advanced materials and surface engineering techniques. A small change in the surface topography can lead to substantial improvements in the tribological behaviour of the contact surfaces. One way of altering the surface topography is by surface texturing by introducing dimples or channels on the surfaces. Surface texturing is already a successful technique which finds a wide area of applications ranging from heavy industries to small scale devices. This paper reports the effect of macro texture shapes generated using a nanosecond fiber laser on wear of high carbon chromium steel used in large size bearings having rolling contacts. Circular and square shaped dimples were generated on the surface to assess the effect of sliding velocities on friction coefficient. Graphite was used as solid lubricant to minimise the effect of wear on textured surfaces. The laser parameters such as power, scan speed and passes were optimised to obtain macro circular and square dimples which was characterised using a laser confocal microscope. The friction coefficients of the circular and square dimples were observed to lie in the same range due to minimum wear on the surface. On the contrary, at medium and higher sliding velocities, square dimples exhibited lower friction coefficient values compared to circular dimples. The morphology of textured specimen was characterised using Scanning Electron Microscope.

  1. Effects of surface roughening of Nafion 117 on the mechanical and physicochemical properties of ionic polymer-metal composite (IPMC) actuators

    NASA Astrophysics Data System (ADS)

    Wang, Yanjie; Zhu, Zicai; Liu, Jiayu; Chang, Longfei; Chen, Hualing

    2016-08-01

    In this paper, the surface of a Nafion membrane was roughened by the sandblasting method, mainly considering the change of sandblasting time and powder size. The roughened surfaces were characterized in terms of their topography from the confocal laser scanning microscope (CLSM) and SEM. The key surface parameters, such as Sa (the arithmetical mean deviation of the specified surface profile), SSA (the surface area ratio before and after roughening) and the area measurement on the histogram from the CLSM images, were extracted and evaluated from the roughened membranes. Also, the detailed change in surface and interfacial electrodes were measured and discussed together with the surface resistance, equivalent modulus, capacitance and performances of IPMC actuators based on the roughened membranes. The results show that a suitable sandblasting condition, resulting in the decrease in the bending stiffness and the increase in the interface area closely related to the capacitance, can effectively increase the electromechanical responses of IPMCs. Although the surface roughening by sandblasting caused a considerable lowering of mechanical strength, it was very effective for enlarging the interfacial area between Nafion membrane and the electrode layers, and for forming a penetrated electrode structure, which facilitated improvement of the surface resistance and capacitance characteristics of IPMCs. In this work, a quantitative relationship was built between the topography of Nafion membrane surface and electromechanical performance of IPMCs by means of sandblasting.

  2. Characterization of lipid films by an angle-interrogation surface plasmon resonance imaging device.

    PubMed

    Liu, Linlin; Wang, Qiong; Yang, Zhong; Wang, Wangang; Hu, Ning; Luo, Hongyan; Liao, Yanjian; Zheng, Xiaolin; Yang, Jun

    2015-04-01

    Surface topographies of lipid films have an important significance in the analysis of the preparation of giant unilamellar vesicles (GUVs). In order to achieve accurately high-throughput and rapidly analysis of surface topographies of lipid films, a homemade SPR imaging device is constructed based on the classical Kretschmann configuration and an angle interrogation manner. A mathematical model is developed to accurately describe the shift including the light path in different conditions and the change of the illumination point on the CCD camera, and thus a SPR curve for each sampling point can also be achieved, based on this calculation method. The experiment results show that the topographies of lipid films formed in distinct experimental conditions can be accurately characterized, and the measuring resolution of the thickness lipid film may reach 0.05 nm. Compared with existing SPRi devices, which realize detection by monitoring the change of the reflective-light intensity, this new SPRi system can achieve the change of the resonance angle on the entire sensing surface. Thus, it has higher detection accuracy as the traditional angle-interrogation SPR sensor, with much wider detectable range of refractive index. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effect of bleaching on color change and surface topography of composite restorations.

    PubMed

    Pruthi, Gunjan; Jain, Veena; Kandpal, H C; Mathur, Vijay Prakash; Shah, Naseem

    2010-01-01

    This study was conducted to determine the effect of 15% carbamide peroxide bleaching agent on color change and surface topography of different composite veneering materials (Filtek Z350 (3M ESPE), Esthet X (Dentsply India), and Admira (Voco, Germany). Methods. 30 samples were fabricated for evaluation of color change using CIELAB color system and Gonioreflectometer (GK 311/M, ZEISS). 45 disc-shaped specimens were made for evaluation of surface topography after bleaching (Nupro White Gold; Dentsply) using SEM. Statistical analysis. One way ANOVA and Multiple comparison tests were used to analyze the data. Statistical significance was declared if the P value was .05 or less. Results and conclusion. All the specimens showed significant discoloration (ΔE > 3.3) after their immersion in solutions representing food and beverages. The total color change after bleaching as compared to baseline color was significant in Filtek Z350 (P = .000) and Esthet X (P = .002), while it was insignificant for Admira (P = .18). Esthet X showed maximum surface roughness followed by Admira and Filtek Z350. Bleaching was effective in reducing the discoloration to a clinically acceptable value in all the three groups (ΔE < 3.3).

  4. Stochastic dislocation kinetics and fractal structures in deforming metals probed by acoustic emission and surface topography measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradov, A.; Laboratory of Hybrid Nanostructured Materials, NITU MISiS, Moscow 119490; Yasnikov, I. S.

    2014-06-21

    We demonstrate that the fractal dimension (FD) of the dislocation population in a deforming material is an important quantitative characteristic of the evolution of the dislocation structure. Thus, we show that peaking of FD signifies a nearing loss of uniformity of plastic flow and the onset of strain localization. Two techniques were employed to determine FD: (i) inspection of surface morphology of the deforming crystal by white light interferometry and (ii) monitoring of acoustic emission (AE) during uniaxial tensile deformation. A connection between the AE characteristics and the fractal dimension determined from surface topography measurements was established. As a commonmore » platform for the two methods, the dislocation density evolution in the bulk was used. The relations found made it possible to identify the occurrence of a peak in the median frequency of AE as a harbinger of plastic instability leading to necking. It is suggested that access to the fractal dimension provided by AE measurements and by surface topography analysis makes these techniques important tools for monitoring the evolution of the dislocation structure during plastic deformation—both as stand-alone methods and especially when used in tandem.« less

  5. ATM Coastal Topography-Alabama 2001

    USGS Publications Warehouse

    Nayegandhi, Amar; Yates, Xan; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Alabama coastline, acquired October 3-4, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface, and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography.

  6. ATM Coastal Topography-Florida 2001: Eastern Panhandle

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the eastern Florida panhandle coastline, acquired October 2, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography.

  7. Ice sheet topography by satellite altimetry

    USGS Publications Warehouse

    Brooks, R.L.; Campbell, W.J.; Ramseier, R.O.; Stanley, H.R.; Zwally, H.J.

    1978-01-01

    The surface elevation of the southern Greenland ice sheet and surface features of the ice flow are obtained from the radar altimeter on the GEOS 3 satellite. The achieved accuracy in surface elevation is ???2 m. As changes in surface elevation are indicative of changes in ice volume, the mass balance of the present ice sheets could be determined by repetitive mapping of the surface elevation and the surface could be monitored to detect surging or significant changes in ice flow. ?? 1978 Nature Publishing Group.

  8. Investigation of diamond wheel topography in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire using fractal analysis method.

    PubMed

    Wang, Qiuyan; Zhao, Wenxiang; Liang, Zhiqiang; Wang, Xibin; Zhou, Tianfeng; Wu, Yongbo; Jiao, Li

    2018-03-01

    The wear behaviors of grinding wheel have significant influence on the work-surface topography. However, a comprehensive and quantitative method is lacking for evaluating the wear conditions of grinding wheel. In this paper, a fractal analysis method is used to investigate the wear behavior of resin-bonded diamond wheel in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire, and a series of experiments on EUAG and conventional grinding (CG) are performed. The results show that the fractal dimension of grinding wheel topography is highly correlated to the wear behavior, i.e., grain fracture, grain pullout, and wheel loading. An increase in cutting edge density on the wheel surface results in an increase of the fractal dimension, but an increase in the grain pullout and wheel loading results in a decrease in the fractal dimension. The wheel topography in EUAG has a higher fractal dimension than that in CG before 60 passes due to better self-sharpening behavior, and then has a smaller fractal dimension because of more serious wheel loadings after 60 passes. By angle-dependent distribution analysis of profile fractal dimensions, the wheel surface topography is transformed from isotropic to anisotropic. These indicated that the fractal analysis method could be further used in monitoring of a grinding wheel performance in EUAG. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. When the Desert Beetle Met the Carnivorous Plant: A Perfect Match for Droplet Growth and Shedding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aizenberg, Joanna; Park, Kyoo Chul; Kim, Philseok

    2015-01-14

    Phase change of vapor followed by coalescence and transport on ubiquitous bumped or curved surfaces is of fundamental importance for a wide range of phenomena and applications from water condensation on cold beverage bottles, to fogging on glasses and windshields, self-cleaning by jumping droplets, weathering, self-assembly, desalination, latent heat transfer, etc. Over the past decades, many attempts to understand and control the droplet growth dynamics and shedding of condensates on textured surfaces have focused on finding the role of micro/nanotexture combined with wettability. In particular, inspired by the Namib desert beetle bump structure, studies tested the effect of topography onmore » the preferential condensation. However, like the preferential condensation observed on flat surfaces, hybrid wettability rather than texture plays a major role; the role of bump topography on local preferential condensation has been unexplored and still not clearly understood. In addition, given that not only facilitating the droplet growth but also transporting the condensed droplets toward the desired reservoir is essential to make fresh sites for renucleation and regrowth of the droplets for enhancing condensation efficiency, the current hybrid-wettability- based design is not efficient to transport the condensates due to the high contact angle hysteresis created by highly wettable pinning points. Here we show that beetle-inspired bump topography leads faster localized condensation and transport of water. Employing simple analytic and more complicated numerical calculations, we reveal the detailed role of topography and predict the focused diffusion flux based on the distortion of concentration gradient around convex surface topography. We experimentally demonstrate the systematic understanding on the unseen effect of topographical parameters on faster droplet growth dynamics on various bump geometries. Further rational design of asymmetric topography and synergetic combination with slippery coating simultaneously enable both faster droplet growth and transport for applications including efficient water condensation.« less

  10. Geometrical effect, optimal design and controlled fabrication of bio-inspired micro/nanotextures for superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Ma, F. M.; Li, W.; Liu, A. H.; Yu, Z. L.; Ruan, M.; Feng, W.; Chen, H. X.; Chen, Y.

    2017-09-01

    Superhydrophobic surfaces with high water contact angles and low contact angle hysteresis or sliding angles have received tremendous attention for both academic research and industrial applications in recent years. In general, such surfaces possess rough microtextures, particularly, show micro/nano hierarchical structures like lotus leaves. Now it has been recognized that to achieve the artificial superhydrophobic surfaces, the simple and effective strategy is to mimic such hierarchical structures. However, fabrications of such structures for these artificial surfaces involve generally expensive and complex processes. On the other hand, the relationships between structural parameters of various surface topography and wetting properties have not been fully understood yet. In order to provide guidance for the simple fabrication and particularly, to promote practical applications of superhydrophobic surfaces, the geometrical designs of optimal microtextures or patterns have been proposed. In this work, the recent developments on geometrical effect, optimal design and controlled fabrication of various superhydrophobic structures, such as unitary, anisotropic, dual-scale hierarchical, and some other surface geometries, are reviewed. The effects of surface topography and structural parameters on wetting states (composite and noncomposite) and wetting properties (contact angle, contact angle hysteresis and sliding angle) as well as adhesive forces are discussed in detail. Finally, the research prospects in this field are briefly addressed.

  11. Induced superhydrophobic and antimicrobial character of zinc metal modified ceramic wall tile surfaces

    NASA Astrophysics Data System (ADS)

    Özcan, Selçuk; Açıkbaş, Gökhan; Çalış Açıkbaş, Nurcan

    2018-04-01

    Hydrophobic surfaces are also known to have antimicrobial effect by restricting the adherence of microorganisms. However, ceramic products are produced by high temperature processes resulting in a hydrophilic surface. In this study, an industrial ceramic wall tile glaze composition was modified by the inclusion of metallic zinc powder in the glaze suspension applied on the pre-sintered wall tile bodies by spraying. The glazed tiles were gloss fired at industrially applicable peak temperatures ranging from 980 °C to 1100 °C. The fired tile surfaces were coated with a commercial fluoropolymer avoiding water absorption. The surfaces were characterized with SEM, EDS, XRD techniques, roughness, sessile water drop contact angle, surface energy measurements, and standard antimicrobial tests. The surface hydrophobicity and the antimicrobial activity results were compared with that of unmodified, uncoated gloss fired wall tiles. A superhydrophobic contact angle of 150° was achieved at 1000 °C peak temperature due to the formation of micro-structured nanocrystalline zinc oxide granules providing a specific surface topography. At higher peak temperatures the hydrophobicity was lost as the specific granular surface topography deteriorated with the conversion of zinc oxide granules to the ubiquitous willemite crystals embedded in the glassy matrix. The antimicrobial efficacy also correlated with the hydrophobic character.

  12. High Surface Area Dendrite Nanoelectrodes for Electrochemistry

    NASA Astrophysics Data System (ADS)

    Nesbitt, Nathan; Glover, Jennifer; Goyal, Saurabh; Simidjiysky, Svetoslav; Naughton, Michael

    2014-03-01

    Solution-based electrodeposition of metal using a low ion concentration, surface passivation agents, and/or electrochemical crystal conditioning has allowed for the formation of high surface area metal electrodes, useful for Raman spectroscopy and electrochemical sensors. Additionally, high frequency electrical oscillations have been used to electrically connect co-planar electrodes, a process called directed electrochemical nanowire assembly (DENA). These approaches aim to control the crystal face that metal atoms in solution will nucleate onto, thus causing anisotropic growth of metal crystals. However, DENA has not been used to create high surface area electrodes, and no study has been conducted on the effect of micron-scale surface topography on the initial nucleation of metal crystals on the electrode surface. When DENA is used to create a high surface area electrode, such a texture has a strong impact on the subsequent topography of the three dimensional dendritic structures by limiting the areal density of crystals on the electrode surface. Such structures both demonstrate unique physics concerning the nucleation of metal dendrites, and offer a unique and highly facile fabrication method of high surface area electrodes, useful for chemical and biological sensing. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1258923).

  13. Nanoporous Gold as a Neural Interface Coating: Effects of Topography, Surface Chemistry, and Feature Size

    DOE PAGES

    Chapman, Christopher A. R.; Chen, Hao; Stamou, Marianna; ...

    2015-02-23

    We report that designing neural interfaces that maintain close physical coupling of neurons to an electrode surface remains a major challenge for both implantable and in vitro neural recording electrode arrays. Typically, low-impedance nanostructured electrode coatings rely on chemical cues from pharmaceuticals or surface-immobilized peptides to suppress glial scar tissue formation over the electrode surface (astrogliosis), which is an obstacle to reliable neuron–electrode coupling. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising candidate to reduce astrogliosis solely through topography by taking advantage of its tunable length scale. In the present in vitro study on np-Au’s interactionmore » with cortical neuron–glia co-cultures, we demonstrate that the nanostructure of np-Au achieves close physical coupling of neurons by maintaining a high neuron-to-astrocyte surface coverage ratio. Atomic layer deposition-based surface modification was employed to decouple the effect of morphology from surface chemistry. Additionally, length scale effects were systematically studied by controlling the characteristic feature size of np-Au through variations in the dealloying conditions. In conclusion, our results show that np-Au nanotopography, not surface chemistry, reduces astrocyte surface coverage while maintaining high neuronal coverage and may enhance neuron–electrode coupling through nanostructure-mediated suppression of scar tissue formation.« less

  14. CASTp 3.0: computed atlas of surface topography of proteins.

    PubMed

    Tian, Wei; Chen, Chang; Lei, Xue; Zhao, Jieling; Liang, Jie

    2018-06-01

    Geometric and topological properties of protein structures, including surface pockets, interior cavities and cross channels, are of fundamental importance for proteins to carry out their functions. Computed Atlas of Surface Topography of proteins (CASTp) is a web server that provides online services for locating, delineating and measuring these geometric and topological properties of protein structures. It has been widely used since its inception in 2003. In this article, we present the latest version of the web server, CASTp 3.0. CASTp 3.0 continues to provide reliable and comprehensive identifications and quantifications of protein topography. In addition, it now provides: (i) imprints of the negative volumes of pockets, cavities and channels, (ii) topographic features of biological assemblies in the Protein Data Bank, (iii) improved visualization of protein structures and pockets, and (iv) more intuitive structural and annotated information, including information of secondary structure, functional sites, variant sites and other annotations of protein residues. The CASTp 3.0 web server is freely accessible at http://sts.bioe.uic.edu/castp/.

  15. Large-surface-area diamond (111) crystal plates for applications in high-heat-load wavefront-preserving X-ray crystal optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoupin, Stanislav; Antipov, Sergey; Butler, James E.

    Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configurationmore » and data analysis using rocking-curve topography. In conclusion, the variations of the rocking-curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.« less

  16. Large-surface-area diamond (111) crystal plates for applications in high-heat-load wavefront-preserving X-ray crystal optics.

    PubMed

    Stoupin, Stanislav; Antipov, Sergey; Butler, James E; Kolyadin, Alexander V; Katrusha, Andrey

    2016-09-01

    Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configuration and data analysis using rocking-curve topography. The variations of the rocking-curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.

  17. The Information Content of Interferometric Synthetic Aperture Radar: Vegetation and Underlying Surface Topography

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.

    1996-01-01

    This paper first gives a heuristic description of the sensitivity of Interferometric Synthetic Aperture Radar to vertical vegetation distributions and underlying surface topography. A parameter estimation scenario is then described in which the Interferometric Synthetic Aperture Radar cross-correlation amplitude and phase are the observations from which vegetation and surface topographic parameters are estimated. It is shown that, even in the homogeneous-layer model of the vegetation, the number of parameters needed to describe the vegetation and underlying topography exceeds the number of Interferometric Synthetic Aperture Radar observations for single-baseline, single-frequency, single-incidence-angle, single-polarization Interferometric Synthetic Aperture Radar. Using ancillary ground-truth data to compensate for the underdetermination of the parameters, forest depths are estimated from the INSAR data. A recently-analyzed multibaseline data set is also discussed and the potential for stand-alone Interferometric Synthetic Aperture Radar parameter estimation is assessed. The potential of combining the information content of Interferometric Synthetic Aperture Radar with that of infrared/optical remote sensing data is briefly discussed.

  18. The Information Content of Interferometric Synthetic Aperture Radar: Vegetation and Underlying Surface Topography

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.

    1996-01-01

    Drawing from recently submitted work, this paper first gives a heuristic description of the sensitivity of interferometric synthetic aperture radar (INSAR) to vertical vegetation distribution and under laying surface topography. A parameter estimation scenario is then described in which the INSAR cross correlation amplitude and phase are the observations from which vegetation and surface topographic parameters are estimated. It is shown that, even in the homogeneous layer model of the vegetation, the number of parameters needed to describe the vegetation and underlying topography exceeds the number of INSAR observations for single baseline, single frequency, single incidence-angle, single polarization INSAR. Using ancillary ground truth data to compensate for the under determination of the parameters, forest depths are estimated from the INSAR data. A recently analyzed multi-baseline data set is also discussed and the potential for stand alone INSAR parameter estimation is assessed. The potential of combining the information content of INSAR with that of infrared/optical remote sensing data is briefly discussed.

  19. Topography: dusting for the fingerprints of mantle dynamics

    NASA Astrophysics Data System (ADS)

    Faccenna, C.; Becker, T. W.

    2016-12-01

    The surface of the Earth is an ever-changing expression of the dynamic processes occurring deep in the mantle and at and above its surface, but our ability to "read" landscapes in terms of their underlying tectonic or climatic forcing is rudimentary. During the last decade, particular attention has been drawn to the deep, convection-related component of topography, induced by the stress produced at the base of the lithosphere by mantle flow, and its relevance compared to the (iso)static component. Despite much progress, several issues, including the magnitude and rate of this dynamic component, remain open. Here, we use key sites from convergent margins (e.g., the Apennines) and from intraplate settings (e.g., Ethiopia) to estimate the amplitude and rate of topography change and to disentangle the dynamic from the static component. On the base of those and other examples, we introduce the concept of a Topographic Fingerprint: any combination of mantle, crustal and surface processes that will result in a distinctive, thus predictable, topographic expression.

  20. Large-surface-area diamond (111) crystal plates for applications in high-heat-load wavefront-preserving X-ray crystal optics

    DOE PAGES

    Stoupin, Stanislav; Antipov, Sergey; Butler, James E.; ...

    2016-08-10

    Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configurationmore » and data analysis using rocking-curve topography. In conclusion, the variations of the rocking-curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.« less

  1. Dynamic sea surface topography, gravity and improved orbit accuracies from the direct evaluation of SEASAT altimeter data

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Lerch, F.; Koblinsky, C. J.; Klosko, S. M.; Robbins, J. W.; Williamson, R. G.; Patel, G. B.

    1989-01-01

    A method for the simultaneous solution of dynamic ocean topography, gravity and orbits using satellite altimeter data is described. A GEM-T1 based gravitational model called PGS-3337 that incorporates Seasat altimetry, surface gravimetry and satellite tracking data has been determined complete to degree and order 50. The altimeter data is utilized as a dynamic observation of the satellite's height above the sea surface with a degree 10 model of dynamic topography being recovered simultaneously with the orbit parameters, gravity and tidal terms in this model. PGS-3337 has a geoid uncertainty of 60 cm root-mean-square (RMS) globally, with the uncertainty over the altimeter tracked ocean being in the 25 cm range. Doppler determined orbits for Seasat, show large improvements, with the sub-30 cm radial accuracies being achieved. When altimeter data is used in orbit determination, radial orbital accuracies of 20 cm are achieved. The RMS of fit to the altimeter data directly gives 30 cm fits for Seasat when using PGS-3337 and its geoid and dynamic topography model. This performance level is two to three times better than that achieved with earlier Goddard earth models (GEM) using the dynamic topography from long-term oceanographic averages. The recovered dynamic topography reveals the global long wavelength circulation of the oceans with a resolution of 1500 km. The power in the dynamic topography recovery is now found to be closer to that of oceanographic studies than for previous satellite solutions. This is attributed primarily to the improved modeling of the geoid which has occurred. Study of the altimeter residuals reveals regions where tidal models are poor and sea state effects are major limitations.

  2. A Generalized Subsurface Flow Parameterization Considering Subgrid Spatial Variability of Recharge and Topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Maoyi; Liang, Xu; Leung, Lai R.

    2008-12-05

    Subsurface flow is an important hydrologic process and a key component of the water budget, especially in humid regions. In this study, a new subsurface flow formulation is developed that incorporates spatial variability of both topography and recharge. It is shown through theoretical derivation and case studies that the power law and exponential subsurface flow parameterizations and the parameterization proposed by Woods et al.[1997] are all special cases of the new formulation. The subsurface flows calculated using the new formulation compare well with values derived from observations at the Tulpehocken Creek and Walnut Creek watersheds. Sensitivity studies show that whenmore » the spatial variability of topography or recharge, or both is increased, the subsurface flows increase at the two aforementioned sites and the Maimai hillslope. This is likely due to enhancement of interactions between the groundwater table and the land surface that reduce the flow path. An important conclusion of this study is that the spatial variability of recharge alone, and/or in combination with the spatial variability of topography can substantially alter the behaviors of subsurface flows. This suggests that in macroscale hydrologic models or land surface models, subgrid variations of recharge and topography can make significant contributions to the grid mean subsurface flow and must be accounted for in regions with large surface heterogeneity. This is particularly true for regions with humid climate and relatively shallow groundwater table where the combined impacts of spatial variability of recharge and topography are shown to be more important. For regions with arid climate and relatively deep groundwater table, simpler formulations, especially the power law, for subsurface flow can work well, and the impacts of subgrid variations of recharge and topography may be ignored.« less

  3. Relation between skin micro-topography, roughness, and skin age.

    PubMed

    Trojahn, C; Dobos, G; Schario, M; Ludriksone, L; Blume-Peytavi, U; Kottner, J

    2015-02-01

    The topography of the skin surface consists of lines, wrinkles, and scales. Primary and secondary lines form a network like structure that may be identified as polygons. Skin surface roughness measurements are widely applied in dermatological research and practice but the relation between roughness parameters and their anatomical equivalents are unclear. This study aimed to investigate whether the number of closed polygons (NCP) per measurement field can be used as a reliable parameter to measure skin surface topography. For this purpose, we analysed the relation between skin surface roughness parameters and NCP in different age groups. Images of the volar forearm skin of 38 subjects (14 children, 12 younger, and 12 older adults) were obtained with the VisioScan VC98. The NCP was counted by three independent researchers and selected roughness parameters were measured. Interrater reliability of counting the number of closed polygons and correlations between NCP, roughness parameters, and age were calculated. The mean NCP/mm² in children was 3.1 (SD 1.1), in younger adults 1.0 (SD 0.7), and in older adults 1.0 (SD 0.9). The interrater reliability was 0.9. A negative correlation of NCP/mm² with age was observed, whereas measured roughness parameters were positively associated with age. NCP/mm² was weakly related to skin roughness. The NCP/mm² is a reproducible parameter for characterizing the skin surface topography. It is proposed as an additional parameter in dermatological research and practice because it represents distinct aspects of the cutaneous profile not covered by established roughness parameters. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Evaluation of tensile strength and surface topography of orthodontic wires after infection control procedures: An in vitro study

    PubMed Central

    Brindha, M.; Kumaran, N. Kurunji; Rajasigamani, K.

    2014-01-01

    Aim: The aim of this study is to evaluate, the influence of four types of sterilization/disinfection procedures (autoclave, hot air oven, glutaraldehyde, and ultraviolet [UV] light) on the tensile strength and surface topography of three orthodontic wires (stainless steel (SS), titanium - molybdenum alloy [TMA], and cobalt chromium (CoCr)). Materials and Methods: Sample comprised of three types of 8 inches straight length segments of orthodontic wires. They were divided into three groups according to wire composition comprising of 50 samples each. Totally 50 samples of each group were then equally divided into five subgroups according to sterilization method. After sterilization and disinfection of the experimental group, surface topography was examined with scanning electron microscope (SEM) and tensile strength was tested using universal testing machine. Result: The results of this study show that the mean ultimate tensile strength (UTS) of SS wire after four sterilization procedures were similar to the control group (1845.815 ± 142.29 MPa). The mean UTS of TMA wire increases after four sterilization procedures when compared with the control group (874.107 ± 275.939 MPa). The mean UTS of CoCr wire remains same after UV light disinfection, but increases after other three sterilization procedures when compared with the control group (1449.759 ± 156.586 MPa). SEM photographs of the present study shows gross increase in pitting roughness of the surface topography of all the three types of wires after four types of sterilization. Conclusion: Orthodontists who want to offer maximum safety for their patients can sterilize orthodontic wires before placement, as it does not deteriorate the tensile strength and surface roughness of the alloys. PMID:25210383

  5. Evaluation of tensile strength and surface topography of orthodontic wires after infection control procedures: An in vitro study.

    PubMed

    Brindha, M; Kumaran, N Kurunji; Rajasigamani, K

    2014-07-01

    The aim of this study is to evaluate, the influence of four types of sterilization/disinfection procedures (autoclave, hot air oven, glutaraldehyde, and ultraviolet [UV] light) on the tensile strength and surface topography of three orthodontic wires (stainless steel (SS), titanium - molybdenum alloy [TMA], and cobalt chromium (CoCr)). Sample comprised of three types of 8 inches straight length segments of orthodontic wires. They were divided into three groups according to wire composition comprising of 50 samples each. Totally 50 samples of each group were then equally divided into five subgroups according to sterilization method. After sterilization and disinfection of the experimental group, surface topography was examined with scanning electron microscope (SEM) and tensile strength was tested using universal testing machine. The results of this study show that the mean ultimate tensile strength (UTS) of SS wire after four sterilization procedures were similar to the control group (1845.815 ± 142.29 MPa). The mean UTS of TMA wire increases after four sterilization procedures when compared with the control group (874.107 ± 275.939 MPa). The mean UTS of CoCr wire remains same after UV light disinfection, but increases after other three sterilization procedures when compared with the control group (1449.759 ± 156.586 MPa). SEM photographs of the present study shows gross increase in pitting roughness of the surface topography of all the three types of wires after four types of sterilization. Orthodontists who want to offer maximum safety for their patients can sterilize orthodontic wires before placement, as it does not deteriorate the tensile strength and surface roughness of the alloys.

  6. 3-D frequency-domain seismic wave modelling in heterogeneous, anisotropic media using a Gaussian quadrature grid approach

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Greenhalgh, S. A.

    2011-01-01

    We present an extension of the 3-D spectral element method (SEM), called the Gaussian quadrature grid (GQG) approach, to simulate in the frequency-domain seismic waves in 3-D heterogeneous anisotropic media involving a complex free-surface topography and/or sub-surface geometry. It differs from the conventional SEM in two ways. The first is the replacement of the hexahedral element mesh with 3-D Gaussian quadrature abscissae to directly sample the physical properties or model parameters. This gives a point-gridded model which more exactly and easily matches the free-surface topography and/or any sub-surface interfaces. It does not require that the topography be highly smooth, a condition required in the curved finite difference method and the spectral method. The second is the derivation of a complex-valued elastic tensor expression for the perfectly matched layer (PML) model parameters for a general anisotropic medium, whose imaginary parts are determined by the PML formulation rather than having to choose a specific class of viscoelastic material. Furthermore, the new formulation is much simpler than the time-domain-oriented PML implementation. The specified imaginary parts of the density and elastic moduli are valid for arbitrary anisotropic media. We give two numerical solutions in full-space homogeneous, isotropic and anisotropic media, respectively, and compare them with the analytical solutions, as well as show the excellent effectiveness of the PML model parameters. In addition, we perform numerical simulations for 3-D seismic waves in a heterogeneous, anisotropic model incorporating a free-surface ridge topography and validate the results against the 2.5-D modelling solution, and demonstrate the capability of the approach to handle realistic situations.

  7. Modeling surface-water flow and sediment mobility with the Multi-Dimensional Surface-Water Modeling System (MD_SWMS)

    USGS Publications Warehouse

    McDonald, Richard; Nelson, Jonathan; Kinzel, Paul; Conaway, Jeffrey S.

