Sample records for surface transportation system

  1. Risk Assessment of Carbon Fiber Composite in Surface Transportation

    NASA Technical Reports Server (NTRS)

    Hathaway, W. T.; Hergenrother, K. M.

    1980-01-01

    The vulnerability of surface transportation to airborne carbon fibers and the national risk associated with the potential use of carbon fibers in the surface transportation system were evaluated. Results show airborne carbon fibers may cause failure rates in surface transportation of less than one per year by 1995. The national risk resulting from the use of carbon fibers in the surface transportation system is discussed.

  2. Method and apparatus for transporting liquid slurries

    DOEpatents

    Berry, Gregory F.; Lyczkowski, Robert W.; Wang, Chi-Sheng

    1993-01-01

    An improved method and device to prevent erosion of slurry transport devices is disclosed which uses liquid injection to prevent contact by the slurry composition with the inner surface of the walls of the transport system. A non-abrasive liquid is injected into the slurry transport system and maintains intimate contact with the entire inner surface of the transport system, thereby creating a fluid barrier between the non-abrasive liquid and the inner surface of the transport system which thereby prevents erosion.

  3. Method and apparatus for transporting liquid slurries

    DOEpatents

    Berry, G.F.; Lyczkowski, R.W.; Chisheng Wang.

    1993-03-16

    An improved method and device to prevent erosion of slurry transport devices is disclosed which uses liquid injection to prevent contact by the slurry composition with the inner surface of the walls of the transport system. A non-abrasive liquid is injected into the slurry transport system and maintains intimate contact with the entire inner surface of the transport system, thereby creating a fluid barrier between the non-abrasive liquid and the inner surface of the transport system which thereby prevents erosion.

  4. The SIMPSONS project: An integrated Mars transportation system

    NASA Astrophysics Data System (ADS)

    Kaplan, Matthew; Carlson, Eric; Bradfute, Sherie; Allen, Kent; Duvergne, Francois; Hernandez, Bert; Le, David; Nguyen, Quan; Thornhill, Brett

    In response to the Request for Proposal (RFP) for an integrated transportation system network for an advanced Martian base, Frontier Transportation Systems (FTS) presents the results of the SIMPSONS project (Systems Integration for Mars Planetary Surface Operations Networks). The following topics are included: the project background, vehicle design, future work, conclusions, management status, and cost breakdown. The project focuses solely on the surface-to-surface transportation at an advanced Martian base.

  5. The SIMPSONS project: An integrated Mars transportation system

    NASA Technical Reports Server (NTRS)

    Kaplan, Matthew; Carlson, Eric; Bradfute, Sherie; Allen, Kent; Duvergne, Francois; Hernandez, Bert; Le, David; Nguyen, Quan; Thornhill, Brett

    1992-01-01

    In response to the Request for Proposal (RFP) for an integrated transportation system network for an advanced Martian base, Frontier Transportation Systems (FTS) presents the results of the SIMPSONS project (Systems Integration for Mars Planetary Surface Operations Networks). The following topics are included: the project background, vehicle design, future work, conclusions, management status, and cost breakdown. The project focuses solely on the surface-to-surface transportation at an advanced Martian base.

  6. Compendium : graduate student papers on advanced surface transportation systems, 1999

    DOT National Transportation Integrated Search

    1999-08-01

    This document is the culmination of the ninth offering of an innovative transportation engineering graduate course at Texas A&M : University entitled, Advanced Surface Transportation Systems. The ninth offering of the course was presented durin...

  7. Surface transportation : prospects for innovation through research, intelligent transportation systems, state infrastructure banks, and design-build contracting : testimony before the Subcommittee on Transportation and Infrastructure, Committee on Environ

    DOT National Transportation Integrated Search

    1997-03-06

    This testimony describes how innovation in federal research, financing and contracting methods has the potential for improving the performance of the nation's surface transportation system. The testimony is based on three reports on the reauthorizati...

  8. System-of-Systems Considerations in the Notional Development of a Metropolitan Aerial Transportation System. [Implications as to the Identification of Enabling Technologies and Reference Designs for Extreme Short Haul VTOL Vehicles With Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Alonso, Juan J.; Arneson, Heather M.; Melton, John E.; Vegh, Michael; Walker, Cedric; Young, Larry A.

    2017-01-01

    There are substantial future challenges related to sustaining and improving efficient, cost-effective, and environmentally friendly transportation options for urban regions. Over the past several decades there has been a worldwide trend towards increasing urbanization of society. Accompanying this urbanization are increasing surface transportation infrastructure costs and, despite public infrastructure investments, increasing surface transportation "gridlock." In addition to this global urbanization trend, there has been a substantial increase in concern regarding energy sustainability, fossil fuel emissions, and the potential implications of global climate change. A recently completed study investigated the feasibility of an aviation solution for future urban transportation (refs. 1, 2). Such an aerial transportation system could ideally address some of the above noted concerns related to urbanization, transportation gridlock, and fossil fuel emissions (ref. 3). A metro/regional aerial transportation system could also provide enhanced transportation flexibility to accommodate extraordinary events such as surface (rail/road) transportation network disruptions and emergency/disaster relief responses.

  9. Department of Transportation's intelligent transportation systems (ITS) projects book

    DOT National Transportation Integrated Search

    2000-01-01

    Intelligent Transportation Systems (ITS), formerly Intelligent Vehicle-Highway Systems (IVHS), provide the technology applications helping the nation address current surface transportation problems while concurrently providing approaches for dealing ...

  10. Department of Transportation's intelligent transportation systems (ITS) projects book

    DOT National Transportation Integrated Search

    1999-01-01

    Intelligent Transportation Systems (ITS), formerly Intelligent Vehicle-Highway Systems (IVHS), provide the technology applications helping the nation address current surface transportation problems and while concurrently providing approaches for deal...

  11. Understanding Transportation Systems : An Integrated Approach to Modeling Complex Transportation Systems

    DOT National Transportation Integrated Search

    2013-01-01

    The ability to model and understand the complex dynamics of intelligent agents as they interact within a transportation system could lead to revolutionary advances in transportation engineering and intermodal surface transportation in the United Stat...

  12. Department of Transportation's intelligent transportation systems (ITS) projects book

    DOT National Transportation Integrated Search

    1998-01-01

    Intelligent Transportation Systems (ITS), formerly Intelligent Vehicle-Highway Systems (IVHS), provide the tools to help us address current surface transportation problems, as well as anticipate and address future demands through an intermodal, strat...

  13. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces

    NASA Astrophysics Data System (ADS)

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-10-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.

  14. Assessment of the risks associated with the use of carbon fibers in surface transportation

    DOT National Transportation Integrated Search

    1980-06-01

    This report presents the results of an assessment of the potential risks associated with the use of carbon-fiber composites in the surface transportation system and the development of a data base on the vulnerability of the surface transportation sys...

  15. Survivability of intelligent transportation systems

    DOT National Transportation Integrated Search

    1999-10-01

    Intelligent Transportation Systems (ITS) are being deployed around the world to improve the safety and efficiency of surface transportation through the application of advanced information technology. The introduction of ITS exposes the transportation...

  16. Lunar surface transportation systems conceptual design lunar base systems study Task 5.2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Conceptual designs for three categories of lunar surface transportation were described. The level of understanding for the capabilities and design approach varies between the vehicles representing these categories. A summary of the vehicle categories and current state of conceptual design is provided. Finally, a brief evaluation and discussion is provided for a systematic comparison of transportation categories and effectiveness in supporting transportation objectives.

  17. Effects of catastrophic events on transportation system management and operations : comparative analysis

    DOT National Transportation Integrated Search

    2004-05-01

    In order to provide a better understanding of how the surface transportation system is both : affected and utilized in an emergency situation, the U.S. Department of Transportation : Intelligent Transportation Systems (ITS) Joint Program Office and t...

  18. 76 FR 63714 - Big Spring Rail System, Inc.;Operation Exemption;Transport Handling Specialists, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35553] Big Spring Rail System, Inc.;Operation Exemption;Transport Handling Specialists, Inc. Big Spring Rail System, Inc. (BSRS...., owned by the City of Big Spring, Tex. (City). BSRS will be operating the line for Transport Handling...

  19. Strategic plan for deployment of intelligent transportation systems in the Interstate 71 corridor (Columbus to Cleveland) : final report

    DOT National Transportation Integrated Search

    1998-04-01

    The Intermodal Surface Transportation Efficiency Act (ISTEA} signed by the U.S. Congress in December of 199 1 called for improvements in surface transportation through technological advancements. The U.S. Department of Transportation subsequently lau...

  20. Theoretical investigation of the electronic structure and quantum transport in the graphene-C(111) diamond surface system.

    PubMed

    Selli, Daniele; Baburin, Igor; Leoni, Stefano; Zhu, Zhen; Tománek, David; Seifert, Gotthard

    2013-10-30

    We investigate the interaction of a graphene monolayer with the C(111) diamond surface using ab initio density functional theory. To accommodate the lattice mismatch between graphene and diamond, the overlayer deforms into a wavy structure that binds strongly to the diamond substrate. The detached ridges of the wavy graphene overlayer behave electronically as free-standing polyacetylene chains with delocalized π electrons, separated by regions containing only sp(3) carbon atoms covalently bonded to the (111) diamond surface. We performed quantum transport calculations for different geometries of the system to study how the buckling of the graphene layer and the associated bonding to the diamond substrate affect the transport properties. The system displays high carrier mobility along the ridges and a wide transport gap in the direction normal to the ridges. These intriguing, strongly anisotropic transport properties qualify the hybrid graphene-diamond system as a viable candidate for electronic nanodevices.

  1. Framework for the Intelligent Transportation System (ITS) Evaluation : ITS Integration Activities

    DOT National Transportation Integrated Search

    2006-08-01

    Intelligent Transportation Systems (ITS) represent a significant opportunity to improve the efficiency and safety of the surface transportation system. ITS includes technologies to support information processing, communications, surveillance and cont...

  2. Continuous directional water transport on the peristome surface of Nepenthes alata

    NASA Astrophysics Data System (ADS)

    Chen, Huawei; Zhang, Pengfei; Zhang, Liwen; Liu, Hongliang; Jiang, Ying; Zhang, Deyuan; Han, Zhiwu; Jiang, Lei

    2016-04-01

    Numerous natural systems contain surfaces or threads that enable directional water transport. This behaviour is usually ascribed to hierarchical structural features at the microscale and nanoscale, with gradients in surface energy and gradients in Laplace pressure thought to be the main driving forces. Here we study the prey-trapping pitcher organs of the carnivorous plant Nepenthes alata. We find that continuous, directional water transport occurs on the surface of the ‘peristome’—the rim of the pitcher—because of its multiscale structure, which optimizes and enhances capillary rise in the transport direction, and prevents backflow by pinning in place any water front that is moving in the reverse direction. This results not only in unidirectional flow despite the absence of any surface-energy gradient, but also in a transport speed that is much higher than previously thought. We anticipate that the basic ‘design’ principles underlying this behaviour could be used to develop artificial fluid-transport systems with practical applications.

  3. Towards the future : the promise of intermodal and multimodal transportation systems

    DOT National Transportation Integrated Search

    1995-02-01

    Issues relating to intermodal and multimodal transportation systems are introduced and defined. Intermodal and multimodal transportation solutons are assessed within the framework of legislative efforts such as Intermodal Surface Transportation Effic...

  4. Planning for intelligent transportation systems in small urban areas.

    DOT National Transportation Integrated Search

    1997-01-01

    Intelligent transportation systems (ITS) has been a primary program focus of the U.S. Department of Transportation since its origination in the Intermodal Surface Transportation Efficiency Act of 1991. The federal ITS program funded early deployment ...

  5. Department of Transportation's intelligent transportation systems (ITS) projects book

    DOT National Transportation Integrated Search

    2001-01-01

    Surface transportation systems in the United States today face a number of significant challenges. Congestion and safety continue to present serious problems in spite of the nations superb roadway systems. Congestion imposes an exorbitant cost on ...

  6. Department of Transportation's intelligent transportation systems (ITS) projects book

    DOT National Transportation Integrated Search

    2002-01-01

    Surface transportation systems in the United States today face a number of significant challenges. Congestion and safety continue to present serious problems in spite of the nations superb roadway systems. Congestion imposes an exorbitant cost on ...

  7. Surface infrastructure : cost, financing and schedules for large-dollar transportation projects

    DOT National Transportation Integrated Search

    1998-02-01

    In fiscal year 1998, the federal government will distribute nearly $26 billion to states and localities for the construction and repair of the nation's surface transportation systems. To meet the nations' transportation needs, states and localities a...

  8. Protecting Surface Transportation Systems and Patrons from Terrorist Activities

    DOT National Transportation Integrated Search

    1997-11-01

    This report documents the first phase of a continuing research effort carried out by the Norman Y. Mineta International Institute for Surface Transportation Policy Studies (IISTPS) on behalf of the U.S. Department of Transportation. It comprises a ch...

  9. 4th integrated transportation management systems (ITMS) conference : conference proceedings

    DOT National Transportation Integrated Search

    2001-08-01

    This report documents the proceedings from the 4th Integrated Transportation Management Systems (ITMS) Conference, ITMS: A Key Strategy to Optimize Surface Transportation System Performance, held in Newark, New Jersey on July 15-18, 2001. The Confere...

  10. 1997 status of the nation's surface transportation system : condition and performance : a summary

    DOT National Transportation Integrated Search

    1993-09-01

    The Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 calls for a study of U.S. international border crossings. The objective of the study is to identify existing and emerging trade corridors and transportation subsystems that facilita...

  11. Hydrology of the Bonneville Salt Flats, northwestern Utah, and simulation of ground-water flow and solute transport in the shallow-brine aquifer

    USGS Publications Warehouse

    Mason, James L.; Kipp, Kenneth L.

    1998-01-01

    This report describes the hydrologic system of the Bonneville Salt Flats with emphasis on the mechanisms of solute transport. Variable-density, three-dimensional computer simulations of the near-surface part of the ground-water system were done to quantify both the transport of salt dissolved in subsurface brine that leaves the salt-crust area and the salt dissolved and precipitated on the land surface. The study was designed to define the hydrology of the brine ground-water system and the natural and anthropogenic processes causing salt loss, and where feasible, to quantify these processes. Specific areas of study include the transport of salt in solution by ground-water flow and the transport of salt in solution by wind-driven ponds and the subsequent salt precipitation on the surface of the playa upon evaporation or seepage into the subsurface. In addition, hydraulic and chemical changes in the hydrologic system since previous studies were documented.

  12. A Versatile Class of Cell Surface Directional Motors Gives Rise to Gliding Motility and Sporulation in Myxococcus xanthus

    PubMed Central

    Wartel, Morgane; Czerwinski, Fabian; Le Gall, Anne-Valérie; Mauriello, Emilia M. F.; Bergam, Ptissam; Brun, Yves V.; Shaevitz, Joshua; Mignot, Tâm

    2013-01-01

    Eukaryotic cells utilize an arsenal of processive transport systems to deliver macromolecules to specific subcellular sites. In prokaryotes, such transport mechanisms have only been shown to mediate gliding motility, a form of microbial surface translocation. Here, we show that the motility function of the Myxococcus xanthus Agl-Glt machinery results from the recent specialization of a versatile class of bacterial transporters. Specifically, we demonstrate that the Agl motility motor is modular and dissociates from the rest of the gliding machinery (the Glt complex) to bind the newly expressed Nfs complex, a close Glt paralogue, during sporulation. Following this association, the Agl system transports Nfs proteins directionally around the spore surface. Since the main spore coat polymer is secreted at discrete sites around the spore surface, its transport by Agl-Nfs ensures its distribution around the spore. Thus, the Agl-Glt/Nfs machineries may constitute a novel class of directional bacterial surface transporters that can be diversified to specific tasks depending on the cognate cargo and machinery-specific accessories. PMID:24339744

  13. Report of the National Surface Transportation Policy and Revenue Study Commission : transportation for tomorrow.

    DOT National Transportation Integrated Search

    2008-01-01

    The surface transportation system of the : United States is at a crossroads. The future : of our Nations well-being, vitality, and global : economic leadership is at stake. We must take : significant, decisive action now to create and : sustain th...

  14. Simulating Surface Oil Transport During the Deepwater Horizon Oil Spill: Experiments with the BioCast System

    DTIC Science & Technology

    2014-01-25

    Virtual Special Issue Gulf of Mexico Modelling – Lessons from the spill Simulating surface oil transport during the Deepwater Horizon oil spill ...ocean surface materials. The Deepwater Horizon oil spill in the Gulf of Mexico provided a test case for the Bio-Optical Forecasting (BioCast) system...addition of explicit sources and sinks of surface oil concentrations provides a framework for increasingly complex oil spill modeling efforts that extend

  15. 76 FR 8699 - Reporting Requirements for Positive Train Control Expenses and Investments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board 49 CFR Part 1201 [Docket No. EP 706] Reporting Requirements for Positive Train Control Expenses and Investments AGENCY: Surface Transportation... Train Control, a federally mandated safety system that will automatically stop or slow a train before an...

  16. Report of the National Surface Transportation Policy and Revenue Study Commission : transportation for tomorrow.

    DOT National Transportation Integrated Search

    2007-11-01

    President Dwight D. Eisenhower had the foresight : to understand how a system of Interstate highways : would transform the Nation. If there was ever a : time to take a similarly daring look at a broadened : surface transportation network, it is now! ...

  17. The Importance of Protons in Reactive Transport Modeling

    NASA Astrophysics Data System (ADS)

    McNeece, C. J.; Hesse, M. A.

    2014-12-01

    The importance of pH in aqueous chemistry is evident; yet, its role in reactive transport is complex. Consider a column flow experiment through silica glass beads. Take the column to be saturated and flowing with solution of a distinct pH. An instantaneous change in the influent solution pH can yield a breakthrough curve with both a rarefaction and shock component (composite wave). This behavior is unique among aqueous ions in transport and is more complex than intuition would tell. Analysis of the hyperbolic limit of this physical system can explain these first order transport phenomenon. This analysis shows that transport behavior is heavily dependent on the shape of the adsorption isotherm. Hence it is clear that accurate surface chemistry models are important in reactive transport. The proton adsorption isotherm has nonconstant concavity due to the proton's ability to partition into hydroxide. An eigenvalue analysis shows that an inflection point in the adsorption isotherm allows the development of composite waves. We use electrostatic surface complexation models to calculate realistic proton adsorption isotherms. Surface characteristics such as specific surface area, and surface site density were determined experimentally. We validate the model by comparison against silica glass bead flow through experiments. When coupled to surface complexation models, the transport equation captures the timing and behavior of breakthrough curves markedly better than with commonly used Langmuir assumptions. Furthermore, we use the adsorption isotherm to predict, a priori, the transport behavior of protons across pH composition space. Expansion of the model to multicomponent systems shows that proton adsorption can force composite waves to develop in the breakthrough curves of ions that would not otherwise exhibit such behavior. Given the abundance of reactive surfaces in nature and the nonlinearity of chemical systems, we conclude that building a greater understanding of proton adsorption is of utmost importance to reactive transport modeling.

