Sample records for surface toxicity lessons

  1. International Space Station Materials: Selected Lessons Learned

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    2007-01-01

    The International Space Station (ISS) program is of such complexity and scale that there have been numerous issues addressed regarding safety of materials: from design to manufacturing, test, launch, assembly on-orbit, and operations. A selection of lessons learned from the ISS materials perspective will be provided. Topics of discussion are: flammability evaluation of materials with connection to on-orbit operations; toxicity findings for foams; compatibility testing for materials in fluid systems; and contamination control in precision clean systems and critical space vehicle surfaces.

  2. The Impact of Toxic Agent Training on Combat Readiness

    DTIC Science & Technology

    1992-03-24

    Desert Storm veterans, as well as Lessons Learned from the use of toxic chemicals in World War I. Conclusions reached arei (1) Live agent training is...Department of the Army staff. The report of our findings and conclusions is attached. After reviewing this report and the lessons learned from Desert Storm...analysis of feedback from soldiers in the grades of PVl to General, input from Desert Storm veterans, as well as lessons learned from the use of toxic

  3. Phospholipid lung surfactant and nanoparticle surface toxicity: Lessons from diesel soots and silicate dusts

    NASA Astrophysics Data System (ADS)

    Wallace, William E.; Keane, Michael J.; Murray, David K.; Chisholm, William P.; Maynard, Andrew D.; Ong, Tong-man

    2007-01-01

    Because of their small size, the specific surface areas of nanoparticulate materials (NP), described as particles having at least one dimension smaller than 100 nm, can be large compared with micrometer-sized respirable particles. This high specific surface area or nanostructural surface properties may affect NP toxicity in comparison with micrometer-sized respirable particles of the same overall composition. Respirable particles depositing on the deep lung surfaces of the respiratory bronchioles or alveoli will contact pulmonary surfactants in the surface hypophase. Diesel exhaust ultrafine particles and respirable silicate micrometer-sized insoluble particles can adsorb components of that surfactant onto the particle surfaces, conditioning the particles surfaces and affecting their in vitro expression of cytotoxicity or genotoxicity. Those effects can be particle surface composition-specific. Effects of particle surface conditioning by a primary component of phospholipid pulmonary surfactant, diacyl phosphatidyl choline, are reviewed for in vitro expression of genotoxicity by diesel exhaust particles and of cytotoxicity by respirable quartz and aluminosilicate kaolin clay particles. Those effects suggest methods and cautions for assaying and interpreting NP properties and biological activities.

  4. Toxics in My Home? You Bet! Curriculum on Household Toxics for Grades 4-6.

    ERIC Educational Resources Information Center

    Purin, Gina; And Others

    This curriculum consists of a one-week course of study designed to introduce students in grades 4-6 to (or increase their awareness of) toxic substances commonly found in the home. It includes an introduction/conceptual framework, four lessons, a unit evaluation, and appendices. Each lesson consists of a statement of purpose, objectives,…

  5. Toxics in My Home? You Bet! Curriculum on Household Toxics for Grades 7-8.

    ERIC Educational Resources Information Center

    Purin, Gina; And Others

    This curriculum consists of a one-week course of study designed to introduce students in grades 7-8 to (or increase their awareness of) toxic substances commonly found in the home. It includes an introduction/conceptual framework, four lessons, a unit test, and appendices. Each lesson consists of a statement of purpose, objectives,…

  6. Toxics in My Home? You Bet! Curriculum on Household Toxics for Grades 9-12.

    ERIC Educational Resources Information Center

    Purin, Gina; And Others

    This curriculum consists of a one-week course of study designed to introduce students in grades 9-12 to (or increase their awareness of) toxic substances commonly found in the home. It includes an introduction/conceptual framework, five lessons, a unit test, and appendices. Each lesson consists of a statement of purpose, objectives, list of…

  7. Earth Day 1990: Lesson Plan and Home Survey--7-12. Energy, Solid Waste/Recycling, Toxics, Transportation, and Water with Fact Sheets and Action Guide.

    ERIC Educational Resources Information Center

    Holm-Shuett, Amy; Shuett, Greg

    The purpose of this 7-12 curriculum is to provide teachers and other educators with classroom lessons and home surveys that are a starting point for understanding five significant environmental issues - water, toxics, energy, transportation, and solid waste/recycling. While each of these environmental issues is complex and has far-reaching…

  8. SAR STUDY OF NASAL TOXICITY: LESSONS FOR MODELING SMALL TOXICITY DATASETS

    EPA Science Inventory

    Most toxicity data, particularly from whole animal bioassays, are generated without the needs or capabilities of structure-activity relationship (SAR) modeling in mind. Some toxicity endpoints have been of sufficient regulatory concern to warrant large scale testing efforts (e.g....

  9. Earth Day 1990: Lesson Plan and Home Survey--K-6. Energy, Solid Waste/Recycling, Toxics, and Water, with Follow-up Activities and Action Guide.

    ERIC Educational Resources Information Center

    Sly, Carolie; Ruskey, Abby

    The purpose of this K-6 curriculum is to provide teachers and other educators with classroom lessons and home surveys that are a starting point for understanding four significant environmental issues--water, toxics, energy, and solid waste/recycling. While each of these environmental issues is complex and has far-reaching implications, the lessons…

  10. Evaluating the aquatic toxicity of complex organic chemical mixtures: lessons learned from polycyclic aromatic hydrocarbon and petroleum hydrocarbon case studies.

    PubMed

    Landrum, Peter F; Chapman, Peter M; Neff, Jerry; Page, David S

    2012-04-01

    Experimental designs for evaluating complex mixture toxicity in aquatic environments can be highly variable and, if not appropriate, can produce and have produced data that are difficult or impossible to interpret accurately. We build on and synthesize recent critical reviews of mixture toxicity using lessons learned from 4 case studies, ranging from binary to more complex mixtures of primarily polycyclic aromatic hydrocarbons and petroleum hydrocarbons, to provide guidance for evaluating the aquatic toxicity of complex mixtures of organic chemicals. Two fundamental requirements include establishing a dose-response relationship and determining the causative agent (or agents) of any observed toxicity. Meeting these 2 requirements involves ensuring appropriate exposure conditions and measurement endpoints, considering modifying factors (e.g., test conditions, test organism life stages and feeding behavior, chemical transformations, mixture dilutions, sorbing phases), and correctly interpreting dose-response relationships. Specific recommendations are provided. Copyright © 2011 SETAC.

  11. Metabolomics from the Lab to the Field: Lessons Learned Along the Way

    EPA Science Inventory

    Use of metabolomics in laboratory studies for chemical toxicity evaluation is fast becoming an established technique in environmental science, displaying excellent sensitivity, physiological relevance, and providing valuable information regarding toxic mode(s)-of-action. These qu...

  12. Improving the quality of aquatic toxicity tests: Lessons learned and proficiency needs

    EPA Science Inventory

    Aquatic toxicity testing methodologies have been widely used to assess potential adverse effects of chemicals and wastewater discharges on aquatic life in the United States since the 1970’s. Over the years, continued method modifications, increased training, and technical r...

  13. Toxic Waste in Grand Banks. Lesson Plan.

    ERIC Educational Resources Information Center

    Litchka, Peter

    "Toxic Waste in Grand Banks" is an assessment task in which students from a high school economics class investigate the issues of economic prosperity, environmental concerns, government intervention in the market economy, and responsible civic participation in solving community problems. Students will demonstrate an ability--both individually and…

  14. Toxics Use Reduction in the Home: Lessons Learned from Household Exposure Studies

    PubMed Central

    Dunagan, Sarah C.; Dodson, Robin E.; Rudel, Ruthann A.; Brody, Julia G.

    2010-01-01

    Workers and fence-line communities have been the first to benefit from the substantial reductions in toxic chemical use and byproducts in industrial production resulting from the Massachusetts Toxics Use Reduction Act (TURA). As TURA motivates reformulation of products as well as retooling of production processes, benefits could extend more broadly to large-scale reductions in everyday exposures for the general population. Household exposure studies, including those conducted by Silent Spring Institute, show that people are exposed to complex mixtures of indoor toxics from building materials and a myriad of consumer products. Pollutants in homes are likely to have multiple health effects because many are classified as endocrine disrupting compounds (EDCs), with the ability to interfere with the body's hormone system. Product-related EDCs measured in homes include phthalates, halogenated flame retardants, and alkylphenols. Silent Spring Institute's chemical analysis of personal care and cleaning products confirms many are potential sources of EDCs, highlighting the need for a more comprehensive toxics use reduction (TUR) approach to reduce those exposures. Toxics use reduction targeted at EDCs in consumer products has the potential to substantially reduce occupational and residential exposures. The lessons that have emerged from household exposure research can inform improved chemicals management policies at the state and national levels, leading to safer products and widespread health and environmental benefits. PMID:21516227

  15. The Public Health Response to Toxic Shock Syndrome: A Historical Review and Lessons Learned

    ERIC Educational Resources Information Center

    Rasberry, Catherine N.

    2005-01-01

    The toxic shock syndrome (TSS) crisis is a historical public health success story from which much can be learned and applied to contemporary public health issues. Following the first reports, multiple research teams initiated studies designed to ascertain the risk factors associated with TSS. Those studies evolved over several years--each building…

  16. A History of Space Toxicology Mishaps: Lessons Learned and Risk Management

    NASA Technical Reports Server (NTRS)

    James, John T.

    2009-01-01

    After several decades of human spaceflight, the community of space-faring nations has accumulated a diverse and sometimes harrowing history of toxicological events that have plagued human space endeavors almost from the very beginning. Lessons have been learned in ground-based test beds and others were discovered the hard way - when human lives were at stake in space. From such lessons one can build a risk-management framework for toxicological events to minimize the probability of a harmful exposure, while recognizing that we cannot foresee all events. Space toxicologists have learned that relatively harmless compounds can be converted by air revitalization systems into compounds that cause serious harm to the crew. Our toxic risk management strategy now includes an assessment of the fate of any compound that might be released into the atmosphere. Propellants are highly toxic compounds, yet we have not always been able to thoroughly isolate the crew from exposure to these toxicants. Leakage of fluids from systems has resulted in hazardous conditions at times, and the behavior of such compounds inside a spacecraft has taught us how to manage potentially harmful escapes should they occur. Potential combustion events are an ever-present threat to the wellbeing of the crew. Such events have been sufficiently common that we have learned that one cannot judge the health threat of a given fire by the magnitude of the event. Management of such risks demands monitoring of combustion products. In the category of unpredictable toxic events, if one assumes that fires are predictable, we can place experience with toxic microbial metabolites, upsets during repair operations, and discharges from filters that have accumulated a substantial load of pollutants in their absorption beds. Management of such events requires a broad-spectrum, real-time analytical capability to discern the identity and concentrations of pollutants if they enter the atmosphere. Adverse events are an integral part of any human activity, and the spacefaring community must learn as much as possible from mistakes and near misses.

  17. Complete Lesson 2: Pesky Pests and Household Hazards

    EPA Pesticide Factsheets

    Examines environmentally friendly ways to keep our homes and schools pest-free. Defines pests, pesticides, household hazards, chemicals, and toxic, and explores strategies for keeping common household hazards out of reach.

  18. From lead to manganese through mercury: mythology, science, and lessons for prevention.

    PubMed

    Alessio, Lorenzo; Campagna, Marcello; Lucchini, Roberto

    2007-11-01

    Lead (Pb), mercury (Hg), and manganese (Mn) are well-known neurotoxic metals. The knowledge of toxicity was developed through an extensive amount of research, starting with lead and mercury and proceeding today with manganese. Unfortunately, the consequent implementation of preventive measures was generally delayed, causing important negative effects to the exposed populations. A review and historical reconstruction of the research development that yielded modern understanding of lead and mercury neurotoxicity was conducted to derive useful lessons for the prevention of manganese neurotoxicity. Medieval alchemists named planets and metals from gods since they were already aware of the toxicity and the adverse effects caused by lead and mercury. Historical lessons learned from these two metals may help to avoid the repetition of further mistakes regarding other neurotoxic metals like manganese. The knowledge and experience on the toxicokinetics and toxicodynamics of lead and mercury is useful and valuable to identify a proper approach to "safe" exposure levels for manganese. Further information is still needed on the early neurotoxic and neurobehavioral effects after prolonged exposure to very low doses of lead, mercury, and manganese. Nevertheless, according to the precautionary principle, effective preventive measures should be already undertaken to prevent the onset of more severe health effects in the population. This is the most important lesson to be learned and applied from more than 30 years of occupational and environmental neurotoxicology of metals. (c) 2007 Wiley-Liss, Inc.

  19. The Geography of Germany: Lessons for Teaching the Five Themes of Geography.

    ERIC Educational Resources Information Center

    Blankenship, Glen; Tinkler, D. William

    This activity guide contains five lessons. Lesson 1 deals with "Location of Germany on the Earth's Surface" with two activities: (1) "Germany's Location in the World"; and (2) "Germany's Location in Europe." Lesson 2 is on the "Physical and Human Characteristics of Germany" with four activities on: (1)…

  20. SLEUTH (Strategies and Lessons to Eliminate Unused Toxicants: Help!). Educational Activities on the Disposal of Household Hazardous Waste. Household Hazardous Waste Disposal Project. Metro Toxicant Program Report No. 1D.

    ERIC Educational Resources Information Center

    Dyckman, Claire; And Others

    This teaching unit is part of the final report of the Household Hazardous Waste Disposal Project. It consists of activities presented in an introduction and three sections. The introduction contains an activity for students in grades 4-12 which defines terms and concepts for understanding household hazardous wastes. Section I provides activities…

  1. Lessons from 455 Fusarium polyketide synthases

    USDA-ARS?s Scientific Manuscript database

    In fungi, polyketide synthases (PKSs) synthesize a structurally diverse array of secondary metabolites (SMs) with a range of biological activities. The most studied SMs are toxic to animals and/or plants, alter plant growth, have beneficial pharmaceutical activities, and/or are brightly colored pigm...

  2. A MAPPING BASED ON PHYSICO-CHEMICAL FEATURES: LESSONS LEARNT

    EPA Science Inventory

    The ban on animal testing of cosmetic products for systemic toxicity in Europe is foreseen in 2013. Several research programs involving the public and private sectors have been initiated with the aim of fulfilling regulatory requirements and complying with this transformative shi...

  3. The Finishing Touch: Anatomy of Expert Lesson Closures

    ERIC Educational Resources Information Center

    Webster, Collin A.; Connolly, Graeme; Schempp, Paul G.

    2009-01-01

    Background: Based on the idea that students remember best what is presented last, the lesson closure is commonly identified as an important component of effective teaching and has recently surfaced as a routine practice of expert teachers in sport. Despite its link to both effective and expert instruction, the lesson closure has seen scarce…

  4. Drying Beds. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    Provided in this lesson is introductory material on sand and surfaced sludge drying beds. Typical construction and operation, proper maintenance, and safety procedures are considered. The lesson includes an instructor's guide and student workbook. The instructor's guide contains a description of the lesson, estimated presentation time,…

  5. DETECTION OF TOXICANT(S) ON BUILDING SURFACES FOLLOWING CHEMICAL ATTACK

    EPA Science Inventory

    A critical step prior to reoccupation of any facility following a chemical attack is monitoring for toxic compounds on surfaces within that facility. Low level detection of toxicant(s) is necessary to ensure that these compounds have been eliminated after building decontaminatio...

  6. 30 Years of Planning: An Artist-Teacher's Visual Lesson Plan Books

    ERIC Educational Resources Information Center

    Szekely, George

    2006-01-01

    The art room is the canvas, and all furnishings and objects are the art supplies. All art room surfaces and spaces can be used to communicate an art lesson. Artists in all media plan visually, and art lessons should be planned and preserved as are other works of art. As a young art teacher, the author felt it was important for his students to…

  7. Lessons learned from vivo-morpholinos: How to avoid vivo-morpholino toxicity

    PubMed Central

    Ferguson, David P.; Dangott, Lawrence J.; Lightfoot, J. Timothy

    2014-01-01

    Vivo-morpholinos are a promising tool for gene silencing. These oligonucleotide analogs transiently silence genes by blocking either translation or pre-mRNA splicing. Little to no toxicity has been reported for vivo-morpholino treatment. However, in a recent study conducted in our lab, treatment of mice with vivo-morpholinos resulted in high mortality rates. We hypothesized that the deaths were the result of oligonucleotide hybridization, causing an increased cationic charge associated with the dendrimer delivery moiety of the vivo-morpholino. The cationic charge increased blood clot formation in whole blood treated with vivo-morpholinos, suggesting that clotting could have caused cardiac arrest in the deceased mice. Therefore, we investigate the mechanism by which some vivo-morpholinos increase mortality rates and propose techniques to alleviate vivo-morpholino toxicity. PMID:24806225

  8. DETECTION OF TOXICANTS ON BUILDING SURFACES FOLLOWING CHEMICAL ATTACK

    EPA Science Inventory

    A critical step prior to reoccupation of any facility following a chemical attack will be the monitoring of toxic compounds on surfaces within that facility. Low level detection of toxicant(s) is necessary to ensure that these compounds have been eliminated after decontamination...

  9. Ground and surface water developmental toxicity at a municipal landfill--Description and weather-related variation

    USGS Publications Warehouse

    Bruner, M.A.; Rao, M.; Dumont, J.N.; Hull, M.; Jones, T.; Bantle, J.A.

    1998-01-01

    Contaminated groundwater poses a significant health hazard and may also impact wildlife such as amphibians when it surfaces. Using FETAX (Frog Embryo Teratogenesis Assay-Xenopus), the developmental toxicity of ground and surface water samples near a closed municipal landfill at Norman, OK, were evaluated. The groundwater samples were taken from a network of wells in a shallow, unconfined aquifer downgradient from the landfill. Surface water samples were obtained from a pond and small stream adjacent to the landfill. Surface water samples from a reference site in similar habitat were also analyzed. Groundwater samples were highly toxic in the area near the landfill, indicating a plume of toxicants. Surface water samples from the landfill site demonstrated elevated developmental toxicity. This toxicity was temporally variable and was significantly correlated with weather conditions during the 3 days prior to sampling. Mortality was negatively correlated with cumulative rain and relative humidity. Mortality was positively correlated with solar radiation and net radiation. No significant correlations were observed between mortality and weather parameters for days 4–7 preceding sampling.

  10. Iron toxicity and its possible association with treatment of Cancer: lessons from hemoglobinopathies and rare, transfusion-dependent anemias.

    PubMed

    Puliyel, Mammen; Mainous, Arch G; Berdoukas, Vasilios; Coates, Thomas D

    2015-02-01

    Exposure to elevated levels of iron causes tissue damage and organ failure, and increases the risk of cancer. The toxicity of iron is mediated through generation of oxidants. There is also solid evidence indicating that oxidant stress plays a significant role in a variety of human disease states, including malignant transformation. Iron toxicity is the main focus when managing thalassemia. However, the short- and long-term toxicities of iron have not been extensively considered in children and adults treated for malignancy, and only recently have begun to draw oncologists' attention. The treatment of malignancy can markedly increase exposure of patients to elevated toxic iron species without the need for excess iron input from transfusion. This under-recognized exposure likely enhances organ toxicity and may contribute to long-term development of secondary malignancy and organ failure. This review discusses the current understanding of iron metabolism, the mechanisms of production of toxic free iron species in humans, and the relation of the clinical marker, transferrin saturation (TS), to the presence of toxic free iron. We will present epidemiological data showing that high TS is associated with poor outcomes and development of cancer, and that lowering free iron may improve outcomes. Finally, we will discuss the possible relation between some late complications seen in survivors of cancer and those due to iron toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. EPA's ToxCast Project: Lessons learned and future directions for use of HTS in predicting in vivo toxicology -- A Chemical Perspective

    EPA Science Inventory

    U.S. EPA’s ToxCast and the related Tox21 projects are employing high-throughput screening (HTS) technologies to profile thousands of chemicals, which in turn serve as probes of a wide diversity of targets, pathways and mechanisms related to toxicity. Initial models relating ToxCa...

  12. Toxic metals in Venics lagoon sediments: Model, observation, an possible removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, A.; Molinaroli, E.

    1994-11-01

    We have modeled the distribution of nine toxic metals in the surface sediments from 163 stations in the Venice lagoon using published data. Three entrances from the Adriatic Sea control the circulation in the lagoon and divide it into three basins. We assume, for purposes of modeling, that Porto Marghera at the head of the Industrial Zone area is the single source of toxic metals in the Venice lagoon. In a standing body of lagoon water, concentration of pollutants at distance x from the source (C{sub 0}) may be given by C=C{sub 0}e{sup -kx} where k is the rate constantmore » of dispersal. We calculated k empirically using concentrations at the source, and those farthest from it, that is the end points of the lagoon. Average k values (ppm/km) in the lagoon are: Zn 0.165, Cd 0.116, Hg 0.110, Cu 0.105, Co 0.072, Pb 0.058, Ni 0.008, Cr (0.011) and Fe (0.018 percent/km), and they have complex distributions. Given the k values, concentration at source (C{sub 0}), and the distance x of any point in the lagoon from the source, we have calculated the model concentrations of the nine metals at each sampling station. Tides, currents, floor morphology, additional sources, and continued dumping perturb model distributions causing anomalies (observed minus model concentrations). Positive anomalies are found near the source, where continued dumping perturbs initial boundary conditions, and in areas of sluggish circulation. Negative anomalies are found in areas with strong currents that may flush sediments out of the lagoon. We have thus identified areas in the lagoon where higher rate of sediment removal and exchange may lesson pollution. 41 refs., 4 figs., 3 tabs.« less

  13. Did Mineral Surface Chemistry and Toxicity Contribute to Evolution of Microbial Extracellular Polymeric Substances?

    PubMed Central

    Campbell, Jay M.; Zhang, Nianli; Hickey, William J.

    2012-01-01

    Abstract Modern ecological niches are teeming with an astonishing diversity of microbial life in biofilms closely associated with mineral surfaces, which highlights the remarkable success of microorganisms in conquering the challenges and capitalizing on the benefits presented by the mineral–water interface. Biofilm formation capability likely evolved on early Earth because biofilms provide crucial cell survival functions. The potential toxicity of mineral surfaces toward cells and the complexities of the mineral–water–cell interface in determining the toxicity mechanisms, however, have not been fully appreciated. Here, we report a previously unrecognized role for extracellular polymeric substances (EPS), which form biofilms in shielding cells against the toxicity of mineral surfaces. Using colony plating and LIVE/DEAD staining methods in oxide suspensions versus oxide-free controls, we found greater viability of wild-type, EPS-producing strains of Pseudomonas aeruginosa PAO1 compared to their isogenic knockout mutant with defective biofilm-producing capacity. Oxide toxicity was specific to its surface charge and particle size. High resolution transmission electron microscopy (HRTEM) images and assays for highly reactive oxygen species (hROS) on mineral surfaces suggested that EPS shield via both physical and chemical mechanisms. Intriguingly, qualitative as well as quantitative measures of EPS production showed that toxic minerals induced EPS production in bacteria. By determining the specific toxicity mechanisms, we provide insight into the potential impact of mineral surfaces in promoting increased complexity of cell surfaces, including EPS and biofilm formation, on early Earth. Key Words: Mineral toxicity—Bacteria—EPS evolution—Biofilms—Cytotoxicity—Silica—Anatase—Alumina. Astrobiology 12, 785–798. PMID:22934560

  14. Effects-based spatial assessment of contaminated estuarine sediments from Bear Creek, Baltimore Harbor, MD, USA.

    PubMed

    Hartzell, Sharon E; Unger, Michael A; McGee, Beth L; Wilson, Sacoby M; Yonkos, Lance T

    2017-10-01

    Estuarine sediments in regions with prolonged histories of industrial activity are often laden to significant depths with complex contaminant mixtures, including trace metals and persistent organic pollutants. Given the complexity of assessing risks from multi-contaminant exposures, the direct measurement of impacts to biological receptors is central to characterizing contaminated sediment sites. Though biological consequences are less commonly assessed at depth, laboratory-based toxicity testing of subsurface sediments can be used to delineate the scope of contamination at impacted sites. The extent and depth of sediment toxicity in Bear Creek, near Baltimore, Maryland, USA, was delineated using 10-day acute toxicity tests with the estuarine amphipod Leptocheirus plumulosus, and chemical analysis of trace metals and persistent organic pollutants. A gradient of toxicity was demonstrated in surface sediments with 21 of 22 tested sites differing significantly from controls. Effects were most pronounced (100% lethality) at sites proximate to a historic industrial complex. Sediments from eight of nine core samples to depths of 80 cm were particularly impacted (i.e., caused significant lethality to L. plumulosus) even in locations overlain with relatively non-toxic surface sediments, supporting a conclusion that toxicity observed at the surface (top 2 cm) does not adequately predict toxicity at depth. In seven of nine sites, toxicity of surface sediments differed from toxicity at levels beneath by 28 to 69%, in five instances underestimating toxicity (28 to 69%), and in two instances overestimating toxicity (44 to 56%). Multiple contaminants exceeded sediment quality guidelines and correlated positively with toxic responses within surface sediments (e.g., chromium, nickel, polycyclic aromatic hydrocarbon (PAH), total petroleum hydrocarbon). Use of an antibody-based PAH biosensor revealed that porewater PAH concentrations also increased with depth at most sites. This study informs future management decisions concerning the extent of impact to Bear Creek sediments, and demonstrates the benefits of a spatial approach, relying primarily on toxicity testing to assess sediment quality in a system with complex contaminant mixtures.

  15. The dose can make the poison: lessons learned from adverse in vivo toxicities caused by RNAi overexpression.

    PubMed

    Grimm, Dirk

    2011-10-26

    For the past five years, evidence has accumulated that vector-mediated robust RNA interference (RNAi) expression can trigger severe side effects in small and large animals, from cytotoxicity and accelerated tumorigenesis to organ failure and death. The recurring notions in these studies that a critical parameter is the strength of RNAi expression and that Exportin-5 and the Argonaute proteins are rate-limiting mammalian RNAi, strongly imply dose-dependent saturation of the endogenous miRNA pathway as one of the underlying mechanisms. This minireview summarizes the relevant work and data leading to this intriguing model and highlights potential avenues by which to alleviate RNAi-induced toxicities in future clinical applications.

  16. Integrating toxicogenomics into human health risk assessment: lessons learned from the benzo[a]pyrene case study.

    PubMed

    Chepelev, Nikolai L; Moffat, Ivy D; Labib, Sarah; Bourdon-Lacombe, Julie; Kuo, Byron; Buick, Julie K; Lemieux, France; Malik, Amal I; Halappanavar, Sabina; Williams, Andrew; Yauk, Carole L

    2015-01-01

    The use of short-term toxicogenomic tests to predict cancer (or other health effects) offers considerable advantages relative to traditional toxicity testing methods. The advantages include increased throughput, increased mechanistic data, and significantly reduced costs. However, precisely how toxicogenomics data can be used to support human health risk assessment (RA) is unclear. In a companion paper ( Moffat et al. 2014 ), we present a case study evaluating the utility of toxicogenomics in the RA of benzo[a]pyrene (BaP), a known human carcinogen. The case study is meant as a proof-of-principle exercise using a well-established mode of action (MOA) that impacts multiple tissues, which should provide a best case example. We found that toxicogenomics provided rich mechanistic data applicable to hazard identification, dose-response analysis, and quantitative RA of BaP. Based on this work, here we share some useful lessons for both research and RA, and outline our perspective on how toxicogenomics can benefit RA in the short- and long-term. Specifically, we focus on (1) obtaining biologically relevant data that are readily suitable for establishing an MOA for toxicants, (2) examining the human relevance of an MOA from animal testing, and (3) proposing appropriate quantitative values for RA. We describe our envisioned strategy on how toxicogenomics can become a tool in RA, especially when anchored to other short-term toxicity tests (apical endpoints) to increase confidence in the proposed MOA, and emphasize the need for additional studies on other MOAs to define the best practices in the application of toxicogenomics in RA.

  17. Silica micro- and nanoparticles reduce the toxicity of surfactant solutions.

    PubMed

    Ríos, Francisco; Fernández-Arteaga, Alejandro; Fernández-Serrano, Mercedes; Jurado, Encarnación; Lechuga, Manuela

    2018-04-20

    In this work, the toxicity of hydrophilic fumed silica micro- and nanoparticles of various sizes (7 nm, 12 nm, and 50 μm) was evaluated using the luminescent bacteria Vibrio fischeri. In addition, the toxicity of an anionic surfactant solution (ether carboxylic acid), a nonionic surfactant solution (alkyl polyglucoside), and a binary (1:1) mixture of these solutions all containing these silica particles was evaluated. Furthermore, this work discusses the adsorption of surfactants onto particle surfaces and evaluates the effects of silica particles on the surface tension and critical micellar concentration (CMC) of these anionic and nonionic surfactants. It was determined that silica particles can be considered as non-toxic and that silica particles reduce the toxicity of surfactant solutions. Nevertheless, the toxicity reduction depends on the ionic character of the surfactants. Differences can be explained by the different adsorption behavior of surfactants onto the particle surface, which is weaker for nonionic surfactants than for anionic surfactants. Regarding the effects on surface tension, it was found that silica particles increased the surface activity of anionic surfactants and considerably reduced their CMC, whereas in the case of nonionic surfactants, the effects were reversed. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Surfacing the Structures of Patriarchy: Teaching and Learning Threshold Concepts in Women's Studies

    ERIC Educational Resources Information Center

    Hassel, Holly; Reddinger, Amy; van Slooten, Jessica

    2011-01-01

    Patriarchy is a threshold concept in women's studies--a significant, defining concept that transforms students' understanding of the discipline. This article reviews our design, implementation, and findings of a lesson study crafted to teach women's studies students the complex idea of patriarchy as a social system. We analyze the lesson using…

  19. Earthwalk

    NASA Astrophysics Data System (ADS)

    Muller, E.

    2006-12-01

    When the weather is nice, I like to take my students on a walk to the center of the earth. Earthwalk is a hands-on and feet-on activity that gets students outdoors, having fun, moving and learning about the structures of the earth. Earthwalk is a lesson to help students visualize our planets size and scale. This activity has students calculate the ratio of a scaled 100m cross-sectional earth, mark the boundaries between major planetary layers, walk from the center of the earth to the surface and draw proportional manmade and natural surface features (mountains, building, mine shafts, etc). This lesson effectively integrates content and pedagogy while touching on skills and topics such as math, measurement, science, writing skills (they have to take notes), reading, listening and group dynamics. This activity fits well into the earth science curriculum by introducing basic seismology; tectonic, geochemistry and heat transfer concepts. Besides showcasing this lesson, a limited number of Earth Anatomy posters will be distributed.

  20. Toxicity Evaluation of Engineered Nanomaterials (Phase 1 Studies)

    DTIC Science & Technology

    2012-01-01

    Surface Chemistry on Cellular Response ...................................................................................................... 48...Gold Nanomaterial Solution Purity and Surface Chemistry Toxicity ................................................................. 18 Figure 7...Solution Purity and Surface Chemistry Control Although several studies have shown that both MPS and PEG are biocompatible, in order to ensure that

  1. Lessons learned from the development and manufacture of ceramic reusable surface insulation materials for the space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    Banas, R. P.; Elgin, D. R.; Cordia, E. R.; Nickel, K. N.; Gzowski, E. R.; Aguiler, L.

    1983-01-01

    Three ceramic, reusable surface insulation materials and two borosilicate glass coatings were used in the fabrication of tiles for the Space Shuttle orbiters. Approximately 77,000 tiles were made from these materials for the first three orbiters, Columbia, Challenger, and Discovery. Lessons learned in the development, scale up to production and manufacturing phases of these materials will benefit future production of ceramic reusable surface insulation materials. Processing of raw materials into tile blanks and coating slurries; programming and machining of tiles using numerical controlled milling machines; preparing and spraying tiles with the two coatings; and controlling material shrinkage during the high temperature (2100-2275 F) coating glazing cycles are among the topics discussed.

  2. BEST: Bilingual environmental science training: Grades 1--2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This booklet is one of a series of bilingual guides to environmental-science learning activities for students to do at home. Lesson objectives, materials required, procedure, vocabulary, and subjects integrated into the lesson are described in English for each lesson. A bilingual glossary, alphabetized by English entries, with Spanish equivalents and definitions in both English and Spanish, follows the lesson descriptions, and is itself followed by a bibliography of English-language references. This booklet includes descriptions of ten lessons covering surface tension in water, the life cycle of plants, the protective function of the skeletal system, functions and behavior of the circulatorymore » system and how to measure its activities, structure and functions of the digestive system, simple food chains, how that many foods come from different plant parts, importance of a good diet, distinguishing living and non-living things, and the benefits of composting. 8 figs.« less

  3. Assessment of Runoff Toxicity from Coated Surfaces

    EPA Science Inventory

    Presented in this paper are results from a field and laboratory study of the potential runoff toxicity from coated surfaces. The study results qualified and quantified the types and concentrations of pollutants in runoff from surfaces sealed with a variety of products. Coatings a...

  4. Toxicity Assessment of Silica Coated Iron Oxide Nanoparticles and Biocompatibility Improvement by Surface Engineering

    PubMed Central

    Malvindi, Maria Ada; De Matteis, Valeria; Galeone, Antonio; Brunetti, Virgilio; Anyfantis, George C.; Athanassiou, Athanassia; Cingolani, Roberto; Pompa, Pier Paolo

    2014-01-01

    We have studied in vitro toxicity of iron oxide nanoparticles (NPs) coated with a thin silica shell (Fe3O4/SiO2 NPs) on A549 and HeLa cells. We compared bare and surface passivated Fe3O4/SiO2 NPs to evaluate the effects of the coating on the particle stability and toxicity. NPs cytotoxicity was investigated by cell viability, membrane integrity, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) assays, and their genotoxicity by comet assay. Our results show that NPs surface passivation reduces the oxidative stress and alteration of iron homeostasis and, consequently, the overall toxicity, despite bare and passivated NPs show similar cell internalization efficiency. We found that the higher toxicity of bare NPs is due to their stronger in-situ degradation, with larger intracellular release of iron ions, as compared to surface passivated NPs. Our results indicate that surface engineering of Fe3O4/SiO2 NPs plays a key role in improving particles stability in biological environments reducing both cytotoxic and genotoxic effects. PMID:24465736

  5. Magnetic Field Measurements on the Lunar Surface: Lessons Learned from Apollo and Science Enabled by Future Missions

    NASA Astrophysics Data System (ADS)

    Chi, P. J.

    2017-10-01

    We discuss the science to be enabled by new magnetometer measurements on the lunar surface, based on results from Apollo and other lunar missions. Also discussed are approaches to deploying magnetometers on the lunar surface with today's technology.

  6. EVALUATION OF TOXICS IN RUNOFF FROM COATED SURFACES

    EPA Science Inventory

    Presented in this paper are results from a field and laboratory study of the potential runoff toxicity from coated surfaces. The study results qualified and quantified the types and concentrations of pollutants in runoff from surfaces sealed with a variety of products. Coatings a...

  7. Regulation of DNA Alkylation Damage Repair: Lessons and Therapeutic Opportunities

    PubMed Central

    Soll, Jennifer M.; Sobol, Robert W.; Mosammaparast, Nima

    2016-01-01

    Alkylation chemotherapy is one of the most widely used systemic therapies for cancer. While somewhat effective, clinical responses and toxicities of these agents are highly variable. A major contributing factor for this variability is the numerous distinct lesions that are created upon alkylation damage. These adducts activate multiple repair pathways. There is mounting evidence that the individual pathways function cooperatively, suggesting that coordinated regulation of alkylation repair is critical to prevent toxicity. Furthermore, some alkylating agents produce adducts that overlap with newly discovered methylation marks, making it difficult to distinguish between bona fide damaged bases and so called ‘epigenetic’ adducts. We discuss new efforts aimed at deciphering the mechanisms that regulate these repair pathways, emphasizing their implications for cancer chemotherapy. PMID:27816326

  8. Impacts of select organic ligands on the colloidal stability, dissolution dynamics, and toxicity of silver nanoparticles.

    PubMed

    Pokhrel, Lok R; Dubey, Brajesh; Scheuerman, Phillip R

    2013-11-19

    Key understanding of potential transformations that may occur on silver nanoparticle (AgNP) surface upon interaction with naturally ubiquitous organic ligands (e.g., -SH (thoil), humic acid, or -COO (carboxylate)) is limited. Herein we investigated how dissolved organic carbon (DOC), -SH (in cysteine, a well-known Ag(+) chelating agent), and -COO (in trolox, a well-known antioxidant) could alter the colloidal stability, dissolution rate, and toxicity of citrate-functionalized AgNPs (citrate-AgNPs) against a keystone crustacean Daphnia magna. Cysteine, DOC, or trolox amendment of citrate-AgNPs differentially modified particle size, surface properties (charge, plasmonic spectra), and ion release dynamics, thereby attenuating (with cysteine or trolox) or promoting (with DOC) AgNP toxicity. Except with DOC amendment, the combined toxicity of AgNPs and released Ag under cysteine or trolox amendment was lower than of AgNO3 alone. The results of this study show that citrate-AgNP toxicity can be associated with oxidative stress, ion release, and the organism biology. Our evidence suggests that specific organic ligands available in the receiving waters can differentially surface modify AgNPs and alter their environmental persistence (changing dissolution dynamics) and subsequently the toxicity; hence, we caveat to generalize that surface modified nanoparticles upon environmental release may not be toxic to receptor organisms.

  9. Lunar Surface Mission Operations Scenario and Considerations

    NASA Technical Reports Server (NTRS)

    Arnold, Larissa S.; Torney, Susan E.; Rask, John Doug; Bleisath, Scott A.

    2006-01-01

    Planetary surface operations have been studied since the last visit of humans to the Moon, including conducting analog missions. Mission Operations lessons from these activities are summarized. Characteristics of forecasted surface operations are compared to current human mission operations approaches. Considerations for future designs of mission operations are assessed.

  10. Ecotoxicological studies of environmental samples from Buenos Aires area using a standardized amphibian embryo toxicity test (AMPHITOX).

    PubMed

    Herkovits, Jorge; Perez-Coll, Cristina; Herkovits, Francisco D

    2002-01-01

    The toxicity of 34 environmental samples from potentially polluted and reference stations were evaluated by means of the AMPHITOX test from acute to chronic exposure according to the toxicity found in each sample. The samples were obtained from surface and ground water, leaches, industrial effluents and soils. The data, expressed in acute, short-term chronic and chronic Toxicity Units (TUa, TUstc and TUc) resulted in a maximal value of 1000 TUc, found in a leach, while the lower toxicity value was 1.4 TUa corresponding to two surface water samples. In five samples (four providing from reference places) no toxicity was detected. The results point out the possibility of evaluating the toxicity of a wide diversity of samples by means of AMPHITOX as a customized toxicity test. The fact that almost all samples with suspected toxicity in rivers and streams from the Metropolitan area of Buenos Aires city resulted toxic, indicates the need of enhanced stewardship of chemical substances for environmental and human health protection purposes.

  11. Collective judicial management of mass toxic tort controversies: lessons and issues from the Agent Orange litigation.

    PubMed

    Novey, L B

    1988-01-01

    Viewing the Agent Orange litigation as a case study, this article explores the feasibility and desirability of strengthening the powers of the courts to manage toxic tort controversies en masse. The Agent Orange lawsuit, brought on behalf of potentially millions of Vietnam War veterans and family members, charged that herbicides used for military purposes during the war caused a wide range of health problems. This article first reviews the current national debate over how mass toxic tort controversies should be handled, including key legislative reform options, and describes how attention is increasingly focused on ways that the court system might better cope with mass toxic torts. The principal events of the Agent Orange litigation are then summarized, by which the litigation was consolidated into a massive class action, the class action was settled, and a streamlined plan for distributing the settlement fund was adopted. The article evaluates the outcome of the litigation, and discusses whether the solution there can and should be broadly applied to other mass toxic tort cases. This question depends, in part, on a series of complex legal and practical issues, but the author suggests that the question will also depend on what institutional role we expect the judiciary to play within society.

  12. [Global lessons of Minamata disease--a man's worth].

    PubMed

    Harada, Masazumi

    2009-02-01

    Minamata disease (MD) was first recognized in May 1956. Its first recognized victims were 3 and 5 years old children. Environmental contamination most rapidly and seriously affected the physiologically and socially weak among the residents. Methylmercury (MeHg) had accumulated in fishes and shellfishes and those who ate them had been poisoning with it. MD is an indirect poisoning by MeHg through the food chain as a result of environmental contamination, and is the first known disease to cause abnormalities in the fetus due to a toxic substances passing through the placenta. In 1962 MeHg poisoning through the placenta was found for the first time in the world. It used to be considered that poisoning was caused by direct exposure to a toxic substance, and that toxic substances did not pass the placenta. MD had implications in various fields. Namely it also stirred up legal, ethical, and eugenic arguments concerning fetal protection. Also man thought about a man's worth.

  13. Tracking pyrethroid toxicity in surface water samples: Exposure dynamics and toxicity identification tools for laboratory tests with Hyalella azteca (Amphipoda).

    PubMed

    Deanovic, Linda A; Stillway, Marie; Hammock, Bruce G; Fong, Stephanie; Werner, Inge

    2018-02-01

    Pyrethroid insecticides are commonly used in pest control and are present at toxic concentrations in surface waters of agricultural and urban areas worldwide. Monitoring is challenging as a result of their high hydrophobicity and low toxicity thresholds, which often fall below the analytical methods detection limits (MDLs). Standard daphnid bioassays used in surface water monitoring are not sensitive enough to protect more susceptible invertebrate species such as the amphipod Hyalella azteca and chemical loss during toxicity testing is of concern. In the present study, we quantified toxicity loss during storage and testing, using both natural and synthetic water, and presented a tool to enhance toxic signal strength for improved sensitivity of H. azteca toxicity tests. The average half-life during storage in low-density polyethylene (LDPE) cubitainers (Fisher Scientific) at 4 °C of 5 pyrethroids (permethrin, bifenthrin, lambda-cyhalothrin, cyfluthrin, and esfenvalerate) and one organophosphate (chlorpyrifos; used as reference) was 1.4 d, and piperonyl butoxide (PBO) proved an effective tool to potentiate toxicity. We conclude that toxicity tests on ambient water samples containing these hydrophobic insecticides are likely to underestimate toxicity present in the field, and mimic short pulse rather than continuous exposures. Where these chemicals are of concern, the addition of PBO during testing can yield valuable information on their presence or absence. Environ Toxicol Chem 2018;37:462-472. © 2017 SETAC. © 2017 SETAC.

  14. Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states

    PubMed Central

    Pulido-Reyes, Gerardo; Rodea-Palomares, Ismael; Das, Soumen; Sakthivel, Tamil Selvan; Leganes, Francisco; Rosal, Roberto; Seal, Sudipta; Fernández-Piñas, Francisca

    2015-01-01

    Cerium oxide nanoparticles (nanoceria; CNPs) have been found to have both pro-oxidant and anti-oxidant effects on different cell systems or organisms. In order to untangle the mechanisms which underlie the biological activity of nanoceria, we have studied the effect of five different CNPs on a model relevant aquatic microorganism. Neither shape, concentration, synthesis method, surface charge (ζ-potential), nor nominal size had any influence in the observed biological activity. The main driver of toxicity was found to be the percentage of surface content of Ce3+ sites: CNP1 (58%) and CNP5 (40%) were found to be toxic whereas CNP2 (28%), CNP3 (36%) and CNP4 (26%) were found to be non-toxic. The colloidal stability and redox chemistry of the most and least toxic CNPs, CNP1 and CNP2, respectively, were modified by incubation with iron and phosphate buffers. Blocking surface Ce3+ sites of the most toxic CNP, CNP1, with phosphate treatment reverted toxicity and stimulated growth. Colloidal destabilization with Fe treatment only increased toxicity of CNP1. The results of this study are relevant in the understanding of the main drivers of biological activity of nanoceria and to define global descriptors of engineered nanoparticles (ENPs) bioactivity which may be useful in safer-by-design strategies of nanomaterials. PMID:26489858

  15. Surface Defects on Plate-Shaped Silver Nanoparticles Contribute to Its Hazard Potential in a Fish Gill Cell Line and Zebrafish Embyos

    PubMed Central

    George, Saji; Lin, Sijie; Ji, Zhaoxia; Thomas, Courtney; Li, LinJiang; Mecklenburg, Mathew; Meng, Huan; Wang, Xiang; Zhang, Haiyuan; Xia, Tian; Lin, Shuo; Hohman, J. Nathan; Zink, Jeffrey I.; Weiss, Paul; Nel, André E.

    2014-01-01

    We investigated and compared nano-size Ag spheres, plates, and wires in a fish gill epithelial cell line (RT-W1) and in zebrafish embryos to understand the mechanism of toxicity of an engineered nanomaterial raising considerable environmental concern. While most of the Ag nanoparticles induced N-acetyl cysteine sensitive toxic oxidative stress effects in RT-W1, Ag nanoplates were considerably more toxic than other particle shapes. Interestingly, while Ag ion shedding and bioavailability failed to explain the high toxicity of the nanoplates, cellular injury required direct particle contact, resulting in cell membrane lysis in RT-W1 as well as red blood cells (RBC). Ag nanoplates were also considerably more toxic in zebrafish embryos in spite of their lesser ability to shed Ag into the exposure medium. In order to elucidate the “surface reactivity” of Ag nanoplates, high-resolution transmission electron microscopy was performed and demonstrated a high level of crystal defects (stacking faults and point defects) on the nanoplate surfaces. Surface coating with cysteine was used to passivate the surface defects and demonstrated a reduction of toxicity in RT-W1 cells, RBC, and zebrafish embryos. This study demonstrates the important role of crystal defects in contributing to Ag nanoparticle toxicity in addition to the established roles of Ag ion shed from spherical nanoparticles. The excellent correlation between the in vitro and in vivo toxicological assessment illustrates the utility of using a fish cell line in parallel with zebrafish embryos to perform a predictive environmental toxicological paradigm. PMID:22482460

  16. Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge

    PubMed Central

    Miller, Mark R.; Clift, Martin J.D.; Elder, Alison; Mills, Nicholas L.; Møller, Peter; Schins, Roel P.F.; Vogel, Ulla; Kreyling, Wolfgang G.; Alstrup Jensen, Keld; Kuhlbusch, Thomas A.J.; Schwarze, Per E.; Hoet, Peter; Pietroiusti, Antonio; De Vizcaya-Ruiz, Andrea; Baeza-Squiban, Armelle; Teixeira, João Paulo; Tran, C. Lang; Cassee, Flemming R.

    2017-01-01

    Background: A rich body of literature exists that has demonstrated adverse human health effects following exposure to ambient air particulate matter (PM), and there is strong support for an important role of ultrafine (nanosized) particles. At present, relatively few human health or epidemiology data exist for engineered nanomaterials (NMs) despite clear parallels in their physicochemical properties and biological actions in in vitro models. Objectives: NMs are available with a range of physicochemical characteristics, which allows a more systematic toxicological analysis. Therefore, the study of ultrafine particles (UFP, <100 nm in diameter) provides an opportunity to identify plausible health effects for NMs, and the study of NMs provides an opportunity to facilitate the understanding of the mechanism of toxicity of UFP. Methods: A workshop of experts systematically analyzed the available information and identified 19 key lessons that can facilitate knowledge exchange between these discipline areas. Discussion: Key lessons range from the availability of specific techniques and standard protocols for physicochemical characterization and toxicology assessment to understanding and defining dose and the molecular mechanisms of toxicity. This review identifies a number of key areas in which additional research prioritization would facilitate both research fields simultaneously. Conclusion: There is now an opportunity to apply knowledge from NM toxicology and use it to better inform PM health risk research and vice versa. https://doi.org/10.1289/EHP424 PMID:29017987

  17. Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge.

    PubMed

    Stone, Vicki; Miller, Mark R; Clift, Martin J D; Elder, Alison; Mills, Nicholas L; Møller, Peter; Schins, Roel P F; Vogel, Ulla; Kreyling, Wolfgang G; Alstrup Jensen, Keld; Kuhlbusch, Thomas A J; Schwarze, Per E; Hoet, Peter; Pietroiusti, Antonio; De Vizcaya-Ruiz, Andrea; Baeza-Squiban, Armelle; Teixeira, João Paulo; Tran, C Lang; Cassee, Flemming R

    2017-10-10

    A rich body of literature exists that has demonstrated adverse human health effects following exposure to ambient air particulate matter (PM), and there is strong support for an important role of ultrafine (nanosized) particles. At present, relatively few human health or epidemiology data exist for engineered nanomaterials (NMs) despite clear parallels in their physicochemical properties and biological actions in in vitro models. NMs are available with a range of physicochemical characteristics, which allows a more systematic toxicological analysis. Therefore, the study of ultrafine particles (UFP, <100 nm in diameter) provides an opportunity to identify plausible health effects for NMs, and the study of NMs provides an opportunity to facilitate the understanding of the mechanism of toxicity of UFP. A workshop of experts systematically analyzed the available information and identified 19 key lessons that can facilitate knowledge exchange between these discipline areas. Key lessons range from the availability of specific techniques and standard protocols for physicochemical characterization and toxicology assessment to understanding and defining dose and the molecular mechanisms of toxicity. This review identifies a number of key areas in which additional research prioritization would facilitate both research fields simultaneously. There is now an opportunity to apply knowledge from NM toxicology and use it to better inform PM health risk research and vice versa. https://doi.org/10.1289/EHP424.

  18. Challenges in realizing selectivity for nanoparticle biodistribution and clearance: lessons from gold nanoparticles.

    PubMed

    Haute, Desiree Van; Berlin, Jacob M

    2017-08-01

    The field of nanomedicine has received much attention for its potential to allow for targeted identification and treatment of tumors, while sparing healthy tissue. This promise has yet to be clinically realized; instead nanomedicine has translated into clinical benefit via formulations that improve the pharmacokinetics and toxicity profiles of toxic chemotherapeutic agents. In this perspective, we highlight that several of the defining strategies for using nanoparticles intravenously to target solid tumors have limited supporting data in animal studies. Namely, it does not appear that reducing macrophage (and other cell type) uptake in vitro leads to better biodistribution in vivo, nor does increasing blood circulation time nor active targeting. We suggest instead that the coming decade will primarily see nanoparticles impact immunotherapy and local/pseudolocal cancer therapy.

  19. Cadmium Handling, Toxicity and Molecular Targets Involved during Pregnancy: Lessons from Experimental Models.

    PubMed

    Jacobo-Estrada, Tania; Santoyo-Sánchez, Mitzi; Thévenod, Frank; Barbier, Olivier

    2017-07-22

    Even decades after the discovery of Cadmium (Cd) toxicity, research on this heavy metal is still a hot topic in scientific literature: as we wrote this review, more than 1440 scientific articles had been published and listed by the PubMed.gov website during 2017. Cadmium is one of the most common and harmful heavy metals present in our environment. Since pregnancy is a very particular physiological condition that could impact and modify essential pathways involved in the handling of Cd, the prenatal life is a critical stage for exposure to this non-essential element. To give the reader an overview of the possible mechanisms involved in the multiple organ toxic effects in fetuses after the exposure to Cd during pregnancy, we decided to compile some of the most relevant experimental studies performed in experimental models and to summarize the advances in this field such as the Cd distribution and the factors that could alter it (diet, binding-proteins and membrane transporters), the Cd-induced toxicity in dams (preeclampsia, fertility, kidney injury, alteration in essential element homeostasis and bone mineralization), in placenta and in fetus (teratogenicity, central nervous system, liver and kidney).

  20. Cadmium Handling, Toxicity and Molecular Targets Involved during Pregnancy: Lessons from Experimental Models

    PubMed Central

    Santoyo-Sánchez, Mitzi; Thévenod, Frank; Barbier, Olivier

    2017-01-01

    Even decades after the discovery of Cadmium (Cd) toxicity, research on this heavy metal is still a hot topic in scientific literature: as we wrote this review, more than 1440 scientific articles had been published and listed by the PubMed.gov website during 2017. Cadmium is one of the most common and harmful heavy metals present in our environment. Since pregnancy is a very particular physiological condition that could impact and modify essential pathways involved in the handling of Cd, the prenatal life is a critical stage for exposure to this non-essential element. To give the reader an overview of the possible mechanisms involved in the multiple organ toxic effects in fetuses after the exposure to Cd during pregnancy, we decided to compile some of the most relevant experimental studies performed in experimental models and to summarize the advances in this field such as the Cd distribution and the factors that could alter it (diet, binding-proteins and membrane transporters), the Cd-induced toxicity in dams (preeclampsia, fertility, kidney injury, alteration in essential element homeostasis and bone mineralization), in placenta and in fetus (teratogenicity, central nervous system, liver and kidney). PMID:28737682

  1. Microplastics: addressing ecological risk through lessons learned.

    PubMed

    Syberg, Kristian; Khan, Farhan R; Selck, Henriette; Palmqvist, Annemette; Banta, Gary T; Daley, Jennifer; Sano, Larissa; Duhaime, Melissa B

    2015-05-01

    Plastic litter is an environmental problem of great concern. Despite the magnitude of the plastic pollution in our water bodies, only limited scientific understanding is available about the risk to the environment, particularly for microplastics. The apparent magnitude of the problem calls for quickly developing sound scientific guidance on the ecological risks of microplastics. The authors suggest that future research into microplastics risks should be guided by lessons learned from the more advanced and better understood areas of (eco) toxicology of engineered nanoparticles and mixture toxicity. Relevant examples of advances in these two fields are provided to help accelerate the scientific learning curve within the relatively unexplored area of microplastics risk assessment. Finally, the authors advocate an expansion of the "vector effect" hypothesis with regard to microplastics risk to help focus research of microplastics environmental risk at different levels of biological and environmental organization. © 2015 SETAC.

  2. Pulmonary toxicity of manufactured nanoparticles

    NASA Astrophysics Data System (ADS)

    Peebles, Brian Christopher

    Manufactured nanomaterials have become ubiquitous in science, industry, and medicine. Although electron microscopy and surface probe techniques have improved understanding of the physicochemical properties of nanomaterials, much less is known about what makes nanomaterials toxic. Particulate matter less than 2.5 mum in effective aerodynamic diameter is easily inhaled and taken deep into the lungs. The toxicity of inhaled particulate matter is related to its size and surface chemistry; for instance, the smaller the size of particles, the greater their specific surface area. The chemistry and toxicity of insoluble particles depends on their surface area, since chemical reactions may happen with the environment on the surface. Oxidation and reduction may occur on the surfaces of particles after they are produced. For instance, it is known that carbonaceous particles from vehicle exhaust and industrial emission may interact with reactive species like ozone in their ambient environment, altering the surface chemistry of the particles. Reaction with species in the environment may cause changes in the chemical functionality of the surface and change the toxic properties of the particles when they are inhaled. Furthermore, metals on the surface of inhalable particles can contribute to their toxicity. Much attention has been given to the presence of iron on the surfaces of inhalable particles in the environment. After particle inhalation, particles are endocytosed by alveolar macrophages in the immune response to foreign matter. They are exposed to hydrogen peroxide in the oxidative burst, which can cause the iron-mediated production of hydroxyl free radicals via the Fenton reaction, causing oxidative stress that leads to inflammation and cell death. The toxicity of particles that contain metals depends on the redox activity and bioavailability of the metals, the causes of thich have not yet been adequately explored. In this thesis, electron paramagnetic spectroscopy showed that carbon blacks contain free radical and other surface functionality as manufactured, and that exposure to ozone further functionalizes the surface. Samples of carbon black that have been exposed to ozone react with their ambient environment so that acid anhydride and cyclic ether functionality hydrolyze to form carboxylic acid functionality, observable by transmission Fourier transform infrared spectroscopy. Persistent free radical content, but not free radical content from ozone exposure, may mediate the toxic response of cells to carbon blacks in vitro. Results showed that macrophages exposed to carbon blacks that had been exposed to ozone were not less viable in vitro than macrophages exposed to carbon blacks as manufactured because the free radical content that resulted from ozone exposure was not persistent in an aqueous medium. Furthermore, concurrent exposure to ozonated carbon blacks and ozone was less lethal to macrophages than carbon black exposure alone, possibly because the ozone oxidatively preconditioned the macrophages to resist oxidative stress. The nature of redox-active iron species on the surface of iron-loaded synthetic carbon particles was explored. The particles had been shown in previous studies to provoke an inflammatory response involving the release of tumor necrosis factor (TNF)-alpha, which was correlated with their production of hydroxyl free radicals via the Fenton reaction in the presence of hydrogen peroxide. It was found that the source of bioavailable Fenton-active iron on the surfaces of the particles was fluoride species that were byproducts of a step in the synthetic process. Fluoride ligated the iron already on the surface, forming a complex that resisted precipitation in the biological medium and thus made the iron more bioavailable. The results of this thesis aim to clarify whether the size and surface chemistry of nanoparticles should be considered more closely as criteria with which to develop better environmental controls for occupational health. Permissible exposure limits to micrometer-size particulate matter in the workplace are in place, but current limits do not specifically address the role of surface chemistry and the potentially higher toxicity of nanomaterials. The size, agglomeration characteristics, and surface chemistry of carbon nanoparticles are being studied and manipulated to explore the causes of their toxicity. Inflammatory response and cytotoxicity following exposure of human and murine macrophages to nanoparticles are being employed as indicators of the ability of particles to cause respiratory harm. The results are expected to lead to more effective standards for nanomaterial exposure in the workplace and pathways to toxicity mitigation.

  3. Aflatoxin Toxicity Reduction in Feed by Enhanced Binding to Surface-Modified Clay Additives

    PubMed Central

    Jaynes, William F.; Zartman, Richard E.

    2011-01-01

    Animal feeding studies have demonstrated that clay additives, such as bentonites, can bind aflatoxins in ingested feed and reduce or eliminate the toxicity. Bentonite deposits are found throughout the world and mostly consist of expandable smectite minerals, such as montmorillonite. The surfaces of smectite minerals can be treated with organic compounds to create surface-modified clays that more readily bind some contaminants than the untreated clay. Montmorillonites treated with organic cations, such as hexadecyltrimethylammonium (HDTMA) and phenyltrimethylammonium (PTMA), more effectively remove organic contaminants, such as benzene and toluene, from water than untreated clay. Similarly, montmorillonite treated with PTMA (Kd = 24,100) retained more aflatoxin B1 (AfB1) from aqueous corn flour than untreated montmorillonite (Kd = 944). Feed additives that reduced aflatoxin toxicity in animal feeding studies adsorbed more AfB1 from aqueous corn flour than feed additives that were less effective. The organic cations HDTMA and PTMA are considered toxic and would not be suitable for clay additives used in feed or food, but other non-toxic or nutrient compounds can be used to prepare surface-modified clays. Montmorillonite (SWy) treated with choline (Kd = 13,800) and carnitine (Kd = 3960) adsorbed much more AfB1 from aqueous corn flour than the untreated clay (Kd = 944). A choline-treated clay prepared from a reduced-charge, high-charge montmorillonite (Kd = 20,100) adsorbed more AfB1 than the choline-treated high-charge montmorillonite (Kd = 1340) or the untreated montmorillonite (Kd = 293). Surface-modified clay additives prepared using low-charge smectites and nutrient or non-toxic organic compounds might be used to more effectively bind aflatoxins in contaminated feed or food and prevent toxicity. PMID:22069725

  4. Amphibian embryos as a biological test for environmental pollutants in leachates, industrial effluents, surface and ground water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herkovits, J.; Perez-Coll, C.S.; Herkovits, F.D.

    1995-12-31

    Test of early life stages are very sensitive to toxic effects and moreover a good predictive correlation between embryo-larval survival and independent ecological parameters such as species richness and diversity have been established. The main purpose of this preliminary study is to report that Bufo arenarum embryos are very sensitive to contaminants from a variety of sources such as leachates, industrial effluents, surface and ground water. The toxicity of 30 samples (five from each category plus controls of surface and ground water from reference places) was evaluated during a 14 day renewal toxicity test at 20 C, conducted with 10more » embryos (by triplicate) from stage 23--25 onwards using six concentrations (V/V) of each sample of Holtfreter`s solution. For industrial effluents and leachates the results range from a concentration of 0.6% resulting in 24hs LC100 up to a sample which exert 20% of lethality after 14 days of treatment. The survival of controls and in samples from reference places was over 90% for 7 days and over 80% for 14 days. The results with Bufo arenarum embryos confirm that a 7 day Short-term Chronic Toxicity Test is appropriate for toxicity screening of industrial effluents (as it was established by EPA for whole effluent toxicity test for aquatic life protection performed with other species) as well as for leachates. On the other hand, for freshwater (surface and ground), it is convenient to extend the exposure period until 14 days in order to record situations of low, but significant levels of toxicity, which could be of particular value for surface as well as ground water quality criteria.« less

  5. Aflatoxin toxicity reduction in feed by enhanced binding to surface-modified clay additives.

    PubMed

    Jaynes, William F; Zartman, Richard E

    2011-06-01

    Animal feeding studies have demonstrated that clay additives, such as bentonites, can bind aflatoxins in ingested feed and reduce or eliminate the toxicity. Bentonite deposits are found throughout the world and mostly consist of expandable smectite minerals, such as montmorillonite. The surfaces of smectite minerals can be treated with organic compounds to create surface-modified clays that more readily bind some contaminants than the untreated clay. Montmorillonites treated with organic cations, such as hexadecyltrimethylammonium (HDTMA) and phenyltrimethylammonium (PTMA), more effectively remove organic contaminants, such as benzene and toluene, from water than untreated clay. Similarly, montmorillonite treated with PTMA (K(d) = 24,100) retained more aflatoxin B1 (AfB1) from aqueous corn flour than untreated montmorillonite (K(d) = 944). Feed additives that reduced aflatoxin toxicity in animal feeding studies adsorbed more AfB1 from aqueous corn flour than feed additives that were less effective. The organic cations HDTMA and PTMA are considered toxic and would not be suitable for clay additives used in feed or food, but other non-toxic or nutrient compounds can be used to prepare surface-modified clays. Montmorillonite (SWy) treated with choline (K(d) = 13,800) and carnitine (K(d) = 3960) adsorbed much more AfB1 from aqueous corn flour than the untreated clay (K(d) = 944). A choline-treated clay prepared from a reduced-charge, high-charge montmorillonite (K(d) = 20,100) adsorbed more AfB1 than the choline-treated high-charge montmorillonite (K(d) = 1340) or the untreated montmorillonite (K(d) = 293). Surface-modified clay additives prepared using low-charge smectites and nutrient or non-toxic organic compounds might be used to more effectively bind aflatoxins in contaminated feed or food and prevent toxicity.

  6. LDCM Ground System. Network Lesson Learned

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan

    2010-01-01

    This slide presentation reviews the Landsat Data Continuity Mission (LDCM) and the lessons learned in implementing the network that was assembled to allow for the acquisition, archiving and distribution of the data from the Landsat mission. The objective of the LDCM is to continue the acquisition, archiving, and distribution of moderate-resolution multispectral imagery affording global, synoptic, and repetitive coverage of the earth's land surface at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. It includes a review of the ground network, including a block diagram of the ground network elements (GNE) and a review of the RF design and testing. Also included is a listing of the lessons learned.

  7. Programmatic Life Cycle Environmental Assessment for Smoke/Obscurants. Volume 4. HC Smoke

    DTIC Science & Technology

    1983-07-01

    Night Operations ........................................ 66 . . , . :,.6: B. TOXICITY TEST RESULTS ... .................. ..... 67 "LIST OF TABLES...34~*’-~". ~ ****~I J •.’£ .... ;m"J ",•- t.,•,’,’ PURPOSE AND NEED1,2 "" .,..’ •,• SAs a result of lessons learned from the 1973 Yore Kippur War...Warfare Service (CWS) with the Berger mixture during the 1920’s and 1930’s resulted in the replacement of carbon tetrachloride (a liquid) with

  8. Organizational Dysfunction in the US Air Force: Lessons from the ICBM Community

    DTIC Science & Technology

    2016-06-01

    separated the space and missile career fields, highlighting a need to produce career professionals in the ICBM community.12 During this time, errors...raises for missileers,” Air Force Times 74, no. 29 (27 Jan, 2014): 10. 20 Gen Martin Dempsey, “America’s Military – A Profession of Arms.” Washington...Bullying”, 18-20; Cynthia Coccia, "Avoiding a "Toxic" Organization," Nursing Management 29, no. 5 (May 1998): 32; Janie Fritz. “Organizational Misbehavior

  9. Impacts of chemical modification on the toxicity of diverse nanocellulose materials to developing zebrafish

    PubMed Central

    Harper, Bryan J.; Clendaniel, Alicea; Sinche, Federico; Way, Daniel; Hughes, Michael; Schardt, Jenna; Simonsen, John; Stefaniak, Aleksandr B.

    2016-01-01

    Cellulose is an abundant and renewable resource currently being investigated for utility in nanomaterial form for various promising applications ranging from medical and pharmaceutical uses to mechanical reinforcement and biofuels. The utility of nanocellulose and wide implementation ensures increasing exposure to humans and the environment as nanocellulose-based technologies advance. Here, we investigate how differences in aspect ratio and changes to surface chemistry, as well as synthesis methods, influence the biocompatibility of nanocellulose materials using the embryonic zebrafish. Investigations into the toxicity of neutral, cationic and anionic surface functionalities revealed that surface chemistry had a minimal influence on the overall toxicity of nanocellulose materials. Higher aspect ratio cellulose nanofibers produced by mechanical homogenization were, in some cases, more toxic than other cellulose-based nanofibers or nanocrystals produced by chemical synthesis methods. Using fluorescently labeled nanocellulose we were able to show that nanocellulose uptake did occur in embryonic zebrafish during development. We conclude that the benign nature of nanocellulose materials makes them an ideal platform to systematically investigate the inherent surface features driving nanomaterial toxicity in order to create safer design principles for engineered nanoparticles. PMID:27468180

  10. Effect of Surface Omniphobicity on Drying by Forced Convection (Briefing Charts)

    DTIC Science & Technology

    2015-08-01

    Lesson Plan • This lesson plan is directed for 9th-12th grade students. • Reading about ice - cream . • Learning to make ice - cream through a DOE...average of different ice - creams . 15DISTRIBUTION A: Approved for public release; distribution unlimited. AFRL Public Affairs Clearance # Future...optimization. • The three factors are different weight percent of salt per ice , fat content in dairy and shaking time. • Measured output will be rating and

  11. Conducting Planetary Field Geology on EVA: Lessons from the 2010 DRATS Geologist Crewmembers

    NASA Technical Reports Server (NTRS)

    Young, Kelsey E.; Bleacher, J. E.; Hurtado, J. M., Jr.; Rice, J.; Garry, W. B.; Eppler, D.

    2011-01-01

    In order to prepare for the next phase of planetary surface exploration, the Desert Research and Technology Studies (DRATS) field program seeks to test the next generation of technology needed to explore other surfaces. The 2010 DRATS 14-day field campaign focused on the simultaneous operation of two habitatable rovers, or Space Exploration Vehicles (SEVs). Each rover was crewed by one astronaut/commander and one geologist, with a change in crews on day seven of the mission. This shift change allowed for eight crew members to test the DRATS technology and operational protocols [1,2]. The insights presented in this abstract represent the crew s thoughts on lessons learned from this field season, as well as potential future testing concepts.

  12. Status Report and Lessons Learned from the Univ. of Arizona NMSD

    NASA Technical Reports Server (NTRS)

    Baiocchi, Dave; Burge, Jim

    2003-01-01

    We will present the latest generation of space mirror technology being developed at the Univ. of Arizona (UA). Unlike conventional monolithic mirrors, the UA mirrors are completely active in their operation. This allows greater flexibility in the mass, volume and performance specifications. The UA mirror design uses a thin flexible substrate for the optical surface and an actuated lightweight structure for surface accuracy and support. We provide an update on the UA NGST Mirror System Demonstrator (NMSD). The 2-m, f/5 NMSD mirror uses a 2 mm thick glass substrate and weighs 86 pounds. We review the mirror's design, discuss the mythology schemes used to actuate the figure, and present a list of the lessons learned.

  13. Surface modifications on InAs decrease indium and arsenic leaching under physiological conditions

    NASA Astrophysics Data System (ADS)

    Jewett, Scott A.; Yoder, Jeffrey A.; Ivanisevic, Albena

    2012-11-01

    Devices containing III-V semiconductors such as InAs are increasingly being used in the electronic industry for a variety of optoelectronic applications. Furthermore, the attractive chemical, material, electronic properties make such materials appealing for use in devices designed for biological applications, such as biosensors. However, in biological applications the leaching of toxic materials from these devices could cause harm to cells or tissue. Additionally, after disposal, toxic inorganic materials can leach from devices and buildup in the environment, causing long-term ecological harm. Therefore, the toxicity of these materials along with their stability in physiological conditions are important factors to consider. Surface modifications are one common method of stabilizing semiconductor materials in order to chemically and electronically passivate them. Such surface modifications could also prevent the leaching of toxic materials by preventing the regrowth of the unstable surface oxide layer and by creating an effective barrier between the semiconductor surface and the surrounding environment. In this study, various surface modifications on InAs are developed with the goal of decreasing the leaching of indium and arsenic. The leaching of indium and arsenic from modified substrates was assessed in physiological conditions using inductively coupled plasma mass spectrometry (ICP-MS). Substrates modified with 11-mercapto-1-undecanol (MU) and graft polymerized with poly(ethylene) glycol (PEG) were most effective at preventing indium and arsenic leaching. These surfaces were characterized using contact angle analysis, ellipsometry, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Substrates modified with collagen and synthetic polyelectrolytes were least effective, due to the destructive nature of acidic environments on InAs. The toxicity of modified and unmodified InAs, along with raw indium, arsenic, and PEG components was assessed using zebrafish embryos.

  14. MSL Lessons Learned and Knowledge Capture

    NASA Technical Reports Server (NTRS)

    Buxbaum, Karen L.

    2012-01-01

    The Mars Program has recently been informed of the Planetary Protection Subcommittee (PPS) recommendation, which was endorsed by the NAC, concerning Mars Science Lab (MSL) lessons learned and knowledge capture. The Mars Program has not had an opportunity to consider any decisions specific to the PPS recommendation. Some of the activities recommended by the PPS would involve members of the MSL flight team who are focused on cruise, entry descent & landing, and early surface operations; those activities would have to wait. Members of the MSL planetary protection team at JPL are still available to support MSL lessons learned and knowledge capture; some of the specifically recommended activities have already begun. The Mars Program shares the PPS/NAC concerns about loss of potential information & expertise in planetary protection practice.

  15. Bioassays with caged hyalella azteca to determine in situ toxicity downstream of two Saskatchewan, Canada, uranium operations.

    PubMed

    Robertson, Erin L; Liber, Karsten

    2007-11-01

    The main objectives of this in situ study were to evaluate the usefulness of an in situ bioassay to determine if downstream water bodies at the Key Lake and Rabbit Lake uranium operations (Saskatchewan, Canada) were toxic to Hyalella azteca and, if toxicity was observed, to differentiate between the contribution of surface water and sediment contamination to in situ toxicity. These objectives were achieved by performing 4-d in situ bioassays with laboratory-reared H. azteca confined in specially designed, paired, surface water and sediment exposure chambers. Results from the in situ bioassays revealed significant mortality, relative to the respective reference site, at the exposure sites at both Key Lake (p

  16. The effects of size and surface modification of amorphous silica particles on biodistribution and liver metabolism in mice

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoyan; Ji, Cai; Jin, Tingting; Fan, Xiaohui

    2015-05-01

    Engineered nanoparticles, with unconventional properties, are promising platforms for biomedical applications. Since they may interact with a wide variety of biomolecules, it is critical to understand the impact of the physicochemical properties of engineered nanoparticles on biological systems. In this study, the effects of particle size and surface modification alone or in combination of amorphous silica particles (SPs) on biological responses were determined using a suite of general toxicological assessments and metabonomics analysis in mice model. Our results suggested that amino or carboxyl surface modification mitigated the liver toxicity of plain-surface SPs. 30 nm SPs with amino surface modification were found to be the most toxic SPs among all the surface-modified SP treatments at the same dosage. When treatment dose was increased, submicro-sized SPs with amino or carboxyl surface modification also induced liver toxicity. Biodistribution studies suggested that 70 nm SPs were mainly accumulated in liver and spleen regardless of surface modifications. Interestingly, these two organs exhibited different uptake trends. Furthermore, metabonomics studies indicated that surface modification plays a more dominant role to affect the liver metabolism than particle size.