    2006-01-01

    The Multi-Dimensional Surface-Water Modeling System (MD_SWMS) is a Graphical User Interface for surface-water flow and sediment-transport models. The capabilities of MD_SWMS for developing models include: importing raw topography and other ancillary data; building the numerical grid and defining initial and boundary conditions; running simulations; visualizing results; and comparing results with measured data.

  8. Superoleophobic Surfaces through Control of Sprayed-on Stochastic Topography (Pre-Print)

    DTIC Science & Technology

    2012-05-01

    Tuteja, A.; Choi, W.; McKinley, G. H.; Cohen, R. E.; Rubner, M. F., Design Parameters for Superhydrophobicity and Superoleophobicity. MRS Bull. 2008...Surfaces. Langmuir 2010, 26, 4027-4035. 5. Bhushan, B.; Jung, Y. C., Natural and biomimetic artificial surfaces for superhydrophobicity , self-cleaning...Mater. 2009, 21, 2190-2195. 9. Nosonovsky, M.; Bhushan, B., Superhydrophobic surfaces and emerging applications: Non- adhesion, energy, green

  9. Implications of MOLA Global Roughness, Statistics, and Topography

    NASA Technical Reports Server (NTRS)

    Aharonson, O.; Zuber, M. T.; Neumann, G. A.

    1999-01-01

    New insights are emerging as the ongoing high-quality measurements of the Martian surface topography by Mars Orbiter Laser Altimeter (MOLA) on board the Mars Global Surveyor (MGS) spacecraft increase in coverage, resolution, and diversity. For the first time, a global characterization of the statistical properties of topography is possible. The data were collected during the aerobreaking hiatus, science phasing, and mapping orbits of MGS, and have a resolution of 300-400 m along track, a range resolution of 37.5 cm, a range precision of 1-10 m for surface slopes up to 30 deg., and an absolute accuracy of topography of 13 m. The spacecraft's orbit inclination dictates that nadir observations have latitude coverage of about 87.1S to 87.1N; the addition of observations obtained during a period of off-nadir pointing over the north pole extended coverage to 90N. Additional information is contained in the original extended abstract.

  10. Drop-wise and film-wise water condensation processes occurring on metallic micro-scaled surfaces

    NASA Astrophysics Data System (ADS)

    Starostin, Anton; Valtsifer, Viktor; Barkay, Zahava; Legchenkova, Irina; Danchuk, Viktor; Bormashenko, Edward

    2018-06-01

    Water condensation was studied on silanized (superhydrophobic) and fluorinated (superoleophobic) micro-rough aluminum surfaces of the same topography. Condensation on superhydrophobic surfaces occurred via film-wise mechanism, whereas on superoleophobic surfaces it was drop-wise. The difference in the pathways of condensation was attributed to the various energy barriers separating the Cassie and Wenzel wetting states on the investigated surfaces. The higher barriers inherent for superoleophobic surfaces promoted the drop-wise condensation. Triple-stage kinetics of growth of droplets condensed on superoleophobic surfaces is reported and discussed.

  11. Single-pass Airborne InSAR for Wide-swath, High-Resolution Cryospheric Surface Topography Mapping

    NASA Astrophysics Data System (ADS)

    Moller, D.; Hensley, S.; Wu, X.; Muellerschoen, R.

    2014-12-01

    In May 2009 a mm-wave single-pass interferometric synthetic aperture radar (InSAR) for the first time demonstrated ice surface topography swath-mapping in Greenland. This was achieved with the airborne Glacier and Ice Surface Topography Interferometer (GLISTIN-A). Ka-band (35.6GHz) was chosen for high-precision topographic mapping from a compact sensor with minimal surface penetration. In recent years, the system was comprehensively upgraded for improved performance, stability and calibration. In April 2013, after completing the upgrades, GLISTIN-A flew a brief campaign to Alaska. The primary purpose was to demonstrate the InSAR's ability to generate high-precision, high resolution maps of ice surface topography with swaths in excess of 10km. Comparison of GLISTIN-A's elevations over glacial ice with lidar verified the precision requirements and established elevation accuracies to within 2 m without tie points. Feature tracking of crevasses on Columbia Glacier using data acquired with a 3-day separation exhibit an impressive velocity mapping capability. Furthermore, GLISTIN-A flew over the Beaufort sea to determine if we could not only map sea ice, but also measure freeboard. Initial analysis has established we can measure sea-ice freeboard using height differences from the top of the sea-ice and the sea surface in open leads. In the future, a campaign with lidar is desired for a quantitative validation. Another proof-of-concept collection mapped snow-basins for hydrology. Snow depth measurements using summer and winter collections in the Sierras were compared with lidar measurements. Unsurprisingly when present, trees complicate the interpretation, but additional filtering and processing is in work. For each application, knowledge of the interferometric penetration is important for scientific interpretation. We present analytical predictions and experimental data to upper bound the elevation bias of the InSAR measurements over snow and snow-covered ice.

  12. Microwave and plasma-assisted modification of composite fiber surface topography

    DOEpatents

    Paulauskas, Felix L [Knoxville, TN; White, Terry L [Knoxville, TN; Bigelow, Timothy S [Knoxville, TN

    2003-02-04

    The present invention introduces a novel method for producing an undulated surface on composite fibers using plasma technology and microwave radiation. The undulated surface improves the mechanical interlocking of the fibers to composite resins and enhances the mechanical strength and interfacial sheer strength of the composites in which they are introduced.

  13. The effects of surface topography control using liquid crystal elastomers on bodies in flow

    NASA Astrophysics Data System (ADS)

    Settle, Michael; Guin, Tyler; Beblo, Richard; White, Timothy; Reich, Gregory

    2018-03-01

    Surface topography control has use across many applications including delayed separation of flow via selective boundary-layer tripping. Recently, advances with liquid crystal elastomers (LCE) have been leveraged for controlled, repeatable, out-of-plane deformations that could enable these topographical changes. An aligned LCE deforms when heated, associated with a loss in order. Circumferential patterns fabricated through the thickness of the LCE film yield a predictable conical out-of-plane deformation that can control surface topography. This study focuses on the experimental investigation of LCE behavior for flow control. Initially, the deformations of LCE samples 1/2" in diameter and 50 µm thick were characterized using Digital Image Correlation under uniform positive and negative gauge pressures at various temperatures. Surface topography showed strong dependence on boundary conditions, sample dimensions, and pattern location relative to the applied boundary conditions, informing adjustment of the LCE of the chemistry to produce higher modulus and glassy materials. As an initial demonstration of the ability to control flow, Then, to demonstrate the potential for flow control, 3D printed cylinders with varying arrangements of representative topographical features were characterized in a wind tunnel with Particle Image Velocimetry. Results showed that features with a maximum deflection height of 1.5 mm in a two-row arrangement can form an asymmetric wake about a 73 mm diameter cylinder that reduces drag while generating lift. These results inform subsequent investigation of active LCE elements on a cylinder that are currently under examination.

  14. Accurate elevation and normal moveout corrections of seismic reflection data on rugged topography

    USGS Publications Warehouse

    Liu, J.; Xia, J.; Chen, C.; Zhang, G.

    2005-01-01

    The application of the seismic reflection method is often limited in areas of complex terrain. The problem is the incorrect correction of time shifts caused by topography. To apply normal moveout (NMO) correction to reflection data correctly, static corrections are necessary to be applied in advance for the compensation of the time distortions of topography and the time delays from near-surface weathered layers. For environment and engineering investigation, weathered layers are our targets, so that the static correction mainly serves the adjustment of time shifts due to an undulating surface. In practice, seismic reflected raypaths are assumed to be almost vertical through the near-surface layers because they have much lower velocities than layers below. This assumption is acceptable in most cases since it results in little residual error for small elevation changes and small offsets in reflection events. Although static algorithms based on choosing a floating datum related to common midpoint gathers or residual surface-consistent functions are available and effective, errors caused by the assumption of vertical raypaths often generate pseudo-indications of structures. This paper presents the comparison of applying corrections based on the vertical raypaths and bias (non-vertical) raypaths. It also provides an approach of combining elevation and NMO corrections. The advantages of the approach are demonstrated by synthetic and real-world examples of multi-coverage seismic reflection surveys on rough topography. ?? The Royal Society of New Zealand 2005.

  15. Study on internal to surface fingerprint correlation using optical coherence tomography and internal fingerprint extraction

    NASA Astrophysics Data System (ADS)

    Darlow, Luke Nicholas; Connan, James

    2015-11-01

    Surface fingerprint scanners are limited to a two-dimensional representation of the fingerprint topography, and thus, are vulnerable to fingerprint damage, distortion, and counterfeiting. Optical coherence tomography (OCT) scanners are able to image (in three dimensions) the internal structure of the fingertip skin. Techniques for obtaining the internal fingerprint from OCT scans have since been developed. This research presents an internal fingerprint extraction algorithm designed to extract high-quality internal fingerprints from touchless OCT fingertip scans. Furthermore, it serves as a correlation study between surface and internal fingerprints. Provided the scanned region contains sufficient fingerprint information, correlation to the surface topography is shown to be good (74% have true matches). The cross-correlation of internal fingerprints (96% have true matches) is substantial that internal fingerprints can constitute a fingerprint database. The internal fingerprints' performance was also compared to the performance of cropped surface counterparts, to eliminate bias owing to information level present, showing that the internal fingerprints' performance is superior 63.6% of the time.

  16. The nanostructure and microstructure of SiC surface layers deposited by MWCVD and ECRCVD

    NASA Astrophysics Data System (ADS)

    Dul, K.; Jonas, S.; Handke, B.

    2017-12-01

    Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) have been used to investigate ex-situ the surface topography of SiC layers deposited on Si(100) by Microwave Chemical Vapour Deposition (MWCVD) -S1,S2 layers and Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) - layers S3,S4, using silane, methane, and hydrogen. The effects of sample temperature and gas flow on the nanostructure and microstructure have been investigated. The nanostructure was described by three-dimensional surface roughness analysis based on digital image processing, which gives a tool to quantify different aspects of surface features. A total of 13 different numerical parameters used to describe the surface topography were used. The scanning electron image (SEM) of the microstructure of layers S1, S2, and S4 was similar, however, layer S3 was completely different; appearing like grains. Nonetheless, it can be seen that no grain boundary structure is present in the AFM images.

  17. Evaluation of a bioluminescence method, contact angle measurements and topography for testing the cleanability of plastic surfaces under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Redsven, I.; Kymäläinen, H.-R.; Pesonen-Leinonen, E.; Kuisma, R.; Ojala-Paloposki, T.; Hautala, M.; Sjöberg, A.-M.

    2007-04-01

    Detection of adenosine triphosphate (ATP) by bioluminescence is used, for instance, in the food industry and in hospitals to assess the hygiene status of surfaces. The aim of this laboratory study was to investigate the feasibility of the ATP method for estimating the cleanability of resilient floor coverings from biological soil. The surfaces were worn using a Soiling and Wearing Drum Tester, and soiled and cleaned with an Erichsen Washability and Scrubbing Resistance Tester. In the laboratory test carried out with the bioluminescence method, most of the new and worn floor coverings that were biologically soiled were cleaned efficiently. According to this study, the semiquantitative ATP screening method can be used for hygiene monitoring of flooring materials. No correlation was found between cleanability and contact angles or surface topography measured using a profilometer. However, by revealing local irregularities and damage on surfaces, scanning electron micrographs appeared useful in explaining differences in cleanability.

  18. Skylab earth resources experiment package /EREP/ - Sea surface topography experiment

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.; Marsh, J. G.; Mcgoogan, J. T.; Leitao, C. D.; Vincent, S.; Wells, W. T.

    1976-01-01

    The S-193 Skylab radar altimeter was operated in a round-the-world pass on Jan. 31, 1974. The main purpose of this experiment was to test and 'measure' the variation of the sea surface topography using the Goddard Space Flight Center (GSFC) geoid model as a reference. This model is based upon 430,000 satellite and 25,000 ground gravity observations. Variations of the sea surface on the order of -40 to +60 m were observed along this pass. The 'computed' and 'measured' sea surfaces have an rms agreement on the order of 7 m. This is quite satisfactory, considering that this was the first time the sea surface has been observed directly over a distance of nearly 35,000 km and compared to a computed model. The Skylab orbit for this global pass was computed using the Goddard Earth Model (GEM 6) and S-band radar tracking data, resulting in an orbital height uncertainty of better than 5 m over one orbital period.

  19. Influence of the softness of the parietal pleura on respiratory sliding mechanisms

    PubMed Central

    Kim, Jae Hun; Butler, James P.; Loring, Stephen H.

    2011-01-01

    The pleural surfaces of the lung and chest wall slide against each other with low friction. Normal load support can be effected either by a combination of quasi-static fluid pressure and solid-solid contacts of relatively stiff asperities, or by shear-induced hydrodynamic pressures in the pleural fluid layer. To distinguish between these mechanisms, we measured surface topography and spatial distribution of stiffness of rat parietal pleura using atomic force microscopy. The topography of the pleural surface has unevenness at length scales smaller than the thickness of pleural fluid, similar to mesothelial cell diameters. The estimated maximum normal contact pressure that could be borne by asperities of the soft pleura is much less than that required to support a substantial difference between pleural fluid pressure and the pleural surface pressure. These results suggest that during sliding motion, unevenness of the pleural surface is smoothed by local hydrodynamic pressure, preventing any significant contribution of solid-solid contacts. PMID:21473935

  20. Fractal topography and subsurface water flows from fluvial bedforms to the continental shield

    USGS Publications Warehouse

    Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.

    2007-01-01

    Surface-subsurface flow interactions are critical to a wide range of geochemical and ecological processes and to the fate of contaminants in freshwater environments. Fractal scaling relationships have been found in distributions of both land surface topography and solute efflux from watersheds, but the linkage between those observations has not been realized. We show that the fractal nature of the land surface in fluvial and glacial systems produces fractal distributions of recharge, discharge, and associated subsurface flow patterns. Interfacial flux tends to be dominated by small-scale features while the flux through deeper subsurface flow paths tends to be controlled by larger-scale features. This scaling behavior holds at all scales, from small fluvial bedforms (tens of centimeters) to the continental landscape (hundreds of kilometers). The fractal nature of surface-subsurface water fluxes yields a single scale-independent distribution of subsurface water residence times for both near-surface fluvial systems and deeper hydrogeological flows. Copyright 2007 by the American Geophysical Union.

  1. Topographic characterisation of dental implants for commercial use.

    PubMed

    Mendoza-Arnau, A; Vallecillo-Capilla, M-F; Cabrerizo-Vílchez, M-Á; Rosales-Leal, J-I

    2016-09-01

    To characterize the surface topography of several dental implants for commercial use. Dental implants analyzed were Certain (Biomet 3i), Tissue Level (Straumann), Interna (BTI), MG-InHex (MozoGrau), SPI (Alphabio) and Hikelt (Bioner). Surface topography was ascertained using a confocal microscope with white light. Roughness parameters obtained were: Ra, Rq, Rv, Rp, Rt, Rsk and Rku. The results were analysed using single-factor ANOVA and Student-Neuman-Keuls (p<0.05) tests. Certain and Hikelt obtained the highest Ra and Rq scores, followed by Tissue Level. Interna and SPI obtained lower scores, and MG-InHex obtained the lowest score. Rv scores followed the same trend. Certain obtained the highest Rp score, followed by SPI and Hikelt, then Interna and Tissue Level. MG-InHex obtained the lowest scores. Certain obtained the highest Rt score, followed by Interna and Hikelt, then SPI and Tissue Level. The lowest scores were for MG-InHex. Rsk was negative (punctured surface) in the MG-InHex, SPI and Tissue Level systems, and positive (pointed surface) in the other systems. Rku was higher than 3 (Leptokurtic) in Tissue Level, Interna, MG-InHex and SPI, and lower than 3 (Platykurtic) in Certain and Hikelt. The type of implant determines surface topography, and there are differences in the roughness parameters of the various makes of implants for clinical use.

  2. The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat

    NASA Technical Reports Server (NTRS)

    Jorgensen, B. B.; Des Marais, D. J.

    1990-01-01

    Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sediment-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate and well-defined surface structure. Diffusion through the DBL constituted an important rate limitation to the oxygen uptake of the sediment. The mean effective DBL thickness decreased from 0.59 to 0.16 mm as the flow velocity of the overlying water was increased from 0.3 to 7.7 cm s-1 (measured 1 cm above the mat). The oxygen uptake rate concurrently increased from 3.9 to 9.4 nmol cm-2 min-1. The effects of surface roughness and topography on the thickness and distribution of the DBL were studied by three-dimensional mapping of the sediment-water interface and the upper DBL boundary at 0.1-mm spatial resolution. The DBL boundary followed mat structures that had characteristic dimensions > 1/2 DBL thickness but the DBL had a dampened relief relative to the mat. The effective surface area of the sediment-water interface and of the upper DBL boundary were 31 and 14% larger, respectively, than a flat plane. Surface topography thereby increased the oxygen flux across the sediment-water interface by 49% relative to a one-dimensional diffusion flux calculated from the vertical oxygen microgradients.

  3. Dynamic Topography Revisited

    NASA Astrophysics Data System (ADS)

    Moresi, Louis

    2015-04-01

    Dynamic Topography Revisited Dynamic topography is usually considered to be one of the trinity of contributing causes to the Earth's non-hydrostatic topography along with the long-term elastic strength of the lithosphere and isostatic responses to density anomalies within the lithosphere. Dynamic topography, thought of this way, is what is left over when other sources of support have been eliminated. An alternate and explicit definition of dynamic topography is that deflection of the surface which is attributable to creeping viscous flow. The problem with the first definition of dynamic topography is 1) that the lithosphere is almost certainly a visco-elastic / brittle layer with no absolute boundary between flowing and static regions, and 2) the lithosphere is, a thermal / compositional boundary layer in which some buoyancy is attributable to immutable, intrinsic density variations and some is due to thermal anomalies which are coupled to the flow. In each case, it is difficult to draw a sharp line between each contribution to the overall topography. The second definition of dynamic topography does seem cleaner / more precise but it suffers from the problem that it is not measurable in practice. On the other hand, this approach has resulted in a rich literature concerning the analysis of large scale geoid and topography and the relation to buoyancy and mechanical properties of the Earth [e.g. refs 1,2,3] In convection models with viscous, elastic, brittle rheology and compositional buoyancy, however, it is possible to examine how the surface topography (and geoid) are supported and how different ways of interpreting the "observable" fields introduce different biases. This is what we will do. References (a.k.a. homework) [1] Hager, B. H., R. W. Clayton, M. A. Richards, R. P. Comer, and A. M. Dziewonski (1985), Lower mantle heterogeneity, dynamic topography and the geoid, Nature, 313(6003), 541-545, doi:10.1038/313541a0. [2] Parsons, B., and S. Daly (1983), The relationship between surface topography, gravity anomalies, and temperature structure of convection, Journal of Geophysical Research: Solid Earth (1978-2012), 88(B2), 1129-1144, doi:10.1029/JB088iB02p01129. [3] Robinson, E. M., B. Parsons, and S. F. Daly (1987), The effect of a shallow low viscosity zone on the apparent compensation of mid-plate swells, Earth and Planetary Science Letters, 82(3-4), 335-348, doi:10.1016/0012-821X(87)90207-X.

  4. Topography and surface free energy of DPPC layers deposited on a glass, mica, or PMMA support.

    PubMed

    Jurak, Malgorzata; Chibowski, Emil

    2006-08-15

    An investigation of energetic properties of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) layers deposited on glass, mica, and PMMA (poly(methyl methacrylate)) surfaces was carried out by means of contact angles measurements (advancing and receding) for three probe liquids (diiodomethane, water, and formamide). DPPC was deposited on the surfaces from water (on glass and mica) or methanol (on PMMA) solutions. The topography of the tested surfaces was determined with a help of scanning electron microscopy (SEM) and atomic force microscopy (AFM). Using the measured contact angles, the total apparent surface free energy and its components of the studied layers were determined from van Oss et al.'s (Lifshitz-van der Waals and acid-base components, LWAB) and contact angle hysteresis (CAH) approaches. It allowed us to learn about changes in the surface free energy of the layers (hydrophobicity/hydrophilicity) depending on their number and kind of support. It was found that the changes in the energy greatly depended on the surface properties of the substrate as well as the statistical number of monolayers of DPPC. However, principal changes took place for first three monolayers.

  5. A Catchment-Based Approach to Modeling Land Surface Processes in a GCM. Part 1; Model Structure

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Suarez, Max J.; Ducharne, Agnes; Stieglitz, Marc; Kumar, Praveen

    2000-01-01

    A new strategy for modeling the land surface component of the climate system is described. The strategy is motivated by an arguable deficiency in most state-of-the-art land surface models (LSMs), namely the disproportionately higher emphasis given to the formulation of one-dimensional, vertical physics relative to the treatment of horizontal heterogeneity in surface properties -- particularly subgrid soil moisture variability and its effects on runoff generation. The new strategy calls for the partitioning of the continental surface into a mosaic of hydrologic catchments, delineated through analysis of high-resolution surface elevation data. The effective "grid" used for the land surface is therefore not specified by the overlying atmospheric grid. Within each catchment, the variability of soil moisture is related to characteristics of the topography and to three bulk soil moisture variables through a well-established model of catchment processes. This modeled variability allows the partitioning of the catchment into several areas representing distinct hydrological regimes, wherein distinct (regime-specific) evaporation and runoff parameterizations are applied. Care is taken to ensure that the deficiencies of the catchment model in regions of little to moderate topography are minimized.

  6. The Influence of Topography on Subaqueous Sediment Gravity Flows and the Resultant Deposits: Examples from Deep-water Systems in Offshore Morocco and Offshore Trinidad

    NASA Astrophysics Data System (ADS)

    Deng, H.; Wood, L.; Overeem, I.; Hutton, E.

    2016-12-01

    Submarine topography has a fundamental control on the movement of sediment gravity flows as well as the distribution, morphology, and internal heterogeneity of resultant overlying, healing-phase, deep-water reservoirs. Some of the most complex deep-water topography is generated through both destructive and constructive mass transport processes. A series of numerical models using Sedflux software have been constructed over high resolution mass transport complexes (MTCs) top paleobathymetric surfaces mapped from 3D seismic data in offshore Morocco and offshore eastern Trinidad. Morocco's margin is characterized by large, extant rafted blocks and a flow perpendicular fabric. Trinidad's margin is characterized by muddier, plastic flows and isolated extrusive diapiric buttresses. In addition, Morocco's margin is a dry, northern latitude margin that lacks major river inputs, while Trinidad's margin is an equatorial, wet climate that is fed by the Orinoco River and delta. These models quantitatively delineate the interaction of healing-phase gravity flows on the tops of two very different topographies and provide insights into healing-phase reservoir distribution and stratigraphic trap development. Slopes roughness, curvatures, and surface shapes are measured and quantified relative to input points to quantify depositional surface character. A variety of sediment gravity flow types have been input and the resultant interval assessed for thickness and distribution relative to key topography parameters. Mathematical relationships are to be analyzed and compared with seismic data interpretation of healing-phase interval character, toward an improved model of gravity sedimentation and topography interactions.

  7. Interfacial engineering of microstructured materials

    NASA Astrophysics Data System (ADS)

    Poda, Aimee

    The tribological behavior of octadecyltrichlorosilane self assembled monolayers (OTS-SAMs) has been successfully exploited to reduce energy losses and to produce adequate adhesion barrier properties on many MEMS surfaces. Unfortunately, performance discrepancies are reported in the literature between films produced on smooth surfaces as compared to typical MEMS surfaces maintaining topographical roughness. Rational explanations in terms of reproducibility issues, production considerations, and the scale of measurement technique have been introduced to account for some of the variation. The tribological phenomena at the micro-scale are complicated by the fact that rather than inertial effects, the forces associated with the surface become dominant factors influencing the mechanical behavior of contacting components. In MEMS, real mechanical contacts typically consist of a few nanometer scale asperities. Furthermore, various surface topographies exist for MEMS device fabrication and their corresponding asperity profiles can vary drastically based on the production process. This dissertation presents research focusing on the influence of topographical asperities on OTS film properties of relevance for efficient tribological improvement. A fundamental approach has been taken to carefully examine the factors that contribute to high quality film formation, specifically formation temperature and the role of interfacial water layer associated with the sample surface. As evidenced on smooth surfaces, the characteristics for successful tribological performance of OTS films are strongly dependent on the lateral packing density and molecular orientation of the monolayer. Limited information is available on how monolayers associate on topographical asperities and whether these topographical asperities influence the interfacial reactivity of MEMS surfaces. A silica film produced from a low temperature, vapor-phase hydrolysis of tetrachlorosilane with a tunable topography is introduced and leveraged as a novel investigative platform for advanced analytical investigations often restricted to use on smooth surfaces. This tunable surface allows intellectual insight into the nature of surface properties associated with silica surfaces, the uptake of interfacial water and the subsequent influence of surface morphology on OTS film formation. FTIR analysis was utilized for an examination of interfacial properties on both smooth Si(100) surfaces and on the tunable MVD topography in combination with an investigation of OTS film formation mechanism. A dilute etchant technique is developed to provide topographic contrast for AFM imaging to allow direct examination of film packing characteristics in relation to surface asperities. A relationship between monolayer adsorption characteristics and topographical asperities with observed variations in monolayer order resultant from surface roughness has been elucidated. Results show that the packing structure of OTS monolayers is dependent on the local asperity curvature which is qualitatively different from that observed on flat surfaces. In addition, a difference in surface reactivity is observed as a result of different surface topographies with thicker silica layers maintaining a thicker interfacial water layer resulting in a higher coverage of OTS monolayers at similar reaction times and conditions. This work shows changes in surface reactivity as a consequence of different morphological surface characteristics and preparation procedures. Additional research is presented on a new class of SAM, namely octadecylphoshonic acid and its monolayer formation mechanism and properties are compared to conventional OTS monolayers. This monolayer is translated to investigative probes based on Aluminum oxide specifically tailored for a tribological comparison across multi-scale friction regimes.

  8. Bone Response to Surface-Modified Titanium Implants: Studies on the Early Tissue Response to Implants with Different Surface Characteristics

    PubMed Central

    Larsson Wexell, C.; Thomsen, P.; Aronsson, B.-O.; Tengvall, P.; Rodahl, M.; Lausmaa, J.; Kasemo, B.; Ericson, L. E.

    2013-01-01

    In a series of experimental studies, the bone formation around systematically modified titanium implants is analyzed. In the present study, three different surface modifications were prepared and evaluated. Glow-discharge cleaning and oxidizing resulted in a highly stoichiometric TiO2 surface, while a glow-discharge treatment in nitrogen gas resulted in implants with essentially a surface of titanium nitride, covered with a very thin titanium oxide. Finally, hydrogen peroxide treatment of implants resulted in an almost stoichiometric TiO2, rich in hydroxyl groups on the surface. Machined commercially pure titanium implants served as controls. Scanning Auger Electron Spectroscopy, Scanning Electron Microscopy, and Atomic Force Microscopy revealed no significant differences in oxide thickness or surface roughness parameters, but differences in the surface chemical composition and apparent topography were observed. After surface preparation, the implants were inserted in cortical bone of rabbits and evaluated after 1, 3, and 6 weeks. Light microscopic evaluation of the tissue response showed that all implants were in contact with bone and had a large proportion of newly formed bone within the threads after 6 weeks. There were no morphological differences between the four groups. Our study shows that a high degree of bone contact and bone formation can be achieved with titanium implants of different surface composition and topography. PMID:24174936

  9. Control of proliferation and osteogenic differentiation of human dental-pulp-derived stem cells by distinct surface structures.

    PubMed

    Kolind, K; Kraft, D; Bøggild, T; Duch, M; Lovmand, J; Pedersen, F S; Bindslev, D A; Bünger, C E; Foss, M; Besenbacher, F

    2014-02-01

    The ability to control the behavior of stem cells provides crucial benefits, for example, in tissue engineering and toxicity/drug screening, which utilize the stem cell's capacity to engineer new tissues for regenerative purposes and the testing of new drugs in vitro. Recently, surface topography has been shown to influence stem cell differentiation; however, general trends are often difficult to establish due to differences in length scales, surface chemistries and detailed surface topographies. Here we apply a highly versatile screening approach to analyze the interplay of surface topographical parameters on cell attachment, morphology, proliferation and osteogenic differentiation of human mesenchymal dental-pulp-derived stem cells (DPSCs) cultured with and without osteogenic differentiation factors in the medium (ODM). Increasing the inter-pillar gap size from 1 to 6 μm for surfaces with small pillar sizes of 1 and 2 μm resulted in decreased proliferation and in more elongated cells with long pseudopodial protrusions. The same alterations of pillar topography, up to an inter-pillar gap size of 4 μm, also resulted in enhanced mineralization of DPSCs cultured without ODM, while no significant trend was observed for DPSCs cultured with ODM. Generally, cells cultured without ODM had a larger deposition of osteogenic markers on structured surfaces relative to the unstructured surfaces than what was found when culturing with ODM. We conclude that the topographical design of biomaterials can be optimized for the regulation of DPSC differentiation and speculate that the inclusion of ODM alters the ability of the cells to sense surface topographical cues. These results are essential in order to transfer the use of this highly proliferative, easily accessible stem cell into the clinic for use in cell therapy and regenerative medicine. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Exploring new topography-based subgrid spatial structures for improving land surface modeling

    DOE PAGES

    Tesfa, Teklu K.; Leung, Lai-Yung Ruby

    2017-02-22

    Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation,more » slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Altogether the local method and non-geo-located subgrid structures effectively and robustly capture topographic, climatic and vegetation variability, which is important for land surface modeling.« less

  11. Exploring new topography-based subgrid spatial structures for improving land surface modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesfa, Teklu K.; Leung, Lai-Yung Ruby

    Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation,more » slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Altogether the local method and non-geo-located subgrid structures effectively and robustly capture topographic, climatic and vegetation variability, which is important for land surface modeling.« less

  12. A spreading drop model for plumes on Venus

    NASA Astrophysics Data System (ADS)

    Koch, D. M.