  18. Charge-spin Transport in Surface-disordered Three-dimensional Topological Insulators

    NASA Astrophysics Data System (ADS)

    Peng, Xingyue

    As one of the most promising candidates for the building block of the novel spintronic circuit, the topological insulator (TI) has attracted world-wide interest of study. Robust topological order protected by time-reversal symmetry (TRS) makes charge transport and spin generation in TIs significantly different from traditional three-dimensional (3D) or two-dimensional (2D) electronic systems. However, to date, charge transport and spin generation in 3D TIs are still primarily modeled as single-surface phenomena, happening independently on top and bottom surfaces. In this dissertation, I will demonstrate via both experimental findings and theoretical modeling that this "single surface'' theory neither correctly describes a realistic 3D TI-based device nor reveals the amazingly distinct physical picture of spin transport dynamics in 3D TIs. Instead, I present a new viewpoint of the spin transport dynamics where the role of the insulating yet topologically non-trivial bulk of a 3D TI becomes explicit. Within this new theory, many mysterious transport and magneto-transport anomalies can be naturally explained. The 3D TI system turns out to be more similar to its low dimensional sibling--2D TI rather than some other systems sharing the Dirac dispersion, such as graphene. This work not only provides valuable fundamental physical insights on charge-spin transport in 3D TIs, but also offers important guidance to the design of 3D TI-based spintronic devices.

  19. 77 FR 32178 - Notification of Trails Act Agreement/Substitute Sponsorship

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [STB Ex Parte No. 702] Notification of Trails Act Agreement/Substitute Sponsorship AGENCY: Surface Transportation Board. ACTION: Notice of OMB... Trails System Act and Railroad Rights-of-Way, STB Ex Parte No. 702 (STB served Apr. 30, 2012) (77 FR...

  20. Protecting surface transportation systems and patrons from terrorist activities : case studies of best security practices and a chronology of attacks

    DOT National Transportation Integrated Search

    1997-12-01

    This report documents the first phase of a continuing research effort carried out by the Norman Y. Mineta International Institute for Surface Transportation Policy Studies (IISTPS) on behalf of the U.S. Department of Transportation. It comprises a ch...

  1. Surface transportation security : TSA has taken actions to manage risk, improve coordination, and measure performance, but additional actions would enhance its efforts, April 21, 2010.

    DOT National Transportation Integrated Search

    2010-04-21

    Terrorist attacks on surface transportation facilities in Moscow, Mumbai, London, and Madrid caused casualties and highlighted the vulnerability of such systems. The Transportation Security Administration (TSA), within the Department of Homeland Secu...

  2. Power Systems for Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1998-01-01

    Power system options were reviewed for their appropriateness to meet mission requirements and guidelines. Contending system technologies include: solar, nuclear, isotopic, electro-chemical and chemical. Mission elements can basically be placed into two categories; in-space transportation systems, both cargo and piloted; and surface systems, both stationary and mobile. All transportation and surface element power system requirements were assessed for application synergies that would suggest common hardware (duplicates of the same or similar design) or multi-use (reuse system in a different application/location), wherever prudent.

  3. Normal and anomalous transport phenomena in two-dimensional NaCl, MoS2 and honeycomb surfaces

    NASA Astrophysics Data System (ADS)

    Mbemmo, A. M. Fopossi; Kenmoé, G. Djuidjé; Kofané, T. C.

    2018-04-01

    Understanding the effects of anisotropy and substrate shape on the stochastic processes is critically needed for the improvement of the quality of the transport information. The effect of biharmonic force on the transport phenomena of a particle in two-dimensional is investigated in the framework of three representative substrate lattices: NaCl, MoS2 and honeycomb. We focus on the particles drift velocity, to characterize the transport properties in the system. Normal and anomalous transport are identified for a particular set of the system parameters such as the biharmonic parameter, the bias force, the phase-lag of two signals, as well as the noise amplitude. According to the direction ψ where the bias force is applied, we determine the biharmonic parameter ɛ for the presence of anomalous transport and show that for the NaCl surface, the anomalous transport is observed for 2 < ɛ < 10. For the MoS2 surface, it appears at monochromatic driven (ɛ = 0) and for 3 < ɛ < 9. In particular for the honeycomb surface anomalous transport is generated for 0 ⩽ ɛ < 6 only when ψ > 30 °.

  4. Evaluation of Management Practices to Mitigate Pesticide Transport and Ecological Risk of Runoff from Agricultural and Turf Systems

    USDA-ARS?s Scientific Manuscript database

    Highly managed biotic systems such as agricultural crops and golf courses often require multiple applications of pesticides that may be transported with runoff to surrounding surface waters. Pesticides have been detected in surface waters of rural and urban watersheds invoking concern of their sour...

  5. Surface Transportation Weather Decision Support Requirements - Executive Summary, Version 1.0

    DOT National Transportation Integrated Search

    1999-12-16

    WEATHER: IT AFFECTS THE VISIBILITY, TRACTABILITY, MANEUVERABILITY, VEHICLE STABILITY, EXHAUST EMISSIONS AND STRUCTURAL INTEGRITY OF THE SURFACE TRANSPORTATION SYSTEM. THEREBY WEATHER AFFECTS THE SAFETY, MOBILITY, PRODUCTIVITY AND ENVIRONMENTAL IMPACT...

  6. Dispersion controlled by permeable surfaces: surface properties and scaling

    DOE PAGES

    Ling, Bowen; Tartakovsky, Alexandre M.; Battiato, Ilenia

    2016-08-25

    Permeable and porous surfaces are common in natural and engineered systems. Flow and transport above such surfaces are significantly affected by the surface properties, e.g. matrix porosity and permeability. However, the relationship between such properties and macroscopic solute transport is largely unknown. In this work, we focus on mass transport in a two-dimensional channel with permeable porous walls under fully developed laminar flow conditions. By means of perturbation theory and asymptotic analysis, we derive the set of upscaled equations describing mass transport in the coupled channel–porous-matrix system and an analytical expression relating the dispersion coefficient with the properties of themore » surface, namely porosity and permeability. Our analysis shows that their impact on the dispersion coefficient strongly depends on the magnitude of the Péclet number, i.e. on the interplay between diffusive and advective mass transport. Additionally, we demonstrate different scaling behaviours of the dispersion coefficient for thin or thick porous matrices. Our analysis shows the possibility of controlling the dispersion coefficient, i.e. transverse mixing, by either active (i.e. changing the operating conditions) or passive mechanisms (i.e. controlling matrix effective properties) for a given Péclet number. By elucidating the impact of matrix porosity and permeability on solute transport, our upscaled model lays the foundation for the improved understanding, control and design of microporous coatings with targeted macroscopic transport features.« less

  7. Small Fermi surfaces and strong correlation effects in Dirac materials with holography

    NASA Astrophysics Data System (ADS)

    Seo, Yunseok; Song, Geunho; Park, Chanyong; Sin, Sang-Jin

    2017-10-01

    Recent discovery of transport anomaly in graphene demonstrated that a system known to be weakly interacting may become strongly correlated if system parameter (s) can be tuned such that fermi surface is sufficiently small. We study the strong correlation effects in the transport coefficients of Dirac materials doped with magnetic impurity under the magnetic field using holographic method. The experimental data of magneto-conductivity are well fit by our theory, however, not much data are available for other transports of Dirac material in such regime. Therefore, our results on heat transport, thermo-electric power and Nernst coefficients are left as predictions of holographic theory for generic Dirac materials in the vicinity of charge neutral point with possible surface gap. We give detailed look over each magneto-transport observable and 3Dplots to guide future experiments.

  8. ITS National Intelligent Transportation Systems Program Plan: Five Year Horizon Plan

    DOT National Transportation Integrated Search

    2000-08-01

    Transportation is vital to the social and economic health of the nation. Surface transportation systems - the net-works of highways, local streets, bus routes, and rail lines - are the ties that bind communities and facilitate commerce, connecting re...

  9. A strategic plan for the design and creation of a safety management system for the Commonwealth of Virginia.

    DOT National Transportation Integrated Search

    1994-01-01

    The Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 required that states develop systems for managing highway pavement, bridges, safety, congestion, public transportation, and intermodal transportation. This document is Virginia's wo...

  10. Terrorism in surface transportation

    DOT National Transportation Integrated Search

    1996-06-01

    The topic for this symposium was selected to help satisfy the increased need for awareness of and preparedness for possible terrorism attacks on the surface transportation systems within the United States and the world. A group of experts was assembl...

  11. Crew systems and flight station concepts for a 1995 transport aircraft

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1983-01-01

    Aircraft functional systems and crew systems were defined for a 1995 transport aircraft through a process of mission analysis, preliminary design, and evaluation in a soft mockup. This resulted in a revolutionary pilot's desk flight station design featuring an all-electric aircraft, fly-by-wire/light flight and thrust control systems, large electronic color head-down displays, head-up displays, touch panel controls for aircraft functional systems, voice command and response systems, and air traffic control systems projected for the 1990s. The conceptual aircraft, for which crew systems were designed, is a generic twin-engine wide-body, low-wing transport, capable of worldwide operation. The flight control system consists of conventional surfaces (some employed in unique ways) and new surfaces not used on current transports. The design will be incorporated into flight simulation facilities at NASA-Langley, NASA-Ames, and the Lockheed-Georgia Company. When interfaced with advanced air traffic control system models, the facilities will provide full-mission capability for researching issues affecting transport aircraft flight stations and crews of the 1990s.

  12. Intelligent transportation systems field operational test cross-cutting study : emergency notification and response

    DOT National Transportation Integrated Search

    2000-08-01

    Transportation is vital to the social and economic health of the nation. Surface transportation systems ? the networks of highways, local streets, bus routes, and rail lines ? are the ties that bind communities and facilitate commerce. Despite the fa...

  13. Method for deploying and recovering a wave energy converter

    DOEpatents

    Mundon, Timothy R

    2017-05-23

    A system for transporting a buoy and a heave plate. The system includes a buoy and a heave plate. An outer surface of the buoy has a first geometrical shape. A surface of the heave plate has a geometrical shape complementary to the first geometrical shape of the buoy. The complementary shapes of the buoy and the heave plate facilitate coupling of the heave plate to the outer surface of the buoy in a transport mode.

  14. A laboratory study of colloid and solute transport in surface runoff on saturated soil

    NASA Astrophysics Data System (ADS)

    Yu, Congrong; Gao, Bin; Muñoz-Carpena, Rafael; Tian, Yuan; Wu, Lei; Perez-Ovilla, Oscar

    2011-05-01

    SummaryColloids in surface runoff may pose risks to the ecosystems not only because some of them (e.g., pathogens) are toxic, but also because they may facilitate the transport of other contaminants. Although many studies have been conducted to explore colloid fate and transport in the environment, current understanding of colloids in surface runoff is still limited. In this study, we conducted a range of laboratory experiments to examine the transport behavior of colloids in a surface runoff system, made of a soil box packed with quartz sand with four soil drainage outlets and one surface flow outlet. A natural clay colloid (kaolinite) and a conservative chemical tracer (bromide) were applied to the system under a simulated rainfall event (64 mm/h). Effluent soil drainage and surface flow samples were collected to determine the breakthrough concentrations of bromide and kaolinite. Under the experimental conditions tested, our results showed that surface runoff dominated the transport processes. As a result, kaolinite and bromide were found more in surface flow than in soil drainage. Comparisons between the breakthrough concentrations of bromide and kaolinite showed that kaolinite had lower mobility than bromide in the subsurface flow (i.e., soil drainage), but behaved almost identical to bromide in the surface runoff. Student's t-test confirmed the difference between kaolinite and bromide in subsurface flow ( p = 0.02). Spearman's test and linear regression analysis, however, showed a strong 1:1 correlation between kaolinite and bromide in surface runoff ( p < 0.0001). Our result indicate that colloids and chemical solutes may behave similarly in overland flow on bare soils with limited drainage when surface runoff dominates the transport processes.

  15. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sourav; van Opstal, Edward J.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-06-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size 45 nm) and polystyrene nanoparticles (PSNPs/size 50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  16. Terrorism in surface transportation : a symposium

    DOT National Transportation Integrated Search

    1996-06-01

    The topic for this symposium was selected to help satisfy the increased need for awareness of and preparedness for possible terrorism attacks on the surface transportation systems within the United States and the world. A group of experts was assembl...

  17. Robotics

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O.

    2007-01-01

    Lunar robotic functions include: 1. Transport of crew and payloads on the surface of the moon; 2. Offloading payloads from a lunar lander; 3. Handling the deployment of surface systems; with 4. Human commanding of these functions from inside a lunar vehicle, habitat, or extravehicular (space walk), with Earth-based supervision. The systems that will perform these functions may not look like robots from science fiction. In fact, robotic functions may be automated trucks, cranes and winches. Use of this equipment prior to the crew s arrival or in the potentially long periods without crews on the surface, will require that these systems be computer controlled machines. The public release of NASA's Exploration plans at the 2nd Space Exploration Conference (Houston, December 2006) included a lunar outpost with as many as four unique mobility chassis designs. The sequence of lander offloading tasks involved as many as ten payloads, each with a unique set of geometry, mass and interface requirements. This plan was refined during a second phase study concluded in August 2007. Among the many improvements to the exploration plan were a reduction in the number of unique mobility chassis designs and a reduction in unique payload specifications. As the lunar surface system payloads have matured, so have the mobility and offloading functional requirements. While the architecture work continues, the community can expect to see functional requirements in the areas of surface mobility, surface handling, and human-systems interaction as follows: Surface Mobility 1. Transport crew on the lunar surface, accelerating construction tasks, expanding the crew s sphere of influence for scientific exploration, and providing a rapid return to an ascent module in an emergency. The crew transport can be with an un-pressurized rover, a small pressurized rover, or a larger mobile habitat. 2. Transport Extra-Vehicular Activity (EVA) equipment and construction payloads. 3. Transport habitats and power modules over long distances, pre-positioning them for the arrival of crew on a subsequent lander. Surface Handling 1. Offload surface system payloads from the lander, breaking launch restraints and power/data connections. Payloads may be offloaded to a wheeled vehicle for transport. 2. Deploy payloads from a wheeled vehicle at a field site, placing the payloads in their final use site on the ground or mating them with existing surface systems. 3. Support regolith collection, site preparation, berm construction, or other civil engineering tasks using tools and implements attached to rovers. Human-Systems Interaction 1. Provide a safe command and control interface for suited EVA to ride on and drive the vehicles, making sure that the systems are also safe for working near dismounted crew. 2. Provide an effective control system for IV crew to tele-operate vehicles, cranes and other equipment from inside the surface habitats with evolving independence from Earth. .. Provide a supervisory system that allows machines to be commanded from the ground, working across the Earth-Lunar time delays on the order of 5-10 seconds (round trip) to support operations when crew are not resident on the surface. Technology Development Needs 1. Surface vehicles that can dock, align and mate with outpost equipment such as landers, habitats and fluid/power interfaces. 2. Long life motors, drive trains, seals, motor electronics, sensors, processors, cable harnesses, and dash board displays. 3. Active suspension control, localization, high speed obstacle avoidance, and safety systems for operating near dismounted crew. 4. High specific energy and specific power batteries that are safe, rechargeable, and long lived.

  18. Growth far from equilibrium: Examples from III-V semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuech, Thomas F.; Babcock, Susan E.; Mawst, Luke

    The development of new applications has driven the field of materials design and synthesis to investigate materials that are not thermodynamically stable phases. Materials which are not thermodynamically stable can be synthesized and used in many applications. These materials are kinetically stabilized during use. The formation of such metastable materials requires both an understanding of the associated thermochemistry and the key surface transport processes present during growth. Phase separation is most easily accomplished at the growth surface during synthesis where mass transport is most rapid. These surface transport processes are sensitive to the surface stoichiometry, reconstruction, and chemistry as wellmore » as the growth temperature. The formation of new metastable semiconducting alloys with compositions deep within a compositional miscibility gap serves as model systems for the understanding of the surface chemical and physical processes controlling their formation. The GaAs{sub 1−y}Bi{sub y} system is used here to elucidate the role of surface chemistry in the formation of a homogeneous metastable composition during the chemical vapor deposition of the alloy system.« less

  19. Lunar surface base propulsion system study, volume 1

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The efficiency, capability, and evolution of a lunar base will be largely dependent on the transportation system that supports it. Beyond Space Station in low Earth orbit (LEO), a Lunar-derived propellant supply could provide the most important resource for the transportation infrastructure. The key to an efficient Lunar base propulsion system is the degree of Lunar self-sufficiency (from Earth supply) and reasonable propulsion system performance. Lunar surface propellant production requirements must be accounted in the measurement of efficiency of the entire space transportation system. Of all chemical propellant/propulsion systems considered, hydrogen/oxygen (H/O) OTVs appear most desirable, while both H/O and aluminum/oxygen propulsion systems may be considered for the lander. Aluminized-hydrogen/oxygen and Silane/oxygen propulsion systems are also promising candidates. Lunar propellant availability and processing techniques, chemical propulsion/vehicle design characteristics, and the associated performance of the total transportation infrastructure are reviewed, conceptual propulsion system designs and vehicle/basing concepts, and technology requirements are assessed in context of a Lunar Base mission scenario.

  20. Surface transportation : the Department of Transportation proposes significant changes to its automated highway system program [memorandum

    DOT National Transportation Integrated Search

    1997-03-06

    This report responds to a request for information on the current goals and future direction of the Department of Transportations (DOT) Automated Highway System program. This program seeks to increase the capacity of the nations highways and to ...

  1. Excess surface area in bioelectrochemical systems causes ion transport limitations.

    PubMed

    Harrington, Timothy D; Babauta, Jerome T; Davenport, Emily K; Renslow, Ryan S; Beyenal, Haluk

    2015-05-01

    We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: (i) showing that serially increasing NaCl concentration up to 200 mM increased current linearly up to a total of +273% vs. 0 mM NaCl under advective conditions; (ii) growing the biofilm with a starting concentration of 200 mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and (iii) showing that un-colonized surface area remained even after steady-state current was reached. After accounting for iR effects, we confirmed that the excess surface area existed despite a non-zero overpotential. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant. © 2014 Wiley Periodicals, Inc.