  17. Assessment of heavy metal impact on sediment quality of the Xiaoqinghe estuary in the coastal Laizhou Bay, Bohai Sea: inconsistency between two commonly used criteria.

    PubMed

    Zhuang, Wen; Gao, Xuelu

    2014-06-15

    Surface sediments in the Xiaoqinghe estuary, southwestern coastal Laizhou Bay, were examined to assess the bio-toxic risk of heavy metals (Cd, Cu, Ni, Pb and Zn) with the effects range-low and effects range-median guidelines (ERL-ERMs) and the concentration ratio of simultaneously extractable metals to acid volatile sulfides ([SEM]/[AVS]). Based on the ERL-ERM guidelines, bio-toxic effect caused by Cu, Ni, Pb and Zn could be expected in the riverine surface sediments of the Xiaoqinghe estuary; and the surface sediments in the marine area were in good quality and only Ni might cause bio-toxic effect occasionally. The AVS-SEM guidelines revealed that no bio-toxic effect could be caused by any of the studied metals in both the riverine and marine sediments, since there were excess sulfides in surface sediments which could form water-insoluble substances with free metal ions and reduce the bioavailability of heavy metals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Human Health Effects Associated with Exposure to Toxic Cyanobacteria

    EPA Science Inventory

    Reports of toxic cyanobacteria blooms are increasing worldwide. Warming and eutrophic surface water systems support the development of blooms. We examine the evidence for adverse human health effects associated with exposure to toxic blooms in drinking water, recreational water a...

  19. Simulating Surface Oil Transport During the Deepwater Horizon Oil Spill: Experiments with the BioCast System

    DTIC Science & Technology

    2014-01-25

    Virtual Special Issue Gulf of Mexico Modelling – Lessons from the spill Simulating surface oil transport during the Deepwater Horizon oil spill ...ocean surface materials. The Deepwater Horizon oil spill in the Gulf of Mexico provided a test case for the Bio-Optical Forecasting (BioCast) system...addition of explicit sources and sinks of surface oil concentrations provides a framework for increasingly complex oil spill modeling efforts that extend

  20. Martian and Asteroid Dusts as Toxicological Risks for Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    James, John T.

    2012-01-01

    As the lunar dust toxicity project winds down, our attention is drawn to the potential toxicity of dust present at the surface of more distant celestial objects. Lunar dust has proven to be surprisingly toxic to the respiratory systems of test animals, so one might expect dust from other celestial bodies to hold toxicological surprises for us. At this point all one can do is consider what should be known about these dusts to characterize their toxicity, and then ask to what extent that information is known. In an ideal world it might be possible to suggest an exposure standard based on the known properties of a celestial dust without direct testing of the dust in laboratory animals. Factors known to affect the toxicity of mineral dusts under some conditions include the following: particle size distribution, particle shape/porosity, mineralogical properties (crystalline vs. amorphous), chemical properties and composition, and surface reactivity. Data from a recent Japanese mission to the S-type asteroid Itokawa revealed some surprises about the dust found there, given that there is only a very week gravitational field to hold the dust on the surface. On Mars the reddish-brown dust is widely distributed by global dust storms and by local clusters of dust devils. Past surface probes have revealed some of the properties of dust found there. Contemporary data from Curiosity and other surface probes will be weighed against the data needed to set a defensible safe exposure limit. Gaps will emerge.

  1. Human Health and Toxic Cyanobacteria – What do we know?

    EPA Science Inventory

    Human Health and Toxic Cyanobacteria – What do we know?Elizabeth D. HilbornWarm, eutrophic surface water systems support the development of toxic cyanobacteria blooms in North Carolina and worldwide. These conditions are increasing with expanding human populations and clima...

  2. Delivering safer immunotherapies for cancer

    PubMed Central

    Milling, Lauren; Zhang, Yuan; Irvine, Darrell J.

    2017-01-01

    Cancer immunotherapy is now a powerful clinical reality, with a steady progression of new drug approvals and a massive pipeline of additional treatments in clinical and preclinical development. However, modulation of the immune system can be a double-edged sword: Drugs that activate immune effectors are prone to serious non-specific systemic inflammation and autoimmune side effects. Drug delivery technologies have an important role to play in harnessing the power of immune therapeutics while avoiding on-target/off-tumor toxicities. Here we review mechanisms of toxicity for clinically-relevant immunotherapeutics, and discuss approaches based in drug delivery technology to enhance the safety and potency of these treatments. These include strategies to merge drug delivery with adoptive cellular therapies, targeting immunotherapies to tumors or select immune cells, and localizing therapeutics intratumorally. Rational design employing lessons learned from the drug delivery and nanomedicine fields has the potential to facilitate immunotherapy reaching its full potential. PMID:28545888

  3. A Card-Sorting Activity to Engage Students in the Academic Language of Biology

    PubMed Central

    WALLON, ROBERT C.; JASTI, CHANDANA; HUG, BARBARA

    2017-01-01

    The activity described in this article is designed to provide biology students with opportunities to engage in a range of academic language as they learn the discipline-specific meanings of the terms “drug,” “poison,” “toxicant,” and “toxin.” Although intended as part of an introductory lesson in a comprehensive unit for the high school level, this approach to teaching academic language can be adapted for use with older or younger students and can be modified to teach other terms. PMID:29307894

  4. Nano gold conjugation, anti-arthritic potential and toxicity studies of snake Naja kaouthia (Lesson, 1831) venom protein toxin NKCT1 in male albino rats and mice.

    PubMed

    Saha, Partha Pratim; Bhowmik, Tanmoy; Dasgupta, Anjan Kumar; Gomes, Antony

    2014-08-01

    Nanoscience and Nanotechnology have found their way in the fields of pharmacology and medicine. The conjugation of drug to nanoparticles combines the properties of both. In this study, gold nanoparticle (GNP) was conjugated with NKCT1, a cytotoxic protein toxin from Indian cobra venom for evaluation of anti-arthritic activity and toxicity in experimental animal models. GNP conjugated NKCT1 (GNP-NKCT1) synthesized by NaBH4 reduction method was stable at room temperature (25 +/- 2 degrees C), pH 7.2. Hydrodynamic size of GNP-NKCT1 was 68-122 nm. Arthritis was developed by Freund's complete adjuvant induction in male albino rats and treatment was done with NKCT1/GNP-NKCT1/standard drug. The paw/ankle swelling, urinary markers, serum markers and cytokines were changed significantly in arthritic control rats which were restored after GNP-NKCT1 treatment. Acute toxicity study revealed that GNP conjugation increased the minimum lethal dose value of NKCT1 and partially reduced the NKCT1 induced increase of the serum biochemical tissue injury markers. Histopathological study showed partial restoration of toxic effect in kidney tissue after GNP conjugation. Normal lymphocyte count in culture was in the order of GNP-NKCT1 > NKCT1 > Indomethacine treatment. The present study confirmed that GNP conjugation increased the antiarthritic activity and decreased toxicity profile of NKCT1.

  5. Biological Surface Coating and Molting Inhibition as Mechanisms of TiO2 Nanoparticle Toxicity in Daphnia magna

    PubMed Central

    Dabrunz, André; Duester, Lars; Prasse, Carsten; Seitz, Frank; Rosenfeldt, Ricki; Schilde, Carsten; Schaumann, Gabriele E.; Schulz, Ralf

    2011-01-01

    The production and use of nanoparticles (NP) has steadily increased within the last decade; however, knowledge about risks of NP to human health and ecosystems is still scarce. Common knowledge concerning NP effects on freshwater organisms is largely limited to standard short-term (≤48 h) toxicity tests, which lack both NP fate characterization and an understanding of the mechanisms underlying toxicity. Employing slightly longer exposure times (72 to 96 h), we found that suspensions of nanosized (∼100 nm initial mean diameter) titanium dioxide (nTiO2) led to toxicity in Daphnia magna at nominal concentrations of 3.8 (72-h EC50) and 0.73 mg/L (96-h EC50). However, nTiO2 disappeared quickly from the ISO-medium water phase, resulting in toxicity levels as low as 0.24 mg/L (96-h EC50) based on measured concentrations. Moreover, we showed that nTiO2 (∼100 nm) is significantly more toxic than non-nanosized TiO2 (∼200 nm) prepared from the same stock suspension. Most importantly, we hypothesized a mechanistic chain of events for nTiO2 toxicity in D. magna that involves the coating of the organism surface with nTiO2 combined with a molting disruption. Neonate D. magna (≤6 h) exposed to 2 mg/L nTiO2 exhibited a “biological surface coating” that disappeared within 36 h, during which the first molting was successfully managed by 100% of the exposed organisms. Continued exposure up to 96 h led to a renewed formation of the surface coating and significantly reduced the molting rate to 10%, resulting in 90% mortality. Because coating of aquatic organisms by manmade NP might be ubiquitous in nature, this form of physical NP toxicity might result in widespread negative impacts on environmental health. PMID:21647422

  6. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black.

    PubMed

    Ma-Hock, Lan; Strauss, Volker; Treumann, Silke; Küttler, Karin; Wohlleben, Wendel; Hofmann, Thomas; Gröters, Sibylle; Wiench, Karin; van Ravenzwaay, Bennard; Landsiedel, Robert

    2013-06-17

    Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets. In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract. No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung. The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in order to avoid unsafe applications or select safer alternatives for a given application.

  7. Legacy of Environmental Research During the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.

    2011-01-01

    The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over the last 30 years and represents the longest and largest U.S. human spaceflight program. Risks to crewmembers were included in the research areas of nutrition, microbiology, toxicology, radiation, and sleep quality. To better understand the Shuttle environment, Crew Health Care System was developed. As part of this system, the Environmental Health Subsystem was developed to monitor the atmosphere for gaseous contaminants and microbial contamination levels and to monitor water quality and radiation. This program expended a great deal of effort in studying and mitigating risks related to contaminations due to food, water, air, surfaces, crewmembers, and payloads including those with animals. As the Shuttle had limited stowage space and food selection, the development of nutritional requirements for crewmembers was imperative. As the Shuttle was a reusable vehicle, microbial contamination was of great concern. The development of monitoring instruments that could withstand the space environment took several years and many variations to come up with a suitable instrument. Research with space radiation provided an improved understanding of the various sources of ionizing radiation and the development of monitoring instrumentation for space weather and the human exposure within the orbiter's cabin. Space toxicology matured to include the management of offgassing products that could pollute the crewmembers air quality. The Shuttle Program implemented a 5-level toxicity rating system and developed new monitoring instrumentation to detect toxic compounds. The environment of space caused circadian desynchrony, sleep deficiency, and fatigue leading to much research and major emphasis on countermeasures. Outcomes of the research in these areas were countermeasures, operational protocols, and hardware. Learning Objectives: This symposium will provide an overview of the major environmental lessons learned and the development of countermeasures, monitoring hardware, and procedures.

  8. Human health effects associated with exposure to toxic Cyanobacteria – what is the evidence?

    EPA Science Inventory

    Reports of toxic cyanobacteria blooms are increasing worldwide, as warming water and eutrophic surface water systems support the development of blooms. As awareness of toxic cyanobacteria blooms increases, reports of associated human and animal illnesses have also increased, but ...

  9. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles.

    PubMed

    Asati, Atul; Santra, Santimukul; Kaittanis, Charalambos; Perez, J Manuel

    2010-09-28

    Cerium oxide nanoparticles (nanoceria) have shown great potential as antioxidant and radioprotective agents for applications in cancer therapy. Recently, various polymer-coated nanoceria preparations have been developed to improve their aqueous solubility and allow for surface functionalization of these nanoparticles. However, the interaction of polymer-coated nanoceria with cells, their uptake mechanism, and subcellular localization are poorly understood. Herein, we engineered polymer-coated cerium oxide nanoparticles with different surface charges (positive, negative, and neutral) and studied their internalization and toxicity in normal and cancer cell lines. The results showed that nanoceria with a positive or neutral charge enters most of the cell lines studied, while nanoceria with a negative charge internalizes mostly in the cancer cell lines. Moreover, upon entry into the cells, nanoceria is localized to different cell compartments (e.g., cytoplasm and lysosomes) depending on the nanoparticle's surface charge. The internalization and subcellular localization of nanoceria plays a key role in the nanoparticles' cytotoxicity profile, exhibiting significant toxicity when they localize in the lysosomes of the cancer cells. In contrast, minimal toxicity is observed when they localize into the cytoplasm or do not enter the cells. Taken together, these results indicate that the differential surface-charge-dependent localization of nanoceria in normal and cancer cells plays a critical role in the nanoparticles' toxicity profile.

  10. Barley root hair growth and morphology in soil, sand, and water solution media and relationship with nickel toxicity.

    PubMed

    Lin, Yanqing; Allen, Herbert E; Di Toro, Dominic M

    2016-08-01

    Barley, Hordeum vulgare (Doyce), was grown in the 3 media of soil, hydroponic sand solution (sand), and hydroponic water solution (water) culture at the same environmental conditions for 4 d. Barley roots were scanned, and root morphology was analyzed. Plants grown in the 3 media had different root morphology and nickel (Ni) toxicity response. Root elongations and total root lengths followed the sequence soil > sand > water. Plants grown in water culture were more sensitive to Ni toxicity and had greater root hair length than those from soil and sand cultures, which increased root surface area. The unit root surface area as root surface area per centimeter of length of root followed the sequence water > sand > soil and was found to be related with root elongation. Including the unit root surface area, the difference in root elongation and 50% effective concentration were diminished, and percentage of root elongations can be improved with a root mean square error approximately 10% for plants grown in different media. Because the unit root surface area of plants in sand culture is closer to that in soil culture, the sand culture method, not water culture, is recommended for toxicity parameter estimation. Environ Toxicol Chem 2016;35:2125-2133. © 2016 SETAC. © 2016 SETAC.

  11. Individual and joint toxicity of the herbicide S-metolachlor and a metabolite, deethylatrazine on aquatic crustaceans: Difference between ecological groups.

    PubMed

    Maazouzi, C; Coureau, C; Piscart, C; Saplairoles, M; Baran, N; Marmonier, P

    2016-12-01

    We studied the individual and joint acute toxicity of S-metolachlor (SMOC) and deethylatrazine (DEA - a metabolite of atrazine) on different non-target freshwater crustaceans. We used animals from different ecological groups: two amphipods from surface running water (Gammarus pulex and Gammarus cf. orinos), an isopod from surface stagnant water (Asellus aquaticus) and an amphipod living in groundwater (Niphargus rhenorhodanensis). Organisms were exposed to different levels of SMOC and DEA, alone or in binary mixture. Temperature effect on SMOC toxicity was assessed by exposing G. pulex and N. rhenorhodanensis to SMOC at 11 °C and 15 °C. Studying mortality as the biological endpoint, N. rhenorhodanensis was more resistant than surface water species towards SMOC and DEA. Among surface water species, G. pulex was the most sensitive while Gammarus cf. orinos and A. aquaticus showed similar responses to both compounds. Temperature increase did not change SMOC toxicity but modify the shape and steepness of the dose-response curve. We used a Model Deviation Ratio (MDR) approach to evaluate the predictability of Concentration Addition (CA) and Independent Action (IA) models to mixture toxicity. Results indicated either an additive or an antagonistic or a synergistic interaction depending on the concentrations combination and the test species. Our finding conclusively show the suitability of CA and IA in predicting mixture toxicities but results should be interpreted with caution according to ecological group of exposed species in risk assessment procedures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Vegetated Treatment Systems for Removing Contaminants Associated with Surface Water Toxicity in Agriculture and Urban Runoff.

    PubMed

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Cahn, Michael

    2017-05-15

    Urban stormwater and agriculture irrigation runoff contain a complex mixture of contaminants that are often toxic to adjacent receiving waters. Runoff may be treated with simple systems designed to promote sorption of contaminants to vegetation and soils and promote infiltration. Two example systems are described: a bioswale treatment system for urban stormwater treatment, and a vegetated drainage ditch for treating agriculture irrigation runoff. Both have similar attributes that reduce contaminant loading in runoff: vegetation that results in sorption of the contaminants to the soil and plant surfaces, and water infiltration. These systems may also include the integration of granulated activated carbon as a polishing step to remove residual contaminants. Implementation of these systems in agriculture and urban watersheds requires system monitoring to verify treatment efficacy. This includes chemical monitoring for specific contaminants responsible for toxicity. The current paper emphasizes monitoring of current use pesticides since these are responsible for surface water toxicity to aquatic invertebrates.

  13. Predicting EMP hazard: Lessons from studies with inhaled fibrous and non-fibrous nano- and micro-particles.

    PubMed

    Oberdörster, Günter; Graham, Uschi

    2018-05-08

    Inhalation exposure to elongated cleavage fragments occurring at mineral and rock mining and crushing operations raises important questions regarding potential health effects given their resemblance to fibers with known adverse health effects like amphibole asbestos. Thus, a major goal for establishing a toxicity profile for elongate mineral particles (EMPs) is to identify and characterize a suspected hazard and characterize a risk by examining together results of hazard and exposure assessment. This will require not only knowledge about biokinetics of inhaled EMPs but also about underlying mechanisms of effects induced by retained EMPs. In vitro toxicity assays with predictive power for in vivo effects have been established as useful screening tools for toxicological characterization of particulate materials including EMPs. Important determinants of physiological/toxicological mechanisms are physico-chemical and functional properties of inhaled particulate materials. Of the physico-chemical (intrinsic) properties, size, shape and surface characteristics are well known to affect toxicological responses; functional properties include (i) solubility/dissolution rate in physiological fluid simulants in vitro and following inhalation in vivo; (ii) ROS-inducing capacity in vitro and in vivo determined as specific particle surface reactivity; (iii) bioprocessing in vivo. A key parameter for all is the dose and duration of exposure, requiring to establish exposure-dose-response relationships. Examples of studies with fibrous and non-fibrous particles are discussed to illustrate the relevancy of evaluating extrinsic and intrinsic particle properties for predicting in vivo responses of new particulate materials. This will allow hazard and risk ranking/grouping based on a comparison to toxicologically well-characterized positive and negative benchmarks. Future efforts should be directed at developing and validating new approaches using in vitro (non-animal) studies for establishing a complete risk assessment for EMPs. Further comparative in-depth analyses with analytical and ultra-high resolution technology examining bioprocessing events at target organ sites have proven highly successful to identify biotransformations in target cells at near atomic level. In the case of EMPs, such analyses can be essential to separate benign from harmful ones. Copyright © 2018. Published by Elsevier Inc.

  14. The U.S. experience in promoting sustainable chemistry.

    PubMed

    Tickner, Joel A; Geiser, Ken; Coffin, Melissa

    2005-01-01

    Recent developments in European chemicals policy, including the Registration, Evaluation and Authorization of Chemicals (REACH) proposal, provide a unique opportunity to examine the U.S. experience in promoting sustainable chemistry as well as the strengths and weaknesses of existing policies. Indeed, the problems of industrial chemicals and limitations in current regulatory approaches to address chemical risks are strikingly similar on both sides of the Atlantic. We provide an overview of the U.S. regulatory system for chemicals management and its relationship to efforts promoting sustainable chemistry. We examine federal and state initiatives and examine lessons learned from this system that can be applied to developing more integrated, sustainable approaches to chemicals management. There is truly no one U.S. chemicals policy, but rather a series of different un-integrated policies at the federal, regional, state and local levels. While centerpiece U.S. Chemicals Policy, the Toxic Substances Control Act of 1976, has resulted in the development of a comprehensive, efficient rapid screening process for new chemicals, agency action to manage existing chemicals has been very limited. The agency, however, has engaged in a number of successful, though highly underfunded, voluntary data collection, pollution prevention, and sustainable design programs that have been important motivators for sustainable chemistry. Policy innovation in the establishment of numerous state level initiatives on persistent and bioaccumulative toxics, chemical restrictions and toxics use reduction have resulted in pressure on the federal government to augment its efforts. It is clear that data collection on chemical risks and phase-outs of the most egregious chemicals alone will not achieve the goals of sustainable chemistry. These alone will also not internalize the cultural and institutional changes needed to ensure that design and implementation of safer chemicals, processes, and products are the focus of the future. Thus, a more holistic approach of 'carrots and sticks'--that involves not just chemical producers but those who use and purchase chemicals is necessary. Some important lessons of the US experience in chemicals management include: (1) the need for good information on chemicals flows, toxic risks, and safer substances.; (2) the need for comprehensive planning processes for chemical substitution and reduction to avoid risk trade-offs and ensure product quality; (3) the need for technical and research support to firms for innovation in safer chemistry; and (4) the need for rapid screening processes and tools for comparison of alternative chemicals, materials, and products.

  15. Lessons from a Rare Familial Dementia: Amyloid and Beyond

    PubMed Central

    Cantlon, Adam; Frigerio, Carlo Sala; Walsh, Dominic M.

    2015-01-01

    Here we review the similarities between a rare inherited disorder, familial British dementia (FBD), and the most common of all late-life neurological conditions, Alzheimer's diseases (AD). We describe the symptoms, pathology and genetics of FBD, the biology of the BRI2 protein and mouse models of FBD and familial Danish dementia. In particular, we focus on the evolving recognition of the importance of protein oligomers and aberrant processing of the amyloid β-protein precursor (APP) - themes that are common to both FBD and AD. The initial discovery that FBD is phenotypically similar to AD, but associated with the deposition of an amyloid peptide (ABri) distinct from the amyloid β-protein (Aβ) led many to assume that amyloid production alone is sufficient to initiate disease and that ABri is the molecular equivalent of Aβ. Parallel with work on Aβ, studies of ABri producing animal models and in vitro ABri toxicity experiments caused a revision of the amyloid hypothesis and a focus on soluble oligomers of Aβ and ABri. Contemporaneous other studies suggested that loss of the ABri precursor protein (BRI2) may underlie the cognitive deficits in FBD. In this regard it is important to note that BRI2 has been shown to interact with and regulate the processing of APP, and that mutant BRI2 leads to altered cleavage of APP. A synthesis of these results suggests that a “two-hit mechanism” better explains FBD than earlier toxic gain of function and toxic loss of function models. The lessons learned from the study of FBD imply that the molecular pathology of AD is also likely to involve both aberrant aggregation (in AD, Aβ) and altered APP processing. With regard to FBD, we propose that the C-terminal 11 amino acid of FBD-BRI2 interfere with both the normal function of BRI2 and promotes the production of cystine cross-linked toxic ABri oligomers. In this scenario, loss of BRI2 function leads to altered APP processing in as yet underappreciated ways. Given the similarities between FBD and AD it seems likely that study of the structure of ABri oligomers and FBD-induced changes in APP metabolites will further our understanding of AD. PMID:26405694

  16. Biological effects of carbon black nanoparticles are changed by surface coating with polycyclic aromatic hydrocarbons.

    PubMed

    Lindner, Karina; Ströbele, Michael; Schlick, Sandra; Webering, Sina; Jenckel, André; Kopf, Johannes; Danov, Olga; Sewald, Katherina; Buj, Christian; Creutzenberg, Otto; Tillmann, Thomas; Pohlmann, Gerhard; Ernst, Heinrich; Ziemann, Christina; Hüttmann, Gereon; Heine, Holger; Bockhorn, Henning; Hansen, Tanja; König, Peter; Fehrenbach, Heinz

    2017-03-21

    Carbon black nanoparticles (CBNP) are mainly composed of carbon, with a small amount of other elements (including hydrogen and oxygen). The toxicity of CBNP has been attributed to their large surface area, and through adsorbing intrinsically toxic substances, such as polycyclic aromatic hydrocarbons (PAH). It is not clear whether a PAH surface coating changes the toxicological properties of CBNP by influencing their physicochemical properties, through the specific toxicity of the surface-bound PAH, or by a combination of both. Printex ® 90 (P90) was used as CBNP; the comparators were P90 coated with either benzo[a]pyrene (BaP) or 9-nitroanthracene (9NA), and soot from acetylene combustion that bears various PAHs on the surface (AS-PAH). Oxidative stress and IL-8/KC mRNA expression were determined in A549 and bronchial epithelial cells (16HBE14o-, Calu-3), mouse intrapulmonary airways and tracheal epithelial cells. Overall toxicity was tested in a rat inhalation study according to Organization for Economic Co-operation and Development (OECD) criteria. Effects on cytochrome monooxygenase (Cyp) mRNA expression, cell viability and mucociliary clearance were determined in acute exposure models using explanted murine trachea. All particles had similar primary particle size, shape, hydrodynamic diameter and ζ-potential. All PAH-containing particles had a comparable specific surface area that was approximately one third that of P90. AS-PAH contained a mixture of PAH with expected higher toxicity than BaP or 9NA. PAH-coating reduced some effects of P90 such as IL-8 mRNA expression and oxidative stress in A549 cells, granulocyte influx in the in vivo OECD experiment, and agglomeration of P90 and mucus release in the murine trachea ex vivo. Furthermore, P90-BaP decreased particle transport speed compared to P90 at 10 μg/ml. In contrast, PAH-coating induced IL-8 mRNA expression in bronchial epithelial cell lines, and Cyp mRNA expression and apoptosis in tracheal epithelial cells. In line with the higher toxicity compared to P90-BaP and P90-9NA, AS-PAH had the strongest biological effects both ex vivo and in vivo. Our results demonstrate that the biological effect of CBNP is determined by a combination of specific surface area and surface-bound PAH, and varies in different target cells.

  17. CyberKnife Radiosurgery of Skull-base Tumors: A UK Center Experience

    PubMed Central

    Wilson, Hannah P; Price, Patricia M; Ashkan, Keyoumars; Edwards, Andrew; Green, Melanie M; Cross, Timothy; Beaney, Ronald P; Davies, Rhiannon; Sibtain, Amen; Plowman, Nick P

    2018-01-01

    The study aim was to evaluate patient individualized Cyberknife® treatment for heterogeneous skull-base tumors. Patients treated between 2009 and 2013 at The Harley Street Clinic were studied. In total, 66 patients received 15–30 Gy in 1–5 fractions to a median planning target volume (PTV) of 6.4 cc, including patients with secondary, multiple, residual and recurrent tumors, and those with tumors of uncertain pathological type. Outcome analysis was pragmatically restricted to 35 patients who had single, primary tumors treated with curative intent, and sufficient diagnostic and outcome information. Sixteen vestibular schwannoma patients with median PTV 3.8 cc (range 0.81–19.6) received 18–25 Gy in 3–5 fractions: 81% showed no acute toxicity, 50% reported no late toxicity, 71% of symptoms were stable/improved and local control was 100% at 11.4 months median follow-up. Twelve meningioma patients with median PTV of 5.5 cc (range 0.68–22.3) received 17–30 Gy in 1–5 fractions: 83% experienced no acute toxicity, 33% reported no late toxicity, 88% of symptoms were stable/improved and local control was 100% at 22.1 months median follow-up. Seven patients with other tumor types with median PTV of 24.3 cc (range 7.6–100.5) received 15–28.5 Gy in 1–5 fractions: 57% experienced no acute toxicity, 57% reported no late toxicities, 66% of symptoms were stable and local control was 43% at 14.9 months median follow-up. When tumor types were considered together, smaller tumors (PTV < 6.4 cc) showed reduced acute toxicity (p = 0.01). Overall, smaller benign tumors showed low acute toxicity, excellent local control, and good symptom management: a focus on enhanced neurological preservation may refine outcomes. For other tumor types outcome was encouraging: a focus on optimal dose and fractionation scheduling may reduce toxicity and improve local control. Individual patient experiences are detailed where valuable lessons were gained for optimizing local control and minimizing toxicity.

  18. Toxicity of Mineral Dusts and a Proposed Mechanism for the Pathogenesis of Particle-Induced Lung Diseases

    NASA Technical Reports Server (NTRS)

    Lam, C.-W.; Zeidler-Erdely, P.; Scully, R.R.; Meyers, V.; Wallace, W.; Hunter, R.; Renne, R.; McCluskey, R.; Castranova, V.; Barger, M.; hide

    2015-01-01

    Humans will set foot on the moon again. The lunar surface has been bombarded for 4 billion years by micrometeoroids and cosmic radiation, creating a layer of fine dust having a potentially reactive particle surface. To investigate the impact of surface reactivity (SR) on the toxicity of particles, and in particular, lunar dust (LD), we ground 2 Apollo 14 LD samples to increase their SR and compare their toxicity with those of unground LD, TiO2 and quartz. Intratracheally instilled at 0, 1, 2.5, or 7.5 mg/rat, all dusts caused dose-dependent increases in pulmonary lesions, and enhancement of biomarkers of toxicity assessed in bronchoalveolar lavage fluids (BALF). The toxicity of LD was greater than that of TiO2 but less than that of quartz. Three LDs differed 14-fold in SR but were equally toxic; quartz had the lowest SR but was most toxic. These results show no correlation between particle SR and toxicity. Often pulmonary toxicity of a dust can be attributed to oxidative stress (OS). We further observed dose-dependent and dustcytotoxicity- dependent increases in neutrophils. The oxidative content per BALF cell was also directly proportional to both the dose and cytotoxicity of the dusts. Because neutrophils are short-lived and release of oxidative contents after they die could initiate and promote a spectrum of lesions, we postulate a general mechanism for the pathogenesis of particle-induced diseases in the lung that involves chiefly neutrophils, the source of persistent endogenous OS. This mechanism explains why one dust (e.g., quartz or nanoparticles) is more toxic than another (e.g., micrometer-sized TiO2), why dust-induced lesions progress with time, and why lung cancer occurs in rats but not in mice and hamsters exposed to the same duration and concentration of dust.

  19. Molluscicidal properties and selective toxicity of surface-active agents

    PubMed Central

    Visser, S. A.

    1965-01-01

    Of over 100 commercially produced surface-active agents tested against the bilharziasis vector snail Biomphalaria sudanica, 13 were found to possess considerable and highly selective molluscicidal properties at concentrations of less than 1 ppm for exposures of 48 hours. Against crustacea, fish, water plants, mosquito larvae, mice, and the eggs of B. sudanica, the toxicities of the 13 surfactants were slight. The chemicals did not appear to be absorbed by organic matter to any appreciable extent. It is thought that the toxicity to B. sudanica is of both a chemical and a physical nature. PMID:5294185

  20. Impact of secondary generated minerals on toxic element immobilization for air pollution control fly ash of a municipal solid waste incinerator.

    PubMed

    Kitamura, Hiroki; Dahlan, Astryd Viandila; Tian, Yu; Shimaoka, Takayuki; Yamamoto, Takashi; Takahashi, Fumitake

    2018-05-12

    Impacts of secondary generated minerals on mineralogical and physical immobilization of toxic elements were investigated for chelate-treated air pollution control (APC) fly ash of a municipal solid waste incinerator. Scanning electron microscope (SEM) observation showed that ettringite was generated after the moistening treatment with/without chelate. Although ettringite can incorporate toxic elements into its structure, elemental analysis by energy dispersive X-ray could not find concentrated points of toxic elements in ettringite structure. This implies that mineralogical immobilization of toxic element by the encapsulation to ettringite structure seems to be limited. Physical immobilization was also investigated by SEM observation of the same APC fly ash particles before and after the moistening treatment. The transfer of soluble elements was inhibited only when insoluble minerals such as gypsum were generated and covered the surface of fly ash particles. Neoformed insoluble minerals prevented soluble elements from leaching and transfer. However, such physical immobilization seems to be limited because insoluble mineral formation with surface coverage was monitored only one time of more than 20 observations. Although uncertainty owing to limited samples with limited observations should be considered, this study concludes that mineralogical and physical immobilization of toxic elements by secondary minerals is limited although secondary minerals are always generated on the surface of APC fly ash particles during chelate treatment.

  1. Lessons learned for the National Children's Study from the National Institute of Environmental Health Sciences/U.S. Environmental Protection Agency Centers for Children's Environmental Health and Disease Prevention Research.

    PubMed

    Kimmel, Carole A; Collman, Gwen W; Fields, Nigel; Eskenazi, Brenda

    2005-10-01

    This mini-monograph was developed to highlight the experiences of the National Institute of Environmental Health Sciences (NIEHS)/U.S. Environmental Protection Agency (EPA) Centers for Children's Environmental Health and Disease Prevention Research, focusing particularly on several areas of interest for the National Children's Study. These include general methodologic issues for conducting longitudinal birth cohort studies and community-based participatory research and for measuring air pollution exposures, pesticide exposures, asthma, and neurobehavioral toxicity. Rather than a detailed description of the studies in each of the centers, this series of articles is intended to provide information on the practicalities of conducting such intensive studies and the lessons learned. This explication of lessons learned provides an outstanding opportunity for the planners of the National Children's Study to draw on past experiences that provide information on what has and has not worked when studying diverse multiracial and multiethnic groups of children with unique urban and rural exposures. The Children's Centers have addressed and overcome many hurdles in their efforts to understand the link between environmental exposures and health outcomes as well as interactions between exposures and a variety of social and cultural factors. Some of the major lessons learned include the critical importance of long-term studies for assessing the full range of developmental consequences of environmental exposures, recognition of the unique challenges presented at different life stages for both outcome and exposure measurement, and the importance of ethical issues that must be dealt with in a changing medical and legal environment. It is hoped that these articles will be of value to others who are embarking on studies of children's environmental health.

  2. Breaking Bad Delirium: Methamphetamine and Boric Acid Toxicity with Hallucinations and Pseudosepsis.

    PubMed

    Johnson, Kayla; Stollings, Joanna L; Ely, E Wesley

    2017-02-01

    A 30-year-old patient presented with hallucinations and profound shock. He was initially misdiagnosed as having severe sepsis; once ingestions were considered, he was diagnosed as potentially having arsenic toxicity. The clinical story reveals many instructional lessons that could aid in the evaluation and management of future patients. This man presented with large amounts of blue crystals around his nose and lips from inhaling and eating boric acid (an ant poison) so he could, as he put it, kill the ants "pouring into my mouth and nose and up into my brain." His profound pseudosepsis and sustained delirium were induced by co-ingestion of methamphetamine and a large quantity of boric acid. Delirium is a form of acute brain dysfunction that often is multifactorial in critical illness and, when seen in septic shock, is associated with prolonged mechanical ventilation, increased length of hospital stay, medical costs, higher mortality, and long-term cognitive impairment resembling dementia. Pseudosepsis is a noninfectious condition most commonly seen with ingestions such as salicylate (aspirin) toxicity. This report emphasizes the need to recognize agents that contain boric acid as an etiology of unexplained delirium and profound shock.

  3. Breaking Bad Delirium: Methamphetamine and Boric Acid Toxicity with Hallucinations and Pseudosepsis

    PubMed Central

    Johnson, Kayla; Stollings, Joanna L.; Ely, E. Wesley

    2016-01-01

    Objectives A 30-year-old patient presented with hallucinations and profound shock. He was initially misdiagnosed as having severe sepsis; once ingestions were considered, he was diagnosed as potentially having arsenic toxicity. Summary The clinical story reveals many instructional lessons that could aid in the evaluation and management of future patients. This man presented with large amounts of blue crystals around his nose and lips from inhaling and eating boric acid (an ant poison) so he could, as he put it, kill the ants “pouring into my mouth and nose and up into my brain.” His profound pseudosepsis and sustained delirium were induced by co-ingestion of methamphetamine and a large quantity of boric acid. Delirium is a form of acute brain dysfunction that often is multifactorial in critical illness and, when seen in septic shock, is associated with prolonged mechanical ventilation, increased length of hospital stay, medical costs, higher mortality, and long-term cognitive impairment resembling dementia. Pseudosepsis is a noninfectious condition most commonly seen with ingestions such as salicylate (aspirin) toxicity. Conclusions This report emphasizes the need to recognize agents that contain boric acid as an etiology of unexplained delirium and profound shock. PMID:28158885

  4. Effectiveness and reaction networks of H2O2 vapor with NH3 gas for decontamination of the toxic warfare nerve agent, VX on a solid surface.

    PubMed

    Gon Ryu, Sam; Wan Lee, Hae

    2015-01-01

    The nerve agent, O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) must be promptly eliminated following its release into the environment because it is extremely toxic, can cause death within a few minutes after exposure, acts through direct skin contact as well as inhalation, and persists in the environment for several weeks after release. A mixture of hydrogen peroxide vapor and ammonia gas was examined as a decontaminant for the removal of VX on solid surfaces at ambient temperature, and the reaction products were analyzed by gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectrometry (NMR). All the VX on glass wool filter disks was found to be eliminated after 2 h of exposure to the decontaminant mixtures, and the primary decomposition product was determined to be non-toxic ethyl methylphosphonic acid (EMPA); no toxic S-[2-(diisopropylamino)ethyl] methylphosphonothioic acid (EA-2192), which is usually produced in traditional basic hydrolysis systems, was found to be formed. However, other by-products, such as toxic O-ethyl S-vinyl methylphosphonothioate and (2-diisopropylaminoethyl) vinyl disulfide, were detected up to 150 min of exposure to the decontaminant mixture; these by-products disappeared after 3 h. The two detected vinyl byproducts were identified first in this study with the decontamination system of liquid VX on solid surfaces using a mixture of hydrogen peroxide vapor and ammonia gas. The detailed decontamination reaction networks of VX on solid surfaces produced by the mixture of hydrogen peroxide vapor and ammonia gas were suggested based on the reaction products. These findings suggest that the mixture of hydrogen peroxide vapor and ammonia gas investigated in this study is an efficient decontaminant mixture for the removal of VX on solid surfaces at ambient temperature despite the formation of a toxic by-product in the reaction process.

  5. Spatial features of dose-surface maps from deformably-registered plans correlate with late gastrointestinal complications

    NASA Astrophysics Data System (ADS)

    Moulton, Calyn R.; House, Michael J.; Lye, Victoria; Tang, Colin I.; Krawiec, Michele; Joseph, David J.; Denham, James W.; Ebert, Martin A.

    2017-05-01

    This study investigates the associations between spatial distribution of dose to the rectal surface and observed gastrointestinal toxicities after deformably registering each phase of a combined external beam radiotherapy (EBRT)/high-dose-rate brachytherapy (HDRBT) prostate cancer treatment. The study contains data for 118 patients where the HDRBT CT was deformably-registered to the EBRT CT. The EBRT and registered HDRBT TG43 dose distributions in a reference 2 Gy/fraction were 3D-summed. Rectum dose-surface maps (DSMs) were obtained by virtually unfolding the rectum surface slice-by-slice. Associations with late peak gastrointestinal toxicities were investigated using voxel-wise DSM analysis as well as parameterised spatial patterns. The latter were obtained by thresholding DSMs from 1-80 Gy (increment  =  1) and extracting inferior-superior extent, left-right extent, area, perimeter, compactness, circularity and ellipse fit parameters. Logistic regressions and Mann-Whitney U-tests were used to correlate features with toxicities. Rectal bleeding, stool frequency, diarrhoea and urgency/tenesmus were associated with greater lateral and/or longitudinal spread of the high doses near the anterior rectal surface. Rectal bleeding and stool frequency were also influenced by greater low-intermediate doses to the most inferior 20% of the rectum and greater low-intermediate-high doses to 40-80% of the rectum length respectively. Greater low-intermediate doses to the superior 20% and inferior 20% of the rectum length were associated with anorectal pain and urgency/tenesmus respectively. Diarrhoea, completeness of evacuation and proctitis were also related to greater low doses to the posterior side of the rectum. Spatial features for the intermediate-high dose regions such as area, perimeter, compactness, circularity, ellipse eccentricity and confinement to ellipse fits were strongly associated with toxicities other than anorectal pain. Consequently, toxicity is related to the shape of isodoses as well as dose coverage. The findings indicate spatial constraints on doses to certain sections of the rectum may be important for reducing toxicities and optimising dose.

  6. Roll Out the Carpet.

    ERIC Educational Resources Information Center

    Basso, Robert

    2002-01-01

    Describes a high school art lesson in a studio art course where students created a landscape collage using mixed media. Discusses how the students created their collages explaining that carpet samples are used as the surface material. (CMK)

  7. Early Combination of Material Characteristics and Toxicology Is Useful in the Design of Low Toxicity Carbon Nanofiber

    PubMed Central

    Jensen, Ellen K.; Larsen, Sten Y.; Nygaard, Unni C.; Marioara, Calin D.; Syversen, Tore

    2012-01-01

    This paper describes an approach for the early combination of material characterization and toxicology testing in order to design carbon nanofiber (CNF) with low toxicity. The aim was to investigate how the adjustment of production parameters and purification procedures can result in a CNF product with low toxicity. Different CNF batches from a pilot plant were characterized with respect to physical properties (chemical composition, specific surface area, morphology, surface chemistry) as well as toxicity by in vitro and in vivo tests. A description of a test battery for both material characterization and toxicity is given. The results illustrate how the adjustment of production parameters and purification, thermal treatment in particular, influence the material characterization as well as the outcome of the toxic tests. The combination of the tests early during product development is a useful and efficient approach when aiming at designing CNF with low toxicity. Early quality and safety characterization, preferably in an iterative process, is expected to be efficient and promising for this purpose. The toxicity tests applied are preliminary tests of low cost and rapid execution. For further studies, effects such as lung inflammation, fibrosis and respiratory cancer are recommended for the more in-depth studies of the mature CNF product.

  8. Nanostructured TiO2 and ZnO prepared by using pressurized hot water and their eco-toxicological evaluation

    NASA Astrophysics Data System (ADS)

    Troppová, Ivana; Matějová, Lenka; Sezimová, Hana; Matěj, Zdeněk; Peikertová, Pavlína; Lang, Jaroslav

    2017-06-01

    The eco-toxicological effects of unconventionally prepared nanostructured TiO2 and ZnO were evaluated in this study, since both oxides are keenly investigated semiconductor photocatalysts in the last three decades. Unconventional processing by pressurized hot water was applied in order to crystallize oxide materials as an alternative to standard calcination. Acute biological toxicity of the synthesized oxides was evaluated using germination of Sinapis alba seed (ISO 11269-1) and growth of Lemna minor fronds (ISO 20079) and was compared to commercially available TiO2 Degussa P25. Toxicity results revealed that synthesized ZnO as well as TiO2 is toxic contrary to commercial TiO2 Degussa P25 which showled stimulation effect to L. minor and no toxicity to S. alba. ZnO was significantly more toxic than TiO2. The effect of crystallite size was considered, and it was revealed that small crystallite size and large surface area are not the toxicity-determining factors. Factors such as the rate of nanosized crystallites aggregation and concentration, shape and surface properties of TiO2 nanoparticles affect TiO2 toxicity to both plant species. Seriously, the dissolution of Ti4+ ions from TiO2 was also observed which may contribute to its toxicity. In case of ZnO, the dissolution of Zn2+ ions stays the main cause of its toxicity.

  9. Lessons Learned (3 Years of H2O2 Propulsion System Testing Efforts at NASA's John C. Stennis Space Center)

    NASA Technical Reports Server (NTRS)

    Taylor, Gary O.

    2001-01-01

    John C. Stennis Space Center continues to support the Propulsion community in an effort to validate High-Test Peroxide as an alternative to existing/future oxidizers. This continued volume of peroxide test/handling activity at Stennis Space Center (SSC) provides numerous opportunities for the SSC team to build upon previously documented 'lessons learned'. SSC shall continue to strive to document their experience and findings as H2O2 issues surface. This paper is intended to capture all significant peroxide issues that we have learned over the last three years. This data (lessons learned) has been formulated from practical handling, usage, storage, operations, and initial development/design of our systems/facility viewpoint. The paper is intended to be an information type tool and limited in technical rational; therefore, presenting the peroxide community with some issues to think about as the continued interest in peroxide evolves and more facilities/hardware are built. These lessons learned are intended to assist industry in mitigating problems and identifying potential pitfalls when dealing with the requirements for handling high-test peroxide.

  10. Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays

    PubMed Central

    2011-01-01

    Background Engineered nanomaterials display unique properties that may have impact on human health, and thus require a reliable evaluation of their potential toxicity. Here, we performed a standardized in vitro screening of 23 engineered nanomaterials. We thoroughly characterized the physicochemical properties of the nanomaterials and adapted three classical in vitro toxicity assays to eliminate nanomaterial interference. Nanomaterial toxicity was assessed in ten representative cell lines. Results Six nanomaterials induced oxidative cell stress while only a single nanomaterial reduced cellular metabolic activity and none of the particles affected cell viability. Results from heterogeneous and chemically identical particles suggested that surface chemistry, surface coating and chemical composition are likely determinants of nanomaterial toxicity. Individual cell lines differed significantly in their response, dependent on the particle type and the toxicity endpoint measured. Conclusion In vitro toxicity of the analyzed engineered nanomaterials cannot be attributed to a defined physicochemical property. Therefore, the accurate identification of nanomaterial cytotoxicity requires a matrix based on a set of sensitive cell lines and in vitro assays measuring different cytotoxicity endpoints. PMID:21345205

  11. Effect of surfactant in mitigating cadmium oxide nanoparticle toxicity: Implications for mitigating cadmium toxicity in environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balmuri, Sricharani Rao

    Cadmium (Cd), classified as human carcinogen, is an extremely toxic heavy metal pollutant, and there is an increasing environmental concern for cadmium exposure through anthropogenic sources including cigarette smoke. Though Cd based nanoparticles such as cadmium oxide (CdO) are being widely used in a variety of clinical and industrial applications, the toxicity of CdO nanoparticles has not been well characterized. Herein we report the toxicity of CdO nanoparticles employing zebrafish as a model. Two different CdO nanoparticles were prepared, calcination of Cd(OH){sub 2} without any organic molecule (CdO-1) and calcination of Cd-citrate coordination polymer (CdO-2), to evaluate and compare themore » toxicity of these two different CdO nanoparticles. Results show that zebrafish exposed to CdO-2 nanoparticles expressed reduced toxicity as judged by lower oxidative stress levels, rescue of liver carboxylesterases and reduction in metallothionein activity compared to CdO-1 nanoparticles. Histopathological observations also support our contention that CdO-1 nanoparticles showed higher toxicity relative to CdO-2 nanoparticles. The organic unit of Cd-citrate coordination polymer might have converted into carbon during calcination that might have covered the surface of CdO nanoparticles. This carbon surface coverage can control the release of Cd{sup 2+} ions in CdO-2 compared to non-covered CdO-1 nanoparticles and hence mitigate the toxicity in the case of CdO-2. This was supported by atomic absorption spectrophotometer analyses of Cd{sup 2+} ions release from CdO-1 and CdO-2 nanoparticles. Thus the present study clearly demonstrates the toxicity of CdO nanoparticles in an aquatic animal and also indicates that the toxicity could be substantially reduced by carbon coverage. This could have important implications in terms of anthropogenic release and environmental pollution caused by Cd and human exposure to Cd{sup 2+} from sources such as cigarette smoke. - Highlights: • Toxicity of CdO nanoparticles can be mitigated by the use of sodium citrate. • Sodium citrate covers the CdO surface and reduces Cd{sup 2+} ion release. • Use of sodium citrate reduces both biochemical and histopathological changes. • Sodium citrate can be a remediation strategy against CdO nanoparticles toxicity.« less

  12. Contact toxicity and residual effects of selected insecticides against the adult Paederus fuscipes (Coleoptera: Staphylinidae).

    PubMed

    Bong, Lee-Jin; Neoh, Kok-Boon; Jaal, Zairi; Lee, Chow-Yang

    2013-12-01

    The contact toxicity of four insecticide formulations (deltamethrin, fipronil, fenitrothion, and imidacloprid) applied on three different substrates (tile, plywood, and concrete) against the adult rove beetle, Paederus fuscipes Curtis, was evaluated. The relative order of speed of killing effects was as follows: deltamethrin > imidacloprid > fipronil > fenitrothion. Although deltamethrin showed the fastest action against P. fuscipes, the recovery rate of rove beetles at 48 h posttreatment was moderate (approximately 25%) on the tile surface to high (approximately 80%) on the plywood surface. Thus, it is likely that the insects did not pick up the lethal dose especially on porous surfaces. In contrast, fipronil demonstrated delayed toxicity that might promote maximal uptake by the insects. More than 80% mortality was registered for tile and plywood surfaces up to 4 wk after exposure. High mortality (almost 100%) was recorded for imidacloprid-exposed P. fuscipes at 48 h posttreatment, but only on the tile surface. Among the four insecticides tested, fenitrothion was the least effective against P. fuscipes because low percentage to no mortality was recorded in the fenitrothion treatment.

  13. Ecotoxicity of boric acid in standard laboratory tests with plants and soil organisms.

    PubMed

    Princz, Juliska; Becker, Leonie; Scheffczyk, Adam; Stephenson, Gladys; Scroggins, Rick; Moser, Thomas; Römbke, Jörg

    2017-05-01

    To verify the continuous sensitivity of ecotoxicological tests (mainly the test organisms), reference substances with known toxicity are regularly tested. Ideally, this substance(s) would lack specificity in its mode action, be bioavailable and readily attainable with cost-effective means of chemical characterization. Boric acid has satisfied these criteria, but has most recently been characterized as a substance of very high concern, due to reproductive effects in humans, thus limiting its recommendation as an ideal reference toxicant. However, there is probably no other chemical for which ecotoxicity in soil has been so intensively studied; an extensive literature review yielded lethal (including avoidance) and sublethal data for 38 taxa. The ecotoxicity data were evaluated using species sensitivity distributions, collectively across all taxa, and separately according to species type, endpoints, soil type and duration. The lack of specificity in the mode of action yielded broad toxicity among soil taxa and soil types, and provided a collective approach to assessing species sensitivity, while taking into consideration differences in test methodologies and exposure durations. Toxicity was species-specific with Folsomia candida and enchytraied species demonstrating the most sensitivity; among plants, the following trend occurred: dicotyledonous (more sensitive) ≫ monocotyledonous ≫ gymnosperm species. Sensitivity was also time and endpoint specific, with endpoints such as lethality and avoidance being less sensitive than reproduction effects. Furthermore, given the breadth of data and toxicity demonstrated by boric acid, lessons learned from its evaluation are discussed to recommend the properties required by an ideal reference substance for the soil compartment.

  14. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black

    PubMed Central

    2013-01-01

    Background Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets. Methods In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract. Results No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung. Conclusions The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in order to avoid unsafe applications or select safer alternatives for a given application. PMID:23773277

  15. Lessons Learned in Thermal Coatings from the DSCOVR Mission

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin S.

    2015-01-01

    Finding solutions to thermal coating issues on the Deep Space Climate Observatory (DSCOVR) mission was a very challenging and unique endeavor. As a passive thermal control system, coatings provide the desired thermal, optical, and electrical charging properties, while surviving a harsh space environment. DSCOVR mission hardware was repurposed from the late 1990s satellite known as Triana. As a satellite that was shelved for over a decade, the coating surfaces consequently degraded with age, and became fairly outdated. Although the mission successfully launched in February 2015, there were unfamiliar observations and unanticipated issues with the coating surfaces during the revival phases of the project. For example, the thermal coatings on DSCOVR experienced particulate contamination and resistivity requirement problems, among other issues. While finding solutions to these issues, valuable lessons were learned in thermal coatings that may provide great insight to future spaceflight missions in similar situations.

  16. An urgent need to reassess the safe levels of copper in the drinking water: lessons from studies on healthy animals harboring no genetic deficits.

    PubMed

    Pal, Amit; Jayamani, Jayagandan; Prasad, Rajendra

    2014-09-01

    Recent seminal studies have established neurodegeneration, cognitive waning and/or β-amyloid deposition due to chronic copper intoxication via drinking water in healthy animals; henceforth, fuelling the debate all again over the safe levels of copper in the drinking water. This review encompasses the contemporary imperative animal studies in which the effect of chronic copper toxicity (especially via drinking water) was evaluated on the central nervous system and memory of uncompromised animals along with discussing the future perspectives. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Trehalose 6,6′-Dimycolate and Lipid in the Pathogenesis of Caseating Granulomas of Tuberculosis in Mice

    PubMed Central

    Hunter, Robert L.; Olsen, Margaret; Jagannath, Chinnaswamy; Actor, Jeffrey K.

    2006-01-01

    Trehalose 6,6′-dimycolate (TDM) is the most abundant, most granulomagenic, and most toxic lipid extractable from the surface of virulent Mycobacterium tuberculosis (MTB). We further examined its toxicity, which requires activation by oily surfaces. Injections of MTB and/or TDM into sensitized mice induced caseating granulomas that centered on oil droplets. If large doses of MTB were injected in saline, caseating granulomas developed in adipose tissue, but MTB with surface TDM removed induced only acute inflammation that did not persist. Variations in protocols produced several variants of caseating granulomas, each with characteristics of human tuberculosis. In each instance, MTB were localized in fat cells or oil drops during initiation of caseating granulomas suggesting that necrosis was caused by activation of the toxicity of TDM toxicity. Evidence extending these findings to the lung was derived from the observation that in sensitized mice, as in humans, tuberculosis development stimulates accumulation of lipid selectively in alveoli. MTB preferentially associated with lipid droplets in developing necrotic foci in late-stage murine tuberculosis. This supports the hypothesis that pulmonary tuberculosis sequesters MTB in a protected environment that accumulates lipid until it is able to activate the toxicity of TDM and initiate necrosis that results in caseating granulomas. PMID:16565499

  18. Development and Evaluation of Reproductive and Developmental Toxicity Tests for Assessing the Hazards of Environmental Contaminants

    DTIC Science & Technology

    1997-08-01

    AL/EQ-TR-1997-0050 DEVELOPMENT AND EVALUATION OF REPRODUCTIVE AND DEVELOPMENT TOXICITY TESTS FOR ASSESSING THE HAZARDS OF ENVIRONMENTAL...SUBTITLE Development and Evaluation of Reproductive and Developmental Toxicity Tests for Assessing the Hazards of Environmental Contaminants 6...pd in testing toxicity in surface waters, ground waters and H- ™t™j£J^^^M hazard assessment when used in conjunction in sediments. FETAX can be usea

  19. An Overview of the Annual NASA Tire/Runway Friction Workshop and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    2005-01-01

    This paper summarizes the organization efforts, objectives, scope, agenda, test procedures and results from eleven years of conducting the NASA Tire/Runway Friction Workshop. The paper will also summarize the lessons learned between 1994 and 2004. A description of the various friction, texture and roughness equipment used during these workshops at NASA Wallops Flight Facility on the eastern shore of Virginia will be provided together with the range of test surfaces available for evaluation. The need for friction measuring equipment calibration centers is discussed and plans for future workshops are identified.

  20. Surface functionalization of titanium dioxide nanoparticles: Photo-stability and reactive oxygen species (ROS) generation

    NASA Astrophysics Data System (ADS)

    Louis, Kacie M.

    Metal oxide nanoparticles are becoming increasingly prevalent in society for applications of sunscreens, cosmetics, paints, biomedical imaging, and photovoltaics. Due to the increased surface area to volume ratio of nanoparticles compared to bulk materials, it is important to know the health and safety impacts of these materials. One mechanism of toxicity of nominally "safe" materials such as TiO 2 is through the photocatalytic generation of reactive oxygen species (ROS). ROS production and ligand degradation can affect the bioavailability of these particles in aqueous organisms. We have investigated ROS generation by functionalized TiO2 nanoparticles and its influence on aggregation and bioavailability and toxicity to zebrafish embryos/larvae. For these studies we investigated anatase TiO2 nanoparticles. For application purposes and solution stability, the TiO2 nanoparticles were functionalized with a variety of ligands such as citrate, 3,4-dihydroxybenzaldehyde, and ascorbate. We quantitatively examined the amount of ROS produced in aqueous solution using fluorescent probes and see that more ROS is produced under UV light than in the dark control. Our measurements show that TiO2 toxicity reaches a maximum for nanoparticles with smaller diameters, and is correlated with surface area dependent changes in ROS generation. In an effort to reduce toxicity through control of the surface and surface ligands, we synthesized anatase nanoparticles of different sizes, functionalized them with different ligands, and examined the resulting ROS generation and ligand stability. Using a modular ligand containing a hydrophobic inner region and a hydrophilic outer region, we synthesized water-stable nanoparticles, via two different chemical reactions, having much-reduced ROS generation and thus reduced toxicity. These results suggest new strategies for making safer nanoparticles while still retaining their desired properties. We also examine the degradation of the different ligands on the surface of the particles using XPS and FTIR. The combination of ROS production and ligand degradation can affect the bioavailability of these particles in aqueous species.

  1. SCREENING BIOAVAILABLE HYDROPHOBIC TOXICANTS IN SURFACE WATERS WITH SEMIPERMEABLE MEMBRANE DEVICES: ROLE OF INHERENT OLEIC ACID IN TOXICITY EVALUATIONS

    EPA Science Inventory

    Semipermeable membrane devices (SPMDs) were deployed for 4 weeks in two rivers in Lithuania, The SPMD dialysates were tested in the Microtox assay and, surprisingly, the sample from the relatively clean (U) over bar la River exhibited three times more toxicity than the sample fro...

  2. Metal-Polycyclic Aromatic Hydrocarbon Mixture Toxicity in Hyalella azteca. 1. Response Surfaces and Isoboles To Measure Non-additive Mixture Toxicity and Ecological Risk.

    PubMed

    Gauthier, Patrick T; Norwood, Warren P; Prepas, Ellie E; Pyle, Greg G

    2015-10-06

    Mixtures of metals and polycyclic aromatic hydrocarbons (PAHs) occur ubiquitously in aquatic environments, yet relatively little is known regarding their potential to produce non-additive toxicity (i.e., antagonism or potentiation). A review of the lethality of metal-PAH mixtures in aquatic biota revealed that more-than-additive lethality is as common as strictly additive effects. Approaches to ecological risk assessment do not consider non-additive toxicity of metal-PAH mixtures. Forty-eight-hour water-only binary mixture toxicity experiments were conducted to determine the additive toxic nature of mixtures of Cu, Cd, V, or Ni with phenanthrene (PHE) or phenanthrenequinone (PHQ) using the aquatic amphipod Hyalella azteca. In cases where more-than-additive toxicity was observed, we calculated the possible mortality rates at Canada's environmental water quality guideline concentrations. We used a three-dimensional response surface isobole model-based approach to compare the observed co-toxicity in juvenile amphipods to predicted outcomes based on concentration addition or effects addition mixtures models. More-than-additive lethality was observed for all Cu-PHE, Cu-PHQ, and several Cd-PHE, Cd-PHQ, and Ni-PHE mixtures. Our analysis predicts Cu-PHE, Cu-PHQ, Cd-PHE, and Cd-PHQ mixtures at the Canadian Water Quality Guideline concentrations would produce 7.5%, 3.7%, 4.4% and 1.4% mortality, respectively.

  3. Bioswales reduce contaminants associated with toxicity in urban storm water.

    PubMed

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Siegler, Katie; Tjeerdema, Ronald

    2016-12-01

    Contamination and toxicity associated with urban storm water runoff are a growing concern because of the potential impacts on receiving systems. California water regulators are mandating implementation of green infrastructure as part of new urban development projects to treat storm water and increase infiltration. Parking lot bioswales are low impact development practices that promote filtering of runoff through plants and soil. Studies have demonstrated that bioswales reduce concentrations of suspended sediments, metals, and hydrocarbons. There have been no published studies evaluating how well these structures treat current-use pesticides, and studies have largely ignored whether bioswales reduce toxicity in surface water. Three storms were monitored at 3 commercial and residential sites, and reductions of contaminants and associated toxicity were quantified. Toxicity testing showed that the majority of untreated storm water samples were toxic to amphipods (Hyalella azteca) and midges (Chironomus dilutus), and toxicity was reduced by the bioswales. No samples were toxic to daphnids (Ceriodaphnia dubia) or fish (Pimephales promelas). Contaminants were significantly reduced by the bioswales, including suspended solids (81% reduction), metals (81% reduction), hydrocarbons (82% reduction), and pyrethroid pesticides (74% reduction). The single exception was the phenypyrazole pesticide fipronil, which showed inconsistent treatment. The results demonstrate these systems effectively treat contaminated storm water associated with surface water toxicity but suggest that modifications of their construction may be required to treat some contaminant classes. Environ Toxicol Chem 2016;35:3124-3134. © 2016 SETAC. © 2016 SETAC.

  4. Reduced toxicity of diuron to the freshwater green alga Pseudokirchneriella subcapitata in the presence of black carbon.

    PubMed

    Knauer, Katja; Sobek, Anna; Bucheli, Thomas D

    2007-06-15

    Black carbon (BC) is known to act as supersorbent for many organic contaminants. Its presence in surface waters at a level of a few mg/L, which may occur, e.g., after storm events in urban areas, might result in a reduced bioavailability of many contaminants and thus greatly impact their potential toxicity. Photosynthesis-inhibiting phenyl urea derivatives, such as diuron, are widely used as herbicides and diuron is regularly measured in European freshwater systems. In this study, the toxicity of diuron to the freshwater green alga Pseudokirchneriella subcapitata was investigated in the presence of BC in its native and combusted form. As a toxicity endpoint, the in vivo chlorophyll fluorescence was determined and used to indicate the bioavailability of diuron. Fifty milligrams native BC/L reduced effects of 5mugdiuron/L on photosynthesis by 10+/-2%, whereas photosynthesis was completely restored in the presence of the same concentration of combusted BC, suggesting a significantly enhanced adsorption of diuron to the BC fraction compared to the organic carbon fraction. Assuming an environmentally realistic concentration of approximately 1.5mg of combusted BC/L, diuron toxicity would be reduced by approximately 20% in surface waters due to the presence of BC. Higher BC concentrations after storm events might reduce the toxicity even further. A calculation of the Freundlich sorption coefficient K(F,BC,tox) via the toxicity endpoint, resulted in a log K(F,BC,tox) of the combusted BC of 5.7, which is comparable to values obtained by classical sorption experiments. This study contributes to a refined risk assessment of micropollutants in surface waters taking into account the presence of potentially relevant sorbents and, consequently, reduced bioavailability.

  5. Alkanols and chlorophenols cause different physiological adaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E.

    PubMed

    Baumgarten, Thomas; Vazquez, José; Bastisch, Christian; Veron, Wilfried; Feuilloley, Marc G J; Nietzsche, Sandor; Wick, Lukas Y; Heipieper, Hermann J

    2012-01-01

    In order to cope with the toxicity imposed by the exposure to environmental hydrocarbons, many bacteria have developed specific adaptive responses such as modifications in the cell envelope. Here we compared the influence of n-alkanols and chlorophenols on the surface properties of the solvent-tolerant bacterium Pseudomonas putida DOT-T1E. In the presence of toxic concentrations of n-alkanols, this strain significantly increased its cell surface charge and hydrophobicity with changes depending on the chain length of the added n-alkanols. The adaptive response occurred within 10 min after the addition of the solvent and was demonstrated to be of physiological nature. Contrary to that, chlorophenols of similar hydrophobicity and potential toxicity as the corresponding alkanols caused only minor effects in the surface properties. To our knowledge, this is the first observation of differences in the cellular adaptive response of bacteria to compound classes of quasi equal hydrophobicity and toxicity. The observed adaptation of the physico-chemical surface properties of strain DOT-T1E to the presence of alkanols was reversible and correlated with changes in the composition of the lipopolysaccharide content of the cells. The reaction is explained by previously described reactions allowing the release of membrane vesicles that was demonstrated for cells affected by 1-octanol and heat shock, whereas no membrane vesicles were released after the addition of chlorophenols.

  6. Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine.

    PubMed

    Zhang, Yongbin; Petibone, Dayton; Xu, Yang; Mahmood, Meena; Karmakar, Alokita; Casciano, Dan; Ali, Syed; Biris, Alexandru S

    2014-05-01

    Carbon-based nanomaterials have attracted great interest in biomedical applications such as advanced imaging, tissue regeneration, and drug or gene delivery. The toxicity of the carbon nanotubes and graphene remains a debated issue although many toxicological studies have been reported in the scientific community. In this review, we summarize the biological effects of carbon nanotubes and graphene in terms of in vitro and in vivo toxicity, genotoxicity and toxicokinetics. The dose, shape, surface chemistry, exposure route and purity play important roles in the metabolism of carbon-based nanomaterials resulting in differential toxicity. Careful examination of the physico-chemical properties of carbon-based nanomaterials is considered a basic approach to correlate the toxicological response with the unique properties of the carbon nanomaterials. The reactive oxygen species-mediated toxic mechanism of carbon nanotubes has been extensively discussed and strategies, such as surface modification, have been proposed to reduce the toxicity of these materials. Carbon-based nanomaterials used in photothermal therapy, drug delivery and tissue regeneration are also discussed in this review. The toxicokinetics, toxicity and efficacy of carbon-based nanotubes and graphene still need to be investigated further to pave a way for biomedical applications and a better understanding of their potential applications to humans.

  7. An Update on ToxCast™ | Science Inventory | US EPA

    EPA Pesticide Factsheets

    In its first phase, ToxCast™ is profiling over 300 well-characterized chemicals (primarily pesticides) in over 400 HTS endpoints. These endpoints include biochemical assays of protein function, cell-based transcriptional reporter assays, multi-cell interaction assays, transcriptomics on primary cell cultures, and developmental assays in zebrafish embryos. Almost all of the compounds being examined in Phase 1 of ToxCast™ have been tested in traditional toxicology tests, including developmental toxicity, multi-generation studies, and sub-chronic and chronic rodent bioassays Lessons learned to date for ToxCast: Large amounts of quality HTS data can be economically obtained. Large scale data sets will be required to understand potential for biological activity. Value in having multiple assays with overlapping coverage of biological pathways and a variety of methodologies Concentration-response will be important for ultimate interpretation Data transparency will be important for acceptance. Metabolic capabilities and coverage of developmental toxicity pathways will need additional attention. Need to define the gold standard Partnerships are needed to bring critical mass and expertise.

  8. Mineral dust aerosols promote the formation of toxic nitropolycyclic aromatic compounds

    PubMed Central

    Kameda, Takayuki; Azumi, Eri; Fukushima, Aki; Tang, Ning; Matsuki, Atsushi; Kamiya, Yuta; Toriba, Akira; Hayakawa, Kazuichi

    2016-01-01

    Atmospheric nitrated polycyclic aromatic hydrocarbons (NPAHs), which have been shown to have adverse health effects such as carcinogenicity, are formed in part through nitration reactions of their parent polycyclic aromatic hydrocarbons (PAHs) in the atmosphere. However, little is known about heterogeneous nitration rates of PAHs by gaseous NO2 on natural mineral substrates, such as desert dust aerosols. Herein by employing kinetic experiments using a flow reactor and surface analysis by Fourier transform infrared spectroscopy with pyridine adsorption, we demonstrate that the reaction is accelerated on acidic surfaces of mineral dust, particularly on those of clay minerals. In support of this finding, we show that levels of ambient particle-associated NPAHs in Beijing, China, significantly increased during heavy dust storms. These results suggest that mineral dust surface reactions are an unrecognized source of toxic organic chemicals in the atmosphere and that they enhance the toxicity of mineral dust aerosols in urban environments. PMID:27075250

  9. The interactions between CdSe quantum dots and yeast Saccharomyces cerevisiae: adhesion of quantum dots to the cell surface and the protection effect of ZnS shell.

    PubMed

    Mei, Jie; Yang, Li-Yun; Lai, Lu; Xu, Zi-Qiang; Wang, Can; Zhao, Jie; Jin, Jian-Cheng; Jiang, Feng-Lei; Liu, Yi

    2014-10-01

    The interactions between quantum dots (QDs) and biological systems have attracted increasing attention due to concerns on possible toxicity of the nanoscale materials. The biological effects of CdSe QDs and CdSe/ZnS QDs with nearly identical hydrodynamic size on Saccharomyces cerevisiae were investigated via microcalorimetric, spectroscopic and microscopic methods, demonstrating a toxic order CdSe>CdSe/ZnS QDs. CdSe QDs damaged yeast cell wall and reduced the mitochondrial membrane potential. Noteworthy, adhesion of QDs to the yeast cell surface renders this work a good example of interaction site at cell surface, and the epitaxial coating of ZnS could greatly reduce the toxicity of Cd-containing QDs. These results will contribute to the safety evaluation of quantum dots, and provide valuable information for design of nanomaterials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Reactions of singlet oxygen with pine pollen.

    NASA Technical Reports Server (NTRS)

    Dowty, B.; Laseter, J. L.; Griffin, G. W.; Politzer, I. R.; Walkinshaw, C. H.

    1973-01-01

    A study was initiated to determine whether viable atmospheric particles such as plant pollens and fungal spores containing unsaturated lipids can interact with singlet oxygen to give oxygenated products that are potentially toxic. The results obtained confirm that surface and near surface components of common viable particulate matter in the atmosphere may be subject to rapid oxidation by singlet oxygen, leading to products which are probably allylic hydroperoxides. In connection with increasing atmospheric pollution, it is important to note that materials toxic to mammalian lung tissue may be oxidatively produced on the surfaces of viable particulate matter.

  11. Comparative hazard analysis and toxicological modeling of diverse nanomaterials using the embryonic zebrafish (EZ) metric of toxicity

    NASA Astrophysics Data System (ADS)

    Harper, Bryan; Thomas, Dennis; Chikkagoudar, Satish; Baker, Nathan; Tang, Kaizhi; Heredia-Langner, Alejandro; Lins, Roberto; Harper, Stacey

    2015-06-01

    The integration of rapid assays, large datasets, informatics, and modeling can overcome current barriers in understanding nanomaterial structure-toxicity relationships by providing a weight-of-the-evidence mechanism to generate hazard rankings for nanomaterials. Here, we present the use of a rapid, low-cost assay to perform screening-level toxicity evaluations of nanomaterials in vivo. Calculated EZ Metric scores, a combined measure of morbidity and mortality in developing embryonic zebrafish, were established at realistic exposure levels and used to develop a hazard ranking of diverse nanomaterial toxicity. Hazard ranking and clustering analysis of 68 diverse nanomaterials revealed distinct patterns of toxicity related to both the core composition and outermost surface chemistry of nanomaterials. The resulting clusters guided the development of a surface chemistry-based model of gold nanoparticle toxicity. Our findings suggest that risk assessments based on the size and core composition of nanomaterials alone may be wholly inappropriate, especially when considering complex engineered nanomaterials. Research should continue to focus on methodologies for determining nanomaterial hazard based on multiple sub-lethal responses following realistic, low-dose exposures, thus increasing the availability of quantitative measures of nanomaterial hazard to support the development of nanoparticle structure-activity relationships.

  12. Hydrophobic chalcogenide fibers for cell-based bio-optical sensors

    NASA Astrophysics Data System (ADS)

    Lucas, Pierre; Riley, Mark R.; Solis, Michelle A.; Juncker, Christophe; Collier, Jayne; Boesewetter, Dianne E.

    2005-03-01

    Chalcogenide fibers are shown to exhibit a hydrophobic surface behavior which results in detection enhancement for organic species in aqueous solutions. We use these fibers to monitor the infrared signature of human lung cells and detect the presence of toxic agents in the cell surrounding media. The signal is collected using a fiber evanescent wave spectroscopy set up with live human cells acting as a sensitizer for detection of minute quantities of toxicant. A monolayer of human alveolar epithelial cells form strong attachment at the surface of the fiber sensing zone and live in contact with the fiber while their IR spectra is collected remotely. Biochemical change in the living cells are detected during exposure to toxic agents. Variations in the spectroscopic features of the cells are observed in different spectral regions. Finally, the toxicity of Te2As3Se5 fibers is investigated.

  13. Firewalking: A Lesson in Physics.

    ERIC Educational Resources Information Center

    Taylor, John R.