    1994-01-01

    Many of the large-scale, plume-related features on Venus can be modeled by a buoyant viscous drop, or plume head, as it rises and spreads laterally below a free fluid surface. The drop has arbitrary density and viscosity contrast and begins as a sphere below the surface of a fluid half space. The boundary integral method is used to solve for the motion of the plume head and for the topography, geoid, and stress at the fluid surface. As the plume approaches the surface, stresses in the fluid above it cause it to spread and become thin below the surface. During the spreading, the surface swell above evolves through various stages whose morphologies resemble several different plume-related features observed on Venus. When the plume head first approaches the surface, a high broad topographic dome develops, with a large geoid, and radial extensional deformation patterns. At later stages, the topography subsides and becomes plateau-like, the geoid to topography ratio (GTR) decreases, and the dominant stress pattern consists of a band of concentric extension surrounded by a band of concentric compression. We find that a low-viscosity model plume head (viscosity that is 0.1 times the mantle viscosity) produces maximum topography that is 20% lower, and swell features which evolve faster, than for an isoviscous plume. We compare model results with both the large-scale highland swells, and smaller-scale features such as coronae and novae. The dome-shaped highlands with large GTRs such as Beta, Atla, and Western Eistla Regiones may be the result of early stage plume motion, while the flatter highlands such as Ovda and Thetis Regiones which have lower GTRs may be later stage features. Comparison of model results with GTR data indicates that the highlands result from plume heads with initial diameters of about 1000 km. On a smaller scale, an evolutionary sequence may begin with novae (domes having radial extensional deformation), followed by features with radial and concentric deformation (such as arachnoids), and end with coronae (with mostly concentric deformation). The model predicts that the highlands evolve on a timescale of order 10 Ma, and the smaller-scale features evolve in a 100 Ma timescale.

  13. EAARL topography-Potato Creek watershed, Georgia, 2010

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Fredericks, Xan; Jones, J.W.; Wright, C.W.; Brock, J.C.; Nagle, D.B.

    2011-01-01

    This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the Potato Creek watershed in the Apalachicola-Chattahoochee-Flint River basin, Georgia. These datasets were acquired on February 27, 2010.

  14. Apparent Brightness and Topography Images of Vibidia Crater

    NASA Image and Video Library

    2012-03-09

    The left-hand image from NASA Dawn spacecraft shows the apparent brightness of asteroid Vesta surface. The right-hand image is based on this apparent brightness image, with a color-coded height representation of the topography overlain onto it.

  15. Topography of Troughs on Vesta

    NASA Image and Video Library

    2011-08-23

    This view of the topography of asteroid Vesta surface is composed of several images obtained with the clear filter in the framing camera on NASA Dawn spacecraft on August 6, 2011. The image has a resolution of about 260 meters per pixel.

  16. NASA's Space Lidar Measurements of Earth and Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Abshire, James B.

    2010-01-01

    A lidar instrument on a spacecraft was first used to measure planetary surface height and topography on the Apollo 15 mission to the Moon in 1971, The lidar was based around a flashlamp-pumped ruby laser, and the Apollo 15-17 missions used them to make a few thousand measurements of lunar surface height from orbit. With the advent of diode pumped lasers in the late 1980s, the lifetime, efficiency, resolution and mass of lasers and space lidar all improved dramatically. These advances were utilized in NASA space missions to map the shape and surface topography of Mars with > 600 million measurements, demonstrate initial space measurements of the Earth's topography, and measured the detailed shape of asteroid. NASA's ICESat mission in Earth orbit just completed its polar ice measurement mission with almost 2 billion measurements of the Earth's surface and atmosphere, and demonstrated measurements to Antarctica and Greenland with a height resolution of a few em. Space missions presently in cruise phase and in operation include those to Mercury and a topographic mapping mission of the Moon. Orbital lidar also have been used in experiments to demonstrate laser ranging over planetary distances, including laser pulse transmission from Earth to Mars orbit. Based on the demonstrated value of the measurements, lidar is now the preferred measurement approach for many new scientific space missions. Some missions planned by NASA include a planetary mission to measure the shape and dynamics of Europa, and several Earth orbiting missions to continue monitoring ice sheet heights, measure vegetation heights, assess atmospheric CO2 concentrations, and to map the Earth surface topographic heights with 5 m spatial resolution. This presentation will give an overview of history, ongoing work, and plans for using space lidar for measurements of the surfaces of the Earth and planets.

  17. Surface topography of two trematodes parasites infecting grey heron Ardea cinerea Jouyi (Aves, Ciconiiformes) in Qena, Egypt.

    PubMed

    Ammar, Khalaf Nour Abd El-Wahed

    2015-04-01

    Apharyngostrigea ardeolina and Echinoparyphium recurvatum are two important digenean parasites that were recovered from small intestine of grey heron with an infection rate (16.2%) and (8.8%) respectively. The surface topography of two species was redescribed by both light and scanning electron microscopy. Using SEM studies showed that the body surface of two trematodes were covered by contact receptors, several types of sensory tegumental papillae which may have useful function in orientation and feeding through increasing the surface area of absorption, could also play a role in sensation or in selection of the materials for ingestion by the fluke. The head collar of E. recurvatum is reniform in shape, bearing uninterrupted double row of 41 collar finger-like spines, a total including 4 end group ones on both ventral corners., tegumental spines were tongue-shaped without a terminal tip.

  18. Enhanced adhesion of osteoblastic cells on polystyrene films by independent control of surface topography and wettability.

    PubMed

    Yang, Seung Yun; Kim, Eung-Sam; Jeon, Gumhye; Choi, Kwan Yong; Kim, Jin Kon

    2013-04-01

    We independently controlled surface topography and wettability of polystyrene (PS) films by CF4 and oxygen plasma treatments, respectively, to evaluate the adhesion and proliferation of human fetal osteoblastic (hFOB) cells on the films. Among the CF4 plasma-treated PS films with the average surface roughness ranging from 0.9 to 70 nm, the highest adhesion of hFOB cells was observed on a PS film with roughness of ~11 nm. When this film was additionally treated by oxygen plasma to provide a hydrophilic surface with a contact angle less than 10°, the proliferation of bone-forming cell was further enhanced. Thus, the plasma-based independent modification of PS film into an optimum nanotexture for human osteoblast cells could be appplied to materials used in bone tissue engineering. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Surface topography acquisition method for double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry.

    PubMed

    Zhang, Tao; Gao, Feng; Jiang, Xiangqian

    2017-10-02

    This paper proposes an approach to measure double-sided near-right-angle structured surfaces based on dual-probe wavelength scanning interferometry (DPWSI). The principle and mathematical model is discussed and the measurement system is calibrated with a combination of standard step-height samples for both probes vertical calibrations and a specially designed calibration artefact for building up the space coordinate relationship of the dual-probe measurement system. The topography of the specially designed artefact is acquired by combining the measurement results with white light scanning interferometer (WLSI) and scanning electron microscope (SEM) for reference. The relative location of the two probes is then determined with 3D registration algorithm. Experimental validation of the approach is provided and the results show that the method is able to measure double-sided near-right-angle structured surfaces with nanometer vertical resolution and micrometer lateral resolution.

  20. Surface analysis of Fe-Co-Mo electrolytic coatings

    NASA Astrophysics Data System (ADS)

    Yar-Mukhamedova, G. Sh; Sakhnenko, N. D.; Ved', M. V.; Yermolenko, I. Yu; Zyubanova, S. I.

    2017-06-01

    Coatings Fe-Co-Mo with a composition of 47 at.% iron, 28 at.% Cobalt and 25 at.% Molybdenum were deposited from citrate electrolyte using pulse electrolysis mode. Scanning electron and atomic force microscopy have established the surface morphology and topography. It was identified the parts with a globular structure which have an average size of 0.2-0.5μm and singly located sharp grains. Within the same scan area sites with developed surface were detected the topography of which is identical to the crystal structure of cobalt with the crystallites size of 0.2-1.75μm. The parameters Ra and Rq for parts with different morphology as well as average characteristics of coatings demonstrated the low roughness of the surface. It is found that the coercive force of Fe-Co-Mo films is 7-10 Oe, which allow us to classify the Fe-Co-Mo coatings as soft magnetic materials.

  1. Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice C.

    2010-01-01

    This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.

  2. Surface Properties of a Nanocrystalline Fe-Ni-Nb-B Alloy After Neutron Irradiation

    NASA Astrophysics Data System (ADS)

    Pavùk, Milan; Sitek, Jozef; Sedlačková, Katarína

    2014-09-01

    The effect of neutron radiation on the surface properties of the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy was studied. Firstly, amorphous (Fe0.25Ni0.75)81Nb7B12 ribbon was brought by controlled annealing to the nanocrystalline state. After annealing, the samples of the nanocrystalline ribbon were irradiated in a nuclear reactor with neutron fluences of 1×1016cm-2 and 1 × 1017cm-2 . By utilizing the magnetic force microscopy (MFM), topography and a magnetic domain structure were recorded at the surface of the ribbon-shaped samples before and after irradiation with neutrons. The results indicate that in terms of surface the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy is radiation-resistant up to a neutron fluence of 1 × 1017cm-2 . The changes in topography observed for both irradiated samples are discussed

  3. A Catchment-Based Approach to Modeling Land Surface Processes in a GCM. Part 2; Parameter Estimation and Model Demonstration

    NASA Technical Reports Server (NTRS)

    Ducharne, Agnes; Koster, Randal D.; Suarez, Max J.; Stieglitz, Marc; Kumar, Praveen

    2000-01-01

    The viability of a new catchment-based land surface model (LSM) developed for use with general circulation models is demonstrated. First, simple empirical functions -- tractable enough for operational use in the LSM -- are established that faithfully capture the control of topography on the subgrid variability of soil moisture and the surface water budget, as predicted by theory. Next, the full LSM is evaluated offline. Using forcing and validation datasets developed for PILPS Phase 2c, the minimally calibrated model is shown to reproduce observed evaporation and runoff fluxes successfully in the Red-Arkansas River Basin. A complementary idealized study that employs the range of topographic variability seen over North America demonstrates that the simulated surface water budget does vary strongly with topography, which can, by itself, induce variations in annual evaporation as high as 20%.

  4. Impact of lithosphere rheology on the dynamic topography

    NASA Astrophysics Data System (ADS)

    Burov, Evgueni; Gerya, Taras; Koptev, Alexander

    2014-05-01

    Dynamic topography is a key observable signature of the Earth's and planetary (e.g. Venus) mantle dynamics. In general view, it reflects complex mantle flow patterns, and hence is supposed to correlate at different extent with seismic tomography, SKS fast orientations, geodetic velocity fields and geoid anomalies. However, identification of dynamic topography had no systematic success, specifically in the Earth's continents. Here we argue that lithosphere rheology, in particular, rheological stratification of continents, results in modulation of dynamic topography, converting commonly expected long-wavelength/small amplitude undulations into short-wavelength surface undulations with wide amplitude spectrum, superimposed onto "tectonic" topography. These ideas are explored in 3D using unprecedentedly high resolution numerical experiments (grid step size 2-3 km for 1500x1500x600 km computational area) incorporating realistic rheologically stratified lithosphere. Such high resolution is actually needed to resolve small-scale crustal faulting and inter-layer coupling/uncoupling that shape surface topography. The results reveal strikingly discordant, counterintuitive features of 3D dynamic topography, going far beyond the inferences from previous models. In particular, even weak anisotropic tectonic stress field results both in large-scale small-amplitude dynamic topography and in strongly anisotropic short-wavelength (at least in one direction) dynamic topography with wide amplitude range (from 100 to 2000-3000 m), including basins and ranges and large-scale linear normal and strike-slip faults. Even very slightly pre-stressed strong lithosphere yields and localizes deformation much easier , than un-prestressed one, in response to plume impact and mantle flow. The results shed new light on the importance of lithosphere rheology and active role of lithosphere in mantle-lithosphere interactions as well as on the role of mantle flow and far-field stresses in tectonic-scale deformation. We show, for example, that crustal fault patterns initiated by plume impact are rapidly re-organized in sub-linear rifts and spreading centers, which orientation is largely dictated (e.g., perpendicular to) by the direction of the tectonic far-field stress field, as well as the plume-head material soon starts to flow along the sub-linear rifted shear zones in crustal and mantle lithosphere further amplifying their development. The final surface deformation and mantle flow patterns rapidly loose the initial axisymmetric character and take elongated sub-linear shapes whereas brittle deformation at surface is amplified and stabilized by coherent flow of mantle/plume-head material from below. These "tectonically" looking dynamic topography patterns are quite different from those expected from conventional models as well as from those directly observed, for example, on Venus where plume-lithosphere interactions produce only axisymmetric coronae domal-shaped features with radiating extensional rifts, suggesting that the Venusian lithosphere is rheologically too weak , and its crust is too thin, to produce any significant impact on the dynamic topography.

  5. Eocene to mid-Pliocene landscape evolution in Scandinavia inferred from offshore sediment volumes and pre-glacial topography using inverse modelling

    NASA Astrophysics Data System (ADS)

    Pedersen, Vivi K.; Braun, Jean; Huismans, Ritske S.

    2018-02-01

    The origin of high topography in Scandinavia is highly debated, both in terms of its age and the underlying mechanism for its formation. Traditionally, the current high topography is assumed to have formed by several Cenozoic (mainly Neogene) phases of surface uplift and dissection of an old peneplain surface. These same surface uplift events are suggested to explain the increased deposition observed in adjacent offshore basins on the Norwegian shelf and in the North Sea. However, more recently it has been suggested that erosion and isostatic rock uplift of existing topography may also explain the recent evolution of topography in Scandinavia. For this latter view, the increased sedimentation towards the present is assumed to be a consequence of a climate related increase in erosion. In this study we explore whether inverse modelling of landscape evolution can give new insight into Eocene to mid-Pliocene (54-4 Ma) landscape evolution in the Scandinavian region. We do this by combining a highly efficient forward-in-time landscape evolution model (FastScape) with an optimization scheme suitable for non-linear inverse problems (the neighbourhood algorithm - NA). To limit our approach to the fluvial regime, we exclude the most recent mid-Pliocene-Quaternary time period where glacial erosion processes are expected to dominate landscape evolution. The "goodness" of our landscape evolution models is evaluated using i) sediment fluxes based on decompacted offshore sediment volumes and ii) maximum pre-glacial topography from a mid-Pliocene landscape, reconstructed using geophysical relief and offshore sediment volumes from the mid-Pliocene-Quaternary. We find several tested scenarios consistent with the offshore sediment record and the maximum elevation for our reconstructed pre-glacial (mid-Pliocene) landscape reconstruction, including: I) substantial initial topography ( 2 km) at 54 Ma and no induced tectonic rock uplift, II) the combination of some initial topography ( 1.1 km) at 54 Ma and minor continued rock uplift (< 0.04 mm/yr) until 4 Ma, and III) a two-phased tectonic rock uplift of an initially low topography ( 0.1 km). However, out of these, only scenario I (no tectonic rock uplift) matches large-scale characteristics of our reconstructed pre-glacial (mid-Pliocene) topography well. Our preferred model for Eocene to mid-Pliocene landscape evolution in Scandinavia is therefore one where high topography ( 2 km) has existed throughout the time interval from 54 to 4 Ma. We do not find several phases of peneplain surface uplift necessary to explain offshore sediment volumes and large-scale topographic patterns. On the contrary, extensive peneplain dissection seems inconsistent with the low rates of erosion we infer based on the offshore sediment volumes.

  6. Morphological Properties of Siloxane-Hydrogel Contact Lens Surfaces.

    PubMed

    Stach, Sebastian; Ţălu, Ştefan; Trabattoni, Silvia; Tavazzi, Silvia; Głuchaczka, Alicja; Siek, Patrycja; Zając, Joanna; Giovanzana, Stefano

    2017-04-01

    The aim of this study was to quantitatively characterize the micromorphology of contact lens (CL) surfaces using atomic force microscopy (AFM) and multifractal analysis. AFM and multifractal analysis were used to characterize the topography of new and worn siloxane-hydrogel CLs made of Filcon V (I FDA group). CL surface roughness was studied by AFM in intermittent-contact mode, in air, on square areas of 25 and 100 μm 2 , by using a Nanoscope V MultiMode (Bruker). Detailed surface characterization of the surface topography was obtained using statistical parameters of 3-D (three-dimensional) surface roughness, in accordance with ISO 25178-2: 2012. Before wear, the surface was found to be characterized by out-of-plane and sharp structures, whilst after a wear of 8 h, two typical morphologies were observed. One morphology (sharp type) has a similar aspect as the unworn CLs and the other morphology (smooth type) is characterized by troughs and bumpy structures. The analysis of the AFM images revealed a multifractal geometry. The generalized dimension D q and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of CL surface geometry at nanometer scale. Surface statistical parameters deduced by multifractal analysis can be used to assess the CL micromorphology and can be used by manufacturers in developing CLs with improved surface characteristics. These parameters can also be used in understanding the tribological interactions of the back surface of the CL with the corneal surface and the front surface of the CL with the under-surface of the eyelid (friction, wear, and micro-elastohydrodynamic lubrication at a nanometer scale).

  7. A framework for modeling connections between hydraulics, water surface roughness, and surface reflectance in open channel flows

    USGS Publications Warehouse

    Legleiter, Carl; Mobley, Curtis D.; Overstreet, Brandon

    2017-01-01

    This paper introduces a framework for examining connections between the flow field, the texture of the air-water interface, and the reflectance of the water surface and thus evaluating the potential to infer hydraulic information from remotely sensed observations of surface reflectance. We used a spatial correlation model describing water surface topography to illustrate the application of our framework. Nondimensional relations between model parameters and flow intensity were established based on a prior flume study. Expressing the model in the spatial frequency domain allowed us to use an efficient Fourier transform-based algorithm for simulating water surfaces. Realizations for both flume and field settings had water surface slope distributions positively correlated with velocity and water surface roughness. However, most surface facets were gently sloped and thus unlikely to yield strong specular reflections; the model exaggerated the extent of water surface features, leading to underestimation of facet slopes. A ray tracing algorithm indicated that reflectance was greatest when solar and view zenith angles were equal and the sensor scanned toward the Sun to capture specular reflections of the solar beam. Reflected energy was concentrated in a small portion of the sky, but rougher water surfaces reflected rays into a broader range of directions. Our framework facilitates flight planning to avoid surface-reflected radiance while mapping other river attributes, or to maximize this component to exploit relationships between hydraulics and surface reflectance. This initial analysis also highlighted the need for improved models of water surface topography in natural rivers.

  8. Geometric and radiometric preprocessing of airborne visible/infrared imaging spectrometer (AVIRIS) data in rugged terrain for quantitative data analysis

    NASA Technical Reports Server (NTRS)

    Meyer, Peter; Green, Robert O.; Staenz, Karl; Itten, Klaus I.

    1994-01-01

    A geocoding procedure for remotely sensed data of airborne systems in rugged terrain is affected by several factors: buffeting of the aircraft by turbulence, variations in ground speed, changes in altitude, attitude variations, and surface topography. The current investigation was carried out with an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene of central Switzerland (Rigi) from NASA's Multi Aircraft Campaign (MAC) in Europe (1991). The parametric approach reconstructs for every pixel the observation geometry based on the flight line, aircraft attitude, and surface topography. To utilize the data for analysis of materials on the surface, the AVIRIS data are corrected to apparent reflectance using algorithms based on MODTRAN (moderate resolution transfer code).

  9. MGS Mars Orbiter Laser (MOLA) Surface Topography of Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A 'picket fence' rendition of surface topography in the northern hemisphere of Mars from the Mars Orbiter Laser Altimeter (MOLA). The profile was obtained during the Mars Global Surveyor Capture Orbit Calibration Pass on September 15, 1997. The profile runs from 73oN to 10oS latitude and passes through the topographically subdued northern plains, the western part of the Elysium volcanic province, which shows 3 miles (5 kilometers) of relief, and the chaotic 'dichotomy' boundary between the northern plains and ancient southern highlands. The MOLA profile is approximately 3000 miles (5000 kilometers) long and has a resolution on the surface of 1000 feet (330 meters) and a vertical resolution of approximately 3 feet (1 meter).

  10. Surface topography and crystal and domain structures of films of ferroelectric copolymer of vinylidene difluoride and trifluoroethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochervinskii, V. V., E-mail: kochval@mail.ru; Kiselev, D. A.; Malinkovich, M. D.

    2017-03-15

    The crystallization of a copolymer from a solution at room temperature is found to lead to the formation of a metastable structure, characterized by the coexistence of ferroelectric and paraelectric phases. The fraction of the latter decreases after annealing above the Curie point. Atomic force microscopy (AFM) has revealed a difference in the surface topographies between the films contacting with air and the films contacting with a glass substrate. The microstructure of copolymer chains has been investigated by {sup 19}F NMR spectroscopy. The chain fragments with “defect” attached monomeric units are ejected to the surface. The character of the ferroelectricmore » domains formed during crystallization and their size distribution are analyzed.« less

  11. Improved High Resolution Models of Subduction Dynamics: Use of transversely isotropic viscosity with a free-surface

    NASA Astrophysics Data System (ADS)

    Liu, X.; Gurnis, M.; Stadler, G.; Rudi, J.; Ratnaswamy, V.; Ghattas, O.

    2017-12-01

    Dynamic topography, or uncompensated topography, is controlled by internal dynamics, and provide constraints on the buoyancy structure and rheological parameters in the mantle. Compared with other surface manifestations such as the geoid, dynamic topography is very sensitive to shallower and more regional mantle structure. For example, the significant dynamic topography above the subduction zone potentially provides a rich mine for inferring the rheological and mechanical properties such as plate coupling, flow, and lateral viscosity variations, all critical in plate tectonics. However, employing subduction zone topography in the inversion study requires that we have a better understanding of the topography from forward models, especially the influence of the viscosity formulation, numerical resolution, and other factors. One common approach to formulating a fault between the subducted slab and the overriding plates in viscous flow models assumes a thin weak zone. However, due to the large lateral variation in viscosity, topography from free-slip numerical models typically has artificially large magnitude as well as high-frequency undulations over subduction zone, which adds to the difficulty in making comparisons between model results and observations. In this study, we formulate a weak zone with the transversely isotropic viscosity (TI) where the tangential viscosity is much smaller than the viscosity in the normal direction. Similar with isotropic weak zone models, TI models effectively decouple subducted slabs from the overriding plates. However, we find that the topography in TI models is largely reduced compared with that in weak zone models assuming an isotropic viscosity. Moreover, the artificial `tooth paste' squeezing effect observed in isotropic weak zone models vanishes in TI models, although the difference becomes less significant when the dip angle is small. We also implement a free-surface condition in our numerical models, which has a smoothing effect on the topography. With the improved model configuration, we can use the adjoint inversion method in a high-resolution model and employ topography in addition to other observables such as the plate motion to infer critical mechanical and rheological parameters in the subduction zone.

  12. Variable-focus microscopy and UV surface dissolution imaging as complementary techniques in intrinsic dissolution rate determination.

    PubMed

    Ward, Adam; Walton, Karl; Box, Karl; Østergaard, Jesper; Gillie, Lisa J; Conway, Barbara R; Asare-Addo, Kofi

    2017-09-15

    This work reports a novel approach to the assessment of the surface properties of compacts used in Surface Dissolution Imaging (SDI). SDI is useful for determining intrinsic dissolution rate (IDR), an important parameter in early stage drug development. Surface topography, post-compaction and post-SDI run, have been measured using a non-contact, optical, three-dimensional microscope based on focus variation, the Alicona Infinite Focus Microscope, with the aim of correlating the IDRs to the surface properties. Ibuprofen (IBU) was used as a model poorly-soluble drug. DSC and XRD were used to monitor possible polymorphic changes that may have occurred post-compaction and post-SDI run. IBUs IDR decreased from 0.033mg/min/cm 2 to 0.022mg/min/cm 2 from 10 to 20min, respectively, during the experiment. XRD and DSC showed no form changes during the SDI run. The surface topography images showed that a distinct imprint was embossed on the surfaces of some compacts which could affect IDRs. Surface parameter values were associated with the SDI experiments which showed strong correlations with the IDR values. The variable-focus microscope can be used as a complimentary tool in the determination of IDR values from the SDI. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. Artificial Niches for Stromal Stem Cells as a Potential Instrument for the Design of the Surface of Biomimetic Osteogenic Materials

    NASA Astrophysics Data System (ADS)

    Khlusov, I. A.; Khlusova, M. Yu.; Pichugin, V. F.; Sharkeev, Yu. P.; Legostaeva, E. V.

    2014-02-01

    A relationship between the topography of rough calcium phosphate surfaces having osteogenic niche-reliefs and the electrostatic potential of these surfaces as a possible instrument to control stromal stem cells has been investigated. The in vitro culture of human lung prenatal stromal cells on nanostructured/ultrafine-grained VT1.0 titanium alloy plates with bilateral rough calcium phosphate (CaP) microarc coating was used. It was established that the amplitude of the electret CaP surface potential linearly increased with increasing area of valleys (sockets), and the negative charge is formed on the socket surface. The area of alkaline phosphatase staining (the marker of osteoblast maturation and differentiation) of adherent CD34- CD44+ cells increases linearly with increasing area of artificial microterritory (socket) of the CaP surface occupied with each cell. The negative electret potential in valleys (sockets) of microarc CaP coatings can be the physical mechanism mediating the influence of the surface topography on osteogenic maturation and differentiation of cells in vitro. This mechanism can be called "niche-potential" and can be used as an instrument for biomimetic modification of smooth CaP surfaces to strengthen their integration with the bone tissue.

  14. Bone bonding at natural and biomaterial surfaces.

    PubMed

    Davies, John E

    2007-12-01

    Bone bonding is occurring in each of us and all other terrestrial vertebrates throughout life at bony remodeling sites. The surface created by the bone-resorbing osteoclast provides a three-dimensionally complex surface with which the cement line, the first matrix elaborated during de novo bone formation, interdigitates and is interlocked. The structure and composition of this interfacial bony matrix has been conserved during evolution across species; and we have known for over a decade that this interfacial matrix can be recapitulated at a biomaterial surface implanted in bone, given appropriate healing conditions. No evidence has emerged to suggest that bone bonding to artificial materials is any different from this natural biological process. Given this understanding it is now possible to explain why bone-bonding biomaterials are not restricted to the calcium-phosphate-based bioactive materials as was once thought. Indeed, in the absence of surface porosity, calcium phosphate biomaterials are not bone bonding. On the contrary, non-bonding materials can be rendered bone bonding by modifying their surface topography. This paper argues that the driving force for bone bonding is bone formation by contact osteogenesis, but that this has to occur on a sufficiently stable recipient surface which has micron-scale surface topography with undercuts in the sub-micron scale-range.

  15. Surface quality and topographic inspection of variable compliance part after precise turning

    NASA Astrophysics Data System (ADS)

    Nieslony, P.; Krolczyk, G. M.; Wojciechowski, S.; Chudy, R.; Zak, K.; Maruda, R. W.

    2018-03-01

    The paper presents the problem of precise turning of the mould parts with variable compliance and demonstrates a topographic inspection of the machined surface quality. The study was conducted for the cutting tools made of cemented carbide with coatings, in a range of variable cutting parameters. The long shaft with special axial hole, made of hardened 55NiCrMoV6 steel was selected as a workpiece. The carried out study included the stiffness measurement of the machining system, as well as the investigation of cutting force components. In this context, the surface topography parameters were evaluated using the stylus profile meter and analysed. The research revealed that the surface topography, alongside the 3D functional parameters, and PSD influences the performance of the machined surface. The lowest surface roughness parameters values, equalled to Sa = 1 μm and Sz = 4.3 μm have been obtained during turning with cutting speed vc = 90 m/min. The stable turning of variable compliance part affects the surface texture formation with a unidirectional perpendicular, anisotropic structure. Nevertheless, in case of unstable turning, the characteristic chatter marks are observed, and process dynamics has greater contribution in formation of surface finish than turning kinematics and elastic plastic deformation of workpiece.

  16. Biodegradable polyester-based microcarriers with modified surface tailored for tissue engineering.

    PubMed

    Privalova, A; Markvicheva, E; Sevrin, Ch; Drozdova, M; Kottgen, C; Gilbert, B; Ortiz, M; Grandfils, Ch

    2015-03-01

    Microcarriers have been proposed in tissue engineering, namely for bone, cartilage, skin, vascular, and central nervous system. Although polyester-based microcarriers have been already used for this purpose, their surface properties should be improved to provide better cell growth. The goal of this study was to prepare microbeads based on poly(D,L-lactide) acid, poly(L-lactide) acid, and to study cell behavior (adhesion, spreading, growth, and proliferation) in function of microbead topography and surface chemistry. To improve L-929 fibroblasts adhesion, microbead surface has been modified with three polycations: chitosan, poly(2-dimethylamino ethylmethacrylate) (PDMAEMA), or chitosan-g-oligolactide copolymer (chit-g-OLA). Although modification of the microbead surface with chitosan and PDMAEMA was performed through physical adsorption on the previously prepared microbeads, chit-g-OLA copolymer was introduced directly during microbead processing. This simple approach (1) bypass the use of an emulsifier (polyvinyl alcohol, PVA); (2) avoid surface "contamination" with PVA molecules limiting a control of the surface characteristics. In vitro study of the growth of mouse fibroblasts on the microbeads showed that both surface topography and chemistry affected cell attachment, spreading, and proliferation. Cultivation of L-929 fibroblasts for 7 days resulted in the formation of a 3D cell-scaffold network. © 2014 Wiley Periodicals, Inc.

  17. A three dimensional scaffold with precise micro-architecture and surface micro-textures

    PubMed Central

    Mata, Alvaro; Kim, Eun Jung; Boehm, Cynthia A.; Fleischman, Aaron J.; Muschler, George F.; Roy, Shuvo

    2013-01-01

    A three-dimensional (3D) structure comprising precisely defined microarchitecture and surface micro-textures, designed to present specific physical cues to cells and tissues, may provide an efficient scaffold in a variety of tissue engineering and regenerative medicine applications. We report a fabrication technique based on microfabrication and soft lithography that permits for the development of 3D scaffolds with both precisely engineered architecture and tailored surface topography. The scaffold fabrication technique consists of three key steps starting with microfabrication of a mold using an epoxy-based photoresist (SU-8), followed by dual-sided molding of a single layer of polydimethylsiloxane (PDMS) using a mechanical jig for precise motion control; and finally, alignment, stacking, and adhesion of multiple PDMS layers to achieve a 3D structure. This technique was used to produce 3D Texture and 3D Smooth PDMS scaffolds, where the surface topography comprised 10 μm-diameter/height posts and smooth surfaces, respectively. The potential utility of the 3D microfabricated scaffolds, and the role of surface topography, were subsequently investigated in vitro with a combined heterogeneous population of adult human stem cells and their resultant progenitor cells, collectively termed connective tissue progenitors (CTPs), under conditions promoting the osteoblastic phenotype. Examination of bone-marrow derived CTPs cultured on the 3D Texture scaffold for 9 days revealed cell growth in three dimensions and increased cell numbers compared to those on the 3D Smooth scaffold. Furthermore, expression of alkaline phosphatase mRNA was higher on the 3D Texture scaffold, while osteocalcin mRNA expression was comparable for both types of scaffolds. PMID:19524292

  18. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features.