  2. Digestion and digestive-transport surfaces in cestodes and their fish hosts.

    PubMed

    Izvekova, G I; Kuperman, B I; Kuz'mina, V V

    1997-12-01

    The structural and functional organization of digestive-transport surfaces in some lower cestodes and their fish hosts was studied. It has been shown that the ultrastructure of cestode microtriches and fish enterocyte microvilli being the basis of membrane-linked digestion is quite similar. These organelles increase the digestive-transport surfaces both in helminths and fishes. However, the hydrolytic enzyme activity in helminths is usually 2-4 times lower than that of the fishes. Desorption (adsorption) characteristics of various hydrolases in helminths and fishes are also different. In helminths the easily desorbed fraction of each enzyme is always more abundant than in fishes. In contrast, the intensity of transport processes in helminths is higher when compared with fishes. The adaptation of digestive-transport surfaces and enzyme systems to feeding conditions is discussed.

  3. Measurement of the ATCRBS Surface Interrogation Environments at Chicago O'Hare and Los Angeles International Airports

    DOT National Transportation Integrated Search

    1976-07-01

    The Transportation Systems Center is conducting a progrm to develop a surface surveillance sensor that uses replies from ATCRBS tansponders. The operation of this system can be affected by surface interrogations at major airports where such a system ...

  4. 58TH Fiscal Law Course Deskbook

    DTIC Science & Technology

    2001-01-29

    Home Page http://www.afca.scott.af.mil/ ecommerce /index.htm Air Force FAR Supplement http://www.hq.af.mil/SAFAQ/contracting/far/ affars/html Air...veterinary care in rural areas; b. construction of rudimentary surface transportation systems; c. well drilling and construction of rudimentary...care provided in rural areas of a country; (2) construction of rudimentary surface transportation systems; (3) well drilling and construction of

  5. Feed gas contaminant control in ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis [Allentown, PA; Minford, Eric [Laurys Station, PA; Waldron, William Emil [Whitehall, PA

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  6. Benefits estimation framework for automated vehicle operations.

    DOT National Transportation Integrated Search

    2015-08-01

    Automated vehicles have the potential to bring about transformative safety, mobility, energy, and environmental benefits to the surface transportation system. They are also being introduced into a complex transportation system, where second-order imp...

  7. Assessment of CHSST maglev for U.S. urban transportation

    DOT National Transportation Integrated Search

    2002-07-01

    This report provides an assessment of the Urban Maglev system proposed by the Maglev Urban Systems Associates MUSA team for application in the United States. The proposed system is the Japanese Chubu high speed surface transportation (HSST) Maglev wh...

  8. Compendium: Graduate student papers on advanced surface transportation systems, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-08-01

    This document is the culmination of the eighth offering of an innovative transportation engineering graduate course at Texas A and M University entitled, Advanced Surface Transportation Systems. The eighth offering of the course was presented during the summer 1998 term. As part of the course, a mentors program provides students with unique learning experiences. Six top-level transportation professionals from private enterprise and departments of transportation, who are leaders in their field and who have extensive experience with intelligent transportation systems, were invited to Texas A and M University to present a 1 1/2-day symposium on advanced surface transportation systems atmore » the beginning of the summer term. Immediately following the symposium, the students enrolled in the course participated in a forum and a workshop with the transportation professionals and course instructor. Each students had discussions with the transportation professionals and the course instructor to identify a topic area for a term paper. Based on mutual interests, each student was assigned to one of the professionals who served as a mentor (along with the course instructor) for the remainder of the summer term. Each student worked with his/her mentor and course instructor to identify a topic area and objectives for a term paper. In addition to discussions with the course instructor, the students (communicating via telephone, fax, e-mail, and mail) worked directly with the mentors throughout the term while preparing their term papers. The mentors returned to the Texas A and M University campus near the end of the summer term to hear and critique the students` presentations.« less

  9. Simulating surface oil transport during the Deepwater Horizon oil spill: Experiments with the BioCast system

    NASA Astrophysics Data System (ADS)

    Jolliff, Jason Keith; Smith, Travis A.; Ladner, Sherwin; Arnone, Robert A.

    2014-03-01

    The U.S. Naval Research Laboratory (NRL) is developing nowcast/forecast software systems designed to combine satellite ocean color data streams with physical circulation models in order to produce prognostic fields of ocean surface materials. The Deepwater Horizon oil spill in the Gulf of Mexico provided a test case for the Bio-Optical Forecasting (BioCast) system to rapidly combine the latest satellite imagery of the oil slick distribution with surface circulation fields in order to produce oil slick transport scenarios and forecasts. In one such sequence of experiments, MODIS satellite true color images were combined with high-resolution ocean circulation forecasts from the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS®) to produce 96-h oil transport simulations. These oil forecasts predicted a major oil slick landfall at Grand Isle, Louisiana, USA that was subsequently observed. A key driver of the landfall scenario was the development of a coastal buoyancy current associated with Mississippi River Delta freshwater outflow. In another series of experiments, longer-term regional circulation model results were combined with oil slick source/sink scenarios to simulate the observed containment of surface oil within the Gulf of Mexico. Both sets of experiments underscore the importance of identifying and simulating potential hydrodynamic conduits of surface oil transport. The addition of explicit sources and sinks of surface oil concentrations provides a framework for increasingly complex oil spill modeling efforts that extend beyond horizontal trajectory analysis.

  10. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards.

    PubMed

    Comanns, Philipp; Effertz, Christian; Hischen, Florian; Staudt, Konrad; Böhme, Wolfgang; Baumgartner, Werner

    2011-01-01

    Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus), the Arabian toadhead agama (Phrynocephalus arabicus) and the Texas horned lizard (Phrynosoma cornutum). All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive - and for Phrynosoma directed - transport of water.

  11. A Dual Launch Robotic and Human Lunar Mission Architecture

    NASA Technical Reports Server (NTRS)

    Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David

    2010-01-01

    This paper describes a comprehensive lunar exploration architecture developed by Marshall Space Flight Center's Advanced Concepts Office that features a science-based surface exploration strategy and a transportation architecture that uses two launches of a heavy lift launch vehicle to deliver human and robotic mission systems to the moon. The principal advantage of the dual launch lunar mission strategy is the reduced cost and risk resulting from the development of just one launch vehicle system. The dual launch lunar mission architecture may also enhance opportunities for commercial and international partnerships by using expendable launch vehicle services for robotic missions or development of surface exploration elements. Furthermore, this architecture is particularly suited to the integration of robotic and human exploration to maximize science return. For surface operations, an innovative dual-mode rover is presented that is capable of performing robotic science exploration as well as transporting human crew conducting surface exploration. The dual-mode rover can be deployed to the lunar surface to perform precursor science activities, collect samples, scout potential crew landing sites, and meet the crew at a designated landing site. With this approach, the crew is able to evaluate the robotically collected samples to select the best samples for return to Earth to maximize the scientific value. The rovers can continue robotic exploration after the crew leaves the lunar surface. The transportation system for the dual launch mission architecture uses a lunar-orbit-rendezvous strategy. Two heavy lift launch vehicles depart from Earth within a six hour period to transport the lunar lander and crew elements separately to lunar orbit. In lunar orbit, the crew transfer vehicle docks with the lander and the crew boards the lander for descent to the surface. After the surface mission, the crew returns to the orbiting transfer vehicle for the return to the Earth. This paper describes a complete transportation architecture including the analysis of transportation element options and sensitivities including: transportation element mass to surface landed mass; lander propellant options; and mission crew size. Based on this analysis, initial design concepts for the launch vehicle, crew module and lunar lander are presented. The paper also describes how the dual launch lunar mission architecture would fit into a more general overarching human space exploration philosophy that would allow expanded application of mission transportation elements for missions beyond the Earth-moon realm.

  12. Transport Powder and Liquid Samples by Surface Acoustic Waves

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Louyeh, Sahar

    2009-01-01

    Sample transport is an important requirement for In-situ analysis of samples in NASA planetary exploration missions. Tests have shown that powders or liquid drops on a surface can be transported by surface acoustic waves (SAW) that are generated on the surface using interdigital transducers. The phenomena were investigated experimentally and to generate SAWs interdigital electrodes were deposited on wafers of 128 deg rotated Y-cut LiNbO?. Transporting capability of the SAW device was tested using particles of various sizes and drops of various viscosities liquids. Because of different interaction mechanisms with the SAWs, the powders and the liquid drops were observed to move in opposite directions. In the preliminary tests, a speed of 180 mm/s was achieved for powder transportation. The detailed experimental setup and results are presented in this paper. The transporting mechanism can potentially be applied to miniaturize sample analysis system or " lab-on-chip" devices.

  13. Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity

    NASA Astrophysics Data System (ADS)

    Small, Leo J.; Wheeler, David R.; Spoerke, Erik D.

    2015-10-01

    Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems. Electronic supplementary information (ESI) available: Experimental procedures, synthesis, and characterization of molecules 1, 2 and 3. Explanation of the electrochemical method for approximating nanopore diameter. Additional XPS spectra. See DOI: 10.1039/C5NR02939B

  14. A comparative evaluation of the increase in root canal surface area and canal transportation in curved root canals by three rotary systems: A cone-beam computed tomographic study

    PubMed Central

    Prasanthi, Nalam NVD; Rambabu, Tanikonda; Sajjan, Girija S; Varma, K Madhu; Satish, R Kalyan; Padmaja, M

    2016-01-01

    Aim: The aim of this study was to measure the increase in root canal surface area and canal transportation after biomechanical preparation at 1, 3, and 5 mm short of the apex with three different rotary systems in both continuous rotary and reciprocating rotary motions. Materials and Methods: Sixty freshly extracted human mandibular molars with mesial root canal curvatures between 20° and 30° were included in the study. Teeth were randomly distributed into three groups (n = 20). Biomechanical preparations were done in all the mesial canals. In Group 1, instrumentation was done with ProTaper universal rotary files, Group 2, with K3XF rotary files, and Group 3, with LSX rotary files. Each group was further subdivided into subgroups A and B (n = 10) where instrumentation was done by continuous rotary and reciprocating rotary techniques, respectively. Increase in root canal surface area and canal transportation was measured using the preoperative and postoperative cone-beam computed tomography scans. Statistical Analysis: The data were analyzed by one-way ANOVA followed by Tukey pairwise multiple comparison tests. Results: Increase in root canal surface area was significantly more (P < 0.05) in ProTaper and K3XF groups when compared to LSX group. Canal transportation was significantly more (P < 0.05) in ProTaper group when compared to K3XF and LSX groups. There was no significant difference (P > 0.05) in increase of root canal surface area and canal transportation between continuous rotary and reciprocating rotary techniques for ProTaper Universal, K3XF and LSX groups. Conclusion: LSX rotary system showed minimal increase of root canal surface area and minimal canal transportation when compared to ProTaper and K3XF rotary systems. PMID:27656062

  15. Compendium of field operational test executive summaries

    DOT National Transportation Integrated Search

    1998-01-01

    The Intelligent Transportation Systems Program is a comprehensive program aimed at applying advanced technologies to improve the safety and efficiency of our Nation's surface transportation system. The program is organized around four broad areas: me...

  16. Metropolitan area transportation planning for healthy communities

    DOT National Transportation Integrated Search

    1997-09-26

    Appendix D of the "Implementation of the National Intelligent Transportation Systems Program", a report forwarded to Congress according to Section 6054(c) of the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA).

  17. Nuclear power technology requirements for NASA exploration missions

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1990-01-01

    It is pointed out that future exploration of the moon and Mars will mandate developments in many areas of technology. In particular, major advances will be required in planet surface power systems. Critical nuclear technology challenges that can enable strategic self-sufficiency, acceptable operational costs, and cost-effective space transportation goals for NASA exploration missions have been identified. Critical technologies for surface power systems include stationary and mobile nuclear reactor and radioisotope heat sources coupled to static and dynamic power conversion devices. These technologies can provide dramatic reductions in mass, leading to operational and transportation cost savings. Critical technologies for space transportation systems include nuclear thermal rocket and nuclear electric propulsion options, which present compelling concepts for significantly reducing mass, cost, or travel time required for Earth-Mars transport.

  18. Transportation Planning and ITS: Putting the Pieces Together

    DOT National Transportation Integrated Search

    2013-11-01

    Both the Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Programs have similar overarching goals to improve surface transportation system efficiency and individual traveler mobility. However, each program ha...

  19. The 1990-1991 project summaries

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Project summaries for 1990-91 at the Georgia Institute of Technology are presented. The following research projects were studied: a lunar surface vehicle model; lunar loader/transporter; trenching and cable-laying device for the lunar surface; a lunar vehicle system for habitat transport and placement; and lunar storage facility.

  20. System and method for air temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  1. System and method for temperature control in an oxygen transport membrane based reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Sean M.

    A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  2. Benefits Estimation Model for Automated Vehicle Operations: Phase 2 Final Report

    DOT National Transportation Integrated Search

    2018-01-01

    Automated vehicles have the potential to bring about transformative safety, mobility, energy, and environmental benefits to the surface transportation system. They are also being introduced into a complex transportation system, where second-order imp...

  3. Congestion management system/IVHS program study Birmingham, Alabama : phase 1, report

    DOT National Transportation Integrated Search

    1995-04-01

    The Inter-modal Surface Transportation Efficiency Act of 1991 (ISTEA) required states and : metropolitan areas designated as transportation management areas develop congestion : management systems. The Birmingham Planning Area is designated as a non-...

  4. Congestion Management System/IVHS Program Study for Birmingham, Alabama. Phase 1 Report

    DOT National Transportation Integrated Search

    1995-04-01

    The Inter-modal Surface Transportation Efficiency Act of 1991 (ISTEA) required states and : metropolitan areas designated as transportation management areas develop congestion : management systems. The Birmingham Planning Area is designated as a non-...

  5. Intelligent transportation systems benefits : 2001 Update

    DOT National Transportation Integrated Search

    2001-06-01

    This report continues the series of reports that document evaluation results of ITS user services and the benefits these services provide to the surface transportation system. The organization of this report differs from that of the previous ITS Bene...

  6. Macroscopic Traffic Modeling with the Finite Difference Method

    DOT National Transportation Integrated Search

    1996-03-15

    The Intelligent Transportation System (ITS) Program was established to improve the efficiency and effectiveness of surface transportation in the United States. One aspect of this program is Advanced Traffic Management Systems (ATMS). As part of the A...

  7. 49 CFR 1152.14 - Availability of data.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 8 2011-10-01 2011-10-01 false Availability of data. 1152.14 Section 1152.14 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT... TRANSPORTATION UNDER 49 U.S.C. 10903 System Diagram § 1152.14 Availability of data. Each carrier shall provide to...

  8. Lunar base thermal management/power system analysis and design

    NASA Technical Reports Server (NTRS)

    Mcghee, Jerry R.

    1992-01-01

    A compilation of several lunar surface thermal management and power system studies completed under contract and IR&D is presented. The work includes analysis and preliminary design of all major components of an integrated thermal management system, including loads determination, active internal acquisition and transport equipment, external transport systems (active and passive), passive insulation, solar shielding, and a range of lunar surface radiator concepts. Several computer codes were utilized in support of this study, including RADSIM to calculate radiation exchange factors and view factors, RADIATOR (developed in-house) for heat rejection system sizing and performance analysis over a lunar day, SURPWER for power system sizing, and CRYSTORE for cryogenic system performance predictions. Although much of the work was performed in support of lunar rover studies, any or all of the results can be applied to a range of surface applications. Output data include thermal loads summaries, subsystem performance data, mass, and volume estimates (where applicable), integrated and worst-case lunar day radiator size/mass and effective sink temperatures for several concepts (shielded and unshielded), and external transport system performance estimates for both single and two-phase (heat pumped) transport loops. Several advanced radiator concepts are presented, along with brief assessments of possible system benefits and potential drawbacks. System point designs are presented for several cases, executed in support of the contract and IR&D studies, although the parametric nature of the analysis is stressed to illustrate applicability of the analysis procedure to a wide variety of lunar surface systems. The reference configuration(s) derived from the various studies will be presented along with supporting criteria. A preliminary design will also be presented for the reference basing scenario, including qualitative data regarding TPS concerns and issues.

  9. Lunar transportation system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.

  10. Lunar transportation system

    NASA Astrophysics Data System (ADS)

    1993-07-01

    The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.

  11. Multimodal transportation planning in Virginia : past practices and new opportunities.

    DOT National Transportation Integrated Search

    1994-09-01

    The Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) provided the : nation with a means of maintaining its existing infrastructure while laying the foundation for a : national intermodal transportation system. ISTEA was passed to ensu...

  12. Development of performance measurement for freight transportation : [tech summary].

    DOT National Transportation Integrated Search

    2014-09-01

    With increased emphasis on intermodal transportation development, the issue of how to evaluate an intermodal system has : been receiving intensive attention since the enactments of the Intermodal Surface Transportation E ciency Act (ISTEA) and the...

  13. Federal Highway Administration health in transportation working group : 2013 annual report

    DOT National Transportation Integrated Search

    2000-04-24

    Intelligent Transportation Systems (ITS) are the application of advanced computer, electronics, and communications technologies to increase the safety and efficiency of surface transportation. ITS depend on the ability to integrate many advanced tech...

  14. Advanced Air Transportation Technologies Project, Final Document Collection

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  15. The Ship Tethered Aerostat Remote Sensing System (STARRS): Observations of Small-Scale Surface Lateral Transport During the LAgrangian Submesoscale ExpeRiment (LASER)

    NASA Astrophysics Data System (ADS)

    Carlson, D. F.; Novelli, G.; Guigand, C.; Özgökmen, T.; Fox-Kemper, B.; Molemaker, M. J.