    1989-01-01

    Emphasizes firewalking as a good illustration of basic concepts in thermodynamics. Describes the basic principles of firewalking and other factors including the cooling of the surface embers, moisture of the feet, thick skin on the feet, tolerance for pain, and other uncontrolled factors. (YP)

  14. Structurally distinct toxicity inhibitors bind at common loci on β-amyloid fibril

    PubMed Central

    Keshet, Ben; Gray, Jeffrey J; Good, Theresa A

    2010-01-01

    The accumulation of aggregated β-Amyloid (Aβ) in the brain is a hallmark of Alzheimer's disease and is thought to play a role in the neurotoxicity associated with the disease. The mechanism by which Aβ aggregates induce toxicity is uncertain. Nonetheless, several small molecules have been found to interact with Aβ fibrils and to prevent their toxicity. In this paper we studied the binding of these known toxicity inhibitors to Aβ fibrils, as a means to explore surfaces or loci on Aβ aggregates that may be significant in the mechanism of action of these inhibitors. We believe knowledge of these binding loci will provide insight into surfaces on the Aβ fibrils important in Aβ biological activity. The program DOCK was used to computationally dock the inhibitors to an Aβ fibril. The inhibitors docked at two shared binding loci, near Lys28 and at the C-termini near Asn27 and Val39. The docking predictions were experimentally verified using lysine specific chemical modifications and Aβ fibrils mutated at Asn27. We found that both Congo red and Myricetin, despite being structurally different, bound at the same two sites. Additionally, our data suggests that three additional Aβ toxicity inhibitors may also bind in one of the sites. Identification of these common binding loci provides targets on the Aβ fibril surface that can be tested in the future for their role in Aβ biological activity. PMID:20882638

  15. Modification of TiO(2) nanotube surfaces by electro-spray deposition of amoxicillin combined with PLGA for bactericidal effects at surgical implantation sites.

    PubMed

    Lee, Jung-Hwan; Moon, Seung-Kyun; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2013-01-01

    To fabricate the antibiotic-releasing coatings on TiO(2) nanotube surfaces for wide applications of implant and bone plate in medical and dental surgery, the optimal deposition time of amoxicillin/PLGA solution simultaneously performing non-toxicity and a high bactericidal effect for preventing early implant failures was found. FE-SEM, ESD and FT-IR were used for confirming deposition of amoxicillin/PLGA on the TiO(2) surface. Also, the elution of amoxicillin/PLGA in a TiO(2) nanotube surface was measured by a UV-VIS spectrophotometer. The bactericidal effect of amoxicillin on the TiO(2) nanotube surface was evaluated by using Staphylococcus aureus (S. aureus). The cytotoxicity and cell proliferation were observed by WST assay using MC3T3-E1 osteoblast cells. The results indicated that the TiO(2) nanotube surface controlled by electro-spray deposition time with amoxicillin/PLGA solution could provide a high bactericidal effect against S. aureus by the bactericidal effect of amoxicillin, as well as good osteoblast cell proliferation at the TiO(2) nanotube surface without toxicity. This study used electro-spray deposition (ESD) methodology to obtain amoxicillin deposition in nanotube structures of TiO(2) and found the optimal deposition time of amoxicillin/PLGA solution simultaneously performing non-toxicity and a high bactericidal effect for preventing early implant failures.

  16. Comparative effects of graphene and graphene oxide on copper toxicity to Daphnia magna: Role of surface oxygenic functional groups.

    PubMed

    Liu, Yingying; Fan, Wenhong; Xu, Zhizhen; Peng, Weihua; Luo, Shenglian

    2018-05-01

    Although the risk of graphene materials to aquatic organisms has drawn wide attention, the combined effects of graphene materials with other contaminants such as toxic metals, which may bring about more serious effects than graphene materials alone, have seldom been explored. Herein, the effects of graphene (GN) and graphene oxide (GO, an important oxidized derivative of graphene) on copper (Cu) toxicity to Daphnia magna were systematically investigated. The results indicated that GN remarkably increased the Cu accumulation in D. magna and enhanced the oxidative stress injury caused by Cu, whereas did not significantly alter D. magna acute mortality within the tested Cu concentrations (0-200 μg L -1 ). On the contrary, GO significantly decreased the Cu accumulation in D. magna and alleviated the oxidative stress injury caused by Cu. Meanwhile, the presence of GO significantly reduced the mortality of D. magna when Cu concentration exceeded 50 μg L -1 . The different effects of GN and GO on Cu toxicity were possibly dependent on the action of surface oxygenic functional group. Because of the introduction of surface oxygenic functional groups, the adsorption ability to metal ions, stability in water and interaction mode with organisms of GO are quite different from that of GN, causing different effects on Cu toxicity. This study provides important information on the bioavailability and toxicity of heavy metals as affected by graphene materials in natural water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Development of a Contingency Gas Analyzer for the Orion Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Niu, Bill; Carney, Kenneth; Steiner, George; OHarra, William; Lewis, John

    2010-01-01

    NASA's experience with electrochemical sensors in a hand-held toxic gas monitor serves as a basis for the development of a fixed on-board instrument, the Contingency Gas Analyzer (CGA), for monitoring selected toxic combustion products as well as oxygen and carbon dioxide on the Orion Crew Exploration Vehicle (CEV). Oxygen and carbon dioxide are major components of the cabin environment and accurate measurement of these compounds is critical to maintaining a safe working environment for the crew. Fire or thermal degradation events may produce harmful levels of toxic products, including carbon monoxide (CO), hydrogen cyanide (HCN), and hydrogen chloride (HCl) in the environment. These three components, besides being toxic in their own right, can serve as surrogates for a panoply of hazardous combustion products. On orbit monitoring of these surrogates provides for crew health and safety by indicating the presence of toxic combustion products in the environment before, during and after combustion or thermal degradation events. Issues identified in previous NASA experiences mandate hardening the instrument and components to endure the mechanical and operational stresses of the CEV environment while maintaining high analytical fidelity. Specific functional challenges involve protecting the sensors from various anticipated events- such as rapid pressure changes, low cabin pressures, and extreme vibration/shock exposures- and extending the sensor lifetime and calibration periods far beyond the current state of the art to avoid the need for on-orbit calibration. This paper focuses on lessons learned from the earlier NASA hardware, current testing results, and engineering solutions to the identified problems. Of particular focus will be the means for protecting the sensors, addressing well known cross-sensitivity issues and the efficacy of a novel self monitoring mechanism for extending sensor calibration periods.

  18. The test ability of fish Tawes to leachate garbage dump (TPA) Benowo

    NASA Astrophysics Data System (ADS)

    Juliardi AR, N. R.; Wiyanti, R. I.

    2018-01-01

    Leachate is a liquid from waste containing elements of dissolved and suspended elements. Garbage collected at the landfill site contains organic, inorganic and heavy metal substances. If the rains will produce leachate with mineral content, organic and heavy metals. When the condition or leachate flow in let to the soil surface can cause negative effects to the surrounding environment including for humans. Toxicity test it was conducted to determine the level of leachate toxicity of the test animals living in surface water located around of the “TPA Benowo”. In this study using Tawes fish with length between 4-6 cm. In this toxicity test is done in 2 stages, namely: range finding test, the search for this range is obtained 0% concentrations (as control) 0,3%; 0,6%; 0,9%; 0,12% and 0,15%. The next stage of toxicity acute test, at this stage of toxicity concentration do smaller again that is: 0,18%; 0,36%; 0,54%; 0,72% and 0,9%. The results obtained LC50 value of 0,385%, while eyes, brown stomach skin.

  19. Synergistic effect of piperonyl butoxide on acute toxicity of pyrethrins to Hyalella azteca.

    PubMed

    Giddings, Jeffrey; Gagne, James; Sharp, Janice

    2016-08-01

    A series of acute toxicity tests with the amphipod Hyalella azteca was performed to quantify the synergistic effect of piperonyl butoxide (PBO) on pyrethrin toxicity. Concentrations of PBO <4 µg/L caused no toxicity enhancement, whereas toxicity increased with PBO concentrations between 4 µg/L and 15 µg/L. Additive toxicity calculations showed that true synergism accounted for an increase in pyrethrin toxicity (decrease in median lethal concentration) of 1.4-fold to 1.6-fold and varied only slightly between 4 µg/L and 15 µg/L PBO, whereas direct toxicity of PBO accounted for an additional increase in mixture toxicity (up to 3.2-fold) that was proportional to PBO concentration. The results can be used to assess the risk of measured or predicted co-occurring concentrations of PBO and pyrethrins in surface waters. Environ Toxicol Chem 2016;35:2111-2116. © 2016 SETAC. © 2016 SETAC.

  20. Distribution, diffusive fluxes, and toxicity of heavy metals and PAHs in pore water profiles from the northern bays of Taihu Lake.

    PubMed

    Lei, Pei; Zhang, Hong; Shan, Baoqing; Zhang, Bozheng

    2016-11-01

    Pore water plays a more significant role than do sediments in pollutant cycling dynamics. Also, concentrations of pollutants in pore water provide important information about their bioavailability or eco-toxicity; however, very few studies have focused on this topic. In this study, four duplicate sediment cores from three typical northern bays as well as the central part of Taihu Lake were collected to investigate the distribution, diffusive fluxes, and toxicity of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in pore water profiles, which will be good in understanding the mobility and toxicity of these toxic pollutants and achieving better environmental management. The diffusive fluxes of heavy metals across the sediment-water interface was estimated through Fick's First Law, and the toxicity of heavy metals and PAHs in pore water was assessed by applying a water quality index (interstitial water toxicity criteria unit, IWCTU) and a hazard index (HI), respectively. The average concentrations of Cr, Cu, Ni, Pb, and Zn in surface pore water were 18.8, 23.4, 12.0, 13.5, and 42.5 μg L -1 , respectively. Also, concentrations of the selected heavy metals in both overlying water and pore water from Taihu Lake were all lower than the standard values of the environmental quality standards for surface water. The concentrations as the pore water depth increased, and the highest detected concentrations of heavy metals were recorded between 3 and 5 cm below the sediment surface. The average diffusive fluxes of these metals were 27.3, 24.8, 7.03, 7.81, and -3.32 μg (m 2 day) -1 , respectively, indicating export from sediment into overlying water, with the exception of Zn. There was a potential risk of toxicity, mainly from Pb and Cu, indicating that heavy metals in pore water had slight to moderate impact on sediment-dwelling organisms by values of the IWCTU and the Nemeraw index. The total PAH concentrations in pore water were higher than those in overlying water, and such gradient implies a potential flux of PAHs from pore water to overlying water. The average HI value of PAHs in surface pore water showed no or low ecological risk. While there may be occasional risk due to the HI values in some sites being greater than 1, the dominant contributors were carcinogenic PAHs. Because of their potential biological impact, heavy metals and PAHs and their comprehensive toxic effects in pore water should be given priority attention to keep the safety of Taihu Lake.

  1. Fine-Tuning the Antimicrobial Profile of Biocompatible Gold Nanoparticles by Sequential Surface Functionalization Using Polyoxometalates and Lysine

    PubMed Central

    Daima, Hemant K.; Selvakannan, P. R.; Shukla, Ravi; Bhargava, Suresh K.; Bansal, Vipul

    2013-01-01

    Antimicrobial action of nanomaterials is typically assigned to the nanomaterial composition, size and/or shape, whereas influence of complex corona stabilizing the nanoparticle surface is often neglected. We demonstrate sequential surface functionalization of tyrosine-reduced gold nanoparticles (AuNPsTyr) with polyoxometalates (POMs) and lysine to explore controlled chemical functionality-driven antimicrobial activity. Our investigations reveal that highly biocompatible gold nanoparticles can be tuned to be a strong antibacterial agent by fine-tuning their surface properties in a controllable manner. The observation from the antimicrobial studies on a gram negative bacterium Escherichia coli were further validated by investigating the anticancer properties of these step-wise surface-controlled materials against A549 human lung carcinoma cells, which showed a similar toxicity pattern. These studies highlight that the nanomaterial toxicity and biological applicability are strongly governed by their surface corona. PMID:24147146

  2. Fine-tuning the antimicrobial profile of biocompatible gold nanoparticles by sequential surface functionalization using polyoxometalates and lysine.

    PubMed

    Daima, Hemant K; Selvakannan, P R; Shukla, Ravi; Bhargava, Suresh K; Bansal, Vipul

    2013-01-01

    Antimicrobial action of nanomaterials is typically assigned to the nanomaterial composition, size and/or shape, whereas influence of complex corona stabilizing the nanoparticle surface is often neglected. We demonstrate sequential surface functionalization of tyrosine-reduced gold nanoparticles (AuNPs(Tyr)) with polyoxometalates (POMs) and lysine to explore controlled chemical functionality-driven antimicrobial activity. Our investigations reveal that highly biocompatible gold nanoparticles can be tuned to be a strong antibacterial agent by fine-tuning their surface properties in a controllable manner. The observation from the antimicrobial studies on a gram negative bacterium Escherichia coli were further validated by investigating the anticancer properties of these step-wise surface-controlled materials against A549 human lung carcinoma cells, which showed a similar toxicity pattern. These studies highlight that the nanomaterial toxicity and biological applicability are strongly governed by their surface corona.

  3. Neural Cell Chip Based Electrochemical Detection of Nanotoxicity

    PubMed Central

    Kafi, Md. Abdul; Cho, Hyeon-Yeol; Choi, Jeong Woo

    2015-01-01

    Development of a rapid, sensitive and cost-effective method for toxicity assessment of commonly used nanoparticles is urgently needed for the sustainable development of nanotechnology. A neural cell with high sensitivity and conductivity has become a potential candidate for a cell chip to investigate toxicity of environmental influences. A neural cell immobilized on a conductive surface has become a potential tool for the assessment of nanotoxicity based on electrochemical methods. The effective electrochemical monitoring largely depends on the adequate attachment of a neural cell on the chip surfaces. Recently, establishment of integrin receptor specific ligand molecules arginine-glycine-aspartic acid (RGD) or its several modifications RGD-Multi Armed Peptide terminated with cysteine (RGD-MAP-C), C(RGD)4 ensure farm attachment of neural cell on the electrode surfaces either in their two dimensional (dot) or three dimensional (rod or pillar) like nano-scale arrangement. A three dimensional RGD modified electrode surface has been proven to be more suitable for cell adhesion, proliferation, differentiation as well as electrochemical measurement. This review discusses fabrication as well as electrochemical measurements of neural cell chip with particular emphasis on their use for nanotoxicity assessments sequentially since inception to date. Successful monitoring of quantum dot (QD), graphene oxide (GO) and cosmetic compound toxicity using the newly developed neural cell chip were discussed here as a case study. This review recommended that a neural cell chip established on a nanostructured ligand modified conductive surface can be a potential tool for the toxicity assessments of newly developed nanomaterials prior to their use on biology or biomedical technologies. PMID:28347059

  4. The Mysterious Illness of Dyce Sombre

    PubMed Central

    Fisher, Michael H.; Haldipur, C.V.

    2012-01-01

    The alleged “madness” of the Anglo-Indian prince known as Dyce Sombre (1808–1851) has been attributed to anti-Asian prejudice, biased observations, and insensitivity to ethno-cultural variations in behavior. However, whereas all these factors may have contributed to misdiagnosis and mistreatment, there is compelling evidence pointing to an “organic” explanation for Dyce Sombre’s aberrant behavior. We posit that the interaction of drug toxicity and possible central nervous system infection were primarily responsible for Dyce Sombre’s clinical symptoms. The case provides an important lesson for modern-day psychiatrists confronting patients from other cultures who may also have underlying neuropsychiatric disorders. PMID:22567603

  5. Learning lessons from drugs that have recently entered the market.

    PubMed

    Teague, Simon J

    2011-05-01

    Which projects in the drug discovery field are most likely to be successful? In this article, I provide guidelines for answering this question by examining recent drug market entrants in detail, in particular their route of administration, trial design, novelty, therapeutic target and toxicities. I identify targets, trials and organizations as the key issues that are currently leading to the poor productivity in the pharmaceutical industry. Here, I outline some solutions and reasons for optimism, and suggest that the key determinants for success in drug discovery can be defined by studying recently launched drugs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Effects of calcium, magnesium, and sodium on alleviating cadmium toxicity to Hyalella azteca

    USGS Publications Warehouse

    Jackson, B.P.; Lasier, P.J.; Miller, W.P.; Winger, P.V.

    2000-01-01

    Toxicity of trace metal ions to aquatic organisms, arising through either anthropogenic inputs or acidification of surface waters, continues to be both a regulatory and environmental problem. It is generally accepted that the free metal ion is the major toxic species (Florence et a1.,1992) and that inorganic or organic complexation renders the metal ion non-bioavailable (Meador, 1991, Galvez and Wood, 1997). However, water chemistry parameters such as alkalinity, hardness, dissolved organic carbon and pH influence metal ion toxicity either directly by lowering free metal ion concentration or indirectly through synergistic or antagonistic effects. Alkalinity and salinity can affect the speciation of metal ions by increasing ion-pair formation, thus decreasing free metal ion concentration. For example, Cu was found to be less toxic to rainbow trout in waters of high alkalinity (Miller and Mackay, 1980), due to formation of CuCO3 ion pair, and corresponding reduction in free Cu2+ concentration. The influence of salinity on the toxicity of cadmium to various organisms has been demonstrated in a number of studies (Bervoets et al., 1995, Hall et al., 1995, Lin and Dunson, 1993, Blust et al., 1992). In all these studies the apparent toxicity of cadmium was lowered as salinity was increased due to increased formation of CdC1+ and CDCl2 aqueous complexes that are non-toxic or of much lower toxicity than the free Cd2+ ion. Changes in pH exert both a biological and chemical effect on metal ion toxicity (Campbell and Stokes, 1985). Low pH favors greater metal ion solubility, and, in the absence of complexing ions, reduced speciation of the metal ion, which tends to increase toxicity compared to higher pH. However, Iow pH also enhances competition between H+ and metal ion for cell surface binding sites, which tends to decrease metal ion toxicity.

  7. Slight temperature changes affect protein affinity and cellular uptake/toxicity of nanoparticles

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Morteza; Shokrgozar, Mohammad A.; Behzadi, Shahed

    2013-03-01

    It is known that what the cell actually ``sees'' at the nanoscale is an outer shell formed of `protein corona' on the surface of nanoparticles (NPs). The amount and composition of various proteins on the corona are strongly dependent on the biophysicochemical properties of NPs, which have been extensively studied. However, the effect of a small variation in temperature, due to the human circadian rhythm, on the composition of the protein corona and the affinity of various proteins to the surface of NPs, was ignored. Here, the effect of temperature on the composition of protein corona and the affinity of various proteins to the surface of NPs and, subsequently, cell responses to the protein coated NPs are probed. The results confirmed that cellular entrance, dispersion, and toxicity of NPs are strongly diverse with slight body temperature changes. This new finding can help scientists to maximise NP entrance to specific cells/organs with lower toxicity by adjusting the cellular/organ temperature.It is known that what the cell actually ``sees'' at the nanoscale is an outer shell formed of `protein corona' on the surface of nanoparticles (NPs). The amount and composition of various proteins on the corona are strongly dependent on the biophysicochemical properties of NPs, which have been extensively studied. However, the effect of a small variation in temperature, due to the human circadian rhythm, on the composition of the protein corona and the affinity of various proteins to the surface of NPs, was ignored. Here, the effect of temperature on the composition of protein corona and the affinity of various proteins to the surface of NPs and, subsequently, cell responses to the protein coated NPs are probed. The results confirmed that cellular entrance, dispersion, and toxicity of NPs are strongly diverse with slight body temperature changes. This new finding can help scientists to maximise NP entrance to specific cells/organs with lower toxicity by adjusting the cellular/organ temperature. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr32551b

  8. Acellular assessments of engineered-manufactured nanoparticle biological surface reactivity

    EPA Science Inventory

    It is critical to assess the surface properties and reactivity of engineered-manufactured nanoparticles (NPs) as these will influence their interactions with biological systems, biokinetics and toxicity. We examined the physicochemical properties and surface reactivity of metal o...

  9. Faults and Fractures in the Subseafloor Environment tell a Different Story than They do at the Seafloor

    NASA Astrophysics Data System (ADS)

    Hayman, N. W.

    2018-05-01

    Planetary studies can benefit from a lesson learned in the research of Mid-Ocean Ridges, wherein the subsurface view of faulting and fracturing contrasts with surface observations, important for the dynamics and chemistry of hydrothermal systems.

  10. Lessons Learned During Cryogenic Optical Testing of the Advanced Mirror System Demonstrators (AMSDs)

    NASA Technical Reports Server (NTRS)

    Hadaway, James; Reardon, Patrick; Geary, Joseph; Robinson, Brian; Stahl, Philip; Eng, Ron; Kegley, Jeff

    2004-01-01

    Optical testing in a cryogenic environment presents a host of challenges above and beyond those encountered during room temperature testing. The Advanced Mirror System Demonstrators (AMSDs) are 1.4 m diameter, ultra light-weight (<20 kg/mA2), off-axis parabolic segments. They are required to have 250 nm PV & 50 nm RMS surface figure error or less at 35 K. An optical testing system, consisting of an Instantaneous Phase Interferometer (PI), a diffractive null corrector (DNC), and an Absolute Distance Meter (ADM), was used to measure the surface figure & radius-of-curvature of these mirrors at the operational temperature within the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The Ah4SD program was designed to improve the technology related to the design, fabrication, & testing of such mirrors in support of NASA s James Webb Space Telescope (JWST). This paper will describe the lessons learned during preparation & cryogenic testing of the AMSDs.

  11. PHYSICAL AND CHEMICAL DETERMINANTS OF NANOFIBER/NANOTUBE TOXICITY

    EPA Science Inventory

    Tubular and fibrous materials play a very special role in emerging nanotechnologies, but may show asbestos-like toxicity in humans upon inhalation. For asbestos fibers, it is known that both surface-reactive transition metals and fibrous geometry are major determinants of tox...

  12. ACUTE TOXICITY OF PARA-NONYLPHENOL TO SALTWATER ANIMALS

    EPA Science Inventory

    ?para-Nonylphenol (PNP), a mixture of alkylphenols used in producing nonionic surfactants, is distributed widely in surface waters and aquatic sediments, where it can affect saltwater species. This article describes a database for acute toxicity of PNP derived for calculating a n...

  13. Teaching the Interior Composition and Rheology of the Earth to Undergraduate Students Using an Inquiry Based Approach

    NASA Astrophysics Data System (ADS)

    Hayden, T. G.; Callahan, C. N.; Sibert, R. J.; Ewald, S. K.

    2011-12-01

    Most introductory geology courses include a lesson on the internal layered structure of the Earth. Due to the abstract nature of the content, this topic is difficult to teach using an inquiry-based approach. The challenge is two-fold: first, students cannot directly see the layers from their perspective on the earth's surface, and second, students have trouble grasping the vast scale of the earth, which far exceeds their everyday experiences. In addition, the two separate classification systems for dividing the internal structure of the Earth are often a point of confusion and source of misconceptions. In response to this challenge, we developed an inquiry lesson that scaffolds students' understanding of the compositional and rheological properties of the Earth's interior. The intent is to build students' understanding of the Earth's layers by guiding their attention to the reasons for the separate classification systems and the individual layers. The investigation includes teacher- or material-driven components such as guiding questions and specific hand-samples for analogues as well as student-driven components like collecting data and constructing explanations. The lesson opens with a series of questions designed to elicit students' existing ideas about the Earth's interior. The students are then guided to make observations of hand samples meant to represent examples of the crust and mantle as well as physical materials meant to serve as analogues for the lithosphere and asthenosphere. The lesson concludes with students integrating their observations into a model of the Earth's internal structure that accounts for both the compositional and rheological properties. Although this lesson was originally developed as a roughly 60 minute lesson for a class of 24 students, we also note ways this lesson can be modified for use at a variety of course levels. The lesson was pilot-tested in an introductory Earth Science course for future elementary (K-8) teachers. Data collected includes both pre- and post-instruction drawings as well as responses to multiple-choice test items derived from the Geoscience Content Inventory (GCI).

  14. An ecotoxicological study on tin- and bismuth-catalysed PDMS based coatings containing a surface-active polymer.

    PubMed

    Pretti, Carlo; Oliva, Matteo; Mennillo, Elvira; Barbaglia, Martina; Funel, Marco; Reddy Yasani, Bhaskar; Martinelli, Elisa; Galli, Giancarlo

    2013-12-01

    Novel films were prepared by condensation curing reaction of a poly(dimethyl siloxane) (PDMS) matrix with bismuth neodecanoate and dibutyltin diacetate catalysts. An ecotoxicological study was performed on the leachates of the coatings using the bacterium Vibrio fischeri, the unicellular alga Dunaliella tertiolecta, the crustacean Artemia salina and the fish Sparus aurata (larvae) as testing organisms. A copper-based self-polishing commercial paint was also tested as reference. The results showed that the tin-catalysed coatings and the copper paint were highly toxic against at least two of the four test organisms, whereas bismuth-catalysed coatings did not show any toxic effect. Moreover, the same biological assessment was also carried out on PDMS coatings containing a surface-active fluorinated polymer. The toxicity of the entire polymeric system resulted only from the tin catalyst used for the condensation curing reaction, as the bismuth catalysed coatings incorporating the surface-active polymer remained atoxic toward all the tested organisms. © 2013 Elsevier Inc. All rights reserved.

  15. PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery.

    PubMed

    Luong, Duy; Kesharwani, Prashant; Deshmukh, Rahul; Mohd Amin, Mohd Cairul Iqbal; Gupta, Umesh; Greish, Khaled; Iyer, Arun K

    2016-10-01

    Poly(amidoamine) dendrimers (PAMAM) are well-defined, highly branched, nanoscale macromolecules with numerous active amine groups on the surface. PAMAM dendrimer can enhance the solubility of hydrophobic drugs, and with numerous reactive groups on the surface PAMAM dendrimer can be engineered with various functional groups for specific targeting ability. However, in physiological conditions, these amine groups are toxic to cells and limit the application of PAMAM. In the recent years, polyethylene glycol (PEG) conjugation has been the most widely used approach to reduce the toxicity of the active group on dendrimer surface. PEG molecules are known to be inert, non-immunogenic, and non-antigenic with a significant water solubility. PEGylated PAMAM-mediated delivery could not only overcome the limitations of dendrimer such as drug leakage, immunogenicity, hemolytic toxicity, systemic cytotoxicity but they also have the ability to enhance the solubilization of hydrophobic drugs and facilitates the potential for DNA transfection, siRNA delivery and tumor targeting. This review focuses on the recent developments on the application and influence of PEGylation on various biopharmaceutical properties of PAMAM dendrimers. It is well established that dendrimers have demonstrated promising potentials for drug delivery. However, the inherent toxicity poses challenges for its clinical translation. In this regard, PEGylation has helped mitigate some of the toxicity concerns of dendrimers and have paved the way forward for testing its translational potentials. The review is a collection of articles demonstrating the utility of PEGylation of the most studied PAMAM dendrimers. To our knowledge, this is a first such attempt to draw reader's attention, specifically, towards PEGylated PAMAM dendrimers. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. T Cells Engineered With Chimeric Antigen Receptors Targeting NKG2D Ligands Display Lethal Toxicity in Mice

    PubMed Central

    VanSeggelen, Heather; Hammill, Joanne A; Dvorkin-Gheva, Anna; Tantalo, Daniela GM; Kwiecien, Jacek M; Denisova, Galina F; Rabinovich, Brian; Wan, Yonghong; Bramson, Jonathan L

    2015-01-01

    Ligands for the NKG2D receptor are overexpressed on tumors, making them interesting immunotherapy targets. To assess the tumoricidal properties of T cells directed to attack NKG2D ligands, we engineered murine T cells with two distinct NKG2D-based chimeric antigen receptors (CARs): (i) a fusion between the NKG2D receptor and the CD3ζ chain and (ii) a conventional second-generation CAR, where the extracellular domain of NKG2D was fused to CD28 and CD3ζ. To enhance the CAR surface expression, we also engineered T cells to coexpress DAP10. In vitro functionality and surface expression levels of all three CARs was greater in BALB/c T cells than C57BL/6 T cells, indicating strain-specific differences. Upon adoptive transfer of NKG2D-CAR-T cells into syngeneic animals, we observed significant clinical toxicity resulting in morbidity and mortality. The severity of these toxicities varied between the CAR configurations and paralleled their in vitro NKG2D surface expression. BALB/c mice were more sensitive to these toxicities than C57BL/6 mice, consistent with the higher in vitro functionality of BALB/c T cells. Treatment with cyclophosphamide prior to adoptive transfer exacerbated the toxicity. We conclude that while NKG2D ligands may be useful targets for immunotherapy, the pursuit of NKG2D-based CAR-T cell therapies should be undertaken with caution. PMID:26122933

  17. Structurally distinct toxicity inhibitors bind at common loci on β-amyloid fibril.

    PubMed

    Keshet, Ben; Gray, Jeffrey J; Good, Theresa A

    2010-12-01

    The accumulation of aggregated β-Amyloid (Aβ) in the brain is a hallmark of Alzheimer's disease and is thought to play a role in the neurotoxicity associated with the disease. The mechanism by which Aβ aggregates induce toxicity is uncertain. Nonetheless, several small molecules have been found to interact with Aβ fibrils and to prevent their toxicity. In this paper we studied the binding of these known toxicity inhibitors to Aβ fibrils, as a means to explore surfaces or loci on Aβ aggregates that may be significant in the mechanism of action of these inhibitors. We believe knowledge of these binding loci will provide insight into surfaces on the Aβ fibrils important in Aβ biological activity. The program DOCK was used to computationally dock the inhibitors to an Aβ fibril. The inhibitors docked at two shared binding loci, near Lys28 and at the C-termini near Asn27 and Val39. The docking predictions were experimentally verified using lysine specific chemical modifications and Aβ fibrils mutated at Asn27. We found that both Congo red and Myricetin, despite being structurally different, bound at the same two sites. Additionally, our data suggests that three additional Aβ toxicity inhibitors may also bind in one of the sites. Identification of these common binding loci provides targets on the Aβ fibril surface that can be tested in the future for their role in Aβ biological activity. Copyright © 2010 The Protein Society.

  18. Potent antitumor activity of a urokinase-activated engineered anthrax toxin

    NASA Astrophysics Data System (ADS)

    Liu, Shihui; Aaronson, Hannah; Mitola, David J.; Leppla, Stephen H.; Bugge, Thomas H.

    2003-01-01

    The acquisition of cell-surface urokinase plasminogen activator activity is a hallmark of malignancy. We generated an engineered anthrax toxin that is activated by cell-surface urokinase in vivo and displays limited toxicity to normal tissue but broad and potent tumoricidal activity. Native anthrax toxin protective antigen, when administered with a chimeric anthrax toxin lethal factor, Pseudomonas exotoxin fusion protein, was extremely toxic to mice, causing rapid and fatal organ damage. Replacing the furin activation sequence in anthrax toxin protective antigen with an artificial peptide sequence efficiently activated by urokinase greatly attenuated toxicity to mice. In addition, the mutation conferred cell-surface urokinase-dependent toxin activation in vivo, as determined by using a panel of plasminogen, plasminogen activator, plasminogen activator receptor, and plasminogen activator inhibitor-deficient mice. Surprisingly, toxin activation critically depended on both urokinase plasminogen activator receptor and plasminogen in vivo, showing that both proteins are essential cofactors for the generation of cell-surface urokinase. The engineered toxin displayed potent tumor cell cytotoxicity to a spectrum of transplanted tumors of diverse origin and could eradicate established solid tumors. This tumoricidal activity depended strictly on tumor cell-surface plasminogen activation. The data show that a simple change of protease activation specificity converts anthrax toxin from a highly lethal to a potent tumoricidal agent.

  19. Increasing Climate Literacy in Introductory Oceanography Classes Using Ocean Observation Data from Project Dynamo

    NASA Astrophysics Data System (ADS)

    Hams, J. E.

    2015-12-01

    This session will present educational activities developed for an introductory Oceanography lecture and laboratory class by NOAA Teacher-at-Sea Jacquelyn Hams following participation in Leg 3 of Project DYNAMO (Dynamics of the Madden-Julian Oscillation) in November-December 2011. The Madden-Julian Oscillation (MJO) is an important tropical weather phenomenon with origins in the Indian Ocean that impacts many other global climate patterns such as the El Nino Southern Oscillation (ENSO), Northern Hemisphere monsoons, tropical storm development, and pineapple express events. The educational activities presented include a series of lessons based on the observational data collected during Project DYNAMO which include atmospheric conditions, wind speeds and direction, surface energy flux, and upper ocean turbulence and mixing. The lessons can be incorporated into any introductory Oceanography class discussion on ocean properties such as conductivity, temperature, and density, ocean circulation, and layers of the atmosphere. A variety of hands-on lessons will be presented ranging from short activities used to complement a lecture to complete laboratory exercises.

  20. Occurrence, compositional distribution, and toxicity assessment of pyrethroid insecticides in sediments from the fluvial systems of Chaohu Lake, Eastern China.

    PubMed

    Wang, Ji-Zhong; Bai, Ya-Shu; Wu, Yakton; Zhang, Shuo; Chen, Tian-Hu; Peng, Shu-Chuan; Xie, Yu-Wei; Zhang, Xiao-Wei

    2016-06-01

    Surface sediment-associated synthetic pyrethroid insecticides (SPs) are known to pose high risks to the benthic organisms in Chaohu Lake, a shallow lake of Eastern China. However, the pollution status of the lake's tributaries and estuaries is still unknown. The present study was conducted to investigate the occurrence, compositional distribution, and toxicity of 12 currently used SPs in the surface sediments from four important tributaries, as well as in the sediment cores at their estuaries, using GC-MS for quantification. All SPs selected were detectable, with cypermethrin, es/fenvalerate, and permethrin dominant in both surface and core sediments, suggesting that these compounds were extensively applied. Urban samples contained the highest summed concentrations of the 12 SPs analyzed (Σ12SP) in both surface and core sediments compared with rural samples, suggesting that urban areas near aquatic environments posed high risks for SPs. The mean concentration of Σ12SP in surface sediments of each river was generally higher than that found in core sediments from its corresponding estuary, perhaps implying recent increases in SP usage. Surface sediments were significantly dominated by cypermethrin and permethrin, whereas core sediments were dominated by permethrin and es/fenvalerate. The compositional distributions demonstrated a spatial variation for surface sediments because urban sediments generally contained greater percentages of permethrin and cypermethrin, but rural sediments had significant levels of es/fenvalerate and cypermethrin. In all sediment cores, the percentage of permethrin gradually increased, whereas es/fenvalerate tended to decrease, from the bottom sediments to the top, indicating that the former represented fresh input, whereas the latter represented historical residue. Most urban samples would be expected to be highly toxic to benthic organisms due to the residue of SPs based on a calculation of toxic units (TUs) using toxicity data of the amphipod Hyalella azteca. However, low TU values were found for the samples from rural areas. These results indicate that the bottom sediments were exposed to high risk largely by the residual SPs from urban areas. The summed TUs were mostly attributable to cypermethrin, followed by λ-cyhalothrin and es/fenvalerate. Despite permethrin contributing ∼28.7 % of the Σ12SP concentration, it only represented 6.34 % of the summed TUs. Therefore, our results suggest that high levels of urbanization can increase the accumulation of SPs in aquatic environments.

  1. SURFACE-COATING-FREE MATERIALS WORKSHOP SUMMARY REPORT

    EPA Science Inventory

    The report documents a pollution prevention workshop that explored the concenpt of surface-coating-free materials (SCFMs) and the potential impact of this type of amterial on volatile organic compound (VOC) and air toxic emissions from surface coating operations. he report summar...

  2. Pesticides on residential outdoor surfaces: environmental impacts and aquatic toxicity.

    PubMed

    Jiang, Weiying; Luo, Yuzhou; Conkle, Jeremy L; Li, Juying; Gan, Jay

    2016-07-01

    Pesticides are routinely applied to residential impervious outdoor surfaces for structural pest control. This residential usage has been linked to the occurrence of toxic levels of pesticides in urban water bodies. It is believed that run-off water transports particles that have sorbed hydrophobic pesticides. However, concentrations of particle-bound pesticides have not been directly measured on impervious surfaces, and the role of these particles as a source of contamination is unknown. Pesticides were detected in 99.4% of samples, with >75% of samples containing at least five pesticides. Assuming all particles were transferred with run-off, the run-off amount of pesticide during each rainfall would be >5 mg. We also used the US EPA Storm Water Management Model and estimated that 43 and 65% of the pesticides would be washed off during two rainfall events, with run-off concentrations ranging from 10.0 to 54.6 ng L(-1) and from 13.3 to 109.1 ng L(-1) respectively. The model-predicted pesticide run-off concentrations were similar to the levels monitored in urban run-off and sediments. Most (78%) particle samples contained aggregate toxicities above the Hyalella azteca LC50 . The results suggest that loose particles on residential impervious surfaces are not only carriers but also an important source of hydrophobic pesticides in urban run-off and contribute to downstream aquatic toxicities. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. Physical immobility as a sensitive indicator of hydraulic fracturing fluid toxicity towards Daphnia magna.

    PubMed

    Blewett, Tamzin A; Delompré, Perrine L M; Glover, Chris N; Goss, Greg G

    2018-09-01

    The process of extracting hydrocarbon resources by hydraulic fracturing is an increasingly utilised technique worldwide, resulting in an effluent called flowback and produced water (FPW). This effluent is a complex mixture of salts, metals and organic compounds, and has been shown to be highly toxic to aquatic biota, an effect attributed mainly to its salt and organic components. However, in the current study we show that the water flea, Daphnia magna, is physically impaired by, and rendered immobile at the surface of, test waters containing FPW. This effect occurs at concentrations significantly lower than the reported median lethal concentration for the same test FPW, and suggests that physical immobility is a more sensitive ecological indicator of adverse environmental effects associated with FPW exposure. We showed that this effect could be mediated by the dual action of waterborne surfactants, which decrease surface tension, and floating hydrocarbons, which adhere to daphnids that break through the water surface and prevent resubmergence. While mortality does not occur in physically impaired daphnids within the prescribed 48h, animals are unable to return to the water column, and thus cannot feed. Stranding at the water surface will also impair the capacity of the animals to shed the carapace, thus impeding reproduction. These results suggest that assessment of acute toxicity of FPW may need to be determined differently from traditional effluent toxicity assessments. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Environmental transformations and ecological effects of iron-based nanoparticles.

    PubMed

    Lei, Cheng; Sun, Yuqing; Tsang, Daniel C W; Lin, Daohui

    2018-01-01

    The increasing application of iron-based nanoparticles (NPs), especially high concentrations of zero-valent iron nanoparticles (nZVI), has raised concerns regarding their environmental behavior and potential ecological effects. In the environment, iron-based NPs undergo physical, chemical, and/or biological transformations as influenced by environmental factors such as pH, ions, dissolved oxygen, natural organic matter (NOM), and biotas. This review presents recent research advances on environmental transformations of iron-based NPs, and articulates their relationships with the observed toxicities. The type and extent of physical, chemical, and biological transformations, including aggregation, oxidation, and bio-reduction, depend on the properties of NPs and the receiving environment. Toxicities of iron-based NPs to bacteria, algae, fish, and plants are increasingly observed, which are evaluated with a particular focus on the underlying mechanisms. The toxicity of iron-based NPs is a function of their properties, tolerance of test organisms, and environmental conditions. Oxidative stress induced by reactive oxygen species is considered as the primary toxic mechanism of iron-based NPs. Factors influencing the toxicity of iron-based NPs are addressed and environmental transformations play a significant role, for example, surface oxidation or coating by NOM generally lowers the toxicity of nZVI. Research gaps and future directions are suggested with an aim to boost concerted research efforts on environmental transformations and toxicity of iron-based NPs, e.g., toxicity studies of transformed NPs in field, expansion of toxicity endpoints, and roles of laden contaminants and surface coating. This review will enhance our understanding of potential risks of iron-based NPs and proper uses of environmentally benign NPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Immune Alterations in Rats Exposed to Airborne Lunar Dust

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Quiriarte, Heather; Nelman, Mayra; Lam, Chiu-wing; James, John T.; Sams, Clarence

    2014-01-01

    The lunar surface is covered by a layer of fine, reactive dust. Very little is known regarding the toxicity of lunar dust on human physiology. This study assessed the toxicity of airborne lunar dust exposure in rats on pulmonary and systemic immune parameters.

  6. GEOCHEMICAL AND BIOLOGICAL ASPECTS OF SULFIDE MINERAL DISSOLUTION: LESSONS FROM IRON MOUNTAIN, CALIFORNIA. (R826189)

    EPA Science Inventory

    Abstract

    The oxidative dissolution of sulfide minerals leading to acid mine drainage (AMD) involves a complex interplay between microorganisms, solutions, and mineral surfaces. Consequently, models that link molecular level reactions and the microbial communities that ...

  7. HYDRAULIC REDISTRIBUTION IN A DOUGLAS-FIR FOREST: LESSONS FROM SYSTEM MANIPULATIONS

    EPA Science Inventory

    Hydraulic redistribution (HR) has been shown to slow drying of surface soils during drought in Pacific Northwest forests, but the controls governing this process and its importance to shallow-rooted species are poorly understood. Our objective in this study was to manipulate the...

  8. Traverse Planning Experiments for Future Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Hoffman, S. J.; Voels, S. A.; Mueller, R. P.; Lee, P. C.

    2011-01-01

    This paper describes the results of a recent (July-August 2010 and July 2011) planetary surface traverse planning experiment. The purpose of this experiment was to gather data relevant to robotically repositioning surface assets used for planetary surface exploration. This is a scenario currently being considered for future human exploration missions to the Moon and Mars. The specific scenario selected was a robotic traverse on the lunar surface from an outpost at Shackleton Crater to the Malapert Massif. As these are exploration scenarios, the route will not have been previously traversed and the only pre-traverse data sets available will be remote (orbital) observations. Devon Island was selected as an analog location where a traverse route of significant length could be planned and then traveled. During the first half of 2010, a team of engineers and scientists who had never been to Devon Island used remote sensing data comparable to that which is likely to be available for the Malapert region (eg., 2-meter/pixel imagery, 10-meter interval topographic maps and associated digital elevation models, etc.) to plan a 17-kilometer (km) traverse. Surface-level imagery data was then gathered on-site that was provided to the planning team. This team then assessed whether the route was actually traversable or not. Lessons learned during the 2010 experiment were then used in a second experiment in 2011 for which a much longer traverse (85 km) was planned and additional surface-level imagery different from that gathered in 2010 was obtained for a comparative analysis. This paper will describe the route planning techniques used, the data sets available to the route planners and the lessons learned from the two traverses planned and carried out on Devon Island.

  9. Science Operations for the 2008 NASA Lunar Analog Field Test at Black Point Lava Flow, Arizona

    NASA Technical Reports Server (NTRS)

    Garry W. D.; Horz, F.; Lofgren, G. E.; Kring, D. A.; Chapman, M. G.; Eppler, D. B.; Rice, J. W., Jr.; Nelson, J.; Gernhardt, M. L.; Walheim, R. J.

    2009-01-01

    Surface science operations on the Moon will require merging lessons from Apollo with new operation concepts that exploit the Constellation Lunar Architecture. Prototypes of lunar vehicles and robots are already under development and will change the way we conduct science operations compared to Apollo. To prepare for future surface operations on the Moon, NASA, along with several supporting agencies and institutions, conducted a high-fidelity lunar mission simulation with prototypes of the small pressurized rover (SPR) and unpressurized rover (UPR) (Fig. 1) at Black Point lava flow (Fig. 2), 40 km north of Flagstaff, Arizona from Oct. 19-31, 2008. This field test was primarily intended to evaluate and compare the surface mobility afforded by unpressurized and pressurized rovers, the latter critically depending on the innovative suit-port concept for efficient egress and ingress. The UPR vehicle transports two astronauts who remain in their EVA suits at all times, whereas the SPR concept enables astronauts to remain in a pressurized shirt-sleeve environment during long translations and while making contextual observations and enables rapid (less than or equal to 10 minutes) transfer to and from the surface via suit-ports. A team of field geologists provided realistic science scenarios for the simulations and served as crew members, field observers, and operators of a science backroom. Here, we present a description of the science team s operations and lessons learned.

  10. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae

    NASA Astrophysics Data System (ADS)

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-09-01

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag+, C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag+, and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs.

  11. Ranking the in vivo toxicity of nanomaterials in Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Vecchio, G.; Galeone, A.; Malvindi, M. A.; Cingolani, R.; Pompa, P. P.

    2013-09-01

    In this work, we propose a quantitative assessment of nanoparticles toxicity in vivo. We show a quantitative ranking of several types of nanoparticles (AuNPs, AgNPs, cadmium-based QDs, cadmium-free QDs, and iron oxide NPs, with different coating and/or surface chemistries), providing a categorization of their toxicity outcomes. This strategy may offer an innovative high-throughput screening tool of nanomaterials, of potential and broad interest to the nanoscience community.

  12. Design and Analysis of Chronic Aquatic Tests of Toxicity with Daphnia magna.

    DTIC Science & Technology

    1981-12-01

    surface waters. From that need evolved numerous standard toxicity tests. Aquatic toxicologists and biologists developed, refine,, and standard- ized many...experimental categorization summary sheets prepared by Dr. William van der Schalie, which is shown in Table I.I. 7 j-. " .’?, i...partial solution to this dilema can be obtained by studying the effects of the solvent alone. If the solvent by itself produces no toxic responses at

  13. Nontoxic fluorescent carbon nanodot serving as a light conversion material in plant for UV light utilization.

    PubMed

    Sai, Liman; Liu, Siqi; Qian, Xuexue; Yu, Yahui; Xu, Xiaofeng

    2018-05-21

    In this study, water-soluble fluorescent carbon nanodots (CNDs) were directly injected into the leaf of nicotiana tabacum. With the help of UV-to-blue light conversion nanomaterial, the photosynthetic rate of the leaf was improved 18% upon additional 6 W UV irradiation. The photostability and toxicity of different kinds of CNDs were discussed. The results showed that CNDs functionalized with NH 2 -groups on their surfaces could maintain good fluorescence in plant leaf, and CNDs with complex surface groups tended to have high toxicity to the plant. The NH 2 -functionalized CNDs with non-toxicity and good photostability were used as in vivo light conversion material for direct utilization of UV light in the solar energy. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells

    PubMed Central

    Mura, Simona; Hillaireau, Herve; Nicolas, Julien; Le Droumaguet, Benjamin; Gueutin, Claire; Zanna, Sandrine; Tsapis, Nicolas; Fattal, Elias

    2011-01-01

    Background Because of the described hazards related to inhalation of manufactured nanoparticles, we investigated the lung toxicity of biodegradable poly (lactide-co-glycolide) (PLGA) nanoparticles displaying various surface properties on human bronchial Calu-3 cells. Methods Positively and negatively charged as well as neutral nanoparticles were tailored by coating their surface with chitosan, Poloxamer, or poly (vinyl alcohol), respectively. Nanoparticles were characterized in terms of size, zeta potential, and surface chemical composition, confirming modifications provided by hydrophilic polymers. Results Although nanoparticle internalization by lung cells was clearly demonstrated, the cytotoxicity of the nanoparticles was very limited, with an absence of inflammatory response, regardless of the surface properties of the PLGA nanoparticles. Conclusion These in vitro results highlight the safety of biodegradable PLGA nanoparticles in the bronchial epithelium and provide initial data on their potential effects and the risks associated with their use as nanomedicines. PMID:22114491

  15. Evaluation of triclosan in Minnesota lakes and rivers: Part I - ecological risk assessment.

    PubMed

    Lyndall, Jennifer; Barber, Timothy; Mahaney, Wendy; Bock, Michael; Capdevielle, Marie

    2017-08-01

    Triclosan, an antimicrobial compound found in consumer products, may be introduced into the aquatic environment via residual concentrations in municipal wastewater treatment effluent. We conducted an aquatic risk assessment that incorporated the available measured triclosan data from Minnesota lakes and rivers. Although only data reported from Minnesota were considered in the risk assessment, the developed toxicity benchmarks can be applied to other environments. The data were evaluated using a series of environmental fate models to ensure the data were internally consistent and to fill any data gaps. Triclosan was not detected in over 75% of the 567 surface water and sediment samples. Measured environmental data were used to model the predicted environmental exposures to triclosan in surface water, surface sediment, and biota tissues. Toxicity benchmarks based on fatty acid synthesis inhibition and narcosis were determined for aquatic organisms based, in part, on a species sensitivity distribution of chronic toxicity thresholds from the available literature. Predicted and measured environmental concentrations for surface water, sediment, and tissue were below the effects benchmarks, indicating that exposure to triclosan in Minnesota lakes and rivers would not pose an unacceptable risk to aquatic organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Dynamic development of the protein corona on silica nanoparticles: composition and role in toxicity

    NASA Astrophysics Data System (ADS)

    Mortensen, Ninell P.; Hurst, Gregory B.; Wang, Wei; Foster, Carmen M.; Nallathamby, Prakash D.; Retterer, Scott T.

    2013-06-01

    The formation and composition of the protein corona on silica (SiO2) nanoparticles (NP) with different surface chemistries was evaluated over time. Native SiO2, amine (-NH2) and carboxy (-COO-) modified NP were examined following incubation in mammalian growth media containing fetal bovine serum (FBS) for 1, 4, 24 and 48 hours. The protein corona transition from its early dynamic state to the later more stable corona was evaluated using mass spectrometry. The NP diameter was 22.4 +/- 2.2 nm measured by scanning transmission electron microscopy (STEM). Changes in hydrodynamic diameter and agglomeration kinetics were studied using dynamic light scattering (DLS). The initial surface chemistry of the NP played an important role in the development and final composition of the protein corona, impacting agglomeration kinetics and NP toxicity. Particle toxicity, indicated by changes in membrane integrity and mitochondrial activity, was measured by lactate dehydrogenase (LDH) release and tetrazolium reduction (MTT), respectively, in mouse alveolar macrophages (RAW264.7) and mouse lung epithelial cells (C10). SiO2-COO- NP had a slower agglomeration rate, formed smaller aggregates, and exhibited lower cytotoxicity compared to SiO2 and SiO2-NH2. Composition of the protein corona for each of the three NP was unique, indicating a strong dependence of corona development on NP surface chemistry. This work underscores the need to understand all aspects of NP toxicity, particularly the influence of agglomeration on effective dose and particle size. Furthermore, the interplay between materials and local biological environment is emphasized and highlights the need to conduct toxicity profiling under physiologically relevant conditions that provide an appropriate estimation of material modifications that occur during exposure in natural environments.The formation and composition of the protein corona on silica (SiO2) nanoparticles (NP) with different surface chemistries was evaluated over time. Native SiO2, amine (-NH2) and carboxy (-COO-) modified NP were examined following incubation in mammalian growth media containing fetal bovine serum (FBS) for 1, 4, 24 and 48 hours. The protein corona transition from its early dynamic state to the later more stable corona was evaluated using mass spectrometry. The NP diameter was 22.4 +/- 2.2 nm measured by scanning transmission electron microscopy (STEM). Changes in hydrodynamic diameter and agglomeration kinetics were studied using dynamic light scattering (DLS). The initial surface chemistry of the NP played an important role in the development and final composition of the protein corona, impacting agglomeration kinetics and NP toxicity. Particle toxicity, indicated by changes in membrane integrity and mitochondrial activity, was measured by lactate dehydrogenase (LDH) release and tetrazolium reduction (MTT), respectively, in mouse alveolar macrophages (RAW264.7) and mouse lung epithelial cells (C10). SiO2-COO- NP had a slower agglomeration rate, formed smaller aggregates, and exhibited lower cytotoxicity compared to SiO2 and SiO2-NH2. Composition of the protein corona for each of the three NP was unique, indicating a strong dependence of corona development on NP surface chemistry. This work underscores the need to understand all aspects of NP toxicity, particularly the influence of agglomeration on effective dose and particle size. Furthermore, the interplay between materials and local biological environment is emphasized and highlights the need to conduct toxicity profiling under physiologically relevant conditions that provide an appropriate estimation of material modifications that occur during exposure in natural environments. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33280b

  17. Surface chemistry of gold nanoparticles determines the biocorona composition impacting cellular uptake, toxicity and gene expression profiles in human endothelial cells.

    PubMed

    Chandran, Parwathy; Riviere, Jim E; Monteiro-Riviere, Nancy A

    2017-05-01

    This study investigated the role of nanoparticle size and surface chemistry on biocorona composition and its effect on uptake, toxicity and cellular responses in human umbilical vein endothelial cells (HUVEC), employing 40 and 80 nm gold nanoparticles (AuNP) with branched polyethyleneimine (BPEI), lipoic acid (LA) and polyethylene glycol (PEG) coatings. Proteomic analysis identified 59 hard corona proteins among the various AuNP, revealing largely surface chemistry-dependent signature adsorbomes exhibiting human serum albumin (HSA) abundance. Size distribution analysis revealed the relative instability and aggregation inducing potential of bare and corona-bound BPEI-AuNP, over LA- and PEG-AuNP. Circular dichroism analysis showed surface chemistry-dependent conformational changes of proteins binding to AuNP. Time-dependent uptake of bare, plasma corona (PC) and HSA corona-bound AuNP (HSA-AuNP) showed significant reduction in uptake with PC formation. Cell viability studies demonstrated dose-dependent toxicity of BPEI-AuNP. Transcriptional profiling studies revealed 126 genes, from 13 biological pathways, to be differentially regulated by 40 nm bare and PC-bound BPEI-AuNP (PC-BPEI-AuNP). Furthermore, PC formation relieved the toxicity of cationic BPEI-AuNP by modulating expression of genes involved in DNA damage and repair, heat shock response, mitochondrial energy metabolism, oxidative stress and antioxidant response, and ER stress and unfolded protein response cascades, which were aberrantly expressed in bare BPEI-AuNP-treated cells. NP surface chemistry is shown to play the dominant role over size in determining the biocorona composition, which in turn modulates cell uptake, and biological responses, consequently defining the potential safety and efficacy of nanoformulations.

  18. Gulf War Syndrome: a review of current knowledge and understanding.

    PubMed

    Minshall, D

    2014-01-01

    The 1991 Persian Gulf War was a resounding military success for coalition forces, who liberated Kuwait following the Iraqi invasion. The medical legacy we have from the conflict is the poorly understood, yet remarkable, phenomenon of Gulf War Syndrome, which surfaced soon after. Epidemiological research has proven beyond doubt that Gulf War veterans report a wide variety of symptoms, in excess of appropriately matched control subjects, and experience worse general health. Numerous toxic environmental hazards have been suggested as causes of Gulf War Syndrome, yet exhaustive scientific study has failed to provide conclusive proof of any link. No novel or recognised disease has been found to account for the symptomatic burden of veterans, and the optimal treatment remains uncertain. This understanding can be added to from an anthropological perspective, where the narratives of those afflicted provide further insight. The nature of military life was changing at the time of the Gulf War, challenging the identity and beliefs of some veterans and causing socio-cultural distress. The symptomatic presentation of Gulf War Syndrome can be considered an articulation of this disharmony. Gulf War Syndrome can also be considered within the group of post-combat disorders such as shellshock, the like of which have occurred after major wars in the last century. With the current withdrawal from Afghanistan, the Defence Medical Services (DMS) should heed the lessons of history.

  19. Influence of alumina coating on characteristics and effects of SiO2 nanoparticles in algal growth inhibition assays at various pH and organic matter contents.

    PubMed

    Van Hoecke, Karen; De Schamphelaere, Karel A C; Ramirez-Garcia, Sonia; Van der Meeren, Paul; Smagghe, Guy; Janssen, Colin R

    2011-08-01

    Silica nanoparticles (NPs) belong to the industrially most important NP types. In a previous study it was shown that amorphous SiO(2) NPs of 12.5 and 27.0 nm are stable in algal growth inhibition assays and that their ecotoxic effects are related to NP surface area. Here, it was hypothesized and demonstrated that an alumina coating completely alters the particle-particle, particle-test medium and particle-algae interactions of SiO(2) NPs. Therefore, stability and surface characteristics, dissolution, nutrient adsorption and effects on algal growth rate of both alumina coated SiO(2) NPs and bare SiO(2) NPs in OECD algal test medium as a function of pH (6.0-8.6) and natural organic matter (NOM) contents (0-12 mg C/l) were investigated. Alumina coated SiO(2) NPs aggregated in all media and adsorbed phosphate depending on pH and NOM concentration. On the other hand, no aggregation or nutrient adsorption was observed for the bare SiO(2) NPs. Due to their positive surface charge, alumina coated SiO(2) NPs agglomerated with Pseudokirchneriella subcapitata. Consequently, algal cell density measurements based on cell counts were unreliable and hence fluorescent detection of extracted chlorophyll was the preferred method. Alumina coated SiO(2) NPs showed lower toxicity than bare SiO(2) NPs at concentrations ≥46 mg/l, except at pH 6.0. At low concentrations, no clear pH effect was observed for alumina coated SiO(2) NPs, while at higher concentrations phosphate deficiency could have contributed to the higher toxicity of those particles at pH 6.0-6.8 compared to higher pH values. Bare SiO(2) NPs were not toxic at pH 6.0 up to 220 mg/l. Addition of NOM decreased toxicity of both particles. For SiO(2) NPs the 48 h 20% effect concentration of 21.8 mg/l increased 2.6-21 fold and a linear relationship was observed between NOM concentration and effective concentrations. No effect was observed for alumina coated SiO(2) NPs in presence of NOM up to 1000 mg/l. All experiments point out that the alumina coating completely altered NP interactions. Due to the difference in surface composition the SiO(2) NPs, which had the smallest surface area, were more toxic to the alga than the alumina coated SiO(2) NPs. Hence, surface modification can dominate the effect of surface area on toxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Addressing conflicts of interest in nanotechnology oversight: lessons learned from drug and pesticide safety testing

    NASA Astrophysics Data System (ADS)

    Elliott, Kevin C.; Volz, David C.

    2012-01-01

    Financial conflicts of interest raise significant challenges for those working to develop an effective, transparent, and trustworthy oversight system for assessing and managing the potential human health and ecological hazards of nanotechnology. A recent paper in this journal by Ramachandran et al., J Nanopart Res, 13:1345-1371 (2011) proposed a two-pronged approach for addressing conflicts of interest: (1) developing standardized protocols and procedures to guide safety testing; and (2) vetting safety data under a coordinating agency. Based on past experiences with standardized test guidelines developed by the international Organization for Economic Cooperation and Development (OECD) and implemented by national regulatory agencies such as the U.S. Environmental Protection Agency (EPA) and Food and Drug Administration (FDA), we argue that this approach still runs the risk of allowing conflicts of interest to influence toxicity tests, and it has the potential to commit regulatory agencies to outdated procedures. We suggest an alternative approach that further distances the design and interpretation of safety studies from those funding the research. In case the two-pronged approach is regarded as a more politically feasible solution, we also suggest three lessons for implementing this strategy in a more dynamic and effective manner.

  1. Effects of water chemistry and surface contact on the toxicity of silver nanoparticles to Bacillus subtilis.

    PubMed

    Yi, Jun; Cheng, Jinping

    2017-07-01

    The growing use of silver nanoparticles (AgNPs) has created concerns about its potential impacts on natural microbial communities. In this study, the physicochemical properties of AgNPs and its toxicity on natural bacteria Bacillus subtilis (B. subtilis) were investigated in aqueous conditions. The characterization data showed that AgNPs highly aggregated in aqueous conditions, and the hydrodynamic diameter of AgNPs in aqueous conditions was larger than its primary size. The studied AgNPs was less toxic to B. subtilis in estuarine water as compared to that in Milli-Q water and artificial seawater, which might be due to the observed enhanced aggregation of AgNPs in estuarine water. The toxicity of AgNPs to B. subtilis was greatly reduced when their surface contact was blocked by a dialysis membrane. Scanning electron microscope images showed that exposure contact to AgNPs resulted in damage of the microbial cell wall and enhanced formation of fibrillar structures. These results suggest that particle-cell contact is largely responsible for the observed toxicity of AgNPs in B. subtilis. This study can help to understand the potential impacts of AgNPs to natural microbes, especially in the complex aquatic environments.

  2. Phytoremediation of soils contaminated with toxic elements and radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornish, J.E.; Goldberg, W.C.; Levine, R.S.

    1995-12-31

    At many US Department of Energy (US DOE) facilities and other sites, surface soils over relatively large areas are contaminated with heavy metals, radionuclides, and other toxic elements, often at only a relatively small factor above regulatory action levels. Cleanup of such sites presents major challenges, because currently available soil remediation technologies can be very expensive. In response, the US DOE`s Office of Technology Development, through the Western Environmental Technology Office, is sponsoring research in the area of phytoremediation. Phytoremediation is an emerging technology that uses higher plants to transfer toxic elements and radionuclides from surface soils into aboveground biomass.more » Some plants, termed hyperaccumulators, take up toxic elements in substantial amounts, resulting in concentrations in aboveground biomass over 100 times those observed with conventional plants. After growth, the plant biomass is harvested, and the toxic elements are concentrated and reclaimed or disposed of. As growing, harvesting, and processing plant biomass is relatively inexpensive, phytoremediation can be a low-cost technology for remediation of extensive areas having lightly to moderately contaminated soils. This paper reviews the potential of hyper- and moderate accumulator plants in soil remediation, provides some comparative cost estimates, and outlines ongoing work initiated by the US DOE.« less

  3. Toxic behavior of silver and zinc oxide nanoparticles on environmental microorganisms.

    PubMed

    Dhas, Sindhu Priya; Shiny, Punalur John; Khan, Sudheer; Mukherjee, Amitava; Chandrasekaran, Natrajan

    2014-09-01

    Silver and zinc oxide nanoparticles (Ag and ZnO NPs) are widely used as antimicrobial agents. However, their potential toxicological impact on environmental microorganisms is largely unexplored. The aim of this work was to investigate the sensitivity and adaptability of five bacterial species isolated from sewage towards Ag and ZnO NPs. The bacterial species were exposed to increasing concentration of nanoparticles and the growth inhibitory effect, exopolysaccharides (EPSs) and extracellular proteins (ECPs) productions were determined. The involvement of surface charge in nanoparticles toxicity was also determined. The bacterial species were constantly exposed to nanoparticles to determine the adaptation behavior toward nanoparticles. The nanoparticles exhibited remarkable growth inhibitory effect on tested bacterial species. The toxicity of nanoparticles was found to be strongly dependent on surface charge effects. Though, these organisms are highly sensitive to Ag and ZnO NPs, the continuous exposure to these nanoparticles leads to moderate adaptation of bacterial species and the adapted bacterial species convert the highly toxic nano form to less toxic microform. Finally we predict that the continuing applications of nanoparticles in consumer products may lead to the development of nanoparticles resistant bacterial strains in future. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. ESTIMATION OF ACUTE TOXICITY BY FITTING A DOSE-TIME RESPONSE SURFACE

    EPA Science Inventory

    In acute toxicity testing, organisms are continuously exposed to progressively increasing concentrations of a chemical and deaths of test organisms are recorded at several selected times. he results of the test are traditionally summarized by a dose-response curve, and the time c...

  5. Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces

    NASA Astrophysics Data System (ADS)

    Wilmsmeyer, Amanda R.; Gordon, Wesley O.; Davis, Erin Durke; Mantooth, Brent A.; Lalain, Teri A.; Morris, John R.

    2014-01-01

    A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.

  6. Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces.

    PubMed

    Wilmsmeyer, Amanda R; Gordon, Wesley O; Davis, Erin Durke; Mantooth, Brent A; Lalain, Teri A; Morris, John R

    2014-01-01

    A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.

  7. Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilmsmeyer, Amanda R.; Morris, John R.; Gordon, Wesley O.

    2014-01-15

    A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry tomore » study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.« less

  8. Is There Gravity in Space?

    ERIC Educational Resources Information Center

    Bar, Varda; And Others

    1997-01-01

    Investigates students' ideas about gravity beyond the earth's surface. Presents a lesson plan designed to help students understand that gravity can act beyond Earth's atmosphere. Also helps students gain a more adequate intuitive understanding of how natural and artificial satellites stay in orbit. Reports that this strategy changed some students'…

  9. Got Sheetrock?

    ERIC Educational Resources Information Center

    Sheehan, Diane B.

    2005-01-01

    The author of this article, an art teacher, describes a high school studio lesson about sculptural reliefs using Sheetrock. She describes how students can work with and prepare Sheetrock and how they can create a design and transfer it onto the dry Sheetrock plaster. Making repairs to the surface, coloring and finishing, and the tools required are…

  10. Restoring tropical forests on bauxite mined lands: lessons from the Brazilian Amazon

    Treesearch

    John A. Parrotta; Oliver H. Knowles

    2001-01-01

    Restoring self-sustaining tropical forest ecosystems on surface mined sites is a formidable challenge that requires the integration of proven reclamation techniques and reforestation strategies appropriate to specific site conditions, including landscape biodiversity patterns. Restorationists working in most tropical settings are usually hampered by lack of basic...

  11. Surface Water Treatment Workshop Manual.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  12. IMPEDIMENTS AND SOLUTIONS TO SUSTAINABLE, WATERSHED-SCALE URBAN STORMWATER MANAGEMENT: LESSONS FROM AUSTRALIA AND THE UNITED STATES

    EPA Science Inventory

    In urban and exurban areas, stormwater runoff is a primary stressor on surface waters (streams, wetlands, lakes, estuaries, and coastal waters). Conventional urban stormwater drainage systems often route runoff directly to streams and rivers, thus exacerbating pollutant inputs a...

  13. Late Departures from Paper-Based to Supported Networked Learning in South Africa: Lessons Learned

    ERIC Educational Resources Information Center

    Kok, Illasha; Beter, Petra; Esterhuizen, Hennie

    2018-01-01

    Fragmented connectivity in South Africa is the dominant barrier for digitising initiatives. New insights surfaced when a university-based nursing programme introduced tablets within a supportive network learning environment. A qualitative, explorative design investigated adult nurses' experiences of the realities when moving from paper-based…

  14. What to Buy? The Role of Director of Defense Research and Engineering (DDR&E) Lessons from the 1970s

    DTIC Science & Technology

    2011-01-01

    experience . ix Contents 1. Background , Methodology, and Approach .................................................................1 2. Origins and...65 5 . The Case of the 2000–3000 Ton Surface Effect Ship (SES) Prototype Program...97 1. Strategic Background : The Antisubmarine Warfare Experience ................97 2. The Problem

  15. Lesson of the month 2: toxic shock syndrome.

    PubMed

    Shalaby, Tamer; Anandappa, Samantha; Pocock, Nicholas John; Keough, Alexander; Turner, Angus

    2014-06-01

    Toxic shock syndrome (TSS) represents a fascinating example of immune activation caused by infection resulting in a dramatic and challenging clinical syndrome. TSS is commonly associated with tampon use and still causes significant morbidity and mortality in young healthy women. A misconception is that TSS presents with a skin rash and only occurs in women and children; however, it can occur in males and can present without skin changes. TSS presents initially as a febrile illness and within a few hours can progress to severe hypotension and multiple organ failure (MOF). Staphylococcus aureus and group A beta haemolytic streptococcus (GABHS) can secrete toxins from a small or hidden focus of infection and hence blood culture and sensitivity (C+S) tests can be negative, thereby making diagnosing this condition challenging. Clindamycin is superior to penicillin in the treatment of this condition and significantly decreases the mortality rate in TSS. However, there is also an important role for intravenous immunoglobulins (IVIG). Early intensive care unit (ICU) as well as surgical team involvement (in selected cases) is required to avoid mortality which may approach 70%. © 2014 Royal College of Physicians.

  16. The Surface Reactivities of Single-Walled Carbon Nanotubes and Their Related Toxicities

    NASA Astrophysics Data System (ADS)

    Ren, Lei

    After 20 years of extensive exploration, people are more and more convinced on the great potentials of single-walled carbon nanotubes (SWCNTs) in the applications of many different areas. On the other hand, the properties and toxicities have also been closely watched for the safe utilization. In this dissertation I focus on the surface properties of SWCNTs and their related toxicities. In chapter 2, we revealed the generation of peroxyl radical by the unmodified SWCNT and the poly(ethylene glycol) functionalized SWCNT in aqueous solution with capillary electrophoresis (CE) and a reactive oxygen species (ROS) indicator, 2,7-dichlorodihydrofluorescein (H2DCF). According to the results, we identified peroxyl radical, ROO• as the major ROS in our system. Peroxyl radical could be produced from the adsorption of oxygen on the SWCNT surface. In chapter 3, we studied oxidation of several biologically relevant reducing agents in the presence of SWCNTs in aqueous solutions. H2DCF and several small antioxidants (vitamin C, Trolox, and cysteine), and a high-molecular-weight ROS scavenger (bovine serum albumin (BSA)) were selected as reductants. We revealed that the unmodified or carboxylated SWCNT played duplex roles by acting as both oxidants and catalysts in the reaction. In chapter 4, we confirmed that SWCNTs bind to horseradish peroxidase (HRP) at a site proximate to the enzyme's activity center and participating in the ET process, enhancing the activity of (HRP) in the solution-based redox reaction. The capability of SWCNT in receiving electrons and the direct attachment of HRP to the surface of SWCNT strongly affected the enzyme activity due to the direct involvement of SWCNT in ET. In chapter 5, the toxicity of SWCNTs coated with different concentrations of BSA to a human fibroblast cell line was explored. The result indicates that the toxicity of SWCNTs decrease with the higher coating degree as assumed. Then we choose mitochondrion to study the interactions between the proteins and SWCNTs. It turns out that SWCNTs coated with less BSA would have more proteins adsorbed on them, which obviously implies that interfering with the interactions between the nanomaterials and their ambient proteins by coatings would reduce their toxicity.

  17. Comparative toxicological assessment of PAMAM and thiophosphoryl dendrimers using embryonic zebrafish

    PubMed Central

    Pryor, Joseph B; Harper, Bryan J; Harper, Stacey L

    2014-01-01

    Dendrimers are well-defined, polymeric nanomaterials currently being investigated for biomedical applications such as medical imaging, gene therapy, and tissue targeted therapy. Initially, higher generation (size) dendrimers were of interest because of their drug carrying capacity. However, increased generation was associated with increased toxicity. The majority of studies exploring dendrimer toxicity have focused on a small range of materials using cell culture methods, with few studies investigating the toxicity across a wide range of materials in vivo. The objective of the present study was to investigate the role of surface charge and generation in dendrimer toxicity using embryonic zebrafish (Danio rerio) as a model vertebrate. Due to the generational and charge effects observed at the cellular level, higher generation cationic dendrimers were hypothesized to be more toxic than lower generation anionic or neutral dendrimers with the same core composition. Polyamidoamine (PAMAM) dendrimers elicited significant morbidity and mortality as generation was decreased. No significant adverse effects were observed from the suite of thiophosphoryl dendrimers studied. Exposure to ≥50 ppm cationic PAMAM dendrimers G3-amine, G4-amine, G5-amine, and G6-amine caused 100% mortality by 24 hours post-fertilization. Cationic PAMAM G6-amine at 250 ppm was found to be statistically more toxic than both neutral PAMAM G6-amidoethanol and anionic PAMAM G6-succinamic acid at the same concentration. The toxicity observed within the suite of varying dendrimers provides evidence that surface charge may be the best indicator of dendrimer toxicity. Dendrimer class and generation are other potential contributors to the toxicity of dendrimers. Further studies are required to better understand the relative role each plays in driving the toxicity of dendrimers. To the best of our knowledge, this is the first in vivo study to address such a broad range of dendrimers. PMID:24790436

  18. The influence of dissolved and surface-bound humic acid on the toxicity of TiO₂ nanoparticles to Chlorella sp.

    PubMed

    Lin, Daohui; Ji, Jing; Long, Zhifeng; Yang, Kun; Wu, Fengchang

    2012-09-15

    NOM is likely to coat TiO₂ nanoparticles (nano-TiO₂) discharged into the aquatic environment and influence the nanotoxicity to aquatic organisms, which however has not been well investigated. This study explored the influence of nanoparticle surface-bound humic acid (HA, as a model NOM) as well as dissolved HA on the toxicity of nano-TiO₂ to Chlorella sp., with a specific focus on adhesion of the nanoparticles to the algae. Results showed that nano-TiO₂ and the dissolved HA could inhibit the algal growth with an IC₅₀ of 4.9 and 8.4 mg L⁻¹, respectively, while both dissolved and nanoparticle surface-bound HA could significantly alleviate the algal toxicity of nano-TiO₂. IC₅₀ of nano-TiO₂ increased to 18 mg L⁻¹ in the presence of 5 mg L⁻¹ of the dissolved HA and to 48 mg L⁻¹ as the result of surface-saturation by HA. Co-precipitation experiment and transmission electron microscopy observation revealed that both dissolved and nanoparticle surface-bound HA prevented the adhesion of nano-TiO₂ to the algal cells due to the increased electrosteric repulsion. The generation of intracellular reactive oxygen species (ROS) was significantly limited by the dissolved and nanoparticle surface-bound HA. The prevention of adhesion and inhibition of ROS generation could account for the HA-mitigated nanotoxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. A new simple method with high precision for determining the toxicity of antifouling paints on brine shrimp larvae (Artemia): first results.