    PubMed

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu; He, Hua; Rao, Hanbing

    2015-01-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer-Emmett-Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g(-1), respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Simulated BRDF based on measured surface topography of metal

    NASA Astrophysics Data System (ADS)

    Yang, Haiyue; Haist, Tobias; Gronle, Marc; Osten, Wolfgang

    2017-06-01

    The radiative reflective properties of a calibration standard rough surface were simulated by ray tracing and the Finite-difference time-domain (FDTD) method. The simulation results have been used to compute the reflectance distribution functions (BRDF) of metal surfaces and have been compared with experimental measurements. The experimental and simulated results are in good agreement.

  20. Impact of lithospheric rheology on surface topography

    NASA Astrophysics Data System (ADS)

    Liao, K.; Becker, T. W.

    2017-12-01

    The expression of mantle flow such as due to a buoyant plume as surface topography is a classical problem, yet the role of rheological complexities could benefit from further exploration. Here, we investigate the topographic expressions of mantle flow by means of numerical and analytical approaches. In numerical modeling, both conventional, free-slip and more realistic, stress-free boundary conditions are applied. For purely viscous rheology, a high viscosity lithosphere will lead to slight overestimates of topography for certain settings, which can be understood by effectively modified boundary conditions. Under stress-free conditions, numerical and analytical results show that the magnitude of dynamic topography decreases with increasing lithosphere thickness (L) and viscosity (ηL), as L-1 and ηL-3. The wavelength of dynamic topography increases linearly with L and (ηL/ ηM) 1/3. We also explore the time-dependent interactions of a rising plume with the lithosphere. For a layered lithosphere with a decoupling weak lower crust embedded between stronger upper crust and lithospheric mantle, dynamic topography increases with a thinner and weaker lower crust. The dynamic topography saturates when the decoupling viscosity is 3-4 orders lower than the viscosity of upper crust and lithospheric mantle. We further explore the role of visco-elastic and visco-elasto-plastic rheologies.

  1. EAARL coastal topography-Assategue Island National Seashore, Maryland and Virginia, 2010

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Wright, C.W.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Klipp, E.S.; Fredericks, Xan; Stevens, Sara

    2011-01-01

    This DVD contains lidar-derived bare-earth (BE) and first-surface (FS) topography GIS datasets of a portion of the Assateague Island National Seashore in Maryland and Virginia. These datasets were acquired on March 19 and 24, 2010.

  2. EAARL topography-Three Mile Creek and Mobile-Tensaw Delta, Alabama, 2010

    USGS Publications Warehouse

    Nayegandhi, Amar; Bonisteel-Cormier, J.M.; Clark, A.P.; Wright, C.W.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Fredericks, Xan

    2011-01-01

    This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the Mobile-Tensaw Delta region and Three Mile Creek in Alabama. These datasets were acquired on March 6, 2010.

  3. Topography and Roughness Signatures of Erosion of Crusted Soils on Mars

    NASA Astrophysics Data System (ADS)

    Cooper, C. D.; Mustard, J. F.

    1999-03-01

    MOLA slope and roughness data shed light on the erosion of regional duricrust and suggest it follows preexisting topography. This implies that cementation of the duricrust was likely due to atmosphere-surface interactions or in situ alteration.

  4. Topography reconstruction of specular surfaces

    NASA Astrophysics Data System (ADS)

    Kammel, Soren; Horbach, Jan

    2005-01-01

    Specular surfaces are used in a wide variety of industrial and consumer products like varnished or chrome plated parts of car bodies, dies, molds or optical components. Shape deviations of these products usually reduce their quality regarding visual appearance and/or technical performance. One reliable method to inspect such surfaces is deflectometry. It can be employed to obtain highly accurate values representing the local curvature of the surfaces. In a deflectometric measuring system, a series of illumination patterns is reflected at the specular surface and is observed by a camera. The distortions of the patterns in the acquired images contain information about the shape of the surface. This information is suited for the detection and measurement of surface defects like bumps, dents and waviness with depths in the range of a few microns. However, without additional information about the distances between the camera and each observed surface point, a shape reconstruction is only possible in some special cases. Therefore, the reconstruction approach described in this paper uses data observed from at least two different camera positions. The data obtained is used separately to estimate the local surface curvature for each camera position. From the curvature values, the epipolar geometry for the different camera positions is recovered. Matching the curvature values along the epipolar lines yields an estimate of the 3d position of the corresponding surface points. With this additional information, the deflectometric gradient data can be integrated to represent the surface topography.

  5. The Europa Lander Mission Concept and Science Goals — Highlighting Ice Properties and Surface Activity

    NASA Astrophysics Data System (ADS)

    Hand, K. P.; Murray, A. E.; Garvin, J.; Horst, S.; Brinckerhoff, W.; Edgett, K.; Hoehler, T.; Russell, M.; Rhoden, A.; Yingst, R. A.; German, C.; Schmidt, B.; Paranicas, C.; Smith, D.; Willis, P.; Hayes, A.; Ehlmann, B.; Lunine, J.; Templeton, A.; Nealson, K.; Christner, B.; Cable, M.; Craft, K.; Pappalardo, R.; Hofmann, A.; Nordheim, T.; Phillips, C.

    2018-06-01

    The Europa Lander mission concept would address key questions regarding ice properties and surface activity, including characterizing any plume deposits, understanding local topography, searching for evidence of interactions with liquid water.

  6. Laser polishing for topography management of accelerator cavity surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Liang; Klopf, J. Mike; Reece, Charles E.

    2015-07-20

    Improved energy efficiency and reduced cost are greatly desired for advanced particle accelerators. Progress toward both can be made by atomically-smoothing the interior surface of the niobium superconducting radiofrequency accelerator cavities at the machine's heart. Laser polishing offers a green alternative to the present aggressive chemical processes. We found parameters suitable for polishing niobium in all surface states expected for cavity production. As a result, careful measurement of the resulting surface chemistry revealed a modest thinning of the surface oxide layer, but no contamination.

  7. Corneal modeling for analysis of photorefractive keratectomy

    NASA Astrophysics Data System (ADS)

    Della Vecchia, Michael A.; Lamkin-Kennard, Kathleen

    1997-05-01

    Procedurally, excimer photorefractive keratectomy is based on the refractive correction of composite spherical and cylindrical ophthalmic errors of the entire eye. These refractive errors are inputted for correction at the corneal plane and for the properly controlled duration and location of laser energy. Topography is usually taken to correspondingly monitor spherical and cylindrical corneorefractive errors. While a corneal topographer provides surface morphologic information, the keratorefractive photoablation is based on the patient's spherical and cylindrical spectacle correction. Topography is at present not directly part of the procedural deterministic parameters. Examination of how corneal curvature at each of the keratometric reference loci affect the shape of the resultant corneal photoablated surface may enhance the accuracy of the desired correction. The objective of this study was to develop a methodology to utilize corneal topography for construction of models depicting pre- and post-operative keratomorphology for analysis of photorefractive keratectomy. Multiple types of models were developed then recreated in optical design software for examination of focal lengths and other optical characteristics. The corneal models were developed using data extracted from the TMS I corneal modeling system (Computed Anatomy, New York, NY). The TMS I does not allow for manipulation of data or differentiation of pre- and post-operative surfaces within its platform, thus models needed to be created for analysis. The data were imported into Matlab where 3D models, surface meshes, and contour plots were created. The data used to generate the models were pre- and post-operative curvatures, heights from the corneal apes, and x-y positions at 6400 locations on the corneal surface. Outlying non-contributory points were eliminated through statistical operations. Pre- and post- operative models were analyzed to obtain the resultant changes in the corneal surfaces during PRK. A sensitivity analysis of the corneal topography system was also performed. Ray tracings were performed using the height data and the optical design software Zemax (Focus Software, Inc., Tucson, AZ). Examining pre- and post-operative values of corneal surfaces may further the understanding of how areas of the cornea contribute toward desired visual correction. Gross resultant power across the corneal surface is used in PRK, however, understanding the contribution of each point to the average power may have important implications and prove to be significant for achieving projected surgical results.

  8. The role of angiogenesis in implant dentistry part I: Review of titanium alloys, surface characteristics and treatments.

    PubMed

    Saghiri, M-A; Asatourian, A; Garcia-Godoy, F; Sheibani, N

    2016-07-01

    Angiogenesis plays an important role in osseointegration process by contributing to inflammatory and regenerative phases of surrounding alveolar bone. The present review evaluated the effect of titanium alloys and their surface characteristics including: surface topography (macro, micro, and nano), surface wettability/energy, surface hydrophilicity or hydrophobicity, surface charge, and surface treatments of dental implants on angiogenesis events, which occur during osseointegration period. An electronic search was performed in PubMed, MEDLINE, and EMBASE databases via OVID using the keywords mentioned in the PubMed and MeSH headings regarding the role of angiogenesis in implant dentistry from January 2000-April 2014. Of the 2,691 articles identified in our initial search results, only 30 met the inclusion criteria set for this review. The hydrophilicity and topography of dental implants are the most important and effective surface characteristics in angiogenesis and osteogenesis processes. The surface treatments or modifications of dental implants are mainly directed through the enhancement of biological activity and functionalization in order to promote osteogenesis and angiogenesis, and accelerate the osseointegration procedure. Angiogenesis is of great importance in implant dentistry in a manner that most of the surface characteristics and treatments of dental implants are directed toward creating a more pro-angiogenic surface on dental implants. A number of studies discussed the effect of titanium alloys, dental implant surface characteristic and treatments on agiogenesis process. However, clinical trials and in-vivo studies delineating the mechanisms of dental implants, and their surface characteristics or treatments, action in angiogenesis processes are lagging.

  9. Comparative of fibroblast and osteoblast cells adhesion on surface modified nanofibrous substrates based on polycaprolactone.

    PubMed

    Sharifi, Fereshteh; Irani, Shiva; Zandi, Mojgan; Soleimani, Masoud; Atyabi, Seyed Mohammad

    2016-12-01

    One of the determinant factors for successful bioengineering is to achieve appropriate nano-topography and three-dimensional substrate. In this research, polycaprolactone (PCL) nano-fibrous mat with different roughness modified with O 2 plasma was fabricated via electrospinning. The purpose of this study was to evaluate the effect of plasma modification along with surface nano-topography of mats on the quality of human fibroblast (HDFs) and osteoblast cells (OSTs)-substrate interaction. Surface properties were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle, Fourier-transformation infrared spectroscopy. We evaluated mechanical properties of fabricated mats by tensile test. The viability and proliferation of HDFs and OSTs on the substrates were followed by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT). Mineralization of the substrate was determined by alizarin red staining method and calcium content of OSTs was determined by calcium content kit. Cells morphology was studied by SEM analysis. The results revealed that the plasma-treated electrospun nano-fibrous substrate with higher roughness was an excellent designed substrate. A bioactive topography for stimulating proliferation of HDFs and OSTs is to accelerate the latter's differentiation time. Therefore, the PCL substrate with high density and major nano-topography were considered as a bio-functional and elegant bio-substrate for tissue regeneration applications.

  10. Preliminary Correlations of Gravity and Topography from Mars Global Surveyor

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.; Tyler, G. L.; Smith, D. E.; Balmino, G. S.; Johnson, G. L.; Lemoine, F. G.; Neumann, G. A.; Phillips, R. J.; Sjogren, W. L.; Solomon, S. C.

    1999-01-01

    The Mars Global Surveyor (MGS) spacecraft is currently in a 400-km altitude polar mapping orbit and scheduled to begin global mapping of Mars in March of 1999. Doppler tracking data collected in this Gravity Calibration Orbit prior to the nominal mapping mission combined with observations from the MGS Science Phasing Orbit in Spring - Summer 1999 and the Viking and mariner 9 orbiters has led to preliminary high resolution gravity fields. Spherical harmonic expansions have been performed to degree and order 70 and are characterized by the first high spatial resolution coverage of high latitudes. Topographic mapping by the Mars Orbiter Laser Altimeter on MGS is providing measurements of the height of the martian surface with sub-meter vertical resolution and 5-30 m absolute accuracy. Data obtained during the circular mapping phase are expected to provide the first high resolution measurements of surface heights in the southern hemisphere. The combination of gravity and topography measurements provides information on the structure of the planetary interior, i.e. the rigidity and distribution of internal density. The observations can also be used to address the mechanisms of support of surface topography. Preliminary results of correlations of gravity and topography at long planetary wavelengths will be presented and the implications for internal structure will be addressed.

  11. The Residual Polar Caps of Mars: Geological Differences and Possible Consequences

    NASA Technical Reports Server (NTRS)

    Thomas, P. C.; Sullivan, R.; Ingersoll, A. P.; Murray, B. C.; Danielson, G. E.; Herkenhoff, K. E.; Soderblom, L.; Malin, M. C.; Edgett, K. S.; James, P. B.

    2000-01-01

    The Martian polar regions have been known to have thick layered sequences (presumed to consist of silicates and ice), CO2 seasonal frost, and residual frosts that remain through the summer: H2O in the north, largely CO2 in the south. The relationship of the residual frosts to the underlying layered deposits could not be determined from Viking images. The Mars Orbiter Camera on Mars Global Surveyor has provided a 50-fold increase in resolution that shows more differences between the two poles. The north residual cap surface has rough topography of pits, cracks, and knobs, suggestive of ablational forms. This topography is less than a few meters in height, and grades in to surfaces exposing the layers underneath. In contrast, the south residual cap has distinctive collapse and possibly ablational topography emplaced in four or more layers, each approx. two meters thick. The top surface has polygonal depressions suggestive of thermal contraction cracks. The collapse and erosional forms include circular and cycloidal depressions, long sinuous troughs, and nearly parallel sets of troughs. The distinctive topography occurs throughout the residual cap area, but not outside it. Unconformities exposed in polar layers, or other layered materials, do not approximate the topography seen on the south residual cap. The coincidence of a distinct geologic feature, several layers modified by collapse, ablation, and mass movement with the residual cap indicates a distinct composition and/or climate compared to both the remainder of the south polar layered units and those in the north.

  12. Visco-elastic controlled-source full waveform inversion without surface waves

    NASA Astrophysics Data System (ADS)

    Paschke, Marco; Krause, Martin; Bleibinhaus, Florian

    2016-04-01

    We developed a frequency-domain visco-elastic full waveform inversion for onshore seismic experiments with topography. The forward modeling is based on a finite-difference time-domain algorithm by Robertsson that uses the image-method to ensure a stress-free condition at the surface. The time-domain data is Fourier-transformed at every point in the model space during the forward modeling for a given set of frequencies. The motivation for this approach is the reduced amount of memory when computing kernels, and the straightforward implementation of the multiscale approach. For the inversion, we calculate the Frechet derivative matrix explicitly, and we implement a Levenberg-Marquardt scheme that allows for computing the resolution matrix. To reduce the size of the Frechet derivative matrix, and to stabilize the inversion, an adapted inverse mesh is used. The node spacing is controlled by the velocity distribution and the chosen frequencies. To focus the inversion on body waves (P, P-coda, and S) we mute the surface waves from the data. Consistent spatiotemporal weighting factors are applied to the wavefields during the Fourier transform to obtain the corresponding kernels. We test our code with a synthetic study using the Marmousi model with arbitrary topography. This study also demonstrates the importance of topography and muting surface waves in controlled-source full waveform inversion.

  13. The Ohio State 1991 geopotential and sea surface topography harmonic coefficient models

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.; Wang, Yan Ming; Pavlis, Nikolaos K.

    1991-01-01

    The computation is described of a geopotential model to deg 360, a sea surface topography model to deg 10/15, and adjusted Geosat orbits for the first year of the exact repeat mission (ERM). This study started from the GEM-T2 potential coefficient model and it's error covariance matrix and Geosat orbits (for 22 ERMs) computed by Haines et al. using the GEM-T2 model. The first step followed the general procedures which use a radial orbit error theory originally developed by English. The Geosat data was processed to find corrections to the a priori geopotential model, corrections to a radial orbit error model for 76 Geosat arcs, and coefficients of a harmonic representation of the sea surface topography. The second stage of the analysis took place by doing a combination of the GEM-T2 coefficients with 30 deg gravity data derived from surface gravity data and anomalies obtained from altimeter data. The analysis has shown how a high degree spherical harmonic model can be determined combining the best aspects of two different analysis techniques. The error analysis was described that has led to the accuracy estimates for all the coefficients to deg 360. Significant work is needed to improve the modeling effort.

  14. Polymer Stress-Gradient Induced Migration in Thin Film Flow Over Topography

    NASA Astrophysics Data System (ADS)

    Tsouka, Sophia; Dimakopoulos, Yiannis; Tsamopoulos, John

    2014-11-01

    We consider the 2D, steady film flow of a dilute polymer solution over a periodic topography. We examine how the distribution of polymer in the planarization of topographical features is affected by flow intensity and physical properties. The thermodynamically acceptable, Mavrantzas-Beris two-fluid Hamiltonian model is used for polymer migration. The resulting system of differential equations is solved via the mixed FE method combined with an elliptic grid generation scheme. We present numerical results for polymer concentration, stress, velocity and flux of components as a function of the non-dimensional parameters of the problem (Deborah, Peclet, Reynolds and Capillary numbers, ratio of solvent viscosity to total liquid viscosity and geometric features of the topography). Polymer migration to the free surface is enhanced when the cavity gets steeper and deeper. This increases the spatial extent of the polymer depletion layer and induces strong banding in the stresses away from the substrate wall, especially in low polymer concentration. Macromolecules with longer relaxation times are predicted to migrate towards the free surface more easily, while high surface tension combined with a certain range of Reynolds numbers affects the free surface deformations. Work supported by the General Secretariat of Research & Technology of Greece through the program ``Excellence'' (Grant No. 1918) in the framework ``Education and Lifelong Learning'' co-funded by the ESF.

  15. The effect of piezoelectric ultrasonic instrumentation on titanium discs: a microscopy and trace elemental analysis in vitro study.

    PubMed

    Tawse-Smith, A; Atieh, M A; Tompkins, G; Duncan, W J; Reid, M R; Stirling, C H

    2016-08-01

    To evaluate in vitro topographical and composition changes by piezoelectric ultrasonic instrumentation with metallic and plastic tips on machined and moderately roughened titanium surfaces. Twenty machined and moderately roughened laser-marked titanium discs were ultrasonically instrumented with metallic and plastic tips. Surface instrumentation was carried out with controlled pressure for 20 and 30 seconds at two power settings. For each time and power setting, instrumentation was repeated four times with one instrumentation per disc quadrant. Surface topography analysis was performed using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Surface roughness measurements were compared between instrumented and non-instrumented surfaces. Surface element composition and rinsing solutions were evaluated using energy-dispersive spectroscopy (EDS) and trace elemental analysis using inductively coupled plasma mass spectrometry (ICPMS), respectively. SEM photomicrographs and CLSM 3D surface plot images of instrumented machined and moderately roughened surfaces demonstrated severe surface topographical alterations with metallic tips and mild to moderate changes for plastic tip instrumented sites. ICPMS analysis of the rinsing solutions identified titanium and other metal traces with the use of metallic tips, and mainly titanium and carbon when plastic tips were used. Surface EDS analysis showed elemental traces of the ultrasonic tips. Ultrasonic instrumentation with metallic or plastic tips created surface topographical and compositional changes. Different changes in surface topography were noted between the surfaces, as the roughness of the machined surfaces increased while the extent of roughness of the moderately roughened surfaces decreased. The clinical relevance of these changes is yet to be determined. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Mercury's Low-Degree Geoid and Topography from Insolation-Driven Elastic Deformation

    NASA Astrophysics Data System (ADS)

    Tosi, N.; Cadek, O.; Padovan, S.; Wieczorek, M. A.

    2014-12-01

    Because of Mercury's high eccentricity, nearly zero obliquity, and 3:2 spin-orbit resonance, the planet's surface is characterized by an average insolation pattern resulting in longitudinal and latitudinal temperature variations that can be expressed in terms of the (2,0), (2,2) and (4,0) harmonics [Vasavada et al., 1999]. We show that the temperature anomalies that propagate from the surface into the deep mantle can be used to interpret the above harmonics of the geoid and topography spectra in terms of the elastic response of the lithosphere and mantle. Using 3D numerical simulations of thermal evolution constrained by MESSENGER observations [Tosi et al., 2013], we first demonstrate that mantle convection either ceased in the past or, at most, is very weak at present, implying that the mantle is in a conductive or nearly-conductive state. As a consequence, the power spectra of the geoid and topography due to present-day mantle convection only are orders of magnitude smaller than the observed ones. We assume therefore that present-day heat transport in the mantle occurs primarily via thermal conduction and numerically solve the diffusion equation in a 3D spherical shell with variable surface temperature and internal heat sources partitioned between the mantle and a crust of variable thickness according to different enrichment factors. We obtain a set of temperature distributions that are employed to calculate the deformation of a compressible elastic layer overlying a quasi-hydrostatic mantle in which shear stresses are assumed to be relaxed and deformation solely induced by thermal and mechanical compressibility. The surface displacements calculated with this model are then compared against the observed topography, while the internal density anomalies and the displacements of the surface and core-mantle boundary are used to calculate Mercury's geoid. We thoroughly explore the parameter space by varying the thickness of the boundary between the elastic and quasi-hydrostatic layers, the lithosphere's elastic parameters and the coefficient of thermal expansion. Our model can reproduce more than 90% of the observed low-degree geoid and topography thereby allowing us to constrain the effective thickness of Mercury's elastic lithosphere.

  17. Monitoring of spine curvatures and posture during pregnancy using surface topography - case study and suggestion of method.

    PubMed

    Michoński, Jakub; Walesiak, Katarzyna; Pakuła, Anna; Glinkowski, Wojciech; Sitnik, Robert

    2016-01-01

    Low back and pelvic pain is one of the most frequently reported disorders in pregnancy, however etiology and pathology of this problem have not been fully determined. The relationship between back pain experienced during pregnancy and posture remains unclear. It is challenging to measure reliably postural and spinal changes at the time of pregnancy, since most imaging studies cannot be used due to the radiation burden. 3D shape measurement, or surface topography (ST), systems designed for posture evaluation could potentially fill this void. A pilot study was conducted to test the potential of monitoring the change of spine curvatures and posture during pregnancy using surface topography. A single case was studied to test the methodology and preliminarily assess the usefulness of the procedure before performing a randomized trial. The apparatus used in this study was metrologically tested and utilized earlier in scoliosis screening. The subject was measured using a custom-made structured light illumination scanner with accuracy of 0.2 mm. Measurement was taken every 2 weeks, between 17th and 37th week of pregnancy, 11 measurements in total. From the measurement the thoracic kyphosis and lumbar lordosis angles, and vertical balance angle were extracted automatically. Custom-written software was used for analysis. Oswestry Low Back Pain Disability Questionnaire (ODI) was done with every measurement. The values were correctly extracted from the measurement. The results were: 50.9 ± 2.4° for kyphosis angle, 58.1 ± 2.1° for lordosis angle and 4.7 ± 1.7° for vertical balance angle. The registered change was 7.4° in kyphosis angle, 8.4° in lordosis angle and 5.5° in vertical balance angle. The calculated ODI values were between moderate disability and severe disability (22 to 58 %). This case study presents that surface topography may be suitable for monitoring of spinal curvature and posture change in pregnant women. The ionizing radiation studies are contraindicated during pregnancy. Surface topography data connected with information from pain level questionnaires allows to investigate the connection between changes in posture and back pain.

  18. Terrain Classification on Venus from Maximum-Likelihood Inversion of Parameterized Models of Topography, Gravity, and their Relation

    NASA Astrophysics Data System (ADS)

    Eggers, G. L.; Lewis, K. W.; Simons, F. J.; Olhede, S.

    2013-12-01

    Venus does not possess a plate-tectonic system like that observed on Earth, and many surface features--such as tesserae and coronae--lack terrestrial equivalents. To understand Venus' tectonics is to understand its lithosphere, requiring a study of topography and gravity, and how they relate. Past studies of topography dealt with mapping and classification of visually observed features, and studies of gravity dealt with inverting the relation between topography and gravity anomalies to recover surface density and elastic thickness in either the space (correlation) or the spectral (admittance, coherence) domain. In the former case, geological features could be delineated but not classified quantitatively. In the latter case, rectangular or circular data windows were used, lacking geological definition. While the estimates of lithospheric strength on this basis were quantitative, they lacked robust error estimates. Here, we remapped the surface into 77 regions visually and qualitatively defined from a combination of Magellan topography, gravity, and radar images. We parameterize the spectral covariance of the observed topography, treating it as a Gaussian process assumed to be stationary over the mapped regions, using a three-parameter isotropic Matern model, and perform maximum-likelihood based inversions for the parameters. We discuss the parameter distribution across the Venusian surface and across terrain types such as coronoae, dorsae, tesserae, and their relation with mean elevation and latitudinal position. We find that the three-parameter model, while mathematically established and applicable to Venus topography, is overparameterized, and thus reduce the results to a two-parameter description of the peak spectral variance and the range-to-half-peak variance (in function of the wavenumber). With the reduction the clustering of geological region types in two-parameter space becomes promising. Finally, we perform inversions for the JOINT spectral variance of topography and gravity, in which the INITIAL loading by topography retains the Matern form but the FINAL topography and gravity are the result of flexural compensation. In our modeling, we pay explicit attention to finite-field spectral estimation effects (and their remedy via tapering), and to the implementation of statistical tests (for anisotropy, for initial-loading process correlation, to ascertain the proper density contrasts and interface depth in a two-layer model), robustness assessment and uncertainty quantification, as well as to algorithmic intricacies related to low-dimensional but poorly scaled maximum-likelihood inversions. We conclude that Venusian geomorphic terrains are well described by their 2-D topographic and gravity (cross-)power spectra, and the spectral properties of distinct geologic provinces on Venus are worth quantifying via maximum-likelihood-based methods under idealized three-parameter Matern distributions. Analysis of fitted parameters and the fitted-data residuals reveals natural variability in the (sub)surface properties on Venus, as well as some directional anisotropy. Geologic regions tend to cluster according to terrain type in our parameter space, which we analyze to confirm their shared geologic histories and utilize for guidance in ongoing mapping efforts of Venus and other terrestrial bodies.

  19. Lunar Polar Cold Traps: Spatial Distribution and Temperatures

    NASA Astrophysics Data System (ADS)

    Paige, David A.; Siegler, M.; Lawrence, D. J.

    2006-09-01

    We have developed a ray-tracing and radiosity model that can accurately calculate lunar surface and subsurface temperatures for arbitrary topography. Using available digital elevation models for the lunar north and south polar regions derived from Clementine laser altimeter and image data, as well as ground-based radar data, we have calculated lunar surface and subsurface temperatures at 2 km resolution that include full effects of indirect solar and infrared radiation due to topography. We compare our thermal model results with maps of epithermal neutron flux measured by Lunar Prospector. When we use the ray tracing and thermal model to account for the effects of temperature and topography on the neutron measurements, our results show that the majority of the moon's polar cold traps are not filled with water ice.

  20. A numerical circulation model with topography for the Martian Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    Mass, C.; Sagan, C.

    1975-01-01

    A quasi-geostrophic numerical model, including friction, radiation, and the observed planetary topography, is applied to the general circulation of the Martian atmosphere in the Southern Hemisphere at latitudes south of about 35 deg. Near equilibrium weather systems developed after about 5 model days. To avoid violating the quasi-geostrophic approximation, only 0.8 of the already smoothed relief was employed. Weather systems and velocity fields are strikingly tied to topography. A 2mb middle latitude jet stream is found of remarkably terrestrial aspect. Highest surface velocities, both horizontal and vertical, are predicted in western Hellas Planitia and eastern Argyre Planitia, which are observed to be preferred sites of origin of major Martian dust storms. Mean horizontal velocities and vertical velocities are found just above the surface velocity boundary layer.

  1. Effects of volcano topography on seismic broad-band waveforms

    NASA Astrophysics Data System (ADS)

    Neuberg, Jürgen; Pointer, Tim

    2000-10-01

    Volcano seismology often deals with rather shallow seismic sources and seismic stations deployed in their near field. The complex stratigraphy on volcanoes and near-field source effects have a strong impact on the seismic wavefield, complicating the interpretation techniques that are usually employed in earthquake seismology. In addition, as most volcanoes have a pronounced topography, the interference of the seismic wavefield with the stress-free surface results in severe waveform perturbations that affect seismic interpretation methods. In this study we deal predominantly with the surface effects, but take into account the impact of a typical volcano stratigraphy as well as near-field source effects. We derive a correction term for plane seismic waves and a plane-free surface such that for smooth topographies the effect of the free surface can be totally removed. Seismo-volcanic sources radiate energy in a broad frequency range with a correspondingly wide range of different Fresnel zones. A 2-D boundary element method is employed to study how the size of the Fresnel zone is dependent on source depth, dominant wavelength and topography in order to estimate the limits of the plane wave approximation. This approximation remains valid if the dominant wavelength does not exceed twice the source depth. Further aspects of this study concern particle motion analysis to locate point sources and the influence of the stratigraphy on particle motions. Furthermore, the deployment strategy of seismic instruments on volcanoes, as well as the direct interpretation of the broad-band waveforms in terms of pressure fluctuations in the volcanic plumbing system, are discussed.

  2. Airborne Lidar Surface Topography (LIST) Simulator

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis; Winkert, Tom; Plants, Michael; hide

    2011-01-01

    In this paper we will discuss our development effort of an airborne instrument as a pathfinder for the Lidar Surface Technology (LIST) mission. This paper will discuss the system approach, enabling technologies, instrument concept and performance of the Airborne LIST Simulator (A-LISTS).

  3. Modeling and evaluating of surface roughness prediction in micro-grinding on soda-lime glass considering tool characterization

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Gong, Yadong; Wang, Jinsheng

    2013-11-01

    The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality processing surface. Therefore, a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography is proposed in this paper. The differences of material removal mechanism between convention grinding process and micro-grinding process are analyzed. Topography characterization has been done on micro-grinding tools which are fabricated by electroplating. Models of grain density generation and grain interval are built, and new predicting model of micro-grinding surface roughness is developed. In order to verify the precision and application effect of the surface roughness prediction model proposed, a micro-grinding orthogonally experiment on soda-lime glass is designed and conducted. A series of micro-machining surfaces which are 78 nm to 0.98 μm roughness of brittle material is achieved. It is found that experimental roughness results and the predicting roughness data have an evident coincidence, and the component variable of describing the size effects in predicting model is calculated to be 1.5×107 by reverse method based on the experimental results. The proposed model builds a set of distribution to consider grains distribution densities in different protrusion heights. Finally, the characterization of micro-grinding tools which are used in the experiment has been done based on the distribution set. It is concluded that there is a significant coincidence between surface prediction data from the proposed model and measurements from experiment results. Therefore, the effectiveness of the model is demonstrated. This paper proposes a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography, which would provide significant research theory and experimental reference of material removal mechanism in micro-grinding of soda-lime glass.