    2016-02-01

    The Consortium for Advanced Research on the Transport of Hydrocarbon in the Environment (CARTHE) will carry out the LAgrangian Submesoscale ExpeRiment (LASER) to study the role of small-scale processes in the transport and dispersion of oil and passive tracers. The Ship-Tethered Aerostat Remote Sensing System (STARRS) will observe small-scale surface dispersion in the open ocean. STARRS is built around a high-lift-capacity (30 kg) helium-filled aerostat. STARRS is equipped with a high resolution digital camera. An integrated GNSS receiver and inertial navigation system permit direct geo-rectification of the imagery. Consortium for Advanced Research on the Transport of Hydrocarbon in the Environment (CARTHE) will carry out the LAgrangian Submesoscale ExpeRiment (LASER) to study the role of small-scale processes in the transport and dispersion of oil and passive tracers. The Ship-Tethered Aerostat Remote Sensing System (STARRS) was developed to produce observational estimates of small-scale surface dispersion in the open ocean. STARRS is built around a high-lift-capacity (30 kg) helium-filled aerostat. STARRS is equipped with a high resolution digital camera. An integrated GNSS receiver and inertial navigation system permit direct geo-rectification of the imagery. Thousands of drift cards deployed in the field of view of STARRS and tracked over time provide the first observational estimates of small-scale (1-500 m) surface dispersion in the open ocean. The STARRS imagery will be combined with GPS-tracked surface drifter trajectories, shipboard observations, and aerial surveys of sea surface temperature in the DeSoto Canyon. In addition to obvious applications to oil spill modelling, the STARRS observations will provide essential benchmarks for high resolution numerical modelsDrift cards deployed in the field of view of STARRS and tracked over time provide the first observational estimates of small-scale (1-100 m) surface dispersion in the open ocean. The STARRS imagery will be combined with GPS-tracked surface drifter trajectories, shipboard observations, and aerial surveys of sea surface temperature in the DeSoto Canyon. In addition to obvious applications to oil spill modelling, the STARRS observations will provide essential benchmarks for high resolution numerical models

  16. IMPACT OF REDOX DISEQUILIBRIA ON CONTAMINANT TRANSPORT AND REMEDIATION IN SUBSURFACE SYSTEMS

    EPA Science Inventory

    Partitioning to mineral surfaces exerts significant control on inorganic contaminant transport in subsurface systems. Remedial technologies for in-situ treatment of subsurface contamination are frequently designed to optimize the efficiency of contaminant partitioning to solid s...

  17. Investigation of system operations performance measures for the Virginia Department of Transportation.

    DOT National Transportation Integrated Search

    2007-01-01

    The focus of the surface transportation community has been steadily shifting over the past decade, from one of capital construction and maintenance toward system operations. To support this new focus, new monitoring tools are necessary. The Virginia ...

  18. Response of the surface tropical Atlantic Ocean to wind forcing

    NASA Astrophysics Data System (ADS)

    Castellanos, Paola; Pelegrí, Josep L.; Campos, Edmo J. D.; Rosell-Fieschi, Miquel; Gasser, Marc

    2015-05-01

    We use 10 years of satellite data (sea level pressure, surface winds and absolute dynamic topography [ADT]) together with Argo-inferred monthly-mean values of near-surface velocity and water transport, to examine how the tropical system of near-surface zonal currents responds to wind forcing. The data is analyzed using complex Hilbert empirical orthogonal functions, confirming that most of the variance has annual periodicity, with maximum amplitudes in the region spanned by the seasonal displacement of the Inter-Tropical Convergence Zone (ITCZ). The ADT mirrors the shape of the upper isopycnals, hence becoming a good indicator of the amount of water stored in the upper ocean. Within about 3° from the Equator, where the Coriolis force is small, there is year-long meridional Ekman-transport divergence that would lead to the eastward transport of the Equatorial Undercurrent and its northern and southern branches. Beyond 3° of latitude, and at least as far as 20°, the convergence of the Ekman transport generally causes a poleward positive ADT gradient, which sustains the westward South Equatorial Current (SEC). The sole exception occurs in summer, between 8°N and 12°N, when an Ekman-transport divergence develops and depletes de amount of surface water, resulting in an ADT ridge-valley system which reverses the ADT gradient and drives the eastward North Equatorial Countercurrent (NECC) at latitudes 4-9°N; in late fall, divergence ceases and the NECC drains the ADT ridge, so the ADT gradient again becomes positive and the SEC reappears. The seasonal evolution of a tilted ITCZ controls the surface water fluxes: the wind-induced transports set the surface divergence-convergence, which then drive the ADT and, through the ADT gradients, create the geostrophic jets that close the water balance.

  19. Excitation of Surface Electromagnetic Waves on Railroad Rail

    DOT National Transportation Integrated Search

    1978-03-31

    UMTA's Office of Rail Technology research programs aim to improve urban rail transportation systems safety. This rail-transit research study attempts to develop an onboard, separate and independent obstacle-detection system--Surface Electromagnetic W...

  20. Freshwater molluscs as indicators of bioavailability and toxicity of metals in surface-water systems

    USGS Publications Warehouse

    Elder, John F.; Collins, Jerilyn J.; Ware, George W.

    1991-01-01

    During the past several decades, studies from a variety of locations have demonstrated widespread occurrence of metals in surface waters at concentrations significantly higher than background levels. Elevated concentrations are not limited to certain water types or polluted areas; they appear in all types of systems and in all geographic areas. It is clear that metals enter the aquatic systems from diverse sources, both point and nonpoint, and they can be readily transported from one system to another. Transport routes include atmospheric, terrestrial, subterranean, aquatic, and biological pathways (Elder 1988; Salomons and Forstner 1984).

  1. Surface quantum oscillations and weak antilocalization effect in topological insulator (Bi0.3Sb0.7)2Te3

    NASA Astrophysics Data System (ADS)

    Urkude, Rajashri; Rawat, Rajeev; Palikundwar, Umesh

    2018-04-01

    In 3D topological insulators, achieving a genuine bulk-insulating state is an important topic of research. The material system (Bi,Sb)2(Te,Se)3 has been proposed as a topological insulator with high resistivity and low carrier concentration. Topological insulators are predicted to present interesting surface transport phenomena but their experimental studies have been hindered by metallic bulk conduction that overwhelms the surface transport. Here we present a study of the bulk-insulating properties of (Bi0.3Sb0.7)2Te3. We show that a high resistivity exceeding 1 Ωm as a result of variable-range hopping behavior of state and Shubnikov-de Haas oscillations as coming from the topological surface state. We have been able to clarify both the bulk and surface transport channels, establishing a comprehensive understanding of the transport properties in this material. Our results demonstrate that (Bi0.3Sb0.7)2Te3 is a good material for studying the surface quantum transport in a topological insulator.

  2. Changing Direction: Federal Transportation Spending in the 1990's

    DOT National Transportation Integrated Search

    2000-03-01

    In this report, the Surface Transportation Policy Project analyzes ten years of data from the U.S. Department of Transportation's Fiscal Management Information System as well as reports from the Federal Transit Administration that track how the state...

  3. Abilene Metropolitan Area Transportation Improvement Program Fiscal Years 1996-1998

    DOT National Transportation Integrated Search

    1995-11-30

    This document contains a prioritized list of surface transportation improvement : projects which are expected to begin in the next three years. These projects are : planned to develop, improve, and maintain an integrated transportation system : for t...

  4. 20-Gbps optical LiFi transport system.

    PubMed

    Ying, Cheng-Ling; Lu, Hai-Han; Li, Chung-Yi; Cheng, Chun-Jen; Peng, Peng-Chun; Ho, Wen-Jeng

    2015-07-15

    A 20-Gbps optical light-based WiFi (LiFi) transport system employing vertical-cavity surface-emitting laser (VCSEL) and external light injection technique with 16-quadrature amplitude modulation (QAM)-orthogonal frequency-division multiplexing (OFDM) modulating signal is proposed. Good bit error rate (BER) performance and clear constellation map are achieved in our proposed optical LiFi transport systems. An optical LiFi transport system, delivering 16-QAM-OFDM signal over a 6-m free-space link, with a data rate of 20 Gbps, is successfully demonstrated. Such a 20-Gbps optical LiFi transport system provides the advantage of a free-space communication link for high data rates, which can accelerate the visible laser light communication (VLLC) deployment.

  5. Development of micro-four-point probe in a scanning tunneling microscope for in situ electrical transport measurement.

    PubMed

    Ge, Jian-Feng; Liu, Zhi-Long; Gao, Chun-Lei; Qian, Dong; Liu, Canhua; Jia, Jin-Feng

    2015-05-01

    Electrons at surface may behave differently from those in bulk of a material. Multi-functional tools are essential in comprehensive studies on a crystal surface. Here, we developed an in situ microscopic four-point probe (4PP) transport measurement system on the basis of a scanning tunneling microscope (STM). In particular, convenient replacement between STM tips and micro-4PPs enables systematic investigations of surface morphology, electronic structure, and electrical transport property of a same sample surface. Performances of the instrument are demonstrated with high-quality STM images, tunneling spectra, and low-noise electrical I-V characteristic curves of a single-layer FeSe film grown on a conductive SrTiO3 surface.

  6. Radiation analysis for manned missions to the Jupiter system

    NASA Technical Reports Server (NTRS)

    De Angelis, G.; Clowdsley, M. S.; Nealy, J. E.; Tripathi, R. K.; Wilson, J. W.

    2004-01-01

    An analysis for manned missions targeted to the Jovian system has been performed in the framework of the NASA RASC (Revolutionary Aerospace Systems Concepts) program on Human Exploration beyond Mars. The missions were targeted to the Jupiter satellite Callisto. The mission analysis has been divided into three main phases, namely the interplanetary cruise, the Jupiter orbital insertion, and the surface landing and exploration phases. The interplanetary phase is based on departure from the Earth-Moon L1 point. Interplanetary trajectories based on the use of different propulsion systems have been considered, with resulting overall cruise phase duration varying between two and five years. The Jupiter-approach and the orbital insertion trajectories are considered in detail, with the spacecraft crossing the Jupiter radiation belts and staying around the landing target. In the surface exploration phase the stay on the Callisto surface is considered. The satellite surface composition has been modeled based on the most recent results from the GALILEO spacecraft. In the transport computations the surface backscattering has been duly taken into account. Particle transport has been performed with the HZETRN heavy ion code for hadrons and with an in-house developed transport code for electrons and bremsstrahlung photons. The obtained doses have been compared to dose exposure limits. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  7. Radiation analysis for manned missions to the Jupiter system.

    PubMed

    De Angelis, G; Clowdsley, M S; Nealy, J E; Tripathi, R K; Wilson, J W

    2004-01-01

    An analysis for manned missions targeted to the Jovian system has been performed in the framework of the NASA RASC (Revolutionary Aerospace Systems Concepts) program on Human Exploration beyond Mars. The missions were targeted to the Jupiter satellite Callisto. The mission analysis has been divided into three main phases, namely the interplanetary cruise, the Jupiter orbital insertion, and the surface landing and exploration phases. The interplanetary phase is based on departure from the Earth-Moon L1 point. Interplanetary trajectories based on the use of different propulsion systems have been considered, with resulting overall cruise phase duration varying between two and five years. The Jupiter-approach and the orbital insertion trajectories are considered in detail, with the spacecraft crossing the Jupiter radiation belts and staying around the landing target. In the surface exploration phase the stay on the Callisto surface is considered. The satellite surface composition has been modeled based on the most recent results from the GALILEO spacecraft. In the transport computations the surface backscattering has been duly taken into account. Particle transport has been performed with the HZETRN heavy ion code for hadrons and with an in-house developed transport code for electrons and bremsstrahlung photons. The obtained doses have been compared to dose exposure limits. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  8. 2006 evaluation of the Las Vegas Metropolitan Area Express (MAX) bus rapid transit project : December 1, 2006

    DOT National Transportation Integrated Search

    2006-12-01

    The surface transportation system plays a crucial role in responding to natural disasters, terrorist acts, and other catastrophic events. The Disaster Response and Evacuation (DRE) User Service uses intelligent transportation systems (ITS) to enhance...

  9. Los Angeles congestion reduction demonstration (Metro ExpressLanes) program. National evaluation : ridesharing data test plan.

    DOT National Transportation Integrated Search

    1997-10-01

    The ITS infrastructure allows the surface transportation system to be managed as a seamless, intermodal, multi-jurisdictional entity, and appears to the public as a seamless system. It does so by integrating transportation and management information ...

  10. Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings.

    PubMed

    Liu, Chengcheng; Ju, Jie; Zheng, Yongmei; Jiang, Lei

    2014-02-25

    Inspired by novel creatures, researchers have developed varieties of fog drop transport systems and made significant contributions to the fields of heat transferring, water collecting, antifogging, and so on. Up to now, most of the efforts in directional fog drop transport have been focused on static surfaces. Considering it is not practical to keep surfaces still all the time in reality, conducting investigations on surfaces that can transport fog drops in both static and dynamic states has become more and more important. Here we report the wings of Morpho deidamia butterflies can directionally transport fog drops in both static and dynamic states. This directional drop transport ability results from the micro/nano ratchet-like structure of butterfly wings: the surface of butterfly wings is composed of overlapped scales, and the scales are covered with porous asymmetric ridges. Influenced by this special structure, fog drops on static wings are transported directionally as a result of the fog drops' asymmetric growth and coalescence. Fog drops on vibrating wings are propelled directionally due to the fog drops' asymmetric dewetting from the wings.

  11. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards

    PubMed Central

    Comanns, Philipp; Effertz, Christian; Hischen, Florian; Staudt, Konrad; Böhme, Wolfgang

    2011-01-01

    Summary Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus), the Arabian toadhead agama (Phrynocephalus arabicus) and the Texas horned lizard (Phrynosoma cornutum). All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive – and for Phrynosoma directed – transport of water. PMID:21977432

  12. Surface charge- and space-dependent transport of proteins in crowded environments of nanotailored posts.

    PubMed

    Choi, Chang Kyoung; Fowlkes, Jason D; Retterer, Scott T; Siuti, Piro; Iyer, Sukanya; Doktycz, Mitchel J

    2010-06-22

    The reaction and diffusion of molecules across barriers and through crowded environments is integral to biological system function and to separation technologies. Ordered, microfabricated post arrays are a promising route to creating synthetic barriers with controlled chemical and physical characteristics. They can be used to create crowded environments, to mimic aspects of cellular membranes, and to serve as engineered replacements of polymer-based separation media. Here, the translational diffusion of fluorescein isothiocyante and various forms of green fluorescent protein (GFP), including "supercharged" variants, are examined in a silicon-based post array environment. The technique of fluorescence recovery after photobleaching (FRAP) is combined with analytical approximations and numerical simulations to assess the relative effects of reaction and diffusion on molecular transport, respectively. FRAP experiments were conducted for 64 different cases where the molecular species, the density of the posts, and the chemical surface charge of the posts were varied. In all cases, the dense packing of the posts hindered the diffusive transport of the fluorescent species. The supercharged GFPs strongly interacted with oppositely charged surfaces. With similar molecular and surface charges, transport is primarily limited by hindered diffusion. For conventional, enhanced GFP in a positively charged surface environment, transport was limited by the coupled action of hindered diffusion and surface interaction with the posts. Quantification of the size-, space-, time-, and charge-dependent translational diffusion in the post array environments can provide insight into natural processes and guide the design and development of selective membrane systems.

  13. Future surface transportation financing option : challenges and opportunities for rural states.

    DOT National Transportation Integrated Search

    2009-05-01

    The funding of Americas transportation system is a complex process that includes a number : of stakeholders, both private and public. The federal gas tax has been a major contributor to : the funding of transportation projects even those planne...

  14. 78 FR 41191 - Senior Executive Service Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board Senior Executive Service Performance... Transportation Board (STB) publishes the names of the Persons selected to serve on its Senior Executive Service... performance appraisal system making senior executives accountable for organizational and individual goal...

  15. Modulation of the cationic amino acid transport system y+L by surface potential, ouabain and thrombin in human platelets: effects of uremia.

    PubMed

    Alves de Sá Siqueira, Mariana; Martins, Marcela Anjos; Rodrigues Pereira, Natália; Bandeira Moss, Monique; Santos, Sérgio F F; Mann, Giovanni E; Mendes-Ribeiro, Antônio C; Brunini, Tatiana M C

    2007-01-01

    Nitric oxide (NO), a key endogenous mediator involved in the maintenance of platelet function, is synthesized from the amino acid L-arginine. We have shown that L-arginine transport in platelets is rate-limiting for NO synthesis. A disturbance in the L-arginine-NO pathway in platelets was previously described in chronic renal failure (CRF) patients. Detailed kinetic studies were performed in platelets from controls (n = 60) and hemodialysis patients (n = 26). The transport of L-arginine in platelets is mediated via system y+L, which is competitively inhibited by L-leucine in the presence of Na+ and by the irreversible inhibitor pCMB. In platelets, system y+L is markedly stimulated by an Na+/K+-ATPase inhibitor, ouabain, and by changes in surface potential, while it is downregulated by intraplatelet amino acid depletion (zero-trans) and by thrombin. In CRF patients, activation of L-arginine transport was limited to well-nourished patients compared to malnourished patients and controls, where it was reduced and did not differ significantly among the groups under zero-trans conditions. Our results provide the first evidence that system y+L in platelets is modulated by zero-trans conditions, surface potential, thrombin and intraplatelet Na+ concentration. Our findings suggest that enhanced transport in CRF involves increased L-arginine exchange with intraplatelet neutral amino acids.

  16. Subsurface flow pathway dynamics in the active layer of coupled permafrost-hydrogeological systems under seasonal and annual temperature variability.

    NASA Astrophysics Data System (ADS)

    Frampton, Andrew

    2017-04-01

    There is a need for improved understanding of the mechanisms controlling subsurface solute transport in the active layer in order to better understand permafrost-hydrological-carbon feedbacks, in particular with regards to how dissolved carbon is transported in coupled surface and subsurface terrestrial arctic water systems under climate change. Studying solute transport in arctic systems is also relevant in the context of anthropogenic pollution which may increase due to increased activity in cold region environments. In this contribution subsurface solute transport subject to ground surface warming causing permafrost thaw and active layer change is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The timing of the start of increase in travel time depends on heterogeneity structure, combined with the rate of permafrost degradation that also depends on material thermal and hydrogeological properties. These travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport velocities due to a shift from horizontal saturated groundwater flow near the surface to vertical water percolation deeper into the subsurface, and pathway length increase and temporary immobilization caused by cryosuction-induced seasonal freeze cycles. The impact these change mechanisms have on solute and dissolved substance transport is further analysed by integrating pathway analysis with a Lagrangian approach, incorporating considerations for both dissolved organic and inorganic carbon releases. Further model development challenges are also highlighted and discussed, including coupling between subsurface and surface runoff, soil deformations, as well as site applications and larger system scales.

  17. Functional relationship between cationic amino acid transporters and beta-defensins: implications for dry skin diseases and the dry eye.