    PubMed

    Castritsi-Catharios, J; Bourdaniotis, N; Persoone, G

    2007-04-01

    The use of antifouling paints is the only truly effective method for the protection of underwater structures from the development of fouling organisms. In the present study, the surface to volume concept constitutes the basis for the development of a new and improved method for determining the toxicity of antifouling paints on marine organisms. Particular emphasis is placed on the attainment of a standardized uniformity of coated surfaces. Failure to control the thickness of the coat of paint in previous studies of this type, has led to inaccurate evaluation of the relative toxicity of samples. Herein, an attempt is made to solve this problem using a simple technique which gives completely uniform and smooth surfaces. The effectiveness of this technique is assessed through two series of experiments using two different types of test containers: 50 ml modified syringes and 7 ml multiwells. The results of the toxicity experiments follow a normal distribution around the average value which allows to consider these values as reliable for comparison of the level of toxic effect detected with the two types of test containers. The mean lethal concentration L(S/V)(50) in the test series conducted in the multiwells (20.38 mm(2)ml(-1)) does not differ significantly from that obtained in the test series using modified syringes (20.065 mm(2)ml(-1)). It can thus be concluded from this preliminary study that the new method and the two different ways of exposing the test organisms to the antifouling paints and their leachates gave reliable and replicable results.

  20. Respiratory Toxicity of Lunar Highland Dust

    NASA Technical Reports Server (NTRS)

    James, John T.; Lam, Chiu-wing; Wallace, William T.

    2009-01-01

    Lunar dust exposures occurred during the Apollo missions while the crew was on the lunar surface and especially when microgravity conditions were attained during rendezvous in lunar orbit. Crews reported that the dust was irritating to the eyes and in some cases respiratory symptoms were elicited. NASA s vision for lunar exploration includes stays of 6 months on the lunar surface hence the health effects of periodic exposure to lunar dust need to be assessed. NASA has performed this assessment with a series of in vitro and in vivo tests on authentic lunar dust. Our approach is to "calibrate" the intrinsic toxicity of lunar dust by comparison to a nontoxic dust (TiO2) and a highly toxic dust (quartz) using intratrachael instillation of the dusts in mice. A battery of indices of toxicity is assessed at various time points after the instillations. Cultures of selected cells are exposed to test dusts to assess the adverse effects on the cells. Finally, chemical systems are used to assess the nature of the reactivity of various dusts and to determine the persistence of reactivity under various environmental conditions that are relevant to a space habitat. Similar systems are used to assess the dissolution of the dust. From these studies we will be able to set a defensible inhalation exposure standard for aged dust and predict whether we need a separate standard for reactive dust. Presently-available data suggest that aged lunar highland dust is slightly toxic, that it can adversely affect cultured cells, and that the surface reactivity induced by grinding the dust persists for a few hours after activation.

  1. The use of chemical dispersants to combat oil spills at sea: A review of practice and research needs in Europe.

    PubMed

    Chapman, Helen; Purnell, Karen; Law, Robin J; Kirby, Mark F

    2007-07-01

    In order to better understand the practice of dispersant use, a review has been undertaken of marine oil spills over a 10 year period (1995-2005), looking in particular at variations between different regions and oil-types. This viewpoint presents and analyses the review data and examines a range of dispersant use policies. The paper also discusses the need for a reasoned approach to dispersant use and introduces past cases and studies to highlight lessons learned over the past ten years, focussing on dispersant effectiveness and monitoring; toxicity and environmental effects; the use of dispersants in low salinity waters; response planning and future research needs.

  2. The role of surface chemistry in the cytotoxicity profile of graphene.

    PubMed

    Majeed, Waqar; Bourdo, Shawn; Petibone, Dayton M; Saini, Viney; Vang, Kieng Bao; Nima, Zeid A; Alghazali, Karrer M; Darrigues, Emilie; Ghosh, Anindya; Watanabe, Fumiya; Casciano, Daniel; Ali, Syed F; Biris, Alexandru S

    2017-04-01

    Graphene and its derivative, because of their unique physical, electrical and chemical properties, are an important class of nanomaterials being proposed as foundational materials in nanomedicine as well as for a variety of industrial applications. A major limitation for graphene, when used in biomedical applications, is its poor solubility due to its rather hydrophobic nature. Therefore, chemical functionalities are commonly introduced to alter both its surface chemistry and biochemical activity. Here, we show that surface chemistry plays a major role in the toxicological profile of the graphene structures. To demonstrate this, we chemically increased the oxidation level of the pristine graphene and compared the corresponding toxicological effects along with those for the graphene oxide. X-ray photoelectron spectroscopy revealed that pristine graphene had the lowest amount of surface oxygen, while graphene oxide had the highest at 2.5% and 31%, respectively. Low and high oxygen functionalized graphene samples were found to have 6.6% and 24% surface oxygen, respectively. Our results showed a dose-dependent trend in the cytotoxicity profile, where pristine graphene was the most cytotoxic, with decreasing toxicity observed with increasing oxygen content. Increased surface oxygen also played a role in nanomaterial dispersion in water or cell culture medium over longer periods. It is likely that higher dispersity might result in graphene entering into cells as individual flakes ~1 nm thick rather than as more cytotoxic aggregates. In conclusion, changes in graphene's surface chemistry resulted in altered solubility and toxicity, suggesting that a generalized toxicity profile would be rather misleading. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Contact toxicity of insecticides for attract-and-kill applications against adult Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae).

    PubMed

    Campos, Manuel; Phillips, Thomas W

    2010-07-01

    The Indian meal moth (IMM), Plodia interpunctella (Hübner), is an important pest of stored food products. Contact toxicities of 13 insecticides applied to different surfaces were evaluated at registered label and a higher dose for killing adult males. The ultimate objective was to develop attract-and-kill technologies for P. interpunctella. Two-day-old adult males were exposed to treated surfaces for 2.0 s and then paired with virgin females for mating and oviposition over a 24 h period. Permethrins and pyrethrins (organic pyrethrin and pyrethrin plus a synergist) caused over 70% mortality to males. Oviposition was impacted by these insecticides, while egg hatch was not. A second experiment tested the 8 week residual toxicity of cyfluthrin, permethrin and pyrethrin at label and at a higher dose of 20 g AI L(-1) on five surfaces: plastic-coated paper, metal, painted plastic, unpainted plastic and wood. Permethrin at 20 g AI L(-1) suppressed males at over 80% for up to 8 weeks and retained activity on surfaces made with plastic-coated paper, metal or plastic. Oviposition was variable among treatments. Egg hatch was generally unaffected by treatment. Effective attract-and-kill surfaces can be developed for killing IMM males and thereby potentially lead to reduced reproduction and, ultimately, population suppression. Copyright (c) 2010 Society of Chemical Industry.

  4. Lessons Learned in Science Operations for Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Graff, T. G.; Reagan, M.; Coan, D.; Evans, C. A.; Bleacher, J. E.; Glotch, T. D.

    2017-01-01

    The six Apollo lunar surface missions represent the only occasions where we have conducted scientific operations on another planetary surface. While these six missions were successful in bringing back valuable geologic samples, technology advances in the subsequent forty years have enabled much higher resolution scientific activity in situ. Regardless of where astronauts next visit (whether it be back to the Moon or to Mars or a Near Earth Object), the science operations procedures completed during this mission will need to be refined and updated to reflect these advances. We have undertaken a series of operational tests in relevant field environments to understand how best to develop the new generation of science operations procedures for planetary surface exploration.

  5. Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study

    NASA Astrophysics Data System (ADS)

    Zhen, Xin; Chen, Jiawei; Zhong, Zichun; Hrycushko, Brian; Zhou, Linghong; Jiang, Steve; Albuquerque, Kevin; Gu, Xuejun

    2017-11-01

    Better understanding of the dose-toxicity relationship is critical for safe dose escalation to improve local control in late-stage cervical cancer radiotherapy. In this study, we introduced a convolutional neural network (CNN) model to analyze rectum dose distribution and predict rectum toxicity. Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively collected, including twelve toxicity patients and thirty non-toxicity patients. We adopted a transfer learning strategy to overcome the limited patient data issue. A 16-layers CNN developed by the visual geometry group (VGG-16) of the University of Oxford was pre-trained on a large-scale natural image database, ImageNet, and fine-tuned with patient rectum surface dose maps (RSDMs), which were accumulated EBRT  +  BT doses on the unfolded rectum surface. We used the adaptive synthetic sampling approach and the data augmentation method to address the two challenges, data imbalance and data scarcity. The gradient-weighted class activation maps (Grad-CAM) were also generated to highlight the discriminative regions on the RSDM along with the prediction model. We compare different CNN coefficients fine-tuning strategies, and compare the predictive performance using the traditional dose volume parameters, e.g. D 0.1/1/2cc, and the texture features extracted from the RSDM. Satisfactory prediction performance was achieved with the proposed scheme, and we found that the mean Grad-CAM over the toxicity patient group has geometric consistence of distribution with the statistical analysis result, which indicates possible rectum toxicity location. The evaluation results have demonstrated the feasibility of building a CNN-based rectum dose-toxicity prediction model with transfer learning for cervical cancer radiotherapy.

  6. Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study.

    PubMed

    Zhen, Xin; Chen, Jiawei; Zhong, Zichun; Hrycushko, Brian; Zhou, Linghong; Jiang, Steve; Albuquerque, Kevin; Gu, Xuejun

    2017-10-12

    Better understanding of the dose-toxicity relationship is critical for safe dose escalation to improve local control in late-stage cervical cancer radiotherapy. In this study, we introduced a convolutional neural network (CNN) model to analyze rectum dose distribution and predict rectum toxicity. Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively collected, including twelve toxicity patients and thirty non-toxicity patients. We adopted a transfer learning strategy to overcome the limited patient data issue. A 16-layers CNN developed by the visual geometry group (VGG-16) of the University of Oxford was pre-trained on a large-scale natural image database, ImageNet, and fine-tuned with patient rectum surface dose maps (RSDMs), which were accumulated EBRT  +  BT doses on the unfolded rectum surface. We used the adaptive synthetic sampling approach and the data augmentation method to address the two challenges, data imbalance and data scarcity. The gradient-weighted class activation maps (Grad-CAM) were also generated to highlight the discriminative regions on the RSDM along with the prediction model. We compare different CNN coefficients fine-tuning strategies, and compare the predictive performance using the traditional dose volume parameters, e.g. D 0.1/1/2cc , and the texture features extracted from the RSDM. Satisfactory prediction performance was achieved with the proposed scheme, and we found that the mean Grad-CAM over the toxicity patient group has geometric consistence of distribution with the statistical analysis result, which indicates possible rectum toxicity location. The evaluation results have demonstrated the feasibility of building a CNN-based rectum dose-toxicity prediction model with transfer learning for cervical cancer radiotherapy.

  7. In vitro and in vivo impact of silica nanoparticle design on biocompatibility

    NASA Astrophysics Data System (ADS)

    Yu, Tian

    Silica nanoparticles (SiO2) have utility in a wide range of applications, such as biologic delivery platforms, imaging and diagnostic agents, and targeted therapeutic carriers. Recent improvements in regulating the geometry, porosity, and surface characteristics of SiO2 have further facilitated their biomedical applications. Concerns however remain about the toxic effects of SiO2 upon exposure to biological systems. The impacts of geometry, porosity, and surface characteristics of SiO 2 on cellular toxicity and hemolytic activity were explored. It was shown that surface characteristics and porosity govern cellular toxicity. The cellular association of SiO2 increased in the following order: mesoporous SiO2 (aspect ratio 1, 2, 4, 8) < amine-modified mesoporous SiO2 (aspect ratio 1, 2, 4, 8) < amine-modified nonporous Stober SiO2 < nonporous Stober SiO2. Geometry did not seem to influence the extent of SiO2 cellular association. Hemolysis assay showed that the hemolytic activity was porosity- and geometry-dependent for pristine SiO2 and surface charge-dependent for amine-modified SiO2. The acute toxicity, biodistribution, and pharmacokinetics of SiO 2 of systematically varied geometry, porosity, and surface characteristics were evaluated in immune-competent mice when administered intravenously. Results suggest that in vivo toxicity, biodistribution and pharmacokinetics of SiO2 were mainly influenced by nanoparticle porosity and surface characteristics. The maximum tolerated dose (MTD) increased in the following order: Mesoporous SiO2 (aspect ratio 1, 2, 8) at 30 -- 65 mg/kg < amine-modified mesoporous SiO2 (aspect ratio 1, 2, 8) at 100 -- 150 mg/kg < unmodified or amine-modified nonporous SiO2 at 450 mg/kg. The adverse reactions above MTDs were primarily caused by the mechanical obstruction of SiO2 in the vasculature that led to congestion in multiple vital organs and subsequent organ failure. The nanoparticles were taken up extensively by the liver and spleen. Mesoporous SiO2 exhibited higher accumulation in the lung than nonporous SiO 2 of similar size. This accumulation was reduced by primary amine modification. Increasing the aspect ratio of amine-modified mesoporous SiO2 from 1 to 8 resulted in increased accumulation in the lung. These studies provide critical guidelines in rational design of SiO 2 for nanomedicine applications.

  8. Non-Controlled Biogenic Emission of CO, H2S, NH3 and Hg0 from Lazareto's Landfill, Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Nolasco, D.; Lima, R.; Salazar, J.; Hernández, P. A.; Pérez, N. M.

    2002-12-01

    Landfills are important sources of contaminant gases to the surrounding environment and a significant amount of them could be released to the atmosphere through the surface environment in a diffuse form, also known as non-controlled emission of landfill gases. CH4 and CO2 are major components in landfill gases and other gas species are only present in minor amounts. Trace compounds include both inorganic and a large number of volatile organic components. The goal of this study is to evaluate the non-controlled biogenic emission of inorganic toxic gases from Lazareto's landfill. Which is located in the city of Santa Cruz de Tenerife, with a population of about 150,000, and is used as a Palm tree park. Lazareto's landfill has an extension of 0.22 Km2 and it is not operative since 1980. A non-controlled biogenic gas emission survey of 281 sampling sites was carried out from February tod March, 2002. Surface CO2 efflux measurements were performed by means of a portable NDIR sensor according with the accumulation chamber method. Surface CO2 efflux ranged from negligible values up to 30,600 gm-2d-1. At each sampling site, surface landfill gas samples were collected at 40 cm depth using a metallic soil probe. These gas samples were analyzed within 24 hours for major and inorganic toxic gas species by means of microGC and specific electrochemical sensors. The highest concentrations of CO, H2S, NH3 and Hg0 were 3, 20, 2,227, 0.010 ppmV, respectively. Non-controlled biogenic emission rate of CO, H2S, NH3, and Hg0 were estimated by multiplying the observed surface CO2 efflux times (Inorganic Toxic Gas)i/CO2 weight ratio at each sampling site, respectively. The highest surface inorganic toxic gas efllux rates were 699 gm-2d-1 for NH3, 81, 431 and 4 mgm-2d-1 for CO, H2S and Hg0, respectively. Taking into consideration the spatial distribution of the inorganic toxic gas efflux values as well as the extension of the landfill, the non-controlled biogenic emission of CO, H2S, NH3 and Hg0 to the atmosphere by Lazareto's landfill are 0.1, 0.9, 0.7, and 0.7 Kgd-1, respectively.

  9. New Approaches to Waterproofing of Space Shuttle Insulating Materials

    NASA Technical Reports Server (NTRS)

    Blum, Yigal D.; Johnson, Sylvia M.; Chen, Paul

    1997-01-01

    Future reusable space vehicles will be in service much more frequently than current space shuttles. Therefore, rapid reconditioning of spacecraft will be required. Currently, the waterproofing of space shuttles after each re-entry takes 72 hours and requires substantial labor. In addition, the currently used waterproofing reagent, DiMethylEthoxySilane (DMES), is considered toxic, and ethanol fumes are released during its hydrolytic activation. Consequently, a long time period, which is not acceptable for future operations, is needed to ensure that 0 the excess volatile compounds are removed before further maintenance of the space vehicle can be performed. The objective of this project was to assist NASA Ames in finding improved waterproofing systems by identifying suitable waterproofing agents that can be applied by vapor phase deposition and will be less toxic, bond more rapidly to the insulation material surface, and potentially have higher thermal stability than the DMES system. Several approaches to achieve faster waterproofing with less toxicity were assessed using the following alternatives: Reactive volatile compounds that are rapidly deposited by chemical bonding at the surface and leave no toxic volatiles. Reactive reagents that are the least toxic. Nonvolatile reagents that are very reactive and bond strongly to the insulating material surface. Three specific types of potential reagents were chosen for evaluation in this project: 1. Volatile reagents with Si-Cl functional groups for vapor deposition 2. Volatile reagents with Si-H functional groups for vapor deposition 3. Nonvolatile oligomeric or polymeric reactive siloxanes that are assumed to have higher thermal stability and/or strong bonding to the insulating material. The chemistry involved in the project was targeted at the generation of intermediates having reactive Si-OH bonds for the formation of either volatile species or polymeric species that bond rapidly to the surface and also cure rapidly. We focused on two chemical reactions@-hydrolysis of Si-Cl bonds and catalytic dehydrocoupling of Si-H bonds.

  10. Emerging Applications of Liquid Metals Featuring Surface Oxides

    PubMed Central

    2014-01-01

    Gallium and several of its alloys are liquid metals at or near room temperature. Gallium has low toxicity, essentially no vapor pressure, and a low viscosity. Despite these desirable properties, applications calling for liquid metal often use toxic mercury because gallium forms a thin oxide layer on its surface. The oxide interferes with electrochemical measurements, alters the physicochemical properties of the surface, and changes the fluid dynamic behavior of the metal in a way that has, until recently, been considered a nuisance. Here, we show that this solid oxide “skin” enables many new applications for liquid metals including soft electrodes and sensors, functional microcomponents for microfluidic devices, self-healing circuits, shape-reconfigurable conductors, and stretchable antennas, wires, and interconnects. PMID:25283244

  11. Experimental Analysis of Exhaust Manifold with Ceramic Coating for Reduction of Heat Dissipation

    NASA Astrophysics Data System (ADS)

    Saravanan, J.; Valarmathi, T. N.; Nathc, Rajdeep; Kumar, Prasanth

    2017-05-01

    Exhaust manifold plays an important role in the exhaust system, the manifold delivers the waste toxic gases to a safe distance and it is used to reduce the sound pollution and air pollution. Exhaust manifold suffers with lot of thermal stress, due to this blow holes occurs in the surface of the exhaust manifold and also more noise is developed. The waste toxic gases from the multiple cylinders are collected into a single pipe by the exhaust manifold. The waste toxic gases can damage the material of the manifold. In this study, to prevent the damage zirconia powder has been coated in the inner surface and alumina (60%) combined with titania (40%) has been used for coating the outer surface of the exhaust manifold. After coating experiments have been performed using a multiple-cylinder four stroke stationary petrol engine. The test results of hardness, emission, corrosion and temperature of the coated and uncoated manifolds have been compared. The result shows that the performance is improved and also emission is reduced in the coated exhaust manifold.

  12. Aquatic assessment of the Ely Copper Mine Superfund site, Vershire, Vermont

    USGS Publications Warehouse

    Seal, Robert R.; Kiah, Richard G.; Piatak, Nadine M.; Besser, John M.; Coles, James F.; Hammarstrom, Jane M.; Argue, Denise M.; Levitan, Denise M.; Deacon, Jeffrey R.; Ingersoll, Christopher G.

    2010-01-01

    The information was used to develop an overall assessment of the impact on the aquatic system that appears to be a result of the acid rock drainage at the Ely Mine. More than 700 meters of Ely Brook, including two of the six ponds, were found to be severely impacted, on the basis of water-quality data and biological assessments. The reference location was of good quality based on the water quality and biological assessment. More than 3,125 meters of Schoolhouse Brook are also severely impacted, on the basis of water-quality data and biological assessments. The biological community begins to recover near the confluence with the Ompompanoosuc River. The evidence is less conclusive regarding the Ompompanoosuc River. The sediment data suggest that the sediments could be a source of toxicity in Ely Brook and Schoolhouse Brook. The surface-water assessment is consistent with the outcome of a surface-water toxicity testing program performed by the U.S. Environmental Protection Agency for Ely Brook and Schoolhouse Brook and a surface-water toxicity testing program and in situ amphibian testing program for the ponds.

  13. Toxicity of Carbon Nanotubes and its Implications for Occupational and Environmental Health

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-wing; James, John T.

    2007-01-01

    This viewgraph document reviews the sources of Nano particles in the environment, the structure and properties of Carbon Nanotubes (CNTs), the physical characteristics of CNT materials, pulmonary and other health concerns of exposure to CNTs. The toxicity of CNT in rodents is summarized and some natural, and man-made sources of CNTs are shown. CNTs are electrically and thermally conductive, fibrous, biopersistent and very complicated in structures. The factors affecting toxicity of CNTs are more than size and surface area.

  14. THE SIZE AND SURFACE COATING OF NANOSILVER DIFFERENTIALLY AFFECTS BIOLOGICAL ACTIVITY IN BLOOD BRAIN BARRIER (RBEC4) CELLS.

    EPA Science Inventory

    Linking the physical properties of nanoparticles with differences in their biological activity is critical for understanding their potential toxicity and mode of action. The influence of aggregate size, surface coating, and surface charge on nanosilver's (nanoAg) movement through...

  15. Coupling online effects-based monitoring with physicochemical, optical, and spectroscopy methods to assess quality at a surface water intake

    EPA Science Inventory

    Effects-based monitoring of water quality is a proven approach to monitoring the status of a water source. Only biological material can integrate factors which dictate toxicity. Online Toxicity Monitors (OTMs) provide a means to digitize sentinel organism responses to dynamic wa...

  16. 40 CFR Appendix A to Part 300 - The Hazard Ranking System

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... control groups. For HRS purposes, the response considered is cancer. [milligrams toxicant per kilogram...-2Containment factor values for surface water migration pathway. 4-3Drainage area values. 4-4Soil group... a group of exposed organisms. The LC50 is used in the HRS in assessing acute toxicity. LD 50 (lethal...

  17. 40 CFR Appendix A to Part 300 - The Hazard Ranking System

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... control groups. For HRS purposes, the response considered is cancer. [milligrams toxicant per kilogram...-2Containment factor values for surface water migration pathway. 4-3Drainage area values. 4-4Soil group... a group of exposed organisms. The LC50 is used in the HRS in assessing acute toxicity. LD 50 (lethal...

  18. Three Strains of Pseudomonas fluorescens Exhibit Differential Toxicity Against Drosophila melanogaster

    USDA-ARS?s Scientific Manuscript database

    Three strains of Pseudomonas fluorescens were tested for toxicity to Drosophila melanogaster in an insect feeding assay. Insect eggs were placed on the surface of a non-nutritive agar plate supplemented with a food source that was non-inoculated or inoculated with P. fluorescens Pf0-1, SBW25, or Pf-...

  19. Toxicity of Graphene Shells, Graphene Oxide, and Graphene Oxide Paper Evaluated with Escherichia coli Biotests

    PubMed Central

    Efremova, Ludmila V.; Vasilchenko, Alexey S.; Rakov, Eduard G.; Deryabin, Dmitry G.

    2015-01-01

    The plate-like graphene shells (GS) produced by an original methane pyrolysis method and their derivatives graphene oxide (GO) and graphene oxide paper (GO-P) were evaluated with luminescent Escherichia coli biotests and additional bacterial-based assays which together revealed the graphene-family nanomaterials' toxicity and bioactivity mechanisms. Bioluminescence inhibition assay, fluorescent two-component staining to evaluate cell membrane permeability, and atomic force microscopy data showed GO expressed bioactivity in aqueous suspension, whereas GS suspensions and the GO-P surface were assessed as nontoxic materials. The mechanism of toxicity of GO was shown not to be associated with oxidative stress in the targeted soxS::lux and katG::lux reporter cells; also, GO did not lead to significant mechanical disruption of treated bacteria with the release of intracellular DNA contents into the environment. The well-coordinated time- and dose-dependent surface charge neutralization and transport and energetic disorders in the Escherichia coli cells suggest direct membrane interaction, internalization, and perturbation (i.e., “membrane stress”) as a clue to graphene oxide's mechanism of toxicity. PMID:26221608

  20. Toxicity analysis of various Pluronic F-68-coated carbon nanotubes on mesenchymal stem cells.

    PubMed

    Yao, Meng-Zhu; Hu, Yu-Lan; Sheng, Xiao-Xia; Lin, Jun; Ling, Daishun; Gao, Jian-Qing

    2016-04-25

    Carbon nanotubes (CNTs) have poor colloid stability in biological media and exert cytotoxic effects on mesenchymal stem cells (MSCs). Modification with polymeric surfactant is a widely used strategy to enhance water dispersibility of CNTs. This study investigated the toxic effects of various Pluronic F-68 (PF68)-coated multi-walled CNTs (MWCNTs) on rat bone marrow-derived MSCs.PF68-coated MWCNTs showed favorable biocompatibility to MSCs that the cell viability, apoptosis, and reactive oxygen species (ROS) were not altered after 24 h of co-incubation. Nevertheless, significant apoptosis induction and massive ROS release were found following extended exposure (48 and 72 h), and the toxic impact was dependent on the initial surface properties of the encapsulated MWCNTs. All the types of PF68-coated MWCNTs did not affect the cell-surface markers and in vivo biodistribution of MSCs. Our results suggest that proper polymer coating can reduce the acute toxicity of MWCNTs to MSCs but without altering their biological fate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Toxicity of Graphene Shells, Graphene Oxide, and Graphene Oxide Paper Evaluated with Escherichia coli Biotests.

    PubMed

    Efremova, Ludmila V; Vasilchenko, Alexey S; Rakov, Eduard G; Deryabin, Dmitry G

    2015-01-01

    The plate-like graphene shells (GS) produced by an original methane pyrolysis method and their derivatives graphene oxide (GO) and graphene oxide paper (GO-P) were evaluated with luminescent Escherichia coli biotests and additional bacterial-based assays which together revealed the graphene-family nanomaterials' toxicity and bioactivity mechanisms. Bioluminescence inhibition assay, fluorescent two-component staining to evaluate cell membrane permeability, and atomic force microscopy data showed GO expressed bioactivity in aqueous suspension, whereas GS suspensions and the GO-P surface were assessed as nontoxic materials. The mechanism of toxicity of GO was shown not to be associated with oxidative stress in the targeted soxS::lux and katG::lux reporter cells; also, GO did not lead to significant mechanical disruption of treated bacteria with the release of intracellular DNA contents into the environment. The well-coordinated time- and dose-dependent surface charge neutralization and transport and energetic disorders in the Escherichia coli cells suggest direct membrane interaction, internalization, and perturbation (i.e., "membrane stress") as a clue to graphene oxide's mechanism of toxicity.

  2. Beauty in the Breakdown

    ERIC Educational Resources Information Center

    Brisco, Nicole

    2008-01-01

    Most human beings look at erosion as the destruction of a surface, but artists can see that erosion often creates indefinable beauty. Where do you see beauty in the breakdown? In this article, the author presents an innovative lesson that would allow students to observe both human and physical nature. In this activity students will create a work…

  3. Lessons learned from the Bushland Evapotranspiration and Agricultural Remote Sensing EXperiment 2008 (BEAREX08)

    USDA-ARS?s Scientific Manuscript database

    In 2008, a team of USDA and university researchers assembled to study the surface energy balance and associated energy and water fluxes within, below and above the internal boundary layers over irrigated and dryland cotton crops in the hot, windy and advective environment of the Texas Panhandle at B...

  4. Surface Transmission or Polarized Egress? Lessons Learned from HTLV Cell-to-Cell Transmission

    PubMed Central

    Jin, Jing; Sherer, Nathan; Mothes, Walther

    2010-01-01

    Commentary on Pais-Correia, A.M.; Sachse, M.; Guadagnini, S.; Robbiati, V.; Lasserre, R.; Gessain, A.; Gout, O.; Alcover, A.; Thoulouze, M.I. Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat. Med. 2010, 16, 83–89. PMID:21994650

  5. Making Connections in Math: Activating a Prior Knowledge Analogue Matters for Learning

    ERIC Educational Resources Information Center

    Sidney, Pooja G.; Alibali, Martha W.

    2015-01-01

    This study investigated analogical transfer of conceptual structure from a prior-knowledge domain to support learning in a new domain of mathematics: division by fractions. Before a procedural lesson on division by fractions, fifth and sixth graders practiced with a surface analogue (other operations on fractions) or a structural analogue (whole…

  6. Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery.

    PubMed

    Sadekar, S; Ghandehari, H

    2012-05-01

    This article summarizes efforts to evaluate poly(amido amine) (PAMAM) dendrimers as carriers for oral drug delivery. Specifically, the effect of PAMAM generation, surface charge and surface modification on toxicity, cellular uptake and transepithelial transport is discussed. Studies on Caco-2 monolayers, as models of intestinal epithelial barrier, show that by engineering surface chemistry of PAMAM dendrimers, it is possible to minimize toxicity while maximizing transepithelial transport. It has been demonstrated that PAMAM dendrimers are transported by a combination of paracellular and transcellular routes. Depending on surface chemistry, PAMAM dendrimers can open the tight junctions of epithelial barriers. This tight junction opening is in part mediated by internalization of the dendrimers. Transcellular transport of PAMAM dendrimers is mediated by a variety of endocytic mechanisms. Attachment or complexation of cytotoxic agents to PAMAM dendrimers enhances the transport of such drugs across epithelial barriers. A remaining challenge is the design and development of linker chemistries that are stable in the gastrointestinal tract (GIT) and the blood stream, but amenable to cleavage at the target site of action. Recent efforts have focused on the use of PAMAM dendrimers as penetration enhancers. Detailed in vivo oral bioavailability of PAMAM dendrimer-drug conjugates, as a function of physicochemical properties will further need to be assessed. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Single-Cell Imaging and Spectroscopic Analyses of Cr(VI) Reduction on the Surface of Bacterial Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuanmin; Sevinc, Papatya C.; Belchik, Sara M.

    2013-01-22

    We investigate single-cell reduction of toxic Cr(VI) by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), an important bioremediation process, using Raman spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Our experiments indicate that the toxic and highly soluble Cr(VI) can be efficiently reduced to the less toxic and non-soluble Cr2O3 nanoparticles by MR-1. Cr2O3 is observed to emerge as nanoparticles adsorbed on the cell surface and its chemical nature is identified by EDX imaging and Raman spectroscopy. Co-localization of Cr2O3 and cytochromes by EDX imaging and Raman spectroscopy suggests a terminal reductase role for MR-1more » surface-exposed cytochromes MtrC and OmcA. Our experiments revealed that the cooperation of surface proteins OmcA and MtrC makes the reduction reaction most efficient, and the sequence of the reducing reactivity of the MR-1 is: wild type > single mutant @mtrC or mutant @omcA > double mutant (@omcA-@mtrC). Moreover, our results also suggest that the direct microbial Cr(VI) reduction and Fe(II) (hematite)-mediated Cr(VI) reduction mechanisms may co-exist in the reduction processes.« less

  8. Comparative studies of biological activity of cadmium-based quantum dots with different surface modifications

    NASA Astrophysics Data System (ADS)

    Kalinowska, D.; Grabowska-Jadach, I.; Drozd, M.; Pietrzak, M.

    2018-05-01

    This paper presents a modification of the surface of CdS/ZnS and CdSe x S1-x /ZnS quantum dots (QDs) with 3-mercaptopropionic and 6-mercaptohexanoic acid. The obtained QDs were characterized using TEM, DLS, UV-Vis, and fluorescence spectroscopy. Flow cytometry was applied to evaluate the cytotoxicity of QDs and examine the type of death caused by the tested nanoparticles. In addition, the generation of reactive oxygen species after incubation of the tested cells with CdSe x S1-x /ZnS-MPA and CdSe x S1-x /ZnS-MHA QDs was evaluated. The study was conducted on three cell lines: adherent (A549 and MRC-5) and suspension ones (K562). The conducted research demonstrated that the tested nanoparticles exhibit concentration-dependent toxicity. It was observed that the surface modification influences the toxicity level of the examined QDs, and modification of their surface with the use of the ligand of longer carbon chain (MHA) reduces the toxicity in comparison with QDs-MPA. It was also found that all tested QDs caused the death of cells in the course of necrosis. Based on obtained results, it was concluded that the cytotoxicity of QDs is to a large extent related to reactive oxygen species (ROS) generation.

  9. TRANSEPITHELIAL TRANSPORT AND TOXICITY OF PAMAM DENDRIMERS: IMPLICATIONS FOR ORAL DRUG DELIVERY

    PubMed Central

    Sadekar, S.; Ghandehari, H.

    2011-01-01

    This article summarizes efforts to evaluate poly(amido amine) (PAMAM) dendrimers as carriers for oral drug delivery. Specifically, the effect of PAMAM generation, surface charge and surface modification on toxicity, cellular uptake and transepithelial transport is discussed. Studies on Caco-2 monolayers, as models of intestinal epithelial barrier, show that by engineering surface chemistry of PAMAM dendrimers, it is possible to minimize toxicity while maximizing transepithelial transport. It has been demonstrated that PAMAM dendrimers are transported by a combination of paracellular and transcellular routes. Depending on surface chemistry, PAMAM dendrimers can open the tight junctions of epithelial barriers. This tight junction opening is in part mediated by internalization of the dendrimers. Transcellular transport of PAMAM dendrimers is mediated by a variety of endocytic mechanisms. Attachment or complexation of cytotoxic agents to PAMAM dendrimers enhances the transport of such drugs across epithelial barriers. A remaining challenge is the design and development of linker chemistries that are stable in the gastrointestinal tract (GIT) and the blood stream, but amenable to cleavage at the target site of action. Recent efforts have focused on the use of PAMAM dendrimers as penetration enhancers. Detailed in vivo oral bioavailability of PAMAM dendrimer – drug conjugates, as a function of physicochemical properties will further need to be assessed. PMID:21983078

  10. Regulating Biocompatibility of Carbon Spheres via Defined Nanoscale Chemistry and a Careful Selection of Surface Functionalities

    NASA Astrophysics Data System (ADS)

    Misra, Santosh K.; Chang, Huei-Huei; Mukherjee, Prabuddha; Tiwari, Saumya; Ohoka, Ayako; Pan, Dipanjan

    2015-10-01

    A plethora of nanoarchitectures have been evaluated preclincially for applications in early detection and treatment of diseases at molecular and cellular levels resulted in limited success of their clinical translation. It is important to identify the factors that directly or indirectly affect their use in human. We bring a fundamental understanding of how to adjust the biocompatibility of carbon based spherical nanoparticles (CNPs) through defined chemistry and a vigilant choice of surface functionalities. CNPs of various size are designed by tweaking size (2-250 nm), surface chemistries (positive, or negatively charged), molecular chemistries (linear, dendritic, hyperbranched) and the molecular weight of the coating agents (MW 400-20 kDa). A combination of in vitro assays as tools were performed to determine the critical parameters that may trigger toxicity. Results indicated that hydrodynamic sizes are potentially not a risk factor for triggering cellular and systemic toxicity, whereas the presence of a highly positive surface charge and increasing molecular weight enhance the chance of inducing complement activation. Bare and carboxyl-terminated CNPs did present some toxicity at the cellular level which, however, is not comparable to those caused by positively charged CNPs. Similarly, negatively charged CNPs with hydroxyl and carboxylic functionalities did not cause any hemolysis.

  11. Inhalation toxicity of 316L stainless steel powder in relation to bioaccessibility.

    PubMed

    Stockmann-Juvala, H; Hedberg, Y; Dhinsa, N K; Griffiths, D R; Brooks, P N; Zitting, A; Wallinder, I Odnevall; Santonen, T

    2013-11-01

    The Globally Harmonized System for Classification and Labelling of Chemicals (GHS) considers metallic alloys, such as nickel (Ni)-containing stainless steel (SS), as mixtures of substances, without considering that alloys behave differently compared to their constituent metals. This study presents an approach using metal release, explained by surface compositional data, for the prediction of inhalation toxicity of SS AISI 316L. The release of Ni into synthetic biological fluids is >1000-fold lower from the SS powder than from Ni metal, due to the chromium(III)-rich surface oxide of SS. Thus, it was hypothesized that the inhalation toxicity of SS is significantly lower than what could be predicted based on Ni metal content. A 28-day inhalation study with rats exposed to SS 316L powder (<4 µm, mass median aerodynamic diameter 2.5-3.0 µm) at concentrations up to 1.0 mg/L showed accumulation of metal particles in the lung lobes, but no signs of inflammation, although Ni metal caused lung toxicity in a similar published study at significantly lower concentrations. It was concluded that the bioaccessible (released) fraction, rather than the elemental nominal composition, predicts the toxicity of SS powder. The study provides a basis for an approach for future validation, standardization and risk assessment of metal alloys.

  12. One Health and Toxic Cyanobacteria | Science Inventory | US ...

    EPA Pesticide Factsheets

    One Health and toxic cyanobacteria Blooms of toxic freshwater blue-green algae or cyanobacteria (HABs) have been in the news after HABs associated with human and animal health problems have been reported in Florida, California and Utah during 2016. HABs occur in warm, slow moving or stagnant surface waters that are enriched with nutrients such as nitrogen and phosphorous. People are exposed to potentially toxic HABs during recreation in contaminated water, after exposure to contaminated drinking water or to blue-green algae supplements. Animals may be exposed to toxic HABs after drinking contaminated surface waters or coming into contact with HABs then ingesting cyanobacteria from their bodies during self-grooming activities. As HABs are being reported more frequently in the US, it is important for veterinarians to secure good exposure histories and to recognize the potential signs and health consequences of HAB exposures. We will review the current knowledge about human and animal health effects associated with freshwater HABs and scenarios that pose the highest risks for illnesses and deaths. This abstract does not necessarily reflect EPA policy. This is a summary of One Health and Cyanobacteria for public health and public practice veterinarians at the American Veterinary Medical Association annual convention. This product is associated with SSWR 4.01B

  13. Weathering of a carbon nanotube/epoxy nanocomposite under UV light and in water bath: impact on abraded particles

    NASA Astrophysics Data System (ADS)

    Schlagenhauf, Lukas; Kianfar, Bahareh; Buerki-Thurnherr, Tina; Kuo, Yu-Ying; Wichser, Adrian; Nüesch, Frank; Wick, Peter; Wang, Jing

    2015-11-01

    Weathering processes can influence the surface properties of composites with incorporated nanoparticles. These changes may affect the release behavior of nanoparticles when an abrasion process is applied. Therefore, the influence of two different weathering processes, immersion in water and exposure to UV light, on the properties of abraded particles from a carbon nanotube (CNT)/epoxy nanocomposite was investigated. The investigation included the measurement of the weathering impact on the surface chemistry of the exposed samples, the particle size of abraded particles, the quantity of exposed CNTs in the respirable part of the abraded particles, and the toxicity of abraded particles, measured by in vitro toxicity tests using the THP-1 monocyte-derived macrophages. The results showed that weathering by immersion in water had no influence on the properties of abraded particles. The exposure to UV light caused a degradation of the epoxy on the surface, followed by delamination of an approx. 2.5 μm thick layer. An increased quantity of exposed CNTs in abraded particles was not found; on the contrary, longer UV exposure times decreased the released fraction of CNTs from 0.6% to 0.4%. The toxicity tests revealed that abraded particles from the nanocomposites did not induce additional acute cytotoxic effects compared to particles from the neat epoxy.Weathering processes can influence the surface properties of composites with incorporated nanoparticles. These changes may affect the release behavior of nanoparticles when an abrasion process is applied. Therefore, the influence of two different weathering processes, immersion in water and exposure to UV light, on the properties of abraded particles from a carbon nanotube (CNT)/epoxy nanocomposite was investigated. The investigation included the measurement of the weathering impact on the surface chemistry of the exposed samples, the particle size of abraded particles, the quantity of exposed CNTs in the respirable part of the abraded particles, and the toxicity of abraded particles, measured by in vitro toxicity tests using the THP-1 monocyte-derived macrophages. The results showed that weathering by immersion in water had no influence on the properties of abraded particles. The exposure to UV light caused a degradation of the epoxy on the surface, followed by delamination of an approx. 2.5 μm thick layer. An increased quantity of exposed CNTs in abraded particles was not found; on the contrary, longer UV exposure times decreased the released fraction of CNTs from 0.6% to 0.4%. The toxicity tests revealed that abraded particles from the nanocomposites did not induce additional acute cytotoxic effects compared to particles from the neat epoxy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05387k

  14. [Nanotechnology--possibilities and hazards].

    PubMed

    Snopczyński, Tomasz; Góralczyk, Katarzyna; Czaja, Katarzyna; Struciński, Paweł; Hernik, Agnieszka; Korcz, Wojciech; Ludwicki, Jan K

    2009-01-01

    Nanoparticles are the objects with at least one demension smaller than 100 nm. Nanoparticles exist in nature or can be produced by human activities, intentionally or unintentionally. Nanotechnology is an emerging science involving manipulation of matter at nanometer scale. Nanoparticles find numerous applications in many fields, starting with electronics, throught medicine, cosmetology, and ending with automotive industry and construction industry. Depending on the use of nanoparticles, the routes of exposure may be inhalation, dermal, oral or parenteral. Nanoparticles have a greater active surface area per unit mass than larger particles. Together with an increase of surface area, toxicity and potential health effects may also increase. Toxicity of nanoparticles depend on many factors, for example: size, shape, chemical composition, solubility, surface area and surface charge. Risk assessment related to human health, should be integrated at all stages of the life cycle of the nanotechnology, starting at the point of conception and including research and development, manufacturing, distribution, use and disposal or recycling.

  15. Use of a medication control officer to reduce bias in a clinical trial: lessons learned from the scleroderma lung study.

    PubMed

    Hsu, Vivien M; Khanna, Dinesh; Smith, Edwin; Filemon, Tan; Whelton, Sean; Lopata, Mel; Davis, John C; Polito, Albert; Heck, Louis; Molitor, Jerry; Abeles, Micha; Granda, Jose; Korn, Joseph; Clements, Philip

    2010-02-01

    Scleroderma Lung Study (SLS) was designed to evaluate the efficacy and safety of oral cyclophosphamide (CYC) versus placebo taken for 1 year for scleroderma-associated interstitial lung disease. An independent medication control officer (MCO), usually a physician, at each center was assigned to monitor laboratory and clinical toxicity of study medication and regulate its dosing based on these results. By having an MCO who watched and managed toxicity, the study investigators were free to care for study patients and to assess study outcomes without the potential bias of knowing toxicity data (toxicity from cyclophosphamide is distinctive - cytopenias and hematuria in particular). To assess the usefulness of an MCO, whose chief role was to maintain safety while retaining the blinding in the clinical trial. Patients had safety laboratory testing every 2-4 weeks and results were sent directly to the MCO within 2 days of the test. Other clinical adverse events (AEs) were reported by the patient to a nurse coordinator who reported them to the MCO who then managed the AEs to preserve the blinding of investigators caring for the patients. The MCO was provided pre-determined algorithms for dose adjustments of test medication based on the presence and severity of laboratory abnormalities. Safety monitoring by the MCO was effective in the early detection of drug toxicity with provision of appropriate medical intervention on a timely basis. At the same time, investigator blinding appeared to be maintained. The testing of MCO effectiveness in maintaining blinding and consistency was not defined as an a priori hypothesis and thus complete data relating to the efficacy of the MCO were not collected in a prospective fashion. An MCO and pre-specified monitoring and dosing guidelines, coupled with uniform pre-specified responses to AEs, may be used effectively to preserve investigator blinding and provide consistency in response to AEs in a clinical trial setting, even when AEs of the test medication are distinctive.

  16. Pulmonary Toxicity Studies of Lunar Dusts in Rodents

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-wing; James, John T.

    2009-01-01

    NASA will build an outpost on the lunar surface for long-duration human habitation and research. The surface of the Moon is covered by a layer of fine, reactive dust, and the living quarters in the lunar outpost are expected to be contaminated by lunar dust. Because the toxicity of lunar dust is not known, NASA has tasked its toxicology laboratory to evaluate the risk of exposure to the dust and to establish safe exposure limits for astronauts working in the lunar habitat. Studies of the pulmonary toxicity of a dust are generally done first in rodents by intratracheal/intrapharyngeal instillation. This toxicity screening test is then followed by an inhalation study, which requires much more of the test dust and is labor intensive. Preliminary results obtained by examining lung lavage fluid from dust-treated mice show that lunar dust was somewhat toxic (more toxic than TiO2, but less than quartz dust). More extensive studies are in progress to further examine lung lavage fluid for biomarkers of toxicity and lung tissues for histopathological lesions in rodents exposed to aged and activated (ground) lunar dust samples. In these studies, reference dusts (TiO2 and quartz) of known toxicities and have industrial exposure limits will be studied in parallel so the relative toxicity of lunar dust can be determined. The results from the instillation studies will be useful for choosing exposure concentrations for the animal inhalation study. The animal inhalation exposure will be conducted with lunar dust simulant prior to the study with the lunar dust. The experiment with the simulate will ensure that the study techniques used with actual lunar dust will be successful. The results of instillation and inhalation studies will reveal the toxicological risk of exposures and are essential for setting exposure limits on lunar dust for astronauts living in the lunar habitat.

  17. HOS cell adhesion on Ti6Al4V ELI texturized by CO2 laser

    NASA Astrophysics Data System (ADS)

    Sandoval-Amador, A.; Bayona–Alvarez, Y. M.; Carreño Garcia, H.; Escobar-Rivero, P.; Y Peña-Ballesteros, D.

    2017-12-01

    In this work, the response of HOS cells on Ti6Al4V ELI textured surfaces by a CO2 laser was evaluated. The test surfaces were; smooth Ti6Al4V, used as the control, and four textured surfaces with linear geometry. These four surfaces had different separation distances between textured lines, D1 (1000 microns), D2 (750 microns), D3 (500 microns) and D4 (250 microns). Toxicity of textured surfaces was assessed by MTT and the cellular adhesion test was performed using HOS ATCC CRL 1543 line cells. This test was done after 5 days of culture in a RPMI 1640 medium supplemented with 10% fetal bovine serum and 1% antibiotics. The results showed that the linear textures present 23% toxicity after 30 days of incubation, nevertheless, the adhesion tests results are inconclusive in such conditions and therefore the effect of the line separation on the cell adhesion cannot be determined.

  18. Additive Manufacturing Design Considerations for Liquid Engine Components

    NASA Technical Reports Server (NTRS)

    Whitten, Dave; Hissam, Andy; Baker, Kevin; Rice, Darron

    2014-01-01

    The Marshall Space Flight Center's Propulsion Systems Department has gained significant experience in the last year designing, building, and testing liquid engine components using additive manufacturing. The department has developed valve, duct, turbo-machinery, and combustion device components using this technology. Many valuable lessons were learned during this process. These lessons will be the focus of this presentation. We will present criteria for selecting part candidates for additive manufacturing. Some part characteristics are 'tailor made' for this process. Selecting the right parts for the process is the first step to maximizing productivity gains. We will also present specific lessons we learned about feature geometry that can and cannot be produced using additive manufacturing machines. Most liquid engine components were made using a two-step process. The base part was made using additive manufacturing and then traditional machining processes were used to produce the final part. The presentation will describe design accommodations needed to make the base part and lessons we learned about which features could be built directly and which require the final machine process. Tolerance capabilities, surface finish, and material thickness allowances will also be covered. Additive Manufacturing can produce internal passages that cannot be made using traditional approaches. It can also eliminate a significant amount of manpower by reducing part count and leveraging model-based design and analysis techniques. Information will be shared about performance enhancements and design efficiencies we experienced for certain categories of engine parts.

  19. Phase I/II Study of Weekly Oraxol for the Second-Line Treatment of Patients With Metastatic or Recurrent Gastric Cancer

    PubMed Central

    Lee, Keun-Wook; Lee, Kyung Hee; Zang, Dae Young; Park, Young Iee; Shin, Dong Bok; Kim, Jin Won; Im, Seock-Ah; Koh, Sung Ae; Cho, Joo-Youn; Jung, Jin-A

    2015-01-01

    Lessons Learned Oraxol, a novel oral formulation of paclitaxel, displayed modest efficacy as second-line chemotherapy for gastric cancer. Considering its favorable toxicity profiles, further studies are warranted in various solid tumors including gastric cancer. Background. Oraxol consists of paclitaxel and HM30181A, a P-glycoprotein inhibitor, to increase the oral bioavailability of paclitaxel. This phase I/II study (HM-OXL-201) was conducted to determine the maximum tolerated dose (MTD) and recommended phase II dose (RP2D) of Oraxol. In addition, we investigated the efficacy and safety of Oraxol as second-line chemotherapy for metastatic or recurrent gastric cancer (GC). Methods. In the phase I component, paclitaxel was orally administered at escalating doses (90, 120, or 150 mg/m2 per day) with a fixed dose (15 mg/day) of HM30181A. Oraxol was administrated 6 times per cycle (days 1, 2, 8, 9, 15, and 16) every 4 weeks. In the phase II component, the efficacy and safety of Oraxol were evaluated. Results. In the phase I component, the MTD could not be determined. Based on toxicity and pharmacokinetic data, the RP2D of oral paclitaxel was determined to be 150 mg/m2. In the phase II component, 4 of 43 patients (9.3%) achieved partial responses. Median progression-free survival and overall survival were 2.6 and 10.7 months, respectively. Toxicity profiles were favorable, and the most common drug-related adverse events (grade ≥3) were neutropenia and diarrhea. Conclusion. Oraxol exhibited modest efficacy and favorable toxicity profiles as second-line chemotherapy for GC. PMID:26112004

  20. Microbiological Lessons Learned from the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Ott, C. Mark; Bruce, Rebekah; Castro, Victoria A.; Mehta, Satish K.

    2011-01-01

    After 30 years of being the centerpiece of NASA s human spacecraft, the Space Shuttle will retire. This highly successful program provided many valuable lessons for the International Space Station (ISS) and future spacecraft. Major microbiological risks to crewmembers include food, water, air, surfaces, payloads, animals, other crewmembers, and ground support personnel. Adverse effects of microorganisms are varied and can jeopardize crew health and safety, spacecraft systems, and mission objectives. Engineering practices and operational procedures can minimize the negative effects of microorganisms. To minimize problems associated with microorganisms, appropriate steps must begin in the design phase of new spacecraft or space habitats. Spacecraft design must include requirements to control accumulation of water including humidity, leaks, and condensate on surfaces. Materials used in habitable volumes must not contribute to microbial growth. Use of appropriate materials and the implementation of robust housekeeping that utilizes periodic cleaning and disinfection will prevent high levels of microbial growth on surfaces. Air filtration can ensure low levels of bioaerosols and particulates in the breathing air. The use of physical and chemical steps to disinfect drinking water coupled with filtration can provide safe drinking water. Thorough preflight examination of flight crews, consumables, and the environment can greatly reduce pathogens in spacecraft. The advances in knowledge of living and working onboard the Space Shuttle formed the foundation for environmental microbiology requirements and operations for the International Space Station (ISS) and future spacecraft. Research conducted during the Space Shuttle Program resulted in an improved understanding of the effects of spaceflight on human physiology, microbial properties, and specifically the host-microbe interactions. Host-microbe interactions are substantially affected by spaceflight. Astronaut immune functions were found to be altered. Selected microorganisms were found to become more virulent during spaceflight. The increased knowledge gained on the Space Shuttle resulted in further studies of the host-microbe interactions on the ISS to determine if countermeasures were necessary. Lessons learned from the Space Shuttle Program were integrated into the ISS resulting in the safest space habitat to date.

  1. Effect of teaching with or without mirror on balance in young female ballet students

    PubMed Central

    2014-01-01

    Background In literature there is a general consensus that the use of the mirror improves proprioception. During rehabilitation the mirror is an important instrument to improve stability. In some sports, such as dancing, mirrors are widely used during training. The purpose of this study is to evaluate the effectiveness of the use of a mirror on balance in young dancers. Sixty-four young dancers (ranging from 9–10 years) were included in this study. Thirty-two attending lessons with a mirror (mirror- group) were compared to 32 young dancers that attended the same lessons without a mirror (non-mirror group). Balance was evaluated by BESS (Balance Error Scoring System), which consists of three stances (double limb, single limb, and tandem) on two surfaces (firm and foam). The errors were assessed at each stance and summed to create the two subtotal scores (firm and foam surface) and the final total score (BESS). The BESS was performed at recruitment (T0) and after 6 months of dance lessons (T1). Results The repeated measures ANOVA analysis showed that for the BESS total score there is a difference due to the time (F = 3.86; p < 0.05). No other differences due to the group or to the time of measurement were found (p > 0.05). The analysis of the multiple regression model showed the influence of the values at T0 for every BESS items and the dominance of limb for stability on an unstable surface standing on one or two legs. Conclusions These preliminary results suggest that the use of a mirror in a ballet classroom does not improve balance acquisition of the dancer. On the other hand, improvement found after 6 months confirms that at the age of the dancers studied motor skills and balance can easily be trained and improved. PMID:24996519

  2. Effect of teaching with or without mirror on balance in young female ballet students.

    PubMed

    Notarnicola, Angela; Maccagnano, Giuseppe; Pesce, Vito; Di Pierro, Silvia; Tafuri, Silvio; Moretti, Biagio

    2014-07-04

    In literature there is a general consensus that the use of the mirror improves proprioception. During rehabilitation the mirror is an important instrument to improve stability. In some sports, such as dancing, mirrors are widely used during training. The purpose of this study is to evaluate the effectiveness of the use of a mirror on balance in young dancers. Sixty-four young dancers (ranging from 9-10 years) were included in this study. Thirty-two attending lessons with a mirror (mirror- group) were compared to 32 young dancers that attended the same lessons without a mirror (non-mirror group). Balance was evaluated by BESS (Balance Error Scoring System), which consists of three stances (double limb, single limb, and tandem) on two surfaces (firm and foam). The errors were assessed at each stance and summed to create the two subtotal scores (firm and foam surface) and the final total score (BESS). The BESS was performed at recruitment (T0) and after 6 months of dance lessons (T1). The repeated measures ANOVA analysis showed that for the BESS total score there is a difference due to the time (F = 3.86; p < 0.05). No other differences due to the group or to the time of measurement were found (p > 0.05). The analysis of the multiple regression model showed the influence of the values at T0 for every BESS items and the dominance of limb for stability on an unstable surface standing on one or two legs. These preliminary results suggest that the use of a mirror in a ballet classroom does not improve balance acquisition of the dancer. On the other hand, improvement found after 6 months confirms that at the age of the dancers studied motor skills and balance can easily be trained and improved.

  3. Safety considerations for graphene: lessons learnt from carbon nanotubes.

    PubMed

    Bussy, Cyrill; Ali-Boucetta, Hanene; Kostarelos, Kostas

    2013-03-19

    Many consider carbon nanomaterials the poster children of nanotechnology, attracting immense scientific interest from many disciplines and offering tremendous potential in a diverse range of applications due to their extraordinary properties. Graphene is the youngest in the family of carbon nanomaterials. Its isolation, description, and mass fabrication has followed that of fullerenes and carbon nanotubes. Graphene's development and its adoption by many industries will increase unintended or intentional human exposure, creating the need to determine its safety profile. In this Account, we compare the lessons learned from the development of carbon nanotubes with what is known about graphene, based on our own investigations and those of others. Despite both being carbon-based, nanotubes and graphene are two very distinct nanomaterials. We consider the key physicochemical characteristics (structure, surface, colloidal properties) for graphene and carbon nanotubes at three different physiological levels: cellular, tissue, and whole body. We summarize the evidence for health effects of both materials at all three levels. Overall, graphene and its derivatives are characterized by a lower aspect ratio, larger surface area, and better dispersibility in most solvents compared to carbon nanotubes. Dimensions, surface chemistry, and impurities are equally important for graphene and carbon nanotubes in determining both mechanistic (aggregation, cellular processes, biodistribution, and degradation kinetics) and toxicological outcomes. Colloidal dispersions of individual graphene sheets (or graphene oxide and other derivatives) can easily be engineered without metallic impurities, with high stability and less aggregation. Very importantly, graphene nanostructures are not fiber-shaped. These features theoretically offer significant advantages in terms of safety over inhomogeneous dispersions of fiber-shaped carbon nanotubes. However, studies that directly compare graphene with carbon nanotubes are rare, making comparative considerations of their overall safety and risk assessment challenging. In this Account, we attempt to offer a set of rules for the development of graphene and its derivatives to enhance their overall safety and minimize the risks for adverse reactions in humans from exposure. These rules are: (1) to use small, individual graphene sheets that macrophages in the body can efficiently internalize and remove from the site of deposition; (2) to use hydrophilic, stable, colloidal dispersions of graphene sheets to minimize aggregation in vivo; and (3) to use excretable graphene material or chemically-modified graphene that can be degraded effectively. Such rules can only act as guidelines at this early stage in the development of graphene-based technologies, yet they offer a set of design principles for the fabrication and safe use of graphene material that will come in contact with the human body. In a broader context, the safety risks associated with graphene materials will be entirely dependent on the specific types of graphene materials and how they are investigated or applied. Therefore, generalizations about the toxicity of "graphene" as a whole will be inaccurate, possibly misleading, and should be avoided.

  4. Reduction of quaternary ammonium-induced ocular surface toxicity by emulsions: an in vivo study in rabbits

    PubMed Central

    Liang, H.; Brignole-Baudouin, F.; Rabinovich-Guilatt, L.; Mao, Z.; Riancho, L.; Faure, M.O.; Warnet, J.M.; Lambert, G.

    2008-01-01

    Purpose To evaluate and compare the toxicological profiles of two quaternary ammonium compounds (QAC), benzalkonium chloride (BAK), and cetalkonium chloride (CKC), in standard solution or cationic emulsion formulations in rabbit eyes using newly developed in vivo and ex vivo experimental approaches. Methods Seventy eyes of 35 adult male New Zealand albino rabbits were used in this study. They were randomly divided into five groups: 50 µl of phosphate-buffered saline (PBS), PBS containing 0.02% BAK or 0.002% CKC (BAK Sol and CKC Sol, respectively), and emulsion containing 0.02% BAK or 0.002% CKC (BAK Em and CKC Em, respectively) were applied to rabbit eyes 15 times at 5-min intervals. The ocular surface changes induced by these eye drops were investigated using slit-lamp examination, flow cytometry (FCM), impression cytology (IC) on conjunctiva, and corneal in vivo confocal microscopy (IVCM). Standard immunohistology in cryosections was also examined for cluster of differentiation (CD) 45+ infiltrating and terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL)+ apoptotic cells. Results Clinical observations and IVCM showed that the highest toxicity was induced by BAK Sol, characterized by damaged corneal epithelium and a high level of inflammatory infiltration. BAK Em and CKC Sol presented moderate effects, and CKC Em showed the lowest toxicity with results similar to those of PBS. Conjunctival imprints analyzed by FCM showed a higher expression of RLA-DR and TNFR1 markers in BAK Sol-instilled eyes than in all other groups, especially at 4 h. Immunohistology was correlated with in vivo and ex vivo findings and confirmed this toxicity profile. A high level of infiltration of CD45+ inflammatory cells and TUNEL+ apoptotic cells was observed in limbus and conjunctiva, especially in QAC solution-receiving eyes compared to QAC emulsion-instilled eyes. Conclusions The acute administration of 15 instillations at 5 min intervals was a rapid and efficient model to assess quaternary ammonium toxicity profiles. This model showed the highest toxicity, induced by the BAK solution, and the lowest level of toxicity, induced by the CKC emulsion. These in vivo and ex vivo experimental approaches demonstrated that ocular surface toxicity was reduced by using an emulsion instead of a traditional solution and that a CKC emulsion was safe for future ocular administration. PMID:18347566

  5. Reduction of quaternary ammonium-induced ocular surface toxicity by emulsions: an in vivo study in rabbits.

    PubMed

    Liang, H; Brignole-Baudouin, F; Rabinovich-Guilatt, L; Mao, Z; Riancho, L; Faure, M O; Warnet, J M; Lambert, G; Baudouin, C

    2008-01-31

    To evaluate and compare the toxicological profiles of two quaternary ammonium compounds (QAC), benzalkonium chloride (BAK), and cetalkonium chloride (CKC), in standard solution or cationic emulsion formulations in rabbit eyes using newly developed in vivo and ex vivo experimental approaches. Seventy eyes of 35 adult male New Zealand albino rabbits were used in this study. They were randomly divided into five groups: 50 microl of phosphate-buffered saline (PBS), PBS containing 0.02% BAK or 0.002% CKC (BAK Sol and CKC Sol, respectively), and emulsion containing 0.02% BAK or 0.002% CKC (BAK Em and CKC Em, respectively) were applied to rabbit eyes 15 times at 5-min intervals. The ocular surface changes induced by these eye drops were investigated using slit-lamp examination, flow cytometry (FCM), impression cytology (IC) on conjunctiva, and corneal in vivo confocal microscopy (IVCM). Standard immunohistology in cryosections was also examined for cluster of differentiation (CD) 45+ infiltrating and terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL)+ apoptotic cells. Clinical observations and IVCM showed that the highest toxicity was induced by BAK Sol, characterized by damaged corneal epithelium and a high level of inflammatory infiltration. BAK Em and CKC Sol presented moderate effects, and CKC Em showed the lowest toxicity with results similar to those of PBS. Conjunctival imprints analyzed by FCM showed a higher expression of RLA-DR and TNFR1 markers in BAK Sol-instilled eyes than in all other groups, especially at 4 h. Immunohistology was correlated with in vivo and ex vivo findings and confirmed this toxicity profile. A high level of infiltration of CD45+ inflammatory cells and TUNEL+ apoptotic cells was observed in limbus and conjunctiva, especially in QAC solution-receiving eyes compared to QAC emulsion-instilled eyes. The acute administration of 15 instillations at 5 min intervals was a rapid and efficient model to assess quaternary ammonium toxicity profiles. This model showed the highest toxicity, induced by the BAK solution, and the lowest level of toxicity, induced by the CKC emulsion. These in vivo and ex vivo experimental approaches demonstrated that ocular surface toxicity was reduced by using an emulsion instead of a traditional solution and that a CKC emulsion was safe for future ocular administration.

  6. Salinity-dependent toxicity of water-dispersible, single-walled carbon nanotubes to Japanese medaka embryos.

    PubMed

    Kataoka, Chisato; Nakahara, Kousuke; Shimizu, Kaori; Kowase, Shinsuke; Nagasaka, Seiji; Ifuku, Shinsuke; Kashiwada, Shosaku

    2017-04-01

    To investigate the effects of salinity on the behavior and toxicity of functionalized single-walled carbon nanotubes (SWCNTs), which are chemical modified nanotube to increase dispersibility, medaka embryos were exposed to non-functionalized single-walled carbon nanotubes (N-SWCNTs), water-dispersible, cationic, plastic-polymer-coated, single-walled carbon nanotubes (W-SWCNTs), or hydrophobic polyethylene glycol-functionalized, single-walled carbon nanotubes (PEG-SWCNTs) at different salinities, from freshwater to seawater. As reference nanomaterials, we tested dispersible chitin nanofiber (CNF), chitosan-chitin nanofiber (CCNF) and chitin nanocrystal (CNC, i.e. shortened CNF). Under freshwater conditions, with exposure to 10 mg l -1  W-SWCNTs, the yolk sacks of 57.8% of embryos shrank, and the remaining embryos had a reduced heart rate, eye diameter and hatching rate. Larvae had severe defects of the spinal cord, membranous fin and tail formation. These toxic effects increased with increasing salinity. Survival rates declined with increasing salinity and reached 0.0% in seawater. In scanning electron microscope images, W-SWCNTs, CNF, CCNF and CNC were adsorbed densely over the egg chorion surface; however, because of chitin's biologically harmless properties, only W-SWCNTs had toxic effects on the medaka eggs. No toxicity was observed from N-SWCNT and PEG-SWCNT exposure. We demonstrated that water dispersibility, surface chemistry, biomedical properties and salinity were important factors in assessing the aquatic toxicity of nanomaterials. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Lipid reducing activity and toxicity profiles of a library of polyphenol derivatives.

    PubMed

    Urbatzka, Ralph; Freitas, Sara; Palmeira, Andreia; Almeida, Tiago; Moreira, João; Azevedo, Carlos; Afonso, Carlos; Correia-da-Silva, Marta; Sousa, Emilia; Pinto, Madalena; Vasconcelos, Vitor

    2018-05-10

    Obesity is an increasing epidemic worldwide and novel treatments are urgently needed. Polyphenols are natural compounds derived from plants, which are known in particular for their antioxidant properties. However, some polyphenols were described to possess anti-obesity activities in vitro and in vivo. In this study, we aimed to screen a library of 85 polyphenol derivatives for their lipid reducing activity and toxicity. Compounds were analyzed at 5 μM with the zebrafish Nile red fluorescence fat metabolism assay and for general toxicity in vivo. To improve the safety profile, compounds were screened at 50 μM in murine preadipocytes in vitro for cytotoxicity. Obtained activity data were used to create a 2D-QSAR (quantitative structure activity relationship) model. 38 polyphenols showed strong lipid reducing activity. Toxicity analysis revealed that 18 of them did not show any toxicity in vitro or in vivo. QSAR analysis revealed the importance of the number of rings, fractional partial positively charged surface area, relative positive charge, relative number of oxygen atoms, and partial negative surface area for lipid-reducing activity. The five most potent compounds with EC 50 values in the nanomolar range for lipid reducing activity and without any toxic effects are strong candidates for future research and development into anti-obesity drugs. Molecular profiling for fasn, sirt1, mtp and ppary revealed one compound that reduced significantly fasn mRNA expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms.

    PubMed

    Reeve, Peter J; Fallowfield, Howard J

    2018-01-01

    The objective of this review is to highlight the need for further investigation of microbial toxicity caused by desorption of surfactant from Surfactant Modified Zeolite (SMZ). SMZ is a low cost, versatile permeable reactive media which has the potential to treat multiple classes of contaminants. With this combination of characteristics, SMZ has significant potential to enhance water and wastewater treatment processes. Surfactant desorption has been identified as a potential issue for the ongoing usability of SMZ. Few studies have investigated the toxicity of surfactants used in zeolite modification towards microorganisms and fewer have drawn linkages between surfactant desorption and surfactant toxicity. This review provides an overview of natural zeolite chemistry, characteristics and practical applications. The chemistry of commonly used surfactants is outlined, along with the kinetics that drive their adsorption to the zeolite surface. Methodologies to characterise this surfactant loading are also described. Applications of SMZ in water remediation are highlighted, giving focus to applications which deal with biological pollutants and where microorganisms play a role in the remediation process. Studies that have identified surfactant desorption from SMZ are outlined. Finally, the toxicity of a commonly used cationic surfactant towards microorganisms is discussed. This review highlights the potential for surfactant to desorb from the zeolite surface and the need for further research into the toxicity of this desorbed surfactant towards microorganisms, including pathogens and environmental microbes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Role of surface modification in zinc oxide nanoparticles and its toxicity assessment toward human dermal fibroblast cells

    PubMed Central

    Ramasamy, Mohankandhasamy; Das, Minakshi; An, Seong Soo A; Yi, Dong Kee

    2014-01-01

    The wide-scale applications of zinc oxide (ZnO) nanoparticles (NPs) in photocatalysts, gas sensors, and cosmetics may cause toxicity to humans and environments. Therefore, the aim of the present study was to reduce the toxicity of ZnO NPs by coating them with a silica (SiO2) layer, which could be used in human applications, such as cosmetic preparations. The sol–gel method was used to synthesize core ZnO with SiO2-shelled NPs (SiO2/ZnO NPs) with varying degrees of coating. Diverse studies were performed to analyze the toxicity of NPs against cells in a dose- and time-dependent manner. To ensure the decreased toxicity of the produced SiO2/ZnO NPs, cytotoxicity in membrane damage and/or intracellular reactive oxygen species (ROS) were assessed by employing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, lactate dehydrogenase, 2′,7′-dichlorofluorescin, and lipid peroxide estimations. The cores of ZnO NPs exhibited cytotoxicity over time, regardless of shell thickness. Nevertheless, the thicker SiO2/ZnO NPs revealed reduced enzyme leakage, decreased peroxide production, and less oxidative stress than their bare ZnO NPs or thinner SiO2/ZnO NPs. Therefore, thicker SiO2/ZnO NPs moderated the toxicity of ZnO NPs by restricting free radical formation and the release of zinc ions, and decreasing surface contact with cells. PMID:25143723

  10. Role of surface modification in zinc oxide nanoparticles and its toxicity assessment toward human dermal fibroblast cells.

    PubMed

    Ramasamy, Mohankandhasamy; Das, Minakshi; An, Seong Soo A; Yi, Dong Kee

    2014-01-01

    The wide-scale applications of zinc oxide (ZnO) nanoparticles (NPs) in photocatalysts, gas sensors, and cosmetics may cause toxicity to humans and environments. Therefore, the aim of the present study was to reduce the toxicity of ZnO NPs by coating them with a silica (SiO2) layer, which could be used in human applications, such as cosmetic preparations. The sol-gel method was used to synthesize core ZnO with SiO2-shelled NPs (SiO2/ZnO NPs) with varying degrees of coating. Diverse studies were performed to analyze the toxicity of NPs against cells in a dose- and time-dependent manner. To ensure the decreased toxicity of the produced SiO2/ZnO NPs, cytotoxicity in membrane damage and/or intracellular reactive oxygen species (ROS) were assessed by employing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, lactate dehydrogenase, 2',7'-dichlorofluorescin, and lipid peroxide estimations. The cores of ZnO NPs exhibited cytotoxicity over time, regardless of shell thickness. Nevertheless, the thicker SiO2/ZnO NPs revealed reduced enzyme leakage, decreased peroxide production, and less oxidative stress than their bare ZnO NPs or thinner SiO2/ZnO NPs. Therefore, thicker SiO2/ZnO NPs moderated the toxicity of ZnO NPs by restricting free radical formation and the release of zinc ions, and decreasing surface contact with cells.

  11. Comparison of solid-phase and pore-water approaches for assessing the quality of marine and estuarine sediments

    USGS Publications Warehouse

    Carr, Robert Scott; Chapman, Duane C.

    1992-01-01

    As part of our continuing evaluation of the pore-water approach for assessing sediment quality, we made a series of side-by-side comparisons between the standard 10-day amphipod whole sediment test with the corophiid Grandidierella japonica and a suite of tests using pore water extracted from the same sediments. the pore-water tests evaluated were the sea urchin (Arbacia punctulata) sperm cell test and morphological development assay, the life-cycle test with the polychaete Dinophilus gyrociliatus, and acute exposures of red drum (Sciaenops ocellatus) embryo-larval stages. Sediment and surface microlayer samples were collected from contaminated sites. Whole-sediment, pore-water, and surface microlayer toxicity tests were performed. Pore-water toxicity tests were considerably more sensitive than the whole-sediment amphipod test, which is currently the most sensitive toxicity test now recommended for determining the acceptability of dredged material for open ocean disposal.

  12. Elimination of toxicity from polyurethane foam plugs used for plant culture

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Schwartzkopf, S. H.; Tibbitts, T. W.; Langhans, R. W.