  4. Silk film biomaterials for ocular surface repair

    NASA Astrophysics Data System (ADS)

    Lawrence, Brian David

    Current biomaterial approaches for repairing the cornea's ocular surface upon injury are partially effective due to inherent material limitations. As a result there is a need to expand the biomaterial options available for use in the eye, which in turn will help to expand new clinical innovations and technology development. The studies illustrated here are a collection of work to further characterize silk film biomaterials for use on the ocular surface. Silk films were produced from regenerated fibroin protein solution derived from the Bombyx mori silkworm cocoon. Methods of silk film processing and production were developed to produce consistent biomaterials for in vitro and in vivo evaluation. A wide range of experiments was undertaken that spanned from in vitro silk film material characterization to in vivo evaluation. It was found that a variety of silk film properties could be controlled through a water-annealing process. Silk films were then generated that could be use in vitro to produce stratified corneal epithelial cell sheets comparable to tissue grown on the clinical standard substrate of amniotic membrane. This understanding was translated to produce a silk film design that enhanced corneal healing in vivo on a rabbit injury model. Further work produced silk films with varying surface topographies that were used as a simplified analog to the corneal basement membrane surface in vitro. These studies demonstrated that silk film surface topography is capable of directing corneal epithelial cell attachment, growth, and migration response. Most notably epithelial tissue development was controllably directed by the presence of the silk surface topography through increasing cell sheet migration efficiency at the individual cellular level. Taken together, the presented findings represent a comprehensive characterization of silk film biomaterials for use in ocular surface reconstruction, and indicate their utility as a potential material choice in the development of innovative procedures and technologies for corneal repair.

  5. The distribution of organic material and its contribution to the micro-topography of particles from wettable and water repellent soils

    NASA Astrophysics Data System (ADS)

    Bryant, Rob; Cheng, Shuying; Doerr, Stefan H.; Wright, Chris J.; Bayer, Julia V.; Williams, Rhodri P.

    2010-05-01

    Organic coatings on mineral particles will mask the physic-chemical properties of the underlying mineral surface. Surface images and force measurements obtained using atomic force microscopy (AFM) provide information about the nature of and variability in surfaces properties at the micro- to nano-scale. As AFM technology and data processing advance it is anticipated that a significant amount of information will be obtained simultaneously from individual contacts made at high frequency in non-contact or tapping mode operation. For present purposes the surfaces of model materials (smooth glass surfaces and acid-washed sand (AWS)) provide an indication of the dependency of the so-called AFM phase image on the topographic image (which is obtained synoptically). Pixel wise correlation of these images reveals how the modulation of an AFM probe is affected when topographic features are encountered. Adsorption of soil-derived humic acid (HA) or lecithin (LE), used here as an example for natural organic material, on these surfaces provides a soft and compliant, albeit partial, covering on the mineral which modifies the topography and the response of an AFM tip as it partially indents the soft regions (which contributes depth to the phase image). This produces a broadening on the data domain in the topographic/phase scatter diagram. Two dimensional classifications of these data, together with those obtained from sand particles drawn from water repellent and wettable soils, suggest that these large adsorbate molecules appear to have little preference to attach to particular topographic features or elevations. It appears that they may effectively remain on the surface at the point of initial contact. If organic adsorbates present a hydrophobic outer surface, then it seems possible that elevated features will not be immune from this and provide scope for a local, albeit, small contribution to the expression of super-hydrophobicity. It is therefore speculated here that the water repellency of a soil is the result of not only of particle surface chemistry and soil pore space geometry, but also of the micro-topography generated by organic material adsorbed on particle surfaces.

  6. Principles of operation, accuracy and precision of an Eye Surface Profiler.

    PubMed

    Iskander, D Robert; Wachel, Pawel; Simpson, Patrick N D; Consejo, Alejandra; Jesus, Danilo A

    2016-05-01

    To introduce a newly developed instrument for measuring the topography of the anterior eye, provide principles of its operation and to assess its accuracy and precision. The Eye Surface Profiler is a new technology based on Fourier transform profilometry for measuring the anterior eye surface encompassing the corneo-scleral area. Details of technical principles of operation are provided for the particular case of sequential double fringe projection. Technical limits of accuracy have been assessed for several key parameters such as the carrier frequency, image quantisation level, sensor size, carrier frequency inaccuracy, and level and type of noise. Further, results from both artificial test surfaces as well as real eyes are used to assess precision and accuracy of the device (here benchmarked against one of popular Placido disk videokeratoscopes). Technically, the Eye Surface Profiler accuracy can reach levels below 1 μm for a range of considered key parameters. For the unit tested and using calibrated artificial surfaces, the accuracy of measurement (in terms of RMS error) was below 10 μm for a central measurement area of 8 mm diameter and below 40 μm for an extended measurement area of 16 mm. In some cases, the error reached levels of up to 200 μm at the very periphery of the measured surface (up to 20 mm). The SimK estimates of the test surfaces from the Eye Surface Profiler were in close agreement with those from a Placido disk videokeratoscope with differences no greater than ±0.1 D. For real eyes, the benchmarked accuracy was within ±0.5D for both the spherical and cylindrical SimK components. The Eye Surface Profiler can successfully measure the topography of the entire anterior eye including the cornea, limbus and sclera. It has a great potential to become an optometry clinical tool that could substitute the currently used videokeratoscopes and provide a high quality corneo-scleral topography. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  7. Modeling surface topography of state-of-the-art x-ray mirrors as a result of stochastic polishing process: recent developments

    NASA Astrophysics Data System (ADS)

    Yashchuk, Valeriy V.; Centers, Gary; Tyurin, Yuri N.; Tyurina, Anastasia

    2016-09-01

    Recently, an original method for the statistical modeling of surface topography of state-of-the-art mirrors for usage in xray optical systems at light source facilities and for astronomical telescopes [Opt. Eng. 51(4), 046501, 2012; ibid. 53(8), 084102 (2014); and ibid. 55(7), 074106 (2016)] has been developed. In modeling, the mirror surface topography is considered to be a result of a stationary uniform stochastic polishing process and the best fit time-invariant linear filter (TILF) that optimally parameterizes, with limited number of parameters, the polishing process is determined. The TILF model allows the surface slope profile of an optic with a newly desired specification to be reliably forecast before fabrication. With the forecast data, representative numerical evaluations of expected performance of the prospective mirrors in optical systems under development become possible [Opt. Eng., 54(2), 025108 (2015)]. Here, we suggest and demonstrate an analytical approach for accounting the imperfections of the used metrology instruments, which are described by the instrumental point spread function, in the TILF modeling. The efficacy of the approach is demonstrated with numerical simulations for correction of measurements performed with an autocollimator based surface slope profiler. Besides solving this major metrological problem, the results of the present work open an avenue for developing analytical and computational tools for stitching data in the statistical domain, obtained using multiple metrology instruments measuring significantly different bandwidths of spatial wavelengths.

  8. Interactive Retro-Deformation of Terrain for Reconstructing 3D Fault Displacements.

    PubMed

    Westerteiger, R; Compton, T; Bernadin, T; Cowgill, E; Gwinner, K; Hamann, B; Gerndt, A; Hagen, H

    2012-12-01

    Planetary topography is the result of complex interactions between geological processes, of which faulting is a prominent component. Surface-rupturing earthquakes cut and move landforms which develop across active faults, producing characteristic surface displacements across the fault. Geometric models of faults and their associated surface displacements are commonly applied to reconstruct these offsets to enable interpretation of the observed topography. However, current 2D techniques are limited in their capability to convey both the three-dimensional kinematics of faulting and the incremental sequence of events required by a given reconstruction. Here we present a real-time system for interactive retro-deformation of faulted topography to enable reconstruction of fault displacement within a high-resolution (sub 1m/pixel) 3D terrain visualization. We employ geometry shaders on the GPU to intersect the surface mesh with fault-segments interactively specified by the user and transform the resulting surface blocks in realtime according to a kinematic model of fault motion. Our method facilitates a human-in-the-loop approach to reconstruction of fault displacements by providing instant visual feedback while exploring the parameter space. Thus, scientists can evaluate the validity of traditional point-to-point reconstructions by visually examining a smooth interpolation of the displacement in 3D. We show the efficacy of our approach by using it to reconstruct segments of the San Andreas fault, California as well as a graben structure in the Noctis Labyrinthus region on Mars.

  9. Effects of sterilisation method on surface topography and in-vitro cell behaviour of electrostatically spun scaffolds.

    PubMed

    Andrews, Kirstie D; Hunt, John A; Black, Richard A

    2007-02-01

    Electrostatic spinning is a potentially significant technique for scaffold production within the field of tissue engineering; however, the effect of sterilisation upon these structures is not known. This research investigated the extent of any topographical alteration to electrostatically spun scaffolds post-production through sterilisation, and examined any subsequent effect on contacting cells. Scaffolds made from Tecoflex SG-80A polyurethane were sterilised using ethylene oxide and UV-ozone. Scaffold topography was characterized in terms of inter-fibre separation (ifs), fibre diameter (f.dia) and surface roughness. Cell culture was performed over 7 days with both mouse L929 and human embryonic lung fibroblasts, the results of which were assessed using SEM, image analysis and confocal microscopy. Sterilisation by UV-ozone and ethylene oxide decreased ifs and increased f.dia; surface roughness was decreased by UV-ozone but increased by ethylene oxide. Possible mechanisms to explain these observations are discussed, namely photo-oxidative degradation in the case of UV-ozone and process-induced changes in surface roughness. UV-ozone sterilised scaffolds showed greater cell coverage than those treated with ethylene oxide, but lower coverage than all the controls. Changes in cell attachment and morphology were thought to be due to the changes in topography brought about by the sterilisation process. We conclude that surface modification by sterilisation could prove to be a useful tool at the final stage of scaffold production to enhance cell contact, phenotype or function.

  10. Expected Performance of the Upcoming Surface Water and Ocean Topography Mission Measurements of River Height, Width, and Slope

    NASA Astrophysics Data System (ADS)

    Wei, R.; Frasson, R. P. M.; Williams, B. A.; Rodriguez, E.; Pavelsky, T.; Altenau, E. H.; Durand, M. T.

    2017-12-01

    The upcoming Surface Water and Ocean Topography (SWOT) mission will measure river widths and water surface elevations of rivers wider than 100 m. In preparation for the SWOT mission, the Jet Propulsion Laboratory built the SWOT hydrology simulator with the intent of generating synthetic SWOT overpasses over rivers with realistic error characteristics. These synthetic overpasses can be used to guide the design of processing methods and data products, as well as develop data assimilation techniques that will incorporate the future SWOT data into hydraulic and hydrologic models as soon as the satellite becomes operational. SWOT simulator uses as inputs water depth, river bathymetry, and the surrounding terrain digital elevation model to create simulated interferograms of the study area. Next, the simulator emulates the anticipated processing of SWOT data by attempting to geolocate and classify the radar returns. The resulting cloud of points include information on water surface elevation, pixel area, and surface classification (land vs water). Finally, we process the pixel clouds by grouping pixels into equally spaced nodes located at the river centerline. This study applies the SWOT simulator to six different rivers: Sacramento River, Tanana River, Saint Lawrence River, Platte River, Po River, and Amazon River. This collection of rivers covers a range of size, slope, and planform complexity with the intent of evaluating the impact of river width, slope, planform complexity, and surrounding topography on the anticipated SWOT height, width, and slope error characteristics.

  11. Multiscale geomorphometric modeling of Mercury

    NASA Astrophysics Data System (ADS)

    Florinsky, I. V.

    2018-02-01

    Topography is one of the key characteristics of a planetary body. Geomorphometry deals with quantitative modeling and analysis of the topographic surface and relationships between topography and other natural components of landscapes. The surface of Mercury is systematically studied by interpretation of images acquired during the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. However, the Mercurian surface is still little explored by methods of geomorphometry. In this paper, we evaluate the Mercury MESSENGER Global DEM MSGR_DEM_USG_SC_I_V02 - a global digital elevation model (DEM) of Mercury with the resolution of 0.015625° - as a source for geomorphometric modeling of this planet. The study was performed at three spatial scales: the global, regional (the Caloris basin), and local (the Pantheon Fossae area) ones. As the initial data, we used three DEMs of these areas with resolutions of 0.25°, 0.0625°, and 0.015625°, correspondingly. The DEMs were extracted from the MESSENGER Global DEM. From the DEMs, we derived digital models of several fundamental morphometric variables, such as: slope gradient, horizontal curvature, vertical curvature, minimal curvature, maximal curvature, catchment area, and dispersive area. The morphometric maps obtained represent peculiarities of the Mercurian topography in different ways, according to the physical and mathematical sense of a particular variable. Geomorphometric models are a rich source of information on the Mercurian surface. These data can be utilized to study evolution and internal structure of the planet, for example, to visualize and quantify regional topographic differences as well as to refine geological boundaries.

  12. Glacial Inception in north-east Canada: The Role of Topography and Clouds

    NASA Astrophysics Data System (ADS)

    Birch, Leah; Tziperman, Eli; Cronin, Timothy

    2016-04-01

    Over the past 0.8 million years, ice ages have dominated Earth's climate on a 100 thousand year cycle. Interglacials were brief, sometimes lasting only a few thousand years, leading to the next inception. Currently, state-of-the-art global climate models (GCMs) are incapable of simulating the transition of Earth's climate from interglacial to glaciated. We hypothesize that this failure may be related to their coarse spatial resolution, which does not allow resolving the topography of inception areas, and their parameterized representation of clouds and atmospheric convection. To better understand the small scale topographic and cloud processes mis-represented by GCMs, we run the Weather Research and Forecasting model (WRF), which is a regional, cloud-resolving atmospheric model capable of a realistic simulation of the regional mountain climate and therefore of surface ice and snow mass balance. We focus our study on the mountain glaciers of Canada's Baffin Island, where geologic evidence indicates the last inception occurred at 115kya. We examine the sensitivity of mountain glaciers to Milankovitch Forcing, topography, and meteorology, while observing impacts of a cloud resolving model. We first verify WRF's ability to simulate present day climate in the region surrounding the Penny Ice Cap, and then investigate how a GCM-like biased representation of topography affects sensitivity of this mountain glacier to Milankovitch forcing. Our results show the possibility of ice cap growth on an initially snow-free landscape with realistic topography and insolation values from the last glacial inception. Whereas, smoothed topography as seen in GCMs has a negative surface mass balance, even with the relevant orbital parameter configuration. We also explore the surface mass balance feedbacks from an initially ice-covered Baffin Island and discuss the role of clouds and convection.

  13. Facile Fabrication of Gradient Surface Based on (meth)acrylate Copolymer Films

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Yang, H.; Wen, X.-F.; Cheng, J.; Xiong, J.

    2016-08-01

    This paper describes a simple and economic approach for fabrication of surface wettability gradient on poly(butyl acrylate - methyl methacrylate) [P (BA-MMA)] and poly(butyl acrylate - methyl methacrylate - 2-hydroxyethyl methacrylate) [P (BA-MMA-HEMA)] films. The (meth)acrylate copolymer [including P (BA-MMA) and P (BA-MMA-HEMA)] films are hydrolyzed in an aqueous solution of NaOH and the transformation of surface chemical composition is achieved by hydrolysis in NaOH solution. The gradient wetting properties are generated based on different functional groups on the P (BA-MMA) and P (BA-MMA-HEMA) films. The effects of both the surface chemical and surface topography on wetting of the (meth)acrylate copolymer film are discussed. Surface chemical composition along the materials length is determined by XPS, and surface topography properties of the obtained gradient surfaces are analyzed by FESEM and AFM. Water contact angle system (WCAs) results show that the P (BA-MMA-HEMA) films provide a larger slope of the gradient wetting than P (BA-MMA). Moreover, this work demonstrates that the gradient concentration of chemical composition on the poly(meth) acrylate films is owing to the hydrolysis processes of ester group, and the hydrolysis reactions that have negligible influence on the surface morphology of the poly(meth) acrylate films coated on the glass slide. The gradient wettability surfaces may find broad applications in the field of polymer coating due to the compatibility of (meth) acrylate polymer.

  14. Crater topography on Titan: Implications for landscape evolution

    NASA Astrophysics Data System (ADS)

    Neish, C.; Kirk, R.; Lorenz, R.; Bray, V.; Schenk, P.; Stiles, B.; Turtle, E.; Cassini Radar Team

    2012-04-01

    Unique among the icy satellites, Titan’s surface shows evidence for extensive modification by fluvial and aeolian erosion, which act to change the topography of its surface over time. Quantifying the extent of this landscape evolution is difficult, since the original, ‘non-eroded’ surface topography is generally unknown. However, fresh craters on icy satellites have a well-known shape and morphology, which has been determined from extensive studies on the airless worlds of the outer solar system (Schenk et al., 2004). By comparing the topography of craters on Titan to similarly sized, pristine analogues on airless bodies, we can obtain one of the few direct measures of the amount of erosion that has occurred on Titan. Cassini RADAR has imaged >30% of the surface of Titan, and more than 60 potential craters have been identified in this data set (Wood et al., 2010; Neish and Lorenz, 2012). Topographic information for these craters can be obtained from a technique known as ‘SARTopo’, which estimates surface heights by comparing the calibration of overlapping synthetic aperture radar (SAR) beams (Stiles et al., 2009). We present topography data for several craters on Titan, and compare the data to similarly sized craters on Ganymede, for which topography has been extracted from stereo-derived digital elevation models (Bray et al., 2012). We find that the depths of craters on Titan are generally within the range of depths observed on Ganymede, but several hundreds of meters shallower than the average (Fig. 1). A statistical comparison between the two data sets suggests that it is extremely unlikely that Titan’s craters were selected from the depth distribution of fresh craters on Ganymede, and that is it much more probable that the relative depths of Titan are uniformly distributed between ‘fresh’ and ‘completely infilled’. This is consistent with an infilling process that varies linearly with time, such as aeolian infilling. Figure 1: Depth of craters on Titan (gray diamonds) compared to similarly sized, fresh craters on Ganymede (central peaks, +; central pits, *) and a handful of relaxed craters (black squares) from Bray et al. (2012). References: Bray, V., et al.: "Ganymede crater dimensions - implications for central peak and central pit formation and development". Icarus, Vol. 217, pp. 115-129, 2012. Neish, C.D., Lorenz, R.D.: "Titan’s global crater population: A new assessment". Planetary and Space Science, Vol. 60, pp. 26-33, 2012. Schenk, P.M., et al.: "Ages and interiors: the cratering record of the Galilean satellites". In: Bagenal, F., McKinnon, W.B. (Eds.), Jupiter: The Planet, Satellites, and Magnetosphere, Cambridge University Press, Cambridge, UK, pp. 427-456, 2004. Stiles, B.W., et al.: "Determining Titan surface topography from Cassini SAR data". Icarus, Vol. 202, pp. 584-598, 2009. Wood, C.A., et al.: "Impact craters on Titan". Icarus, Vol. 206, pp. 334-344, 2010.

  15. Detection of progressive idiopathic scoliosis during growth using back surface topography: a prospective study of 100 patients.

    PubMed

    De Korvin, G; Randriaminahisoa, T; Cugy, E; Cheze, L; de Sèze, M

    2014-12-01

    The progression of adolescent idiopathic scoliosis is typically monitored via regular radiographic follow-up. The Cobb angle (as measured on whole-spine radiographs) is considered as the gold standard in scoliosis monitoring. To determine the sensitivity and specificity of back surface topography parameters, with a view to detecting changes in the Cobb angle. One hundred patients (mean age: 13.3) with Cobb angles greater than 10 degrees were included. Topographic parameters were measured in a standard position and in a position with hunched shoulders. Gibbosities and spinal curvatures were evaluated. An increase of more than 2 degrees in any one gibbosity or in the sum of the gibbosities (in either of the two examination positions) enabled the detection of a five-degree increase in the Cobb angle with a sensitivity of 86% and a specificity of 50%. If the present results are confirmed by other studies, analysis with back surface topography parameters may reduce the number of X-ray examinations required to detect increases in the Cobb angle. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. System-morphological approach: Another look at morphology research and geomorphological mapping

    NASA Astrophysics Data System (ADS)

    Lastochkin, Alexander N.; Zhirov, Andrey I.; Boltramovich, Sergei F.

    2018-02-01

    A large number of studies require a clear and unambiguous morphological basis. For over thirty years, Russian scientists have been applying a system-morphological approach for the Arctic and Antarctic research, ocean floor investigation, for various infrastructure construction projects (oil and gas, sports, etc.), in landscape and environmental studies. This article is a review aimed to introduce this methodological approach to the international scientific community. The details of the methods and techniques can be found in a series of earlier papers published in the Russian language in 1987-2016. The proposed system-morphological approach includes: 1) partitioning of the Earth surface, i.e. precise identification of linear, point, and areal elements of topography considered as a two-dimensional surface without any geological substance; 2) further identification of larger formations: geomorphological systems and regions; 3) analysis of structural relations and symmetry of topography; and 4) various dynamic (litho- and glaciodynamic, tectonic, etc.) interpretations of the observed morphology. This method can be used to study the morphology of the surface topography as well as less accessible interfaces such as submarine and subglacial ones.

  17. An accurate surface topography restoration algorithm for white light interferometry

    NASA Astrophysics Data System (ADS)

    Yuan, He; Zhang, Xiangchao; Xu, Min

    2017-10-01

    As an important measuring technique, white light interferometry can realize fast and non-contact measurement, thus it is now widely used in the field of ultra-precision engineering. However, the traditional recovery algorithms of surface topographies have flaws and limits. In this paper, we propose a new algorithm to solve these problems. It is a combination of Fourier transform and improved polynomial fitting method. Because the white light interference signal is usually expressed as a cosine signal whose amplitude is modulated by a Gaussian function, its fringe visibility is not constant and varies with different scanning positions. The interference signal is processed first by Fourier transform, then the positive frequency part is selected and moved back to the center of the amplitude-frequency curve. In order to restore the surface morphology, a polynomial fitting method is used to fit the amplitude curve after inverse Fourier transform and obtain the corresponding topography information. The new method is then compared to the traditional algorithms. It is proved that the aforementioned drawbacks can be effectively overcome. The relative error is less than 0.8%.

  18. Comparative study for surface topography of bone drilling using conventional drilling and loose abrasive machining.

    PubMed

    Singh, Gurmeet; Jain, Vivek; Gupta, Dheeraj

    2015-03-01

    Drilling through the bone is a complicated process in orthopaedic surgery. It involves human as a part of the work so it needs better perfection and quality which leads to the sustainability. Different studies were carried out on this curious topic and some interesting results were obtained, which help the orthopaedic surgeon on the operation table. Major problems faced during bone drilling were crack initiation, thermal necrosis and burr formation. The surface topography of the bone is an indirect indication for the sustainability of bone joint. In this study, a comparison is made between conventional and a loose abrasive unconventional drilling technique for the surface characterization of the bone. The attempt has been made to show the feasibility of bone drilling with non-conventional technique and its aftereffect on the bone structure. The burr formation during conventional bone drilling was found to be more which leads to problems such as crack initiation and thermal necrosis. Scanning electrode microscope and surface roughness tester were used to characterize the surface of the fine drilled bone specimen and the results testified quite better surface finish and least crack formation while drilling with loose abrasive unconventional technique. © IMechE 2015.

  19. Topographic and Other Influences on Pluto's Volatile Ices

    NASA Astrophysics Data System (ADS)

    Lewis, Briley Lynn; Stansberry, John; Grundy, William M.; Schmitt, Bernard; Protopapa, Silvia; Trafton, Laurence M.; Holler, Bryan J.; McKinnon, William B.; Schenk, Paul M.; Stern, S. Alan; Young, Leslie; Weaver, Harold A.; Olkin, Catherine; Ennico, Kimberly; New Horizons Science Team, The New Horizons Composition Team

    2018-01-01

    Pluto’s surface is known to consist of various volatile ices, mostly N2, CH4, and CO, which sublimate and condense on varying timescales, generally moving from points of high insolation to those of low insolation. The New Horizons Pluto encounter data provide multiple lenses through which to view Pluto’s detailed surface topography and composition and to investigate the distribution of volatiles on its surface, including albedo and elevation maps from the imaging instruments and composition maps from the LEISA spectral imager. The volatile surface ice is expected to be generally isothermal, due to the fact that their vapor pressures are in equilibrium with the atmosphere. Although secular topographic transport mechanisms suggest that points at low elevation should slowly fill with volatile ices (Trafton 2015 DPS abstract, Bertrand and Forget 2017), there are counter-examples of this across the surface, implying that energy discrepancies caused by insolation differences, albedo variations, local slopes, and other effects may take precedence at shorter timescales. Using data from the 2015 New Horizons flyby, we present our results of this investigation into the effects of variations in insolation, albedo, and topography on the presence of the different volatile ices across the surface of Pluto.

  20. Topographic and Other Influences on Pluto's Volatile Ices

    NASA Astrophysics Data System (ADS)

    Lewis, Briley Lynn; Stansberry, John; Grundy, William M.; Schmitt, Bernard; Protopapa, Silvia; Trafton, Laurence M.; Holler, Bryan J.; McKinnon, William B.; Schenk, Paul M.; Stern, S. Alan; Young, Leslie; Weaver, Harold A.; Olkin, Catherine; Ennico, Kimberly; New Horizons Science Team

    2017-10-01

    Pluto’s surface is known to consist of various volatile ices, mostly N2, CH4, and CO, which sublimate and condense on varying timescales, generally moving from points of high insolation to those of low insolation. The New Horizons Pluto encounter data provide multiple lenses through which to view Pluto’s detailed surface topography and composition and to investigate the distribution of volatiles on its surface, including albedo and elevation maps from the imaging instruments and composition maps from the LEISA spectral imager. The volatile surface ice is expected to be generally isothermal, due to the fact that their vapor pressures are in equilibrium with the atmosphere. Although secular topographic transport mechanisms suggest that points at low elevation should slowly fill with volatile ices (Trafton 2015 DPS abstract, Bertrand and Forget 2017), there are counter-examples of this across the surface, implying that energy discrepancies caused by insolation differences, albedo variations, local slopes, and other effects may take precedence at shorter timescales. Using data from the 2015 New Horizons flyby, we present our results of this investigation into the effects of variations in insolation, albedo, and topography on the presence of the different volatile ices across the surface of Pluto.

  1. Human mesenchymal stem cell behavior on femtosecond laser-textured Ti-6Al-4V surfaces.

    PubMed

    Cunha, Alexandre; Zouani, Omar Farouk; Plawinski, Laurent; Botelho do Rego, Ana Maria; Almeida, Amélia; Vilar, Rui; Durrieu, Marie-Christine

    2015-01-01

    The aim of the present work was to investigate ultrafast laser surface texturing as a surface treatment of Ti-6Al-4V alloy dental and orthopedic implants to improve osteoblastic commitment of human mesenchymal stem cells (hMSCs). Surface texturing was carried out by direct writing with an Yb:KYW chirped-pulse regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. The surface topography and chemical composition were investigated by scanning electron microscopy and x-ray photoelectron spectroscopy, respectively. Three types of surface textures with potential interest to improve implant osseointegration can be produced by this method: laser-induced periodic surface structures (LIPSSs); nanopillars (NPs); and microcolumns covered with LIPSSs, forming a bimodal roughness distribution. The potential of the laser treatment in improving hMSC differentiation was assessed by in vitro study of hMSCs spreading, adhesion, elongation and differentiation using epifluorescence microscopy at different times after cell seeding, after specific stainings and immunostainings. Cell area and focal adhesion area were lower on the laser-textured surfaces than on a polished reference surface. Obviously, the laser-textured surfaces have an impact on cell shape. Osteoblastic commitment was observed independently of the surface topography after 2 weeks of cell seeding. When the cells were cultured (after 4 weeks of seeding) in osteogenic medium, LIPSS- and NP- textured surfaces enhanced matrix mineralization and bone-like nodule formation as compared with polished and microcolumn-textured surfaces. The present work shows that surface nanotextures consisting of LIPSSs and NPs can, potentially, improve hMSC differentiation into an osteoblastic lineage.

  2. Classification of regimes of internal solitary waves transformation over a shelf-slope topography

    NASA Astrophysics Data System (ADS)

    Terletska, Kateryna; Maderich, Vladimir; Talipova, Tatiana; Brovchenko, Igor; Jung, Kyung Tae

    2015-04-01

    The internal waves shoal and dissipate as they cross abrupt changes of the topography in the coastal ocean, estuaries and in the enclosed water bodies. They can form near the coast internal bores propagating into the shallows and re-suspend seabed pollutants that may have serious ecological consequences. Internal solitary waves (ISW) with trapped core can transport masses of water and marine organisms for some distance. The transport of cold, low-oxygen waters results in nutrient pumping. These facts require development of classification of regimes of the ISWs transformation over a shelf-slope topography to recognize 'hot spots' of wave energy dissipation on the continental shelf. A new classification of regimes of internal solitary wave interaction with the shelf-slope topography in the framework of two-layer fluid is proposed. We introduce a new three-dimensional diagram based on parameters α ,β , γ. Here α is the nondimensional wave amplitude normalized on the thermocline thickness α = ain/h1 (α > 0), β is the blocking parameter introduced in (Talipova et al., 2013) that is the ratio of the height of the bottom layer on the the shelf step h2+ to the incident wave amplitude ain, β = h2+/ain (β > -3), and γ is the parameter inverse to the slope inclination (γ > 0.01). Two mechanisms are important during wave shoaling: (i) wave breaking resulting in mixing and (ii) changing of the polarity of the initial wave of depression on the slope. Range of the parameters at which wave breaking occurs can be defined using the criteria, obtained empirically (Vlasenko and Hutter, 2002). In the three-dimensional diagram this criteria is represented by the surface f1(β,γ) = 0 that separates the region of parameters where breaking takes place from the region without breaking. The polarity change surface f2(α,β) = 0 is obtained from the condition of equality of the depth of upper layer h1 to the depth of the lower layer h2. In the two-layer stratification waves of depression may be converted to wave of elevation at the 'turning point' (h2 = h1) as they propagate from deep water onto a shallow shelf. Thus intersecting surfaces f1 and f2 divide three-dimensional diagram into four zones. Zone I located above two surfaces and corresponds to the non breaking regime. Zone II lies above 'breaking' surfaces but below the surface of changing polarity and corresponds to regime of changing polarity without breaking. Zone III lies above surface of changing polarity but below 'breaking' surfaces and corresponds to regime of wave breaking without changing polarity. Zone IV that located below two surfaces and corresponds to the regime of wave breaking with changing polarity. Regimes predicted by diagram agree with results of numerical modelling, laboratory and observation data. Based on the proposed diagram the regions in α, β, γ space with a high energy dissipation of ISW passed over the shelf-slope topography are distinguished. References Talipova T., Terletska K., Maderich V, Brovchenko I., Jung K.T., Pelinovsky E. and Grimshaw R. 2013. Internal solitary wave transformation over the bottom step: loss of energy. Phys. Fluids, 25, 032110 Vlasenko V., Hutter K. 2002. Numerical Experiments on the Breaking of Solitary Internal Waves over a Slope-Shelf Topography. J. Phys. Oceanogr., 32 (6), 1779-1793

  3. Simulating Seismic Wave Propagation in Viscoelastic Media with an Irregular Free Surface

    NASA Astrophysics Data System (ADS)

    Liu, Xiaobo; Chen, Jingyi; Zhao, Zhencong; Lan, Haiqiang; Liu, Fuping

    2018-05-01

    In seismic numerical simulations of wave propagation, it is very important for us to consider surface topography and attenuation, which both have large effects (e.g., wave diffractions, conversion, amplitude/phase change) on seismic imaging and inversion. An irregular free surface provides significant information for interpreting the characteristics of seismic wave propagation in areas with rugged or rapidly varying topography, and viscoelastic media are a better representation of the earth's properties than acoustic/elastic media. In this study, we develop an approach for seismic wavefield simulation in 2D viscoelastic isotropic media with an irregular free surface. Based on the boundary-conforming grid method, the 2D time-domain second-order viscoelastic isotropic equations and irregular free surface boundary conditions are transferred from a Cartesian coordinate system to a curvilinear coordinate system. Finite difference operators with second-order accuracy are applied to discretize the viscoelastic wave equations and the irregular free surface in the curvilinear coordinate system. In addition, we select the convolutional perfectly matched layer boundary condition in order to effectively suppress artificial reflections from the edges of the model. The snapshot and seismogram results from numerical tests show that our algorithm successfully simulates seismic wavefields (e.g., P-wave, Rayleigh wave and converted waves) in viscoelastic isotropic media with an irregular free surface.