    PubMed

    Jäger, Kristin; Garreis, Fabian; Posa, Andreas; Dunse, Matthias; Paulsen, Friedrich P

    2010-04-20

    The ocular surface, constantly exposed to environmental pathogens, is particularly vulnerable to infection. Hence an advanced immune defence system is essential to protect the eye from microbial attack. Antimicrobial peptides, such as beta-defensins, are essential components of the innate immune system and are the first line of defence against invaders of the eye. High concentrations of L-arginine and L-lysine are necessary for the expression of beta-defensins. These are supplied by epithelial cells in inflammatory processes. The limiting factor for initiation of beta-defensin production is the transport of L-arginine and L-lysine into the cell. This transport is performed to 80% by only one transporter system in the human, the y(+)-transporter. This group of proteins exclusively transports the cationic amino acids L-arginine, L-lysine and L-ornithine and is also known under the term cationic amino acid transporter proteins (CAT-proteins). Various infections associated with L-arginine deficiency (for example psoriasis, keratoconjuctivitis sicca) are also associated with an increase in beta-defensin production. For the first time, preliminary work has shown the expression of human CATs in ocular surface epithelia and tissues of the lacrimal apparatus indicating their relevance for diseases of the ocular surface. In this review, we summarize current knowledge on the human CATs that appear to be integrated in causal regulation cascades of beta-defensins, thereby offering novel concepts for therapeutic perspectives. Copyright 2010 Elsevier GmbH. All rights reserved.

  18. CAPTool user guide

    DOT National Transportation Integrated Search

    1997-09-26

    Appendix E of the "Implementation of the National Intelligent Transportation Systems Program", a report forwarded to Congress according to Section 6054(c) of the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA).

  19. Nose-to-Brain Delivery: Investigation of the Transport of Nanoparticles with Different Surface Characteristics and Sizes in Excised Porcine Olfactory Epithelium.

    PubMed

    Mistry, Alpesh; Stolnik, Snjezana; Illum, Lisbeth

    2015-08-03

    The ability to deliver therapeutically relevant amounts of drugs directly from the nasal cavity to the central nervous system to treat neurological diseases is dependent on the availability of efficient drug delivery systems. Increased delivery and/or therapeutic effect has been shown for drugs encapsulated in nanoparticles; however, the factors governing the transport of the drugs and/or the nanoparticles from the nasal cavity to the brain are not clear. The present study evaluates the potential transport of nanoparticles across the olfactory epithelium in relation to nanoparticle characteristics. Model systems, 20, 100, and 200 nm fluorescent carboxylated polystyrene (PS) nanoparticles that were nonmodified or surface modified with polysorbate 80 (P80-PS) or chitosan (C-PS), were assessed for transport across excised porcine olfactory epithelium mounted in a vertical Franz diffusion cell. Assessment of the nanoparticle content in the donor chamber of the diffusion cell, accompanied by fluorescence microscopy of dismounted tissues, revealed a loss of nanoparticle content from the donor suspension and their association with the excised tissue, depending on the surface properties and particle size. Chitosan surface modification of PS nanoparticles resulted in the highest tissue association among the tested systems, with the associated nanoparticles primarily located in the mucus, whereas the polysorbate 80-modified nanoparticles showed some penetration into the epithelial cell layer. Assessment of the bioelectrical properties, metabolic activity, and histology of the excised olfactory epithelium showed that C-PS nanoparticles applied in pH 6.0 buffer produced a damaging effect on the epithelial cell layer in a size-dependent manner, with fine 20 nm sized nanoparticles causing substantial tissue damage relative to that with the 100 and 200 nm counterparts. Although histology showed that the olfactory tissue was affected by the application of citrate buffer that was augmented by addition of chitosan in solution, this was not reflected in the bioelectrical parameters and the metabolic activity of the tissue. Regarding transport across the excised olfactory tissue, none of the nanoparticle systems tested, irrespective of particle size or surface modification, was transported across the epithelium to appear in measurable amounts in the receiver chamber.

  20. System safety engineering in the development of advanced surface transportation vehicles

    NASA Technical Reports Server (NTRS)

    Arnzen, H. E.

    1971-01-01

    Applications of system safety engineering to the development of advanced surface transportation vehicles are described. As a pertinent example, the paper describes a safety engineering efforts tailored to the particular design and test requirements of the Tracked Air Cushion Research Vehicle (TACRV). The test results obtained from this unique research vehicle provide significant design data directly applicable to the development of future tracked air cushion vehicles that will carry passengers in comfort and safety at speeds up to 300 miles per hour.

  1. Tracking the deployment of the integrated metropolitan intelligent transportation systems infrastructure in The USA : FY99 results

    DOT National Transportation Integrated Search

    1998-09-16

    One of the new requirements of the Intermodal Surface Transportation Efficiency Act of 1991 is the requirement that State Departments of Transportation, Metropolitan Planning Organizations, and transit operators conduct a major investment study (MIS)...

  2. Future Surface Transportation Financing Options: Challenges and Opportunities for Rural States

    DOT National Transportation Integrated Search

    2009-05-01

    The funding of America's transportation system is a complex process that includes a number of stakeholders, both private and public. The federal gas tax has been a major contributor to the funding of transportation projects- even those planned, desig...

  3. Idea Project Final Report, An Improved Metropolitan Area Transportation System (Imats)

    DOT National Transportation Integrated Search

    1995-01-20

    THIS INVESTIGATION WAS COMPLETED AS PART OF THE ITS-IDEA PROGRAM, WHICH IS ONE OF THREE IDEA PROGRAMS MANAGED BY THE TRANSPORTATION RESEARCH BOARD (TRB) TO FOSTER INNOVATIONS IN SURFACE TRANSPORTATION. IT FOCUSES ON PRODUCTS AND RESULTS FOR THE DEVEL...

  4. Recent Approaches to Modeling Transport of Mercury in Surface Water and Groundwater - Case Study in Upper East Fork Poplar Creek, Oak Ridge, TN - 13349

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostick, Kent; Daniel, Anamary; Tachiev, Georgio

    2013-07-01

    In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The modelmore » also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude below a target industrial groundwater concentration beneath the source and would not influence concentrations in surface water at Station 17. This analysis addressed only shallow concentrations in soil and the shallow groundwater flow path in soil and unconsolidated sediments to UEFPC. Other mercury sources may occur in bedrock and transport though bedrock to UEFPC may contribute to the mercury flux at Station 17. Generally mercury in the source areas adjacent to the stream and in sediment that is eroding can contribute to the flux of mercury in surface water. Because colloidally adsorbed mercury can be transported in surface water, actions that trap colloids and or hydrologically isolate surface water runoff from source areas would reduce the flux of mercury in surface water. Mercury in soil is highly adsorbed and transport in the groundwater system is very limited under porous media conditions. (authors)« less

  5. 23 CFR 450.216 - Development and content of the statewide transportation improvement program (STIP).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... TRANSPORTATION PLANNING AND RESEARCH PLANNING ASSISTANCE AND STANDARDS Statewide Transportation Planning and... research projects funded under 23 U.S.C. 505 and 49 U.S.C. 5305(e); (4) At the State's discretion, State planning and research projects funded with National Highway System, Surface Transportation Program, and/or...

  6. 23 CFR 450.216 - Development and content of the statewide transportation improvement program (STIP).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... TRANSPORTATION PLANNING AND RESEARCH PLANNING ASSISTANCE AND STANDARDS Statewide Transportation Planning and... research projects funded under 23 U.S.C. 505 and 49 U.S.C. 5305(e); (4) At the State's discretion, State planning and research projects funded with National Highway System, Surface Transportation Program, and/or...

  7. 23 CFR 450.216 - Development and content of the statewide transportation improvement program (STIP).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TRANSPORTATION PLANNING AND RESEARCH PLANNING ASSISTANCE AND STANDARDS Statewide Transportation Planning and... research projects funded under 23 U.S.C. 505 and 49 U.S.C. 5305(e); (4) At the State's discretion, State planning and research projects funded with National Highway System, Surface Transportation Program, and/or...

  8. 23 CFR 450.216 - Development and content of the statewide transportation improvement program (STIP).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... TRANSPORTATION PLANNING AND RESEARCH PLANNING ASSISTANCE AND STANDARDS Statewide Transportation Planning and... research projects funded under 23 U.S.C. 505 and 49 U.S.C. 5305(e); (4) At the State's discretion, State planning and research projects funded with National Highway System, Surface Transportation Program, and/or...

  9. 23 CFR 450.216 - Development and content of the statewide transportation improvement program (STIP).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... TRANSPORTATION PLANNING AND RESEARCH PLANNING ASSISTANCE AND STANDARDS Statewide Transportation Planning and... research projects funded under 23 U.S.C. 505 and 49 U.S.C. 5305(e); (4) At the State's discretion, State planning and research projects funded with National Highway System, Surface Transportation Program, and/or...

  10. 42 CFR 9.11 - Animal transport.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Animal transport. 9.11 Section 9.11 Public Health... CHIMPANZEES HELD IN THE FEDERALLY SUPPORTED SANCTUARY SYSTEM § 9.11 Animal transport. The transportation of chimpanzees by surface or air must be in accordance with the requirements set forth in the Animal Welfare Act...

  11. 42 CFR 9.11 - Animal transport.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Animal transport. 9.11 Section 9.11 Public Health... CHIMPANZEES HELD IN THE FEDERALLY SUPPORTED SANCTUARY SYSTEM § 9.11 Animal transport. The transportation of chimpanzees by surface or air must be in accordance with the requirements set forth in the Animal Welfare Act...

  12. 42 CFR 9.11 - Animal transport.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Animal transport. 9.11 Section 9.11 Public Health... CHIMPANZEES HELD IN THE FEDERALLY SUPPORTED SANCTUARY SYSTEM § 9.11 Animal transport. The transportation of chimpanzees by surface or air must be in accordance with the requirements set forth in the Animal Welfare Act...

  13. 42 CFR 9.11 - Animal transport.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Animal transport. 9.11 Section 9.11 Public Health... CHIMPANZEES HELD IN THE FEDERALLY SUPPORTED SANCTUARY SYSTEM § 9.11 Animal transport. The transportation of chimpanzees by surface or air must be in accordance with the requirements set forth in the Animal Welfare Act...

  14. 42 CFR 9.11 - Animal transport.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Animal transport. 9.11 Section 9.11 Public Health... CHIMPANZEES HELD IN THE FEDERALLY SUPPORTED SANCTUARY SYSTEM § 9.11 Animal transport. The transportation of chimpanzees by surface or air must be in accordance with the requirements set forth in the Animal Welfare Act...

  15. Macropore system characteristics controls on non-reactive solute transport at different flow rates

    NASA Astrophysics Data System (ADS)

    Larsbo, Mats; Koestel, John

    2014-05-01

    Preferential flow and transport in macroporous soils are important pathways for the leaching of agrochemicals through soils. Preferential solute transport in soil is to a large extent determined by the macropore system characteristics and the water flow conditions. The importance of different characteristics of the macropore system is likely to vary with the flow conditions. The objective of this study was to determine which properties of the macropore system that control the shape of non-reactive tracer solute breakthrough curves at different steady-state flow rates. We sampled five undisturbed columns (20 cm high, 20 cm diameter) from the soil surface of four soils with clay contents between 21 and 50 %. Solute transport experiments were carried out under unsaturated conditions at 2, 4, 6, 8 and 12 mm h-1 flow rates. For each flow rate a pulse of potassium bromide solution was applied at the soil surface and the electrical conductivity was measured with high temporal resolution in the column effluent. We used the 5 % arrival time and the holdback factor to estimate the degree of preferential transport from the resulting breakthrough curves. Unsaturated hydraulic conductivities were measured at the soil surface of the columns using a tension disc infiltrometer. The macropore system was imaged by industrial X-ray computed tomography at a resolution of 125 μm in all directions. Measures of the macropore system characteristics including measures of pore continuity were calculated from these images using the ImageJ software. Results show that the degree of preferential transport is generally increasing with flow rate when larger pores become active in the transport. The degree of preferential flow was correlated to measures of macropore topology. This study show that conclusions drawn from experiments carried out at one flow rate should generally not be extrapolated to other flow rates.

  16. Evaluation of laminar flow control systems for subsonic commercial transport aircraft: Executive summary

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1982-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings.

  17. Determination of broken KAM surfaces for particle orbits in toroidal confinement systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R. B.

    2015-10-05

    Here, the destruction of Kolmogorov–Arnold–Moser surfaces in a Hamiltonian system is an important topic in nonlinear dynamics, and in particular in the theory of particle orbits in toroidal magnetic confinement systems. Analytic models for transport due to mode-particle resonances are not sufficiently correct to give the effect of these resonances on transport. In this paper we compare three different methods for the detection of the loss of stability of orbits in the dynamics of charged particles in a toroidal magnetic confinement device in the presence of time dependent magnetic perturbations.

  18. Airport Surface Traffic Control Visual Ground Aids Engineering and Development Plan

    DOT National Transportation Integrated Search

    1977-01-01

    The plan described in this document supports the overall program at the Transportation Systems Center to define, design, develop, and evaluate systems that meet the requirements of airport surface traffic control. This plan is part of documentation s...

  19. Intelligent transportation systems at international borders : a cross-cutting study : facilitating trade and enhancing transportation safety

    DOT National Transportation Integrated Search

    2001-04-01

    The International Border Clearance (IBC) program was initiated under the provisions of the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991. The program was originally conceived as a means to test the feasibility of utilizing Intellig...

  20. Optimizing Mars Sphere of Influence Maneuvers for NASA's Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Merrill, Raymond G.; Komar, D. R.; Chai, Patrick; Qu, Min

    2016-01-01

    NASA's Human Spaceflight Architecture Team is refining human exploration architectures that will extend human presence to the Martian surface. For both Mars orbital and surface missions, NASA's Evolvable Mars Campaign assumes that cargo and crew can be delivered repeatedly to the same destination. Up to this point, interplanetary trajectories have been optimized to minimize the total propulsive requirements of the in-space transportation systems, while the pre-deployed assets and surface systems are optimized to minimize their respective propulsive requirements separate from the in-space transportation system. There is a need to investigate the coupled problem of optimizing the interplanetary trajectory and optimizing the maneuvers within Mars's sphere of influence. This paper provides a description of the ongoing method development, analysis and initial results of the effort to resolve the discontinuity between the interplanetary trajectory and the Mars sphere of influence trajectories. Assessment of Phobos and Deimos orbital missions shows the in-space transportation and crew taxi allocations are adequate for missions in the 2030s. Because the surface site has yet to be selected, the transportation elements must be sized to provide enough capability to provide surface access to all landing sites under consideration. Analysis shows access to sites from elliptical parking orbits with a lander that is designed for sub-periapsis landing location is either infeasible or requires expensive orbital maneuvers for many latitude ranges. In this case the locus of potential arrival perigee vectors identifies the potential maximum north or south latitudes accessible. Higher arrival velocities can decrease reorientation costs and increase landing site availability. Utilizing hyperbolic arrival and departure vectors in the optimization scheme will increase transportation site accessibility and provide more optimal solutions.

  1. Tomorrows' Air Transportation System Breakout Series Report

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The purpose of this presentation is to discuss tomorrow's air transportation system. Section of this presentation includes: chair comments; other general comments; surface congestion alleviation; runway productivity; enhanced arrival/departure tools; integrated airspace decision support tools; national traffic flow management, runway independent operations; ATM TFM weather; and terminal weather.

  2. An evaluation of likely environmental benefits of a time-dependent green routing system in the greater Buffalo-Niagara Region : final report.

    DOT National Transportation Integrated Search

    2012-03-01

    Currently, strategies are being examined with regard to their potential for mitigating the negative impacts of the surface transportation sector on the environment. The focus of this study is to evaluate an ITS (intelligent transportation systems)-ba...

  3. MODELING MERCURY DYNAMICS IN STREAM SYSTEMS WITH WASP7: CHARACTERIZING PROCESSES CONTROLLING SHORT AND LONG TERM RESPONSE

    EPA Science Inventory

    Mercury transport through stream ecosystems is driven by a complicated set of transport and transformation reactions operating on a variety of scales in the atmosphere, landscape, surface water, and biota. Riverine systems typically have short residence times and can experience l...

  4. Modeling surface-water flow and sediment mobility with the Multi-Dimensional Surface-Water Modeling System (MD_SWMS)

    USGS Publications Warehouse

    McDonald, Richard; Nelson, Jonathan; Kinzel, Paul; Conaway, Jeffrey S.

    2006-01-01

    The Multi-Dimensional Surface-Water Modeling System (MD_SWMS) is a Graphical User Interface for surface-water flow and sediment-transport models. The capabilities of MD_SWMS for developing models include: importing raw topography and other ancillary data; building the numerical grid and defining initial and boundary conditions; running simulations; visualizing results; and comparing results with measured data.

  5. Charge and spin transport in edge channels of a ν=0 quantum Hall system on the surface of topological insulators.

    PubMed

    Morimoto, Takahiro; Furusaki, Akira; Nagaosa, Naoto

    2015-04-10

    Three-dimensional topological insulators of finite thickness can show the quantum Hall effect (QHE) at the filling factor ν=0 under an external magnetic field if there is a finite potential difference between the top and bottom surfaces. We calculate energy spectra of surface Weyl fermions in the ν=0 QHE and find that gapped edge states with helical spin structure are formed from Weyl fermions on the side surfaces under certain conditions. These edge channels account for the nonlocal charge transport in the ν=0 QHE which is observed in a recent experiment on (Bi_{1-x}Sb_{x})_{2}Te_{3} films. The edge channels also support spin transport due to the spin-momentum locking. We propose an experimental setup to observe various spintronics functions such as spin transport and spin conversion.

  6. Lane Blockage Effects on Freeway Traffic Flow

    DOT National Transportation Integrated Search

    1996-09-01

    Intelligent Transportation Systems (ITS) apply advanced and emerging technologies in such fields as information processing, communications, control, and electronics to surface transportation needs. ITS encompasses a number of diverse program areas in...

  7. A Modular, Reusable Latch and Decking System for Securing Payloads During Launch and Planetary Surface Transport

    NASA Technical Reports Server (NTRS)

    Doggett, William R.; Dorsey, John T.; Jones, Thomas C.; King, Bruce D.; Mikulas, Martin M.

    2011-01-01

    Efficient handling of payloads destined for a planetary surface, such as the moon or mars, requires robust systems to secure the payloads during transport on the ground, in space and on the planetary surface. In addition, mechanisms to release the payloads need to be reliable to ensure successful transfer from one vehicle to another. An efficient payload handling strategy must also consider the devices available to support payload handling. Cranes used for overhead lifting are common to all phases of payload handling on Earth. Similarly, both recent and past studies have demonstrated that devices with comparable functionality will be needed to support lunar outpost operations. A first generation test-bed of a new high performance device that provides the capabilities of both a crane and a robotic manipulator, the Lunar Surface Manipulation System (LSMS), has been designed, built and field tested and is available for use in evaluating a system to secure payloads to transportation vehicles. A payload handling approach must address all phases of payload management including: ground transportation, launch, planetary transfer and installation in the final system. In addition, storage may be required during any phase of operations. Each of these phases requires the payload to be lifted and secured to a vehicle, transported, released and lifted in preparation for the next transportation or storage phase. A critical component of a successful payload handling approach is a latch and associated carrier system. The latch and carrier system should minimize requirements on the: payload, carrier support structure and payload handling devices as well as be able to accommodate a wide range of payload sizes. In addition, the latch should; be small and lightweight, support a method to apply preload, be reusable, integrate into a minimal set of hard-points and have manual interfaces to actuate the latch should a problem occur. A latching system which meets these requirements has been designed and fabricated and will be described in detail. This latching system works in conjunction with a payload handling device such as the LSMS, and the LSMS has been used to test first generation latch and carrier hardware. All tests have been successful during the first phase of operational evaluations. Plans for future tests of first generation latch and carrier hardware with the LSMS are also described.