    1985-01-01

    Polyurethane foam plugs commonly are used as collars or supports to grow plants in solution culture. Despite their utility, these foam plugs can be quite toxic to plants, particularly to small seedlings. We have observed tissue injury in tests using plugs to support lettuce, red beet, and potato plants in solution culture. Typically, the injury is initiated on the hypocotyl or stem tissue in direct contact with the foam, and appears within 30 hr as a brownish discoloration on the tissue surface. This discoloration can be followed by complete collapse of affected tissue and eventual death of the seedling. When injury does not progress beyond surface browning, the seedling survives but growth is slowed. In this paper, we report on different treatments that can be used to remove the toxicity of these plugs so they can be used in plant research.

  13. Ecological risk assessment of bisphenol A in surface waters of China based on both traditional and reproductive endpoints.

    PubMed

    Guo, Lei; Li, Zhengyan; Gao, Pei; Hu, Hong; Gibson, Mark

    2015-11-01

    Bisphenol A (BPA) occurs widely in natural waters with both traditional and reproductive toxicity to various aquatic species. The water quality criteria (WQC), however, have not been established in China, which hinders the ecological risk assessment for the pollutant. This study therefore aims to derive the water quality criteria for BPA based on both acute and chronic toxicity endpoints and to assess the ecological risk in surface waters of China. A total of 15 acute toxicity values tested with aquatic species resident in China were found in published literature, which were simulated with the species sensitivity distribution (SSD) model for the derivation of criterion maximum concentration (CMC). 18 chronic toxicity values with traditional endpoints were simulated for the derivation of traditional criterion continuous concentration (CCC) and 12 chronic toxicity values with reproductive endpoints were for reproductive CCC. Based on the derived WQC, the ecological risk of BPA in surface waters of China was assessed with risk quotient (RQ) method. The results showed that the CMC, traditional CCC and reproductive CCC were 1518μgL(-1), 2.19μgL(-1) and 0.86μgL(-1), respectively. The acute risk of BPA was negligible with RQ values much lower than 0.1. The chronic risk was however much higher with RQ values of between 0.01-3.76 and 0.03-9.57 based on traditional and reproductive CCC, respectively. The chronic RQ values on reproductive endpoints were about threefold as high as those on traditional endpoints, indicating that ecological risk assessment based on traditional effects may not guarantee the safety of aquatic biota. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Recommended health and safety guidelines for coal gasification pilot plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-01-01

    The greatest toxic hazards in coal conversion are presented by the known and suspected carcinogens, because they are hazardous at low levels of exposure, have delayed action with no immediate warning, and have grave consequences. As for routes of entry, it is to be noted that various solids and liquids may reach the body by inhalation of particles, deposition of particles, or indirectly by contact with dirty surfaces. Other toxicants are most likely to enter the body by inhalation. The overall carcinogenic hazard cannot be precisely estimated from chemical analysis alone, because the possible interactions are far too complex. Further,more » the hazard cannot at present be quantitatively defined by available biological tests. The same limitations probably apply to toxic effects other than carcinogenesis, with the posible exception of some immediate responses (e.g., chemical asphyxia, primary respiratory irration). It is not practical to recommend comprehensive workplace exposure limits on a basis similar to those for individual toxicants; however, a limit for one important kind of hazard (high-boiling suspected carcinogens) can be recommended. The carcinogenic hazards associated with airborne particles and surface contamination are the most crucial of the whole spectrum and offer a practical target for control, if not for quantitative evaluation. The only direct quantitative evidence now availabl is from epidemiology in analogous circulstances and there are severe limitations on the comprehensiveness and reliability of such evidence. Some specific targets for control through industrial hygiene practices can be identified. The presence of any strong irritant of the respiratory mucosa, other mucous surfaces, and the skin should be regarded as a danger signal because of possible potentiation of carcinogens and other toxicants.« less

  15. A monitoring of chemical contaminants in waters used for field irrigation and livestock watering in the Veneto region (Italy), using bioassays as a screening tool.

    PubMed

    De Liguoro, Marco; Bona, Mirco Dalla; Gallina, Guglielmo; Capolongo, Francesca; Gallocchio, Federica; Binato, Giovanni; Di Leva, Vincenzo

    2014-03-01

    In this study, 50 livestock watering sources (ground water) and 50 field irrigation sources (surface water) from various industrialised areas of the Veneto region were monitored for chemical contaminants. From each site, four water samples (one in each season) were collected during the period from summer 2009 through to spring 2010. Surface water samples and ground water samples were first screened for toxicity using the growth inhibition test on Pseudokirchneriella subcapitata and the immobilisation test on Daphnia magna, respectively. Then, based on the results of these toxicity tests, 28 ground water samples and 26 surface water samples were submitted to chemical analysis for various contaminants (insecticides/acaricides, fungicides, herbicides, metals and anions) by means of UPLC-MS(n) HPLC-MS(n), AAS and IEC. With the exception of one surface water sample where the total pesticides concentration was greater than 4 μg L(-1), positive samples (51.9 %) showed only traces (nanograms per liter) of pesticides. Metals were generally under the detection limit. High concentrations of chlorines (up to 692 mg L(-1)) were found in some ground water samples while some surface water samples showed an excess of nitrites (up to 336 mg L(-1)). Detected levels of contamination were generally too low to justify the toxicity recorded in bioassays, especially in the case of surface water samples, and analytical results painted quite a reassuring picture, while tests on P. subcapitata showed a strong growth inhibition activity. It was concluded that, from an ecotoxicological point of view, surface waters used for field irrigation in the Veneto region cannot be considered safe.

  16. Evaluation of surface water quality using an ecotoxicological approach: a case study of the Alqueva Reservoir (Portugal).

    PubMed

    Palma, Patrícia; Alvarenga, Paula; Palma, Vera; Matos, Cláudia; Fernandes, Rosa Maria; Soares, Amadeu; Barbosa, Isabel Rita

    2010-03-01

    Freshwater reservoirs can be impacted by several hazardous substances through inputs from agricultural activity, sewage discharges, and groundwater leaching and runoff. The water quality assessment is very important for implementation of the monitoring and remediation programs to minimize the risk promoted by hazardous substances in aquatic ecosystems. Evaluation of the degree of contamination of aquatic environments must not take in account only its chemical characterization but it must be complemented with biological assays, which determine potential toxic effects and allows an integrated evaluation of its effects in populations and aquatic ecosystem communities. The application of this type of strategy has clear advantages allowing a general evaluation of the effects from all the water components, including those due to unknown substances and synergic, antagonistic, or additive effects. There are only a few studies that reported ecotoxicological acute end points, for the assessment of surface water quality, and the relationship among toxicity results and the anthropogenic pollution sources and the seasonal period. The aim of this study was to assess the ecotoxicological characterization of the surface water from Alqueva reservoir (South of Portugal) and to evaluate the influence of anthropogenic sources of pollution and their seasonal variation in its toxicity. The construction of Alqueva reservoir was recently finished (2002) and, to our knowledge, an ecotoxicological assessment of its surface water has not been performed. Because of that, no information is available on the possible impact of pollutants on the biota. The surface water toxicity was assessed using acute and chronic bioassays. The results are to be used for developing a monitoring program, including biological methods. Water samples were collected during 2006-2007, at each of the nine sampling sites selected in Alqueva reservoir. These sampling points allow an assessment at the upstream (Sra. Ajuda, Alcarrache, Alamos-Captação), at the middle (Alqueva-Montante, Alqueva-Mourão, Lucefecit), and at the downstream of the water line (Alqueva-Jusante; Ardila-confluência; Moinho das Barcas). The campaigns occurred in February, March, May, July, September, and November of 2006 and February, March, and May of 2007. The rainy season comprised November, February, and March, and the dry season included May, July, and September. A total of 81 samples were collected during the study period. The physical-chemical parameters were analyzed following standard and recommended methods of analysis (APHA et al. 1998). The pesticide analyses were performed using gas chromatography according to DIN EN ISO 6468 (1996). Surface water ecotoxicity was evaluated using the following bioassays: Vibrio fischeri luminescence inhibition, Thamnocephalus platyurus mortality, and Daphnia magna immobilization and reproduction assay. The Spearman rank correlation coefficients were used to evaluate the associations between the water sample physicochemical properties (from each sampling station in each season) and the acute and chronic toxicological effects, with a level of significance p < 0.05. In the acute toxicity study, the species that was found to be the most sensitive was T. platyurus. T. platyurus detected a higher number of toxic water samples during the dry season. Concerning the luminescent inhibition of V. fischeri, the results showed that this organism detected a great number of toxic water samples in rainy seasons. The water samples, which promoted higher toxic effects towards this species, were from the north and from the middle of the reservoir. The correlation analysis showed that V. fischeri luminescent inhibition (%) was positively correlated with total phosphorus, chlorpyrifos, iron, and arsenic. T. platyurus mortality (%) was positively correlated with the water pH, 5-day biochemical oxygen demand (BOD(5)), chlorides, atrazine, simazine, terbuthylazine, and endosulfan sulfate contents. Although the surface waters did not promote acute toxicity to the crustacean D. magna, in the chronic exposure, a significant decrease in the number of juveniles per female was observed, mainly at the dry period. The number of juveniles per female, in the reproduction test of D. magna, was negatively correlated with pH, temperature, BOD(5), chloride, atrazine, simazine, terbuthylazine, and endosulfan sulfate. The water toxicity of the Alqueva water might be due principally to the intensive agriculture activities surrounding the reservoir and to the municipal wastewater discharges. The physicochemical parameters and the pesticide concentrations indicated that the water quality was worse in the north part of the reservoir system. These results are characteristic of the majority of reservoirs, once the construction of the dam promoted, by itself, the impounding of water flow and the increase of compound residence time. The toxicity tests corroborate with the chemical characterization. Acute toxicity of Alqueva water may be a result of the effect promoted by chlorpyrifos, endosulfan sulfate, phosphorus, and iron. Chronic toxicity may be a result of the effect of herbicides, arsenic, organic matter, endosulfan sulfate in mixture. Hence, the water toxicity of the Alqueva might be due principally to the intensive agriculture activities surrounding the reservoir and to the municipal wastewater discharges. This study has shown that a large number of samples from different sites of the Alqueva reservoir contained potentially toxic contaminants. The sites with impaired water quality were those located at the north of the reservoir and in the surrounding areas of intensive agricultural activity. The results demonstrated that the use of a screening of acute and chronic toxicity tests with organisms from different trophic levels and with distinct sensibilities allowed the detections of several patterns of toxicity from spatial and temporal variability promoted by natural or anthropogenic sources. The chronic responses showed, especially in the dry season, that some of the species belonging to this aquatic ecosystem might be at risk. The V. fischeri and T. platyurus are two species that should be used in the acute bioassays for the ecotoxicological monitoring programs of this reservoir. It is recommended that other species, such as a productive organism (algae), be included in the next study, once the water reservoir had high levels of herbicides. Ecotoxicological assessment of surface water must integrate initial screening based on acute tests followed always by chronic bioassays. The results implicitly suggest that the implementation of processes of remediation by reducing pollutant input into the reservoir and by the implementation of water treatment processes is important and necessary.

  17. Unwrapping 3D complex hollow organs for spatial dose surface analysis.

    PubMed

    Witztum, A; George, B; Warren, S; Partridge, M; Hawkins, M A

    2016-11-01

    Toxicity dose-response models describe the correlation between dose delivered to an organ and a given toxic endpoint. Duodenal toxicity is a dose limiting factor in the treatment of pancreatic cancer with radiation but the relationship between dose and toxicity in the duodenum is not well understood. While there have been limited studies into duodenal toxicity through investigations of the volume of the organ receiving dose over a specific threshold, both dose-volume and dose-surface histograms lack spatial information about the dose distribution, which may be important in determining normal tissue response. Due to the complex geometry of the duodenum, previous methods for unwrapping tubular organs for spatial modeling of toxicity are insufficient. A geometrically robust method for producing 2D dose surface maps (DSMs), specifically for the duodenum, has been developed and tested in order to characterize the spatial dose distribution. The organ contour is defined using Delaunay triangulation. The user selects a start and end coordinate in the structure and a path is found by regulating both length and curvature. This path is discretized and rays are cast from each point on the plane normal to the vector between the previous and the next point on the path and the dose at the closest perimeter point recorded. These angular perimeter slices are "unwrapped" from the edge distal to the pancreas to ensure the high dose region (proximal to the tumor) falls in the centre of the dose map. Gamma analysis is used to quantify the robustness of this method and the effect of overlapping planes. This method was used to extract DSMs for 15 duodena, with one esophagus case to illustrate the application to simpler geometries. Visual comparison indicates that a 30 × 30 map provides sufficient resolution to view gross spatial features of interest. A lookup table is created to store the area (cm 2 ) represented by each pixel in the DSMs in order to allow spatial descriptors in absolute size. The method described in this paper is robust, requires minimal human interaction, has been shown to be generalizable to simpler geometries, and uses readily available commercial software. The difference seen in DSMs due to overlapping planes is large and justifies the need for a solution that removes such planes. This is the first time 2D dose surface maps have been produced for the duodenum and provide spatial dose distribution information which can be explored to create models that may improve toxicity prediction in treatments for locally advanced pancreatic cancer.

  18. [Sequential course and prospective management of ifosfamide-induced multi-organ toxicity].

    PubMed

    Mollenkopf, A; du Bois, A; Meerpohl, H G

    1996-10-01

    We report on an 66-year old female in whom we diagnosed uterine carcinosarcoma and concurrent breast cancer. As first-line treatment the patient received ifosfamide 4.8 mg/m2 body surface. During her second course of chemotherapy she developed sequentially life-threatening toxicities; severe emesis followed by nephrotoxicity, neurotoxicity and myelosuppression. Early prophylactic administration of rhG-CSF (Filgrastim) helped to overcome severe, potentially fatal myelosuppression. The course of severe toxicities following high doses of ifosfamide might reflect a dependent sequence, where one organ failure causes a subsequent organ failure. Prophylactic treatment of anticipated toxicity should be considered for the management of severe ifosfamide-induced toxicity. Such treatment may consist of sufficient antiemesis, sufficient hydration, as well as a therapy with methylene blue in case of severe neurotoxicity.

  19. 75 FR 48409 - Establishment of the Toxic by Inhalation Hazard Common Carrier Transportation Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. EP 698] Establishment of the... (FACA), 5 U.S.C. app., the Surface Transportation Board hereby gives notice that, following consultation... original and 10 copies to: Surface Transportation Board, Attn: STB Ex Parte No. 698, 395 E Street, SW...

  20. Toxicity of carbon nanotubes: A review.

    PubMed

    Francis, Arul Prakash; Devasena, Thiyagarajan

    2018-03-01

    Carbon nanotubes (CNTs) are widely used in the aerospace, automotive, and electronics industries because of their stability, enhanced metallic, and electrical properties. CNTs are also being investigated for biomedical applications such as drug delivery systems and biosensors. However, the toxic potential of CNTs was reported in various cell lines and animal models. The toxicity depends on diverse properties of the CNTs, such as length, aspect ratio, surface area, degree of aggregation, purity, concentration, and dose. In addition, CNTs and/or associated contaminants were well known for oxidative stress, inflammation, apoptosis, pulmonary inflammation, fibrosis, and granuloma in lungs. The increased production of CNTs likely enhanced the possibility of its exposure in people. Studies on the toxicity of CNTs are mainly focused on the pulmonary effects after intratracheal administration, and only a few studies are reported about the toxicity of CNTs via other routes of exposure. So, it is essential to consider the chronic toxicity of CNTs before using them for various biomedical applications. This review focuses on the potential toxicities of CNTs.

  1. Control of laser-ablated aluminum surface wettability to superhydrophobic or superhydrophilic through simple heat treatment or water boiling post-processing

    NASA Astrophysics Data System (ADS)

    Ngo, Chi-Vinh; Chun, Doo-Man

    2018-03-01

    Recently, controlling the wettability of a metallic surface so that it is either superhydrophobic or superhydrophilic has become important for many applications. However, conventional techniques require long fabrication times or involve toxic chemicals. Herein, through a combination of pulse laser ablation and simple post-processing, the surface of aluminum was controlled to either superhydrophobic or superhydrophilic in a short time of only a few hours. In this study, grid patterns were first fabricated on aluminum using a nanosecond pulsed laser, and then additional post-processing without any chemicals was used. Under heat treatment, the surface became superhydrophobic with a contact angle (CA) greater than 150° and a sliding angle (SA) lower than 10°. Conversely, when immersed in boiling water, the surface became superhydrophilic with a low contact angle. The mechanism for wettability change was also explained. The surfaces, obtained in a short time with environmentally friendly fabrication and without the use of toxic chemicals, could potentially be applied in various industry and manufacturing applications such as self-cleaning, anti-icing, and biomedical devices.

  2. Cell-based Metabolomics for Assessing Chemical Exposure and Toxicity of Environmental Surface Waters

    EPA Science Inventory

    Waste water treatment plants (WWTPs), concentrated animal feeding operations (CAFOs), mining activities, and agricultural operations release contaminants that negatively affect surface water quality. Traditional methods using live animals/fish to monitor/assess contaminant exposu...

  3. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.

    PubMed

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile.

  4. Electrostatic lipid-protein interactions sequester the curli amyloid fold on the lipopolysaccharide membrane surface.

    PubMed

    Swasthi, Hema M; Mukhopadhyay, Samrat

    2017-12-01

    Curli is a functional amyloid protein in the extracellular matrix of enteric Gram-negative bacteria. Curli is assembled at the cell surface and consists of CsgA, the major subunit of curli, and a membrane-associated nucleator protein, CsgB. Oligomeric intermediates that accumulate during the lag phase of amyloidogenesis are generally toxic, but the underlying mechanism by which bacterial cells overcome this toxicity during curli assembly at the surface remains elusive. Here, we elucidated the mechanism of curli amyloidogenesis and provide molecular insights into the strategy by which bacteria can potentially bypass the detrimental consequences of toxic amyloid intermediates. Using a diverse range of biochemical and biophysical tools involving circular dichroism, fluorescence, Raman spectroscopy, and atomic force microscopy imaging, we characterized the molecular basis of the interaction of CsgB with a membrane-mimetic anionic surfactant as well as with lipopolysaccharide (LPS) constituting the outer leaflet of Gram-negative bacteria. Aggregation studies revealed that the electrostatic interaction of the positively charged C-terminal region of the protein with a negatively charged head group of surfactant/LPS promotes a protein-protein interaction that results in facile amyloid formation without a detectable lag phase. We also show that CsgB, in the presence of surfactant/LPS, accelerates the fibrillation rate of CsgA by circumventing the lag phase during nucleation. Our findings suggest that the electrostatic interactions between lipid and protein molecules play a pivotal role in efficiently sequestering the amyloid fold of curli on the membrane surface without significant accumulation of toxic oligomeric intermediates. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Species-specific toxicity of major ion salts 1: Fathead minnows and pond snails

    EPA Science Inventory

    Elevated major ion concentrations (Na, K, Ca, Mg, Cl, SO4, HCO3) have been recognized as a cause of surface water impairment and the toxicity of these major ions has been shown to be dependent on the specific ion composition of the water. A long-term research project was initiate...

  6. Species-specific toxicity of major ion salts 2: Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans

    EPA Science Inventory

    Elevated major ion concentrations (Na, K, Ca, Mg, Cl, SO4, HCO3) have been recognized as a cause of surface water impairment and the toxicity of these major ions has been shown to be dependent on the specific ion composition of the water. A long-term research project was initiate...

  7. Teachers' Perceptions of Infusion of Values in Science Lessons: a Qualitative Study

    NASA Astrophysics Data System (ADS)

    Kumarassamy, Jayanthy; Koh, Caroline

    2017-06-01

    Much has been written and debated on the importance of including moral, character or values education in school curricula. In line with this, teachers' views with regard to values education have often been sought. However, a search into the literature on values in science education has revealed little on this domain. In an attempt to close this gap, this study explored the views of teachers with regard to values infusion in the teaching of science. The aim was to investigate teachers' perceptions on two broad areas: (i) how values were infused or addressed in lower secondary science and (ii) how values-infused science lessons influenced their students' dispositions and actions. The participants who took part in the interviews were lower secondary science teachers teaching Grade 8 in selected Singapore and New Delhi schools. The findings showed that values inherent in the discipline of science, such as validity, fairness, honesty, rigour, predominated in the lessons conducted by the teachers in both contexts. Furthermore, in Singapore, equal numbers of teachers made references to values upheld and practised by scientists and values arising from the interplay between people and scientific processes and products. In New Delhi however, the emphasis was higher on the latter category of values than on the former. Generally, in both contexts, values infusion in science lessons was not planned but occurred spontaneously as values issues surfaced in class. Teachers in both Singapore and New Delhi used strategies such as questioning, discussion, activities and direct instructions to carry out values infusion, although they experienced challenges that included content and time constraints, lack of student readiness and of teacher competency. Nevertheless, the teachers interviewed perceived that values in science lessons brought about changes in students' personal attributes, affect and behaviour, such as greater interest and prosocial engagement.

  8. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells

    NASA Astrophysics Data System (ADS)

    Murali, Kumarasamy; Kenesei, Kata; Li, Yang; Demeter, Kornél; Környei, Zsuzsanna; Madarász, Emilia

    2015-02-01

    Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the role of the chemical composition of particle surfaces in the in vitro interaction with different neural cell types. PS NPs within a size-range of 45-70 nm influenced the metabolic activity of cells depending on the cell-type, but caused toxicity only at extremely high particle concentrations. Neurons did not internalize particles, while microglial cells ingested a large amount of carboxylated but almost no PEGylated NPs. PEGylation reduced the protein adsorption, toxicity and cellular uptake of NPs. After storage (shelf-life >6 months), the toxicity and cellular uptake of NPs increased. The altered biological activity of ``aged'' NPs was due to particle aggregation and due to the adsorption of bioactive compounds on NP surfaces. Aggregation by increasing the size and sedimentation velocity of NPs results in increased cell-targeted NP doses. The ready endotoxin adsorption which cannot be prevented by PEG coating, can render the particles toxic. The age-dependent changes in otherwise harmless NPs could be the important sources for variability in the effects of NPs, and could explain the contradictory data obtained with ``identical'' NPs.Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the role of the chemical composition of particle surfaces in the in vitro interaction with different neural cell types. PS NPs within a size-range of 45-70 nm influenced the metabolic activity of cells depending on the cell-type, but caused toxicity only at extremely high particle concentrations. Neurons did not internalize particles, while microglial cells ingested a large amount of carboxylated but almost no PEGylated NPs. PEGylation reduced the protein adsorption, toxicity and cellular uptake of NPs. After storage (shelf-life >6 months), the toxicity and cellular uptake of NPs increased. The altered biological activity of ``aged'' NPs was due to particle aggregation and due to the adsorption of bioactive compounds on NP surfaces. Aggregation by increasing the size and sedimentation velocity of NPs results in increased cell-targeted NP doses. The ready endotoxin adsorption which cannot be prevented by PEG coating, can render the particles toxic. The age-dependent changes in otherwise harmless NPs could be the important sources for variability in the effects of NPs, and could explain the contradictory data obtained with ``identical'' NPs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06849a

  9. Comparative Toxicity of Preservatives on Immortalized Corneal and Conjunctival Epithelial Cells

    PubMed Central

    Ahdoot, Michael; Marcus, Edward; Asbell, Penny A.

    2009-01-01

    Abstract Purpose Nearly all eye drops contain preservatives to decrease contamination. Nonpreservatives such as disodium-ethylene diamine tetra-acetate (EDTA) and phosphate-buffered saline are also regularly added as buffering agents. These components can add to the toxicity of eye drops and cause ocular surface disease. To evaluate the potential toxicity of these common components and their comparative effects on the ocular surface, a tissue culture model utilizing immortalized corneal and conjunctival epithelial cells was utilized. Methods Immortalized human conjunctival and corneal epithelial cells were grown. At confluency, medium was replaced with 100 μL of varying concentrations of preservatives: benzalkonium chloride (BAK), methyl paraben (MP), sodium perborate (SP), chlorobutanol (Cbl), and stabilized thimerosal (Thi); varying concentrations of buffer: EDTA; media (viable control); and formalin (dead control). After 1 h, solutions were replaced with 150 μL of MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazonium bromide). After 4 h, solutions decanted, 100 μL of acid isopropanol added, and the optical density determined at 572 nm to evaluate cell viability. Results Conjunctival and corneal cell toxicity was seen with all preservatives. Depending upon concentration, BAK exhibited from 56% to 89% toxicity. In comparison, Cbl exhibited from 50% to 86%, MP from 30% to 76%, SP from 23% to 59%, and Thi from 70% to 95%. EDTA with minimal toxicity (from 6% to 59%) was indistinguishable from SP. Conclusions Generally, the order of decreasing toxicity at the most commonly used concentrations: Thi (0.0025%) > BAK (0.025%) > Cbl (0.25%) > MP (0.01%) > SP (0.0025%) ≈ EDTA (0.01%). Even at low concentration, these agents will cause some degree of ocular tissue damage. PMID:19284328

  10. Lean body mass as an independent determinant of dose-limiting toxicity and neuropathy in patients with colon cancer treated with FOLFOX regimens.

    PubMed

    Ali, Raafi; Baracos, Vickie E; Sawyer, Michael B; Bianchi, Laurent; Roberts, Sarah; Assenat, Eric; Mollevi, Caroline; Senesse, Pierre

    2016-04-01

    Evidence suggests that lean body mass (LBM) may be useful to normalize chemotherapy doses. Data from one prospective and one retrospective study were used to determine if the highest doses of oxaliplatin/kg LBM within FOLFOX regimens would be associated with dose-limiting toxicity (DLT) in colon cancer patients. Toxicity over four cycles was graded according to NCI Common Toxicity Criteria V2 or V3 (Common Terminology Criteria for Adverse Events, National Cancer Institute, Bethesda, MD). Muscle tissue was measured by computerized tomography (CT) and used to evaluate the LBM compartment of the whole body. In prospective randomized clinical trials conducted in France (n = 58), for patients given FOLFOX-based regimens according to body surface area, values of oxaliplatin/kg LBM were highly variable, ranging from 2.55 to 6.6 mg/kg LBM. A cut point of 3.09 mg oxaliplatin/kg LBM for developing toxicity was determined by Receiver Operating Characteristic (ROC) analysis, below this value 0/17 (0.0%) of patients experienced DLT; in contrast above this value 18/41 (44.0%) of patients were dose reduced or had treatment terminated owing to toxicity (≥Grade 3 or neuropathy ≥Grade 2); for 9/41 the DLT was sensory neuropathy. These findings were validated in an independent cohort of colon cancer patients (n = 80) receiving FOLFOX regimens as part of standard care, in Canada. Low LBM is a significant predictor of toxicity and neuropathy in patients administered FOLFOX-based regimens using conventional body surface area (BSA) dosing. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  11. Leachates draining from controlled municipal solid waste landfill: Detailed geochemical characterization and toxicity tests.

    PubMed

    Mavakala, Bienvenu K; Le Faucheur, Séverine; Mulaji, Crispin K; Laffite, Amandine; Devarajan, Naresh; Biey, Emmanuel M; Giuliani, Gregory; Otamonga, Jean-Paul; Kabatusuila, Prosper; Mpiana, Pius T; Poté, John

    2016-09-01

    Management of municipal solid wastes in many countries consists of waste disposal into landfill without treatment or selective collection of solid waste fractions including plastics, paper, glass, metals, electronic waste, and organic fraction leading to the unsolved problem of contamination of numerous ecosystems such as air, soil, surface, and ground water. Knowledge of leachate composition is critical in risk assessment of long-term impact of landfills on human health and the environment as well as for prevention of negative outcomes. The research presented in this paper investigates the seasonal variation of draining leachate composition and resulting toxicity as well as the contamination status of soil/sediment from lagoon basins receiving leachates from landfill in Mpasa, a suburb of Kinshasa in the Democratic Republic of the Congo. Samples were collected during the dry and rainy seasons and analyzed for pH, electrical conductivity, dissolved oxygen, soluble ions, toxic metals, and were then subjected to toxicity tests. Results highlight the significant seasonal difference in leachate physicochemical composition. Affected soil/sediment showed higher values for toxic metals than leachates, indicating the possibility of using lagoon system for the purification of landfill leachates, especially for organic matter and heavy metal sedimentation. However, the ecotoxicity tests demonstrated that leachates are still a significant source of toxicity for terrestrial and benthic organisms. Therefore, landfill leachates should not be discarded into the environment (soil or surface water) without prior treatment. Interest in the use of macrophytes in lagoon system is growing and toxic metal retention in lagoon basin receiving systems needs to be fully investigated in the future. This study presents useful tools for evaluating landfill leachate quality and risk in lagoon systems which can be applied to similar environmental compartments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Cytogenetic evaluation of gold nanorods using Allium cepa test.

    PubMed

    Rajeshwari, A; Roy, Barsha; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2016-12-01

    The current study reveals the impact of gold nanorods (NRs) capped with CTAB (cetyltrimethylammonium bromide) or PEG (polyethylene glycol) on Allium cepa. The morphology and surface charge of CTAB- and PEG-capped gold NRs were characterized by electron microscopic and zeta potential analyses. The chromosomal aberrations like clumped chromosome, chromosomal break, chromosomal bridge, diagonal anaphase, disturbed metaphase, laggard chromosome, and sticky chromosome were observed in the root tip cells exposed to different concentrations (0.1, 1, and 10 μg/mL) of CTAB- and PEG-capped gold NRs. We found that both CTAB- and PEG-capped gold NRs were able to induce toxicity in the plant system after 4-h interaction. At a maximum concentration of 10 μg/mL, the mitotic index reduction induced by CTAB-capped gold NRs was 40-fold higher than that induced by PEG-capped gold NRs. The toxicity of gold NRs was further confirmed by lipid peroxidation and oxidative stress analyses. The unbound CTAB also contributed to the toxicity in root tip cells, while PEG alone shows less toxicity to the cells. The vehicle control CTAB contributed to the toxic effects in root tip cells, while PEG alone did not show any toxicity to the cells. The results revealed that even though both the particles have adverse effects on A. cepa, there was a significant difference in the mitotic index and oxidative stress generation in root cells exposed to CTAB-capped gold NRs. Thus, this study concludes that the surface polymerization of gold NRs by PEG can reduce the toxicity of CTAB-capped gold NRs. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish (Danio rerio) embryogenesis.

    PubMed

    Mal, Joyabrata; Veneman, Wouter J; Nancharaiah, Y V; van Hullebusch, Eric D; Peijnenburg, Willie J G M; Vijver, Martina G; Lens, Piet N L

    2017-02-01

    Microbial reduction of selenium (Se) oxyanions to elemental Se is a promising technology for bioremediation and treatment of Se wastewaters. But a fraction of biogenic nano-Selenium (nano-Se b ) formed in bioreactors remains suspended in the treated waters, thus entering the aquatic environment. The present study investigated the toxicity of nano-Se b formed by anaerobic granular sludge biofilms on zebrafish embryos in comparison with selenite and chemogenic nano-Se (nano-Se c ). The nano-Se b formed by granular sludge biofilms showed a LC 50 value of 1.77 mg/L, which was 3.2-fold less toxic to zebrafish embryos than selenite (LC 50  =   0.55 mg/L) and 10-fold less toxic than bovine serum albumin stabilized nano-Se c (LC 50  =   0.16 mg/L). Smaller (nano-Se cs ; particle diameter range: 25-80 nm) and larger (nano-Se cl ; particle diameter range: 50-250 nm) sized chemically synthesized nano-Se c particles showed comparable toxicity on zebrafish embryos. The lower toxicity of nano-Se b in comparison with nano-Se c was analyzed in terms of the stabilizing organic layer. The results confirmed that the organic layer extracted from the nano-Se b consisted of components of the extracellular polymeric substances (EPS) matrix, which govern the physiochemical stability and surface properties like ζ-potential of nano-Se b . Based on the data, it is contented that the presence of humic acid like substances of EPS on the surface of nano-Se b plays a major role in lowering the bioavailability (uptake) and toxicity of nano-Se b by decreasing the interactions between nanoparticles and embryos.

  14. Science Operations Development for Field Analogs: Lessons Learned from the 2010 Desert RATS Test

    NASA Technical Reports Server (NTRS)

    Eppler, D. B.; Ming, D. W.

    2011-01-01

    Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. Conducted since 1997, these activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable. Such activities not only test vehicle subsystems through extended rough-terrain driving, they also stress communications and operations systems and allow testing of science operations approaches to advance human and robotic surface capabilities.

  15. Pulmonary Toxicity Studies of Lunar Dusts in Rodents

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-wing; James, John T.; Taylor, Larry

    2008-01-01

    NASA will build an outpost on the lunar surface for long-duration human habitation and research. The surface of the Moon is covered by a layer of fine, reactive dust, and the living quarters in the lunar outpost are expected to be contaminated by lunar dust. NASA established the Lunar Airborne Dust Toxicity Advisory Group (LADTAG) to evaluate the risk of exposure to the dust and to establish safe exposure limits for astronauts working in the lunar habitat. Because the toxicity of lunar dust is not known, LADTAG has recommended investigating its toxicity in the lungs of laboratory animals. After receiving this recommendation, NASA directed the JSC Toxicology Laboratory to determine the pulmonary toxicity of lunar dust in exposed rodents. The rodent pulmonary toxicity studies proposed here are the same as those proposed by the LADTAG. Studies of the pulmonary toxicity of a dust are generally done first in rodents by intratracheal instillation (ITI). This toxicity screening test is then followed by an inhalation study, which requires much more of the test dust and is labor intensive. We succeeded in completing an ITI study on JSC-1 lunar dust simulant in mice (Lam et al., Inhalation Toxicology 14:901-916, 2002, and Inhalation Toxicology 14: 917-928, 2002), and have conducted a pilot ITI study to examine the acute toxicity of an Apollo lunar (highland) dust sample. Preliminary results obtained by examining lung lavage fluid from dust-treated mice show that lunar dust was somewhat toxic (more toxic than TiO2, but less than quartz dust). More extensive studies have been planned to further examine lung lavage fluid for biomarkers of toxicity and lung tissues for histopathological lesions in rodents exposed to aged and activated lunar dust samples. In these studies, reference dusts (TiO2 and quartz) of known toxicities and have industrial exposure limits will be studied in parallel so the relative toxicity of lunar dust can be determined. The ITI results will also be useful for choosing an exposure concentration for the animal inhalation study on a selected lunar dust sample, which is included as a part of this proposal. The animal inhalation exposure will be conducted with lunar dust simulant prior to the study with the lunar dust. The simulant exposure will ensure that the study techniques used with actual lunar dust will be successful. The results of ITI and inhalation studies will reveal the toxicological risk of exposures and are essential for setting exposure limits on lunar dust for astronauts living in the lunar habitat.

  16. Estimating Causal Effects of Education Interventions Using a Two-Rating Regression Discontinuity Design: Lessons from a Simulation Study

    ERIC Educational Resources Information Center

    Porter, Kristin E.; Reardon, Sean F.; Unlu, Fatih; Bloom, Howard S.; Robinson-Cimpian, Joseph P.

    2014-01-01

    A valuable extension of the single-rating regression discontinuity design (RDD) is a multiple-rating RDD (MRRDD). To date, four main methods have been used to estimate average treatment effects at the multiple treatment frontiers of an MRRDD: the "surface" method, the "frontier" method, the "binding-score" method, and…

  17. Diving beneath the Surface: Underwater Robotics Lessons Bring STEM to Life for Teachers in Guam

    ERIC Educational Resources Information Center

    Tweed, Anne; Arndt, Laura

    2017-01-01

    In spring 2014, education leaders from across Micronesia came together on the island of Guam to learn about underwater robotics and Marine Advanced Technology Education (MATE), a program based at Monterey Peninsula College in Monterey, California. Participants listened intently as they learned about building and participating in competitions with…

  18. Geometry and the Design of Product Packaging

    ERIC Educational Resources Information Center

    Cherico, Cindy M.

    2011-01-01

    The most common question the author's students ask is, "When will I ever use this in real life?" To address this question in her geometry classes, the author sought to create a project that would incorporate a real-world business situation with their lesson series on the surface area and volume of three-dimensional objects--specifically, prisms,…

  19. Replacement of ozone depleting and toxic chemicals in gravimetric analysis of non-volatile residue

    NASA Technical Reports Server (NTRS)

    Arnold, G. S.; Uht, J. C.; Sinsheimer, F. B.

    1995-01-01

    The standard tests for determining nonvolatile residue accretion on spacecraft surfaces and in clean processing facilities rely on the use of halogenated solvents that are targeted for elimination because of their toxic or ozone-depleting natures. This paper presents a literature-based screening survey for candidate replacement solvents. Potential replacements were evaluated for their vapor pressure, toxicity, and solvent properties. Three likely candidates were identified: ethyl acetate, methyl acetate, and acetone. Laboratory tests are presented that evaluate the suitability of these candidate replacement solvents.

  20. Cell-based metabolomics for assessing chemical exposure and toxicity of environmental surface waters (presentation)

    EPA Science Inventory

    Introduction: Waste water treatment plants (WWTPs), concentrated animal feeding operations (CAFOs), mining activities, and agricultural operations release contaminants that negatively affect surface water quality. Traditional methods using live animals (e.g. fish) to monitor/as...

  1. New anti fouling coatings based on conductive polymers.

    DOT National Transportation Integrated Search

    2009-10-01

    Traditional antifouling paints were designed to release toxins from the surface of the paint to prevent micro-organisms attaching to the surface. The toxicity of the released chemical species has been found to be damaging to the marine ecology and po...

  2. 40 CFR 761.372 - Specific requirements for relatively clean surfaces.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Specific requirements for relatively clean surfaces. 761.372 Section 761.372 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING...

  3. Design of selective nuclear receptor modulators: RAR and RXR as a case study.

    PubMed

    de Lera, Angel R; Bourguet, William; Altucci, Lucia; Gronemeyer, Hinrich

    2007-10-01

    Retinoic acid receptors (RARs) and retinoid X receptors (RXRs) are members of the nuclear receptor superfamily whose effects on cell growth and survival can be modulated therapeutically by small-molecule ligands. Although compounds that target these receptors are powerful anticancer drugs, their use is limited by toxicity. An improved understanding of the structural biology of RXRs and RARs and recent advances in the chemical synthesis of modified retinoid and rexinoid ligands should enable the rational design of more selective agents that might overcome such problems. Here, we review structural data for RXRs and RARs, discuss strategies in the design of selective RXR and RAR modulators, and consider lessons that can be learned for the design of selective nuclear-receptor modulators in general.

  4. Temporary Urine and Brine Stowage System (TUBSS) Development

    NASA Technical Reports Server (NTRS)

    Dries, Kevin; Carrigan, Caitlin

    2011-01-01

    International Space Station (ISS) crew liquid human waste is treated with chromic and sulfuric acids to maintain stability prior to processing to recover water. This pre-treated urine (PTU) and its processed by-product, brine, are highly toxic fluids that require special containment for on-orbit stowage. The temporary urine and brine stowage syste m (TUBSS) is an assembly used to store and transfer pre-treated urine (PTU) and brine for processing or disposal at a later date. This paper describes the development of the TUBSS, including design for two-fault tolerance and materials selection to maintain a soft, collapsible container. In addition, this paper will provide results of testing as well as lessons learned from the project, culminating in the successful launch of the hardware.

  5. The clinical development of p53-reactivating drugs in sarcomas - charting future therapeutic approaches and understanding the clinical molecular toxicology of Nutlins.

    PubMed

    Biswas, Swethajit; Killick, Emma; Jochemsen, Aart G; Lunec, John

    2014-05-01

    The majority of human sarcomas, particularly soft tissue sarcomas, are relatively resistant to traditional cytotoxic therapies. The proof-of-concept study by Ray-Coquard et al., using the Nutlin human double minute (HDM)2-binding antagonist RG7112, has recently opened a new chapter in the molecular targeting of human sarcomas. In this review, the authors discuss the challenges and prospective remedies for minimizing the significant haematological toxicities of the cis-imidazole Nutlin HDM2-binding antagonists. Furthermore, they also chart the future direction of the development of p53-reactivating (p53-RA) drugs in 12q13-15 amplicon sarcomas and as potential chemopreventative therapies against sarcomagenesis in germ line mutated TP53 carriers. Drawing lessons from the therapeutic use of Imatinib in gastrointestinal tumours, the authors predict the potential pitfalls, which may lie in ahead for the future clinical development of p53-RA agents, as well as discussing potential non-invasive methods to identify the development of drug resistance. Medicinal chemistry strategies, based on structure-based drug design, are required to re-engineer cis-imidazoline Nutlin HDM2-binding antagonists into less haematologically toxic drugs. In silico modelling is also required to predict toxicities of other p53-RA drugs at a much earlier stage in drug development. Whether p53-RA drugs will be therapeutically effective as a monotherapy remains to be determined.

  6. The chemical environment of iron in mineral fibres. A combined X-ray absorption and Mössbauer spectroscopic study.

    PubMed

    Pollastri, Simone; D'Acapito, Francesco; Trapananti, Angela; Colantoni, Ivan; Andreozzi, Giovanni B; Gualtieri, Alessandro F

    2015-11-15

    Although asbestos represents today one of the most harmful contaminant on Earth, in 72% of the countries worldwide only amphiboles are banned while controlled use of chrysotile is allowed. Uncertainty on the potential toxicity of chrysotile is due to the fact that the mechanisms by which mineral fibres induces cyto- and geno-toxic damage are still unclear. We have recently started a long term project aimed at the systematic investigation of the crystal-chemistry, bio-interaction and toxicity of the mineral fibres. This work presents a systematic structural investigation of iron in asbestos and erionite (considered the most relevant mineral fibres of social and/or economic-industrial importance) using synchrotron X-ray absorption and Mössbauer spectroscopy. In all investigated mineral fibres, iron in the bulk structure is found in octahedral sites and can be made available at the surface via fibre dissolution. We postulate that the amount of hydroxyl radicals released by the fibers depends, among other factors, upon their dissolution rate; in relation to this, a ranking of ability of asbestos fibres to generate hydroxyl radicals, resulting from available surface iron, is advanced: amosite > crocidolite ≈ chrysotile > anthophyllite > tremolite. Erionite, with a fairly high toxicity potential, contains only octahedrally coordinated Fe(3+). Although it needs further experimental evidence, such available surface iron may be present as oxide nanoparticles coating and can be a direct cause of generation of hydroxyl radicals when such coating dissolves. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. SEM-EDS-Based Elemental Identification on the Enamel Surface after the Completion of Orthodontic Treatment: In Vitro Studies

    PubMed Central

    Seeliger, Julia; Lipski, Mariusz; Wójcicka, Anna; Gedrange, Tomasz; Woźniak, Krzysztof

    2016-01-01

    Braces as foreign bodies in the mouth carry a risk of side effects and toxicity to the human body. This article presents the results indicating the possible toxic effects of tools used for cleaning the enamel after the completion of orthodontic treatment. The studies were carried out in vitro. The procedure of enamel etching, bonding orthodontic metal brackets, and enamel cleaning after their removal was performed under laboratory conditions. The enamel microstructure and elements present on its surface were evaluated using the scanning electron microscope (SEM). Silicon and aluminium were found in addition to the tooth building elements. PMID:27766265

  8. Reviews of the toxicity behavior of five potential engineered nanomaterials (ENMs) into the aquatic ecosystem.

    PubMed

    Jahan, Shanaz; Yusoff, Ismail Bin; Alias, Yatimah Binti; Bakar, Ahmad Farid Bin Abu

    2017-01-01

    Presently, engineered nanomaterials (ENMs) are used in a wide variety of commercial applications, resulting in an uncontrolled introduction into the aquatic environment. The purpose of this review is to summarize the pathways and factors that controlling the transport and toxicity of five extensively used ENMs. These toxicological pathways are of great importance and need to be addressed for sustainable implications of ENMs without environmental liabilities. Here we discuss five potentially utilized ENMs with their possible toxicological risk factors to aquatic plants, vertebrates model and microbes. Moreover, the key effect of ENMs surface transformations by significant reaction with environmental objects such as dissolved natural organic matter (DOM) and the effect of ENMs surface coating and surface charge will also be debated. The transformations of ENMs are subsequently facing a major ecological transition that is expected to create a substantial toxicological effect towards the ecosystem. These transformations largely involve chemical and physical processes, which depend on the properties of both ENMs and the receiving medium. In this review article, the critical issues that controlling the transport and toxicity of ENMs are reviewed by exploiting the latest reports and future directions and targets are keenly discussed to minimize the pessimistic effects of ENMs.

  9. Huygens Highlights and lessons learned

    NASA Astrophysics Data System (ADS)

    Lebreton, Jean-Pierre

    2015-04-01

    Ten years ago, on 14 January 2005, the Huygens Probe parachuted down to the surface of Titan, Saturn's largest moon. Huygens is part of the international Cassini/Huygens mission, a joint endeavor of NASA, the European Space Agency, and Agenzia Spaziale Italiana. Cassini/Huygens, comprising the NASA-provided Saturn Orbiter and the ESA-provided Huygens probe, was launched in October 1997. It arrived at Saturn in early July 2004. Huygens was released on the 3rd orbit around Saturn. It made measurements during the hypersonic entry, the descent, and for more than one hour on the surface. Unique in situ characterization of the atmosphere along the entry and descent trajectory and of the surface at the landing site was provided, revealing that many Earth-like processes were at work on Titan, a very fascinating methane world. Huygens observations also allowed inferring the ice crust thickness, hence an estimation of the depth of the icy crust/liquid water ocean interface. Huygens measurements are also used as ground-truth of the measurements made by the orbiter during Titan flybys. In this presentation, after a brief review of the major mission milestones, Huygens achievements are discussed in the context of the progress made in our understanding of Titan during the Cassini/Huygens mission. Lessons learned for the future in situ exploration of Titan are addressed. * Most of this work was performed while at ESA/ESTEC, Noordwijk, The Netherlands

  10. Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity

    PubMed Central

    Gunsolus, Ian L.; Mousavi, Maral P. S.; Hussein, Kadir; Bühlmann, Philippe; Haynes, Christy L.

    2015-01-01

    The colloidal stability of silver nanoparticles (AgNPs) in natural aquatic environments influences their transport and environmental persistence, while their dissolution to Ag+ influences their toxicity to organisms. Here, we characterize the colloidal stability, dissolution behavior, and toxicity of two industrially relevant classes of AgNPs (i.e., AgNPs stabilized by citrate or polyvinylpyrrolidone) after exposure to natural organic matter (NOM, i.e., Suwannee River Humic and Fulvic Acid Standards and Pony Lake Fulvic Acid Reference). We show that NOM interaction with the nanoparticle surface depends on (i) the NOM’s chemical composition, where sulfur- and nitrogen-rich NOM more significantly increases colloidal stability, and (ii) the affinity of the capping agent for the AgNP surface, where nanoparticles with loosely bound capping agents are more effectively stabilized by NOM. Adsorption of NOM is shown to have little effect on AgNP dissolution under most experimental conditions, the exception being when the NOM is rich in sulfur and nitrogen. Similarly, the toxicity of AgNPs to a bacterial model (Shewanella oneidensis MR-1) decreases most significantly in the presence of sulfur- and nitrogen-rich NOM. Our data suggest that the rate of AgNP aggregation and dissolution in aquatic environments containing NOM will depend on the chemical composition of the NOM, and that the toxicity of AgNPs to aquatic microorganisms is controlled primarily by the extent of nanoparticle dissolution. PMID:26047330

  11. Abiotic Degradation and Toxicological Impacts of Pharmaceuticals and Personal Care Products (PPCPs) in Surface Waters: Roles of Mineral Sediments and Solar Radiation

    NASA Astrophysics Data System (ADS)

    Rubasinghege, G. R. S.; Rijal, H.; Maldonado-Torres, S.; Gurung, R.; Rogelj, S.; Piyasena, M.

    2017-12-01

    The growing medical and personal needs of human populations have escalated release of pharmaceuticals and personal care products into surface waters. This work investigates abiotic degradation pathways of a particular PPCP, ibuprofen, in the presence of a major mineral component of sedimentation (kaolinite clay), as well as the health effects of the primary compound and its degradation products. Results from these studies showed that the rate and extent of ibuprofen degradation is greatly influenced by the presence of sedimentation particles and solar radiation. In the absence of solar radiation, the dominant reaction mechanism was observed to be the adsorption of ibuprofen onto sedimentation particle surface where surface silanol groups play a key role. In contrast, under solar radiation and in the presence of clay particles, ibuprofen breaks down to several fractions. The decay rates were at least 6-fold higher for irradiated samples compared to those of dark conditions. Toxicity of primary ibuprofen and its secondary residues were tested on three microorganisms: Bacillus megaterium, Pseudoaltermonas atlantica; and algae from the Chlorella genus. The results from the biological assays show that primary PPCP is more toxic than the mixture of secondary products. Overall, however, biological assays carried out using only 4-acetylbenzoic acid, the most abundant secondary product, show a higher toxic effect on algae compared to its parent compound.

  12. Towards Mechanistic Understanding of Mercury Availability and Toxicity to Aquatic Primary Producers.

    PubMed

    Dranguet, Perrine; Flück, Rebecca; Regier, Nicole; Cosio, Claudia; Le Faucheur, Séverine; Slaveykova, Vera I

    2014-11-01

    The present article reviews current knowledge and recent progress on the bioavailability and toxicity of mercury to aquatic primary producers. Mercury is a ubiquitous toxic trace element of global concern. At the base of the food web, primary producers are central for mercury incorporation into the food web. Here, the emphasis is on key, but still poorly understood, processes governing the interactions between mercury species and phytoplankton, and macrophytes, two representatives of primary producers. Mass transfer to biota surface, adsorption to cell wall, internalization and release from cells, as well as underlying toxicity mechanisms of both inorganic mercury and methylmercury are discussed critically. In addition, the intracellular distribution and transformation processes, their importance for mercury toxicity, species-sensitivity differences and trophic transfer are presented. The mini-review is illustrated with examples of our own research.

  13. Controlled artificial upwelling in a fjord to combat toxic algae

    NASA Astrophysics Data System (ADS)

    McClimans, T. A.; Hansen, A. H.; Fredheim, A.; Lien, E.; Reitan, K. I.

    2003-04-01

    During the summer, primary production in the surface layers of some fjords depletes the nutrients to the degree that some arts of toxic algae dominate the flora. We describe an experiment employing a bubble curtain to lift significant amounts of nutrient-rich seawater to the light zone and provide an environment in which useful algae can survive. The motivation for the experiment is to provide a local region in which mussels can be cleansed from the effects of toxic algae. Three 100-m long, perforated pipes were suspended at 40 m depth in the Arnafjord, a side arm of the Sognefjord. Large amounts of compressed air were supplied during a period of three weeks. The deeper water mixed with the surface water and flowed from the mixing region at 5 to 15 m depth. Within a few days, the mixture of nutrient-rich water covered most of the inner portion of Arnafjord. Within 10 days, the plankton samples showed that the artificial upwelling produced the desired type of algae and excluded the toxic blooms that were occurring outside the manipulated fjord arm. The project (DETOX) is supported by the Norwegian ministries of Fisheries, Agriculture and Public Administration.

  14. The containment of toxic wastes: I. Long term metal movement in soils over a covered metalliferous waste heap at Parc lead-zinc mine, North Wales.

    PubMed

    Shu, J; Bradshaw, A D

    1995-01-01

    In order to stabilise and contain a toxic metalliferous waste heap at Parc Mine, North Wales, it was covered with 30-40 cm layer of quarry waste in 1977-1978, and sown with a grass/clover seed mixture. This study has examined subsequent metal movement in the cover material and its effect on vegetation. The results, especially when compared with previous observations, give no evidence of upward migration of metals by capillarity in the cover material. Sideways movement of leachate, however, appears to be carrying the metals into the cover material on the sloping sides, giving rise to increasing concentrations of heavy metals in the vegetation and dieback in some places. Root growth on the flat top of the heap is greater than on the slope, but the roots have not penetrated the waste and the contents of Pb, Zn and Cd in surface vegetation remain low. Surface covering of toxic waste with coarse materials restricting capillary rise is therefore a valid reclamation technique so long as lateral movement of toxic leachate can be controlled.

  15. Environmental impact of highway construction and repair materials on surface and ground waters. Case study: crumb rubber asphalt concrete.

    PubMed

    Azizian, Mohammad F; Nelson, Peter O; Thayumanavan, Pugazhendhi; Williamson, Kenneth J

    2003-01-01

    The practice of incorporating certain waste products into highway construction and repair materials (CRMs) has become more popular. These practices have prompted the National Academy of Science, National Cooperative Highway Research Program (NCHRP) to research the possible impacts of these CRMs on the quality of surface and ground waters. State department of transportations (DOTs) are currently experimenting with use of ground tire rubber ( crumb rubber) in bituminous construction and as a crack sealer. Crumb rubber asphalt concrete (CR-AC) leachates contain a mixture of organic and metallic contaminants. Benzothiazole and 2(3H)-benzothiazolone (organic compounds used in tire rubber manufacturing) and the metals mercury and aluminum were leached in potentially harmful concentrations (exceeding toxic concentrations for aquatic toxicity tests). CR-AC leachate exhibited moderate to high toxicity for algae ( Selenastrum capriconutum) and moderate toxicity for water fleas ( Daphnia magna). Benzothiazole was readily removed from CR-AC leachate by the environmental processes of soil sorption, volatilization, and biodegradation. Metals, which do not volatilize or photochemically or biologically degrade, were removed from the leachate by soil sorption. Contaminants from CR-AC leachates are thus degraded or retarded in their transport through nearby soils and ground waters.

  16. Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW).

    PubMed

    Morandi, Garrett D; Wiseman, Steve B; Guan, Miao; Zhang, Xiaowei W; Martin, Jonathan W; Giesy, John P

    2017-11-01

    Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Lead Toxicity to the Performance, Viability, And Community Composition of Activated Sludge Microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, L; Zhi, W; Liu, YS

    Lead (Pb) is a prominent toxic metal in natural and engineered systems. Current knowledge on Pb toxicity to the activated sludge has been limited to short-term (<= 24 h) toxicity. The effect of extended Pb exposure on process performance, bacterial viability, and community compositions remains unknown. We quantified the 24-h and 7-day Pb toxicity to chemical oxygen demand (COD) and NH3-N removal, bacterial viability, and community compositions using lab-scale experiments. Our results showed that 7-day toxicity was significantly higher than the short-term 24-h toxicity. Ammonia-oxidizing bacteria were more susceptible than the heterotrophs to Pb toxicity. The specific oxygen uptake ratemore » responded quickly to Pb addition and could serve as a rapid indicator for detecting Pb pollutions. Microbial viability decreased linearly with the amount of added Pb at extended exposure. The bacterial community diversity was markedly reduced with elevated Pb concentrations. Surface analysis suggested that the adsorbed form of Pb could have contributed to its toxicity along with the dissolved form. Our study provides for the first time a systematic investigation of the effect of extended exposure of Pb on the performance and microbiology of aerobic treatment processes, and it indicates that long-term Pb toxicity has been underappreciated by previous studies.« less

  18. Response surface model for predicting chronic toxicity of cadmium to Paronychiurus kimi (Collembola), with a special emphasis on the importance of soil characteristics in the reproduction test.

    PubMed

    Son, Jino; Shin, Key-il; Cho, Kijong

    2009-11-01

    A central composite design (CCD) was employed to investigate the effects of organic matter (OM) content and soil pH on the reproduction, and chronic toxicity (28-d EC(50-reproduction)) of cadmium for Paronychiurus kimi after 28days exposure in a standard artificial soil. Two statistical models were developed, one describing reproduction in control artificial soils as a function of OM content and pH, and the other describing cadmium toxicity to the same soil parameters. In the reproduction model, pH was the most important factor, followed by two quadratic factors of OM(2) and pH(2). The parameter pH alone could explain 75.5% of the response variation. The reproduction model will allow us to predict a mean reproduction in the non-treated control soils that contain various combinations of OM content and different pH values. In the chronic toxicity model, only the linear factor of the OM content and pH significantly (p<0.05) affect cadmium toxicity, which explains the 78.9% and 14.9% of total response variance, respectively. Therefore, the final polynomial regression describing the chronic toxicity of cadmium to P. kimi is as follows: predicted 28-d EC(50) of cadmium (mgkg(-1))=-21.231+2.794 x OM+4.874 x pH. The present study show that soil characteristics, which can alter the toxicity of cadmium, can also act as stressors themselves in regards to the reproduction of P. kimi. Based on the physico-chemical characteristics of the test media, the response surface model developed in this study can be used to provide initial toxicity information for cadmium within a region of interest in terms of OM content and pH, and may lead to more scientific based risk assessment for metals.

  19. Size effect of SnO2 nanoparticles on bacteria toxicity and their membrane damage.

    PubMed

    Chávez-Calderón, Adriana; Paraguay-Delgado, Francisco; Orrantia-Borunda, Erasmo; Luna-Velasco, Antonia

    2016-12-01

    Semiconductor SnO 2 nanoparticles (NPs) are being exploited for various applications, including those in the environmental context. However, toxicity studies of SnO 2 NPs are very limited. This study evaluated the toxic effect of two sizes of spherical SnO 2 NPs (2 and 40 nm) and one size of flower-like SnO 2 NPs (800 nm) towards the environmental bacteria E. coli and B. subtilis. SnO 2 NPs were synthesized using a hydrothermal or calcination method and they were well characterized prior to toxicity assessment. To evaluate toxicity, cell viability and membrane damage were determined in cells (1 × 10 9  CFU mL -1 ) exposed to up to 1000 mg L -1 of NPs, using the plate counting method and confocal laser scanning microscopy. Spherical NPs of smaller primary size (E2) had the lowest hydrodynamic size (226 ± 96 nm) and highest negative charge (-30.3 ± 10.1 mV). Smaller spherical NPs also showed greatest effect on viability (IC 50  > 500 mg L -1 ) and membrane damage of B. subtilis, whereas E. coli was unaffected. Scanning electron microscopy confirmed the membrane damage of exposed B. subtilis and also exhibited the attachment of E2 NPs to the cell surface, as well as the elongation of cells. It was also apparent that toxicity was caused solely by NPs, as released Sn 4+ was not toxic to B. subtilis. Thus, surface charge interaction between negatively charged SnO 2 NPs and positively charged molecules on the membrane of the Gram positive B. subtilis was indicated as the key mechanism related to toxicity of NPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Pulmonary effects induced by ultrafine PTFE particles.

    PubMed

    Johnston, C J; Finkelstein, J N; Mercer, P; Corson, N; Gelein, R; Oberdörster, G

    2000-11-01

    PTFE (polytetrafluoroethylene) fumes consisting of large numbers of ultrafine (uf) particles and low concentrations of gas-phase compounds can cause severe acute lung injury. Our studies were designed to test three hypotheses: (i) uf PTFE fume particles are causally involved in the induction of acute lung injury, (ii) uf PTFE elicit greater pulmonary effects than larger sized PTFE accumulation mode particles, and (iii) preexposure to the uf PTFE fume particles will induce tolerance. We used uf Teflon (PTFE) fumes (count median particle size approximately 16 nm) generated by heating PTFE in a tube furnace to 486 degrees C to evaluate principles of ultrafine particle toxicity. Teflon fumes at ultrafine particle concentrations of 50 microg/m(3) were extremely toxic to rats when inhaled for only 15 min. We found that when generated in argon, the ultrafine Teflon particles alone are not toxic at these exposure conditions; neither were Teflon fume gas-phase constituents when generated in air. Only the combination of both phases when generated in air caused high toxicity, suggesting either the existence of radicals on the surface or a carrier mechanism of the ultrafine particles for adsorbed gas compounds. Aging of the fresh Teflon fumes for 3.5 min led to a predicted coagulation to >100 nm particles which no longer caused toxicity in exposed animals. This result is consistent with a greater toxicity of ultrafine particles compared to accumulation mode particles, although changes in particle surface chemistry during the aging process may have contributed to the diminished toxicity. Furthermore, the pulmonary toxicity of the ultrafine Teflon fumes could be prevented by adapting the animals with short 5-min exposures on 3 days prior to a 15-min exposure. Messages encoding antioxidants and chemokines were increased substantially in nonadapted animals, yet were unaltered in adapted animals. This study shows the importance of preexposure history for the susceptibility to acute ultrafine particle effects. Copyright 2000 Academic Press.

  1. 76 FR 36879 - Minnesota: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... Phase II--Universal Treatment Standards, and Treatment Standards for Organic Toxicity Characteristic... Disposal Facilities and Hazardous Waste Generators; Organic Air Emissions Standards for Tanks, Surface... Generators; Organic Air Emissions Standards for Tanks, Surface Impoundments, and Containers; Clarification...

  2. CONTROLLING STORMWATER RUNOFF WITH TRADABLE CREDITS FOR IMPERVIOUS SURFACES

    EPA Science Inventory

    Stormwater flow from an impervious surface can lead to stream degradation, habitat alteration, low base flows and increased toxic loadings from nonpoint sources, a problem that has resisted traditional command and control regulatory approaches. We explore the thesis that a well ...

  3. 40 CFR 761.369 - Pre-cleaning the surface.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Pre-cleaning the surface. 761.369 Section 761.369 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE...

  4. Modeling the protection afforded by burrows, cavities, and roosts during wildland surface fires

    Treesearch

    Anthony Bova; Matthew Dickinson

    2009-01-01

    Wildland surface fires produce many toxic and irritating compounds, such as formaldehyde and acrolein, and harmful gases such as carbon monoxide. Several factors influence the degree of protection offered by animal shelters against combustion products and heat.

  5. The Fox River PCB transport study: Stepping stone to a healthy Great Lakes ecosystem

    USGS Publications Warehouse

    Fitzgerald, Sharon A.; Steuer, Jeffrey J.

    1996-01-01

    Polychlorinated Biphenyls (PCBs) in the Great Lakes Despite being banned since the 1970's, polychlorinated biphenyls (PCBs) continue to pose a threat to the environment because of their persistence and toxicity to organisms ranging from minute algae to fish, waterfowl, and human beings. PCBs, a set of 209 related chlorinated organic compounds, had various industrial uses such as in hydraulic fluids, cutting oils, sealants, and pesticides. Despite the manufacturing ban in the mid-1970's, PCBs remain ubiquitous in the environment. In the Laurentian Great Lakes of the Midwest. PCBs and other toxic compounds contaminate bottom sediments at almost all designated "areas of concern" (AOC)(figure 1, upper left inset). The International Joint Commission, a binational group from Canada and the United States, has identified these AOCs in their efforts to restore and protect Great Lakes ecosystems. One such area, the Fox River which flows into Green Bay, has been the focus of much scientific study in an effort to improve not only that river but to apply lessons learned to other AOCs. The final goal is a healthy Great Lakes food chain with fish and waterfowl that are safe to consume.

  6. Multiwall carbon nanotubes modulate paraquat toxicity in Arabidopsis thaliana.

    PubMed

    Fan, Xiaoji; Xu, Jiahui; Lavoie, Michel; Peijnenburg, W J G M; Zhu, Youchao; Lu, Tao; Fu, Zhengwei; Zhu, Tingheng; Qian, Haifeng

    2018-02-01

    Carbon nanotubes can be either toxic or beneficial to plant growth and can also modulate toxicity of organic contaminants through surface sorption. The complex interacting toxic effects of carbon nanotubes and organic contaminants in plants have received little attention in the literature to date. In this study, the toxicity of multiwall carbon nanotubes (MWCNT, 50 mg/L) and paraquat (MV, 0.82 mg/L), separately or in combination, were evaluated at the physiological and the proteomic level in Arabidopsis thaliana for 7-14 days. The results revealed that the exposure to MWCNT had no inhibitory effect on the growth of shoots and leaves. Rather, MWCNT stimulated the relative electron transport rate and the effective photochemical quantum yield of PSII value as compared to the control by around 12% and lateral root production up to nearly 4-fold as compared to the control. The protective effect of MWCNT on MV toxicity on the root surface area could be quantitatively explained by the extent of MV adsorption on MWCNT and was related to stimulation of photosynthesis, antioxidant protection and number and area of lateral roots which in turn helped nutrient assimilation. The influence of MWCNT and MV on photosynthesis and oxidative stress at the physiological level was consistent with the proteomics analysis, with various over-expressed photosynthesis-related proteins (by more than 2 folds) and various under-expressed oxidative stress related proteins (by about 2-3 folds). This study brings new insights into the interactive effects of two xenobiotics (MWCNT and MV) on the physiology of a model plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Screening of toxic potential of graphene family nanomaterials using in vitro and alternative in vivo toxicity testing systems.

    PubMed

    Chatterjee, Nivedita; Yang, Ji Su; Park, Kwangsik; Oh, Seung Min; Park, Jeonggue; Choi, Jinhee

    2015-01-01

    The widely promising applications of graphene nanomaterials raise considerable concerns regarding their environmental and human health risk assessment. The aim of the current study was to evaluate the toxicity profiling of graphene family nananomaterials (GFNs) in alternative in vitro and in vivo toxicity testing models. The GFNs used in this study are graphene nanoplatelets ([GNPs]-pristine, carboxylate [COOH] and amide [NH2]) and graphene oxides (single layer [SLGO] and few layers [FLGO]). The human bronchial epithelial cells (Beas2B cells) as in vitro system and the nematode Caenorhabditis elegans as in vivo system were used to profile the toxicity response of GFNs. Cytotoxicity assays, colony formation assay for cellular toxicity and reproduction potentiality in C. elegans were used as end points to evaluate the GFNs' toxicity. In general, GNPs exhibited higher toxicity than GOs in Beas2B cells, and among the GNPs the order of toxicity was pristine>NH2>COOH. Although the order of toxicity of the GNPs was maintained in C. elegans reproductive toxicity, but GOs were found to be more toxic in the worms than GNPs. In both systems, SLGO exhibited profoundly greater dose dependency than FLGO. The possible reason of their differential toxicity lay in their distinctive physicochemical characteristics and agglomeration behavior in the exposure media. The present study revealed that the toxicity of GFNs is dependent on the graphene nanomaterial's physical forms, surface functionalizations, number of layers, dose, time of exposure and obviously, on the alternative model systems used for toxicity assessment.

  8. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles

    PubMed Central

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315

  9. Therapeutic Effects of Sodium Hyaluronate on Ocular Surface Damage Induced by Benzalkonium Chloride Preserved Anti-glaucoma Medications

    PubMed Central

    Liu, Xing; Yu, Fen-Fen; Zhong, Yi-Min; Guo, Xin-Xing; Mao, Zhen

    2015-01-01

    Background: Long-term use of benzalkonium chloride (BAC)-preserved drugs is often associated with ocular surface toxicity. Ocular surface symptoms had a substantial impact on the glaucoma patients’ quality of life and compliance. This study aimed to investigate the effects of sodium hyaluronate (SH) on ocular surface toxicity induced by BAC-preserved anti-glaucoma medications treatment. Methods: Fifty-eight patients (101 eyes), who received topical BAC-preserved anti-glaucoma medications treatment and met the severe dry eye criteria, were included in the analysis. All patients were maintained the original topical anti-glaucoma treatment. In the SH-treated group (56 eyes), unpreserved 0.3% SH eye drops were administered with 3 times daily for 90 days. In the control group (55 eyes), phosphate-buffered saline were administered with 3 times daily for 90 days. Ocular Surface Disease Index (OSDI) questionnaire, break-up time (BUT) test, corneal fluorescein staining, corneal and conjunctival rose Bengal staining, Schirmer test, and conjunctiva impression cytology were performed sequentially on days 0 and 91. Results: Compared with the control group, SH-treated group showed decrease in OSDI scores (Kruskal-Wallis test: H = 38.668, P < 0.001), fluorescein and rose Bengal scores (Wilcoxon signed-ranks test: z = −3.843, P < 0.001, and z = −3.508, P < 0.001, respectively), increase in tear film BUT (t-test: t = −10.994, P < 0.001) and aqueous tear production (t-test: t = −10.328, P < 0.001) on day 91. The goblet cell density was increased (t-test: t = −9.981, P < 0.001), and the morphology of the conjunctival epithelium were also improved after SH treatment. Conclusions: SH significantly improved both symptoms and signs of ocular surface damage in patients with BAC-preserved anti-glaucoma medications treatment. SH could be proposed as a new attempt to reduce ocular surface toxicity, and alleviate symptoms of ocular surface damage in BAC-preserved anti-glaucoma medications treatment. PMID:26365960

  10. Geometry of GLP on silver surface by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bao, PeiDi; Bao, Lang; Huang, TianQuan; Liu, XinMing; Wu, GuoFeng

    2000-05-01

    Leptospirosis is one of the most harmful zoonosis, it is a serious public health issue in some area of Sichuan province. Surface-Enhance Raman Scattering (SERS) Spectroscopy is an effective approach for the study of biomolecular adsorption on metal surface and provides information about the adsorbed species. Two samples of Leptospiral Glycolipoprotein (GLP-1) and GLP-2 which have different toxic effects have been obtained and investigated.

  11. The Mechanisms of Adhesion of Enteromorpha Clathrata.

    DTIC Science & Technology

    1982-08-24

    showed the importance of adsorbed organic compounds to attachment. Both surface charge density and surface free energy can be influenced through...adsorption of organic 10 compounds . Fletcher (36) further showed that attachment of cells to unsuitable surfaces (those not normally adhered to) may be...attained by these tankers (39,69). Presently, the method to combat algal fouling is the use of surface paints containing toxic compounds . The majority of

  12. The structure of volcanic cristobalite in relation to its toxicity; relevance for the variable crystalline silica hazard

    PubMed Central

    2012-01-01

    Background Respirable crystalline silica (RCS) continues to pose a risk to human health worldwide. Its variable toxicity depends on inherent characteristics and external factors which influence surface chemistry. Significant population exposure to RCS occurs during volcanic eruptions, where ashfall may cover hundreds of square km and exposure may last years. Occupational exposure also occurs through mining of volcanic deposits. The primary source of RCS from volcanoes is through collapse and fragmentation of lava domes within which cristobalite is mass produced. After 30 years of research, it is still not clear if volcanic ash is a chronic respiratory health hazard. Toxicological assays have shown that cristobalite-rich ash is less toxic than expected. We investigate the reasons for this by determining the physicochemical/structural characteristics which may modify the pathogenicity of volcanic RCS. Four theories are considered: 1) the reactivity of particle surfaces is reduced due to co-substitutions of Al and Na for Si in the cristobalite structure; 2) particles consist of aggregates of cristobalite and other phases, restricting the surface area of cristobalite available for reactions in the lung; 3) the cristobalite surface is occluded by an annealed rim; 4) dissolution of other volcanic particles affects the surfaces of RCS in the lung. Methods The composition of volcanic cristobalite crystals was quantified by electron microprobe and differences in composition assessed by Welch’s two sample t-test. Sections of dome-rock and ash particles were imaged by scanning and transmission electron microscopy, and elemental compositions of rims determined by energy dispersive X-ray spectroscopy. Results Volcanic cristobalite contains up to 4 wt. % combined Al2O3 and Na2O. Most cristobalite-bearing ash particles contain adhered materials such as feldspar and glass. No annealed rims were observed. Conclusions The composition of volcanic cristobalite particles gives insight into previously-unconsidered inherent characteristics of silica mineralogy which may affect toxicity. The structural features identified may also influence the hazard of other environmentally and occupationally produced silica dusts. Current exposure regulations do not take into account the characteristics that might render the silica surface less harmful. Further research would facilitate refinement of the existing simple, mass-based silica standard by taking into account composition, allowing higher standards to be set in industries where the silica surface is modified. PMID:23164071

  13. The structure of volcanic cristobalite in relation to its toxicity; relevance for the variable crystalline silica hazard.