  4. Tailoring nanocrystalline diamond coated on titanium for osteoblast adhesion.

    PubMed

    Pareta, Rajesh; Yang, Lei; Kothari, Abhishek; Sirinrath, Sirivisoot; Xiao, Xingcheng; Sheldon, Brian W; Webster, Thomas J

    2010-10-01

    Diamond coatings with superior chemical stability, antiwear, and cytocompatibility properties have been considered for lengthening the lifetime of metallic orthopedic implants for over a decade. In this study, an attempt to tailor the surface properties of diamond films on titanium to promote osteoblast (bone forming cell) adhesion was reported. The surface properties investigated here included the size of diamond surface features, topography, wettability, and surface chemistry, all of which were controlled during microwave plasma enhanced chemical-vapor-deposition (MPCVD) processes using CH4-Ar-H2 gas mixtures. The hardness and elastic modulus of the diamond films were also determined. H2 concentration in the plasma was altered to control the crystallinity, grain size, and topography of the diamond coatings, and specific plasma gases (O2 and NH3) were introduced to change the surface chemistry of the diamond coatings. To understand the impact of the altered surface properties on osteoblast responses, cell adhesion tests were performed on the various diamond-coated titanium. The results revealed that nanocrystalline diamond (grain sizes <100 nm) coated titanium dramatically increased surface hardness, and the introduction of O2 and NH3 during the MPCVD process promoted osteoblast adhesion on diamond and, thus, should be further studied for improving orthopedic applications. Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  5. Surface modification induced by UV nanosecond Nd:YVO4 laser structuring on biometals

    NASA Astrophysics Data System (ADS)

    Fiorucci, M. Paula; López, Ana J.; Ramil, Alberto

    2014-08-01

    Laser surface texturing is a promising tool for improving metallic biomaterials performance in dental and orthopedic bone-replacing applications. Laser ablation modifies the topography of bulk material and might alter surface properties that govern the interactions with the surrounding tissue. This paper presents a preliminary evaluation of surface modifications in two biometals, stainless steel 316L and titanium alloy Ti6Al4V by UV nanosecond Nd:YVO4. Scanning electron microscopy of the surface textured by parallel micro-grooves reveals a thin layer of remelted material along the grooves topography. Furthermore, X-ray diffraction allowed us to appreciate a grain refinement of original crystal structure and consequently induced residual strain. Changes in the surface chemistry were determined by means of X-ray photoelectron spectroscopy; in this sense, generalized surface oxidation was observed and characterization of the oxides and other compounds such hydroxyl groups was reported. In case of titanium alloy, oxide layer mainly composed by TiO2 which is a highly biocompatible compound was identified. Furthermore, laser treatment produces an increase in oxide thickness that could improve the corrosion behavior of the metal. Otherwise, laser treatment led to the formation of secondary phases which might be detrimental to physical and biocompatibility properties of the material.

  6. Apollo 12 crewmembers during geological field trip

    NASA Image and Video Library

    1969-10-24

    S69-55662 (10 Oct. 1969) --- Astronauts Alan L. Bean (left) and Charles Conrad Jr., the two crewmen of the Apollo 12 lunar landing mission who are scheduled to participate in two lengthy periods of extravehicular activity (EVA) on the lunar surface, are pictured during a geological field trip and training at a simulated lunar surface area near Flagstaff, Arizona. Here Conrad, the Apollo 12 commander, gets a close look through hand lens at the stratigraphy (study of strata or layers beneath the surface) of a man-dug hole, while Bean, the Apollo 12 mission's lunar module pilot, looks on. The topography in this area, with several man-made modifications, resembles very closely much of the topography found on the lunar surface. While Conrad and Bean explore the lunar surface (plans call for Apollo 12 spacecraft to land in the Sea of Storms), astronaut Richard F. Gordon Jr., command module pilot for the Apollo 12 mission, will remain with the Command and Service Modules (CSM) in lunar orbit. The Apollo 12 mission is scheduled to lift off from Cape Kennedy on Nov. 14, 1969.

  7. Formation of a Crack-Free, Hybrid Skin Layer with Tunable Surface Topography and Improved Gas Permeation Selectivity on Elastomers Using Gel–Liquid Infiltration Polymerization

    DOE PAGES

    Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.; ...

    2017-07-31

    Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less

  8. Formation of a Crack-Free, Hybrid Skin Layer with Tunable Surface Topography and Improved Gas Permeation Selectivity on Elastomers Using Gel–Liquid Infiltration Polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.

    Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less

  9. EAARL coastal topography-Northern Outer Banks, North Carolina, post-Nor'Ida, 2009

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Wright, C.W.; Sallenger, A.H.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Klipp, E.S.; Fredericks, Xan

    2011-01-01

    This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the northern Outer Banks beachface in North Carolina. These datasets were acquired post-Nor'Ida on November 27 and 29, 2009.

  10. Geologic structure of the eastern mare basins. [lunar basalts

    NASA Technical Reports Server (NTRS)

    Dehon, R. A.; Waskom, J. D.

    1976-01-01

    The thickness of mare basalts in the eastern maria are estimated and isopachs of the basalts are constructed. Sub-basalt basin floor topography is determined, and correlations of topographic variations of the surface with variations in basalt thickness or basin floor topography are investigated.

  11. Spectral analysis of topography and gravity in the Basin and Range Province

    USGS Publications Warehouse

    Ricard, Y.; Froidevaux, C.; Simpson, R.

    1987-01-01

    A two-dimensional spectral analysis has been carried out for the topography and the Bouguer gravity anomaly of the Basin and Range Province in western North America. The aim was to investigate the possible presence of dominant wavelengths in the deformation pattern at the surface and at the depth of compensation. The results suggest that a 200-km wavelength in the deep compensating mass distribution has been inherited from an early tectonic phase of extension at an azimuth N65??E. The corresponding surface topography exhibits prominent overtones at wavelength of 100, 75, and possibly 45 km. It is argued that these characterize the non-linear rheology of the upper crust. The short wavelengths in the topography reflect the present phase of deformation, mixed with the results of the older deformations. These results point to a need to extend the physical models of lithospheric stretching beyond the presently available one-phase scenario. However, they show that the boudinage instability concept is consistent with the data. ?? 1987.

  12. Surface topography of composite restorative materials following ultrasonic scaling and its Impact on bacterial plaque accumulation. An in-vitro SEM study.

    PubMed

    Hossam, A Eid; Rafi, A Togoo; Ahmed, A Saleh; Sumanth, Phani Cr

    2013-06-01

    This is an in vitro study to investigate the effects of ultrasonic scaling on the surface roughness and quantitative bacterial count on four different types of commonly used composite restorative materials for class V cavities. Nanofilled, hybrid, silorane and flowable composites were tested. Forty extracted teeth served as specimen and were divided into 4 groups of 10 specimens, with each group receiving a different treatment and were examined by a Field emission scanning electron microscope. Bacterial suspension was then added to the pellicle-coated specimens, and then bacterial adhesion was analyzed by using image analyzing program. Flowable and silorane-based composites showed considerably smoother surfaces and lesser bacterial count in comparison to other types, proving that bacterial adhesion is directly proportional to surface roughness. The use of ultrasonic scalers affects the surfaces of composite restorative materials. Routine periodontal scaling should be carried out very carefully, and polishing of the scaled surfaces may overcome the alterations in roughness, thus preventing secondary caries, surface staining, plaque accumulation and subsequent periodontal inflammation. How to cite this article: Eid H A, Togoo R A, Saleh A A, Sumanth C R. Surface Topography of Composite Restorative Materials following Ultrasonic Scaling and its Impact on Bacterial Plaque Accumulation. An In-Vitro SEM Study. J Int Oral Health 2013; 5(3):13-19.

  13. Surface topography of composite restorative materials following ultrasonic scaling and its Impact on bacterial plaque accumulation. An in-vitro SEM study

    PubMed Central

    Hossam, A. Eid; Rafi, A. Togoo; Ahmed, A Saleh; Sumanth, Phani CR

    2013-01-01

    Background: This is an in vitro study to investigate the effects of ultrasonic scaling on the surface roughness and quantitative bacterial count on four different types of commonly used composite restorative materials for class V cavities. Materials & Methods: Nanofilled, hybrid, silorane and flowable composites were tested. Forty extracted teeth served as specimen and were divided into 4 groups of 10 specimens, with each group receiving a different treatment and were examined by a Field emission scanning electron microscope. Bacterial suspension was then added to the pellicle-coated specimens, and then bacterial adhesion was analyzed by using image analyzing program. Results: Flowable and silorane-based composites showed considerably smoother surfaces and lesser bacterial count in comparison to other types, proving that bacterial adhesion is directly proportional to surface roughness. Conclusion: The use of ultrasonic scalers affects the surfaces of composite restorative materials. Routine periodontal scaling should be carried out very carefully, and polishing of the scaled surfaces may overcome the alterations in roughness, thus preventing secondary caries, surface staining, plaque accumulation and subsequent periodontal inflammation. How to cite this article: Eid H A, Togoo R A, Saleh A A, Sumanth C R. Surface Topography of Composite Restorative Materials following Ultrasonic Scaling and its Impact on Bacterial Plaque Accumulation. An In-Vitro SEM Study. J Int Oral Health 2013; 5(3):13-19. PMID:24155597

  14. Impact of surface porosity and topography on the mechanical behavior of high strength biomedical polymers.

    PubMed

    Evans, Nathan T; Irvin, Cameron W; Safranski, David L; Gall, Ken

    2016-06-01

    The ability to control the surface topography of orthopedic implant materials is desired to improve osseointegration but is often at the expense of mechanical performance in load bearing environments. Here we investigate the effects of surface modifications, roughness and porosity, on the mechanical properties of a set of polymers with diverse chemistry and structure. Both roughness and surface porosity resulted in samples with lower strength, failure strain and fatigue life due to stress concentrations at the surface; however, the decrease in ductility and fatigue strength were greater than the decrease in monotonic strength. The fatigue properties of the injection molded polymers did not correlate with yield strength as would be traditionally observed in metals. Rather, the fatigue properties and the capacity to maintain properties with the introduction of surface porosity correlated with the fracture toughness of the polymers. Polymer structure impacted the materials relative capacity to maintain monotonic and cyclic properties in the face of surface texture and porosity. Generally, amorphous polymers with large ratios of upper to lower yield points demonstrated a more significant drop in ductility and fatigue strength with the introduction of porosity compared to crystalline polymers with smaller ratios in their upper to lower yield strength. The latter materials have more effective dissipation mechanisms to minimize the impact of surface porosity on both monotonic and cyclic damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Imaging surface contacts: Power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic

    USGS Publications Warehouse

    Dieterich, J.H.; Kilgore, B.D.

    1996-01-01

    A procedure has been developed to obtain microscope images of regions of contact between roughened surfaces of transparent materials, while the surfaces are subjected to static loads or undergoing frictional slip. Static loading experiments with quartz, calcite, soda-lime glass and acrylic plastic at normal stresses to 30 MPa yield power law distributions of contact areas from the smallest contacts that can be resolved (3.5 ??m2) up to a limiting size that correlates with the grain size of the abrasive grit used to roughen the surfaces. In each material, increasing normal stress results in a roughly linear increase of the real area of contact. Mechanisms of contact area increase are by growth of existing contacts, coalescence of contacts and appearance of new contacts. Mean contacts stresses are consistent with the indentation strength of each material. Contact size distributions are insensitive to normal stress indicating that the increase of contact area is approximately self-similar. The contact images and contact distributions are modeled using simulations of surfaces with random fractal topographies. The contact process for model fractal surfaces is represented by the simple expedient of removing material at regions where surface irregularities overlap. Synthetic contact images created by this approach reproduce observed characteristics of the contacts and demonstrate that the exponent in the power law distributions depends on the scaling exponent used to generate the surface topography.

  16. Electrodeposition on nanofibrous polymer scaffolds: Rapid mineralization, tunable calcium phosphate composition and topography

    PubMed Central

    He, Chuanglong; Xiao, Guiyong; Jin, Xiaobing; Sun, Chenghui; Ma, Peter X.

    2011-01-01

    We developed a straightforward, fast, and versatile technique to fabricate mineralized nanofibrous polymer scaffolds for bone regeneration in this work. Nanofibrous poly(l-lactic acid) scaffolds were fabricated using both electrospinning and phase separation techniques. An electrodeposition process was designed to deposit calcium phosphate on the nanofibrous scaffolds. Such scaffolds contain a high quality mineral coating on the fiber surface with tunable surface topography and chemical composition by varying the processing parameters, which can mimic the composition and structure of natural bone extracellular matrix and provide a more biocompatible interface for bone regeneration. PMID:21673827

  17. A generalized geologic map of Mars

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Masursky, H.; Saunders, R. S.

    1973-01-01

    A generalized geologic map of Mars has been constructed largely on the basis of differences in the topography of the surface. A number of topographic features on Mars whose form is highly diagnostic of their origin are shown. Of particular note are the shield volcanoes and lava plains. In some areas, the original features have been considerably modified by subsequent erosional and tectonic processes. These have not, however, resulted in homogenization of the planet's surface, but rather have emphasized its variegated character by leaving a characteristic imprint in specific areas. The topography of the planet, therefore, lends itself well to remote geologic interpretation.

  18. ATM Coastal Topography - Louisiana, 2001: UTM Zone 16 (Part 2 of 2)

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, Asbury H.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Louisiana coastline beach face within UTM Zone 16, from Grand Isle to the Chandeleur Islands, acquired September 7 and 9, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first-surface topography.

  19. ATM Coastal Topography-Louisiana, 2001: UTM Zone 15 (Part 1 of 2)

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Klipp, Emily S.; Wright, C. Wayne

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Louisiana coastline beach face within UTM Zone 15, from Isles Dernieres to Grand Isle, acquired September 7 and 10, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first-surface topography.

  20. ATM Coastal Topography-Texas, 2001: UTM Zone 14

    USGS Publications Warehouse

    Klipp, Emily S.; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Yates, Xan; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Texas coastline within UTM zone 14, acquired October 12-13, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first-surface topography.

  1. ATM Coastal Topography-Texas, 2001: UTM Zone 15

    USGS Publications Warehouse

    Klipp, Emily S.; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Yates, Xan; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Texas coastline within UTM zone 15, from Matagorda Peninsula to Galveston Island, acquired October 12-13, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first-surface topography.

  2. ATM Coastal Topography-Florida 2001: Western Panhandle

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the western Florida panhandle coastline, acquired October 2-4 and 7-10, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography.

  3. ATM Coastal Topography-Mississippi, 2001

    USGS Publications Warehouse

    Nayegandhi, Amar; Yates, Xan; Brock, John C.; Sallenger, A.H.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Mississippi coastline, from Lakeshore to Petit Bois Island, acquired September 9-10, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first-surface topography.

  4. Exploring the Influence of Topography on Belowground C Processes Using a Coupled Hydrologic-Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Davis, K. J.; Eissenstat, D. M.; Kaye, J. P.; Duffy, C.; Yu, X.; He, Y.

    2014-12-01

    Belowground carbon processes are affected by soil moisture and soil temperature, but current biogeochemical models are 1-D and cannot resolve topographically driven hill-slope soil moisture patterns, and cannot simulate the nonlinear effects of soil moisture on carbon processes. Coupling spatially-distributed physically-based hydrologic models with biogeochemical models may yield significant improvements in the representation of topographic influence on belowground C processes. We will couple the Flux-PIHM model to the Biome-BGC (BBGC) model. Flux-PIHM is a coupled physically-based land surface hydrologic model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. The coupled Flux-PIHM-BBGC model will be tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, above ground carbon stock, and soil carbon efflux, make SSHCZO an ideal test bed for the coupled model. In the coupled model, each Flux-PIHM model grid will couple a BBGC cell. Flux-PIHM will provide BBGC with soil moisture and soil temperature information, while BBGC provides Flux-PIHM with leaf area index. Preliminary results show that when Biome- BGC is driven by PIHM simulated soil moisture pattern, the simulated soil carbon is clearly impacted by topography.

  5. ZnO nanoparticle incorporated nanostructured metallic titanium for increased mesenchymal stem cell response and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Elizabeth, Elmy; Baranwal, Gaurav; Krishnan, Amit G.; Menon, Deepthy; Nair, Manitha

    2014-03-01

    Recent trends in titanium implants are towards the development of nanoscale topographies that mimic the nanoscale properties of bone tissue. Although the nanosurface promotes the integration of osteoblast cells, infection related problems can also occur, leading to implant failure. Therefore it is imperative to reduce bacterial adhesion on an implant surface, either with or without the use of drugs/antibacterial agents. Herein, we have investigated two different aspects of Ti surfaces in inhibiting bacterial adhesion and concurrently promoting mammalian cell adhesion. These include (i) the type of nanoscale topography (Titania nanotube (TNT) and Titania nanoleaf (TNL)) and (ii) the presence of an antibacterial agent like zinc oxide nanoparticles (ZnOnp) on Ti nanosurfaces. To address this, periodically arranged TNT (80-120 nm) and non-periodically arranged TNL surfaces were generated by the anodization and hydrothermal techniques respectively, and incorporated with ZnOnp of different concentrations (375 μM, 750 μM, 1.125 mM and 1.5 mM). Interestingly, TNL surfaces decreased the adherence of staphylococcus aureus while increasing the adhesion and viability of human osteosarcoma MG63 cell line and human mesenchymal stem cells, even in the absence of ZnOnp. In contrast, TNT surfaces exhibited an increased bacterial and mammalian cell adhesion. The influence of ZnOnp on these surfaces in altering the bacterial and cell adhesion was found to be concentration dependent, with an optimal range of 375-750 μM. Above 750 μM, although bacterial adhesion was reduced, cellular viability was considerably affected. Thus our study helps us to infer that nanoscale topography by itself or its combination with an optimal concentration of antibacterial ZnOnp would provide a differential cell behavior and thereby a desirable biological response, facilitating the long term success of an implant.

  6. Broad perspectives in radar for ocean measurements

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1978-01-01

    The various active radar implementation options available for the measurement functions of interest for the SEASAT follow-on missions were evaluated. These functions include surface feature imaging, surface pressure and vertical profile, atmospheric sounding, surface backscatter and wind speed determination, surface current location, wavelength spectra, sea surface topography, and ice/snow thickness. Some concepts for the Synthetic Aperture Imaging Radar were examined that may be useful in the design and selection of the implementation options for these missions. The applicability of these instruments for the VOIR mission was also kept under consideration.

  7. Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate

    DOEpatents

    Mazur, Eric [Concord, MA; Shen, Mengyan [Arlington, MA

    2008-10-28

    The present invention generally provides semiconductor substrates having submicron-sized surface features generated by irradiating the surface with ultra short laser pulses. In one aspect, a method of processing a semiconductor substrate is disclosed that includes placing at least a portion of a surface of the substrate in contact with a fluid, and exposing that surface portion to one or more femtosecond pulses so as to modify the topography of that portion. The modification can include, e.g., generating a plurality of submicron-sized spikes in an upper layer of the surface.

  8. Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate

    DOEpatents

    Mazur, Eric; Shen, Mengyan

    2015-09-15

    The present invention generally provides semiconductor substrates having submicronsized surface features generated by irradiating the surface with ultra short laser pulses. In one aspect, a method of processing a semiconductor substrate is disclosed that includes placing at least a portion of a surface of the substrate in contact with a fluid, and exposing that surface portion to one or more femtosecond pulses so as to modify the topography of that portion. The modification can include, e.g., generating a plurality of submicron-sized spikes in an upper layer of the surface.

  9. Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate

    DOEpatents

    Mazur, Eric , Shen; Mengyan, [Belmont, MA

    2011-02-08

    The present invention generally provides semiconductor substrates having submicron-sized surface features generated by irradiating the surface with ultra short laser pulses. In one aspect, a method of processing a semiconductor substrate is disclosed that includes placing at least a portion of a surface of the substrate in contact with a fluid, and exposing that surface portion to one or more femtosecond pulses so as to modify the topography of that portion. The modification can include, e.g., generating a plurality of submicron-sized spikes in an upper layer of the surface.

  10. Present and Future Surface Mass Budget of Small Arctic Ice Caps in a High Resolution Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Mottram, Ruth; Langen, Peter; Koldtoft, Iben; Midefelt, Linnea; Hesselbjerg Christensen, Jens

    2016-04-01

    Globally, small ice caps and glaciers make a substantial contribution to sea level rise; this is also true in the Arctic. Around Greenland small ice caps are surprisingly important to the total mass balance from the island as their marginal coastal position means they receive a large amount of precipitation and also experience high surface melt rates. Since small ice caps and glaciers have had a disproportionate number of long-term monitoring and observational schemes in the Arctic, likely due to their relative accessibility, they can also be a valuable source of data. However, in climate models the surface mass balance contributions are often not distinguished from the main ice sheet and the presence of high relief topography is difficult to capture in coarse resolution climate models. At the same time, the diminutive size of marginal ice masses in comparison to the ice sheet makes modelling their ice dynamics difficult. Using observational data from the Devon Ice Cap in Arctic Canada and the Renland Ice Cap in Eastern Greenland, we assess the success of a very high resolution (~5km) regional climate model, HIRHAM5 in capturing the surface mass balance (SMB) of these small ice caps. The model is forced with ERA-Interim and we compare observed mean SMB and the interannual variability to assess model performance. The steep gradient in topography around Renland is challenging for climate models and additional statistical corrections are required to fit the calculated surface mass balance to the high relief topography. Results from a modelling experiment at Renland Ice Cap shows that this technique produces a better fit between modelled and observed surface topography. We apply this statistical relationship to modelled SMB on the Devon Ice Cap and use the long time series of observations from this glacier to evaluate the model and the smoothed SMB. Measured SMB values from a number of other small ice caps including Mittivakkat and A.P. Olsen ice cap are also compared with model output. Finally we use climate simulations forced with two different RCP scenarios to examine the likely future evolution of SMB over these small ice masses.

  11. Fill and spill drives runoff connectivity over frozen ground

    NASA Astrophysics Data System (ADS)

    Coles, A. E.; McDonnell, J. J.

    2018-03-01

    Snowmelt-runoff processes on frozen ground are poorly understood at the hillslope scale. This is especially true for hillslopes on the northern Great Plains of North America where long periods of snow-covered frozen ground with very shallow slopes mask any spatial patterns and process controls on connectivity and hillslope runoff generation. This study examines a 4.66 ha (46,600 m2) hillslope on the northern Great Plains during the 2014 spring snowmelt season to explore hillslope runoff processes. Specifically, we explore the spatial patterns of runoff production source areas and examine how surface topography and patterns of snow cover, snow water equivalent, soil water content, and thawed layer depth - which we measured on a 10 m grid across our 46,600 m2 hillslope - affect melt water partitioning and runoff connectivity. A key question was whether or not the controls on connectivity are consistent with the fill and spill mechanism found in rain-dominated and unfrozen soil domains. The contrast between the slow infiltration rates into frozen soil and the relatively fast rates of snowmelt delivery to the soil surface resulted in water accumulation in small depressions under the snowpack. Consequently, infiltration was minimal over the 12 day melt period. Instead, nested filling of micro- and meso-depressions was followed by macro-scale, whole-slope spilling. This spilling occurred when large patches of ponded water exceeded the storage capacity behind downslope micro barriers in the surface topography, and flows from them coalesced to drive a rapid increase in runoff at the hillslope outlet. These observations of ponded water and flowpaths followed mapable fill and spill locations based on 2 m resolution digital topographic analysis. Interestingly, while surface topography is relatively unimportant under unfrozen conditions at our site because of low relief and high infiltrability, surface topography shows episodically critical importance for connectivity and runoff generation when the ground is frozen.

  12. Does Titan's Landscape Betray the Late Acquisitions of Its Current Atmosphere?

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Nimmo, F.

    2012-01-01

    Titan may have acquired its massive atmosphere relatively recently in solar system history. The sudden appearance of a thick atmosphere may have changed Titan's global topography. This change in global topography may be expressed in the latitudinal distribution of landform types across its surface.

  13. From Outlet Glacier Changes to Ice Sheet Mass Balance - Evolution of Greenland Ice Sheet from Laser Altimetry Data

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Schenk, A.; Nagarajan, S.; Babonis, G. S.

    2010-12-01

    Investigations of ice sheet mass balance and the changing dynamics of outlet glaciers have been hampered by the lack of comprehensive data. In recent years, this situation has been remedied. Satellite laser altimetry data from the Ice Cloud and land Elevation Satellite mission (ICESat), combined with airborne laser altimetry, provide accurate measurements of surface elevation changes, and surface velocities derived from various satellite platforms yield crucial information on changing glacier dynamics. Taken together, a rich and diverse data set is emerging that allows for characterizing the spatial and temporal evolution of ice sheets and outlet glaciers. In particular, it enables quantitative studies of outlet glaciers undergoing rapid and complex changes. Although airborne and laser altimetry have been providing precise measurements of ice sheet topography since the early 1990s, determining detailed and accurate spatial and temporal distribution of surface changes remains a challenging problem. We have developed a new, comprehensive method, called Surface Elevation Reconstruction And Change detection (SERAC), which estimates surface changes by a simultaneous reconstruction of surface topography from fused multisensor data. The mathematical model is based on the assumption that for a small surface area, only the absolute elevation changes over time but not the shape of the surface patch. Therefore, laser points of all time epochs contribute to the shape parameters; points of each time period determine the absolute elevation of the surface patch at that period. This method provides high-resolution surface topography, precise changes and a rigorous error estimate of the quantities. By using SERAC we combined ICESat and ATM laser altimetry data to determine the evolution of surface change rates of the whole Greenland Ice Sheet between 2003 and 2009 on a high-resolution grid. Our reconstruction, consistent with GRACE results, shows ice sheet thinning propagating along the NW coast, and thinning expanding to higher elevations in SW and N Greenland. Several outlet glaciers, for example Humboldt and Petermann glaciers in NW Greenland and Kangilerngata Sermia in W Greenland exhibit a complex spatial and temporal pattern of thickening-thinning with regions of thickening observed at lower elevations. We will examine the thickening and thinning history and the record of surface velocity of these glaciers to investigate the processes responsible for initiating and sustaining these changes. Moreover, by analyzing the detailed surface elevation change history along flowlines or across drainage basins, the propagation of thinning following perturbations at the glacier terminus can be investigated. Results, depicting the evolution of surface elevation changes of three major outlet glaciers, Jakobshavn, Helheim and Kangerlussuaq glaciers, will be shown.

  14. 30 CFR 736.22 - Contents of a Federal program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 736.22 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE..., the Director shall— (1) Consider the nature of that State's soils, topography, climate, and biological... of coal exploration and surface coal mining and reclamation operations more stringent than those...

  15. Closed depression topography Harps soil, revisited

    USDA-ARS?s Scientific Manuscript database

    Accumulation of carbonates around depressions indicates past or present water and solute flow paths out and up from the depressions. The purpose of this study was to determine the pattern of surface carbonates in relation to landscape parameters, depressions, and original Harps map units. Surface ca...

  16. Effects of topographical and mechanical property alterations induced by oxygen plasma modification on stem cell behavior.

    PubMed

    Yang, Yong; Kulangara, Karina; Lam, Ruby T S; Dharmawan, Rena; Leong, Kam W

    2012-10-23

    Polymeric substrates intended for cell culture and tissue engineering are often surface-modified to facilitate cell attachment of most anchorage-dependent cell types. The modification alters the surface chemistry and possibly topography. However, scant attention has been paid to other surface property alterations. In studying oxygen plasma treatment of polydimethylsiloxane (PDMS), we show that oxygen plasma treatment alters the surface chemistry and, consequently, the topography and elasticity of PDMS at the nanoscale level. The elasticity factor has the predominant effect, compared with the chemical and topographical factors, on cell adhesions of human mesenchymal stem cells (hMSCs). The enhanced focal adhesions favor cell spreading and osteogenesis of hMSCs. Given the prevalent use of PDMS in biomedical device construction and cell culture experiments, this study highlights the importance of understanding how oxygen plasma treatment would impact subsequent cell-substrate interactions. It helps explain inconsistency in the literature and guides preparation of PDMS-based biomedical devices in the future.

  17. Microreplication of laser-fabricated surface and three-dimensional structures

    NASA Astrophysics Data System (ADS)

    Koroleva, Anastasia; Schlie, Sabrina; Fadeeva, Elena; Gittard, Shaun D.; Miller, Philip; Ovsianikov, Aleksandr; Koch, Jürgen; Narayan, Roger J.; Chichkov, Boris N.

    2010-12-01

    The fabrication of defined surface topographies and three-dimensional structures is a challenging process for various applications, e.g. in photonics and biomedicine. Laser-based technologies provide a promising approach for the production of such structures. The advantages of femtosecond laser ablation and two-photon polymerization for microstructuring are well known. However, these methods cannot be applied to all materials and are limited by their high cost and long production time. In this study, biomedical applications of an indirect rapid prototyping, molding microreplication of laser-fabricated two- and three-dimensional structures are examined. We demonstrate that by this method any laser-generated surface topography as well as three-dimensional structures can be replicated in various materials without losing the original geometry. The replication into multiple copies enables fast and perfect reproducibility of original microstructures for investigations of cell-surface interactions. Compared to unstructured materials, we observe that microstructures have strong influence on morphology and localization of fibroblasts, whereas neuroblastoma cells are not negatively affected.