  8. A Modular, Reusable Latch and Decking System for Securing Payloads During Launch and Planetary Surface Transport

    NASA Technical Reports Server (NTRS)

    Doggett, William R.; Dorsey, John T.; Jones, Thomas C.; King, Bruce D.; Mikulas, Martin M.

    2010-01-01

    Efficient handling of payloads destined for a planetary surface, such as the moon or Mars, requires robust systems to secure the payloads during transport on the ground, in-space and on the planetary surface. In addition, mechanisms to release the payloads need to be reliable to ensure successful transfer from one vehicle to another. An efficient payload handling strategy must also consider the devices available to support payload handling. Cranes used for overhead lifting are common to all phases of payload handling on Earth. Similarly, both recent and past studies have demonstrated that devices with comparable functionality will be needed to support lunar outpost operations. A first generation test-bed of a new high performance device that provides the capabilities of both a crane and a robotic manipulator, the Lunar Surface Manipulation System (LSMS), has been designed, built and field tested and is available for use in evaluating a system to secure payloads to transportation vehicles. National Institute of Aerospace, Hampton Va 23662 A payload handling approach must address all phases of payload management including: ground transportation, launch, planetary transfer and installation in the final system. In addition, storage may be required during any phase of operations. Each of these phases requires the payload to be lifted and secured to a vehicle, transported, released and lifted in preparation for the next transportation or storage phase. A critical component of a successful payload handling approach is a latch and associated carrier system. The latch and carrier system should minimize requirements on the: payload, carrier support structure and payload handling devices as well as be able to accommodate a wide range of payload sizes. In addition, the latch should; be small and lightweight, support a method to apply preload, be reusable, integrate into a minimal set of hard-points and have manual interfaces to actuate the latch should a problem occur. A latching system which meets these requirements has been designed and fabricated and will be described in detail. This latching system works in conjunction with a payload handling device such as the LSMS, and the LSMS has been used to test first generation latch and carrier hardware. All tests have been successful during the first phase of operational evaluations. Plans for future tests of first generation latch and carrier hardware with the LSMS are also described.

  9. Non-rocket Earth-Moon transport system

    NASA Astrophysics Data System (ADS)

    Bolonkin, Alexander

    2003-06-01

    This paper proposes a new transportation system for travel between Earth and Moon. This transportation system uses mechanical energy transfer and requires only minimal energy, using an engine located on Earth. A cable directly connects a pole of the Earth through a drive station to the lunar surface_ The equation for an optimal equal stress cable for complex gravitational field of Earth-Moon has been derived that allows significantly lower cable masses. The required strength could be provided by cables constructed of carbon nanotubes or carbon whiskers. Some of the constraints on such a system are discussed.

  10. Transport-induced shifts in condensate dew-point and composition in multicomponent systems with chemical reaction

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Nagarajan, R.

    1985-01-01

    Partial heterogeneous condensation phenomena in multicomponent reacting systems are analyzed taking into consideration the chemical element transport phenomena. It is demonstrated that the dew-point surface temperature in chemically reactive systems is not a purely thermodynamic quantity, but is influenced by the multicomponent diffusion and Soret-mass diffusion phenomena. Several distinct dew-points are shown to exist in such systems and, as a result of transport constraints, the 'sharp' locus between two chemically distinct condensates is systematically moved to a difference mainstream composition.

  11. Mammalian target of rapamycin signalling modulates amino acid uptake by regulating transporter cell surface abundance in primary human trophoblast cells.

    PubMed

    Rosario, Fredrick J; Kanai, Yoshikatsu; Powell, Theresa L; Jansson, Thomas

    2013-02-01

    Abnormal fetal growth increases the risk for perinatal complications and predisposes for the development of obesity, diabetes and cardiovascular disease later in life. Emerging evidence suggests that changes in placental amino acid transport directly contribute to altered fetal growth. However, the molecular mechanisms regulating placental amino acid transport are largely unknown. Here we combined small interfering (si) RNA-mediated silencing approaches with protein expression/localization and functional studies in cultured primary human trophoblast cells to test the hypothesis that mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) regulate amino acid transporters by post-translational mechanisms. Silencing raptor (inhibits mTORC1) or rictor (inhibits mTORC2) markedly decreased basal System A and System L amino acid transport activity but had no effect on growth factor-stimulated amino acid uptake. Simultaneous inhibition of mTORC1 and 2 completely inhibited both basal and growth factor-stimulated amino acid transport activity. In contrast, mTOR inhibition had no effect on serotonin transport. mTORC1 or mTORC2 silencing markedly decreased the plasma membrane expression of specific System A (SNAT2, SLC38A2) and System L (LAT1, SLC7A5) transporter isoforms without affecting global protein expression. In conclusion, mTORC1 and mTORC2 regulate human trophoblast amino acid transporters by modulating the cell surface abundance of specific transporter isoforms. This is the first report showing regulation of amino acid transport by mTORC2. Because placental mTOR activity and amino acid transport are decreased in human intrauterine growth restriction our data are consistent with the possibility that dysregulation of placental mTOR plays an important role in the development of abnormal fetal growth.

  12. Herbicide Metabolites in Surface Water and Groundwater: Introduction and Overview

    USGS Publications Warehouse

    Thurman, E.M.; Meyer, M.T.

    1996-01-01

    Several future research topics for herbicide metabolites in surface and ground water are outlined in this chapter. They are herbicide usage, chemical analysis of metabolites, and fate and transport of metabolites in surface and ground water. These three ideas follow the themes in this book, which are the summary of a symposium of the American Chemical Society on herbicide metabolites in surface and ground water. First, geographic information systems allow the spatial distribution of herbicide-use data to be combined with geochemical information on fate and transport of herbicides. Next these two types of information are useful in predicting the kinds of metabolites present and their probable distribution in surface and ground water. Finally, methods development efforts may be focused on these specific target analytes. This chapter discusses these three concepts and provides an introduction to this book on the analysis, chemistry, and fate and transport of herbicide metabolites in surface and ground water.

  13. Nuclear reactor heat transport system component low friction support system

    DOEpatents

    Wade, Elman E.

    1980-01-01

    A support column for a heavy component of a liquid metal fast breeder reactor heat transport system which will deflect when the pipes leading coolant to and from the heavy component expand or contract due to temperature changes includes a vertically disposed pipe, the pipe being connected to the heavy component by two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles and the pipe being supported through two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles, each of the cylindrical surfaces bearing on a flat and horizontal surface.

  14. Molecular-Flow Properties of RIB Type Vapor-Transport Systems Using a Fast-Valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alton, Gerald D; Bilheux, Hassina Z; Zhang, Y.

    2014-01-01

    The advent of the fast-valve device, described previously, permits measurement of molecular-flow times of chemically active or inactive gaseous species through radioactive ion beam (RIB) target ion source systems, independent of size, geometry and materials of construction. Thus, decay losses of short-half-life RIBs can be determined for a given target/vapor-transport system in advance of on-line operation, thereby ascertaining the feasibility of the system design for successful processing of a given isotope. In this article, molecular-flow-time theory and experimentally measured molecular-flow time data are given for serial- and parallel-coupled Ta metal RIB vapor-transport systems similar to those used at ISOL basedmore » RIB facilities. In addition, the effect of source type on the molecular-flow time properties of a given system is addressed, and a chemical passivation method for negating surface adsorption enthalpies for chemically active gaseous species on Ta surfaces is demonstrated.« less

  15. Intelligent transportation system (ITS) international research exchange.

    DOT National Transportation Integrated Search

    2014-01-01

    ITS applications address surface transportation challenges in safety, mobility, and sustainability that are similar in cause and impact worldwide. International ITS exchange allows cooperating nations to benefit from each others pre-competitive re...

  16. Liners for ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Miller, Christopher Francis

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  17. Tether System for Exchanging Payloads Between the International Space Station and the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Hoyt, Robert P.

    1998-01-01

    Systems composed of several rotating and/or hanging tethers may provide a means of exchanging supplies between low Earth orbit facilities and lunar bases without requiring the use of propellant. This work develops methods for designing a tether system capable of repeatedly exchanging payloads between a LEO facility such as the International Space Station or a Space Business Park and a base on the lunar surface. In this system, a hanging tether extended upwards from the LEO facility, places a payload into a slightly elliptical orbit, where it is caught by a rotating tether in a higher elliptical orbit. This rotating tether then tosses the payload to the moon. At the moon, a long rotating "Lunavator" tether catches the payload and deposits it on the surface of the moon. By transporting an equal mass of lunar materials such as oxygen back down to the LEO facility through the tether transport system, the momentum and energy of the system is conserved, allowing frequent traffic between LEO and the lunar surface with minimal propellant requirements.

  18. Pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    NASA Astrophysics Data System (ADS)

    Anderson, W. G.; Rosenfeld, J. H.; Saaski, E. L.; Noble, J.; Tower, L.

    Experiments to determine alkali metal/enhanced surface combinations that have stable boiling at the temperatures and heat fluxes that occur in the Stirling engine are reported. Two enhanced surfaces and two alkali metal working fluids were evaluated. The enhanced surfaces were an EDM hole covered surface and a sintered-powder-metal porous layer surface. The working fluids tested were potassium and eutectic sodium-potasium alloy (NaK), both with and without undissolved noncondensible gas. Noncondensible gas (He and Xe) was added to the system to provide gas in the nucleation sites, preventing quenching of the sites. The experiments demonstrated the potential of an alkali metal pool boiler heat transport system for use in a solar-powered Stirling engine. The most favorable fluid/surface combination tested was NaK boiling on a -100 +140 mesh 304L stainless steel sintered porous layer with no undissolved noncondensible gas. This combination provided stable, high-performance boiling at the operating temperature of 700 C. Heat fluxes into the system ranged from 10 to 50 W/sq cm. The transition from free convection to nucleate boiling occurred at temperatures near 540 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  19. Pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Anderson, W. G.; Rosenfeld, J. H.; Saaski, E. L.; Noble, J.; Tower, L.

    1990-01-01

    Experiments to determine alkali metal/enhanced surface combinations that have stable boiling at the temperatures and heat fluxes that occur in the Stirling engine are reported. Two enhanced surfaces and two alkali metal working fluids were evaluated. The enhanced surfaces were an EDM hole covered surface and a sintered-powder-metal porous layer surface. The working fluids tested were potassium and eutectic sodium-potasium alloy (NaK), both with and without undissolved noncondensible gas. Noncondensible gas (He and Xe) was added to the system to provide gas in the nucleation sites, preventing quenching of the sites. The experiments demonstrated the potential of an alkali metal pool boiler heat transport system for use in a solar-powered Stirling engine. The most favorable fluid/surface combination tested was NaK boiling on a -100 +140 mesh 304L stainless steel sintered porous layer with no undissolved noncondensible gas. This combination provided stable, high-performance boiling at the operating temperature of 700 C. Heat fluxes into the system ranged from 10 to 50 W/sq cm. The transition from free convection to nucleate boiling occurred at temperatures near 540 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  20. Design of a pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.; Kesseli, J.

    1991-01-01

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding a heat transport system to more uniformly supply heat to the heater head tubes. One heat transport system with favorable characteristics is an alkali metal pool boiler. An alkali metal pool boiler heat transport system was designed for a 25-kW advanced Stirling conversion system (ASCS). Solar energy concentrated on the absorber dome boils a eutectic mixture of sodium and potassium. The alkali metal vapors condense on the heater head tubes, supplying the Stirling engine with a uniform heat flux at a constant temperature. Boiling stability is achieved with the use of an enhanced boiling surface and noncondensible gas.

  1. 78 FR 35945 - Request for Comments on Security Training Programs for Surface Mode Employees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... provided by owner/operators of freight railroads, passenger railroads, public transportation systems... in the public transportation, railroad carrier, and over-the-road bus (OTRB) modes.\\2\\ In summary.... 266 (August 3, 2007). 9/11 Act's Public Transportation Security Training Requirements. Paragraph 1408...

  2. Potential applications of advanced aircraft in developing countries. [Brazil and Indonesia

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1979-01-01

    Air transportation concepts for movement of cargo in developing countries are reviewed using aicraft which may appear in the future. For certain industrial applications, including mining and forestry, the relative costs of doing the job using different types of aircraft are compared with surface transportation systems. Two developing countries, Brazil and Indonesia, were taken as examples to determine what impact they might have on the aircraft markets of the future. Economic and demographic data on developing countries in general, and Brazil and Indonesia in particular, are reviewed. The concept of an industrial city in a remote area developed around an airport is discussed. It is noted that developing areas generally lack extensive surface transportation systems and that an air transportation system can be implemented in a relatively short time. A developing nation interested in rapid expansion may thus find the role of air cargo far more important than has been true in developed nations. Technological developments which may dramatically increase the performance of agricultural aircraft are also reviewed.

  3. ITS user services document

    DOT National Transportation Integrated Search

    2005-01-01

    Intelligent Transportation System (ITS) user services are surface transportation services that can be provided by some aspect of ITS. These ITS user services document what ITS should do from the user's perspective. A broad range of users are consider...

  4. Highway effects on vehicle performance

    DOT National Transportation Integrated Search

    1995-01-01

    Improving our nation's transportation system is the goal of the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA), which authorizes Federal highway and transit funding programs. The ISTEA views planning as a key strategy to improve the...

  5. Local mass and energy transports in evaporation processes from a vapor-liquid interface in a slit pore based on molecular dynamics

    NASA Astrophysics Data System (ADS)

    Fujiwara, K.; Shibahara, M.

    2018-02-01

    Molecular evaporation processes from a vapor-liquid interface formed in a slit-like pore were examined based on the classical molecular dynamics method, in order to elucidate a molecular mechanism of local mass and energy transports in a slit. The calculation system consisted of monatomic molecules and atoms which interact through the 12-6 Lennard-Jones potential. At first, a liquid was situated in a slit with a vapor-liquid interface, and instantaneous amounts of the mass and energy fluxes defined locally in the slit were obtained in two dimensions to reveal local fluctuation properties of the fluid in equilibrium states. Then, imposing a temperature gradient in the calculation system, non-equilibrium evaporation processes in the slit were investigated in details based on the local mass and energy fluxes. In this study, we focused on the fluid which is in the vicinity of the solid surface and in contact with the vapor phase. In the non-equilibrium evaporation processes, the results revealed that the local energy transport mechanism in the vicinity of the solid surface is different from that of the vapor phase, especially in the case of the relatively strong fluid-solid interaction. The results also revealed that the local mass transport in the vicinity of the solid surface can be interpreted based on the mechanism of the local energy transport, and the mechanism provides valuable information about pictures of the evaporation phenomena especially in the vicinity of the hydrophilic surfaces. It suggests that evaluating and changing this mechanism of the local energy transport are necessary to control the local mass flux more precisely in the vicinity of the solid surface.

  6. Phase-field modeling of liquids splitting between separating surfaces and its application to high-resolution roll-based printing technologies

    NASA Astrophysics Data System (ADS)

    Hizir, F. E.; Hardt, D. E.

    2017-05-01

    An in-depth understanding of the liquid transport in roll-based printing systems is essential for advancing the roll-based printing technology and enhancing the performance of the printed products. In this study, phase-field simulations are performed to characterize the liquid transport in roll-based printing systems, and the phase-field method is shown to be an effective tool to simulate the liquid transport. In the phase-field simulations, the liquid transport through the ink transfer rollers is approximated as the stretching and splitting of liquid bridges with pinned or moving contact lines between vertically separating surfaces. First, the effect of the phase-field parameters and the mesh characteristics on the simulation results is examined. The simulation results show that a sharp interface limit is approached as the capillary width decreases while keeping the mobility proportional to the capillary width squared. Close to the sharp interface limit, the mobility changes over a specified range are observed to have no significant influence on the simulation results. Next, the ink transfer from the cells on the surface of an ink-metering roller to the surface of stamp features is simulated. Under negligible inertial effects and in the absence of gravity, the amount of liquid ink transferred from an axisymmetric cell with low surface wettability to a stamp with high surface wettability is found to increase as the cell sidewall steepness and the cell surface wettability decrease and the stamp surface wettability and the capillary number increase. Strategies for improving the resolution and quality of roll-based printing are derived based on an analysis of the simulation results. The application of novel materials that contain cells with irregular surface topography to stamp inking in high-resolution roll-based printing is assessed.

  7. An Overview of Mars Vicinity Transportation Concepts for a Human Mars Mission

    NASA Technical Reports Server (NTRS)

    Dexter, Carol E.; Kos, Larry

    1998-01-01

    To send a piloted mission to Mars, transportation systems must be developed for the Earth to Orbit, trans Mars injection (TMI), capture into Mars orbit, Mars descent, surface stay, Mars ascent, trans Earth injection (TEI), and Earth return phases. This paper presents a brief overview of the transportation systems for the Human Mars Mission (HMM) only in the vicinity of Mars. This includes: capture into Mars orbit, Mars descent, surface stay, and Mars ascent. Development of feasible mission scenarios now is important for identification of critical technology areas that must be developed to support future human missions. Although there is no funded human Mars mission today, architecture studies are focusing on missions traveling to Mars between 2011 and the early 2020's.

  8. 14 CFR 29.391 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Control Surface and System Loads § 29.391 General. Each auxiliary rotor, each fixed or movable stabilizing or control surface, and each system operating any flight control must meet the requirements of §§ 29.395 through 29.399, 29.411, and 29.427...

  9. 14 CFR 29.391 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Control Surface and System Loads § 29.391 General. Each auxiliary rotor, each fixed or movable stabilizing or control surface, and each system operating any flight control must meet the requirements of §§ 29.395 through 29.399, 29.411, and 29.427...

  10. 14 CFR 29.391 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Control Surface and System Loads § 29.391 General. Each auxiliary rotor, each fixed or movable stabilizing or control surface, and each system operating any flight control must meet the requirements of §§ 29.395 through 29.399, 29.411, and 29.427...

  11. 14 CFR 29.391 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Control Surface and System Loads § 29.391 General. Each auxiliary rotor, each fixed or movable stabilizing or control surface, and each system operating any flight control must meet the requirements of §§ 29.395 through 29.399, 29.411, and 29.427...