    PubMed

    Horwell, Claire J; Williamson, Benedict J; Donaldson, Ken; Le Blond, Jennifer S; Damby, David E; Bowen, Leon

    2012-11-19

    Respirable crystalline silica (RCS) continues to pose a risk to human health worldwide. Its variable toxicity depends on inherent characteristics and external factors which influence surface chemistry. Significant population exposure to RCS occurs during volcanic eruptions, where ashfall may cover hundreds of square km and exposure may last years. Occupational exposure also occurs through mining of volcanic deposits. The primary source of RCS from volcanoes is through collapse and fragmentation of lava domes within which cristobalite is mass produced. After 30 years of research, it is still not clear if volcanic ash is a chronic respiratory health hazard. Toxicological assays have shown that cristobalite-rich ash is less toxic than expected. We investigate the reasons for this by determining the physicochemical/structural characteristics which may modify the pathogenicity of volcanic RCS. Four theories are considered: 1) the reactivity of particle surfaces is reduced due to co-substitutions of Al and Na for Si in the cristobalite structure; 2) particles consist of aggregates of cristobalite and other phases, restricting the surface area of cristobalite available for reactions in the lung; 3) the cristobalite surface is occluded by an annealed rim; 4) dissolution of other volcanic particles affects the surfaces of RCS in the lung. The composition of volcanic cristobalite crystals was quantified by electron microprobe and differences in composition assessed by Welch's two sample t-test. Sections of dome-rock and ash particles were imaged by scanning and transmission electron microscopy, and elemental compositions of rims determined by energy dispersive X-ray spectroscopy. Volcanic cristobalite contains up to 4 wt. % combined Al(2)O(3) and Na(2)O. Most cristobalite-bearing ash particles contain adhered materials such as feldspar and glass. No annealed rims were observed. The composition of volcanic cristobalite particles gives insight into previously-unconsidered inherent characteristics of silica mineralogy which may affect toxicity. The structural features identified may also influence the hazard of other environmentally and occupationally produced silica dusts. Current exposure regulations do not take into account the characteristics that might render the silica surface less harmful. Further research would facilitate refinement of the existing simple, mass-based silica standard by taking into account composition, allowing higher standards to be set in industries where the silica surface is modified.

  14. Biocompatible gold nanorods: one-step surface functionalization, highly colloidal stability, and low cytotoxicity.

    PubMed

    Liu, Kang; Zheng, Yuanhui; Lu, Xun; Thai, Thibaut; Lee, Nanju Alice; Bach, Udo; Gooding, J Justin

    2015-05-05

    The conjugation of gold nanorods (AuNRs) with polyethylene glycol (PEG) is one of the most effective ways to reduce their cytotoxicity arising from the cetyltrimethylammonium bromide (CTAB) and silver ions used in their synthesis. However, typical PEGylation occurs only at the tips of the AuNRs, producing partially modified AuNRs. To address this issue, we have developed a novel, facile, one-step surface functionalization method that involves the use of Tween 20 to stabilize AuNRs, bis(p-sulfonatophenyl)phenylphosphine (BSPP) to activate the AuNR surface for the subsequent PEGylation, and NaCl to etch silver from the AuNRs. This method allows for the complete removal of the surface-bound CTAB and the most active surface silver from the AuNRs. The produced AuNRs showed far lower toxicity than other methods to PEGylate AuNRs, with no apparent toxicity when their concentration is lower than 5 μg/mL. Even at a high concentration of 80 μg/mL, their cell viability is still four times higher than that of the tip-modified AuNRs.

  15. Nanotoxicological and teratogenic effects: A linkage between dendrimer surface charge and zebrafish developmental stages.

    PubMed

    Calienni, Maria Natalia; Feas, Daniela Agustina; Igartúa, Daniela Edith; Chiaramoni, Nadia Silvia; Alonso, Silvia Del Valle; Prieto, Maria Jimena

    2017-12-15

    This article reports novel results about nanotoxicological and teratogenic effects of the PAMAM dendrimers DG4 and DG4.5 in zebrafish (Danio rerio). Zebrafish embryos and larvae were used as a rapid, high-throughput, cost-effective whole-animal model. The objective was to provide a more comprehensive and predictive developmental toxicity screening of DG4 and DG4.5 and test the influence of their surface charge. Nanotoxicological and teratogenic effects were assessed at developmental, morphological, cardiac, neurological and hepatic level. The effect of surface charge was determined in both larvae and embryos. DG4 with positive surface charge was more toxic than DG4.5 with negative surface charge. DG4 and DG4.5 induced teratogenic effects in larvae, whereas DG4 also induced lethal effects in both zebrafish embryos and larvae. However, larvae were less sensitive than embryos to the lethal effects of DG4. The platform of assays proposed and data obtained may contribute to the characterization of hazards and differential effects of these nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Adhesion, Vitality and Osteogenic Differentiation Capacity of Adipose Derived Stem Cells Seeded on Nitinol Nanoparticle Coatings

    PubMed Central

    Strauß, Sarah; Neumeister, Anne; Barcikowski, Stephan; Kracht, Dietmar; Kuhbier, Jörn W.; Radtke, Christine; Reimers, Kerstin; Vogt, Peter M.

    2013-01-01

    Autologous cells can be used for a bioactivation of osteoimplants to enhance osseointegration. In this regard, adipose derived stem cells (ASCs) offer interesting perspectives in implantology because they are fast and easy to isolate. However, not all materials licensed for bone implants are equally suited for cell adhesion. Surface modifications are under investigation to promote cytocompatibility and cell growth. The presented study focused on influences of a Nitinol-nanoparticle coating on ASCs. Possible toxic effects as well as influences on the osteogenic differentiation potential of ASCs were evaluated by viability assays, scanning electron microscopy, immunofluorescence and alizarin red staining. It was previously shown that Nitinol-nanoparticles exert no cell toxic effects to ASCs either in soluble form or as surface coating. Here we could demonstrate that a Nitinol-nanoparticle surface coating enhances cell adherence and growth on Nitinol-surfaces. No negative influence on the osteogenic differentiation was observed. Nitinol-nanoparticle coatings offer new possibilities in implantology research regarding bioactivation by autologous ASCs, respectively enhancement of surface attraction to cells. PMID:23308190

  17. HIGH PERFORMANCE SIDE-STREAM NITRIFICATION OF MUNICIPAL BIOSOLIDS TREATMENT DECANTS

    EPA Science Inventory

    Nutrient (i.e. nitrogen) contamination of surface waters constitutes one of the most pervasive problems facing wastewater treatment works across the country. Nitrogen discharge to surface water occurs mostly in the form of ammonia which is identified as the most toxic nitrogen sp...

  18. Mechanisms of Chemical Modulation and Toxicity of the Immune System.

    DTIC Science & Technology

    1988-05-15

    expressing the L3T4 surface antigens and suppressor/cytotoxic cells bearing Lyt-2 surface antigens. Autoimmune or immunodeficient diseases have been...Ill. Written Publications (cumulative list) A. Suppression of mitogen-induced blastogenesis of feline lymphocytes by in vitro incubation with

  19. Fact Sheets: Final Rules to Reduce Toxic Air Pollutants from Surface Coating of Metal Cans

    EPA Pesticide Factsheets

    This page contains the August 2003 final rule fact sheet and the December 2005 final rule fact sheet that contain information on the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Surface Coating of Metal Cans.

  20. CONTROLLING STORM WATER RUNOFF WITH TRADABLE CREDITS FOR IMPERVIOUS SURFACES

    EPA Science Inventory

    Storm water flow off impervious surface in a watershed can lead to stream degradation, habitat alteration, low base flows and toxic leading. We show that a properly designed tradable runoff credit (TRC) system creates economic incentives for landowners to employ best management p...

  1. Final Rule to Reduce Toxic Air Pollutants from Surface Coating of Plastic Parts and Products Fact Sheet

    EPA Pesticide Factsheets

    This page contains an August 2004 fact sheet with information regarding the final NESHAP for Surface Coating of Plastic Parts and Products. This document provides a summary of the information for the information for this regulation.

  2. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy.

    PubMed

    Wang, Jun-Ying; Chen, Jie; Yang, Jiang; Wang, Hao; Shen, Xiu; Sun, Yuan-Ming; Guo, Meili; Zhang, Xiao-Dong

    2016-01-01

    Gold nanoclusters (Au NCs) have exhibited great advantages in medical diagnostics and therapies due to their efficient renal clearance and high tumor uptake. The in vivo effects of the surface chemistry of Au NCs are important for the development of both nanobiological interfaces and potential clinical contrast reagents, but these properties are yet to be fully investigated. In this study, we prepared glutathione-protected Au NCs of a similar hydrodynamic size but with three different surface charges: positive, negative, and neutral. Their in vivo biodistribution, excretion, and toxicity were investigated over a 90-day period, and tumor uptake and potential application to radiation therapy were also evaluated. The results showed that the surface charge greatly influenced pharmacokinetics, particularly renal excretion and accumulation in kidney, liver, spleen, and testis. Negatively charged Au NCs displayed lower excretion and increased tumor uptake, indicating a potential for NC-based therapeutics, whereas positively charged clusters caused transient side effects on the peripheral blood system.

  3. Toxicity of benzotriazole and benzotriazole derivatives to three aquatic species.

    PubMed

    Pillard, D A; Cornell, J S; Dufresne, D L; Hernandez, M T

    2001-02-01

    Benzotriazole and its derivatives comprise an important class of corrosion inhibitors, typically used as trace additives in industrial chemical mixtures such as coolants, deicers, surface coatings, cutting fluids, and hydraulic fluids. Recent studies have shown that benzotriazole derivatives are a major component of aircraft deicing fluids (ADFs) responsible for toxicity to bacteria (Microtox). Our current research compared the toxicity of benzotriazole (BT), two methylbenzotriazole (MeBT) isomers, and butylbenzotriazole (BBT). Acute toxicity assays were used to model the response of three common test organisms: Microtox bacteria (Vibrio fischeri), fathead minnow (Pimephales promelas) and water flea (Ceriodaphnia dubia). The response of all the three organisms varied over two orders of magnitude among all compounds. Vibrio fischeri was more sensitive than either C. dubia or P. promelas to all the test materials, while C. dubia was less sensitive than P. promelas. The response of test organisms to unmethylated benzotriazole and 4-methylbenzotriazole was similar, whereas 5-methylbenzotriazole was more toxic than either of these two compounds. BBT was the most toxic benzotriazole derivative tested, inducing acute toxicity at a concentration of < or = 3.3 mg/l to all organisms.

  4. Nanoparticle Stabilized Liposomes for Acne Therapy

    NASA Astrophysics Data System (ADS)

    Fu, Victoria

    Acne vulgaris is a common skin disease that affects over 40 million people in the United States alone. The main cause of acne vulgaris is Propionibacterium acnes (P. acnes), resides deep in the pores and follicles of the skin in order to feed on oil produced by the sebaceous glands. The liposome is a lipid based nanoparticle with numerous advantages over free drug molecules as an acne treatment alternative. Bare liposomes loaded with lauric acid (LipoLA) were found to show strong antimicrobial activity against P. acnes while generating minimal toxicity. However, the platform is limited by the spontaneous tendency of liposomes to fuse with each other. Attaching nanoparticles to the surface of liposomes can overcome this challenge by providing steric repulsion and reduce surface tension. Thus, carboxyl-functionalized gold nanoparticles (AuC) were attached to the surface of liposomes (AuC-liposomes) loaded with doxycycline, a general tetracycline antibiotic. These particles were found to have a diameter of 120 nm and a zeta potential of 20.0 mV. Both fluorescent and antimicrobial studies demonstrated that based on electrostatic interaction, negatively charged AuC attached to the liposome's positively charged surface and stabilized liposomes in a neutral pH environment (pH = 7.4). Upon entering the skin's acidic environment (pH = 4), AuC detached from the liposome's surface and liposomes could fuse with P. acnes residing in the pores. Furthermore, toxicity studies showed that AuC-liposomes did not induce any significant toxicity, while two of the leading over-the-counter therapies, benzoyl peroxide and salicylic acid, generated substantial skin irritation.

  5. Review or True? Using Higher-Level Thinking Questions in Social Studies Instruction

    ERIC Educational Resources Information Center

    Kracl, Carrie L.

    2012-01-01

    Asking surface-level questions is a common practice among educators. Delva Daines's (1986) pilot study indicated that 93 percent of the questions asked during lessons were at the literal level of comprehension and that it was very common for the teachers to restate, rephrase, or answer their own questions before the student had an opportunity to…

  6. Estimating Causal Effects of Education Interventions Using a Two-Rating Regression Discontinuity Design: Lessons from a Simulation Study and an Application

    ERIC Educational Resources Information Center

    Porter, Kristin E.; Reardon, Sean F.; Unlu, Fatih; Bloom, Howard S.; Cimpian, Joseph R.

    2017-01-01

    A valuable extension of the single-rating regression discontinuity design (RDD) is a multiple-rating RDD (MRRDD). To date, four main methods have been used to estimate average treatment effects at the multiple treatment frontiers of an MRRDD: the "surface" method, the "frontier" method, the "binding-score" method, and…

  7. An Automated Sample Processing System for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Soto, Juancarlos; Lasnik, James; Roark, Shane; Beegle, Luther

    2012-01-01

    An Automated Sample Processing System (ASPS) for wet chemistry processing of organic materials on the surface of Mars has been jointly developed by Ball Aerospace and the Jet Propulsion Laboratory. The mechanism has been built and tested to demonstrate TRL level 4. This paper describes the function of the system, mechanism design, lessons learned, and several challenges that were overcome.

  8. Influence of container adsorption upon observed pyrethroid toxicity to Ceriodaphnia dubia and Hyalella azteca

    PubMed Central

    Wheelock, Craig E.; Miller, Jeff L.; Miller, Mike J.; Phillips, Bryn M.; Gee, Shirley J.; Tjeerdema, Ronald S.; Hammock, Bruce D.

    2006-01-01

    Pyrethroid insecticides are known for their potential toxicity to aquatic invertebrates and many fish species. A significant problem in the study of pyrethroid toxicity is their extreme hydrophobicity. They can adsorb to test container surfaces and many studies, therefore, report pyrethroid levels as nominal water concentrations. In this study, pyrethroid adsorption to sampling and test containers was measured and several container treatments were examined for their ability to decrease pyrethroid adsorption. None of the chemical treatments were successful at preventing pyrethroid loss from aqueous samples, but vortexing of containers served to resuspend pyrethroids. The effects of the observed adsorption on Ceriodaphnia dubia and Hyalella azteca permethrin toxicity were examined. Species-specific results showed a time-dependent decrease in toxicity following pyrethroid adsorption to test containers for C. dubia, but not for H. azteca. These results demonstrate that pyrethroid adsorption to containers can significantly affect the observed outcome in toxicity-testing and serves as a caution for researchers and testing laboratories. PMID:15951033

  9. Stray light lessons learned from the Mars reconnaissance orbiter's optical navigation camera

    NASA Astrophysics Data System (ADS)

    Lowman, Andrew E.; Stauder, John L.

    2004-10-01

    The Optical Navigation Camera (ONC) is a technical demonstration slated to fly on NASA"s Mars Reconnaissance Orbiter in 2005. Conventional navigation methods have reduced accuracy in the days immediately preceding Mars orbit insertion. The resulting uncertainty in spacecraft location limits rover landing sites to relatively safe areas, away from interesting features that may harbor clues to past life on the planet. The ONC will provide accurate navigation on approach for future missions by measuring the locations of the satellites of Mars relative to background stars. Because Mars will be a bright extended object just outside the camera"s field of view, stray light control at small angles is essential. The ONC optomechanical design was analyzed by stray light experts and appropriate baffles were implemented. However, stray light testing revealed significantly higher levels of light than expected at the most critical angles. The primary error source proved to be the interface between ground glass surfaces (and the paint that had been applied to them) and the polished surfaces of the lenses. This paper will describe troubleshooting and correction of the problem, as well as other lessons learned that affected stray light performance.

  10. 2010 CEOS Field Reflectance Intercomparisons Lessons Learned

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; Fox, Nigel

    2011-01-01

    This paper summarizes lessons learned from the 2009 and 2010 joint field campaigns to Tuz Golu, Turkey. Emphasis is placed on the 2010 campaign related to understanding the equipment and measurement protocols, processing schemes, and traceability to SI quantities. Participants in both 2009 and 2010 used an array of measurement approaches to determine surface reflectance. One lesson learned is that even with all of the differences in collection between groups, the differences in reflectance are currently dominated by instrumental artifacts including knowledge of the white reference. Processing methodology plays a limited role once the bi-directional reflectance of the white reference is used rather than a hemispheric-directional value. The lack of a basic set of measurement protocols, or best practices, limits a group s ability to ensure SI traceability and the development of proper error budgets. Finally, rigorous attention to sampling methodology and its impact on instrument behavior is needed. The results of the 2009 and 2010 joint campaigns clearly demonstrate both the need and utility of such campaigns and such comparisons must continue in the future to ensure a coherent set of data that can span multiple sensor types and multiple decades.

  11. Orion Flight Performance Design Trades

    NASA Technical Reports Server (NTRS)

    Jackson, Mark C.; Straube, Timothy

    2010-01-01

    A significant portion of the Orion pre-PDR design effort has focused on balancing mass with performance. High level performance metrics include abort success rates, lunar surface coverage, landing accuracy and touchdown loads. These metrics may be converted to parameters that affect mass, such as ballast for stabilizing the abort vehicle, propellant to achieve increased lunar coverage or extended missions, or ballast to increase the lift-to-drag ratio to improve entry and landing performance. The Orion Flight Dynamics team was tasked to perform analyses to evaluate many of these trades. These analyses not only provide insight into the physics of each particular trade but, in aggregate, they illustrate the processes used by Orion to balance performance and mass margins, and thereby make design decisions. Lessons learned can be gleaned from a review of these studies which will be useful to other spacecraft system designers. These lessons fall into several categories, including: appropriate application of Monte Carlo analysis in design trades, managing margin in a highly mass-constrained environment, and the use of requirements to balance margin between subsystems and components. This paper provides a review of some of the trades and analyses conducted by the Flight Dynamics team, as well as systems engineering lessons learned.

  12. Interprofessional education and practice guide No. 4: Developing and sustaining interprofessional education at an academic health center.

    PubMed

    Willgerodt, Mayumi A; Abu-Rish Blakeney, Erin; Brock, Douglas M; Liner, Debra; Murphy, Nanci; Zierler, Brenda

    2015-01-01

    Increasingly health professions schools and academic health centers are required to include interprofessional education (IPE) as a standard part of their core curricula to maintain accreditation. However, challenges continue to surface as faculty struggle to develop and participate in IPE activities while balancing increasing workloads and limited resources, and also trying to keep current in the changing profession-specific accreditation and standards. This guide shares lessons learned from developing and sustaining IPE activities at the University of Washington (UW) based in the United States. In 2008, the UW Schools of Nursing and Medicine were awarded funds to develop, implement, and evaluate an interprofessional program focused on team communication. This funding supported the creation of two annual large-scale IPE events, provided infrastructure support for the Center for Health Sciences Interprofessional Education, Research and Practice (CHSIERP), and supported numerous interprofessional activities and initiatives in the health professions curricula. Our experiences over the years have yielded several key lessons that are important to consider in any IPE effort. In this guide we report on these lessons learned and provide pragmatic suggestions for designing and implementing IPE in order to maximize long-term success.

  13. Acute Toxicity of Ternary Cd-Cu-Ni and Cd-Ni-Zn Mixtures to Daphnia magna: Dominant Metal Pairs Change along a Concentration Gradient.

    PubMed

    Traudt, Elizabeth M; Ranville, James F; Meyer, Joseph S

    2017-04-18

    Multiple metals are usually present in surface waters, sometimes leading to toxicity that currently is difficult to predict due to potentially non-additive mixture toxicity. Previous toxicity tests with Daphnia magna exposed to binary mixtures of Ni combined with Cd, Cu, or Zn demonstrated that Ni and Zn strongly protect against Cd toxicity, but Cu-Ni toxicity is more than additive, and Ni-Zn toxicity is slightly less than additive. To consider multiple metal-metal interactions, we exposed D. magna neonates to Cd, Cu, Ni, or Zn alone and in ternary Cd-Cu-Ni and Cd-Ni-Zn combinations in standard 48 h lethality tests. In these ternary mixtures, two metals were held constant, while the third metal was varied through a series that ranged from nonlethal to lethal concentrations. In Cd-Cu-Ni mixtures, the toxicity was less than additive, additive, or more than additive, depending on the concentration (or ion activity) of the varied metal and the additivity model (concentration-addition or independent-action) used to predict toxicity. In Cd-Ni-Zn mixtures, the toxicity was less than additive or approximately additive, depending on the concentration (or ion activity) of the varied metal but independent of the additivity model. These results demonstrate that complex interactions of potentially competing toxicity-controlling mechanisms can occur in ternary-metal mixtures but might be predicted by mechanistic bioavailability-based toxicity models.

  14. Control of Toxic Chemicals in Puget Sound, Phase 3: Study Of Atmospheric Deposition of Air Toxics to the Surface of Puget Sound

    DTIC Science & Technology

    2007-01-01

    deposition directly to Puget Sound was an important source of PAHs, polybrominated diphenyl ethers (PBDEs), and heavy metals . In most cases, atmospheric...versus Atmospheric Fluxes ........................................................................66  PAH Source Apportionment ...temperature inversions) on air quality during the wet season. A semi-quantitative apportionment study permitted a first-order characterization of source

  15. Sinclair and Dyes Inlets Toxicity Study: An Assessment of Copper Bioavailability and Toxicity in Surface Waters Adjacent to the Puget Sound Naval Shipyard and Intermediate Maintenance Facility

    DTIC Science & Technology

    2009-12-01

    biblio /92109.html WEF 2004a. “Proposed Research for Developing the Biotic Ligand Model for Establishing Water Quality Criteria. Water Environment...Systems Center, Bremerton, WA. August 2006. Ecology Publication Number 06-10-54 http://www.ecy.wa.gov/ biblio /0610054.html Eriksen, R.S., Mackey

  16. Chronic TiO2 nanoparticle exposure to a benthic organism, Hyalella azteca: Impact of solar UV radiation and material surface coatings on toxicity

    EPA Science Inventory

    The present study examined the chronic toxicity of TiO2 nanoparticles (nano-TiO2) to a representative benthic species, Hyalella azteca, using an industry standard, P25, and a coated nano-TiO2 used in commercial products. There is limited information on the chronic effects of nano...

  17. A zeta potential value determines the aggregate's size of penta-substituted [60]fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells.

    PubMed

    Deryabin, Dmitry G; Efremova, Ludmila V; Vasilchenko, Alexey S; Saidakova, Evgeniya V; Sizova, Elena A; Troshin, Pavel A; Zhilenkov, Alexander V; Khakina, Ekaterina A; Khakina, Ekaterina E

    2015-08-08

    The cause-effect relationships between physicochemical properties of amphiphilic [60]fullerene derivatives and their toxicity against bacterial cells have not yet been clarified. In this study, we report how the differences in the chemical structure of organic addends in 10 originally synthesized penta-substituted [60]fullerene derivatives modulate their zeta potential and aggregate's size in salt-free and salt-added aqueous suspensions as well as how these physicochemical characteristics affect the bioenergetics of freshwater Escherichia coli and marine Photobacterium phosphoreum bacteria. Dynamic light scattering, laser Doppler micro-electrophoresis, agarose gel electrophoresis, atomic force microscopy, and bioluminescence inhibition assay were used to characterize the fullerene aggregation behavior in aqueous solution and their interaction with the bacterial cell surface, following zeta potential changes and toxic effects. Dynamic light scattering results indicated the formation of self-assembled [60]fullerene aggregates in aqueous suspensions. The measurement of the zeta potential of the particles revealed that they have different surface charges. The relationship between these physicochemical characteristics was presented as an exponential regression that correctly described the dependence of the aggregate's size of penta-substituted [60]fullerene derivatives in salt-free aqueous suspension from zeta potential value. The prevalence of DLVO-related effects was shown in salt-added aqueous suspension that decreased zeta potential values and affected the aggregation of [60]fullerene derivatives expressed differently for individual compounds. A bioluminescence inhibition assay demonstrated that the toxic effect of [60]fullerene derivatives against E. coli cells was strictly determined by their positive zeta potential charge value being weakened against P. phosphoreum cells in an aquatic system of high salinity. Atomic force microscopy data suggested that the activity of positively charged [60]fullerene derivatives against bacterial cells required their direct interaction. The following zeta potential inversion on the bacterial cells surface was observed as an early stage of toxicity mechanism that violates the membrane-associated energetic functions. The novel data about interrelations between physicochemical parameters and toxic properties of amphiphilic [60]fullerene derivatives make possible predicting their behavior in aquatic environment and their activity against bacterial cells.

  18. Toxicity, sublethal effects, and potential modes of action of select fungicides on freshwater fish and invertebrates

    USGS Publications Warehouse

    Elskus, Adria A.

    2012-01-01

    Despite decades of agricultural and urban use of fungicides and widespread detection of these pesticides in surface waters, relatively few data are available on the effects of fungicides on fish and invertebrates in the aquatic environment. Nine fungicides are reviewed in this report: azoxystrobin, boscalid, chlorothalonil, fludioxonil, myclobutanil, fenarimol, pyraclostrobin, pyrimethanil, and zoxamide. These fungicides were identified as emerging chemicals of concern because of their high or increasing global use rates, detection frequency in surface waters, or likely persistence in the environment. A review of the literature revealed significant sublethal effects of fungicides on fish, aquatic invertebrates, and ecosystems, including zooplankton and fish reproduction, fish immune function, zooplankton community composition, metabolic enzymes, and ecosystem processes, such as leaf decomposition in streams, among other biological effects. Some of these effects can occur at fungicide concentrations well below single-species acute lethality values (48- or 96-hour concentration that effects a response in 50 percent of the organisms, that is, effective concentration killing 50 percent of the organisms in 48 or 96 hours) and chronic sublethal values (for example, 21-day no observed adverse effects concentration), indicating that single-species toxicity values may dramatically underestimate the toxic potency of some fungicides. Fungicide modes of toxic action in fungi can sometimes reflect the biochemical and (or) physiological effects of fungicides observed in vertebrates and invertebrates; however, far more studies are needed to explore the potential to predict effects in nontarget organisms based on specific fungicide modes of toxic action. Fungicides can also have additive and (or) synergistic effects when used with other fungicides and insecticides, highlighting the need to study pesticide mixtures that occur in surface waters. For fungicides that partition to organic matter in sediment and soils, it is particularly important to determine their effects on freshwater mussels and other freshwater benthic invertebrates in contact with sediments, as available toxicity studies with pelagic species, mainly Daphnia magna, may not be representative of these benthic organisms. Finally, there is a critical need for studies of the chronic effects of fungicides on reproduction, immunocompetence, and ecosystem function; sublethal endpoints with population and community-level relevance.

  19. Surface interactions affect the toxicity of engineered metal oxide nanoparticles toward Paramecium.

    PubMed

    Li, Kungang; Chen, Ying; Zhang, Wen; Pu, Zhichao; Jiang, Lin; Chen, Yongsheng

    2012-08-20

    To better understand the potential impacts of engineered metal oxide nanoparticles (NPs) in the ecosystem, we investigated the acute toxicity of seven different types of engineered metal oxide NPs against Paramecium multimicronucleatum, a ciliated protozoan, using the 48 h LC(50) (lethal concentration, 50%) test. Our results showed that the 48 h LC(50) values of these NPs to Paramecium ranged from 0.81 (Fe(2)O(3) NPs) to 9269 mg/L (Al(2)O(3) NPs); their toxicity to Paramecium increased as follows: Al(2)O(3) < TiO(2) < CeO(2) < ZnO < SiO(2) < CuO < Fe(2)O(3) NPs. On the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, interfacial interactions between NPs and cell membrane were evaluated, and the magnitude of interaction energy barrier correlated well with the 48 h LC(50) data of NPs to Paramecium; this implies that metal oxide NPs with strong association with the cell surface might induce more severe cytotoxicity in unicellular organisms.

  20. Cytotoxic Helix-Rich Oligomer Formation by Melittin and Pancreatic Polypeptide

    PubMed Central

    Singh, Pradeep K.; Ghosh, Dhiman; Tewari, Debanjan; Mohite, Ganesh M.; Carvalho, Edmund; Jha, Narendra Nath; Jacob, Reeba S.; Sahay, Shruti; Banerjee, Rinti; Bera, Amal K.; Maji, Samir K.

    2015-01-01

    Conversion of amyloid fibrils by many peptides/proteins involves cytotoxic helix-rich oligomers. However, their toxicity and biophysical studies remain largely unknown due to their highly dynamic nature. To address this, we chose two helical peptides (melittin, Mel and pancreatic polypeptide, PP) and studied their aggregation and toxicity. Mel converted its random coil structure to oligomeric helical structure upon binding to heparin; however, PP remained as helix after oligomerization. Interestingly, similar to Parkinson’s associated α-synuclein (AS) oligomers, Mel and PP also showed tinctorial properties, higher hydrophobic surface exposure, cellular toxicity and membrane pore formation after oligomerization in the presence of heparin. We suggest that helix-rich oligomers with exposed hydrophobic surface are highly cytotoxic to cells irrespective of their disease association. Moreover as Mel and PP (in the presence of heparin) instantly self-assemble into stable helix-rich amyloidogenic oligomers; they could be represented as models for understanding the biophysical and cytotoxic properties of helix-rich intermediates in detail. PMID:25803428

  1. Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pisharody, Suresh A.; Fisher, John W.; Wignarajah, K.

    2002-01-01

    The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake of gaseous species based on their controlled pore size, high surface area, ordered chemical structure that allows functionalization and their effectiveness also as catalyst support materials for toxic gas conversion. We present results and findings from a preliminary study on the effectiveness of metal impregnated single walled nanotubes as catalyst/catalyst support materials for toxic gas contaminate control. The study included the purification of single walled nanotubes, the catalyst impregnation of the purified nanotubes, the experimental characterization of the surface properties of purified single walled nanotubes and the characterization of physisorption and chemisorption of uptake molecules.

  2. Cadmium toxicity among wildlife in the Colorado Rocky Mountains

    USGS Publications Warehouse

    Larison, J.R.; Likens, G.E.; Fitzpatrick, J.W.; Crock, J.G.

    2000-01-01

    Cadmium is known to be both extremely toxic and ubiquitous in natural environments. It occurs in almost all soils, surface waters and plants, and it is readily mobilized by human activities such as mining. As a result, cadmium has been named as a potential health threat to wildlife species; however, because it exists most commonly in the environment as a trace constituent, reported incidences of cadmium toxicity are rare. Here we have measured trace metals in the food web and tissues of white-tailed ptarmigan (Lagopus leucurus) in Colorado. Our results suggest that cadmium toxicity may be more common among natural populations of vertebrates than has been appreciated to date and that cadmium toxicity may often go undetected or unrecognized. In addition, our research shows that ingestion of even trace quantities of cadmium can influence not only the physiology and health of individual organisms, but also the demographics and the distribution of species.

  3. The Toxic Effects and Mechanisms of CuO and ZnO Nanoparticles

    PubMed Central

    Chang, Ya-Nan; Zhang, Mingyi; Xia, Lin; Zhang, Jun; Xing, Gengmei

    2012-01-01

    Recent nanotechnological advances suggest that metal oxide nanoparticles (NPs) have been expected to be used in various fields, ranging from catalysis and opto-electronic materials to sensors, environmental remediation, and biomedicine. However, the growing use of NPs has led to their release into environment and the toxicity of metal oxide NPs on organisms has become a concern to both the public and scientists. Unfortunately, there are still widespread controversies and ambiguities with respect to the toxic effects and mechanisms of metal oxide NPs. Comprehensive understanding of their toxic effect is necessary to safely expand their use. In this review, we use CuO and ZnO NPs as examples to discuss how key factors such as size, surface characteristics, dissolution, and exposure routes mediate toxic effects, and we describe corresponding mechanisms, including oxidative stress, coordination effects and non-homeostasis effects.

  4. Inhibition and enhancement of microbial surface colonization: the role of silicate composition

    USGS Publications Warehouse

    Roberts, Jennifer A.

    2004-01-01

    Classical treatment of cell attachment by models of filtration or coulombic attraction assumes that attachment of cells to mineral surfaces would be controlled by factors such as response to predation, collision efficiency, or coulombic attraction between the charged groups at the mineral and cell surfaces. In the study reported here, the passive model of attachment was investigated using a native microbial consortium and a variety of Al- and Fe-bearing silicates and oxides to determine if other controls, such as mineral composition, also influence the interaction between cells and surfaces. Results from in situ colonization studies in an anaerobic groundwater at pH 6.8 combined with most probable number analyses (MPN) of surface-adherent cells demonstrate that electrostatic effects dominate microbial colonization on positively charged oxide surfaces regardless of mineral composition. In contrast, on negatively charged silicate minerals and glasses, the solid phase composition is a factor in determining the extent of microbial colonization, as well as the diversity of the attached community. In particular, silicates containing more than 1.2% Al exhibit less biomass than Al-poor silicates and MPN suggests a shift in community diversity, possibly indicating Al toxicity on these surfaces. When Fe is present in the silicate, however, this trend is reversed and abundant colonization of the surface is observed. Here, microorganisms preferentially colonize those silicate surfaces that offer beneficial nutrients and avoid those that contain potentially toxic elements.

  5. Utilization of Lesson Analysis as Teacher Self Reflection to Improve the Lesson Design on Chemical Equation Topic

    NASA Astrophysics Data System (ADS)

    Edyani, E. A.; Supriatna, A.; Kurnia; Komalasari, L.

    2017-02-01

    The research is aimed to investigate how lesson analysis as teacher’s self-reflection changes the teacher’s lesson design on chemical equation topic. Lesson Analysis has been used as part of teacher training programs to improve teacher’s ability in analyzing their own lesson. The method used in this research is a qualitative method. The research starts from build lesson design, implementation lesson design to senior high school student, utilize lesson analysis to get information about the lesson, and revise lesson design. The revised lesson design from the first implementation applied to the second implementation, resulting in better design. This research use lesson analysis Hendayana&Hidayat framework. Video tapped and transcript are employed on each lesson. After first implementation, lesson analysis result shows that teacher-centered still dominating the learning because students are less active in discussion, so the part of lesson design must be revised. After second implementation, lesson analysis result shows that the learning already student-centered. Students are very active in discussion. But some part of learning design still must be revised. In general, lesson analysis was effective for teacher to reflect the lessons. Teacher can utilize lesson analysis any time to improve the next lesson design.

  6. Explosive scabbling of structural materials

    DOEpatents

    Bickes, Jr., Robert W.; Bonzon, Lloyd L.

    2002-01-01

    A new approach to scabbling of surfaces of structural materials is disclosed. A layer of mildly energetic explosive composition is applied to the surface to be scabbled. The explosive composition is then detonated, rubbleizing the surface. Explosive compositions used must sustain a detonation front along the surface to which it is applied and conform closely to the surface being scabbled. Suitable explosive compositions exist which are stable under handling, easy to apply, easy to transport, have limited toxicity, and can be reliably detonated using conventional techniques.

  7. Radionuclides in surface and groundwater

    USGS Publications Warehouse

    Campbell, Kate M.

    2009-01-01

    Unique among all the contaminants that adversely affect surface and water quality, radioactive compounds pose a double threat from both toxicity and damaging radiation. The extreme energy potential of many of these materials makes them both useful and toxic. The unique properties of radioactive materials make them invaluable for medical, weapons, and energy applications. However, mining, production, use, and disposal of these compounds provide potential pathways for their release into the environment, posing a risk to both humans and wildlife. This chapter discusses the sources, uses, and regulation of radioactive compounds in the United States, biogeochemical processes that control mobility in the environment, examples of radionuclide contamination, and current work related to contaminated site remediation.

  8. Additives for reducing the toxicity of respirable crystalline silica. SILIFE project

    NASA Astrophysics Data System (ADS)

    Monfort, Eliseo; López-Lilao, Ana; Escrig, Alberto; Jesus Ibáñez, Maria; Bonvicini, Guliana; Creutzenberg, Otto; Ziemann, Christina

    2017-10-01

    Prolonged inhalation of crystalline silica particles has long been known to cause lung inflammation and development of the granulomatous and a fibrogenic lung disease known as silicosis. The International Agency for Research on Cancer (IARC) has classified Respirable Crystalline Silica (RCS) in the form of quartz and cristobalite from occupational sources as carcinogenic for humans (category 1). In this regard, numerous studies suggest that the toxicity of quartz is conditioned by the surface chemistry of the quartz particles and by the density and abundance of silanol groups. Blocking these groups to avoid their interaction with cellular membranes would theoretically be possible in order to reduce or even to eliminate the toxic effect. In this regard, the main contribution of the presented research is the development of detoxifying processes based on coating technologies at industrial scale, since the previous studies reported on literature were carried out at lab scale. The results obtained in two European projects showed that the wet method to obtain quartz surface coatings (SILICOAT project) allows a good efficiency in inhibiting the silica toxicity, and the preliminary results obtained in an ongoing project (SILIFE) suggest that the developed dry method to coat quartz surface is also very promising. The development of both coating technologies (wet and a dry) should allow these coating technologies to be applied to a high variety of industrial activities in which quartz is processed. For this reason, a lot of end-users of quartz powders will be potentially benefited from a reduced risk associated to the exposure to RCS.

  9. Field Testing of Utility Robots for Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Bualat, Maria; Deans, Matt; Allan, Mark; Bouyssounouse, Xavier; Broxton, Michael; Edwards, Laurence; Lee, Pascal; Lee, Susan Y.; Lees, David; hide

    2008-01-01

    Since 2004, NASA has been working to return to the Moon. In contrast to the Apollo missions, two key objectives of the current exploration program is to establish significant infrastructure and an outpost. Achieving these objectives will enable long-duration stays and long-distance exploration of the Moon. To do this, robotic systems will be needed to perform tasks which cannot, or should not, be performed by crew alone. In this paper, we summarize our work to develop "utility robots" for lunar surface operations, present results and lessons learned from field testing, and discuss directions for future research.

  10. A contact mechanics model for ankle implants with inclusion of surface roughness effects

    NASA Astrophysics Data System (ADS)

    Hodaei, M.; Farhang, K.; Maani, N.

    2014-02-01

    Total ankle replacement is recognized as one of the best procedures to treat painful arthritic ankles. Even though this method can relieve patients from pain and reproduce the physiological functions of the ankle, an improper design can cause an excessive amount of metal debris due to wear, causing toxicity in implant recipient. This paper develops a contact model to treat the interaction of tibia and talus implants in an ankle joint. The contact model describes the interaction of implant rough surfaces including both elastic and plastic deformations. In the model, the tibia and the talus surfaces are viewed as macroscopically conforming cylinders or conforming multi-cylinders containing micrometre-scale roughness. The derived equations relate contact force on the implant and the minimum mean surface separation of the rough surfaces. The force is expressed as a statistical integral function of asperity heights over the possible region of interaction of the roughness of the tibia and the talus implant surfaces. A closed-form approximate equation relating contact force and minimum separation is used to obtain energy loss per cycle in a load-unload sequence applied to the implant. In this way implant surface statistics are related to energy loss in the implant that is responsible for internal void formation and subsequent wear and its harmful toxicity to the implant recipient.

  11. Safety and Mission Assurance for In-House Design Lessons Learned from Ares I Upper Stage

    NASA Technical Reports Server (NTRS)

    Anderson, Joel M.

    2011-01-01

    This viewgraph presentation identifies lessons learned in the course of the Ares I Upper Stage design and in-house development effort. The contents include: 1) Constellation Organization; 2) Upper Stage Organization; 3) Presentation Structure; 4) Lesson-Importance of Systems Engineering/Integration; 5) Lesson-Importance of Early S&MA Involvement; 6) Lesson-Importance of Appropriate Staffing Levels; 7) Lesson-Importance S&MA Team Deployment; 8) Lesson-Understanding of S&MA In-Line Engineering versus Assurance; 9) Lesson-Importance of Close Coordination between Supportability and Reliability/Maintainability; 10) Lesson-Importance of Engineering Data Systems; 11) Lesson-Importance of Early Development of Supporting Databases; 12) Lesson-Importance of Coordination with Safety Assessment/Review Panels; 13) Lesson-Implementation of Software Reliability; 14) Lesson-Implementation of S&MA Technical Authority/Chief S&MA Officer; 15) Lesson-Importance of S&MA Evaluation of Project Risks; 16) Lesson-Implementation of Critical Items List and Government Mandatory Inspections; 17) Lesson-Implementation of Critical Items List Mandatory Inspections; 18) Lesson-Implementation of Test Article Safety Analysis; and 19) Lesson-Importance of Procurement Quality.

  12. A mixture toxicity approach to predict the toxicity of Ag decorated ZnO nanomaterials.

    PubMed

    Azevedo, S L; Holz, T; Rodrigues, J; Monteiro, T; Costa, F M; Soares, A M V M; Loureiro, S

    2017-02-01

    Nanotechnology is a rising field and nanomaterials can now be found in a vast variety of products with different chemical compositions, sizes and shapes. New nanostructures combining different nanomaterials are being developed due to their enhancing characteristics when compared to nanomaterials alone. In the present study, the toxicity of a nanostructure composed by a ZnO nanomaterial with Ag nanomaterials on its surface (designated as ZnO/Ag nanostructure) was assessed using the model-organism Daphnia magna and its toxicity predicted based on the toxicity of the single components (Zn and Ag). For that ZnO and Ag nanomaterials as single components, along with its mixture prepared in the laboratory, were compared in terms of toxicity to ZnO/Ag nanostructures. Toxicity was assessed by immobilization and reproduction tests. A mixture toxicity approach was carried out using as starting point the conceptual model of Concentration Addition. The laboratory mixture of both nanomaterials showed that toxicity was dependent on the doses of ZnO and Ag used (immobilization) or presented a synergistic pattern (reproduction). The ZnO/Ag nanostructure toxicity prediction, based on the percentage of individual components, showed an increase in toxicity when compared to the expected (immobilization) and dependent on the concentration used (reproduction). This study demonstrates that the toxicity of the prepared mixture of ZnO and Ag and of the ZnO/Ag nanostructure cannot be predicted based on the toxicity of their components, highlighting the importance of taking into account the interaction between nanomaterials when assessing hazard and risk. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effect of toxicity of Ag nanoparticles on SERS spectral variance of bacteria

    NASA Astrophysics Data System (ADS)

    Cui, Li; Chen, Shaode; Zhang, Kaisong

    2015-02-01

    Ag nanoparticles (NPs) have been extensively utilized in surface-enhanced Raman scattering (SERS) spectroscopy for bacterial identification. However, Ag NPs are toxic to bacteria. Whether such toxicity can affect SERS features of bacteria and interfere with bacterial identification is still unknown and needed to explore. Here, by carrying out a comparative study on non-toxic Au NPs with that on toxic Ag NPs, we investigated the influence of nanoparticle concentration and incubation time on bacterial SERS spectral variance, both of which were demonstrated to be closely related to the toxicity of Ag NPs. Sensitive spectral alterations were observed on Ag NPs with increase of NPs concentration or incubation time, accompanied with an obvious decrease in number of viable bacteria. In contrast, SERS spectra and viable bacterial number on Au NPs were rather constant under the same conditions. A further analysis on spectral changes demonstrated that it was cell response (i.e. metabolic activity or death) to the toxicity of Ag NPs causing spectral variance. However, biochemical responses to the toxicity of Ag were very different in different bacteria, indicating the complex toxic mechanism of Ag NPs. Ag NPs are toxic to a great variety of organisms, including bacteria, fungi, algae, protozoa etc., therefore, this work will be helpful in guiding the future application of SERS technique in various complex biological systems.

  14. The effect of uranium on bacterial viability and cell surface morphology using atomic force microscopy in the presence of bicarbonate ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepulveda-Medina, Paola; Katsenovich, Yelena; Musaramthota, Vishal

    Nuclear production facilities during the Cold War have caused liquid waste to leak and soak into the ground creating multiple radionuclide plumes. The Arthrobacter bacteria are one of the most common groups in soils and are found in large numbers in subsurface environments contaminated with radionuclides. This study experimentally analyzed changes on the bacteria surface after uranium exposure and evaluated the effect of bicarbonate ions on U(VI) toxicity of a less uranium tolerant Arthrobacter strain, G968, by investigating changes in adhesion forces and cells dimensions via atomic force microscopy (AFM). AFM and viability studies showed that samples containing bicarbonate aremore » able to acclimate and withstand uranium toxicity. Samples containing no bicarbonate exhibited deformed surfaces and a low height profile, which might be an indication that the cells are not alive.« less

  15. Pleurochrysis pseudoroscoffensis (Prymnesiophyceae) blooms on the surface of the Salton Sea, California

    USGS Publications Warehouse

    Reifel, K.M.; McCoy, M.P.; Tiffany, M.A.; Rocke, T.E.; Trees, C.C.; Barlow, S.B.; Faulkner, D.J.; Hurlbert, S.H.

    2001-01-01

    Dense populations of the coccolithophore Pleurochrysis pseudoroscoffensis were found in surface films at several locations around the Salton Sea in February-August, 1999. An unidentified coccolithophorid was also found in low densities in earlier studies of the lake (1955-1956). To our knowledge, this is the first record of this widespread marine species in any lake. Samples taken from surface films typically contained high densities of one or two other phytoplankton species as well as high densities of the coccolithophore. Presence or absence of specific algal pigments was used to validate direct cell counts. In a preliminary screen using a brine shrimp lethality assay, samples showed moderate activity. Extracts were then submitted to a mouse bioassay, and no toxic activity was observed. These results indicate that blooms of P. pseudoroscoffensis are probably not toxic to vertebrates and do not contribute to the various mortality events of birds and fish that occur in the Salton Sea.

  16. Transcriptional responses of human aortic endothelial cells to nanoconstructs used in biomedical applications

    PubMed Central

    Moos, Philip J.; Honeggar, Matthew; Malugin, Alexander; Herd, Heather; Thiagarajan, Giridhar; Ghandehari, Hamidreza

    2013-01-01

    Understanding the potential toxicities of manufactured nanoconstructs used for drug delivery and biomedical applications may help improve their safety. We sought to determine if surface modified silica nanoparticles and poly(amido amine) dendrimers elicit genotoxic responses on vascular endothelial cells. The nanoconstructs utilized in this study had distinct geometry (spheres vs. worms) and surface charge, which were used to evaluate the contributions of these parameters to any potential adverse effects of these materials. Time-dependent cytotoxicity was found for surfaced-functionalized but geometrically distinct silica materials while amine-terminated dendrimers displayed time-independent cytotoxicity and carboxylated dendrimers were nontoxic in our assays. Transcriptomic evaluation of HAEC responses indicated time-dependent gene induction following silica exposure, consisting of cell cycle gene repression and pro-inflammatory gene induction. However, the dendrimers did not induce genomic toxicity, despite displaying general cytotoxicity. PMID:23806026

  17. Transcriptional responses of human aortic endothelial cells to nanoconstructs used in biomedical applications.

    PubMed

    Moos, Philip J; Honeggar, Matthew; Malugin, Alexander; Herd, Heather; Thiagarajan, Giridhar; Ghandehari, Hamidreza

    2013-08-05

    Understanding the potential toxicities of manufactured nanoconstructs used for drug delivery and biomedical applications may help improve their safety. We sought to determine if surface-modified silica nanoparticles and poly(amido amine) dendrimers elicit genotoxic responses on vascular endothelial cells. The nanoconstructs utilized in this study had a distinct geometry (spheres vs worms) and surface charge, which were used to evaluate the contributions of these parameters to any potential adverse effects of these materials. Time-dependent cytotoxicity was found for surfaced-functionalized but geometrically distinct silica materials, while amine-terminated dendrimers displayed time-independent cytotoxicity and carboxylated dendrimers were nontoxic in our assays. Transcriptomic evaluation of human aortic endothelial cell (HAEC) responses indicated time-dependent gene induction following silica exposure, consisting of cell cycle gene repression and pro-inflammatory gene induction. However, the dendrimers did not induce genomic toxicity, despite displaying general cytotoxicity.

  18. Toxicity of food-relevant nanoparticles in intestinal epithelial models

    NASA Astrophysics Data System (ADS)

    McCracken, Christie

    Nanoparticles are increasingly being incorporated into common consumer products, including in foods and food packaging, for their unique properties at the nanoscale. Food-grade silica and titania are used as anti-caking and whitening agents, respectively, and these particle size distributions are composed of approximately one-third nanoparticles. Zinc oxide and silver nanoparticles can be used for their antimicrobial properties. However, little is known about the interactions of nanoparticles in the body upon ingestion. This study was performed to investigate the role of nanoparticle characteristics including surface chemistry, dissolution, and material type on toxicity to the intestinal epithelium. Only mild acute toxicity of zinc oxide nanoparticles was observed after 24-hour treatment of intestinal epithelial C2BBe1 cells based on the results of toxicity assays measuring necrosis, apoptosis, membrane damage, and mitochondrial activity. Silica and titanium dioxide nanoparticles were not observed to be toxic although all nanoparticles were internalized by cells. In vitro digestion of nanoparticles in solutions representing the stomach and intestines prior to treatment of cells did not alter nanoparticle toxicity. Long-term repeated treatment of cells weekly for 24 hours with nanoparticles did not change nanoparticle cytotoxicity or the growth rate of the treated cell populations. Thus, silica, titanium dioxide, and zinc oxide nanoparticles were found to induce little toxicity in intestinal epithelial cells. Fluorescent silica nanoparticles were synthesized as a model for silica used in foods that could be tracked in vitro and in vivo. To maintain an exterior of pure silica, a silica shell was hydrolyzed around a core particle of quantum dots or a fluorescent dye electrostatically associated with a commercial silica particle. The quantum dots used were optimized from a previously reported microwave quantum dot synthesis to a quantum yield of 40%. Characterization of the silica particles showed that the surface properties resembled pure silica. These particles were able to be detected in vitro as well as in vivo after oral administration of nanoparticles to mice by gavage. After four daily administrations, nanoparticles were detected by fluorescence confocal microscopy in intestines as well as liver, kidney, spleen, lung, and brain. Thus, silica nanoparticles were able to traverse the intestinal epithelium. Further investigation is needed to determine nanoparticle accumulation and potential functional consequences throughout the body. Silver nanoparticles were particularly toxic to proliferating (subconfluent) C2BBe1 cells plated at low density, inducing 15% necrosis and a 76% decrease in mitochondrial activity. Silver nanoparticle treatment induced oxidative stress in cells based on increased GSH/GSSG ratios. In addition, silver nanoparticles induced G2/M phase cell cycle arrest and inhibited cell proliferation at doses forty times lower than those at which silica, titanium dioxide, and zinc oxide nanoparticles had inhibitory effects. Silver nanoparticles subjected to in vitro digestion before cell exposure required higher doses to induce toxicity, likely due to slower dissolution because of greater surface species adsorption. Silver nanoparticles did not cause toxicity or oxidative stress in confluent (stationary) cells. Thus, upon ingestion, silver nanoparticles may be especially toxic to proliferating stem cells in intestinal crypts, particularly in disease states with a compromised epithelium.

  19. Lectin-based food poisoning: a new mechanism of protein toxicity.

    PubMed

    Miyake, Katsuya; Tanaka, Toru; McNeil, Paul L

    2007-08-01

    Ingestion of the lectins present in certain improperly cooked vegetables can result in acute GI tract distress, but the mechanism of toxicity is unknown. In vivo, gut epithelial cells are constantly exposed to mechanical and other stresses and consequently individual cells frequently experience plasma membrane disruptions. Repair of these cell surface disruptions allows the wounded cell to survive: failure results in necrotic cell death. Plasma membrane repair is mediated, in part, by an exocytotic event that adds a patch of internal membrane to the defect site. Lectins are known to inhibit exocytosis. We therefore tested the novel hypothesis that lectin toxicity is due to an inhibitory effect on plasma membrane repair. Repair of plasma membrane disruptions and exocytosis of mucus was assessed after treatment of cultured cell models and excised segments of the GI tract with lectins. Plasma membrane disruptions were produced by focal irradiation of individual cells, using a microscope-based laser, or by mechanical abrasion of multiple cells, using a syringe needle. Repair was then assessed by monitoring the cytosolic penetration of dyes incapable of crossing the intact plasma membrane. We found that cell surface-bound lectins potently inhibited plasma membrane repair, and the exocytosis of mucus that normally accompanies the repair response. Lectins potently inhibit plasma membrane repair, and hence are toxic to wounded cells. This represents a novel form of protein-based toxicity, one that, we propose, is the basis of plant lectin food poisoning.

  20. Cellulose/soy protein isolate composite membranes: evaluations of in vitro cytocompatibility with Schwann cells and in vivo toxicity to animals.

    PubMed

    Luo, Lihua; Gong, Wenrong; Zhou, Yi; Yang, Lin; Li, Daokun; Huselstein, Celine; Wang, Xiong; He, Xiaohua; Li, Yinping; Chen, Yun

    2015-01-01

    To evaluate the in vitro cytocompatibility of cellulose/soy protein isolate composite membranes (CSM) with Schwann cells and in vivo toxicity to animals. A series of cellulose/soy protein isolate composite membranes (CSM) were prepared by blending, solution casting and coagulation process. The cytocompatibility of the CSM to Schwann cells were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and by direct cells culture of Schwann cells on the surfaces of the CSM, respectively. The in vivo toxicity of the CSM to animals were also evaluated by acute toxicity testing, skin sensitization testing, pyrogen testing and intracutaneous stimulation testing, respectively, according to the ISO 10993 standard. The MTT assay showed that the cell viability of Schwann cells cultured in extracts from the CSM was higher than that from the neat cellulose membrane without containing SPI component. The direct cells culture indicated that the Schwann cells could attach and grow well on the surface of the CSM and the incorporation of SPI into cellulose contributed to improvement of cell adhesion and proliferation. The evaluations of in vivo biological safety suggested that the CSM showed no acute toxicity, no skin sensitization and no intracutaneous stimulation to the experimental animals. The CSM had in vitro cytocompatibility with Schwann cells and biological safety to animals, suggesting potential for the applications as nerve conduit for the repair of nerve defect.

  1. Cytotoxicity assessment of functionalized CdSe, CdTe and InP quantum dots in two human cancer cell models.

    PubMed

    Liu, Jing; Hu, Rui; Liu, Jianwei; Zhang, Butian; Wang, Yucheng; Liu, Xin; Law, Wing-Cheung; Liu, Liwei; Ye, Ling; Yong, Ken-Tye

    2015-12-01

    The toxicity of quantum dots (QDs) has been extensively studied over the past decade. Some common factors that originate the QD toxicity include releasing of heavy metal ions from degraded QDs and the generation of reactive oxygen species on the QD surface. In addition to these factors, we should also carefully examine other potential QD toxicity causes that will play crucial roles in impacting the overall biological system. In this contribution, we have performed cytotoxicity assessment of four types of QD formulations in two different human cancer cell models. The four types of QD formulations, namely, mercaptopropionic acid modified CdSe/CdS/ZnS QDs (CdSe-MPA), PEGylated phospholipid encapsulated CdSe/CdS/ZnS QDs (CdSe-Phos), PEGylated phospholipid encapsulated InP/ZnS QDs (InP-Phos) and Pluronic F127 encapsulated CdTe/ZnS QDs (CdTe-F127), are representatives for the commonly used QD formulations in biomedical applications. Both the core materials and the surface modifications have been taken into consideration as the key factors for the cytotoxicity assessment. Through side-by-side comparison and careful evaluations, we have found that the toxicity of QDs does not solely depend on a single factor in initiating the toxicity in biological system but rather it depends on a combination of elements from the particle formulations. More importantly, our toxicity assessment shows different cytotoxicity trend for all the prepared formulations tested on gastric adenocarcinoma (BGC-823) and neuroblastoma (SH-SY5Y) cell lines. We have further proposed that the cellular uptake of these nanocrystals plays an important role in determining the final faith of the toxicity impact of the formulation. The result here suggests that the toxicity of QDs is rather complex and it cannot be generalized under a few assumptions reported previously. We suggest that one have to evaluate the QD toxicity on a case to case basis and this indicates that standard procedures and comprehensive protocols are urgently needed to be developed and employed for fully assessing and understanding the origins of the toxicity arising from different QD formulations. Copyright © 2015. Published by Elsevier B.V.

  2. Comparative lung toxicity of engineered nanomaterials utilizing in vitro, ex vivo and in vivo approaches.

    PubMed

    Kim, Yong Ho; Boykin, Elizabeth; Stevens, Tina; Lavrich, Katelyn; Gilmour, M Ian

    2014-11-26

    Although engineered nanomaterials (ENM) are currently regulated either in the context of a new chemical, or as a new use of an existing chemical, hazard assessment is still to a large extent reliant on information from historical toxicity studies of the parent compound, and may not take into account special properties related to the small size and high surface area of ENM. While it is important to properly screen and predict the potential toxicity of ENM, there is also concern that current toxicity tests will require even heavier use of experimental animals, and reliable alternatives should be developed and validated. Here we assessed the comparative respiratory toxicity of ENM in three different methods which employed in vivo, in vitro and ex vivo toxicity testing approaches. Toxicity of five ENM (SiO2 (10), CeO2 (23), CeO2 (88), TiO2 (10), and TiO2 (200); parentheses indicate average ENM diameter in nm) were tested in this study. CD-1 mice were exposed to the ENM by oropharyngeal aspiration at a dose of 100 μg. Mouse lung tissue slices and alveolar macrophages were also exposed to the ENM at concentrations of 22-132 and 3.1-100 μg/mL, respectively. Biomarkers of lung injury and inflammation were assessed at 4 and/or 24 hr post-exposure. Small-sized ENM (SiO2 (10), CeO2 (23), but not TiO2 (10)) significantly elicited pro-inflammatory responses in mice (in vivo), suggesting that the observed toxicity in the lungs was dependent on size and chemical composition. Similarly, SiO2 (10) and/or CeO2 (23) were also more toxic in the lung tissue slices (ex vivo) and alveolar macrophages (in vitro) compared to other ENM. A similar pattern of inflammatory response (e.g., interleukin-6) was observed in both ex vivo and in vitro when a dose metric based on cell surface area (μg/cm(2)), but not culture medium volume (μg/mL) was employed. Exposure to ENM induced acute lung inflammatory effects in a size- and chemical composition-dependent manner. The cell culture and lung slice techniques provided similar profiles of effect and help bridge the gap in our understanding of in vivo, ex vivo, and in vitro toxicity outcomes.

  3. Dissolved Pesticide and Organic Carbon Concentrations Detected in Surface Waters, Northern Central Valley, California, 2001-2002

    USGS Publications Warehouse

    Orlando, James L.; Jacobson, Lisa A.; Kuivila, Kathryn

    2004-01-01

    Field and laboratory studies were conducted to determine the effects of pesticide mixtures on Chinook salmon under various environmental conditions in surface waters of the northern Central Valley of California. This project was a collaborative effort between the U.S. Geological Survey (USGS) and the University of California. The project focused on understanding the environmental factors that influence the toxicity of pesticides to juvenile salmon and their prey. During the periods January through March 2001 and January through May 2002, water samples were collected at eight surface water sites in the northern Central Valley of California and analyzed by the USGS for dissolved pesticide and dissolved organic carbon concentrations. Water samples were also collected by the USGS at the same sites for aquatic toxicity testing by the Aquatic Toxicity Laboratory at the University of California Davis; however, presentation of the results of these toxicity tests is beyond the scope of this report. Samples were collected to characterize dissolved pesticide and dissolved organic carbon concentrations, and aquatic toxicity, associated with winter storm runoff concurrent with winter run Chinook salmon out-migration. Sites were selected that represented the primary habitat of juvenile Chinook salmon and included major tributaries within the Sacramento and San Joaquin River Basins and the Sacramento?San Joaquin Delta. Water samples were collected daily for a period of seven days during two winter storm events in each year. Additional samples were collected weekly during January through April or May in both years. Concentrations of 31 currently used pesticides were measured in filtered water samples using solid-phase extraction and gas chromatography-mass spectrometry at the U.S. Geological Survey's organic chemistry laboratory in Sacramento, California. Dissolved organic carbon concentrations were analyzed in filtered water samples using a Shimadzu TOC-5000A total organic carbon analyzer.

  4. Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu.

    PubMed

    Keller, C; Rizwan, M; Davidian, J-C; Pokrovsky, O S; Bovet, N; Chaurand, P; Meunier, J-D

    2015-04-01

    Aqueous Si limits Cu uptake by a Si-accumulating plant via physicochemical mechanisms occurring at the root level. Sufficient Si supply may alleviate Cu toxicity in Cu-contaminated soils. Little information is available on the role of silicon (Si) in copper (Cu) tolerance while Cu toxicity is widespread in crops grown on Cu-contaminated soils. A hydroponic study was set up to investigate the influence of Si on Cu tolerance in durum wheat (Triticum turgidum L.) grown in 0, 0.7, 7.0 and 30 µM Cu without and with 1.0 mM Si, and to identify the mechanisms involved in mitigation of Cu toxicity. Si supply alleviated Cu toxicity in durum wheat at 30 µM Cu, while Cu significantly increased Si concentration in roots. Root length, photosynthetic pigments concentrations, macroelements, and organic anions (malate, acetate and aconitate) in roots, were also increased. Desorption experiments, XPS analysis of the outer thin root surface (≤100 Å) and µXRF analyses showed that Si increased adsorption of Cu at the root surface as well as Cu accumulation in the epidermis while Cu was localised in the central cylinder when Si was not applied. Copper was not detected in phytoliths. This study provides evidences for Si-mediated alleviation of Cu toxicity in durum wheat. It also shows that Si supplementation to plants exposed to increasing levels of Cu in solution induces non-simultaneous changes in physiological parameters. We propose a three-step mechanism occurring mainly at the root level and limiting Cu uptake and translocation to shoots: (i) increased Cu adsorption onto the outer thin layer root surface and immobilisation in the vicinity of root epidermis, (ii) increased Cu complexation by both inorganic and organic anions such as aconitate and, (iii) limitation of translocation through an enhanced thickening of a Si-loaded endodermis.

  5. Potential toxicity of nonregulated asbestiform minerals: balangeroite from the western Alps. Part 2: Oxidant activity of the fibers.

    PubMed

    Turci, Francesco; Tomatis, Maura; Gazzano, Elena; Riganti, Chiara; Martra, Gianmario; Bosia, Amalia; Ghigo, Dario; Fubini, Bice

    2005-01-08

    The asbestiform mineral balangeroite [(Mg,Fe2+,Fe3+,Mn2+)42Si16O54(OH)36], whose toxic potential is unknown, is associated with chrysotile asbestos in the western Alps (Balangero mine, Piedmont, Italy). In order to examine whether such fibers may contribute to the oxidative damage produced by local asbestos dusts when inhaled, balangeroite was studied by means of both cell-free and cellular tests, comparing the results with those concerning the most pathogenic asbestos form, crocidolite. Similarly to the crocidolite surface, iron was mobilized from balangeroite by chelators, to a different extent: deferoxamine > ascorbic acid > ferrozine. Poorly coordinated surface ions, as evaluated from the adsorption of NO as a probe molecule (by both calorimetry and infrared spectroscopy), are even more abundant on balangeroite than on crocidolite. The spin trapping technique shows that surface iron-derived Fenton activity (HO* from H2O2) is similar for the two fiber types, while a pretreatment in ascorbic acid, by reducing previously oxidized surface iron, activates the potential to cleave a C-H bond (yielding *CO2- from formate anion). Balangeroite, like crocidolite, produces nitrite accumulation, lipid peroxidation, and NO synthase activation in a human lung epithelial cell line (A549). All these findings, regarded as features related to the toxic potential of asbestos, suggest that balangeroite may be a potentially hazardous fiber per se and could be partly responsible for lung diseases reported in epidemiological studies in exposed miners.

  6. Suitability of a Saccharomyces cerevisiae-based assay to assess the toxicity of pyrimethanil sprayed soils via surface runoff: comparison with standard aquatic and soil toxicity assays.

    PubMed

    Gil, Fátima N; Moreira-Santos, Matilde; Chelinho, Sónia; Pereira, Carla; Feliciano, Joana R; Leitão, Jorge H; Sousa, José P; Ribeiro, Rui; Viegas, Cristina A

    2015-02-01

    The present study is aimed at evaluating whether a gene expression assay with the microbial eukaryotic model Saccharomyces cerevisiae could be used as a suitable warning tool for the rapid preliminary screening of potential toxic effects on organisms due to scenarios of soil and water contamination with pyrimethanil. The assay consisted of measuring changes in the expression of the selected pyrimethanil-responsive genes ARG3 and ARG5,6 in a standardized yeast population. Evaluation was held by assessing the toxicity of surface runoff, a major route of pesticide exposure in aquatic systems due to non-point-source pollution, which was simulated with a pyrimethanil formulation at a semifield scale mimicking worst-case scenarios of soil contamination (e.g. accident or improper disposal). Yeast cells 2-h exposure to the runoff samples led to a significant 2-fold increase in the expression of both indicator genes. These results were compared with those from assays with organisms relevant for the aquatic and soil compartments, namely the nematode Caenorhabditis elegans (reproduction), the freshwater cladoceran Daphnia magna (survival and reproduction), the benthic midge Chironomus riparius (growth), and the soil invertebrates Folsomia candida and Enchytraeus crypticus (survival and reproduction). Under the experimental conditions used to simulate accidental discharges into soil, runoff waters were highly toxic to the standard test organisms, except for C. elegans. Overall, results point out the usefulness of the yeast assay to provide a rapid preview of the toxicity level in preliminary screenings of environmental samples in situations of inadvertent high pesticide contamination. Advantages and limitations of this novel method are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Comparative study on the biodegradability of morpholinium herbicidal ionic liquids.

    PubMed

    Ławniczak, Łukasz; Materna, Katarzyna; Framski, Grzegorz; Szulc, Alicja; Syguda, Anna

    2015-07-01

    This study focused on evaluating the toxicity as well as primary and ultimate biodegradability of morpholinium herbicidal ionic liquids (HILs), which incorporated MCPA, MCPP, 2,4-D or Dicamba anions. The studied HILs were also subjected to determination of surface active properties in order to assess their influence on toxicity and biodegradability. The study was carried out with microbiota isolated from different environmental niches: sediments from river channel, garden soil, drainage trench collecting agricultural runoff stream, agricultural soil and municipal waste repository. The obtained results revealed that resistance to toxicity and biodegradation efficiency of the microbiota increased in the following order: microbiota from the waste repository > microbiota from agricultural soil ≈ microbiota from an agricultural runoff stream > microbiota from garden soil > microbiota from the river sludge. It was observed that the toxicity of HILs increased with the hydrophobicity of the cation, however the influence of the anion was more notable. The highest toxicity was observed when MCPA was used as the anion (EC50 values ranging from 60 to 190 mg L(-1)). The results of ultimate biodegradation tests indicated that only HILs with 2,4-D as the anion were mineralized to some extent, with slightly higher values for HILs with the 4-decyl-4-ethylmorpholinium cation (10-31 %) compared to HILs with the 4,4-didecylmorpholinium cation (9-20 %). Overall, the cations were more susceptible (41-94 %) to primary biodegradation compared to anions (0-61 %). The obtained results suggested that the surface active properties of the studied HILs may influence their toxicity and biodegradability by bacteria in different environmental niches.

  8. Mitochondrial proticity and ROS signaling: lessons from the uncoupling proteins.

    PubMed

    Mailloux, Ryan J; Harper, Mary-Ellen

    2012-09-01

    Fifty years since Peter Mitchell proposed the theory of chemiosmosis, the transformation of cellular redox potential into ATP synthetic capacity is still a widely recognized function of mitochondria. Mitchell used the term 'proticity' to describe the force and flow of the proton circuit across the inner membrane. When the proton gradient is coupled to ATP synthase activity, the conversion of fuel to ATP is efficient. However, uncoupling proteins (UCPs) can cause proton leaks resulting in poor fuel conversion efficiency, and some UCPs might control mitochondrial reactive oxygen species (ROS) production. Once viewed as toxic metabolic waste, ROS are now implicated in cell signaling and regulation. Here, we discuss the role of mitochondrial proticity in the context of ROS production and signaling. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Harmful Algal Bloom–Associated Illness Surveillance: Lessons From Reported Hospital Visits in New York, 2008–2014

    PubMed Central

    Muscatiello, Neil; Wilson, Lloyd; Dziewulski, David

    2016-01-01

    We identified hospital visits with reported exposure to harmful algal blooms, an emerging public health concern because of toxicity and increased incidence. We used the World Health Organization’s International Classification of Disease (ICD) medical code specifying environmental exposure to harmful algal blooms to extract hospital visit records in New York State from 2008 to 2014. Using the ICD code, we identified 228 hospital visits with reported exposure to harmful algal blooms. They occurred all year long and had multiple principal diagnoses. Of all hospital visits, 94.7% were managed in the emergency department and 5.3% were hospitalizations. As harmful algal bloom surveillance increases, the ICD code will be a beneficial tool to public health only if used properly. PMID:26794161

  10. The group employed model as a foundation for health care delivery reform.

    PubMed

    Minott, Jenny; Helms, David; Luft, Harold; Guterman, Stuart; Weil, Henry

    2010-04-01

    With a focus on delivering low-cost, high-quality care, several organizations using the group employed model (GEM)-with physician groups whose primary and specialty care physicians are salaried or under contract-have been recognized for creating a culture of patient-centeredness and accountability, even in a toxic fee-for-service environment. The elements that leaders of such organizations identify as key to their success are physician leadership that promotes trust in the organization, integration that promotes teamwork and coordination, governance and strategy that drive results, transparency and health information technology that drive continual quality improvement, and a culture of accountability that focuses providers on patient needs and responsibility for effective care and efficient use of resources. These organizations provide important lessons for health care delivery system reform.

  11. Nanomedical strategy to prolong survival period, heighten cure rate, and lower systemic toxicity of S180 mice treated with MTX/MIT.

    PubMed

    Song, Ning; Zhao, Ming; Wang, Yuji; Hu, Xi; Wu, Jianhui; Jiang, Xueyun; Li, Shan; Cui, Chunying; Peng, Shiqi

    2016-01-01

    In spite of the usual combination form of methotrexate (MTX)/mitoxantrone (MIT) and various complex combination regimens of MTX/MIT with other anticancer drugs, the survival period, cure rate, and systemic toxicity still need to be improved. For this purpose, a nanostructured amino group-modified mesoporous silica nanoparticles (MSNN)-MTX/MIT was designed. In the preparation, the surface of mesoporous silica nanoparticles (MSNs) was modified with amino groups to form MSNN. The covalent modification of the amino groups on the surface of MSNN with MTX resulted in MSNN-MTX. The loading of MIT into the surface pores of MSNN-MTX produced nanostructured MSNN-MTX/MIT. Compared with the usual combination form (MTX/MIT), nanostructured MSNN-MTX/MIT increased the survival period greatly, heightened the cure rate to a great extent, and lowered the systemic toxicity of the treated S180 mice, significantly. These superior in vivo properties of nanostructured MSNN-MTX/MIT over the usual combination form (MTX/MIT) were correlated with the former selectively releasing MTX and MIT in tumor tissue and inside cancer cells in vitro. The chemical structure and the nanostructure of MSNN-MTX/MIT were characterized using infrared and differential scanning calorimeter spectra as well as transmission electron microscope images, respectively.

  12. Predicting the aquatic risk of realistic pesticide mixtures to species assemblages in Portuguese river basins.

    PubMed

    Silva, Emília; Daam, Michiel A; Cerejeira, Maria José

    2015-05-01

    Although pesticide regulatory tools are mainly based on individual substances, aquatic ecosystems are usually exposed to multiple pesticides from their use on the variety of crops within the catchment of a river. This study estimated the impact of measured pesticide mixtures in surface waters from 2002 and 2008 within three important Portuguese river basins ('Mondego', 'Sado' and 'Tejo') on primary producers, arthropods and fish by toxic pressure calculation. Species sensitivity distributions (SSDs), in combination with mixture toxicity models, were applied. Considering the differences in the responses of the taxonomic groups as well as in the pesticide exposures that these organisms experience, variable acute multi-substance potentially affected fractions (msPAFs) were obtained. The median msPAF for primary producers and arthropods in surface waters of all river basins exceeded 5%, the cut-off value used in the prospective SSD approach for deriving individual environmental quality standards. A ranking procedure identified various photosystem II inhibiting herbicides, with oxadiazon having the relatively largest toxic effects on primary producers, while the organophosphorus insecticides, chlorfenvinphos and chlorpyrifos, and the organochloride endosulfan had the largest effects on arthropods and fish, respectively. These results ensure compliance with European legislation with regard to ecological risk assessment and management of pesticides in surface waters. Copyright © 2015. Published by Elsevier B.V.