  18. Single-shot femtosecond laser ablation of gold surface in air and isopropyl alcohol

    NASA Astrophysics Data System (ADS)

    Kudryashov, S. I.; Saraeva, I. N.; Lednev, V. N.; Pershin, S. M.; Rudenko, A. A.; Ionin, A. A.

    2018-05-01

    Single-shot IR femtosecond-laser ablation of gold surfaces in ambient air and liquid isopropyl alcohol was studied by scanning electron microscopy characterization of crater topographies and time-resolved optical emission spectroscopy of ablative plumes in regimes, typical for non-filamentary and non-fragmentation laser production of nanoparticle sols. Despite one order of magnitude shorter (few nanoseconds) lifetimes and almost two orders of magnitude lower intensities of the quenched ablative plume emission in the alcohol ambient at the same peak laser fluence, craters for the dry and wet conditions appeared with rather similar nanofoam-like spallative topographies and the same thresholds. These facts envision the underlying surface spallation as one of the basic ablation mechanisms relevant for both dry and wet advanced femtosecond laser surface nano/micro-machining and texturing, as well as for high-throughput femtosecond laser ablative production of colloidal nanoparticles by MHz laser-pulse trains via their direct nanoscale jetting from the nanofoam in air and fluid environments.

  19. Multiscale physics of rubber-ice friction

    NASA Astrophysics Data System (ADS)

    Tuononen, Ari J.; Kriston, András; Persson, Bo

    2016-09-01

    Ice friction plays an important role in many engineering applications, e.g., tires on icy roads, ice breaker ship motion, or winter sports equipment. Although numerous experiments have already been performed to understand the effect of various conditions on ice friction, to reveal the fundamental frictional mechanisms is still a challenging task. This study uses in situ white light interferometry to analyze ice surface topography during linear friction testing with a rubber slider. The method helps to provide an understanding of the link between changes in the surface topography and the friction coefficient through direct visualization and quantitative measurement of the morphologies of the ice surface at different length scales. Besides surface polishing and scratching, it was found that ice melts locally even after one sweep showing the refrozen droplets. A multi-scale rubber friction theory was also applied to study the contribution of viscoelasticity to the total friction coefficient, which showed a significant level with respect to the smoothness of the ice; furthermore, the theory also confirmed the possibility of local ice melting.

  20. Insight into large-scale topography on analysis of high-frequency Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Ping, Ping; Chu, Risheng; Chong, Jiajun; Ni, Sidao; Zhang, Yu

    2018-03-01

    The dispersion of surface waves could be biased in regions where topography is comparable to the wavelength. We investigate the effects on high-frequency Rayleigh waves propagating in a typical massif model through numerical simulations. High-frequency Rayleigh waves have relatively higher signal-to-noise ratios (SNR) using the Q component in the LQT coordinate system, perpendicular to the local free surface in these topographic models. When sources and stations are located at different sides of the massif, the conventional dispersion image overestimates phase velocities of Rayleigh waves, as much as 25% with topographic height/width ratio (H/r) > 0.5. The dispersion perturbation is more distinctive for fundamental modes. Using a two-layer model, the thickness deviation (ΔD/D) may be significant in surface-wave inversion due to the variation of H/r and the thickness of the first layer. These phenomena cannot be ignored in surface-wave interpretations, nevertheless they are trivial for the source and stations located at the same side of the massif.

  1. Dual-detector X-ray fluorescence imaging of ancient artifacts with surface relief

    PubMed Central

    Smilgies, Detlef-M.; Powers, Judson A.; Bilderback, Donald H.; Thorne, Robert E.

    2012-01-01

    Interpretation of X-ray fluorescence images of archeological artifacts is complicated by the presence of surface relief and roughness. Using two symmetrically arranged fluorescence detectors in a back-reflection geometry, the proper X-ray fluorescence yield can be distinguished from intensity variations caused by surface topography. This technique has been applied to the study of Roman inscriptions on marble. PMID:22713888

  2. Topography from shading and stereo

    NASA Technical Reports Server (NTRS)

    Horn, Berthold K. P.

    1994-01-01

    Methods exploiting photometric information in images that have been developed in machine vision can be applied to planetary imagery. Integrating shape from shading, binocular stereo, and photometric stereo yields a robust system for recovering detailed surface shape and surface reflectance information. Such a system is useful in producing quantitative information from the vast volume of imagery being received, as well as in helping visualize the underlying surface.

  3. The planet Mercury (1971)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The physical properties of the planet Mercury, its surface, and atmosphere are presented for space vehicle design criteria. The mass, dimensions, mean density, and orbital and rotational motions are described. The gravity field, magnetic field, electromagnetic radiation, and charged particles in the planet's orbit are discussed. Atmospheric pressure, temperature, and composition data are given along with the surface composition, soil mechanical properties, and topography, and the surface electromagnetic and temperature properties.

  4. Laser Surface Preparation for Adhesive Bonding of Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Belcher, Marcus A.; List, Martina S.; Wohl, Christopher J.; Ghose, Sayata; Watson, Kent A.; Hopkins, John W.; Connell, John W.

    2010-01-01

    Adhesively bonded structures are potentially lighter in weight than mechanically fastened ones, but existing surface treatments are often considered unreliable. Two main problems in achieving reproducible and durable adhesive bonds are surface contamination and variability in standard surface preparation techniques. In this work three surface pretreatments were compared: laser etching with and without grit blasting and conventional Pasa-Jell treatment. Ti-6Al-4V surfaces were characterized by contact angle goniometry, optical microscopy, and X-ray photoelectron spectroscopy (XPS). Laser -etching was found to produce clean surfaces with precisely controlled surface topographies and PETI-5 lap shear strengths and durabilities were equivalent to those produced with Pasa-Jell.

  5. Calibration of z-axis linearity for arbitrary optical topography measuring instruments

    NASA Astrophysics Data System (ADS)

    Eifler, Matthias; Seewig, Jörg; Hering, Julian; von Freymann, Georg

    2015-05-01

    The calibration of the height axis of optical topography measurement instruments is essential for reliable topography measurements. A state of the art technology for the calibration of the linearity and amplification of the z-axis is the use of step height artefacts. However, a proper calibration requires numerous step heights at different positions within the measurement range. The procedure is extensive and uses artificial surface structures that are not related to real measurement tasks. Concerning these limitations, approaches should to be developed that work for arbitrary topography measurement devices and require little effort. Hence, we propose calibration artefacts which are based on the 3D-Abbott-Curve and image desired surface characteristics. Further, real geometric structures are used as an initial point of the calibration artefact. Based on these considerations, an algorithm is introduced which transforms an arbitrary measured surface into a measurement artefact for the z-axis linearity. The method works both for profiles and topographies. For considering effects of manufacturing, measuring, and evaluation an iterative approach is chosen. The mathematical impact of these processes can be calculated with morphological signal processing. The artefact is manufactured with 3D laser lithography and characterized with different optical measurement devices. An introduced calibration routine can calibrate the entire z-axis-range within one measurement and minimizes the required effort. With the results it is possible to locate potential linearity deviations and to adjust the z-axis. Results of different optical measurement principles are compared in order to evaluate the capabilities of the new artefact.

  6. Viscous relaxation as a prerequisite for tectonic resurfacing on Ganymede: Insights from numerical models of lithospheric extension

    USGS Publications Warehouse

    Bland, Michael T.; McKinnon, William B.

    2018-01-01

    Ganymede’s bright terrain formed during a near-global resurfacing event (or events) that produced both heavily tectonized and relatively smooth terrains. The mechanism(s) by which resurfacing occurred on Ganymede (e.g., cryovolcanic or tectonic), and the relationship between the older, dark and the younger, bright terrain are fundamental to understanding the geological evolution of the satellite. Using a two-dimensional numerical model of lithospheric extension that has previously been used to successfully simulate surface deformation consistent with grooved terrain morphologies, we investigate whether large-amplitude preexisting topography can be resurfaced (erased) by extension (i.e., tectonic resurfacing). Using synthetically produced initial topography, we show that when the total relief of the initial topography is larger than 25–50 m, periodic groove-like structures fail to form. Instead, extension is localized in a few individual, isolated troughs. These results pose a challenge to the tectonic resurfacing hypothesis. We further investigate the effects of preexisting topography by performing suites of simulations initialized with topography derived from digital terrain models of Ganymede’s surface. These include dark terrain, fresh (relatively deep) impact craters, smooth bright terrain, and a viscously relaxed impact crater. The simulations using dark terrain and fresh impact craters are consistent with our simulations using synthetic topography: periodic groove-like deformation fails to form. In contrast, when simulations were initialized with bright smooth terrain topography, groove-like deformation results from a wide variety of heat flow and surface temperature conditions. Similarly, when a viscously relaxed impact crater was used, groove-like structures were able to form during extension. These results suggest that tectonic resurfacing may require that the amplitude of the initial topography be reduced before extension begins. We emphasize that viscous relaxation may be the key to enabling tectonic resurfacing, as the heat fluxes associated with groove terrain formation are also capable of reducing crater topography through viscous relaxation. For long-wavelength topography (large craters) viscous relaxation is unavoidable. We propose that the resurfacing of Ganymede occurred through a combination of viscous relaxation, tectonic resurfacing, cryovolcanism and, at least in a few cases, band formation. Variations in heat flow and strain magnitudes across Ganymede likely produced the complex variety of terrain types currently observed.

  7. Viscous relaxation as a prerequisite for tectonic resurfacing on Ganymede: Insights from numerical models of lithospheric extension

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; McKinnon, William B.

    2018-05-01

    Ganymede's bright terrain formed during a near-global resurfacing event (or events) that produced both heavily tectonized and relatively smooth terrains. The mechanism(s) by which resurfacing occurred on Ganymede (e.g., cryovolcanic or tectonic), and the relationship between the older, dark and the younger, bright terrain are fundamental to understanding the geological evolution of the satellite. Using a two-dimensional numerical model of lithospheric extension that has previously been used to successfully simulate surface deformation consistent with grooved terrain morphologies, we investigate whether large-amplitude preexisting topography can be resurfaced (erased) by extension (i.e., tectonic resurfacing). Using synthetically produced initial topography, we show that when the total relief of the initial topography is larger than 25-50 m, periodic groove-like structures fail to form. Instead, extension is localized in a few individual, isolated troughs. These results pose a challenge to the tectonic resurfacing hypothesis. We further investigate the effects of preexisting topography by performing suites of simulations initialized with topography derived from digital terrain models of Ganymede's surface. These include dark terrain, fresh (relatively deep) impact craters, smooth bright terrain, and a viscously relaxed impact crater. The simulations using dark terrain and fresh impact craters are consistent with our simulations using synthetic topography: periodic groove-like deformation fails to form. In contrast, when simulations were initialized with bright smooth terrain topography, groove-like deformation results from a wide variety of heat flow and surface temperature conditions. Similarly, when a viscously relaxed impact crater was used, groove-like structures were able to form during extension. These results suggest that tectonic resurfacing may require that the amplitude of the initial topography be reduced before extension begins. We emphasize that viscous relaxation may be the key to enabling tectonic resurfacing, as the heat fluxes associated with groove terrain formation are also capable of reducing crater topography through viscous relaxation. For long-wavelength topography (large craters) viscous relaxation is unavoidable. We propose that the resurfacing of Ganymede occurred through a combination of viscous relaxation, tectonic resurfacing, cryovolcanism and, at least in a few cases, band formation. Variations in heat flow and strain magnitudes across Ganymede likely produced the complex variety of terrain types currently observed.

  8. Topography of the Flattest Surface on Earth: using ICESAT, GPS, and MISR to Measure Salt Surface Topography on Salar de Uyuni, Bolivia

    NASA Technical Reports Server (NTRS)

    Comstock, Robert L.; Bills, Bruce G.

    2004-01-01

    Salt flats are aptly named: they are composed largely of salt, and are maintained as nearly equipotential surfaces via frequent flooding. The salar de Uyuni, on the Altiplano in southwestern Bolivia, is the largest salt flat on Earth, with an area of 9,800 sq km. Except for a few bedrock islands, it has less than 40 cm of relief. The upper-most salt unit averages 5 m thick and contains 50 cu km of nearly pure halite. It includes most of the salt that was in solution in paleolake Minchin, which attained a maximum area of 60,000 sq km and a maximum depth of 150 m, roughly 15 kyr ago. Despite approx. 10 m of differential isostatic rebound since deposition, the salar surface has been actively maintained as an extraordinarily flat and smooth surface by annual flooding during the rainy season. We have used the strong optical absorption properties of water in the visible band to map spatial variations in water depth during a time when the salar was flooded. As water depth increases, the initially pure white surface appears both darker and bluer. We utilized MISR images taken during the interval from April to November 2001. The red and infra-red bands (672 and 867 nm wavelength) were most useful since the water depth is small and the absorption at those wavelengths is quite strong. Nadir pointed MISR images have 275 m spatial resolution. To aid in our evaluation of water depth variations over the saiar surface, we utilized two sources of direct topographic measurements: several ICESAT altimetry tracks cross the area, and a 40x50 km GPS grid was surveyed to calibrate ICESAT. A difficulty in using these data types is that both give salt surface elevations relative to the ellipsoid, whereas the water surface will, in the absence of wind or tidal disturbances, follow an equipotential surface. Geoid height is not known to the required accuracy of a few cm in the central Andes. As a result, before comparing optical absorption from MISR to salt surface topography from GPS or ICESAT, we removed the longest wavelengths from both.

  9. Reconstructing the paleo-topography and paleo-environmental features of the Sarno River plain (Italy) before the AD 79 eruption of Somma-Vesuvius volcanic complex

    NASA Astrophysics Data System (ADS)

    Vogel, Sebastian; Märker, Michael

    2010-05-01

    SSP1.4 Understanding mixed siliciclastic-volcaniclastic depositional systems and their relationships with geodynamics or GD2.3/CL4.14/GM5.8/MPRG22/SSP3.5 Reconstruction of ancient continents: Dating and characterization of paleosurfaces Reconstructing the paleo-topography and paleo-environmental features of the Sarno River plain (Italy) before the AD 79 eruption of Somma-Vesuvius volcanic complex Sebastian Vogel[1] & Michael Märker[1] [1] Heidelberg Academy of Sciences and Humanities c/o University of Tübingen, Rümelinstraße 19-23, D-72070 Tübingen, Germany. Within the geoarchaeological research project "Reconstruction of the Ancient Cultural Landscape of the Sarno River Plain" undertaken by the German Archaeological Institute in cooperation with the Heidelberg Academy of Sciences and Humanities/University of Tübingen a methodology was developed to model the spatial dispersion of volcanic deposits of Somma-Vesuvius volcanic complex since its Plinian eruption AD 79. Eventually, this was done to reconstruct the paleo-topography and paleo-environment of the Sarno River plain before the eruption AD 79. We collected, localized and digitized more than 1,800 core drillings to gain a representative network of stratigraphical information covering the entire plain. Besides other stratigraphical data including the characteristics of the pre-AD 79 stratum, the depth to the pre-AD 79 paleo-surface was identified from the available drilling documentation. Instead of applying a simple interpolation of the drilling data, we reconstructed the pre-AD 79 paleo-surface with a sophisticated geostatistical methodology using a machine based learning approach based on classification and regression trees. We hypothesize that the present-day topography reflects the ancient topography, because the eruption of AD 79 coated the ancient topography, leaving ancient physiographic elements of the Sarno River plain still recognizable in the present-day topography. Therefore, a high resolution, present-day digital elevation model (DEM) was generated. A detailed terrain analysis yielded 15 different primary and secondary topographic indices of the present-day DEM. Then, a classification and regression model was generated combining the present-day topographic indices to predict the depth of the pre-AD 79 surface. This model was calibrated with the measured depth of the pre-AD 79 surface from the drilling data. To gain a pre-AD 79 digital elevation model (DEM) the modeled depth of the pre-AD 79 surface was subtracted from the present-day DEM. To reconstruct some paleo-environmental features, such as the paleo-coast and the paleo-river network and its flood plain, the modeled pre-AD 79 DEM was compared with the classified characteristic of the pre-AD 79 stratum, identified from the drilling documentation. It is the first time that the paleo-topography and paleo-environmental features of the Sarno River basin were systematically reconstructed using a detailed database of input variables and sophisticated data mining technologies. Keywords: Sarno River Basin, Roman paleo-topography, paleo-environment, stratigraphical core drillings, Classification and Regression Trees

  10. F 2 excimer laser (157 nm) radiation modification and surface ablation of PHEMA hydrogels and the effects on bioactivity: Surface attachment and proliferation of human corneal epithelial cells

    NASA Astrophysics Data System (ADS)

    Zainuddin; Chirila, Traian V.; Barnard, Zeke; Watson, Gregory S.; Toh, Chiong; Blakey, Idriss; Whittaker, Andrew K.; Hill, David J. T.

    2011-02-01

    Physical and chemical changes at the surface of poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels modified by ablation with an F 2 excimer laser were investigated experimentally. An important observation was that only the outer exposed surface layers of the hydrogel were affected by the exposure to 157 nm radiation. The effect of the surface changes on the tendency of cells to adhere to the PHEMA was also investigated. A 0.5 cm 2 area of the hydrogel surfaces was exposed to laser irradiation at 157 nm to fluences of 0.8 and 4 J cm -2. The changes in surface topography were analysed by light microscopy and atomic force microscopy, while the surface chemistry was characterized by attenuated total reflection infrared and X-ray photoelectron spectroscopies. Cell-interfacial interactions were examined based on the proliferation of human corneal limbal epithelial (HLE) cells cultured on the laser-modified hydrogels, and on the unexposed hydrogels and tissue culture plastic for comparison. It was observed that the surface topography of laser-exposed hydrogels showed rippled patterns with a surface roughness increasing at the higher exposure dose. The changes in surface chemistry were affected not only by an indirect effect of hydrogen and hydroxyl radicals, formed by water photolysis, on the PHEMA, but also by the direct action of laser radiation on PHEMA if the surface layers of the gel become depleted of water. The laser treatment led to a change in the surface characteristics, with a lower concentration of ester side-chains and the formation of new oxygenated species at the surface. The surface also became more hydrophobic. Most importantly, the surface chemistry and the newly created surface topographical features were able to improve the attachment, spreading and growth of HLE cells.

  11. Influence of nanohydroxyapatite surface properties on Staphylococcus epidermidis biofilm formation.

    PubMed

    Barros, J; Grenho, L; Manuel, C M; Ferreira, C; Melo, L; Nunes, O C; Monteiro, F J; Ferraz, M P

    2014-05-01

    Nanohydroxyapatite (nanoHA), due to its chemical properties, has appeared as an exceptionally promising bioceramic to be used as bone regeneration material. Staphylococcus epidermidis have emerged as major nosocomial pathogens associated with infections of implanted medical devices. In this work, the purpose was to study the influence of the nanoHA surface characteristics on S. epidermidis RP62A biofilm formation. Therefore, two different initial inoculum concentrations (Ci) were used in order to check if these would affect the biofilm formed on the nanoHA surfaces. Biofilm formation was followed by the enumeration of cultivable cells and by scanning electron microscopy. Surface topography, contact angle, total surface area and porosimetry of the biomaterials were studied and correlated with the biofilm data. The surface of nanoHA sintered at 830 (nanoHA830) showed to be more resistant to S. epidermidis attachment and accumulation than that of nanoHA sintered at 1000 (nanoHA1000). The biofilm formed on nanoHA830 presented differences in terms of structure, surface coverage and EPS production when compared to the one formed on nanoHA1000 surface. It was observed that topography and surface area of nanoHA surfaces had influence on the bacterial attachment and accumulation. Ci influenced bacteria attachment and accumulation on nanoHA surfaces over time. The choice of the initial inoculum concentration was relevant proving to have an effect on the extent of adherence thus being a critical point for human health if these materials are used in implantable devices. This study showed that the initial inoculum concentration and surface material properties determine the rate of microbial attachment to substrata and consequently are related to biofilm-associated infections in biomaterials.

  12. Analysis and Simulation of 3D Scattering due to Heterogeneous Crustal Structure and Surface Topography on Regional Phases; Magnitude and Discrimination

    DTIC Science & Technology

    2009-07-07

    inversion technique that is based on different weights for relatively high frequency waveform modeling of Pnl and relatively long period surface waves (Tan...et al., 2006). Pnl and surface waves are also allowed to shift in time to take into account of uncertainties in velocity structure. Joint...inversion of Pnl and surface waves provides better constraints on focal depth as well as source mechanisms. The pure strike-slip mechanism of the earthquake

  13. Revised Atmospheric Angular Momentum Series Related to Earth's Variable Rotation under Consideration of Surface Topography

    NASA Technical Reports Server (NTRS)

    Zhou, Y. H.; Salstein, D. A.; Chen, J. L.

    2006-01-01

    The atmospheric angular momentum is closely related to variations in the Earth rotation. The atmospheric excitation function (AEF), or namely atmospheric effective angular momentum function, is introduced in studying the atmospheric excitation of the Earth's variable rotation. It may be separated into two portions, i.e, the "wind" terms due to the atmospheric motion relative to the mantle and the "pressure" terms due to the variations of atmospheric mass distribution evident through surface pressure changes. The AEF wind terms during the period of 1948-2004 are re-processed from the NCEP/NCAR (National Centers for Environmental Prediction-National Center for Atmospheric Research) reanalysis 6-hourly wind and pressure fields. Some previous calculations were approximate, in that the wind terms were integrated from an isobaric lower boundary of 1000 hPa. To consider the surface topography effect, however, the AEF is computed by integration using the winds from the Earth's surface to 10 hPa, the top atmospheric model level, instead of from 1000 hPa. For these two cases, only a minor difference, equivalent to approx. 0.004 milliseconds in length-of-day variation, exists with respect to the axial wind term. However, considerable differences, equivalent to 5-6 milliarcseconds in polar motion, are found regarding equatorial wind terms. We further compare the total equatorial AEF (with and without the topographic effect) with the polar motion excitation function (PMEF) during the period of 1980-2003. The equatorial AEF gets generally closer to the PMEF, and improved coherences are found between them when the topography effect is included. Keywords: Atmospheric angular momentum, Atmospheric excitation function, Earth rotation, Topography, Wind, Pressure.

  14. Topography and Radiative Forcing Patterns on Glaciers in the Karakoram Himalaya

    NASA Astrophysics Data System (ADS)

    Dobreva, I. D.; Bishop, M. P.; Liu, J. C.; Liang, D.

    2015-12-01

    Glaciers in the western Himalaya exhibit significant spatial variations in morphology and dynamics. Climate, topography and debris cover variations are thought to significantly affect glacier fluctuations and glacier sensitivity to climate change, although the role of topography and radiative forcing have not been adequately characterized and related to glacier fluctuations and dynamics. Consequently, we examined the glaciers in the Karakoram Himalaya, as they exhibit high spatial variability in glacier fluctuation rates and ice dynamics including flow velocity and surging. Specifically, we wanted to examine the relationships between these glacier characteristics and temporal patterns of surface irradiance over the ablation season. To accomplish this, we developed and used a rigorous GIS-based solar radiative transfer model that accounts for the direct and diffuse-skylight irradiance components. The model accounts for multiple topographic effects on the magnitude of irradiance reaching glacier surfaces. We specifically used the ASTER GDEM digital elevation model for irradiance simulations. We then examined temporal patterns of irradiance at the grid-cell level to identify the dominant patterns that were used to train a 3-layer artificial neural network. Our results demonstrate that there are unique spatial and temporal patterns associated with downwasting and surging glaciers, and that these patterns partially account for the spatial distribution of advancing and retreating glaciers. Lower-altitude terminus regions of surging glaciers exhibited relatively low surface irradiance values that decreased in magnitude with time, demonstrating that high-velocity surging glaciers facilitate relief production and exhibit steeper surface irradiance gradients with altitude. Collectively, these results demonstrate the important role that local and regional topography play in governing climate-glacier dynamics in the Himalaya.

  15. Correlation between Topographic Parameters Obtained by Back Surface Topography Based on Structured Light and Radiographic Variables in the Assessment of Back Morphology in Young Patients with Idiopathic Scoliosis.

    PubMed

    Pino-Almero, Laura; Mínguez-Rey, María Fe; Cibrián-Ortiz de Anda, Rosa María; Salvador-Palmer, María Rosario; Sentamans-Segarra, Salvador

    2017-04-01

    Optical cross-sectional study. To study the correlation between asymmetry of the back (measured by means of surface topography) and deformity of the spine (quantified by the Cobb angle). The Cobb angle is considered the gold standard in diagnosis and follow-up of scoliosis but does not correctly characterize the three-dimensional deformity of scoliosis. Furthermore, the exposure to ionizing radiation may cause harmful effects particularly during the growth stage, including breast cancer and other tumors. Patients aged 13.15±1.96 years (range, 7-17 years; n=88) with Cobb angle greater than 10° were evaluated with X-rays and our back surface topography method through three variables: axial plane (DHOPI), coronal plane (POTSI), and profile plane (PC). Pearson's correlation was applied to determine the correlation between topographic and radiographic variables. One-way analysis of variance and Bonferroni correction were used to compare groups with different grades of scoliosis. Significance was set at p <0.01 and, in some cases, at p <0.05. We detected a positive, statistically significant correlation between Cobb angle with DHOPI ( r =0.810) and POTSI ( r =0.629) and between PC variables with thoracic kyphosis angle ( r =0.453) and lordosis lumbar angle ( r =0.275). In addition, we found statistically significant differences for DHOPI and POTSI variables according to the grade of scoliosis. Although the back surface topography method cannot substitute for radiographs in the diagnosis of scoliosis, correlations between radiographic and topographic parameters suggest that it offers additional quantitative data that may complement radiologic study.

  16. Surface analytical study of CuInSe[sub 2] treated in Cd-containing partial electrolyte solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asher, S.E.; Ramanathan, K.; Wiesner, H.

    1999-03-01

    Junction formation in CuInSe[sub 2] (CIS) has been studied by exposing thin films and single-crystal samples to solutions containing NH[sub 4]OH and CdSO[sub 4]. The treated samples were analyzed by secondary ion mass spectrometry to determine the amount and distribution of Cd deposited on the surface of the films. Cadmium is found to react with the surface for all the solution exposure times and temperatures studied. The reaction rapidly approaches the endpoint and remains relatively unchanged for subsequent solution exposure. Cadmium in-diffusion, as measured by secondary ion mass spectrometry, is obscured by topography effects in the thin-film samples and bymore » ion-beam mixing and topography in the single-crystal sample. [copyright] [ital 1999 American Institute of Physics.]« less

  17. Surface analytical study of CuInSe{sub 2} treated in Cd-containing partial electrolyte solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asher, S.E.; Ramanathan, K.; Wiesner, H.

    1999-03-01

    Junction formation in CuInSe{sub 2} (CIS) has been studied by exposing thin films and single-crystal samples to solutions containing NH{sub 4}OH and CdSO{sub 4}. The treated samples were analyzed by secondary ion mass spectrometry to determine the amount and distribution of Cd deposited on the surface of the films. Cadmium is found to react with the surface for all the solution exposure times and temperatures studied. The reaction rapidly approaches the endpoint and remains relatively unchanged for subsequent solution exposure. Cadmium in-diffusion, as measured by secondary ion mass spectrometry, is obscured by topography effects in the thin-film samples and bymore » ion-beam mixing and topography in the single-crystal sample. {copyright} {ital 1999 American Institute of Physics.}« less

  18. 3-D profilometer using a CCD linear image sensor: application to skin surface topography measurement.

    PubMed

    Nita, D; Mignot, J; Chuard, M; Sofa, M

    1998-08-01

    Measurement of cutaneous surface topography can be made by three-dimensional (3-D) profilometry. Different equipment is used for this measurement. The magnitude of the vertical scale required, which can vary from several tens of micrometers (microrelief) to several millimeters (skin pathologies), depends also on the precision required and the duration of acquisition time. Over the last few years, different apparatuses have been produced, with a vertical range that is most frequently used for classical industrial applications, i.e., 0-1000 μm. The system developed here has a wide range of about 7 mm and is accurate enough to analyse each of the different skin surfaces that fall in this range without changing magnification. An optical principle, operating without any contact with a skin replica, allows a precise measurement with a high scanning speed. The profilometer has a vertical sensitivity of 4 μm within a vertical range of 7 mm. This sensitivity is lower than that of a mechanical or focusing profilometer, but the vertical range is wider. The system has several advantages: because of its verticale range, it can measure large surfaces with great roughness variations; the initial position of the replica beneath the profilometer must be within the 7 mm vertical range; and skin topography can be quantified, without contact, in a short time.

  19. The importance of topographically corrected null models for analyzing ecological point processes.

    PubMed

    McDowall, Philip; Lynch, Heather J

    2017-07-01

    Analyses of point process patterns and related techniques (e.g., MaxEnt) make use of the expected number of occurrences per unit area and second-order statistics based on the distance between occurrences. Ecologists working with point process data often assume that points exist on a two-dimensional x-y plane or within a three-dimensional volume, when in fact many observed point patterns are generated on a two-dimensional surface existing within three-dimensional space. For many surfaces, however, such as the topography of landscapes, the projection from the surface to the x-y plane preserves neither area nor distance. As such, when these point patterns are implicitly projected to and analyzed in the x-y plane, our expectations of the point pattern's statistical properties may not be met. When used in hypothesis testing, we find that the failure to account for the topography of the generating surface may bias statistical tests that incorrectly identify clustering and, furthermore, may bias coefficients in inhomogeneous point process models that incorporate slope as a covariate. We demonstrate the circumstances under which this bias is significant, and present simple methods that allow point processes to be simulated with corrections for topography. These point patterns can then be used to generate "topographically corrected" null models against which observed point processes can be compared. © 2017 by the Ecological Society of America.