  12. 14 CFR 29.391 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Control Surface and System Loads § 29.391 General. Each auxiliary rotor, each fixed or movable stabilizing or control surface, and each system operating any flight control must meet the requirements of §§ 29.395 through 29.399, 29.411, and 29.427...

  13. Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6.

    PubMed

    Neupane, M; Alidoust, N; Xu, S-Y; Kondo, T; Ishida, Y; Kim, D J; Liu, Chang; Belopolski, I; Jo, Y J; Chang, T-R; Jeng, H-T; Durakiewicz, T; Balicas, L; Lin, H; Bansil, A; Shin, S; Fisk, Z; Hasan, M Z

    2013-01-01

    The Kondo insulator SmB6 has long been known to exhibit low-temperature transport anomalies whose origin is of great interest. Here we uniquely access the surface electronic structure of the anomalous transport regime by combining state-of-the-art laser and synchrotron-based angle-resolved photoemission techniques. We observe clear in-gap states (up to ~4 meV), whose temperature dependence is contingent on the Kondo gap formation. In addition, our observed in-gap Fermi surface oddness tied with the Kramers' point topology, their coexistence with the two-dimensional transport anomaly in the Kondo hybridization regime, as well as their robustness against thermal recycling, taken together, collectively provide strong evidence for protected surface metallicity with a Fermi surface whose topology is consistent with the theoretically predicted topological Fermi surface. Our observations of systematic surface electronic structure provide the fundamental electronic parameters for the anomalous Kondo ground state of correlated electron material SmB6.

  14. An integrated field-effect microdevice for monitoring membrane transport in Xenopus laevis oocytes via lateral proton diffusion.

    PubMed

    Schaffhauser, Daniel Felix; Patti, Monica; Goda, Tatsuro; Miyahara, Yuji; Forster, Ian Cameron; Dittrich, Petra Stephanie

    2012-01-01

    An integrated microdevice for measuring proton-dependent membrane activity at the surface of Xenopus laevis oocytes is presented. By establishing a stable contact between the oocyte vitelline membrane and an ion-sensitive field-effect (ISFET) sensor inside a microperfusion channel, changes in surface pH that are hypothesized to result from facilitated proton lateral diffusion along the membrane were detected. The solute diffusion barrier created between the sensor and the active membrane area allowed detection of surface proton concentration free from interference of solutes in bulk solution. The proposed sensor mechanism was verified by heterologously expressing membrane transport proteins and recording changes in surface pH during application of the specific substrates. Experiments conducted on two families of phosphate-sodium cotransporters (SLC20 & SLC34) demonstrated that it is possible to detect phosphate transport for both electrogenic and electroneutral isoforms and distinguish between transport of different phosphate species. Furthermore, the transport activity of the proton/amino acid cotransporter PAT1 assayed using conventional whole cell electrophysiology correlated well with changes in surface pH, confirming the ability of the system to detect activity proportional to expression level.

  15. Estimated Benefits of Variable-Geometry Wing Camber Control for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander; Gilyard, Glenn B.

    1999-01-01

    Analytical benefits of variable-camber capability on subsonic transport aircraft are explored. Using aerodynamic performance models, including drag as a function of deflection angle for control surfaces of interest, optimal performance benefits of variable camber are calculated. Results demonstrate that if all wing trailing-edge surfaces are available for optimization, drag can be significantly reduced at most points within the flight envelope. The optimization approach developed and illustrated for flight uses variable camber for optimization of aerodynamic efficiency (maximizing the lift-to-drag ratio). Most transport aircraft have significant latent capability in this area. Wing camber control that can affect performance optimization for transport aircraft includes symmetric use of ailerons and flaps. In this paper, drag characteristics for aileron and flap deflections are computed based on analytical and wind-tunnel data. All calculations based on predictions for the subject aircraft and the optimal surface deflection are obtained by simple interpolation for given conditions. An algorithm is also presented for computation of optimal surface deflection for given conditions. Benefits of variable camber for a transport configuration using a simple trailing-edge control surface system can approach more than 10 percent, especially for nonstandard flight conditions. In the cruise regime, the benefit is 1-3 percent.

  16. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport

    NASA Astrophysics Data System (ADS)

    Bauer, B. O.; Davidson-Arnott, R. G. D.; Hesp, P. A.; Namikas, S. L.; Ollerhead, J.; Walker, I. J.

    2009-04-01

    Temporal and spatial changes in wind speed, wind direction, and moisture content are ubiquitous across sandy coastal beaches. Often these factors interact in unknown ways to create complexity that confounds our ability to model sediment transport at any point across the beach as well as our capacity to predict sediment delivery into the adjacent foredunes. This study was designed to measure wind flow and sediment transport over a beach and foredune at Greenwich Dunes, Prince Edward Island National Park, with the express purpose of addressing these complex interactions. Detailed measurements are reported for one stormy day, October 11, 2004, during which meteorological conditions were highly variable. Wind speed ranged from 4 ms - 1 to over 20 ms - 1 , wind direction was highly oblique varying between 60° and 85° from shore perpendicular, and moisture content of the sand surface ranged from a minimum of about 3% (by mass) to complete saturation depending on precipitation, tidal excursion, and storm surge that progressively inundated the beach. The data indicate that short-term variations (i.e., minutes to hours) in sediment transport across this beach arise predominantly because of short-term changes in wind speed, as is expected, but also because of variations in wind direction, precipitation intensity, and tide level. Even slight increases in wind speed are capable of driving more intense saltation events, but this relationship is mediated by other factors on this characteristically narrow beach. As the angle of wind approach becomes more oblique, the fetch distance increases and allows greater opportunity for the saltation system to evolve toward an equilibrium transport state before reaching the foredunes. Whether the theoretically-predicted maximum rate of transport is ever achieved depends on the character of the sand surface (e.g., grain size, slope, roughness, vegetation, moisture content) and on various attributes of the wind field (e.g., average wind speed, unsteadiness, approach angle, flow compression, boundary layer development). Moisture content is widely acknowledged as an important factor in controlling release of sediment from the beach surface. All other things being equal, the rate of sediment transport over a wet surface is lesser than over a dry surface. On this beach, the moisture effect has two important influences: (a) in a temporal sense, the rate of sediment transport typically decreases in association with rainfall and increases when surface drying takes place; and (b) in a spatio-temporal sense, shoreline excursions associated with nearshore processes (such as wave run-up, storm surge, and tidal excursions) have the effect of constraining the fetch geometry of the beach—i.e., narrowing the width of the beach. Because saturated sand surfaces, such as found in the swash zone, will only reluctantly yield sediments to aeolian entrainment, the available beach surface across which aeolian transport can occur becomes narrower as the sea progressively inundates the beach. Under these constrained conditions, the transport system begins to shut down unless wind angle becomes highly oblique (thereby increasing fetch distance). In this study, maximum sediment transport was usually measured on the mid-beach rather than the upper beach (i.e., closer to the foredunes). This unusual finding is likely because of internal boundary layer development across the beach, which yields a decrease in near-surface wind speed (and hence, transport capacity) in the landward direction. Although widely recognized in the fluid mechanics literature, this decrease in near-surface shear stress as a by-product of a developing boundary layer in the downwind direction has not been adequately investigated in the context of coastal aeolian geomorphology.

  17. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with the engine operated as prescribed by MSHA. All parts of the engine, cooling system, and other... components of the cooling system. 36.48 Section 36.48 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.48 Tests of surface...

  18. 30 CFR 36.48 - Tests of surface temperature of engine and components of the cooling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with the engine operated as prescribed by MSHA. All parts of the engine, cooling system, and other... components of the cooling system. 36.48 Section 36.48 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.48 Tests of surface...

  19. 77 FR 35752 - Senior Executive Service Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-14

    ... agency implement a performance appraisal system making senior executives accountable for organizational... DEPARTMENT OF TRANSPORTATION Surface Transportation Board Senior Executive Service Performance... Executive Service Performance Review Board (PRB). FOR FURTHER INFORMATION CONTACT: Paula Chandler, Director...

  20. Review of US national ITS architecture : executive summary

    DOT National Transportation Integrated Search

    1997-02-07

    Development of Intelligent Transport Systems (ITS) in America was given a tremendous boost in 1991 with the Intermodal Surface Transport Efficiency Act, the law that formalised the American ITS Programme. Amongst other things it stimulated the produc...

  1. Integrated corridor management initiative : demonstration phase evaluation, Dallas air quality test plan.

    DOT National Transportation Integrated Search

    1997-09-26

    Appendices A & B of the "Implementation of the National Intelligent Transportation Systems Program", a report forwarded to Congress according to Section 6054(c) of the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA).

  2. Charge effects on the hindered transport of macromolecules across the endothelial surface glycocalyx layer.

    PubMed

    Sugihara-Seki, Masako; Akinaga, Takeshi; O-Tani, Hideyuki

    2012-01-01

    A fluid mechanical and electrostatic model for the transport of solute molecules across the vascular endothelial surface glycocalyx layer (EGL) was developed to study the charge effect on the diffusive and convective transport of the solutes. The solute was assumed to be a spherical particle with a constant surface charge density, and the EGL was represented as an array of periodically arranged circular cylinders of like charge, with a constant surface charge density. By combining the fluid mechanical analyses for the flow around a solute suspended in an electrolyte solution and the electrostatic analyses for the free energy of the interaction between the solute and cylinders based on a mean field theory, we estimated the transport coefficients of the solute across the EGL. Both of diffusive and convective transports are reduced compared to those for an uncharged system, due to the stronger exclusion of the solute that results from the repulsive electrostatic interaction. The model prediction for the reflection coefficient for serum albumin agreed well with experimental observations if the charge density in the EGL is ranged from approximately -10 to -30 mEq/l.

  3. Near-Surface Transport Pathways in the North Atlantic Ocean: Looking for Throughput from the Subtropical to the Subpolar Gyre

    NASA Astrophysics Data System (ADS)

    Rypina, I. I.; Pratt, L. J.; Lozier, M.

    2011-12-01

    Motivated by discrepancies between Eulerian transport estimates and the behavior of Lagrangian surface drifters, near-surface transport pathways and processes in the North Atlantic are studied using a combination of data, altimetric surface heights, statistical analysis of trajectories, and dynamical systems techniques. Particular attention is paid to the issue of the subtropical-to-subpolar intergyre fluid exchange. The velocity field used in this study is composed of a steady drifter-derived background flow, upon which a time-dependent altimeter-based perturbation is superimposed. This analysis suggests that most of the fluid entering the subpolar gyre from the subtropical gyre within two years comes from a narrow region lying inshore of the Gulf Stream core, whereas fluid on the offshore side of the Gulf Stream is largely prevented from doing so by the Gulf Stream core, which acts as a strong transport barrier, in agreement with past studies. The transport barrier near the Gulf Stream core is robust and persistent from 1992 until 2008. The qualitative behavior is found to be largely independent of the Ekman drift.

  4. 14 CFR 25.415 - Ground gust conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ground gust conditions. 25.415 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.415 Ground... ground gusts and taxiing downwind: (1) The control system between the stops nearest the surfaces and the...

  5. 14 CFR 25.415 - Ground gust conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ground gust conditions. 25.415 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.415 Ground... ground gusts and taxiing downwind: (1) The control system between the stops nearest the surfaces and the...

  6. Bacterial Adhesion under Static and Dynamic Conditions

    PubMed Central

    Rijnaarts, Huub H. M.; Norde, Willem; Bouwer, Edward J.; Lyklema, Johannes; Zehnder, Alexander J. B.

    1993-01-01

    The deposition of various pseudomonads and coryneform bacteria with different hydrophobicities (water contact angles) and negative cell surface charges on negatively charged Teflon and glass surfaces was investigated. The levels of deposition varied between 5.0 × 104 and 1.6 × 107 cells cm-2 and between 5.0 × 104 and 3.6 × 107 cells cm-2 for dynamic column and static batch systems, respectively, indicating that there was a wide variation in physicochemical interactions. Batch and column results were compared in order to better distinguish between hydrodynamic and other system-dependent influences and method-independent physicochemical interactions. Despite the shorter suspension-solid contact time in columns (1 h) than in batch systems (4 h), the level of deposition (expressed as the number of cells that adhered) divided by the applied ambient cell concentration was 4.12 ± 1.63 times higher in columns than in batch sytems for 15 of 22 strain-surface combinations studied. This demonstrates that transport of microbial particles from bulk liquid to surfaces is more efficient in dynamic columns (transport dominated by convection and diffusion) than in static batch systems (transport by diffusion only). The relative constancy of this ratio for the 15 combinations shows that physicochemical interactions affect adhesion similarly in the two systems. The deviating deposition behavior of the other seven strain-surface combinations could be attributed to method-dependent effects resulting from specific cell characteristics (e.g., to the presence of capsular polymers, to an ability to aggregate, to large cell sizes, or to a tendency to desorb after passage through an air-liquid interface). Images PMID:16349063

  7. Mitigating Climate Change with Ocean Pipes: Influencing Land Temperature and Hydrology and Termination Overshoot Risk

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, L.; Caldeira, K.; Ricke, K.

    2014-12-01

    With increasing risk of dangerous climate change geoengineering solutions to Earth's climate problems have attracted much attention. One proposed geoengineering approach considers the use of ocean pipes as a means to increase ocean carbon uptake and the storage of thermal energy in the deep ocean. We use a latest generation Earth System Model (ESM) to perform simulations of idealised extreme implementations of ocean pipes. In our simulations, downward transport of thermal energy by ocean pipes strongly cools the near surface atmosphere - by up to 11°C on a global mean. The ocean pipes cause net thermal energy to be transported from the terrestrial environment to the deep ocean while increasing the global net transport of water to land. By cooling the ocean surface more than the land, ocean pipes tend to promote a monsoonal-type circulation, resulting in increased water vapour transport to land. Throughout their implementation, ocean pipes prevent energy from escaping to space, increasing the amount of energy stored in Earth's climate system despite reductions in surface temperature. As a consequence, our results indicate that an abrupt termination of ocean pipes could cause dramatic increases in surface temperatures beyond that which would have been obtained had ocean pipes not been implemented.

  8. Bulk-Induced 1/f Noise at the Surface of Three-Dimensional Topological Insulators.

    PubMed

    Bhattacharyya, Semonti; Banerjee, Mitali; Nhalil, Hariharan; Islam, Saurav; Dasgupta, Chandan; Elizabeth, Suja; Ghosh, Arindam

    2015-12-22

    Slow intrinsic fluctuations of resistance, also known as the flicker noise or 1/f-noise, in the surface transport of strong topological insulators (TIs) is a poorly understood phenomenon. Here, we have systematically explored the 1/f-noise in field-effect transistors (FET) of mechanically exfoliated Bi1.6Sb0.4Te2Se TI films when transport occurs predominantly via the surface states. We find that the slow kinetics of the charge disorder within the bulk of the TI induces mobility fluctuations at the surface, providing a new source of intrinsic 1/f-noise that is unique to bulk TI systems. At small channel thickness, the noise magnitude can be extremely small, corresponding to the phenomenological Hooge parameter γH as low as ≈10(-4), but it increases rapidly when channel thickness exceeds ∼1 μm. From the temperature (T)-dependence of noise, which displayed sharp peaks at characteristic values of T, we identified generation-recombination processes from interband transitions within the TI bulk as the dominant source of the mobility fluctuations in surface transport. Our experiment not only establishes an intrinsic microscopic origin of noise in TI surface channels, but also reveals a unique spectroscopic information on the impurity bands that can be useful in bulk TI systems in general.

  9. 14 CFR 25.445 - Auxiliary aerodynamic surfaces.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads..., and gusts as specified in § 25.341(a) acting at any orientation at right angles to the flight path. (b...

  10. 14 CFR 25.445 - Auxiliary aerodynamic surfaces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads..., and gusts as specified in § 25.341(a) acting at any orientation at right angles to the flight path. (b...

  11. FITS and PDS4: Planetary Surface Data Interoperability Made Easier

    NASA Astrophysics Data System (ADS)

    Marmo, C.; Hare, T. M.; Erard, S.; Cecconi, B.; Minin, M.; Rossi, A. P.; Costard, F.; Schmidt, F.

    2018-04-01

    This abstract describes how Flexible Image Transport System (FITS) can be used in planetary surface investigations, and how its metadata can easily be inserted in the PDS4 metadata distribution model.

  12. 76 FR 46896 - Senior Executive Service Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board Senior Executive Service Performance... Board (STB) publishes the names of the Persons selected to serve on its Senior Executive Service... performance appraisal system making senior executives accountable for organizational and individual goal...

  13. 75 FR 35877 - Senior Executive Service Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board Senior Executive Service Performance... Board (STB) publishes the names of the Persons selected to serve on its Senior Executive Service... performance appraisal system making senior executives accountable for organizational and individual goal...

  14. Preparing to use vehicle infrastructure integration in transportation operations : phase I.

    DOT National Transportation Integrated Search

    2007-01-01

    The close integration of vehicles and the infrastructure in the surface transportation system has been envisioned for years, but recent advances in wireless communications has made such integration feasible. Given this feasibility, a coalition of the...

  15. Phonon Surface Scattering and Thermal Energy Distribution in Superlattices.

    PubMed

    Kothari, Kartik; Maldovan, Martin

    2017-07-17

    Thermal transport at small length scales has attracted significant attention in recent years and various experimental and theoretical methods have been developed to establish the reduced thermal conductivity. The fundamental understanding of how phonons move and the physical mechanisms behind nanoscale thermal transport, however, remains poorly understood. Here we move beyond thermal conductivity calculations and provide a rigorous and comprehensive physical description of thermal phonon transport in superlattices by solving the Boltzmann transport equation and using the Beckman-Kirchhoff surface scattering theory with shadowing to precisely describe phonon-surface interactions. We show that thermal transport in superlattices can be divided in two different heat transport modes having different physical properties at small length scales: layer-restricted and extended heat modes. We study how interface conditions, periodicity, and composition can be used to manipulate the distribution of thermal energy flow among such layer-restricted and extended heat modes. From predicted frequency and mean free path spectra of superlattices, we also investigate the existence of wave effects. The results and insights in this paper advance the fundamental understanding of heat transport in superlattices and the prospects of rationally designing thermal systems with tailored phonon transport properties.