  13. Weathering of a carbon nanotube/epoxy nanocomposite under UV light and in water bath: impact on abraded particles.

    PubMed

    Schlagenhauf, Lukas; Kianfar, Bahareh; Buerki-Thurnherr, Tina; Kuo, Yu-Ying; Wichser, Adrian; Nüesch, Frank; Wick, Peter; Wang, Jing

    2015-11-28

    Weathering processes can influence the surface properties of composites with incorporated nanoparticles. These changes may affect the release behavior of nanoparticles when an abrasion process is applied. Therefore, the influence of two different weathering processes, immersion in water and exposure to UV light, on the properties of abraded particles from a carbon nanotube (CNT)/epoxy nanocomposite was investigated. The investigation included the measurement of the weathering impact on the surface chemistry of the exposed samples, the particle size of abraded particles, the quantity of exposed CNTs in the respirable part of the abraded particles, and the toxicity of abraded particles, measured by in vitro toxicity tests using the THP-1 monocyte-derived macrophages. The results showed that weathering by immersion in water had no influence on the properties of abraded particles. The exposure to UV light caused a degradation of the epoxy on the surface, followed by delamination of an approx. 2.5 μm thick layer. An increased quantity of exposed CNTs in abraded particles was not found; on the contrary, longer UV exposure times decreased the released fraction of CNTs from 0.6% to 0.4%. The toxicity tests revealed that abraded particles from the nanocomposites did not induce additional acute cytotoxic effects compared to particles from the neat epoxy.

  14. Effects of Toxic Leachate from Commercial Plastics on Larval Survival and Settlement of the Barnacle Amphibalanus amphitrite.

    PubMed

    Li, Heng-Xiang; Getzinger, Gordon J; Ferguson, P Lee; Orihuela, Beatriz; Zhu, Mei; Rittschof, Daniel

    2016-01-19

    Plastic pollution represents a major and growing global problem. It is well-known that plastics are a source of chemical contaminants to the aquatic environment and provide novel habitats for marine organisms. The present study quantified the impacts of plastic leachates from the seven categories of recyclable plastics on larval survival and settlement of barnacle Amphibalanus (=Balanus) amphitrite. Leachates from plastics significantly increased barnacle nauplii mortality at the highest tested concentrations (0.10 and 0.50 m(2)/L). Hydrophobicity (measured as surface energy) was positively correlated with mortality indicating that plastic surface chemistry may be an important factor in the effects of plastics on sessile organisms. Plastic leachates significantly inhibited barnacle cyprids settlement on glass at all tested concentrations. Settlement on plastic surfaces was significantly inhibited after 24 and 48 h, but settlement was not significantly inhibited compared to the controls for some plastics after 72-96 h. In 24 h exposure to seawater, we found larval toxicity and inhibition of settlement with all seven categories of recyclable commercial plastics. Chemical analysis revealed a complex mixture of substances released in plastic leachates. Leaching of toxic compounds from all plastics should be considered when assessing the risks of plastic pollution.

  15. Nanomedical strategy to prolong survival period, heighten cure rate, and lower systemic toxicity of S180 mice treated with MTX/MIT

    PubMed Central

    Song, Ning; Zhao, Ming; Wang, Yuji; Hu, Xi; Wu, Jianhui; Jiang, Xueyun; Li, Shan; Cui, Chunying; Peng, Shiqi

    2016-01-01

    In spite of the usual combination form of methotrexate (MTX)/mitoxantrone (MIT) and various complex combination regimens of MTX/MIT with other anticancer drugs, the survival period, cure rate, and systemic toxicity still need to be improved. For this purpose, a nanostructured amino group-modified mesoporous silica nanoparticles (MSNN)−MTX/MIT was designed. In the preparation, the surface of mesoporous silica nanoparticles (MSNs) was modified with amino groups to form MSNN. The covalent modification of the amino groups on the surface of MSNN with MTX resulted in MSNN−MTX. The loading of MIT into the surface pores of MSNN−MTX produced nanostructured MSNN−MTX/MIT. Compared with the usual combination form (MTX/MIT), nanostructured MSNN−MTX/MIT increased the survival period greatly, heightened the cure rate to a great extent, and lowered the systemic toxicity of the treated S180 mice, significantly. These superior in vivo properties of nanostructured MSNN−MTX/MIT over the usual combination form (MTX/MIT) were correlated with the former selectively releasing MTX and MIT in tumor tissue and inside cancer cells in vitro. The chemical structure and the nanostructure of MSNN−MTX/MIT were characterized using infrared and differential scanning calorimeter spectra as well as transmission electron microscope images, respectively. PMID:27621591

  16. 40 CFR 761.267 - Sampling non-porous surfaces.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sampling non-porous surfaces. 761.267 Section 761.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2...

  17. 40 CFR 761.280 - Application and scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 761.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...

  18. 40 CFR 761.267 - Sampling non-porous surfaces.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sampling non-porous surfaces. 761.267 Section 761.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2...

  19. 40 CFR 761.280 - Application and scope.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 761.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...

  20. 40 CFR 761.280 - Application and scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 761.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...

  1. 40 CFR 761.267 - Sampling non-porous surfaces.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sampling non-porous surfaces. 761.267 Section 761.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2...

  2. 40 CFR 761.280 - Application and scope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 761.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL... Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) § 761.280 Application and scope...-implementing, on-site disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of...

  3. Silicon Impurity Release and Surface Transformation of TiO2 Anatase and Rutile Nanoparticles in Water Environments

    EPA Science Inventory

    Surface transformation can affect the stability, reactivity, and toxicity of titanium dioxide (TiO2) nanoparticles (NPs) when released to water environments. Herein, we investigated the release kinetics of Si impurity frequently introduced during NP synthesis and the resulting ef...

  4. Nanostructured Block Copolymer Coatings for Biofouling Inhibition

    DTIC Science & Technology

    2015-06-30

    nm) High resolution vibrational sensitive images Figure 7 - The instrument provides best-in-world performance. The images are of a boron nitride...2 patents pending, publications and some trade secrets. The pure biocide has been tested by independent labs for toxicity to various mammals and...cash investments in Sylleta, which continue. In Figure 8 are the data on the toxicity of the active ingredient (biocide), which is surface tethered in

  5. Acute dermal toxicity of guanidine hydrochloride in rabbits. Report for 18 May-1 August 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiatt, G.F.; Sanso, S.K.; Korte, D.W.

    1989-12-01

    The acute dermal toxicity of guanidine hydrochloride was evaluated in five male and five female New Zealand White rabbits. Guanidine hydrochloride (2 g/kg) was applied topically to the clipped dorsal skin surface for 24 hours. No compound-related deaths or clinical signs were observed; however, guanidine hydrochloride did produce dermal irritation, necrosis, and eschar formation under conditions of the study.

  6. Toxicity of silver nanoparticles towards tumoral human cell lines U-937 and HL-60.

    PubMed

    Barbasz, Anna; Oćwieja, Magdalena; Roman, Maciej

    2017-08-01

    The toxicity of three types of silver nanoparticles towards histiocytic lymphoma (U-937) and human promyelocytic cells (HL-60) was studied. The nanoparticles were synthesized in a chemical reduction method using sodium borohydride. Trisodium citrate and cysteamine hydrochloride were used to generate a negative and positive nanoparticle surface charge. The evaluation of cell viability, membrane integrity, antioxidant activity and the induction of inflammation were used to evaluate the difference in cellular response to the nanoparticle treatment. The results revealed that the cysteamine-stabilized (positively charged) nanoparticles (SBATE) were the least toxic although they exhibited a similar ion release profile as the unmodified (negatively charged) nanoparticles obtained using sodium borohydride (SBNM). Citrate-stabilized nanoparticles (SBTC) induced superoxide dismutase (SOD) activity in the HL-60 cells and total antioxidant activity in the U-937 cells despite their resistance to oxidative dissolution. The toxicity of SBNM nanoparticles was manifested in the disruption of membrane integrity, decrease in the mitochondrial functions of cells and the induction of inflammation. These findings allowed to conclude that mechanism of silver nanoparticle cytotoxicity is the combination of effects coming from the surface charge of nanoparticles, released silver ions and biological activity of stabilizing agent molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Comparison of efficacy and ocular surface toxicity of topical preservative-free methylprednisolone and preserved prednisolone in the treatment of acute anterior uveitis.

    PubMed

    Hedayatfar, Alireza; Hashemi, Hassan; Asgari, Soheila; Chee, Soon-Phaik

    2014-04-01

    The aim of this study was to compare the antiinflammatory effect and ocular surface toxicity of topical nonpreserved methylprednisolone sodium succinate 1% and preserved prednisolone acetate suspension 1% for the management of acute anterior uveitis (AAU). In this prospective, randomized, investigator-masked, comparative clinical trial, patients with mild-to-moderate noninfectious AAU were assigned randomly to receive either hourly nonpreserved methylprednisolone 1% (group A) or preserved prednisolone 1% (group B) eye drops followed by a 2-week tapering regimen. Anterior chamber cells and flare were clinically evaluated for the objective comparison of the antiinflammatory effect. The main outcome measure was the percentage of patients with a resolution of inflammation (anterior chamber cells <1+) on day 14. Ocular surface toxicity was assessed by means of the corneal fluorescein staining score, tear breakup time, Schirmer I test, and questionnaire-based grading of ocular discomfort parameters. Seventy-two eyes of 68 patients were studied, of which 38 eyes were enrolled in group A and 34 eyes were enrolled in group B. On day 14, 76.3% of the patients in group A had resolution of inflammation compared with 70.6% of the patients in group B, proving noninferiority (χ = 0.303, P = 0.582). The mean anterior chamber cell grade reduction for patients in group A was similar to that in group B (2.52 vs. 2.86, respectively; P = 0.92). Group A patients showed significantly lower corneal fluorescein staining scores (P < 0.001) and reported milder subjective ocular discomfort (0.55 vs. 1.43, P = 0.01) as compared with group B. Both preparations demonstrated equal antiinflammatory effects for the treatment of AAU. Nonpreserved methylprednisolone eye drops exhibited a significantly lower ocular surface toxicity profile and milder subjective discomfort when compared with that exhibited by preserved prednisolone.

  8. Wildlife and the coal waste policy debate: proposed rules for coal waste disposal ignore lessons from 45 years of wildlife poisoning

    Treesearch

    A. Dennis Lemly; Joseph P. Skorupa

    2012-01-01

    This analysis examines wildlife poisoning from coal combustion waste (CCW) in the context of EPA's proposed policy that would allow continued use of surface impoundments as a disposal method. Data from 21 confirmed damage sites were evaluated, ranging from locations where historic poisoning has led to corrective actions that have greatly improved environmental...

  9. Metric System Unit.

    ERIC Educational Resources Information Center

    Maggi, Gayle J. B.

    Thirty-six lessons for introducing the metric system are outlined. Appropriate grade level is not specified. The metric lessons suggested include 13 lessons on length, 7 lessons on mass, 11 lessons on capacity, and 5 lessons on temperature. Each lesson includes a list of needed materials, a statement of the lesson purpose, and suggested…

  10. Field geology on the Moon: Some lessons learned from the exploration of the Haughton impact structure, Devon Island, Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Osinski, Gordon R.; Lee, Pascal; Cockell, Charles S.; Snook, Kelly; Lim, Darlene S. S.; Braham, Stephen

    2010-03-01

    With the prospect of humans returning to Moon by the end of the next decade, considerable attention is being paid to technologies required to transport astronauts to the lunar surface and then to be able to carry out surface science. Recent and ongoing initiatives have focused on scientific questions to be asked. In contrast, few studies have addressed how these scientific priorities will be achieved. In this contribution, we provide some of the lessons learned from the exploration of the Haughton impact structure, an ideal lunar analogue site in the Canadian Arctic. Essentially, by studying how geologists carry out field science, we can provide guidelines for lunar surface operations. Our goal in this contribution is to inform the engineers and managers involved in mission planning, rather than the field geology community. Our results show that the exploration of the Haughton impact structure can be broken down into 3 distinct phases: (1) reconnaissance; (2) systematic regional-scale mapping and sampling; and (3) detailed local-scale mapping and sampling. This break down is similar to the classic scientific method practiced by field geologists of regional exploratory mapping followed by directed mapping at a local scale, except that we distinguish between two different phases of exploratory mapping. Our data show that the number of stops versus the number of samples collected versus the amount of data collected varied depending on the mission phase, as does the total distance covered per EVA. Thus, operational scenarios could take these differences into account, depending on the goals and duration of the mission. Important lessons learned include the need for flexibility in mission planning in order to account for serendipitous discoveries, the highlighting of key "science supersites" that may require return visits, the need for a rugged but simple human-operated rover, laboratory space in the habitat, and adequate room for returned samples, both in the habitat and in the return vehicle. The proposed set of recommendations ideally should be tried and tested in future analogue missions at terrestrial impact sites prior to planetary missions.

  11. Surface processing: existing and potential applications of ultraviolet light.

    PubMed

    Manzocco, Lara; Nicoli, Maria Cristina

    2015-01-01

    Solid foods represent optimal matrices for ultraviolet processing with effects well beyond nonthermal surface disinfection. UV radiation favors hormetic response in plant tissues and degradation of toxic compound on the product surface. Photoinduced reactions can also provide unexplored possibilities to steer structure and functionality of food biopolymers. The possibility to extensively exploit this technology will depend on availability of robust information about efficacious processing conditions and adequate strategies to completely and homogeneously process food surface.

  12. Carbon nanotubes enhanced the lead toxicity on the freshwater fish

    NASA Astrophysics Data System (ADS)

    Martinez, D. S. T.; Alves, O. L.; Barbieri, E.

    2013-04-01

    Carbon nanotubes are promising nanostructures for many applications in materials industry and biotechnology. However, it is mandatory to evaluate their toxicity and environmental implications. We evaluated nitric acid treated multiwalled carbon nanotubes (HNO3-MWCNT) toxicity in Nile tilapia (Oreochromis niloticus) and also the lead (Pb) toxicity modulation after the nanotube interaction. Industrial grade multiwalled carbon nanotubes [Ctube 100, CNT Co. Ltd] were treated with 9M HNO3 for 12h at 150°C to generate oxygenated groups on the nanotube surface, to improve water dispersion and heavy metal interaction. The HNO3-treated multiwalled carbon nanotubes were physico-chemically characterized by several techniques [e.g. TEM, FE-SEM, TGA, ζ-potential and Raman spectroscopy]. HNO3-MWCNT did not show toxicity on Nile tilapia when the concentration ranged from 0.1 to 3.0 mg/L, and the maximum exposure time was 96h. After 24, 48, 72 and 96h the LC50 values of Pb were 1.65, 1.32, 1.10 and 0.99 mg/L, respectively. To evaluate the Pb-nanotube interaction influence on the ecotoxicity, we submitted the Nile tilapia to different concentrations of Pb mixed with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, 96 h the LC50 values of Pb plus nanotubes were: 0.32, 0.25, 0.20, 0.18 mg/L, respectively. These values showed a synergistic effect after Pb-nanotube interaction since Pb toxicity increased over five times. X-ray energy dispersive spectroscopy (EDS) was used to confirm lead adsorption on the carbon nanotube oxidized surface. The exposure of Nile tilapia to Pb plus HNO3-MWCNT caused both oxygen consumption and ammonium excretion decrease, when compared to the control. Finally, our results show that carbon nanotubes interact with classical pollutants drawing attention to the environmental implications.

  13. Toxicity of sulfide to early life stages of wild rice (Zizania palustris).

    PubMed

    Fort, Douglas J; Todhunter, Kevin; Fort, Troy D; Mathis, Michael B; Walker, Rachel; Hansel, Mike; Hall, Scott; Richards, Robin; Anderson, Kurt

    2017-08-01

    The sensitivity of wild rice (Zizania palustris) to sulfide is not well understood. Because sulfate in surface waters is reduced to sulfide by anaerobic bacteria in sediments and historical information indicated that 10 mg/L sulfate in Minnesota (USA) surface water reduced Z. palustris abundance, the Minnesota Pollution Control Agency established 10 mg/L sulfate as a water quality criterion in 1973. A 21-d daily-renewal hydroponic study was conducted to evaluate sulfide toxicity to wild rice and the potential mitigation of sulfide toxicity by iron (Fe). The hydroponic design used hypoxic test media for seed and root exposure and aerobic headspace for the vegetative portion of the plant. Test concentrations were 0.3, 1.6, 3.1, 7.8, and 12.5 mg/L sulfide in test media with 0.8, 2.8, and 10.8 mg/L total Fe used to evaluate the impact of iron on sulfide toxicity. Visual assessments (i.e., no plants harvested) of seed activation, mesocotyl emergence, seedling survival, and phytoxicity were conducted 10 d after dark-phase exposure. Each treatment was also evaluated for time to 30% emergence (ET30), total plant biomass, root and shoot lengths, and signs of phytotoxicity at study conclusion (21 d). The results indicate that exposure of developing wild rice to sulfide at ≥3.1 mg sulfide/L in the presence of 0.8 mg/L Fe reduced mesocotyl emergence. Sulfide toxicity was mitigated by the addition of Fe at 2.8 mg/L and 10.8 mg/L relative to the control value of 0.8 mg Fe/L, demonstrating the importance of iron in mitigating sulfide toxicity to wild rice. Ultimately, determination of site-specific sulfate criteria taking into account factors that alter toxicity, including sediment Fe and organic carbon, are necessary. Environ Toxicol Chem 2017;36:2217-2226. © 2017 SETAC. © 2017 SETAC.

  14. Processing pathway dependence of amorphous silica nanoparticle toxicity - colloidal versus pyrolytic

    PubMed Central

    Zhang, Haiyuan; Dunphy, Darren R.; Jiang, Xingmao; Meng, Huan; Sun, Bingbing; Tarn, Derrick; Xue, Min; Wang, Xiang; Lin, Sijie; Ji, Zhaoxia; Li, Ruibin; Garcia, Fred L.; Yang, Jing; Kirk, Martin L.; Xia, Tian; Zink, Jeffrey I; Nel, Andre; Brinker, C. Jeffrey

    2012-01-01

    We have developed structure/toxicity relationships for amorphous silica nanoparticles (NPs) synthesized through low temperature, colloidal (e.g. Stöber silica) or high temperature pyrolysis (e.g. fumed silica) routes. Through combined spectroscopic and physical analyses, we have determined the state of aggregation, hydroxyl concentration, relative proportion of strained and unstrained siloxane rings, and potential to generate hydroxyl radicals for Stöber and fumed silica NPs with comparable primary particle sizes (16-nm in diameter). Based on erythrocyte hemolytic assays and assessment of the viability and ATP levels in epithelial and macrophage cells, we discovered for fumed silica an important toxicity relationship to post-synthesis thermal annealing or environmental exposure, whereas colloidal silicas were essentially non-toxic under identical treatment conditions. Specifically, we find for fumed silica a positive correlation of toxicity with hydroxyl concentration and its potential to generate reactive oxygen species (ROS) and cause red blood cell hemolysis. We propose fumed silica toxicity stems from its intrinsic population of strained three-membered rings (3MRs) along with its chain-like aggregation and hydroxyl content. Hydrogen-bonding and electrostatic interactions of the silanol surfaces of fumed silica aggregates with the extracellular plasma membrane cause membrane perturbations sensed by the Nalp3 inflammasome, whose subsequent activation leads to secretion of the cytokine IL-1β. Hydroxyl radicals generated by the strained 3MRs in fumed silica but largely absent in colloidal silicas may contribute to the inflammasome activation. Formation of colloidal silica into aggregates mimicking those of fumed silica had no effect on cell viability or hemolysis. This study emphasizes that not all amorphous silica is created equal and that the unusual toxicity of fumed silica compared to colloidal silica derives from its framework and surface chemistry along with its fused chain-like morphology established by high temperature synthesis (>1300°C) and rapid thermal quenching. PMID:22924492

  15. Contamination and UV lasers: lessons learned

    NASA Astrophysics Data System (ADS)

    Daly, John G.

    2015-09-01

    Laser induced damage to optical elements has been a subject of significant research, development, and improvement, since the first lasers were built over the last 50 years. Better materials, with less absorption, impurities, and defects are available, as well as surface coatings with higher laser damage resistance. However, the presence of contamination (particles, surface deposition films, or airborne) can reduce the threshold for damage by several orders of magnitude. A brief review of the anticipated laser energy levels for damage free operation is presented as a lead into the problems associated with contamination for ultraviolet (UV) laser systems. As UV lasers become more common in applications especially in areas such as lithography, these problems have limited reliability and added to costs. This has been characterized as Airborne Molecular Contamination (AMC) in many published reports. Normal engineering guidelines such as screening materials within the optical compartment for low outgassing levels is the first step. The use of the NASA outgassing database (or similar test methods) with low Total Mass Loss (TML) and Condensed Collected Volatiles Collected Mass (CVCM) is a good baseline. Energetic UV photons are capable of chemical bond scission and interaction with surface contaminant or airborne materials results in deposition of obscuring film laser footprints that continue to degrade laser system performance. Laser systems with average powers less than 5 mW have been shown to exhibit aggressive degradation. Lessons learned over the past 15 years with UV laser contamination and steps to reduce risk will be presented.

  16. Molecular Mechanism of Acrylamide Neurotoxicity: Lessons Learned from Organic Chemistry

    PubMed Central

    Gavin, Terrence

    2012-01-01

    Background: Acrylamide (ACR) produces cumulative neurotoxicity in exposed humans and laboratory animals through a direct inhibitory effect on presynaptic function. Objectives: In this review, we delineate how knowledge of chemistry provided an unprecedented understanding of the ACR neurotoxic mechanism. We also show how application of the hard and soft, acids and bases (HSAB) theory led to the recognition that the α,β-unsaturated carbonyl structure of ACR is a soft electrophile that preferentially forms covalent bonds with soft nucleophiles. Methods: In vivo proteomic and in chemico studies demonstrated that ACR formed covalent adducts with highly nucleophilic cysteine thiolate groups located within active sites of presynaptic proteins. Additional research showed that resulting protein inactivation disrupted nerve terminal processes and impaired neurotransmission. Discussion: ACR is a type-2 alkene, a chemical class that includes structurally related electrophilic environmental pollutants (e.g., acrolein) and endogenous mediators of cellular oxidative stress (e.g., 4-hydroxy-2-nonenal). Members of this chemical family produce toxicity via a common molecular mechanism. Although individual environmental concentrations might not be toxicologically relevant, exposure to an ambient mixture of type-2 alkene pollutants could pose a significant risk to human health. Furthermore, environmentally derived type-2 alkenes might act synergistically with endogenously generated unsaturated aldehydes to amplify cellular damage and thereby accelerate human disease/injury processes that involve oxidative stress. Conclusions: These possibilities have substantial implications for environmental risk assessment and were realized through an understanding of ACR adduct chemistry. The approach delineated here can be broadly applied because many toxicants of different chemical classes are electrophiles that produce toxicity by interacting with cellular proteins. PMID:23060388

  17. Exploring Oxidative Reactions in Hemoglobin Variants Using Mass Spectrometry: Lessons for Engineering Oxidatively Stable Oxygen Therapeutics

    PubMed Central

    Strader, Michael Brad

    2017-01-01

    Abstract Significance: Worldwide demand has driven the development of hemoglobin (Hb)-based oxygen carriers (HBOCs) as potential acellular oxygen therapeutics. HBOCs have the potential to provide an oxygen bridge to patients and minimize current problems associated with supply and storage of donated blood. However, to date, safety and efficacy issues have hampered the approval of viable HBOCs in the United States. These previous efforts have underscored the need for a better molecular understanding of toxicity to design safe and oxidatively stable HBOCs. Recent Advances: High-resolution accurate mass (HRAM) mass spectrometry (MS) has recently become a versatile tool in characterizing oxidative post-translational modifications that occur in Hb. When integrated with other analytical techniques, HRAM data have been invaluable in providing mechanistic insight into the extent of oxidative modification by quantifying oxidation in amino acids near the reactive heme or at specific “oxidative hotspots.” Critical Issues: In addition to providing a deeper understanding of Hb oxidative toxicity, HRAM MS studies are currently being used toward developing suitable HBOCs using a “two-prong” strategy that involves (i) understanding the mechanism of Hb toxicity by evaluating mutant Hbs identified in patients with hemoglobinopathies and (ii) utilizing this information toward designing against (or for) these reactions in acellular oxygen therapeutics that will result in oxidatively stable protein. Future Directions: Future HRAM studies are aimed at fully characterizing engineered candidate HBOCs to determine the most oxidatively stable protein while retaining oxygen carrying function in vivo. Antioxid. Redox Signal. 26, 777–793. PMID:27626360

  18. Speed, Acceleration, and Velocity: Level II, Unit 9, Lesson 1; Force, Mass, and Distance: Lesson 2; Types of Motion and Rest: Lesson 3; Electricity and Magnetism: Lesson 4; Electrical, Magnetic, and Gravitational Fields: Lesson 5; The Conservation and Conversion of Matter and Energy: Lesson 6; Simple Machines and Work: Lesson 7; Gas Laws: Lesson 8; Principles of Heat Engines: Lesson 9; Sound and Sound Waves: Lesson 10; Light Waves and Particles: Lesson 11; Program. A High.....

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. Job Corps.

    This self-study program for high-school level contains lessons on: Speed, Acceleration, and Velocity; Force, Mass, and Distance; Types of Motion and Rest; Electricity and Magnetism; Electrical, Magnetic, and Gravitational Fields; The Conservation and Conversion of Matter and Energy; Simple Machines and Work; Gas Laws; Principles of Heat Engines;…

  19. Treatability of Aqueous Film-Forming Foams Used for Fire Fighting.

    DTIC Science & Technology

    BIODETERIORATION, *FIRE EXTINGUISHING AGENTS, SURFACE ACTIVE SUBSTANCES, FLUORINATED HYDROCARBONS, FOAM , ACTIVATED SLUDGE PROCESS, ACTIVATED CARBON, TOXICITY, WASTE DISPOSAL, TABLES(DATA), ADSORPTION.

  20. Lessons learned from the U.S. Geological Survey abandoned mine lands initiative: 1997-2002

    USGS Publications Warehouse

    Kimball, Briant A.; Church, Stan E.; Besser, John M.

    2006-01-01

    Growth of the United States has been facilitated, in part, by hard-rock mining in the Rocky Mountains. Abandoned and inactive mines cause many significant environmental concerns in hundreds of watersheds. Those who have responsibility to address these environmental concerns must have a basic level of scientific information about mining and mine wastes in a watershed prior to initiating remediation activities. To demonstrate what information is needed and how to obtain that information, the U.S. Geological Survey implemented the Abandoned Mine Lands (AML) Initiative from 1997 to 2002 with demonstration studies in the Boulder River watershed in Montana and the Animas River watershed in Colorado. The AML Initiative included collection and analysis of geologic, hydrologic, geochemical, geophysical, and biological data. The synergy of this interdisciplinary analysis produced a perspective of the environmental concerns that could not have come from a single discipline. Two examples of these perspectives include (1) the combination of hydrological tracer techniques, structural geology, and geophysics help to understand the spatial distribution of loading to the streams in a way that cannot be evaluated by monitoring at a catchment outlet, and (2) the combination of toxicology and hydrology combine to illustrate that seasonal variability of toxicity conditions occurs. Lessons have been learned by listening to and collaborating with land-management agencies to understand their needs and by applying interdisciplinary methods to answer their questions.

  1. Effects of cadmium and zinc toxicity on orientation behaviour of Echinoparyphium recurvatum (Digenea: Echinostomatidae) cercariae.

    PubMed

    Morley, N J; Crane, M; Lewis, J W

    2003-08-15

    The effects of cadmium and zinc toxicity on orientation behaviour (photo- and geo-taxis) of Echinoparyphium recurvatum cercariae was investigated at concentrations ranging from 10 to 1000 microg l(-1). Exposure to the toxicants at all metal concentrations caused a change in orientation to negative phototaxis and positive geotaxis during the submaximal dispersal phase (0.5 h cercarial age). Autometallography staining of cercariae exposed to 1000 microg l(-1) cadmium or zinc showed selective binding of heavy metals to tegumental surface sites associated with sensory receptors. The significance to parasite transmission of changes in cercarial orientation behaviour in metal polluted environments is discussed.

  2. Vectorization by nanoparticles decreases the overall toxicity of airborne pollutants.

    PubMed

    Carpentier, Rodolphe; Platel, Anne; Maiz-Gregores, Helena; Nesslany, Fabrice; Betbeder, Didier

    2017-01-01

    Atmospheric pollution is mainly composed of volatile pollutants and particulate matter that strongly interact. However, their specific roles in the induction of cellular toxicity, in particular the impact of the vectorization of atmospheric pollutants by ultrafine particles, remains to be fully elucidated. For this purpose, non-toxic poly-lactic co-glycolic acid (PLGA) nanoparticles were synthesized and three pollutants (benzo(a)pyrene, naphthalene and di-ethyl-hexyl-phthalate) were adsorbed on the surface of the nanoparticles in order to evaluate the toxicity (cytotoxicity, genotoxicity and ROS induction) of these complexes to a human airway epithelial cell line. The adsorption of the pollutants onto the nanoparticles was confirmed by HPLC analysis. Interestingly, the cytotoxicity assays (MTT, LDH and CellTox Green) clearly demonstrated that the vectorization by nanoparticles decreases the toxicity of the adsorbed pollutants. Genotoxicity was assessed by the micronucleus test and the comet assay and showed no increase in primary DNA damage or in chromosomal aberrations of nanoparticle vectorized pollutants. Neither cytotoxicity nor genotoxicity was correlated with ROS induction. To conclude, our results indicate that the vectorization of pollutants by nanoparticles does not potentiate the toxicity of the pollutants studied and that, on the contrary, adsorption onto nanoparticles could protect cells against pollutants' toxicity.

  3. Urban and agricultural sources of pyrethroid insecticides to the Sacramento-San Joaquin Delta of California.

    PubMed

    Weston, Donald P; Lydy, Michael J

    2010-03-01

    While studies have documented the presence of pyrethroid insecticides at acutely toxic concentrations in sediments, little quantitative data on sources exist. Urban runoff, municipal wastewater treatment plants and agricultural drains in California's Sacramento-San Joaquin River Delta were sampled to understand their importance as contributors of these pesticides to surface waters. Nearly all residential runoff samples were toxic to the amphipod, Hyalella azteca, and contained pyrethroids at concentrations exceeding acutely toxic thresholds, in many cases by 10-fold. Toxicity identification evaluation data were consistent with pyrethroids, particularly bifenthrin and cyfluthrin, as the cause of toxicity. Pyrethroids passed through secondary treatment systems at municipal wastewater treatment facilities and were commonly found in the final effluent, usually near H. azteca 96-h EC(50) thresholds. Agricultural discharges in the study area only occasionally contained pyrethroids and were also occasional sources of toxicity related to the organophosphate insecticide chlorpyrifos. Discharge of the pyrethroid bifenthrin via urban stormwater runoff was sufficient to cause water column toxicity in two urban creeks, over at least a 30 km reach of the American River, and at one site in the San Joaquin River, though not in the Sacramento River.

  4. Influence of chloride on the chronic toxicity of sodium nitrate to Ceriodaphnia dubia and Hyalella azteca.

    PubMed

    Soucek, David J; Dickinson, Amy

    2016-09-01

    While it has been well established that increasing chloride concentration in water reduces the toxicity of nitrite to freshwater species, little work has been done to investigate the effect of chloride on nitrate toxicity. We conducted acute and chronic nitrate (as sodium nitrate) toxicity tests with the cladoceran Ceriodaphnia dubia and the amphipod Hyalella azteca (chronic tests only) over a range of chloride concentrations spanning natural chloride levels found in surface waters representative of watersheds of the Great Lakes Region. Chronic nitrate toxicity test results with both crustaceans were variable, with H. azteca appearing to be one of the more sensitive invertebrate species tested and C. dubia being less sensitive. While the variability in results for H. azteca were to an extent related to chloride concentration in test water that was distinctly not the case for C. dubia. We concluded that the chloride dependent toxicity of nitrate is not universal among freshwater crustaceans. An additional sodium chloride chronic toxicity test with the US Lab strain of H. azteca in the present study suggested that when present as predominantly sodium chloride and with relatively low concentrations of other ions, there is a narrow range of chloride concentrations over which this strain is most fit, and within which toxicity test data are reliable.

  5. Assessing the toxicity and risk of salt-impacted winter road runoff to the early life stages of freshwater mussels in the Canadian province of Ontario.

    PubMed

    Prosser, R S; Rochfort, Q; McInnis, R; Exall, K; Gillis, P L

    2017-11-01

    In temperate urbanized areas where road salting is used for winter road maintenance, the level of chloride in surface waters has been increasing. While a number of studies have shown that the early-life stages of freshwater mussels are particularly sensitive to salt; few studies have examined the toxicity of salt-impacted winter road runoff to the early-life stages of freshwater mussels to confirm that chloride is the driver of toxicity in this mixture. This study examines the acute toxicity of field-collected winter road runoff to the glochidia of wavy-rayed lampmussels (Lampsilis fasciola) (48 h exposure) and newly released juvenile fatmucket mussels (Lampsilis siliquoidea) (<1 week old; 96 h exposure) under different water hardness. The chronic toxicity (28 d) to older juvenile L. siliquoidea (7-12 months old) was also investigated. The 48-h EC50 and 96-h LC50 for L. fasciola glochidia and L. siliquoidea juveniles exposed to different dilutions of road run-off created with moderately hard synthetic water (∼80 mg CaCO 3 /L) were 1177 (95% confidence interval (CI): 1011-1344 mg Cl - /L) and 2276 mg Cl - /L (95% CI: 1698-2854 mg Cl - /L), respectively. These effect concentrations correspond with the toxicity of chloride reported in other studies, indicating that chloride is likely the driver of toxicity in salt-impacted road-runoff, with other contaminants (e.g., metals, polycyclic aromatic hydrocarbons) playing a de minimis role. Toxicity data from the current study and literature and concentrations of chloride in the surface waters of Ontario were used to conduct a probabilistic risk assessment of chloride to early-life stage freshwater mussels. The assessment indicated that chronic exposure to elevated chloride levels could pose a risk to freshwater mussels; further investigation is warranted to ensure that the most sensitive organisms are protected. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  6. Three or Four Fractions of 4-5 Gy per Week in Postoperative High-Dose-Rate Brachytherapy for Endometrial Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rovirosa, Angeles, E-mail: rovirosa@clinic.ub.es; Ascaso, Carlos; Sanchez-Reyes, Alberto

    2011-10-01

    Purpose: To evaluate the results of high-dose-rate brachytherapy (HDRBT) using a schedule of three or four fractions per week, when possible, in 89 patients on local control and toxicity in postoperative treatment of endometrial carcinoma. The effect of the overall HDRBT treatment time (OTT) on toxicity was also evaluated. Patients and Methods: Federation Internationale de Gynecologie Obstetrique Stage: 24 IB, 45 IC, 4 IIA, 6 IIB, 4 IIIA, 2 IIIB, and 4 IIIC. Radiotherapy: Group 1-67 of 89 patients received external beam irradiation (EBI; 44-50 Gy) plus HDRBT (3 fractions of 4-6 Gy); Group 2-22 of 89 patients received HDRBTmore » alone (6 fractions of 4-5 Gy). OTT: Group 1-HDRBT was completed in a median of 5 days in 32 patients and in >5 days in 35; Group 2-HDRBT was completed in <15 days in 11 patients and in {>=}16 days in 11. Toxicity was evaluated using Radiation Therapy Oncology Group scores and the bioequivalent dose (BED) study was performed in vaginal mucosa surface. Statistics included Student's t test, chi-square test, and receiving operator curves. Results: With a mean follow-up of 31 months (range, 6-70), 1 of 89 patients had vaginal relapse. Early toxicity appeared in 8 of 89 (9%) patients and was resolved. Late toxicity appeared in 13/89 (14%): vaginal nine Grade 1, three Grade 2, one Grade 4; bladder two Grade 2; rectal three Grade 1, one Grade 2. No differences were found in relation to OTT in Groups 1 and 2. Mean BED was 88.48 Gy in Group 1 and 165.28 Gy in Group 2. Cases with Grade 2 late vaginal toxicity received >75 Gy after EBI and >165 Gy in Group 2. Conclusions: Three fractions of 4-5 Gy in 3-5 days after EBI or 6 fractions in <15 days in patients receiving HDRBT alone was a safe treatment in relation to toxicity and local control. Vaginal surface BED less than 75 Gy after EBI and less than 160 Gy in HDRBT alone may be safe to avoid G2 toxicity.« less

  7. Toxic effect of Cr(VI) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae.

    PubMed

    Dalai, Swayamprava; Pakrashi, Sunandan; Bhuvaneshwari, M; Iswarya, V; Chandrasekaran, N; Mukherjee, Amitava

    2014-01-01

    The reactivity and toxicity of the soluble toxicants in the presence of the engineered nanomaterials is not well explored. In this study, the probable effects of TiO2 and Al2O3 nanoparticles (n-TiO2, n-Al2O3) on the toxicity of Cr(VI) were assessed with the dominant freshwater algae, Scenedesmus obliquus, in a low range of exposure concentrations (0.05, 0.5 and 1μg/mL). In the presence of 0.05μg/mL n-TiO2, the toxicity of Cr(VI) decreased considerably, which was presumably due to the Cr(VI) adsorption on the nanoparticle surface leading to its aggregation and precipitation. The elevated n-TiO2 concentrations (0.5 and 1μg/mL) did not significantly influence Cr(VI) bio-availability, and a dose dependent toxicity of Cr(VI) was observed. On the other hand, n-Al2O3 did not have any significant effect on the Cr(VI) toxicity. The microscopic observations presented additional information on the morphological changes of the algal cells in the presence of the binary toxicants. The generation of reactive oxygen species (ROS) suggested contribution of oxidative stress on toxicity and LDH release confirmed membrane permeability of algal cells upon stress. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The influence of salinity on the toxicity of selected sulfonamides and trimethoprim towards the green algae Chlorella vulgaris.

    PubMed

    Borecka, Marta; Białk-Bielińska, Anna; Haliński, Łukasz P; Pazdro, Ksenia; Stepnowski, Piotr; Stolte, Stefan

    2016-05-05

    This paper presents the investigation of the influence of salinity variations on the toxicity of sulfapyridine, sulfamethoxazole, sulfadimethoxine and trimethoprim towards the green algae Chlorella vulgaris after exposure times of 48 and 72 h. In freshwater the EC50 values ranged from 0.98 to 123.22 mg L(-1) depending on the compound. The obtained results revealed that sulfamethoxazole and sulfapyridine were the most toxic, while trimethoprim was the least toxic pharmaceutical to the selected organism. Deviations between the nominal and real test concentrations were determined via instrumental analysis to support the interpretation of ecotoxicological data. The toxicity effects were also tested in saline water (3, 6 and 9 PSU). The tendency that the toxicity of selected pharmaceuticals decreases with increasing salinity was observed. Higher salinity implies an elevated concentration of inorganic monovalent cations that are capable of binding with countercharges available on algal surfaces (hydroxyl functional groups). Hence it can reduce the permeability of pharmaceuticals through the algal cell walls, which could be the probable reason for the observed effect. Moreover, for the classification of the mode of toxic action, the toxic ratio concept was applied, which indicated that the effects of the investigated drugs towards algae are caused by the specific mode of toxic action. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Bioassays for toxicological risk assessment of landfill leachate: A review.

    PubMed

    Ghosh, Pooja; Thakur, Indu Shekhar; Kaushik, Anubha

    2017-07-01

    Landfilling is the most common solid waste management practice. However, there exist a potential environmental risk to the surface and ground waters due to the possible leaching of contaminants from the landfill leachates. Current municipal solid waste landfill regulatory approaches consider physicochemical characterization of the leachate and do not assess their potential toxicity. However, assessment of toxic effects of the leachates using rapid, sensitive and cost-effective biological assays is more useful in assessing the risks as they measure the overall toxicity of the chemicals in the leachate. Nevertheless, more research is needed to develop an appropriate matrix of bioassays based on their sensitivity to various toxicants in order to evaluate leachate toxicity. There is a need for a multispecies approach using organisms representing different trophic levels so as to understand the potential impacts of leachate on different trophic organisms. The article reviews different bioassays available for assessing the hazard posed by landfill leachates. From the review it appears that there is a need for a multispecies approach to evaluate leachate toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Static renewal tests using Pimephales promelas (fathead minnows) and Ceriodaphnia dubia (daphnids). Clinch River-Environmental Restoration Program (CR-ERP) study, ambient water toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simbeck, D.J.

    1994-12-31

    Clinch River-Environmental Restoration Program (CR-ERP) personnel and Tennessee Valley Authority (TVA) personnel conducted a study during the week of January 25--February 1, 1994. The organisms specified for testing were larval fathead minnows, Pimephales promelas, and the daphnid, Ceriodaphnia dubia. Surface water samples were collected from Clinch River Mile 9.0, Poplar Creek Mile 1.0, and Poplar Creek Mile 2.9 on January 24, 26, and 28. Samples were partitioned and provided to the CR-ERP and TVA toxicology laboratories for testing. Exposure of test organisms to these samples resulted in no toxicity (survival or growth) to fathead minnows; however, toxicity to daphnids wasmore » demonstrated in undiluted samples from Poplar Creek Mile 1.0 in testing conducted by TVA based on hypothesis testing of data. Point estimation (IC{sub 25}) analysis of the data, however, showed no toxicity in PCM 1.0 samples. Attachments to this report include: Chain of custody forms -- originals; Toxicity test bench sheets and statistical analyses; Meter calibrations; and Reference toxicant test information.« less

  11. Decay of Reactivity Induced by Simulated Solar Wind Implantation of a Forsteritic Olivine

    NASA Technical Reports Server (NTRS)

    Kuhlman, K.R.; Sridharan, K.; Garrison, D.H.; McKay, D.S.; Taylor, L.A.

    2009-01-01

    In returning humans to the Moon, the Lunar Airborne Dust Toxicity Advisory Group (LADTAG) must address many problems faced by the original Apollo astronauts. Major among these is control of the fine dust (<20 microns) that makes up approx.20 wt% portion of the lunar surface. This ubiquitous, clinging, sharp, abrasive, glassy dust caused a plethora of problems with seals, abrasion, and coatings, in addition to possible health problems, including lunar dust hayfever. The lifetime of reactive sites on the surfaces of irradiated lunar dust grains is of interest to those studying human health because of the free radicals and toxic compounds that may be formed and may not passivate quickly when exposed to habitat/spacecraft air.

  12. Efficacy and toxicity differences in lung cancer populations in the era of clinical trials globalization: the 'common arm' approach.

    PubMed

    Mack, Philip C; Gandara, David R; Lara, Primo N

    2012-12-01

    Historically, notable variability has been observed in clinical trial outcomes between different regions and populations worldwide, even when employing the same cytotoxic regimen in lung cancer. These divergent results underscore the inherent challenges in interpreting trials conducted abroad and raise questions regarding the general applicability of transnational clinical trials. Various reasons have been postulated to account for these differences in efficacy and toxicity, including trial design, eligibility criteria, patient demographics and, perhaps most intriguingly, population-related pharmacogenomics. However, without methodology to control for such variables, these hypotheses remain largely untested. The authors previously developed the 'common arm' approach in order to directly compare efficacy and toxicity results of trials simultaneously performed in different countries. By standardizing clinical trial-associated variables such as treatment regimens (dose, schedule, and so on), eligibility, staging, response and toxicity criteria, this approach has the potential to determine the underlying reasons for divergences in trial outcomes across countries, and whether population-associated polymorphisms contribute to these differences. In the past decade, Japanese and US investigators have applied the common arm analytic method to trials in both extensive-stage small-cell lung cancer (SCLC) and advanced nonSCLC. In the SCLC analysis, a comparison of the cisplatin/irinotecan arms from both trials revealed significant differences in response rates and overall survival. Significant differences were also observed in the distribution of gender and performance status. The common arm analysis in nonSCLC included two trials from Japan and one from the USA, each containing a 'common' carboplatin/paclitaxel arm. Clinical results were similar in the two Japanese trials, but were significantly different from the US trial with regard to survival, neutropenia, febrile neutropenia and anemia. The underlying basis for these divergent outcomes is discussed. The common arm methodology provides a template for identifying and interpreting patient outcome differences across populations, and is an instructive lesson in the burgeoning era of clinical trials globalization.

  13. DNA damage and oxidative stress in human liver cell L-02 caused by surface water extracts during drinking water treatment in a waterworks in China.

    PubMed

    Xie, Shao-Hua; Liu, Ai-Lin; Chen, Yan-Yan; Zhang, Li; Zhang, Hui-Juan; Jin, Bang-Xiong; Lu, Wen-Hong; Li, Xiao-Yan; Lu, Wen-Qing

    2010-04-01

    Because of the daily and life-long exposure to disinfection by-products formed during drinking water treatment, potential adverse human health risk of drinking water disinfection is of great concern. Toxicological studies have shown that drinking water treatment increases the genotoxicity of surface water. Drinking water treatment is comprised of different potabilization steps, which greatly influence the levels of genotoxic products in the surface water and thus may alter the toxicity and genotoxicity of surface water. The aim of the present study was to understand the influence of specific steps on toxicity and genotoxicity during the treatment of surface water in a water treatment plant using liquid chlorine as the disinfectant in China. An integrated approach of the comet and oxidative stress assays was used in the study, and the results showed that both the prechlorination and postchlorination steps increased DNA damage and oxidative stress caused by water extracts in human derived L-02 cells while the tube settling and filtration steps had the opposite effect. This research also highlighted the usefulness of an integrated approach of the comet and oxidative stress assays in evaluating the genotoxicity of surface water during drinking water treatment. Copyright 2009 Wiley-Liss, Inc.

  14. EFFECTS OF BIOSOLIDS APPLICATION ON EROSION CONTROL AND ECOSYSTEM RECOVERY FOLLOWING THE BUFFALO CREEK FIRE - PART II

    EPA Science Inventory

    Nutrient (i.e. nitrogen) contamination of surface waters constitutes one of the most pervasive problems facing wastewater treatment works across the country. Nitrogen discharge to surface water occurs mostly in the form of ammonia which is identified as the most toxic nitrogen sp...

  15. Corrosion protective coating for metallic materials

    DOEpatents

    Buchheit, Rudolph G.; Martinez, Michael A.

    1998-01-01

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.

  16. Plasma membrane surface potential: dual effects upon ion uptake and toxicity

    USDA-ARS?s Scientific Manuscript database

    Electrical properties of plasma membranes (PMs), partially controlled by the ionic composition of the bathing medium, play significant roles in the distribution of ions at the exterior surface of PMs and in the transport of ions across PMs. The effects of coexistent cations (commonly Al3+, Ca2+, Mg...

  17. Effect of surface application of ammonium thiosulfate on field-scale emissions of 1,3-dichloropropene

    USDA-ARS?s Scientific Manuscript database

    Soil fumigation is important for food production but has the potential to discharge toxic chemicals into the environment, which may adversely affect human and ecosystem health. A field experiment was conducted to evaluate the effect of applying ammonium thiosulfate fertilizer to the soil surface pr...

  18. Fact Sheet: Final Rule to Reduce Toxic Air Pollutants from Surface Coating of Wood Building Products

    EPA Pesticide Factsheets

    This page contains the February 2003 final rule fact sheet on the NESHAP for Surface Coating of Wood Building Products. This document provides a background for this rule, a summary of the benefits of this rule, who is affected by the rule, and rule costs

  19. Pipeline Corrosion and Friction Reduction Coatings.

    DTIC Science & Technology

    1986-06-01

    surface energy, i.e., a lower friction surface. Due to the toxic nature of fluorine cas we elected to have Air Products and Chemicals , Inc . perform...Research and Chemical Corp. PR-319 A.P. 8717-21 (1) - 6.9 +19.0 +32.5 +14.9 (1) Indicates Air Products and Chemicals , Inc . proprietary exposure method

  20. 40 CFR 761.283 - Determination of the number of samples to collect and sample collection locations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs...-Implementing Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With... locations for bulk PCB remediation waste and porous surfaces destined to remain at a cleanup site after...

  1. 40 CFR 761.283 - Determination of the number of samples to collect and sample collection locations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs...-Implementing Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With... locations for bulk PCB remediation waste and porous surfaces destined to remain at a cleanup site after...

  2. 40 CFR 721.91 - Computation of estimated surface water concentrations: Instructions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Computation of estimated surface water concentrations: Instructions. 721.91 Section 721.91 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Certain Significant New Uses § 721.91 Computation of...

  3. 40 CFR 721.91 - Computation of estimated surface water concentrations: Instructions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Computation of estimated surface water concentrations: Instructions. 721.91 Section 721.91 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Certain Significant New Uses § 721.91 Computation of...

  4. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    EPA Science Inventory

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  5. Hydroxy-Al and cell-surface negativity are responsible for the enhanced sensitivity of Rhodotorula taiwanensis to aluminum by increased medium pH.

    PubMed

    Zhao, Xue Qiang; Bao, Xue Min; Wang, Chao; Xiao, Zuo Yi; Hu, Zhen Min; Zheng, Chun Li; Shen, Ren Fang

    2017-10-01

    Aluminum (Al) is ubiquitous and toxic to microbes. High Al 3+ concentration and low pH are two key factors responsible for Al toxicity, but our present results contradict this idea. Here, an Al-tolerant yeast strain Rhodotorula taiwanensis RS1 was incubated in glucose media containing Al with a continuous pH gradient from pH 3.1-4.2. The cells became more sensitive to Al and accumulated more Al when pH increased. Calculations using an electrostatic model Speciation Gouy Chapman Stern indicated that, the increased Al sensitivity of cells was associated with AlOH 2+ and Al(OH) 2 + rather than Al 3+ . The alcian blue (a positively charged dye) adsorption and zeta potential determination of cell surface indicated that, higher pH than 3.1 increased the negative charge and Al adsorption at the cell surface. Taken together, the enhanced sensitivity of R. taiwanensis RS1 to Al from pH 3.1-4.2 was associated with increased hydroxy-Al and cell-surface negativity.

  6. Effect of surface coating of KYb2F7:Tm3+ on optical properties and biomedical applications

    NASA Astrophysics Data System (ADS)

    Pedraza, Francisco J.; Avalos, Julio C.; Yust, Brian G.; Tsin, Andrew; Sardar, Dhiraj K.

    2016-09-01

    This project aims to provide an insight on the effects of biocompatible polymers on the optical properties and the nanoparticle-cell interaction of KYb2F7:Tm3+ nanocrystals that exhibit strong near infrared (NIR) fluorescence. KYb2F7:Tm3+ nanocrystals were synthesized with a diameter of 20-30 nm and surface modified with poly(ethylene glycol), Pluronic® F-127, and poly(N-vinylpyrrolidone), due to the associated advantages. Some of these include biocompatibility and biodistribution in the instance of agglomeration and hydrophobicity as well as the addition of a targeting agent and drug loading by further functionalization. Despite the decrease in fluorescence intensity induced by the surface modification, thulium’s emission fingerprint was easily detected. Moreover, surface modified KYb2F7:Tm3+ nanocrystals failed to induce a toxic response on endothelial cells following a 24 h uptake period up to concentrations of 100 μg ml-1. In vitro toxicity and confocal imaging have demonstrated the versatility of these NIR fluorescence nanocrystals in biomedical imaging, drug delivery, and photodynamic therapy.

  7. Mineralogical and chemical interactions of soils eaten by chimpanzees of the Mahale Mountains and Gombe Stream National Parks, Tanzania.

    PubMed

    Aufreiter, S; Mahaney, W C; Milner, M W; Huffman, M A; Hancock, R G; Wink, M; Reich, M

    2001-02-01

    Termite mound soils eaten by chimpanzees of the Mahale Mountains and Gombe National Parks, Tanzania, have mineralogical and geochemical compositions similar to many soils eaten by higher primates, but release very low levels of either toxic or nutritional inorganic elements to solution at acid pH. Comparison with control (uneaten) soils from the same areas showed lower levels of carbon and nitrogen in the eaten soils, a relationship confirmed by surface analysis. Surface analysis also revealed lower levels of iron on particle surfaces versus interiors, and higher levels of iron on ingested versus control soil particle surfaces. The soils can adsorb dietary toxins, present in the plant diet or those produced by microorganisms. Taking the toxic alkaloids quinine, atropine, sparteine, and lupanine as examples, it is evident that soils from Mahale have a very good adsorptive capacity. A new adaptive advantage of geophagy is proposed, based on the prevention of iron uptake. The behavior of the soils in vitro is consistent with the theory that geophagy has a therapeutic value for these chimpanzees.

  8. A Safe Solution to Dopant Gas Desorption from Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Nakanoya, Tsutomu; Egami, Maki

    2006-11-01

    TOXICAPTURE™ is used to further minimize trace toxic dopant gas inside cylinder valve outlets, which, over time, may desorb from metal surfaces. When outlet caps or connections to ion source gas cylinders are disconnected in order to perform installations or bottle changes, there always is some risk that toxic fumes resulting from desorption of the metal surface in contact with dopant gas are released in air and inhaled by the operator. TOXICAPTURE™ is a simple and easy solution to reduce this risk that may damage human health or may pollute clean room environment. TOXICAPTURE™ will react with the poison gas vapor to form nontoxic and solid material through irreversible chemical reactions. TOXICAPTURE™ prevents contamination and corrosion on gas contact surfaces of gas pipings, pressure regulators, pneumatic valves, mass flow controllers, and other parts in a gas box. TOXICAPTURE™ is highly effective in shortening the time to achieve high vacuum and in extending the lifetime of devices in the gas box. In this paper, we introduce the structure, functions, reactivity, applications, and effectivity of TOXICAPTURE™.

  9. Measurements of Deposition, Lung Surface Area and Lung Fluid for Simulation of Inhaled Compounds.

    PubMed

    Fröhlich, Eleonore; Mercuri, Annalisa; Wu, Shengqian; Salar-Behzadi, Sharareh

    2016-01-01

    Modern strategies in drug development employ in silico techniques in the design of compounds as well as estimations of pharmacokinetics, pharmacodynamics and toxicity parameters. The quality of the results depends on software algorithm, data library and input data. Compared to simulations of absorption, distribution, metabolism, excretion, and toxicity of oral drug compounds, relatively few studies report predictions of pharmacokinetics and pharmacodynamics of inhaled substances. For calculation of the drug concentration at the absorption site, the pulmonary epithelium, physiological parameters such as lung surface and distribution volume (lung lining fluid) have to be known. These parameters can only be determined by invasive techniques and by postmortem studies. Very different values have been reported in the literature. This review addresses the state of software programs for simulation of orally inhaled substances and focuses on problems in the determination of particle deposition, lung surface and of lung lining fluid. The different surface areas for deposition and for drug absorption are difficult to include directly into the simulations. As drug levels are influenced by multiple parameters the role of single parameters in the simulations cannot be identified easily.

  10. Plants and Photosynthesis: Level III, Unit 3, Lesson 1; The Human Digestive System: Lesson 2; Functions of the Blood: Lesson 3; Human Circulation and Respiration: Lesson 4; Reproduction of a Single Cell: Lesson 5; Reproduction by Male and Female Cells: Lesson 6; The Human Reproductive System: Lesson 7; Genetics and Heredity: Lesson 8; The Nervous System: Lesson 9; The Glandular System: Lesson 10. Advanced General Education Program. A High School Self-Study Program.

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. Job Corps.

    This self-study program for the high-school level contains lessons in the following subjects: Plants and Photosynthesis; The Human Digestive System; Functions of the Blood; Human Circulation and Respiration; Reproduction of a Single Cell; Reproduction by Male and Female Cells; The Human Reproductive System; Genetics and Heredity; The Nervous…

  11. A History of Aerospace Problems, Their Solutions, Their Lessons

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.

    1996-01-01

    The positive aspect of problem occurrences is the opportunity for learning and a challenge for innovation. The learning aspect is not restricted to the solution period of the problem occurrence, but can become the beacon for problem prevention on future programs. Problems/failures serve as a point of departure for scaling to new designs. To ensure that problems/failures and their solutions guide the future programs, a concerted effort has been expended to study these problems, their solutions, their derived lessons learned, and projections for future programs. This includes identification of technology thrusts, process changes, codes development, etc. However, they must not become an excuse for adding layers upon layers of standards, criteria, and requirements, but must serve as guidelines that assist instead of stifling engineers. This report is an extension of prior efforts to accomplish this task. Although these efforts only scratch the surface, it is a beginning that others must complete.

  12. ATLAS Beam Steering Mechanism (BSM) Lessons Learned

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A.; Cramer, Alexander K.; Gosten, Alan B.; Hakun, Claef F.; Haney, Paul G.; Hinkle, Matthew R.; Lee, Kenneth Y.; Lugo, Carlos F.; Matuszeski, Adam J.; Morell, Armando; hide

    2016-01-01

    This paper describes the design, testing, and lessons learned during the development of the Advanced Topographic Laser Altimeter System (ATLAS) Beam Steering Mechanism (BSM). The BSM is a 2 degree-of-freedom tip-tilt mechanism for the purpose of pointing a flat mirror to tightly control the co-alignment of the transmitted laser and the receiver telescope of the ATLAS instrument. The high resolution needs of the mission resulted in sub-arcsecond pointing and knowledge requirements, which have been met. Development of the methodology to verify performance required significant effort. The BSM will fly as part of the Ice, Cloud, and Elevation Satellite II Mission (ICESat II), which is scheduled to be launched in 2017. The ICESat II primary mission is to map the Earth's surface topography for the determination of seasonal changes of ice sheet thickness and vegetation canopy thickness to establish long-term trends.

  13. ATLAS Beam Steering Mechanism Lessons Learned

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A.; Cramer, Alexander K.; Gostin, Alan B.; Hakun, Claef F.; Haney, Paul G.; Hinkle, Matthew R.; Lee, Kenneth Y.; Lugo, Carlos F.; Matuszeski, Adam J.; Morrell, Armando; hide

    2016-01-01

    This paper describes the design, testing, and lessons learned during the development of the Advanced Topographic Laser Altimeter System (ATLAS) Beam Steering Mechanism (BSM). The BSM is a 2 degree-of-freedom tip-tilt mechanism for the purpose of pointing a flat mirror to tightly control the co-alignment of the transmitted laser and the receiver telescope of the ATLAS instrument. The high resolution needs of the mission resulted in sub-arcsecond pointing and knowledge requirements, which have been met. Development of the methodology to verify performance required significant effort. The BSM will fly as part of the Ice, Cloud, and Elevation Satellite II Mission (ICESat II), which is scheduled to be launched in 2017. The ICESat II primary mission is to map the earth's surface topography for the determination of seasonal changes of ice sheet thickness and vegetation canopy thickness to establish long-term trends.

  14. Biofouling and Design of a Biomimetic Hull-Grooming Tool

    DTIC Science & Technology

    2007-09-14

    have barred the use of organotin compounds such as tributyltin ( TBT ) and copper-based paints, which are currently used by the Navy and have become...copper into the water, killing the fouling organisms. There is new research in biomimetic polymers that deter fouling, but are non- toxic . These polymers...is new research in biomimetic polymers that deter fouling, but are non- toxic . These polymers are rigidly attached to the hull surface extending

  15. Effects of surface finishing conditions on the biocompatibility of a nickel-chromium dental casting alloy.

    PubMed

    McGinley, Emma Louise; Coleman, David C; Moran, Gary P; Fleming, Garry J P

    2011-07-01

    To assess the effects of surface finishing condition (polished or alumina particle air abraded) on the biocompatibility of direct and indirect exposure to a nickel-chromium (Ni-Cr) d.Sign®10 dental casting alloy on oral keratinocytes. Biocompatibility was performed by assessing cellular viability and morphology, metabolic activity, cellular toxicity and presence of inflammatory cytokine markers. Discs of d.Sign®10 were cast, alumina particle air abraded and half were polished before surface roughness was determined by profilometry. Biocompatibility was assessed by placing the discs directly or indirectly (with immersion solutions) into contact with TR146 monolayers. Metal ion release was determined by ICP-MS. Cell viability was assessed by trypan blue dye exclusion, metabolic activity by XTT and cellular toxicity by LDH. Inflammatory cytokine analysis was performed using sandwich ELISAs. The mean polished Ra value was significantly reduced (P<0.001) compared with the alumina particle air abraded discs but metal ion release was significantly increased for the polished discs. Significant reductions in cell density of polished compared with alumina particle air abraded discs was observed following direct or indirect exposure. A significant reduction in metabolic activity, increase in cellular toxicity and an increase in the presence of inflammatory cytokine markers was highlighted for the polished relative to the alumina particle air abraded discs at 24h. Finishing condition of the Ni-Cr dental alloy investigated has important clinical implications. The approach of employing cell density and morphology, metabolic activity, cellular toxicity levels and inflammatory marker responses to TR146 epithelial cells combined with ICP-MS afforded the authors an increased insight into the complex processes dental alloys undergo in the oral environment. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Learning lessons from Natech accidents - the eNATECH accident database

    NASA Astrophysics Data System (ADS)

    Krausmann, Elisabeth; Girgin, Serkan

    2016-04-01

    When natural hazards impact industrial facilities that house or process hazardous materials, fires, explosions and toxic releases can occur. This type of accident is commonly referred to as Natech accident. In order to prevent the recurrence of accidents or to better mitigate their consequences, lessons-learned type studies using available accident data are usually carried out. Through post-accident analysis, conclusions can be drawn on the most common damage and failure modes and hazmat release paths, particularly vulnerable storage and process equipment, and the hazardous materials most commonly involved in these types of accidents. These analyses also lend themselves to identifying technical and organisational risk-reduction measures that require improvement or are missing. Industrial accident databases are commonly used for retrieving sets of Natech accident case histories for further analysis. These databases contain accident data from the open literature, government authorities or in-company sources. The quality of reported information is not uniform and exhibits different levels of detail and accuracy. This is due to the difficulty of finding qualified information sources, especially in situations where accident reporting by the industry or by authorities is not compulsory, e.g. when spill quantities are below the reporting threshold. Data collection has then to rely on voluntary record keeping often by non-experts. The level of detail is particularly non-uniform for Natech accident data depending on whether the consequences of the Natech event were major or minor, and whether comprehensive information was available for reporting. In addition to the reporting bias towards high-consequence events, industrial accident databases frequently lack information on the severity of the triggering natural hazard, as well as on failure modes that led to the hazmat release. This makes it difficult to reconstruct the dynamics of the accident and renders the development of equipment vulnerability models linking the natural-hazard severity to the observed damage almost impossible. As a consequence, the European Commission has set up the eNATECH database for the systematic collection of Natech accident data and near misses. The database exhibits the more sophisticated accident representation required to capture the characteristics of Natech events and is publicly accessible at http://enatech.jrc.ec.europa.eu. This presentation outlines the general lessons-learning process, introduces the eNATECH database and its specific structure, and discusses natural-hazard specific lessons learned and features common to Natech accidents triggered by different natural hazards.

  17. Analytical method for the determination of various arsenic species in rice, rice food products, apple juice, and other juices by ion chromatography-inductively coupled plasma/mass spectrometry.

    PubMed

    Ellingson, David; Zywicki, Richard; Sullivan, Darryl

    2014-01-01

    Recent studies have shown that there are detectable levels of arsenic (As) in rice, rice food products, and apple juice. This has created significant concern to the public, the food industry, and various regulatory bodies. Classic test methods typically measure total As and are unable to differentiate the various As species. Since different As species have greatly different toxicities, an analytical method was needed to separate and quantify the different inorganic and organic species of As. The inorganic species arsenite [As(+3)] and arsenate [As(+5)] are highly toxic. With this in mind, an ion chromatography-inductively coupled plasma (IC-ICP/MS) method was developed and validated for rice and rice food products that can separate and individually measure multiple inorganic and organic species of As. This allows for the evaluation of the safety or risk associated with any product analyzed. The IC-ICP/MS method was validated on rice and rice food products, and it has been used successfully on apple juice. This paper provides details of the validated method as well as some lessons learned during its development. Precision and accuracy data are presented for rice, rice food products, and apple juice.

  18. Immunogenicity of DNA- and recombinant protein-based Alzheimer disease epitope vaccines.

    PubMed

    Davtyan, Hayk; Bacon, Andrew; Petrushina, Irina; Zagorski, Karen; Cribbs, David H; Ghochikyan, Anahit; Agadjanyan, Michael G

    2014-01-01

    Alzheimer disease (AD) process involves the accumulation of amyloid plaques and tau tangles in the brain, nevertheless the attempts at targeting the main culprits, neurotoxic β-amyloid (Aβ) peptides, have thus far proven unsuccessful for improving cognitive function. Important lessons about anti-Aβ immunotherapeutic strategies were learned from the first active vaccination clinical trials. AD progression could be safely prevented or delayed if the vaccine (1) induces high titers of antibodies specific to toxic forms of Aβ; (2) does not activate the harmful autoreactive T cells that may induce inflammation; (3) is initiated before or at least at the early stages of the accumulation of toxic forms of Aβ. Data from the recent passive vaccination trials with bapineuzumab and solanezumab also indicated that anti-Aβ immunotherapy might be effective in reduction of the AD pathology and even improvement of cognitive and/or functional performance in patients when administered early in the course of the disease. For the prevention of AD the active immunization strategy may be more desirable than passive immunotherapy protocol and it can offer the potential for sustainable clinical and commercial advantages. Here we discuss the active vaccine approaches, which are still in preclinical development and vaccines that are already in clinical trials.

  19. Accumulation of trace metals in sediments in a Mediterranean Lagoon: Usefulness of metal sediment fractionation and elutriate toxicity assessment.

    PubMed

    Zaaboub, Noureddine; Martins, Maria Virgínia Alves; Dhib, Amel; Béjaoui, Béchir; Galgani, François; El Bour, Monia; Aleya, Lotfi

    2015-12-01

    The authors investigated sediment quality in Bizerte Lagoon (Tunisia) focusing on geochemical characteristics, metal sediment fractionation and elutriate toxicity assessment. Nickel, Cu, Zn, Pb, Cr and Cd partitioning in sediments was studied; accumulation and bioavailability were elucidated using enrichment factors, sequential extractions, redox potential, acid volatile sulfide and biotest procedures in toxicity evaluation. Results revealed an accumulation for Pb and Zn, reaching 99 and 460 mg kg(-1) respectively. In addition, the acid volatile sulfide values were high in both eastern and western lagoon areas, thus affecting metal availability. Mean enrichment factor values for Pb and Zn were 4.8 and 4.9, respectively, with these elements as the main contributors to the lagoon's moderate enrichment level. Toxicity levels were influenced by accumulation of Zn in different surface sediment areas. Core sediments were investigated in areas with the highest metal concentrations; metal fractionation and biotest confirmed that Zn contributes to sediment toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Human Health and Toxic Cyanobacteria – What do we know? ...

    EPA Pesticide Factsheets

    Human Health and Toxic Cyanobacteria – What do we know?Elizabeth D. HilbornWarm, eutrophic surface water systems support the development of toxic cyanobacteria blooms in North Carolina and worldwide. These conditions are increasing with expanding human populations and climate change. We present the evidence for adverse human health effects associated with exposure to cyanobacteria and their toxins in drinking water, recreational water and via medical procedures. We will discuss the range of effects reported to be associated with exposure, and the current state of the epidemiology of toxic cyanobacteria. This is a description of a proposed presentation and does not necessarily reflect EPA policy. Abstract will be presented at the Water and Health conference during a session on water quality challenges in North Carolina. This summary of existing published scientific reports on the associations between adverse human health effects and toxic cyanobacteria will be of interest to the public health and water researchers in the audience. This work fits topically in the Task: SSWR 4.01B

  1. [Pharmacogenomics in neuro-oncology].

    PubMed

    Riese-Jorda, H H; Baez, J M

    Chemotherapy protocols for treatment of brain tumors use toxic molecules for killing cancer cells in a similar way that protocols for treating other cancers. Therefore, secondary effects and poor response are the major handicaps. Technological developments based on pharmacogenomics and pharmacoproteomics will predict response and toxicity giving rise to a personalized medicine. However, there are only few studies that correlate chemotherapeutical molecules for brain tumor treatment and prediction of response and toxicity. The development of new technologies based on high-density microarrays allows the progressive identification of genes whose presence will predict the efficacy of therapeutic protocols. Once identified, specific equipments based on low-density arrays will detect exclusively in an easy and fast way the presence of genes in order to predict patient's response and avoid toxicity. Other more sophisticated techniques at present still at an experimental step based on proteomics as MALDI (Matrix-Assisted Laser Desorption Ionization) and SELDI (Surface-Enhanced Laser Desorption Ionization) will allow the identification of proteins that could predict response and toxicity.

  2. Rainwater toxicity and contamination study from São Paulo Metropolitan Region, Brazil.

    PubMed

    Martins, Renata S L; Abessa, Denis M S; Fornaro, Adalgiza; Borrely, Sueli I

    2014-02-01

    Wet deposition is an important process that removes pollutants from the atmosphere and transfers them to waters and soil. The goal of this study was to assess the biological effects of the atmospheric contamination of rainwater in the metropolitan area of São Paulo (MASP) using Daphnia similis, Ceriodaphnia dubia, and Vibrio fischeri. Experimental assays were carried out according to standard toxicity methodology. Twenty-three rainwater samples were collected from October 2007 to December 2008, at the Nuclear Research Institute (IPEN), in MASP. Major ions were determined by ionic chromatography, which showed NH4(+) and NO3(-) as prevalent ions. Ecotoxicological results confirmed toxic potential of rainwater, as all samples were toxic to D. similis and C. dubia. The V. fischeri luminescence reduction confirmed those negative effects of rainwater and percentage inhibition of relative luminescence ranged from 0.2 to 0.9 for 16 samples. Worse conditions were observed during the rainy season, suggesting convective rains are more effective in transferring contaminants and toxicity from atmosphere to surface.

  3. Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity.

    PubMed

    Shim, Taeyong; Yoo, Jisu; Ryu, Changkook; Park, Yong-Kwon; Jung, Jinho

    2015-12-01

    This study aims to evaluate the physiochemical properties, sorption characteristics, and toxicity effects of biochar (BC) produced from Miscanthus sacchariflorus via slow pyrolysis at 500°C and its steam activation product (ABC). Although BC has a much lower surface area than ABC (181 and 322m(2)g(-1), respectively), the Cu sorption capacities of BC and ABC are not significantly different (p>0.05). A two-compartment model successfully explains the sorption of BC and ABC as being dominated by fast and slow sorption processes, respectively. In addition, both BC and ABC efficiently eliminate the toxicity of Cu towards Daphnia magna. However, ABC itself induced acute toxicity to D. magna, which is possibly due to increased aromaticity upon steam activation. These findings suggest that activation of BC produced from M. sacchariflorus at a pyrolytic temperature of 500°C may not be appropriate in terms of Cu sorption and toxicity reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Improved In Vitro and In Vivo Biocompatibility of Graphene Oxide through Surface Modification: Poly(Acrylic Acid)-Functionalization is Superior to PEGylation.

    PubMed

    Xu, Ming; Zhu, Jianqiang; Wang, Fanfan; Xiong, Yunjing; Wu, Yakun; Wang, Qiuquan; Weng, Jian; Zhang, Zhihong; Chen, Wei; Liu, Sijin

    2016-03-22

    The unique physicochemical properties of two-dimensional (2D) graphene oxide (GO) could greatly benefit the biomedical field; however, recent research demonstrated that GO could induce in vitro and in vivo toxicity. We determined the mechanism of GO induced toxicity, and our in vitro experiments revealed that pristine GO could impair cell membrane integrity and functions including regulation of membrane- and cytoskeleton-associated genes, membrane permeability, fluidity and ion channels. Furthermore, GO induced platelet depletion, pro-inflammatory response and pathological changes of lung and liver in mice. To improve the biocompatibility of pristine GO, we prepared a series of GO derivatives including aminated GO (GO-NH2), poly(acrylamide)-functionalized GO (GO-PAM), poly(acrylic acid)-functionalized GO (GO-PAA) and poly(ethylene glycol)-functionalized GO (GO-PEG), and compared their toxicity with pristine GO in vitro and in vivo. Among these GO derivatives, GO-PEG and GO-PAA induced less toxicity than pristine GO, and GO-PAA was the most biocompatible one in vitro and in vivo. The differences in biocompatibility were due to the differential compositions of protein corona, especially immunoglobulin G (IgG), formed on their surfaces that determine their cell membrane interaction and cellular uptake, the extent of platelet depletion in blood, thrombus formation under short-term exposure and the pro-inflammatory effects under long-term exposure. Overall, our combined data delineated the key molecular mechanisms underlying the in vivo and in vitro biological behaviors and toxicity of pristine GO, and identified a safer GO derivative that could be used for future applications.