  20. Topography evolution of rough-surface metallic substrates by solution deposition planarization method

    NASA Astrophysics Data System (ADS)

    Chu, Jingyuan; Zhao, Yue; Liu, Linfei; Wu, Wei; Zhang, Zhiwei; Hong, Zhiyong; Li, Yijie; Jin, Zhijian

    2018-01-01

    As an emerging technique for surface smoothing, solution deposition planarization (SDP) has recently drawn more attention on the fabrication of the second generation high temperature superconducting (2G-HTS) tapes. In our work, a number of amorphous oxide layers were deposited on electro-polished or mirror-rolled metallic substrates by chemical solution route. Topography evolution of surface defects on these two types of metallic substrates was thoroughly investigated by atomic force microscopy (AFM). It was showed that root mean square roughness values (at 50 × 50 μm2 scanning scale) on both rough substrates reduced to ∼5 nm after coating with SDP-layer. The smoothing effect was mainly attributed to decrease of the depth at grain boundary grooving on the electro-polished metallic substrate. On the mirror-rolled metallic substrates, the amplitude and frequency of the height fluctuation perpendicular to the rolling direction were gradually reduced as depositing more numbers of SDP-layer. A high Jc value of 4.17 MA cm-2 (at 77 K, s.f.) was achieved on a full stack of YBCO/CeO2/IBAD-MgO/SDP-layer/C276 sample. This study enhanced understanding of the topography evolution on the surface defects covered by the SDP-layer, and demonstrated a low-cost route for fabricating IBAD-MgO based YBCO templates with a simplified architecture.

  1. Fluvio geomorphic set-up of Noctis Fossae in Noctis Labyrinthus of Syria-Planum Provenance, Mars

    NASA Astrophysics Data System (ADS)

    Chavan, A. A.; Bhandari, S.

    2017-12-01

    The modern era of planetary exploration has revealed fluvial or fluvial like landforms on the extraterrestrial surfaces of planets and moons of our solar system. This has posed as interesting challenges for advancing our fundamental understanding of fluvial processes and their associated landforms on the planetary surfaces especially on Mars. It has been recognized through earlier studies that the channels and valleys are extensively dissected on Mars. The Valleys are low lying, elongate troughs surrounded by elevated topography. Moreover, valley networks on Mars are the most noticeable features attesting that different geological processes and possibly climatic conditions prevailed in the past and played a vital role in formulating the Martian topography. Channel incisions which are a domino effect both tectonic and surface runoff and groundwater sapping. The components of surface runoff have been deciphered with the help of morphometric exercises. Further, the geomorphological studies of these landforms are critical in understanding the regional tectonics. The present work is an assessment of Fluvio geomorphic set-up of Noctis Fossae in Noctis Labyrinthus of Syria-Planum Provenance, Mars. This study focuses on the fluvio geomorphology of the southern highlands (00 to 400S to 850-1200W) to determine how these features were formed, which process formed these valleys and includes the probable causes resulting into the development of the topography. Keywords: Noctis Fossae; Noctis Labyrinthus; Syria Planum; Mars

  2. The Spatial Resolution in the Computer Modelling of Atmospheric Flow over a Double-Hill Forested Region

    NASA Astrophysics Data System (ADS)

    Palma, J. L.; Rodrigues, C. V.; Lopes, A. S.; Carneiro, A. M. C.; Coelho, R. P. C.; Gomes, V. C.

    2017-12-01

    With the ever increasing accuracy required from numerical weather forecasts, there is pressure to increase the resolution and fidelity employed in computational micro-scale flow models. However, numerical studies of complex terrain flows are fundamentally bound by the digital representation of the terrain and land cover. This work assess the impact of the surface description on micro-scale simulation results at a highly complex site in Perdigão, Portugal, characterized by a twin parallel ridge topography, densely forested areas and an operating wind turbine. Although Coriolis and stratification effects cannot be ignored, the study is done under neutrally stratified atmosphere and static inflow conditions. The understanding gained here will later carry over to WRF-coupled simulations, where those conditions do not apply and the flow physics is more accurately modelled. With access to very fine digital mappings (<1m horizontal resolution) of both topography and land cover (roughness and canopy cover, both obtained through aerial LIDAR scanning of the surface) the impact of each element of the surface description on simulation results can be individualized, in order to estimate the resolution required to satisfactorily resolve them. Starting from the bare topographic description, in its coursest form, these include: a) the surface roughness mapping, b) the operating wind turbine, c) the canopy cover, as either body forces or added surface roughness (akin to meso-scale modelling), d) high resolution topography and surface cover mapping. Each of these individually will have an impact near the surface, including the rotor swept area of modern wind turbines. Combined they will considerably change flow up to boundary layer heights. Sensitivity to these elements cannot be generalized and should be assessed case-by-case. This type of in-depth study, unfeasible using WRF-coupled simulations, should provide considerable insight when spatially allocating mesh resolution for accurate resolution of complex flows.

  3. Variability in Arctic sea ice topography and atmospheric form drag: Combining IceBridge laser altimetry with ASCAT radar backscatter.

    NASA Astrophysics Data System (ADS)

    Petty, A.; Tsamados, M.; Kurtz, N. T.

    2016-12-01

    Here we present atmospheric form drag estimates over Arctic sea ice using high resolution, three-dimensional surface elevation data from NASA's Operation IceBridge Airborne Topographic Mapper (ATM), and surface roughness estimates from the Advanced Scatterometer (ASCAT). Surface features of the ice pack (e.g. pressure ridges) are detected using IceBridge ATM elevation data and a novel surface feature-picking algorithm. We use simple form drag parameterizations to convert the observed height and spacing of surface features into an effective atmospheric form drag coefficient. The results demonstrate strong regional variability in the atmospheric form drag coefficient, linked to variability in both the height and spacing of surface features. This includes form drag estimates around 2-3 times higher over the multiyear ice north of Greenland, compared to the first-year ice of the Beaufort/Chukchi seas. We compare results from both scanning and linear profiling to ensure our results are consistent with previous studies investigating form drag over Arctic sea ice. A strong correlation between ASCAT surface roughness estimates (using radar backscatter) and the IceBridge form drag results enable us to extrapolate the IceBridge data collected over the western-Arctic across the entire Arctic Ocean. While our focus is on spring, due to the timing of the primary IceBridge campaigns since 2009, we also take advantage of the autumn data collected by IceBridge in 2015 to investigate seasonality in Arctic ice topography and the resulting form drag coefficient. Our results offer the first large-scale assessment of atmospheric form drag over Arctic sea ice due to variable ice topography (i.e. within the Arctic pack ice). The analysis is being extended to the Antarctic IceBridge sea ice data, and the results are being used to calibrate a sophisticated form drag parameterization scheme included in the sea ice model CICE, to improve the representation of form drag over Arctic and Antarctic sea ice in global climate models.

  4. Effect of Macrogeometry on the Surface Topography of Dental Implants.

    PubMed

    Naves, Marina Melo; Menezes, Helder Henrique Machado; Magalhães, Denildo; Ferreira, Jessica Afonso; Ribeiro, Sara Ferreira; de Mello, José Daniel Biasoli; Costa, Henara Lillian

    2015-01-01

    Because the microtopography of titanium implants influences the biomaterial-tissue interaction, surface microtexturing treatments are frequently used for dental implants. However, surface treatment alone may not determine the final microtopography of a dental implant, which can also be influenced by the implant macrogeometry. This work analyzed the effects on surface roughness parameters of the same treatment applied by the same manufacturer to implants with differing macro-designs. Three groups of titanium implants with different macro-designs were investigated using laser interferometry and scanning electron microscopy. Relevant surface roughness parameters were calculated for different regions of each implant. Two flat disks (treated and untreated) were also investigated for comparison. The tops of the threads and the nonthreaded regions of all implants had very similar roughness parameters, independent of the geometry of the implant, which were also very similar to those of flat disks treated with the same process. In contrast, the flanks and valleys of the threads presented larger irregularities (Sa) with higher slopes (Sdq) and larger developed surface areas (Sdr) on all implants, particularly for implants with threads with smaller heights. The flanks and valleys displayed stronger textures (Str), particularly on the implants with threads with larger internal angles. Parameters associated with the height of the irregularities (Sa), the slope of the asperities (Sdq), the presence of a surface texture (Str), and the developed surface area of the irregularities (Sdr) were significantly affected by the macrogeometry of the implants. Flat disks subjected to the same surface treatment as dental implants reproduced only the surface topography of the flat regions of the implants.

  5. Influence of implant surface topography on bone-regenerative potential and mechanical retention in the human maxilla and mandible.

    PubMed

    Wei, Niu; Bin, Shi; Jing, Zhou; Wei, Sun; Yingqiong, Zhao

    2014-06-01

    To evaluate the short- and mid-term effects of commercial pure (cp) titanium implant surface topography on osseointegration, bone-regenerative potential and mechanical retention in the human maxilla and mandible. 32 micro-implants with the same geometry but with four different surface treatments were implanted in the maxilla and mandible of eight patients. Each patient received four micro-implants, one of each type. Percentage of bone-to-implant contact analysis and histological evaluation was carried 3, 6 and 12 weeks after implantation. Furthermore, reverse removal torque tests were conducted 3 and 6 weeks after implantation to analyze functional bone attachment. Implant surfaces tested were: machined, grit-blasted, acid-etched, and grit-blasted with acid-etch. One-way ANOVA was performed using the multiple comparison Fisher's test to determine significance of observed differences among test groups. The level of significance was established at 5% (P < 0.05). Mean and standard deviations of the test groups were calculated. Surface roughness had a significant correlation with the evolution of bone regeneration. The surfaces with roughness Ra approximately 4 microim (grit-blasted and grit-blasted with acid-etch), showed rapid tissue colonization compared to machine and acid-etched surfaces. The results of reverse removal torque tests confirmed a significant correlation between surface roughness and functional bone attachment. Grit-blasted and grit-blasted with acid etched surfaces showed higher retention values compared to machine and acid-etched implants. This finding was supported by higher bone-to-implant contact observed for rougher surfaces (grit-blasted and grit-blasted with acid etching).

  6. Influence of matrix and filler fraction on biofilm formation on the surface of experimental resin-based composites.

    PubMed

    Ionescu, Andrei; Brambilla, Eugenio; Wastl, Daniel S; Giessibl, Franz J; Cazzaniga, Gloria; Schneider-Feyrer, Sibylle; Hahnel, Sebastian

    2015-01-01

    The aim of this study was to investigate the impact of resin matrix chemistry and filler fraction on biofilm formation on the surface of experimental resin-based composites (RBCs). Specimens were prepared from eight experimental RBC formulations differing in resin matrix blend (BisGMA/TEGDMA in a 7:3 wt% ratio or UDMA/aliphatic dimethacrylate in a 1:1 wt% ratio) and filler fraction (no fillers; 65 wt% dental glass with an average diameter of 7 or 0.7 µm or 65 wt% SiO2 with an average diameter of 20 nm). Surface roughness, surface free energy, and chemical surface composition were determined; surface topography was visualized using atomic force microscopy. Biofilm formation was simulated under continuous flow conditions for a 48 h period using a monospecies Streptococcus mutans and a multispecies biofilm model. In the monospecies biofilm model, the impact of the filler fraction overruled the influence of the resin matrix, indicating lowest biofilm formation on RBCs with nano-scaled filler particles and those manufactured from the neat resin blends. The multispecies model suggested a more pronounced effect of the resin matrix blend, as significantly higher biofilm formation was identified on RBCs with a UDMA/dimethacrylate matrix blend than on those including a BisGMA/TEGDMA matrix blend but analogous filler fractions. Although significant differences in surface properties between the various materials were identified, correlations between the surface properties and biofilm formation were poor, which highlights the relevance of surface topography and chemistry. These results may help to tailor novel RBC formulations which feature reduced biofilm formation on their surface.

  7. Lubrication background

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    Surface topography, including the various physical methods of measuring surfaces, and the various lubrication regimes (hydrodynamic, elastohydrodynamic, boundary, and mixed) are discussed. The historical development of elastohydrodynamic lubrication is outlined. The major accomplishments in four periods, the pre-1950's, the 1950's, the 1960's, and the 1970's are presented.

  8. Atomic force microscopy investigation of chemically stabilized pericardium tissue.

    PubMed

    Jastrzebska, M; Barwinski, B; Mróz, I; Turek, A; Zalewska-Rejdak, J; Cwalina, B

    2005-04-01

    Native and chemically stabilized porcine pericardium tissue was imaged by the contact mode atomic force microscopy (AFM), in air. Chemically stabilized pericardium is used as a tissue-derived biomaterial in various fields of the reconstructive and replacement surgery. Collagen type I is the main component of the fibrous layer of the pericardium tissue. In this study, the surface topography of collagen fibrils in their native state in tissue and after chemical stabilization with different cross-linking reagents: glutaraldehyde (GA), dimethyl suberimidate (DMS) and tannic acid (TA) was investigated. It has been found that chemical stabilization causes considerable changes in the surface topography of collagen fibrils as well as in the spatial organization of the fibrils within the tissue. The observed changes in the D-spacing pattern of the collagen fibril correspond to the formation of intrafibrilar cross-links, whereas formation of interfibrilar cross-links is mainly responsible for the observed tangled spatial arrangement of fibrils and crimp structure of the tissue surface. The crimp structure was distinctly seen for the GA cross-linked tissue. Surface heterogeneity of the cross-linking process was observed for the DMS-stabilized tissue. SDS-PAGE electrophoresis was performed in order to evaluate the stabilization effect of the tissues treated with the cross-linking reagents. It has been found that stabilization with DMS, GA or TA enhances significantly the tissue resistance to SDS/NaCl extraction. The relation between the tissue stability and changes in the topography of the tissue surface was interpreted in terms of different nature of cross-links formed by DMS, GA and TA with collagen.

  9. Effect of the Earth's inner structure on the gravity in definitions of height systems

    NASA Astrophysics Data System (ADS)

    Tenzer, Robert; Foroughi, Ismael; Pitoňák, Martin; Šprlák, Michal

    2017-04-01

    In context of the vertical datum unification, the geoid-to-quasi-geoid separation has been of significant interest in recent years, because most of existing local vertical datums are realized in the system of either normal or orthometric heights. Nevertheless, the normal-orthometric heights are still used in many other countries where the normal gravity values along leveling lines were adopted instead of the observed gravity. Whereas the conversion between the orthometric and normal heights is defined by means of the mean gravity disturbances (i.e. differences between the mean values of the actual and normal gravity) along the plumbline within the topography, differences between the normal and normal-orthometric heights can be described by means of the surface gravity disturbances. Since the normal gravity field does not reflect the topographic masses and actual mass density distribution inside the Earth, the definition of gravity represents a principal aspect for a realization of particular vertical datum. To address this issue in this study, we investigate effects of the Earth's inner density structure on the surface and mean gravity disturbances, and discuss their impact on the vertical datum realization. These two gravity field quantities are computed globally with a spectral resolution complete to a spherical harmonic degree 2160 using the global gravity, terrain, ice-thickness, inland bathymetry and crustal structure models. Our results reveal that both, the surface and mean gravity disturbances mostly comprise the gravitational signal of topography and masses distributed below the geoid surface. Moreover, in polar areas, a significant contribution comes from large glaciers. In contrast, the contributions of anomalous density distribution within the topography attributed to major lakes, sediments and bedrock density variations are much less pronounced. We also demonstrate that the mean gravity disturbances within the topography are significantly modified compared to the corresponding surface values mainly due to topographic elevation and terrain geometry as well as the presence of large glaciers in polar regions. Changes of the vertical gravity gradient within the topography attributed to the masses distributed below the geoid (dominated mainly by the isostatic signature and the long-wavelength gravitational signature of deep mantle density heterogeneities) are, on the other hand, relatively small. Despite differences between the normal and normal-orthometric heights could directly be assessed from the surface gravity disturbances only when taken along leveling lines with information about the spirit leveling height differences, our results indicate that differences between these two height systems can be significant.

  10. 3D Numerical modelling of topography development associated with curved subduction zones

    NASA Astrophysics Data System (ADS)

    Munch, Jessica; Ueda, Kosuke; Burg, Jean-Pierre; May, Dave; Gerya, Taras

    2017-04-01

    Curved subduction zones, also called oroclines, are geological features found in various places on Earth. They occur in diverse geodynamic settings: 1) single slab subduction in oceanic domain (e.g. Sandwich trench in the Southern Atlantic); 2) single slab subduction in continental domain, (e.g. Gibraltar-Alboran orocline in the Western Mediterranean) 3); multi-slab subduction (e.g. Caribbean orocline in the South-East of the Gulf of Mexico). These systems present various curvatures, lengths (few hundreds to thousands of km) and ages (less than 35 Ma for Gibraltar Alboran orocline, up to 100 Ma for the Caribbean). Recent studies suggested that the formation of curved subduction systems depends on slab properties (age, length, etc) and may be linked with processes such as retreating subduction and delamination. Plume induced subduction initiation has been proposed for the Caribbean. All of these processes involve deep mechanisms such as mantle and slab dynamics. However, subduction zones always generate topography (trenches, uplifts, etc), which is likely to be influenced by surface processes. Hence, surface processes may also influence the evolution of subduction zones. We focus on different kinds of subduction systems initiated by plume-lithosphere interactions (single slab subduction/multi-slab subduction) and scrutinize their surface expression. We use numerical modeling to examine large-scale subduction initiation and three-dimensional slab retreat. We perform two kinds of simulations: 1) large scale subduction initiation with the 3D-thermomechanical code I3ELVIS (Gerya and Yuen, 2007) in an oceanic domain and 2) large scale subduction initiation in oceanic domain using I3ELVIS coupled with a robust new surface processes model (SPM). One to several retreating slabs form in the absence of surface processes, when the conditions for subduction initiation are reached (c.f. Gerya et al., 2015), and ridges occur in the middle of the extensional domain opened by slab retreat. Topography associated with slab retreat is curved. Coupling I3ELVIS with SPM yields more accurate topography of the curved subduction zone. This allows balancing the relative importance of surface and deep processes in the evolution of curved subduction zones and the development of their related topography. References: Gerya, T. V., & Yuen, D. A. (2007). Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems. Physics of the Earth and Planetary Interiors, 163(1), 83-105. Gerya, T. V., Stern, R. J., Baes, M., Sobolev, S. V., & Whattam, S. A. (2015). Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527(7577), 221-225.

  11. Implications of Polishing Techniques in Quantitative X-Ray Microanalysis

    PubMed Central

    Rémond, Guy; Nockolds, Clive; Phillips, Matthew; Roques-Carmes, Claude

    2002-01-01

    Specimen preparation using abrasives results in surface and subsurface mechanical (stresses, strains), geometrical (roughness), chemical (contaminants, reaction products) and physical modifications (structure, texture, lattice defects). The mechanisms involved in polishing with abrasives are presented to illustrate the effects of surface topography, surface and subsurface composition and induced lattice defects on the accuracy of quantitative x-ray microanalysis of mineral materials with the electron probe microanalyzer (EPMA). PMID:27446758

  12. Surface roughness control by extreme ultraviolet (EUV) radiation

    NASA Astrophysics Data System (ADS)

    Ahad, Inam Ul; Obeidi, Muhannad Ahmed; Budner, Bogusław; Bartnik, Andrzej; Fiedorowicz, Henryk; Brabazon, Dermot

    2017-10-01

    Surface roughness control of polymeric materials is often desirable in various biomedical engineering applications related to biocompatibility control, separation science and surface wettability control. In this study, Polyethylene terephthalate (PET) polymer films were irradiated with Extreme ultraviolet (EUV) photons in nitrogen environment and investigations were performed on surface roughness modification via EUV exposure. The samples were irradiated at 3 mm and 4 mm distance from the focal spot to investigate the effect of EUV fluence on topography. The topography of the EUV treated PET samples were studied by AFM. The detailed scanning was also performed on the sample irradiated at 3 mm. It was observed that the average surface roughness of PET samples was increased from 9 nm (pristine sample) to 280 nm and 253 nm for EUV irradiated samples. Detailed AFM studies confirmed the presence of 1.8 mm wide period U-shaped channels in EUV exposed PET samples. The walls of the channels were having FWHM of about 0.4 mm. The channels were created due to translatory movements of the sample in horizontal and transverse directions during the EUV exposure. The increased surface roughness is useful for many applications. The nanoscale channels fabricated by EUV exposure could be interesting for microfluidic applications based on lab-on-a-chip (LOC) devices.

  13. Assessment of morphology, topography and chemical composition of water-repellent films based on polystyrene/titanium dioxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Bolvardi, Beleta; Seyfi, Javad; Hejazi, Iman; Otadi, Maryam; Khonakdar, Hossein Ali; Drechsler, Astrid; Holzschuh, Matthias

    2017-02-01

    In this study, polystyrene (PS)/titanium dioxide (TiO2) films were fabricated through simple solution casting technique via a modified phase separation process. The presented approach resulted in a remarkable reduction in the required amount of nanoparticles for achieving superhydrophobicity. Scanning electron microscopy (SEM) and 3D confocal microscopy were utilized to characterize surface morphology and topography of samples, respectively. An attempt was made to give an in-depth analysis on the surface rough structure using 3D roughness profiles. It was found that high inclusions of non-solvent and nanoparticles resulted in a stable self-cleaning behavior due to the strong presence of hydrophobic TiO2 nanoparticles on the surface. Quite unexpectedly, low inclusions of nanoparticles and non-solvent also resulted in superhydrophobic property mainly due to the proper level of induced surface roughness. XPS analysis was also utilized to determine the chemical composition of the films' surfaces. The results of falling drop experiments showed that the sample containing a higher level of nanoparticles had a much lower mechanical resistance against the induced harsh conditions. All in all, the presented method has shown promising potential in fabrication of superhydrophobic surfaces with self-cleaning behavior using the lowest content of nanoparticles.

  14. The influence of surface chemistry and topography on the contact guidance of MG63 osteoblast cells.

    PubMed

    Ismail, F S Magdon; Rohanizadeh, R; Atwa, S; Mason, R S; Ruys, A J; Martin, P J; Bendavid, A

    2007-05-01

    The purpose of the present study was to determine in vitro the effects of different surface topographies and chemistries of commercially pure titanium (cpTi) and diamond-like carbon (DLC) surfaces on osteoblast growth and attachment. Microgrooves (widths of 2, 4, 8 and 10 microm and a depth of 1.5-2 microm) were patterned onto silicon (Si) substrates using microlithography and reactive ion etching. The Si substrates were subsequently vapor coated with either cpTi or DLC coatings. All surfaces were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Using the MG63 Osteoblast-Like cell line, we determined cell viability, adhesion, and morphology on different substrates over a 3 day culture period. The results showed cpTi surfaces to be significantly more hydrophilic than DLC for groove sizes larger than 2 microm. Cell contact guidance was observed for all grooved samples in comparison to the unpatterned controls. The cell viability tests indicated a significantly greater cell number for 8 and 10 microm grooves on cpTi surfaces compared to other groove sizes. The cell adhesion study showed that the smaller groove sizes, as well as the unpatterned control groups, displayed better cell adhesion to the substrate.

  15. Comparative evaluation of the effect of denture cleansers on the surface topography of denture base materials: An in-vitro study.

    PubMed

    Jeyapalan, Karthigeyan; Kumar, Jaya Krishna; Azhagarasan, N S

    2015-08-01

    The aim was to evaluate and compare the effects of three chemically different commercially available denture cleansing agents on the surface topography of two different denture base materials. Three chemically different denture cleansers (sodium perborate, 1% sodium hypochlorite, 0.2% chlorhexidine gluconate) were used on two denture base materials (acrylic resin and chrome cobalt alloy) and the changes were evaluated at 3 times intervals (56 h, 120 h, 240 h). Changes from baseline for surface roughness were recorded using a surface profilometer and standard error of the mean (SEM) both quantitatively and qualitatively, respectively. Qualitative surface analyses for all groups were done by SEM. The values obtained were analyzed statistically using one-way ANOVA and paired t-test. All three denture cleanser solutions showed no statistically significant surface changes on the acrylic resin portions at 56 h, 120 h, and 240 h of immersion. However, on the alloy portion changes were significant at the end of 120 h and 240 h. Of the three denture cleansers used in the study, none produced significant changes on the two denture base materials for the short duration of immersion, whereas changes were seen as the immersion periods were increased.

  16. Comparative evaluation of the effect of denture cleansers on the surface topography of denture base materials: An in-vitro study

    PubMed Central

    Jeyapalan, Karthigeyan; Kumar, Jaya Krishna; Azhagarasan, N. S.

    2015-01-01

    Aims: The aim was to evaluate and compare the effects of three chemically different commercially available denture cleansing agents on the surface topography of two different denture base materials. Materials and Methods: Three chemically different denture cleansers (sodium perborate, 1% sodium hypochlorite, 0.2% chlorhexidine gluconate) were used on two denture base materials (acrylic resin and chrome cobalt alloy) and the changes were evaluated at 3 times intervals (56 h, 120 h, 240 h). Changes from baseline for surface roughness were recorded using a surface profilometer and standard error of the mean (SEM) both quantitatively and qualitatively, respectively. Qualitative surface analyses for all groups were done by SEM. Statistical Analysis Used: The values obtained were analyzed statistically using one-way ANOVA and paired t-test. Results: All three denture cleanser solutions showed no statistically significant surface changes on the acrylic resin portions at 56 h, 120 h, and 240 h of immersion. However, on the alloy portion changes were significant at the end of 120 h and 240 h. Conclusion: Of the three denture cleansers used in the study, none produced significant changes on the two denture base materials for the short duration of immersion, whereas changes were seen as the immersion periods were increased. PMID:26538915

  17. Method for detecting surface motions and mapping small terrestrial or planetary surface deformations with synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Gabriel, Andrew K. (Inventor); Goldstein, Richard M. (Inventor); Zebker, Howard A. (Inventor)

    1990-01-01

    A technique based on synthetic aperture radar (SAR) interferometry is used to measure very small (1 cm or less) surface deformations with good resolution (10 m) over large areas (50 km). It can be used for accurate measurements of many geophysical phenomena, including swelling and buckling in fault zones, residual, vertical and lateral displacements from seismic events, and prevolcanic swelling. Two SAR images are made of a scene by two spaced antennas and a difference interferogram of the scene is made. After unwrapping phases of pixels of the difference interferogram, surface motion or deformation changes of the surface are observed. A second interferogram of the same scene is made from a different pair of images, at least one of which is made after some elapsed time. The second interferogram is then compared with the first interferogram to detect changes in line of sight position of pixels. By resolving line of sight observations into their vector components in other sets of interferograms along at least one other direction, lateral motions may be recovered in their entirety. Since in general, the SAR images are made from flight tracks that are separated, it is not possible to distinguish surface changes from the parallax caused by topography. However, a third image may be used to remove the topography and leave only the surface changes.

  18. Femtosecond laser microstructured Alumina toughened Zirconia: A new strategy to improve osteogenic differentiation of hMSCs

    NASA Astrophysics Data System (ADS)

    Carvalho, Angela; Cangueiro, Liliana; Oliveira, Vítor; Vilar, Rui; Fernandes, Maria H.; Monteiro, Fernando J.

    2018-03-01

    The use of topographic patterns has been a continuously growing area of research for tissue engineering and it is widely accepted that the surface topography of biomaterials can influence and modulate the initial biological response. Ultrafast lasers are extremely powerful tools to machine and pattern the surface of a wide range of biomaterials, however, only few work has been performed on ceramics with the intent of biomedical applications, and the biological characterization of these structured materials is scarce. In this work, relevance is given to the biological performance of such materials. A femtosecond laser ablation technique was used to modify Alumina toughened Zirconia (ATZ) surface topography, developing surfaces structured at the micro and nanoscale levels (μATZ), in a controlled and reproducible manner. Materials characterization was performed before and after laser treatment, and both materials were compared in terms of osteogenic response of human bone marrow derived mesenchymal stem cells cultured under basal conditions, expecting that the micro/nanofeatures will improve the biological response of cells. Cells metabolic activity and proliferation increased with the culture time and surface microtopography modulated cells alignment and guided proliferation. The modified surface, displayed significantly higher expression of osteogenic transcription factors and genes and, additionally, the formation of a mineralized extracellular matrix, when compared to the control surface, i.e. unmodified ATZ.

  19. Effect of different pH solvents on micro-hardness and surface topography of dental nano-composite: An in vitro analysis

    PubMed Central

    Khan, Aftab Ahmed; Siddiqui, Adel Zia; Al-Kheraif, Abdulaziz A; Zahid, Ambreen; Divakar, Darshan Devang

    2015-01-01

    Objective: Erosion of tooth surface is attributed to recent shift in diet pattern and frequent use of beverages. The aim of this research was to evaluate the effects of different beverages on surface topography and hardness of nano-filled composite material. Methods: Sixty flat disc shaped resin composite samples were fabricated and placed in distilled water for 24 hours. After 24 hours test samples were dried and divided into 4 groups. Group A (n=15) specimens were placed in tight amber bottle comprising 25 ml of artificial saliva. Similarly Group B, C and D were stored in equal amounts of orange juice, milk and coca cola drink respectively. Samples were checked for hardness and surface changes were evaluated with scanning electron microscopy. Results: There were strong significant difference observed in samples immersed in orange juice and artificial saliva. A strong significant difference was seen between Group D and Group A. Group A and Group C showed no significant difference. The micro-hardness test showed reduced values among all samples. Conclusion: Beverages consumed daily have a negative influence on hardness and surface degradation of nano-filled dental composite. Comparatively, nano-filled composites possess higher surface area to volume ratio of their fillers particle size may lead to higher surface roughness than other resin based dental biomaterials. PMID:26430417

  20. Preparation of enhanced hydrophobic poly(L-lactide-co-ɛ-caprolactone) films surface and its blood compatibility

    NASA Astrophysics Data System (ADS)

    Kim, Seung Il; Lim, Jin Ik; Jung, Youngmee; Mun, Cho Hay; Kim, Ji Heung; Kim, Soo Hyun

    2013-07-01

    Hydrophobicity-enhanced poly(L-lactide-co-ɛ-caprolactone) (PLCL) (50:50) films were cast by using the solvent-nonsolvent casting method. PLCL (50:50) was synthesized by the well-known random copolymerization process and confirmed by 1H NMR analysis. The molecular weight of the synthesized PLCL was measured by gel permeation chromatography (GPC). Number-average (Mn), weight-average (Mw) molecular weights and polydispersity (Mw/Mn) were 7 × 104, 1.2 × 105, and 1.7, respectively. PLCL films were cast in vacuum condition with various nonsolvents and nonsolvent ratios. Tetrahydrofuran (THF) was used as the solvent and three different alcohols were used as the nonsolvent: methanol, ethanol, and isopropyl alcohol (IPA). Surface hydrophobicity was confirmed by water contact angle. The water contact angle was increased from 81° ± 2° to 107° ± 2°. Water contact angle was influenced by surface porosity and topography. The prepared film surfaces were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The change of crystalline property was characterized by X-ray diffraction (XRD). Platelet adhesion tests on the modified PLCL film surfaces were evaluated by platelet-rich plasma (PRP). The modified film surface exhibited enhanced hydrophobicity and reduced platelet adhesion ratio depending on the surface topography. One of the candidate products proposed as a potential blood compatible material showed a markedly reduced platelet adhesion property.

Top