  5. Photolysis of polycyclic aromatic hydrocarbons (PAHs) on Fe3+-montmorillonite surface under visible light: Degradation kinetics, mechanism, and toxicity assessments.

    PubMed

    Zhao, Song; Jia, Hanzhong; Nulaji, Gulimire; Gao, Hongwei; Wang, Fu; Wang, Chuanyi

    2017-10-01

    Photochemical behavior of various polycyclic aromatic hydrocarbons (PAHs) on Fe 3+ -modified montmorillonite was explored to determine their potential kinetics, pathways, and mechanism under visible light. Depending on the type of PAH molecules, the transformation rate follows the order of benzo[a]pyrene ≈ anthracene > benzo[a]anthracene > phenanthrene. Quantum simulation results confirm the crucial role of "cation-π" interaction between Fe 3+ and PAHs on their transformation kinetics. Primary intermediates, including quinones, ring-opening products and benzene derivatives, were identified by gas chromatography-mass spectrometer (GC-MS), and the possible photodegradation pathway of benzo[a]pyrene was proposed. Meanwhile, radical intermediates, such as reactive oxygen species (ROS) and free organic radicals, were detected by electron paramagnetic resonance (EPR) technique. The photolysis of selected PAHs, such as anthracene and benzo[a]pyrene, on clay surface firstly occurs by electron transfer from PAHs to Fe 3+ -montmorillonite, followed by degradation involving photo-induced ROS such as ·OH and ·O 2 - . To investigate the acute toxicity of photolysis products, the Microtox ® toxicity test was performed during the photodegradation processes of various PAHs. As a result, the photo-irradiation initially induces increased toxicity by generating reactive intermediates, such as free organic radicals, and then the toxicity gradually decreases with increasing of reaction time. Overall, the present study provides useful information to understand the fate and photo-transformation of PAHs in contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Respiratory Health Effects of Volcanic Ash - a new Approach

    NASA Astrophysics Data System (ADS)

    Horwell, C. J.; Fenoglio, I.; Sparks, R. J.; Ragnarsdottir, K. V.; Fubini, B.

    2003-12-01

    Attempts to characterise the toxicity of volcanic ash have focused on the presence of the crystalline silica polymorph cristobalite, which is known to cause silicosis and lung cancer in industrial settings. Within the lung, it is the surface of the particles which will react with endogenous molecules. Free radicals, produced on particle surfaces, can react with DNA and other cellular components, instigating a chain of toxic events. For the first time, the ability of volcanic ash to form free radicals has been assessed using Electron Paramagnetic Resonance techniques specific to the hydroxyl radical. Respirable (< 4 microns) crystalline silica, separated from volcanic ash from the Soufriere Hills volcano, Montserrat, West Indies, did not produce hydroxyl free radicals or surface radicals. However, the ash, itself, generated up to 3 times more hydroxyl radicals than a quartz of known toxicity. The cause of the reactivity is reduced iron on the surface of iron-rich minerals such as amphiboles and pyroxenes. Fresh volcanic ash generates more free radicals than weathered volcanic ash which will have oxidised (and leached away) surface iron. These results have implications for volcanic health hazard research as it was previously assumed that volcanoes which did not produce respirable crystalline silica presented a lesser respiratory health hazard. The International Volcanic Health Hazard Network (IVHHN) promotes research into the health effects of volcanic emissions. Under the auspices of IVHHN, volcanic ash samples from volcanoes world-wide are being analysed for surface reactivity, grain-size distribution and composition to form a comprehensive database for use by volcano observatories, emergency managers, medical practitioners and researchers. The results will highlight volcanoes which have the potential to cause a respiratory health hazard through generation of iron-catalysed free radicals, as well as more conventional markers such as concentration of respirable particles. At the onset of new eruptions, the database will be used to aid the rapid assessment of health hazard from volcanic ash.

  7. Influence of EDC/NHS coupling chemistry on stability and cytotoxicity of ZnO nanoparticles modified with proteins

    NASA Astrophysics Data System (ADS)

    Keleştemur, Seda; Altunbek, Mine; Culha, Mustafa

    2017-05-01

    The toxicity of ZnO nanoparticles (NPs) is a growing concern due to its increasing use in several products including sunscreens, paints, pigments and ceramics for its antibacterial, antifungal, anti-corrosive and UV filtering properties. The toxicity of ZnO NPs is mostly attributed to the Zn2+ release causing an increase in the intracellular reactive oxygen species (ROS) level. The surface modification with a biocompatible ligand or a polymer can be a good strategy to reduce dissolution based toxicity. In two previous studies, the conflicting results with EDC/NHS coupling chemistry for ZnO NPs were reported. In this study, the same surface modification strategy with an emphasis on the stability of ZnO NPs is clarified. First, the density of -OH groups on the ZnO NPs is increased with hydrogen peroxide (H2O2) treatment, and then a silica coating on the ZnO NPs (Si-ZnO) surface is performed. Finally, a covalent attachment of bovine serum albumin (BSA) on three different concentrations of ZnO-Si is carried out by EDC/NHS coupling chemistry. ZnO NPs have a very high dissolution rate under acidic conditions of EDC/NHS coupling chemistry as determined from the ICP-MS analysis. In addition, the amount of ZnO NPs in coupling reaction has an important effect on the dissolution rate of Zn2+ and dependently BSA attached on the ZnO NP surfaces. Finally, the cytotoxicity of the BSA modified Si-ZnO NPs on human lung cancer (A549) and human skin fibroblast (HSF) is evaluated. Although an increased association of BSA modified ZnO NPs with cells was observed, the modification significantly decreased their cytotoxicity. This can be explained with the decreased active surface area of ZnO NPs with the surface modification. However, an increase in the mitochondrial depolarization and ROS production was observed depending on the amount of BSA coverage.

  8. Flight Test Approach to Adaptive Control Research

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  9. Impact of sediment characteristics on the heavy metal concentration and their ecological risk level of surface sediments of Vaigai river, Tamilnadu, India.

    PubMed

    Paramasivam, K; Ramasamy, V; Suresh, G

    2015-02-25

    The distributions of the metals (Al, Fe, Mg, Cd, Cr, Cu, Ni, Pb and Zn) were measured for the surface sediments of the Vaigai river, Tamilnadu, India. These values are compared with different standard values to assess the level of toxicity of the heavy metals in the sediments. Risk indices (CF, PLI and PER) are also calculated to understand the level of toxicity of the metals. Multivariate statistical analyses (Pearson's correlation analysis, cluster analysis and factor analysis) are carried out to know the inter-relationship between sediment characteristics and the heavy metals. From this analysis, it is confirmed that the contents of clay and organic matter play an important role to raise the level of heavy metal contents as well as PLI and PER (level of toxicity). Heavy metal concentrations of the samples (after removing silt and clay fractions from bulk samples) show decrease in their concentrations and risk indices compared to the level of bulk samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Analysis of Toxic Amyloid Fibril Interactions at Natively Derived Membranes by Ellipsometry

    PubMed Central

    Smith, Rachel A. S.; Nabok, Aleksey; Blakeman, Ben J. F.; Xue, Wei-Feng; Abell, Benjamin; Smith, David P.

    2015-01-01

    There is an ongoing debate regarding the culprits of cytotoxicity associated with amyloid disorders. Although small pre-fibrillar amyloid oligomers have been implicated as the primary toxic species, the fibrillar amyloid material itself can also induce cytotoxicity. To investigate membrane disruption and cytotoxic effects associated with intact and fragmented fibrils, the novel in situ spectroscopic technique of Total Internal Reflection Ellipsometry (TIRE) was used. Fibril lipid interactions were monitored using natively derived whole cell membranes as a model of the in vivo environment. We show that fragmented fibrils have an increased ability to disrupt these natively derived membranes by causing a loss of material from the deposited surface when compared with unfragmented fibrils. This effect was corroborated by observations of membrane disruption in live cells, and by dye release assay using synthetic liposomes. Through these studies we demonstrate the use of TIRE for the analysis of protein-lipid interactions on natively derived lipid surfaces, and provide an explanation on how amyloid fibrils can cause a toxic gain of function, while entangled amyloid plaques exert minimal biological activity. PMID:26172440

  11. Building a Better Quaternary Ammonium Compound (QAC): Branched Tetracationic Antiseptic Amphiphiles.

    PubMed

    Forman, Megan E; Jennings, Megan C; Wuest, William M; Minbiole, Kevin P C

    2016-07-05

    Bacteria contaminate surfaces in a wide variety of environments, causing severe problems across a number of industries. In a continuation of our campaign to develop novel antibacterial quaternary ammonium compounds (QACs) as useful antiseptics, we have identified a starting material bearing four tertiary amines, enabling the rapid synthesis of several tris- and tetracationic QACs. Herein we report the synthesis and biological activity of a series of 24 multiQACs deemed the "superT" family, and an investigation of the role of cationic charge in antimicrobial and anti-biofilm activity, as well as toxicity. This class represents the most potent series of QACs reported to date against methicillin-resistant Staphylococcus aureus (MRSA), with minimum inhibitory concentrations (MICs) and minimum biofilm eradication concentrations (MBECs) as low as 0.25 and 25 μm, respectively. Based on the significant cell-surface-charge differences between bacterial and eukaryotic cells, in certain cases we observed excellent efficacy-to-toxicity profiles, exceeding a 100-fold differential. This work further elucidates the chemical underpinnings of disinfectant efficacy versus toxicity based on cationic charge. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Spelling Endings Added to e: Level III, Unit 5, Lesson 1; Capitalization: Lesson 2; Question Marks and Exclamation Points: Lesson 3; Quotation Marks: Lesson 4; Spelling Double Letter Demons: Lesson 5; Colons and Dashes: Lesson 6; Punctuating Series with Commas and Semicolons: Lesson 7; More Confusing Word Pairs: Lesson 8; Separating Sentence Parts with Punctuation: Lesson 9; Other Uses for Commas and Semicolons.

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. Job Corps.

    This self-study program for the high-school level contains lessons in the following subjects: Spelling Endings Added to e; Capitalization; Question Marks and Exclamation Points; Quotation Marks; Spelling Double Letter Demons; Colons and Dashes; Punctuating Series with Commas and Semicolons; More Confusing Word Pairs; Separating Sentence Parts with…

  13. Mars Reconnaissance Orbiter In-flight Anomalies and Lessons Learned: An Update

    NASA Technical Reports Server (NTRS)

    Bayer, Todd J.

    2008-01-01

    The Mars Reconnaissance Orbiter mission has as its primary objectives: advance our understanding of the current Mars climate, the processes that have formed and modified the surface of the planet and the extent to which water has played a role in surface processes; identify sites of possible aqueous activity indicating environments that may have been or are conducive to biological activity; and thus identify and characterize sites for future landed missions; and provide forward and return relay services for current and future Mars landed assets. MRO's crucial role in the long term strategy for Mars exploration requires a high level of reliability during its 5.4 year mission. This requires an architecture which incorporates extensive redundancy and cross-strapping. Because of the distances and hence light-times involved, the spacecraft itself must be able to utilize this redundancy in responding to time-critical failures. For cases where fault protection is unable to recognize a potentially threatening condition, either due to known limitations or software flaws, intervention by ground operations is required. These aspects of MRO's design were discussed in a previous paper [Ref. 1]. This paper provides an update to the original paper, describing MRO's significant in-flight anomalies over the past year, with lessons learned for redundancy and fault protection architectures and for ground operations.

  14. Mobile Lessons: Lessons Based on Geo-Referenced Information.

    ERIC Educational Resources Information Center

    Giroux, Sylvain; Moulin, Claude; Sanna, Raffaella; Pintus, Antonio

    The term "mobile lessons" is coined for lessons held outside of "artificial" environments, such as classrooms. During these lessons, all actors are mobile and must move to do the required tasks. Themes tackled in such lessons may be as varied as geography, history, ecology, and linguistics. The use of mobile lessons is not a…

  15. Lessons Learned from AIRS: Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2011-01-01

    This slide presentation reviews the use of shortwave channels available to the Atmospheric Infrared Sounder (AIRS) to improve the determination of surface and atmospheric temperatures. The AIRS instrument is compared with the Infrared Atmospheric Sounding Interferometer (IASI) on-board the MetOp-A satellite. The objectives of the AIRS/AMSU were to (1) provide real time observations to improve numerical weather prediction via data assimilation, (2) Provide observations to measure and explain interannual variability and trends and (3) Use of AIRS product error estimates allows for QC optimized for each application. Successive versions in the AIRS retrieval methodology have shown significant improvement.

  16. Morphological, anatomical, and ultrastructural changes (visualized through scanning electron microscopy) induced in Triticum aestivum by Pb²⁺ treatment.

    PubMed

    Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2014-11-01

    Lead (Pb) causes severe damage to crops, ecosystems, and humans, and alters the physiology and biochemistry of various plant species. It is hypothesized that Pb-induced metabolic alterations could manifest as structural variations in the roots of plants. In light of this, the morphological, anatomical, and ultrastructural variations (through scanning electron microscopy, SEM) were studied in 4-day-old seedlings of Triticum aestivum grown under Pb stress (0, 8, 16, 40, and 80 mg Pb(2+) l(-1); mild to highly toxic). The toxic effect was more pronounced in radicle growth than on the plumule growth. The SEM of the root of T. aestivum depicted morphological alterations and surface ultrastructural changes. Compared to intact and uniform surface cells in the control roots, cells were irregular and desiccated in Pb(2+)-treated roots. In Pb(2+)-treated roots, the number of root hairs increased manifold, showing dense growth, and these were apparently longer. Apart from the deformity in surface morphology and anatomy of the roots in response to Pb(2+) toxicity, considerable anatomical alterations were also observed. Pb(2+)-treated root exhibited signs of injury in the form of cell distortion, particularly in the cortical cells. The endodermis and pericycle region showed loss of uniformity post Pb(2+) exposure (at 80 mg l(-1) Pb(2+)). The cells appeared to be squeezed with greater depositions observed all over the tissue. The study concludes that Pb(2+) treatment caused structural anomalies and induced anatomical and surface ultrastructural changes in T. aestivum.

  17. Engineering Silver Nanoparticles: Towards a Tunable Antimicrobial

    NASA Astrophysics Data System (ADS)

    Puppala, Hema Lakshmi

    Overwhelming production of commercially available products containing silver nanoparticles (AgNPs) underscores the studies determining their fate in the environment. In order to regulate the use, assess the environmental impact and develop eco-responsible silver products, models that can predict AgNP toxicity based on physicochemical properties are vital. With that vision, this thesis developed well-characterized model libraries of uniform AgNPs stabilized with oleate in the range of 2-45 nm diameter with variable surface coating and investigated the dissolution properties that link AgNP structure to antimicrobial activity. High temperature organic synthesis allowed controlled growth of AgNPs (sigma<15%) by an Ostwald ripening mechanism in the first few hours, and followed by size dependent growth rates yielding uniform nanocrystals. Characterization of these materials revealed a crystalline nature, bidentate binding mode of oleate and non-oxidized pristine silver surface. Phase transfer of these AgNPs from organics to water was facilitated by encapsulation and ligand exchange methods using amphiphilic polymers and methoxy poly (ethylene glycol) (mPEGSH) respectively. Among these surface coatings, steric stabilization by mPEGSH not only helped retain their optical properties but also reduced the dissolution (<1(w/w)%) of AgNPs. This enhanced the stability in various environmentally relevant high ionic strength media (such as Hoaglands, EPA hard water and OECD medium), thereby increasing the shelf life. In addition, size, surface coating, pH of the medium and grafting density of the polymer mediated the dissolution of AgNPs. For instance, the rate of dissolution was decreased by 40% when the polymer coating possessed a mushroom conformation and increased with reducing core size. Analogous to dissolution, physicochemical properties also influenced the antimicrobial activity which were studied by minimum inhibitory concentration (MIC) and bactericidal efficacy assays. For example, surface passivation with mPEGSH prevented the oxidation of active silver atoms on the surface, and resulted in reduced toxicity against E. coli. Moreover citrate stabilized AgNPs when surface modified with mPEGSH had reduced toxicity, which was correlated with residual Ag+ in AgNP solution. Therefore this study demonstrates that processes in the environment that increase stability of AgNPs could make them more persistent due to low dissolution. Furthermore, the size and surface chemistry effects of AgNPs studied here make the intrinsic antimicrobial property of silver tunable and hence more versatile. This work also served as a material support for research on investigating toxicity of AgNPs to C. elegans, Daphnia Magna, Populus and Arabidopsis. In the future, this data will be used to develop nanomaterial bioavailability & environmental exposure (nanoBEE) models that predict the environmental impact of AgNPs.

  18. Coating of Quantum Dots strongly defines their effect on lysosomal health and autophagy.

    PubMed

    Peynshaert, Karen; Soenen, Stefaan J; Manshian, Bella B; Doak, Shareen H; Braeckmans, Kevin; De Smedt, Stefaan C; Remaut, Katrien

    2017-01-15

    In the last decade the interest in autophagy got an incredible boost and the phenomenon quickly turned into an extensive research field. Interestingly, dysfunction of this cytoplasmic clearance system has been proposed to lie at the root of multiple diseases including cancer. We therefore consider it crucial from a toxicological point of view to investigate if nanomaterials that are developed for biomedical applications interfere with this cellular process. Here, we study the highly promising 'gradient alloyed' Quantum Dots (QDs) that differ from conventional ones by their gradient core composition which allows for better fluorescent properties. We carefully examined the toxicity of two identical gradient alloyed QDs, differing only in their surface coatings, namely 3-mercaptopropionic (MPA) acid and polyethylene glycol (PEG). Next to more conventional toxicological endpoints like cytotoxicity and oxidative stress, we examined the influence of these QDs on the autophagy pathway. Our study shows that the cellular effects induced by QDs on HeLa cells were strongly dictated by the surface coat of the otherwise identical particles. MPA-coated QDs proved to be highly biocompatible as a result of lysosomal activation and ROS reduction, two cellular responses that help the cell to cope with nanomaterial-induced stress. In contrast, PEGylated QDs were significantly more toxic due to increased ROS production and lysosomal impairment. This impairment next results in autophagy dysfunction which likely adds to their toxic effects. Taken together, our study shows that coating QDs with MPA is a better strategy than PEGylation for long term cell tracking with minimal cytotoxicity. Gradient alloyed Quantum Dots (GA-QDs) are highly promising nanomaterials for biomedical imaging seeing they exhibit supremely fluorescent properties over conventional QDs. The translation of these novel QDs to the clinic requires a detailed toxicological examination, though the data on this is very limited. We therefore applied a systematic approach to examine the toxicity of GA-QDs coated with two commonly applied surface ligands, this while focusing on the autophagy pathway. The impact of QDs on this pathway is of importance since it has been connected with various diseases, including cancer. Our data accentuates that the coating defines the impact on autophagy and therefore the toxicity induced by QDs on cells: while MPA coated QDs were highly biocompatible, PEGylated QDs were toxic. Copyright © 2016 Acta Materialia Inc. All rights reserved.

  19. Acute toxicity of resmethrin, malathion and methoprene to larval and juvenile American lobsters (Homarus amemcanus) and analysis of pesticide levels in surface waters after Scourge™, Anvil™ and Altsoid™ application

    USGS Publications Warehouse

    Zulkosky, Ann M.; Ruggieri, Joseph P.; Terracciano, Stephen A.; Brownawell, Bruce J.; McElroy, Anne E.

    2005-01-01

    Acute toxicity and immune response, combined with temperature stress effects, were evaluated in larval and juvenile American lobsters (Homarus americanus) exposed to malathion, resmethrin and methoprene. These pesticides were used to control West Nile virus in New York in 1999, the same year the American lobster population collapsed in western Long Island Sound (LIS). Whereas the suite of pesticides used for mosquito control changed in subsequent years, a field study was also conducted to determine pesticide concentrations in surface waters on Long Island and in LIS after operational applications. The commercial formulations used in 2002 and 2003—Scourge, Anvil and Altosid—contain the active ingredients resmethrin, sumithrin and methoprene, respectively. Concentrations of the synergist piperonyl butoxide (PBO) were also measured as a proxy for pesticide exposure. Acute mortality in Stage I-II larval lobsters demonstrated that they are extremely sensitive to continuous resmethrin exposure. Resmethrin LC50s for larval lobsters determined under flow-through conditions varied from 0.26–0.95 μg L−1 in 48- and 96-h experiments at 16°C, respectively. Increased temperature (24°C) did not significantly alter resmethrin toxicity. Malathion and methoprene were less toxic than resmethrin. The 48-h LC50 for malathion was 3.7 μg L−1 and methoprene showed no toxicity at the highest (10 μg L−1) concentration tested. Phenoloxidase activity was used as a measure of immune response for juvenile lobsters exposed to sublethal pesticide concentrations. In continuous exposures to sublethal doses of resmethrin (0.03 μg L−1) or malathion (1 μg L−1) for 7 d at 16 or 22°C, temperature had a significant effect on phenoloxidase activity (P ≤ 0.006) whereas pesticide exposure did not (P = 0.880). The analytical methods developed using high performance liquid chromatography coupled to time-of-flight mass spectroscopy (LC-TOF-MS) provided high sensitivity with mass detection limits of 0.1–0.3 ng L−1. Pesticide levels were often detected in the ng L−1 range in Long Island surface waters and western LIS (except in open waters), but rarely at concentrations found to be toxic in flow-through laboratory exposures, even immediately after spray events.

  20. Aquatic assessment of the Pike Hill Copper Mine Superfund site, Corinth, Vermont

    USGS Publications Warehouse

    Piatak, Nadine M.; Argue, Denise M.; Seal, Robert R.; Kiah, Richard G.; Besser, John M.; Coles, James F.; Hammarstrom, Jane M.; Levitan, Denise M.; Deacon, Jeffrey R.; Ingersoll, Christopher G.

    2013-01-01

    The Pike Hill Copper Mine Superfund site in Corinth, Orange County, Vermont, includes the Eureka, Union, and Smith mines along with areas of downstream aquatic ecosystem impairment. The site was placed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2004. The mines, which operated from about 1847 to 1919, contain underground workings, foundations from historical structures, several waste-rock piles, and some flotation tailings. The mine site is drained to the northeast by Pike Hill Brook, which includes several wetland areas, and to the southeast by an unnamed tributary that flows to the south and enters Cookville Brook. Both brooks eventually drain into the Waits River, which flows into the Connecticut River. The aquatic ecosystem at the site was assessed using a variety of approaches that investigated surface-water quality, sediment quality, and various ecological indicators of stream-ecosystem health. The degradation of surface-water quality is caused by elevated concentrations of copper, and to a lesser extent cadmium, with localized effects caused by aluminum, iron, and zinc. Copper concentrations in surface waters reached or exceeded the USEPA national recommended chronic water-quality criteria for the protection of aquatic life in all of the Pike Hill Brook sampling locations except for the location farthest downstream, in half of the locations sampled in the tributary to Cookville Brook, and in about half of the locations in one wetland area located in Pike Hill Brook. Most of these same locations also contained concentrations of cadmium that exceeded the chronic water-quality criteria. In contrast, surface waters at background sampling locations were below these criteria for copper and cadmium. Comparison of hardness-based and Biotic Ligand Model (BLM)-based criteria for copper yields similar results with respect to the extent or number of stations impaired for surface waters in the affected area. However, the BLM-based criteria are commonly lower values than the hardness-based criteria and thus suggest a greater degree or magnitude of impairment at the sampling locations. The riffle-habitat benthic invertebrate richness and abundance data correlate strongly with the extent of impact based on water quality for both brooks. Similarly, the fish community assessments document degraded conditions throughout most of Pike Hill Brook, whereas the data for the tributary to Cookville Brook suggest less degradation to this brook. The sediment environment shows similar extents of impairment to the surface-water environment, with most sampling locations in Pike Hill Brook, including the wetland areas, and the tributary to Cookville Brook affected. Sediment impairment is caused by elevated copper concentrations, although localized degradation due to elevated cadmium and zinc concentrations was documented on the basis of exceedances of probable effects concentrations (PECs). In contrast to impairment determined by exceedances of PECs, equilibrium-partitioning sediment benchmarks (based on simultaneously extracted metals, acid volatile sulfides, and total organic carbon) predict no toxic effects in sediments at the background locations and uncertain toxic effects throughout Pike Hill Brook and the tributary to Cookville Brook, with the exception of the most downstream Cookville Brook location, which indicated no toxic effects. Acute laboratory toxicity testing using the amphipod Hyalella azteca and the midge Chironomus dilutus on pore waters extracted from sediment in situ indicate impairment (based on tests with H. azteca) at only one location in Pike Hill Brook and no impairment in the tributary to Cookville Brook. Chronic laboratory sediment toxicity testing using H. azteca and C. dilutus indicated toxicity in Pike Hill Brook at several locations in the lower reach and two locations in the tributary to Cookville Brook. Toxicity was not indicated for either species in sediment from the most acidic metal-rich location, likely due to the low lability of copper in that sediment, as indicated by a low proportion of extractable copper (simultaneously extracted metal (SEM) copper only 5 percent of total copper) and due to the flushing of acidic metal-rich pore water from experimental chambers as overlying test water was introduced before and replaced periodically during the toxicity tests. Depositional habitat invertebrate richness and abundance data generally agreed with the results of toxicity tests and with the extent of impact in the watersheds on the basis of sediment and pore waters. The information was used to develop an overall assessment of the impact of mine drainage on the aquatic system downstream from the Pike Hill copper mines. Most of Pike Hill Brook, including several wetland areas that are all downstream from the Eureka and Union mines, was found to be impaired on the basis of water-quality data and biological assessments of fish or benthic invertebrate communities. In contrast, only one location in the tributary to Cookville Brook, downstream from the Smith mine, is definitively impaired. The biological community begins to recover at the most downstream locations in both brooks due to natural attenuation from mixing with unimpaired streams. On the basis of water quality and biological assessment, the reference locations were of good quality. The sediment toxicity, chemistry, and aquatic community survey data suggest that the sediments could be a source of toxicity in Pike Hill Brook and the tributary to Cookville Brook. On the basis of water quality, sediment quality, and biologic communities, the impacts of mine drainage on the aquatic ecosystem health of the watersheds in the study area are generally consistent with the toxicity suggested from laboratory toxicity testing on pore water and sediments.

  1. Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity

    NASA Astrophysics Data System (ADS)

    Runowski, Marcin; Dąbrowska, Krystyna; Grzyb, Tomasz; Miernikiewicz, Paulina; Lis, Stefan

    2013-11-01

    A simple co-precipitation reaction between Ln3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb3+-doped LaPO4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO4:Tb3+@SiO2@NH2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO4:Tb3+@SiO2.

  2. Conjunctival and corneal reactions in rabbits following short- and repeated exposure to preservative-free tafluprost, commercially available latanoprost and 0.02% benzalkonium chloride

    PubMed Central

    Liang, H; Baudouin, C; Pauly, A; Brignole-Baudouin, F

    2008-01-01

    Aim: To compare the conjunctival and corneal reactions of commercially available solution of latanoprost (Xalatan) and preservative-free (PF) tafluprost in rabbits. Methods: The rabbits received 50 μl of phosphate-buffered saline (PBS), PF-tafluprost 0.0015%, latanoprost 0.005% or benzalkonium chloride (BAK) 0.02%; all solutions were applied at 5 min intervals for a total of 15 times. The ocular surface toxicity was investigated using slit-lamp biomicroscopy examination, flow cytometry (FCM) and on imprints for CD45 and tumour necrosis factor-receptor 1 (TNFR1) conjunctival impression cytology (CIC) and corneal in vivo confocal microscopy (IVCM). Standard immunohistology also assessed inflammatory/apoptotic cells. Results: Clinical observation and IVCM images showed the highest ocular surface toxicity with latanoprost and BAK, while PF-tafluprost and PBS eyes presented almost normal corneoconjunctival aspects. FCM showed a higher expression of CD45+ and TNFR1+ in latanoprost- or BAK-instilled groups, compared with PF-tafluprost and PBS groups. Latanoprost induced fewer positive cells for inflammatory marker expressions in CIC specimens compared with BAK-alone, both of which were higher than with PF-tafluprost or PBS. Immunohistology showed the same tendency of toxic ranking. Conclusion: The authors confirm that rabbit corneoconjunctival surfaces presented a better tolerance when treated with PF-tafluprost compared with commercially available latanoprost or BAK solution. PMID:18723745

  3. Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity.

    PubMed

    Runowski, Marcin; Dąbrowska, Krystyna; Grzyb, Tomasz; Miernikiewicz, Paulina; Lis, Stefan

    2013-01-01

    A simple co-precipitation reaction between Ln 3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb 3+ -doped LaPO 4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH 2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb 3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO 4 :Tb 3+ @SiO 2 @NH 2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO 4 :Tb 3+ @SiO 2 .

  4. Distribution and assessment of sediment toxicity in Tamaki Estuary, Auckland, New Zealand

    NASA Astrophysics Data System (ADS)

    Abrahim, G. M. S.; Parker, R. J.; Nichol, S. L.

    2007-07-01

    Heavy metal levels in surface sediments from Tamaki Estuary demonstrate significant up estuary increases in Cu, Pb, Zn, Cd and mud concentrations. Increased metal levels towards the head of the estuary are linked to local catchment sources reflecting the historical development, industrialisation and urbanisation of catchment areas surrounding the upper estuary. The relatively narrow constriction in the middle estuary (Panmure area), makes it susceptible to accumulation of upper estuary pollutants, since the constriction reduces circulation and extends the time required for fine waterborne sediments in the upper estuary to exchange with fresh coastal water. As a result fine fraction sediments trapped in the upper estuary facilitate capture and retention of pollutants at the head of the estuary. The increase in sandy mud poor sediments towards the mouth of the estuary is associated with generally low metal concentrations. The estuary’s geomorphic shape with a mid estuary constriction, sediment texture and mineralogy and catchment history are significant factors in understanding the overall spatial distribution of contaminants in the estuary. Bulk concentration values for Cu, Pb, Zn, and Cd in all the studied surface samples occur below ANZECC ISQG-H toxicity values. Cd and Cu concentrations are also below the ISQG-L toxicity levels for these elements. However, Pb and Zn concentrations do exceed the ISQG-L values in some of the surface bulk samples in the upper estuary proximal to long established sources of catchment pollution.

  5. Nasa's Operation Icebridge and Remote Sensing Techniques in the K-12 Classroom as a STEM Integration Project

    NASA Astrophysics Data System (ADS)

    McCarthy, K.

    2017-12-01

    NASA's Operation IceBridge (OIB), the largest airborne survey of Earth's polar ice uses remote sensing methods to collect data on changing sea and land ice. PolarTREC teacher Kelly McCarthy joined the team during the 2016 Spring Arctic Campaign. This presentation explores ways in which k-12 students were engaged in the work being done by OIB through classroom learning experiences, digital communications, and independent research. Initially, digital communication including chats via NASA's Mission Tools Suite for Education (MTSE) platform was leveraged to engage students in the daily work of OIB. Two lessons were piloted with student groups during the 2016-2017 academic year both for students who actively engaged in communications with the team during the expedition and those who had no prior connections to the field. All of the data collected on OIB missions is stored for public use in a digital portal on the National Snow and Ice Data Center (NSIDC) website. In one lesson, 10th-12th grade students were guided through a tutorial to learn how to access data and begin to develop a story about Greenland's Jakobshavn Glacier using pre-selected data sets, Google's MyMaps app, and independent research methods. In the second lesson, 8th grade students were introduced to remote sensing, first through a discussion on vocabulary using productive talk moves and then via a demonstration using Vernier motion detectors and a graph matching simulation. Students worked in groups to develop procedures to map a hidden surface region (boxed assortment of miscellaneous objects) using a Vernier motion sensor to simulate sonar. Students translated data points collected from the motion sensor into a vertical profile of the simulated surface region. Both lessons allowed students a way to engage in two of the most important components of OIB. The ability to work with real data collected by the OIB team provided a unique context through which students gained skill and overcame challenges in Excel, Google Apps, construction of graphs, and data analysis. The remote sensing simulation allowed students to practice and gain hands-on knowledge of the components of OIB discussed in the digital communications that may have felt unclear to students who have had limited or no exposure to remote sensing technologies or the science behind them.

  6. Multifunctional Ultra-high Vacuum Apparatus for Studies of the Interactions of Chemical Warfare Agents on Complex Surfaces

    DTIC Science & Technology

    2014-01-02

    of the formation of a hydrogen-bonded hydroxyl. Characteristic modes of the sarin molecule itself are also ob- served. These experimental results show...chemical warfare agent, surface science, uptake, decontamination, filtration , UHV, XPS, FTIR, TPD REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S...challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science

  7. Conceptual Model for the Transport of Energetic Residues from Surface Soil to Groundwater by Range Activities

    DTIC Science & Technology

    2006-11-01

    Fate and Toxicity. Journal of Soil Contamination. 6:561–568. Basunia, S., and S. Landsberger. 2001. Contents and leachability of heavy metals (Pb, Cu...concentrations of certain inorganics may be toxic. Dissolved organic matter, whether from natural or anthropogenic sources , may chelate with metals and...or pesticides are observed in soil or groundwater, their likely source is unrelated to the usage of military munitions. ERDC/CRREL TR-06-18 11

  8. Detection of toxic industrial chemicals in water supplies using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Kevin M.; Sylvia, James M.; Spencer, Sarah A.; Clauson, Susan L.

    2010-04-01

    An effective method to create fear in the populace is to endanger the water supply. Homeland Security places significant importance on ensuring drinking water integrity. Beyond terrorism, accidental supply contamination from a spill or chemical residual increases is a concern. A prominent class of toxic industrial chemicals (TICs) is pesticides, which are prevalent in agricultural use and can be very toxic in minute concentrations. Detection of TICs or warfare agents must be aggressive; the contaminant needs to be rapidly detected and identified to enable isolation and remediation of the contaminated water while continuing a clean water supply for the population. Awaiting laboratory analysis is unacceptable as delay in identification and remediation increases the likelihood of infection. Therefore, a portable or online water quality sensor is required that can produce rapid results. In this presentation, Surface-Enhanced Raman Spectroscopy (SERS) is discussed as a viable fieldable sensor that can be immersed directly into the water supply and can provide results in <5 minutes from the time the instrument is turned on until analysis is complete. The ability of SERS to detect several chemical warfare agent degradation products, simulants and toxic industrial chemicals in distilled water, tap water and untreated water will be shown. In addition, results for chemical warfare agent degradation products and simulants will be presented. Receiver operator characteristic (ROC) curves will also be presented.

  9. Assessing the Relevance of in vitro Studies in Nanotoxicology by Examining Correlations between in vitro and in vivo Data

    PubMed Central

    Han, Xianglu; Corson, Nancy; Wade-Mercer, Pamela; Gelein, Robert; Jiang, Jingkun; Sahu, Manoranjan; Biswas, Pratim; Finkelstein, Jacob N.; Elder, Alison; Oberdörster, Günter

    2012-01-01

    There is an urgent need for in vitro screening assays to evaluate nanoparticle (NP) toxicity. However, the relevance of in vitro assays is still disputable. We administered doses of TiO2 NPs of different sizes to alveolar epithelial cells in vitro and the same NPs by intratracheal instillation in rats in vivo to examine the correlation between in vitro and in vivo responses. The correlations were based on toxicity rankings of NPs after adopting NP surface area as dose metric, and response per unit surface area as response metric. Sizes of the anatase TiO2 NPs ranged from 3 to 100 nm. A cell-free assay for measuring reactive oxygen species (ROS) was used, and lactate dehydrogenase (LDH) release, and protein oxidation induction were the in vitro cellular assays using a rat lung Type I epithelial cell line (R3/1) following 24 hr incubation. The in vivo endpoint was number of PMNs in bronchoalveolar lavage fluid (BALF) after exposure of rats to the NPs via intratracheal instillation. Slope analyses of the dose response curves shows that the in vivo and in vitro responses were well correlated. We conclude that using the approach of steepest slope analysis offers a superior method to correlate in vitro with in vivo results of NP toxicity and for ranking their toxic potency. PMID:22487507

  10. Reply to Commentary: "Are HIV-Infected Candidates for Participation in Risky Cure-Related Studies Otherwise Healthy?"

    PubMed

    Dubé, Karine; Sylla, Laurie; Dee, Lynda

    2018-02-01

    We respond to Eyal et al.'s commentary focusing on how people living with HIV participating in HIV cure-related studies are defined. We argue that the types of participants enrolled in research cannot be dissociated from the study interventions, the types of anticipated risks, and the background standard of care. As the field of HIV cure research advances, more nuance and granularity will be needed to define research criteria and acceptable risk/benefit ratios for cure study participants, as well as specific tiered protocol designs that serve to protect various participant populations from untoward risks, especially in very early phase research with interventions known to have potentially serious toxicities. We highlight key lessons from the ACTIVATE study involving a latency-reversing agent, Panobinostat, for HIV cure study design involving "otherwise healthy volunteers".

  11. Cellular damage in bacterial meningitis: an interplay of bacterial and host driven toxicity.

    PubMed

    Weber, Joerg R; Tuomanen, Elaine I

    2007-03-01

    Bacterial meningitis is still an important infectious disease causing death and disability. Invasive bacterial infections of the CNS generate some of the most powerful inflammatory responses known in medicine. Although the components of bacterial cell surfaces are now chemically defined in exquisite detail and the interaction with several receptor pathways has been discovered, it is only very recently that studies combining these advanced biochemical and cell biological tools have been done. Additional to the immunological response direct bacterial toxicity has been identified as an important contributor to neuronal damage. A detailed understanding of the complex interaction of bacterial toxicity and host response may generate opportunities for innovative and specific neuroprotective therapies.

  12. Toxicities of topical ophthalmic anesthetics.

    PubMed

    McGee, Hall T; Fraunfelder, F W

    2007-11-01

    Topical ocular anesthesia has been part of ophthalmology for more than a century. The most commonly used drugs today are proparacaine, tetracaine, benoxinate (oxybuprocaine) cocaine and lidocaine. Although generally well tolerated, all these can be toxic, particularly when abused. The most common toxicities are to the ocular surface, but abuse can cause deep corneal infiltrates, ulceration and even perforation. Fortunately, systemic side effects are rare. Cocaine is unique for its higher incidence of systemic side effects and high abuse potential, both of which impede its clinical use. When used appropriately, all these drugs are remarkably safe. They are generally not prescribed for home use, as prolonged abuse of these drugs can be expected to result in serious complications.

  13. Lesson Plan Manual, a Series of Lesson Plans and Worksheets on Consumer Education and Student Worksheets for Consumer Education Lesson Plans, Adult Basic Education.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany.

    This manual provides teachers with lesson plans in consumer education. Each lesson contains background material offering the teacher specific information on the subject of the lesson, development of understandings, student worksheets, and discussion questions to encourage student involvement. The ten lesson plans are--Buying on time, Retail…

  14. Corrosion protective coating for metallic materials

    DOEpatents

    Buchheit, R.G.; Martinez, M.A.

    1998-05-26

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

  15. Partial oxidation (“aging”) and surface modification decrease the toxicity of nano-sized zero valent iron     

    EPA Science Inventory

    Zero-valent iron (nZVI) is a redox-active nanomaterial used for in situ remediation of contaminated groundwater. To assess the effect of “aging” and surface modification on its potential neurotoxicity, cultured rodent microglia and neurons were exposed to fresh nZVI, “aged” (>11...

  16. Surface and interfacial engineering of iron oxide nanoplates for highly efficient magnetic resonance angiography.

    PubMed

    Zhou, Zijian; Wu, Changqiang; Liu, Hanyu; Zhu, Xianglong; Zhao, Zhenghuan; Wang, Lirong; Xu, Ye; Ai, Hua; Gao, Jinhao

    2015-03-24

    Magnetic resonance angiography using gadolinium-based molecular contrast agents suffers from short diagnostic window, relatively low resolution and risk of toxicity. Taking into account the chemical exchange between metal centers and surrounding protons, magnetic nanoparticles with suitable surface and interfacial features may serve as alternative T1 contrast agents. Herein, we report the engineering on surface structure of iron oxide nanoplates to boost T1 contrast ability through synergistic effects between exposed metal-rich Fe3O4(100) facets and embedded Gd2O3 clusters. The nanoplates show prominent T1 contrast in a wide range of magnetic fields with an ultrahigh r1 value up to 61.5 mM(-1) s(-1). Moreover, engineering on nanobio interface through zwitterionic molecules adjusts the in vivo behaviors of nanoplates for highly efficient magnetic resonance angiography with steady-state acquisition window, superhigh resolution in vascular details, and low toxicity. This study provides a powerful tool for sophisticated design of MRI contrast agents for diverse use in bioimaging applications.

  17. Pleurochrysis pseudoroscoffensis (Prymnesiophyceae) blooms on the surface of the Salton Sea, California

    USGS Publications Warehouse

    Reifel, K.M.; McCoy, M.P.; Tiffany, M.A.; Rocke, T.E.; Trees, C.C.; Barlow, S.B.; Faulkner, D.J.; Hurlbert, S.H.

    2001-01-01

    Dense populations of the coccolithophore Pleurochrysis pseudoroscoffensis were found in surface films at several locations around the Salton Sea in Februarya??August, 1999. An unidentified coccolithophorid was also found in low densities in earlier studies of the lake (1955a??1956). To our knowledge, this is the first record of this widespread marine species in any lake. Samples taken from surface films typically contained high densities of one or two other phytoplankton species as well as high densities of the coccolithophore. Presence or absence of specific algal pigments was used to validate direct cell counts. In a preliminary screen using a brine shrimp lethality assay, samples showed moderate activity. Extracts were then submitted to a mouse bioassay, and no toxic activity was observed. These results indicate that blooms of P. pseudoroscoffensis are probably not toxic to vertebrates and do not contribute to the various mortality events of birds and fish that occur in the Salton Sea.

  18. Correlation between acute toxicity for Daphnia magna, Aliivibrio fischeri and physicochemical variables of the leachate produced in landfill simulator reactors.

    PubMed

    Barrios Restrepo, José J; Flohr, Letícia; Melegari, Silvia P; da Costa, Cristina H; Fuzinatto, Cristiane F; de Castilhos, Armando B; Matias, William G

    2017-11-01

    Due to the diversified nature of municipal solid waste and the different stages of its decomposition, the formed leachates result in a complex chemical mixture with toxic potential. These chemicals can cause environmental problems, such as the contamination of surface or groundwater, thus affecting the balance of aquatic ecosystems. The aim of our study was to evaluate the acute toxicity of leachates in Daphnia magna and Aliivibrio fischeri and to identify the main physicochemical variables that influence the toxicity of the landfill leachates produced in reactors within pilot simulations. Acute toxicity tests carried out on D. magna and A. fischeri showed that the leachates produced inside the reactors are highly toxic, presenting EC50 48h  < 1% for D. magna and EC50 15min  < 12% for A. fischeri. This result indicates that microcrustaceans are more sensitive to leachates, making them more suitable to our study. Pb showed the highest correlation with EC50 48h , suggesting that Pb is the main chemical variable indicative of toxicity for the conditions of the experiment. In smaller scale, phosphate (PO 4 3- ) and nitrate (NO 3- ) were the macronutrients that most influenced the toxicity. Clearly, this correlation should be viewed with caution because the synergistic effects of this complex mixture are difficult to observe.

  19. Size- and composition-dependent toxicity of synthetic and soil-derived Fe oxide colloids for the nematode Caenorhabditis elegans.

    PubMed

    Höss, Sebastian; Fritzsche, Andreas; Meyer, Carolin; Bosch, Julian; Meckenstock, Rainer U; Totsche, Kai Uwe

    2015-01-06

    Colloidal iron oxides (FeOx) are increasingly released to the environment due to their use in environmental remediation and biomedical applications, potentially harming living organisms. Size and composition could affect the bioavailability and toxicity of such colloids. Therefore, we investigated the toxicity of selected FeOx with variable aggregate size and variably composed FeOx-associated organic matter (OM) toward the nematode Caenorhabditis elegans. Ferrihydrite colloids containing citrate were taken up by C. elegans with the food and accumulated inside their body. The toxicity of ferrihydrite, goethite, and akaganeite was dependent on aggregate size and specific surface area, with EC50 values for reproduction ranging from 4 to 29 mg Fe L(-1). Experiments with mutant strains lacking mitochondrial superoxide dismutase (sod-2) showed oxidative stress for two FeOx and Fe(3+)-ions, however, revealed that it was not the predominant mechanism of toxicity. The OM composition determined the toxicity of mixed OM-FeOx phases on C. elegans. FeOx associated with humic acids or citrate were less toxic than OM-free FeOx. In contrast, soil-derived ferrihydrite, containing proteins and polysaccharides from mobile OM, was even more toxic than OM-free Fh of similar aggregate size. Consequently, the careful choice of the type of FeOx and the type of associated OM may help in reducing the ecological risks if actively applied to the subsurface.

  20. Bacterial decontamination using ambient pressure nonthermal discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birmingham, J.G.; Hammerstrom, D.J.

    2000-02-01

    Atmospheric pressure nonthermal plasmas can efficiently deactivate bacteria in gases, liquids, and on surfaces, as well as can decompose hazardous chemicals. This paper focuses on the changes to bacterial spores and toxic biochemical compounds, such as mycotoxins, after their treatment in ambient pressure discharges. The ability of nonthermal plasmas to decompose toxic chemicals and deactivate hazardous biological materials has been applied to sterilizing medical instruments, ozonating water, and purifying air. In addition, the fast lysis of bacterial spores and other cells has led us to include plasma devices within pathogen detection instruments, where nucleic acids must be accessed. Decontaminating chemicalmore » and biological warfare materials from large, high value targets such as building surfaces, after a terrorist attack, are especially challenging. A large area plasma decontamination technology is described.« less

  1. Elastomeric fluorinated polyurethane coatings for nontoxic fouling control.

    PubMed

    Brady, Robert F; Aronson, Carl L

    2003-04-01

    Nontoxic antifouling coatings have been investigated for many years as possible successors to toxic antifouling paints. Polymers containing fluorine or silicone have been tested and each has been shown to be partially effective for different reasons. This paper describes a new coating which combines the best features of fluorinated and silicone coatings and is non-toxic. Four fluorinated elastomers were prepared and tested for fouling resistance during a full fouling season. The surface energy and mechanical properties of each polymer were measured and correlated to fouling performance. One of the elastomers was shown to foul slowly, clean easily, be durable in the marine environment and organisms bonded to it only weakly. The surface energy, elastic modulus, and thickness of the elastomer may be varied as desired over wide ranges to meet differing performance requirements.

  2. Toxicity of carbon nanotubes to freshwater aquatic invertebrates

    USGS Publications Warehouse

    Mwangi, Joseph N.; Wang, Ning; Ingersoll, Christopher G.; Hardesty, Doug K.; Brunson, Eric L.; Li, Hao; Deng, Baolin

    2012-01-01

    Carbon nanotubes (CNTs) are hydrophobic in nature and thus tend to accumulate in sediments if released into aquatic environments. As part of our overall effort to examine the toxicity of carbon-based nanomaterials to sediment-dwelling invertebrates, we have evaluated the toxicity of different types of CNTs in 14-d water-only exposures to an amphipod (Hyalella azteca), a midge (Chironomus dilutus), an oligochaete (Lumbriculus variegatus), and a mussel (Villosa iris) in advance of conducting whole-sediment toxicity tests with CNTs. The results of these toxicity tests conducted with CNTs added to water showed that 1.00g/L (dry wt) of commercial sources of CNTs significantly reduced the survival or growth of the invertebrates. Toxicity was influenced by the type and source of the CNTs, by whether the materials were precleaned by acid, by whether sonication was used to disperse the materials, and by species of the test organisms. Light and electron microscope imaging of the surviving test organisms showed the presence of CNTs in the gut as well as on the outer surface of the test organisms, although no evidence was observed to show penetration of CNTs through cell membranes. The present study demonstrated that both the metals solubilized from CNTs such as nickel and the "metal-free" CNTs contributed to the toxicity.

  3. Leachate composition and toxicity assessment: an integrated approach correlating physicochemical parameters and toxicity of leachates from MSW landfill in Delhi.

    PubMed

    Gupta, Anshu; Paulraj, R

    2017-07-01

    Landfills are considered the most widely practiced method for disposal of municipal solid waste (MSW) and 95% of the total MSW collected worldwide is disposed of in landfills. Leachate produced from MSW landfills may contain a number of pollutants and pose a potential environmental risk for surface as well as ground water. In the present study, chemical analysis and toxicity assessment of landfill leachate have been carried out. Leachate samples were collected from Ghazipur landfill site, New Delhi. Leachates were characterized by measuring the concentration of heavy metals (Pb, Cu, Cr and Ni), 5-day biochemical oxygen demand (BOD 5 ), chemical oxygen demand (COD), pH, electrical conductivity and SO 4 2 -. For toxicity testing of leachate, Triticum aestivum (wheat) was selected and testing was done in a time- and dose-dependent manner using the crude leachate. Median lethal concentration after 24 and 48 h of exposure was observed. The main objective of this study was to evaluate toxicity of MSW landfill leachate and establish a possible correlation between the measured physicochemical parameters and resultant toxicity. Statistical analysis showed that toxicity was dependent on the concentration of heavy metals (Pb, Cu), conductivity, and organic matter (COD and BOD5).

  4. Vectorization by nanoparticles decreases the overall toxicity of airborne pollutants

    PubMed Central

    Maiz-Gregores, Helena; Nesslany, Fabrice; Betbeder, Didier

    2017-01-01

    Atmospheric pollution is mainly composed of volatile pollutants and particulate matter that strongly interact. However, their specific roles in the induction of cellular toxicity, in particular the impact of the vectorization of atmospheric pollutants by ultrafine particles, remains to be fully elucidated. For this purpose, non-toxic poly-lactic co-glycolic acid (PLGA) nanoparticles were synthesized and three pollutants (benzo(a)pyrene, naphthalene and di-ethyl-hexyl-phthalate) were adsorbed on the surface of the nanoparticles in order to evaluate the toxicity (cytotoxicity, genotoxicity and ROS induction) of these complexes to a human airway epithelial cell line. The adsorption of the pollutants onto the nanoparticles was confirmed by HPLC analysis. Interestingly, the cytotoxicity assays (MTT, LDH and CellTox Green) clearly demonstrated that the vectorization by nanoparticles decreases the toxicity of the adsorbed pollutants. Genotoxicity was assessed by the micronucleus test and the comet assay and showed no increase in primary DNA damage or in chromosomal aberrations of nanoparticle vectorized pollutants. Neither cytotoxicity nor genotoxicity was correlated with ROS induction. To conclude, our results indicate that the vectorization of pollutants by nanoparticles does not potentiate the toxicity of the pollutants studied and that, on the contrary, adsorption onto nanoparticles could protect cells against pollutants’ toxicity. PMID:28813539

  5. The toxicity of zinc oxide nanoparticles to Lemna minor (L.) is predominantly caused by dissolved Zn.

    PubMed

    Chen, Xiaolin; O'Halloran, John; Jansen, Marcel A K

    2016-05-01

    Nano-ZnO particles have been reported to be toxic to many aquatic organisms, although it is debated whether this is caused by nanoparticles per sé, or rather dissolved Zn. This study investigated the role of dissolved Zn in nano-ZnO toxicity to Lemna minor. The technical approach was based on modulating nano-ZnO dissolution by either modifying the pH of the growth medium and/or surface coating of nano-ZnO, and measuring resulting impacts on L. minor growth and physiology. Results show rapid and total dissolution of nano-ZnO in the medium (pH 4.5). Quantitatively similar toxic effects were found when L. minor was exposed to nano-ZnO or the "dissolved Zn equivalent of dissolved nano-ZnO". The conclusion that nano-ZnO toxicity is primarily caused by dissolved Zn was further supported by the observation that phytotoxicity was absent on medium with higher pH-values (>7), where dissolution of nano-ZnO almost ceased. Similarly, the reduced toxicity of coated nano-ZnO, which displays a slower Zn dissolution, is also consistent with a major role for dissolved Zn in nano-ZnO toxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Influence of Speciation of Thorium on Toxic Effects to Green Algae Chlorella pyrenoidosa.

    PubMed

    Peng, Can; Ma, Yuhui; Ding, Yayun; He, Xiao; Zhang, Peng; Lan, Tu; Wang, Dongqi; Zhang, Zhaohui; Zhang, Zhiyong

    2017-04-10

    Thorium (Th) is a natural radioactive element present in the environment and has the potential to be used as a nuclear fuel. Relatively little is known about the influence and toxicity of Th in the environment. In the present study, the toxicity of Th to the green algae Chlorella pyrenoidosa ( C. pyrenoidosa ) was evaluated by algal growth inhibition, biochemical assays and morphologic observations. In the cultural medium (OECD TG 201), Th(NO₃)₄ was transformed to amorphous precipitation of Th(OH)₄ due to hydrolysis. Th was toxic to C. pyrenoidosa , with a 96 h half maximum effective concentration (EC 50 ) of 10.4 μM. Scanning electron microscopy shows that Th-containing aggregates were attached onto the surface of the algal cells, and transmission electron microscopy indicates the internalization of nano-sized Th precipitates and ultrastructural alterations of the algal cells. The heteroagglomeration between Th(OH)₄ precipitation and alga cells and enhanced oxidative stress might play important roles in the toxicity of Th. To our knowledge, this is the first report of the toxicity of Th to algae with its chemical species in the exposure medium. This finding provides useful information on understanding the fate and toxicity of Th in the aquatic environment.

  7. Organotin compounds and aquatic bacteria: A review

    NASA Astrophysics Data System (ADS)

    Cooney, J. J.

    1995-03-01

    Organotins are toxic to microorganisms. Trisubstituted organotins (R3SnX) are considered more toxic than disubstituted (R2SnX2) or monosubstituted (RSnX3) compounds, and tetrasubstituted compounds (R4Sn) are not considered toxic. In the R3Sn series propyl-, butyl-, pentyl-, phenyl- and cyclohexyltins are the most toxic to microorganisms. Toxicity towards aerobes in the R3Sn series is related to total molecular surface area and to the octanol: water partition coefficient, Kow, which is a measure of hydrophobicity. Care must be taken when testing the toxicity of tin compounds in the laboratory, for a number of biological, chemical and physical factors can influence the apparent toxicity. Although TBT is generally the most toxic of the butyltins, there are instances where monobutyltin (MBT) is as toxic, or more toxic, than TBT to microorganisms. Thus, debutylation in the sequence TBT→DBT→MBT→Sn does not detoxity TBT for all microorganisms. Some microorganisms can methylate inorganic or organic tins under aerobic or anaerobic conditions. Methylation can also occur by chemical means and the relative contributions of biotic and abiotic mechanisms are not clear. It is difficult to isolate a pure culture which can methylate tin compounds aerobically, and it is difficult to isolate a pure culture which degrades TBT, suggesting that microbial consortiums may be involved in transformations of organotins in the aquatic environment. Methylation and debutylation alter the adsorbtivity and solubility of tin compounds; thus microorganisms can influence the environmental mobility of tin. TBT-resistant microorganisms can be isolated, and in some of them resistance to TBT can be plasmid-mediated.

  8. Pollutant Concentrations and Toxic Effects on the Red Alga Ceramium tenuicorne of Sediments from Natural Harbors and Small Boat Harbors on the West Coast of Sweden.

    PubMed

    Eklund, Britta; Hansson, Tomas; Bengtsson, Henrik; Eriksson Wiklund, Ann-Kristin

    2016-04-01

    This investigation set out to analyze the toxicity of surface sediments in a number of natural harbors and small boat harbors on the west coast of Sweden. This was done with the growth inhibition method with Ceramium tenuicorne. Also, concentrations of copper (Cu), lead (Pb), zinc (Zn), irgarol, organotin compounds, and polycyclic aromatic hydrocarbons (PAHs) in the sediments were analyzed. The small boat harbors were heavily polluted by Cu, Zn, butyltins, and PAHs, and to a lesser extent by Pb. The Cu, Pb, Zn, and butyltins probably originated from their past and/or present use in antifouling paints, whereas the PAHs probably had multiple sources, including boat motor exhausts. The measured toxicity of the sediment was generally related to their Cu, Zn, and butyltin content, although other toxic substances than those analyzed here probably contributed to the toxicity in some of the harbors. The natural harbor sediments contained less pollutants and were less toxic than the small boat harbor sediments. Nevertheless, our data indicate that the boating pressure today may be high enough to produce toxic effects even in natural harbors in pristine areas. The strongest relationship between toxicity and the major pollutants was obtained when the sediment toxicity was expressed as gram wet weight per liter compared with gram dry weight per liter and gram total organic carbon per liter. Hence, for pollutants that can be elutriated with natural sea water, sediment toxicity expressed as gram wet weight per liter appears preferable.

  9. Toxicity of Lunar Dust in Lungs Assessed by Examining Biomarkers in Exposed Mice

    NASA Technical Reports Server (NTRS)

    Lam, C.-W.; James, J. T.; Zeidler-Erdely, P. C.; Castranova, V.; Young, S. H.; Quan, C. L.; Khan-Mayberry, N.; Taylor, L. A.

    2009-01-01

    NASA plans to build an outpost on the Moon for prolonged human habitation and research. The lunar surface is covered by a layer of soil, of which the finest portion is highly reactive dust. NASA has invited NIOSH to collaboratively investigate the toxicity of lunar dust. Dust samples of respirable sizes were aerodynamically isolated from two lunar soil samples of different maturities (cosmic exposure ages) collected during the Apollo 16 mission. The lunar dust samples, titanium dioxide, or quartz, suspended in normal saline or in Survanta (a bovine lung surfactant), were given to groups of 5 mice (C-57 male) by intrapharyngeal aspiration at 1, 0.3, or 0.1 mg/mouse. The mice were euthanized 7 or 30 days later, and their lungs were lavaged to assess the toxicity biomarkers in bronchioalveolar lavage fluids. The acellular fractions were assayed for total proteins, lactate dehydrogenase activities, and cytokines; the cellular portions were assessed for total cell counts and cell differentials. Results from the high-dose groups showed that lunar dust, suspended in saline, was more toxic than TiO 2, but less toxic than quartz. Lunar dust particles aggregate and settle out rapidly in water or saline, but not in Survanta. Lunar dust suspended in Survanta manifested greater toxicity than lunar dust in saline. The increase in toxicity presumably was due to that Survanta gave a better particle dispersion in the lungs. The two lunar dust samples showed similar toxicity. The overall results showed that lunar dust is more toxic than TiO 2 but less toxic than quartz.

  10. Design for Life. Abortion. A Student's Lesson Plan [and] A Teacher's Lesson Plan [and] A Lawyer's Lesson Plan.

    ERIC Educational Resources Information Center

    Howard, Estelle; And Others

    One of a series of secondary level teaching units presenting case studies with pro and con analyses of particular legal problems, the document consists of a student's lesson plan, a teacher's lesson plan, and a lawyer's lesson plan for a unit on abortion. The lessons are designed to expose students to the Supreme Court's decision concerning…

  11. The Development and Study of Surface Bound Ruthenium Organometallic Complexes

    NASA Astrophysics Data System (ADS)

    Abbott, Geoffrey Reuben

    The focus of this project has been on the use of mono-diimine ruthenium organometallic complexes, of the general structure [H(Ru)(CO)(L)2(L') 2][PF6] (L=PPh3, DPPENE and L'=Bpy, DcBpy, MBpyC, Phen, AminoPhen) bound to surfaces as luminescent probes. Both biological and inorganic/organic hybrid surfaces have been studied. The complexes were characterized both bound and unbound using standard analytical techniques such as NMR, IR and X-ray crystallography, as well as through several photophysical methods as well. Initially the study focused on how the photophyscial properties of the complexes were affected by incorporation into biological membranes. It was found that by conjugating the probes to a more rigid cholesterol moiety that luminescence was conserved, compared to conjugation with a far more flexible lipid moiety, where luminescence was either lost or reduced. Both the cholesterol and lipid conjugates were able to insert into a lipid membrane, and in the more rigid environment some of the lipid conjugates regained some of their luminescence, but often blue shifted and reduced, depending on the conjugation site. Silica Polyamine Composites (SPCs) were a hybrid material developed in the Rosenberg Lab as useful metal separation materials, that could be easily modified, and had several benefits over current commercially available polymers, or inorganic materials. These SPCs also provided an opportunity for the development of a heterogeneous platform for luminescent complexes as either catalysts or sensors. Upon binding of the luminescent Ru complexes to the surface no loss, or major change in luminescence was seen, however, when bound to the rigid surface a significant increase in excited state lifetime was measured. It is likely that through binding and interacting with the surface that the complexes lost non-radiative decay pathways, resulting in the increase in lifetime, however, these interactions do not seem to affect the energy level of the MLCT band in a large way. With a better understanding of the effects of surface binding on the complexes, the study turned to possible applications, as either sensors or catalysts. Recently the bound complexes have been found to be very useful as toxic metal sensors, as the free amines left on the surface could bind toxic metal ions in close proximity leading to either a quenching or enhancement of the luminescence of the complexes, depending on the metal ion. This process was determined to be a static process, requiring the toxic metal to remain bound to the surface in order to affect the luminescence of the Ru complex. The quenching is thought to be due to a metal-centered electron-transfer reaction, in which the excited-state electron is transferred from the Ru to the toxic metal, but relaxes back to the Ru center. The enhancement of luminescence is due to the external heavy-atom effect, in which heavier atoms mixes MLCT singlet state with the triplet state through spin-orbit coupling.

  12. Utilizing the NASA Data-enhanced Investigations for Climate Change Education Resource for Elementary Pre-service Teachers in a Technology Integration Education Course.

    NASA Astrophysics Data System (ADS)

    Howard, E. M.; Moore, T.; Hale, S. R.; Hayden, L. B.; Johnson, D.

    2014-12-01

    The preservice teachers enrolled in the EDUC 203 Introduction to Computer Instructional Technology course, primarily for elementary-level had created climate change educational lessons based upon their use of the NASA Data-enhanced Investigations for Climate Change Education (DICCE). NASA climate education datasets and tools were introduced to faculty of Minority Serving Institutions through a grant from the NASA Innovations in Climate Education program. These lessons were developed to study various ocean processes involving phytoplankton's chlorophyll production over time for specific geographic areas using the Giovanni NASA software tool. The pre-service teachers had designed the climate change content that will assist K-4 learners to identify and predict phytoplankton sources attributed to sea surface temperatures, nutrient levels, sunlight, and atmospheric carbon dioxide associated with annual chlorophyll production. From the EDUC 203 course content, the preservice teachers applied the three phases of the technology integration planning (TIP) model in developing their lessons. The Zunal website (http://www.zunal.com) served as a hypermedia tool for online instructional delivery in presenting the climate change content, the NASA climate datasets, and the visualization tools used for the production of elementary learning units. A rubric was developed to assess students' development of their webquests to meet the overall learning objectives and specific climate education objectives. Accompanying each webquest is a rubric with a defined table of criteria, for a teacher to assess students completing each of the required tasks for each lesson. Two primary challenges of technology integration for elementary pre-service teachers were 1) motivating pre-service teachers to be interested in climate education and 2) aligning elementary learning objectives with the Next Generation science standards of climate education that are non-existent in the Common Core State Standards.

  13. Light-stick: A problem of marine pollution in Brazil.

    PubMed

    Cesar-Ribeiro, Caio; Rosa, Helena Costi; Rocha, Daniele Oliveira; Dos Reis, Camila Galli Baldini; Prado, Tabata Sarti; Muniz, Daniela Hernandes Coimbra; Carrasco, Raquel; Silva, Flávia Milão; Martinelli-Filho, José Eduardo; Palanch-Hans, Maria Fernanda

    2017-04-15

    Light-sticks are used as bait in surface long-line fishing, to capture swordfish and other large pelagic predators. When discharged in the ocean, it may reach the beaches. The traditional Brazilian community of Costa dos Coqueiros, Bahia, use light-sticks as a medicine for rheumatism, vitiligo and mycoses. It may affect the marine life when its content leak in the open ocean. This work evaluated and identified the acute and chronic toxicity of the light-stick. A high acute toxicity was observed in the mobility/mortality of Artemia sp.; in the fertilization of sea urchin eggs, and a high chronic toxicity in the development of the pluteus larvae of the same sea urchin. The main compounds that probably caused toxicity were the volatiles such as the fluorescent PAH and oxidants such as the hydrogen peroxide. Its disposal in the open ocean is a potential threat for marine life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Static renewal tests using Pimephales promelas (fathead minnows) and Ceriodaphnia dubia (daphnids). Clinch River-Environmental Restoration Program (CR-ERP) study, ambient water toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, C.L.

    1993-12-31

    Clinch River-Environmental Restoration Program (CR-ERP) personnel and Tennessee Valley Authority (TVA) personnel conducted a study during the week of July 22--29, 1993. The organisms specified for testing were larval fathead minnows, Pimephales promelas, and the daphnid, Ceriodaphnia dubia. Surface water samples were collected by TVA Field engineering personnel from Clinch River Mile 19.0 and Mile 22.0 on July 21, 23, and 26. Samples were split and provided to the CR-ERP and TVA toxicology laboratories for testing. Exposure of test organisms to these samples resulted in no toxicity (survival, growth, or reproduction) to either species in testing conducted by TVA. Attachmentsmore » to this report include: Chain of custody forms -- originals; Toxicity test bench sheets and statistical analyses; and Reference toxicant test information.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herkovits, J.; Herkovits, F.D.; Perez-Coll, C.S.

    The water quality based toxics control is essential to evaluate the aggregate toxicity, bioavailability as well as for the detection and/or prediction of ecological impacts. Reconquista River valley is situated in the north area of Great Buenos Aires with a population of three million inhabitants. The river is loaded with industrial and municipal waste water. In the present preliminary study the authors report the toxicity found in surface water at a 6 sample stations (including a reference point and a stream) all of them downstream from mixing zone areas. The ecotoxicological study was performed with three native species (Bufo arenarummore » embryos, Cnesterodon decemmaculatus and a species of shrimp collected in an upstream reference site) during a 7 day renewal toxicity test conducted with 10 individuals (by duplicate) for each condition plus control. The results point out that the Bufo arenarum embryos test is the most sensitive to toxic substances as well as the better adapted species to the changing physico-chemical conditions of this river. The results obtained with embryos, expressed in Acute and Chronic Toxicity Units (according USEPA) range between <0.3--2 and <1--5 respectively (recommended magnitudes for industrial effluents according USEPA: 0.3 and 1 toxicity units respectively). Therefore, the toxicity found in Reconquista River ecosystem was up to 6 times higher than the maximal value recommended for industrial effluents. It is noteworthy that in the place where toxicity starts to rise, a large number of dead fishes were found and from that place downstream, no macroorganisms were found in the river. The results confirm the high sensitivity of Bufo arenarum embryos for continental waters ecotoxicological studies and the possibility of using this test as a short-term chronic toxicity method for water quality-based toxics control.« less

  16. Energy Management Lesson Plans for Vocational Agriculture Instructors.

    ERIC Educational Resources Information Center

    Hedges, Lowell E., Ed.; Miller, Larry E., Ed.

    This notebook provides vocational agricultural teachers with 10 detailed lesson plans on the major topic of energy management in agriculture. The lesson plans present information about energy and the need to manage it wisely, using a problem-solving approach. Each lesson plan follows this format: lesson topic, lesson performance objectives,…

  17. Life Functions and Cells: Level II, Unit 7, Lesson 1; Cell Structure: Lesson 2; Tissues, Organs, Systems: Lesson 3; Growth and Nutrition: Lesson 4; Metabolism: Lesson 5. Advanced General Education Program. A High School Self-Study Program.

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. Job Corps.

    This self-study program for high-school level contains lessons on: Life Functions and Cells; Cell Structure; Tissues, Organs, Systems; Growth and Nutrition; and Metabolism. Each of the lessons concludes with a Mastery Test to be completed by the student. (DB)

  18. Characteristics of suspended solids affect bifenthrin toxicity to the calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi.

    PubMed

    Parry, Emily; Lesmeister, Sarah; Teh, Swee; Young, Thomas M

    2015-10-01

    Bifenthrin is a pyrethroid pesticide that is highly toxic to aquatic invertebrates. The dissolved concentration is generally thought to be the best predictor of acute toxicity. However, for the filter-feeding calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi, ingestion of pesticide-bound particles could prove to be another route of exposure. The present study investigated bifenthrin toxicity to E. affinis and P. forbesi in the presence of suspended solids from municipal wastewater effluent and surface water of the San Francisco (CA, USA) Estuary. Suspended solids mitigated the toxicity of total bifenthrin to E. affinis and P. forbesi, but mortality was higher than what would be predicted from dissolved concentrations alone. The results indicate that the toxicity and bioavailability of particle-associated bifenthrin was significantly correlated with counts of 0.5-µm to 2-µm particle sizes. Potential explanations could include direct ingestion of bifenthrin-bound particles, changes in food consumption and feeding behavior, and physical contact with small particles. The complex interactions between pesticides and particles of different types and sizes demonstrate a need for future ecotoxicological studies to investigate the role of particle sizes on aquatic organisms. © 2015 SETAC.

  19. Mangroves and Seawalls. "Increased Pressure for Land Fill Will Cause More and More Stress to Natural Areas." Grades 7 and 8. A Three Lesson Unit. Student Learning Activity Module.

    ERIC Educational Resources Information Center

    Frank, James

    This module is an activity/discussion-centered unit focusing on the importance of shoreline surface area. The module is part of a series designed to be used by teachers, students, and community members to help them utilize community resources in developing and teaching environmental concepts and responsibility, and in seeking ways to solve…

  20. Safety assessment of new antithrombotic agents: lessons from the EXTEND study on ximelagatran.

    PubMed

    Agnelli, G; Eriksson, B I; Cohen, A T; Bergqvist, D; Dahl, O E; Lassen, M R; Mouret, P; Rosencher, N; Andersson, M; Bylock, A; Jensen, E; Boberg, B

    2009-01-01

    Ximelagatran, the first oral direct thrombin inhibitor, was shown to be an effective antithrombotic agent but was associated with potential liver toxicity after prolonged administration. The aim of the EXTEND study was to assess safety and efficacy of extended administration (35 days) of ximelagatran or enoxaparin for the prevention of venous thromboembolism after elective hip replacement and hip fracture surgery. A follow-up period, including assessment of liver enzymes (in particular alanine aminotransferase; ALAT), until post-operative day 180 was planned, with visits at days 56 and 180. Randomization and administration of study drugs were stopped following a report of serious liver injury occurring 3 weeks after completion of ximelagatran treatment. At the time of study termination, 1158 patients had been randomized and 641 had completed the 35-day treatment; with 303 ximelagatran and 265 enoxaparin patients remaining in the study through to the day 56 follow-up visit. Overall, 58 patients showed an ALAT increase to >2x upper limit of normal: 31 treated with enoxaparin, 27 with ximelagatran. Three ximelagatran patients also showed symptoms potentially related to liver toxicity. Eleven ximelagatran patients showed an ALAT increase after study treatment ended. The clinical development of ximelagatran was terminated and the drug withdrawn from the market. Evaluation of the relative efficacy of the two treatments as specified in the protocol was impossible due to the premature termination of the study. Prolonged administration of ximelagatran was associated with an increased risk of liver toxicity. In a substantial proportion of patients, ALAT increase occurred after treatment withdrawal. The findings seen with ximelagatran should be considered when designing studies with new antithrombotic agents.

Top