  16. Functional Tat transport of unstructured, small, hydrophilic proteins.

    PubMed

    Richter, Silke; Lindenstrauss, Ute; Lücke, Christian; Bayliss, Richard; Brüser, Thomas

    2007-11-16

    The twin-arginine translocation (Tat) system is a protein translocation system that is adapted to the translocation of folded proteins across biological membranes. An understanding of the folding requirements for Tat substrates is of fundamental importance for the elucidation of the transport mechanism. We now demonstrate for the first time Tat transport for fully unstructured proteins, using signal sequence fusions to naturally unfolded FG repeats from the yeast Nsp1p nuclear pore protein. The transport of unfolded proteins becomes less efficient with increasing size, consistent with only a single interaction between the system and the substrate. Strikingly, the introduction of six residues from the hydrophobic core of a globular protein completely blocked translocation. Physiological data suggest that hydrophobic surface patches abort transport at a late stage, most likely by membrane interactions during transport. This study thus explains the observed restriction of the Tat system to folded globular proteins on a molecular level.

  17. Mars integrated transportation system multistage Mars mission

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In accordance with the objective of the Mars Integrated Transport System (MITS) program, the Multistage Mars Mission (MSMM) design team developed a profile for a manned mission to Mars. The purpose of the multistage mission is to send a crew of five astronauts to the martian surface by the year 2019. The mission continues man's eternal quest for exploration of new frontiers. This mission has a scheduled duration of 426 days that includes experimentation en route as well as surface exploration and experimentation. The MSMM is also designed as a foundation for a continuing program leading to the colonization of the planet Mars.

  18. Revolutionary Concepts for Human Outer Planet Exploration (HOPE)

    NASA Technical Reports Server (NTRS)

    Troutman, Patrick A.; Bethke, Kristen; Stillwagen, Fred; Caldwell, Darrell L., Jr.; Manvi, Ram; Strickland, Chris; Krizan, Shawn A.

    2003-01-01

    This paper summarizes the content of a NASA-led study performed to identify revolutionary concepts and supporting technologies for Human Outer Planet Exploration (HOPE). Callisto, the fourth of Jupiter's Galilean moons, was chosen as the destination for the HOPE study. Assumptions for the Callisto mission include a launch year of 2045 or later, a spacecraft capable of transporting humans to and from Callisto in less than five years, and a requirement to support three humans on the surface for a minimum of 30 days. Analyses performed in support of HOPE include identification of precursor science and technology demonstration missions and development of vehicle concepts for transporting crew and supplies. A complete surface architecture was developed to provide the human crew with a power system, a propellant production plant, a surface habitat, and supporting robotic systems. An operational concept was defined that provides a surface layout for these architecture components, a list of surface tasks, a 30-day timeline, a daily schedule, and a plan for communication from the surface.

  19. A methodology for design of a linear referencing system for surface transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vonderohe, A.; Hepworth, T.

    1997-06-01

    The transportation community has recently placed significant emphasis on development of data models, procedural standards, and policies for management of linearly-referenced data. There is an Intelligent Transportation Systems initiative underway to create a spatial datum for location referencing in one, two, and three dimensions. Most recently, a call was made for development of a unified linear reference system to support public, private, and military surface transportation needs. A methodology for design of the linear referencing system was developed from geodetic engineering principles and techniques used for designing geodetic control networks. The method is founded upon the law of propagation ofmore » random error and the statistical analysis of systems of redundant measurements, used to produce best estimates for unknown parameters. A complete mathematical development is provided. Example adjustments of linear distance measurement systems are included. The classical orders of design are discussed with regard to the linear referencing system. A simple design example is provided. A linear referencing system designed and analyzed with this method will not only be assured of meeting the accuracy requirements of users, it will have the potential for supporting delivery of error estimates along with the results of spatial analytical queries. Modeling considerations, alternative measurement methods, implementation strategies, maintenance issues, and further research needs are discussed. Recommendations are made for further advancement of the unified linear referencing system concept.« less

  20. Direct Observation of Virtual Electrode Formation Through a Novel Electrolyte-to-Electrode Transition

    NASA Astrophysics Data System (ADS)

    Siegel, David; El Gabaly, Farid; Bartelt, Norman; McCarty, Kevin

    2014-03-01

    Novel electrochemical solutions to problems in energy storage and transportation can drive renewable energy to become an economically viable alternative to fossil fuels. In many electrochemical systems, the behavior of a device can be fundamentally limited by the surface area of a triple phase boundary, the boundary region where a gas-phase species, electrode, and electrolyte coincide. When the electrode is an ionic insulator the triple phase boundary is typically a one-dimensional boundary with nanometer-scale thickness: ions cannot transport through the electrode, while electrons cannot be transported through the electrolyte. Here we present direct experimental measurements of a novel electrolyte-to-electrode transition with photoemission electron microscopy, and observe that the surface of an ionically conductive, electronically insulative solid oxide electrolyte undergoes a transition into a mixed electron-ion conductor in the vicinity of a metal electrode. Our direct experimental measurements allow us to characterize this system and address the mechanisms of ionic reactions and transport through comparisons with theoretical modeling to provide us with a physical picture of the processes involved. Our results provide insight into one of the mechanisms of ion transport in an electrochemical cell that may be generalizable to other systems.

  1. Positron transport in solids and the interaction of positrons with surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Yuan.

    1991-01-01

    In studying positron transport in solids, a two-stream model is proposed to account for the epithermal positrons. Thus positron implantation, thermalization, and diffusion processes are completely modeled. Experimentally, positron mobility in thermally grown SiO[sub 2] is measured in a sandwiched structure by using the Doppler broadening technique. Positron drift motion and the electric field configuration in a Si surface buried under overlayers are measured with the positron annihilation [gamma]-ray centroid shift technique. These studies are not only important in measuring positron transport and other properties in complicated systems, they are also of practical significance for material characterizations. In studying positronmore » interactions with surfaces, a multiple-encounter picture is proposed of thermal positrons participating in the surface escape processes. Positron trapping into the surface image potential is also studied, considering the long-range nature of the image potential. Experimentally, the positron annihilation induced Auger electron spectroscopy (PAES) is used to study an ionic insulator surface KCl(100).« less

  2. Collection and analysis of colloidal particles transported in the Mississippi River, U.S.A.

    USGS Publications Warehouse

    Rees, T.F.; Ranville, J.F.

    1990-01-01

    Sediment transport has long been recognized as an important mechanism for the transport of contaminants in surface waters. Suspended sediment has traditionally been divided into three size classes: sand-sized (>63 ??m), silt-sized ( 63 ??m), silt-sized (< 63 ??m but settleable) and clay-sized (non-settleable). The first two classes are easily collected and characterized using screens (sand) and settling (silt). The clay-sized particles, more properly called colloids, are more difficult to collect and characterize, and until recently received little attention. From the hydrologic perspective, a colloid is a particle, droplet, or gas bubble with at least one dimension between 0.001 and 1 ??m. Because of their small size, colloids have large specific surface areas and high surface free energies which may facilitate sorption of hydrophobic materials. Understanding what types of colloids are present in a system, how contaminants of interest interact with these colloids, and what parameters control the transport of colloids in natural systems is critical if the relative importance of colloid-mediated transport is to be understood. This paper describes the collection, concentration and characterization of colloidal materials in the Mississippi River. Colloid concentrations, particle-size distributions, mineral composition and electrophoretic mobilities were determined. Techniques used are illustrated with samples collected at St. Louis, Missouri, U.S.A.

  3. Nutrient transport through a Vegetative Filter Strip with subsurface drainage.

    PubMed

    Bhattarai, Rabin; Kalita, Prasanta Kumar; Patel, Mita Kanu

    2009-04-01

    The transport of nutrients and soil sediments in runoff has been recognized as a noteworthy environmental issue. Vegetative Filter Strips (VFS) have been used as one of the best management practices (BMPs) for retaining nutrients and sediments from surface runoff, thus preventing the pollutants from reaching receiving waters. However, the effectiveness of a VFS when combined with a subsurface drainage system has not been investigated previously. This study was undertaken to monitor the retention and transport of nutrients within a VFS that had a subsurface drainage system installed at a depth of 1.2 m below the soil surface. Nutrient concentrations of NO(3)-N (Nitrate Nitrogen), PO(-)(4) (Orthophosphorus), and TP (Total Phosphorus) were measured in surface water samples (entering and leaving the VFS), and subsurface outflow. Soil samples were collected and analyzed for plant available Phosphorus (Bray P1) and NO(3)-N concentrations. Results showed that PO(-)(4), NO(3)-N, and TP concentrations decreased in surface flow through the VFS. Many surface outflow water samples from the VFS showed concentration reductions of as much as 75% for PO(-)(4) and 70% for TP. For subsurface outflow water samples through the drainage system, concentrations of PO(-)(4) and TP decreased but NO(3)-N concentrations increased in comparison to concentrations in surface inflow samples. Soil samples that were collected from various depths in the VFS showed a minimal buildup of nutrients in the top soil profile but indicated a gradual buildup of nutrients at the depth of the subsurface drain. Results demonstrate that although a VFS can be very effective in reducing runoff and nutrients from surface flow, the presence of a subsurface drain underneath the VFS may not be environmentally beneficial. Such a combination may increase NO(3)-N transport from the VFS, thus invalidating the purpose of the BMP.

  4. Evaluation of laminar flow control systems concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1983-01-01

    An evaluation was made of laminar flow control (LFC) system concepts for subsonic commercial transport aircraft. Configuration design studies, performance analyses, fabrication development, structural testing, wind tunnel testing, and contamination-avoidance techniques were included. As a result of trade studies, a configuration with LFC on the upper wing surface only, utilizing an electron beam-perforated suction surface, and employing a retractable high-lift shield for contamination avoidance, was selected as the most practical LFC system. The LFC aircraft was then compared with an advanced turbulent aircraft designed for the same mission. This comparison indicated significant fuel savings and reduced direct operating cost benefits would result from using LFC.

  5. Meteorological Processes Affecting the Transport of Emissions from the Navajo Generating Station to Grand Canyon National Park.

    NASA Astrophysics Data System (ADS)

    Lindsey, Charles G.; Chen, Jun; Dye, Timothy S.; Willard Richards, L.; Blumenthal, Donald L.

    1999-08-01

    During the 1990 Navajo Generating Station (NGS) Winter Visibility Study, a network of surface and upper-air meteorological measurement systems was operated in and around Grand Canyon National Park to investigate atmospheric processes in complex terrain that affected the transport of emissions from the nearby NGS. This network included 15 surface monitoring stations, eight balloon sounding stations (equipped with a mix of rawinsonde, tethersonde, and Airsonde sounding systems), three Doppler radar wind profilers, and four Doppler sodars. Measurements were made from 10 January through 31 March 1990. Data from this network were used to prepare objectively analyzed wind fields, trajectories, and streak lines to represent transport of emissions from the NGS, and to prepare isentropic analyses of the data. The results of these meteorological analyses were merged in the form of a computer animation that depicted the streak line analyses along with measurements of perfluorocarbon tracer, SO2, and sulfate aerosol concentrations, as well as visibility measurements collected by an extensive surface monitoring network. These analyses revealed that synoptic-scale circulations associated with the passage of low pressure systems followed by the formation of high pressure ridges accompanied the majority of cases when NGS emittants appeared to be transported to the Grand Canyon. The authors' results also revealed terrain influences on transport within the topography of the study area, especially mesoscale flows inside the Lake Powell basin and along the plain above the Marble Canyon.

  6. Rethinking of the regolith transport on airless bodies in the Solar system

    NASA Astrophysics Data System (ADS)

    Hsu, S.; Wang, X.; Seiss, M.; Schwan, J.; Sternovsky, Z.; Horanyi, M.

    2016-12-01

    Recent laboratory experiments provided important constraints on the characteristics of electrostatic dust transport on airless bodies. The proposed "patched charging model" illustrates how regolith particles acquire grain charges much higher than expected to drive the surface dust movements, including rotation and hopping of individual regolith particle as well as the overall smoothing of the regolith surface observed in the experiments. Here we apply the experimental results to re-examine the regolith transport on the airless bodies in the Solar systems, including both observation (e.g., dust ponds on Eros) and theoretical aspects (e.g., electrostatic dust levitation). We will also discuss the observational criteria and implications to be expected from current and future missions, such as Asteroid Redirect Mission, Cassini, Hayabusa 2, and OSIRIS-Rex.

  7. Moist synoptic transport of carbon dioxide along midlatitude storm tracks, transport uncertainty, and implications for carbon dioxide flux estimation

    NASA Astrophysics Data System (ADS)

    Parazoo, Nicholas C.

    Mass transport along moist isentropic surfaces on baroclinic waves represents an important component of the atmospheric heat engine that operates between the equator and poles. This is also an important vehicle for tracer transport, and is correlated with ecosystem metabolism because large-scale baroclinicity and photosynthesis are both driven seasonally by variations in solar radiation. In this research, I pursue a dynamical framework for explaining atmospheric transport of CO2 by synoptic weather systems at middle and high latitudes. A global model of atmospheric tracer transport, driven by meteorological analysis in combination with a detailed description of surface fluxes, is used to create time varying CO2 distributions in the atmosphere. Simulated mass fluxes of CO2 are then decomposed into a zonal monthly mean component and deviations from the monthly mean in space and time. Mass fluxes of CO2 are described on moist isentropic surfaces to represent frontal transport along storm tracks. Forward simulations suggest that synoptic weather systems transport large amounts of CO2 north and south in northern mid-latitudes, up to 1 PgC month-1 during winter when baroclinic wave activity peaks. During boreal winter when northern plants respire, warm moist air, high in CO2, is swept upward and poleward along the east side of baroclinic waves and injected into the polar vortex, while cold dry air, low in CO 2, that had been transported into the polar vortex earlier in the year is advected equatorward. These synoptic eddies act to strongly reduce seasonality of CO2 in the biologically active mid-latitudes by 50% of that implied by local net ecosystem exchange while correspondingly amplifying seasonality in the Arctic. Transport along stormtracks is correlated with rising, moist, cloudy air, which systematically hides this CO2 transport from satellite observing systems. Meridional fluxes of CO2 are of comparable magnitude as surface exchange of CO2 in mid-latitudes, and thus require careful consideration in (inverse) modeling of the carbon cycle. Because synoptic transport of CO2 by frontal systems and moist processes is generally unobserved and poorly represented in global models, it may be a source of error for inverse flux estimates. Uncertainty in CO 2 transport by synoptic eddies is investigated using a global model driven by four reanalysis products from the Goddard EOS Data Assimilation System for 2005. Eddy transport is found to be highly variable between model analysis, with significant seasonal differences of up to 0.2 PgC, which represents up to 50% of fossil fuel emissions. The variations are caused primarily by differences in grid spacing and vertical mixing by moist convection and PBL turbulence. To test for aliasing of transport bias into inverse flux estimates, synthetic satellite data is generated using a model at 50 km global resolution and inverted using a global model run with coarse grid transport. An ensemble filtering method called the Maximum Likelihood Ensemble Filter (MLEF) is used to optimize fluxes. Flux estimates are found to be highly sensitive to transport biases at pixel and continental scale, with errors of up to 0.5 PgC year-1 in Europe and North America.

  8. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    NASA Technical Reports Server (NTRS)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  9. Back-support large laser mirror unit: mounting modeling and analysis

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Zhang, Zheng; Long, Kai; Liu, Tianye; Li, Jun; Liu, Changchun; Xiong, Zhao; Yuan, Xiaodong

    2018-01-01

    In high-power laser system, the surface wavefront of large optics has a close link with its structure design and mounting method. The back-support transport mirror design is presently being investigated as a means in China's high-power laser system to hold the optical component firmly while minimizing the distortion of its reflecting surface. We have proposed a comprehensive analytical framework integrated numerical modeling and precise metrology for the mirror's mounting performance evaluation while treating the surface distortion as a key decision variable. The combination of numerical simulation and field tests demonstrates that the comprehensive analytical framework provides a detailed and accurate approach to evaluate the performance of the transport mirror. It is also verified that the back-support transport mirror is effectively compatible with state-of-the-art optical quality specifications. This study will pave the way for future research to solidify the design of back-support large laser optics in China's next generation inertial confinement fusion facility.

  10. 76 FR 1666 - Susquehanna Union Railroad Company-Control Exemption-North Shore Railroad Company, Nittany & Bald...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... rail transportation system that will continue to meet the needs of the shipping public. 49 U.S.C. 10101... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [STB FD 35343] Susquehanna Union... 49 U.S.C. 11323(a)(4) to acquire 100% stock control of 6 Class III railroads: North Shore Railroad...

  11. Idea Project Final Report, Driver-Adaptive Warning System

    DOT National Transportation Integrated Search

    1995-03-31

    THIS INVESTIGATION WAS COMPLETED AS PART OF THE ITS-IDEA PROGRAM, WHICH IS ONE OF THREE IDEA PROGRAMS MANAGED BY THE TRANSPORTATION RESEARCH BOARD (TRB) TO FOSTER INNOVATIONS IN SURFACE TRANSPORTATION. IT FOCUSES ON PRODUCTS AND RESULTS FOR THE DEVEL...

  12. Lateral attenuation of aircraft sound levels over an acoustically hard water surface : Logan Airport study

    DOT National Transportation Integrated Search

    2000-05-01

    The National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC), sponsored the Acoustics Facility at the United States Department of Transportation's John A. Volpe National Transportation Systems Center (Volpe Center) and the...

  13. Space Transportation Systems Life Cycle Cost Assessment and Control

    NASA Technical Reports Server (NTRS)

    Robinson, John W.; Rhodes, Russell E.; Zapata, Edgar; Levack, Daniel J. H.; Donahue, Benjaamin B.; Knuth, William

    2008-01-01

    Civil and military applications of space transportation have been pursued for just over 50 years and there has been, and still is, a need for safe, dependable, affordable, and sustainable space transportation systems. Fully expendable and partially reusable space transportation systems have been developed and put in operation that have not adequately achieved this need. Access to space is technically achievable, but presently very expensive and will remain so until there is a breakthrough in the way we do business. Since 1991 the national Space Propulsion Synergy Team (SPST) has reviewed and assessed the lessons learned from the major U.S. space programs of the past decades focusing on what has been learned from the assessment and control of Life Cycle Cost (LCC) from these systems. This paper presents the results of a selected number of studies and analyses that have been conducted by the SPST addressing the need, as well as the solutions, for improvement in LCC. The major emphasis of the SPST processes is on developing the space transportation system requirements first (up front). These requirements must include both the usual system flight performance requirements and also the system functional requirements, including the infrastructure on Earth's surface, in-space and on the Moon and Mars surfaces to determine LCC. This paper describes the development of specific innovative engineering and management approaches and processes. This includes a focus on flight hardware maturity for reliability, ground operations approaches, and business processes between contractor and government organizations. A major change in program/project cost control is being proposed by the SPST to achieve a sustainable space transportation system LCC - controlling cost as a program metric in addition to the existing practice of controlling performance and weight. Without a firm requirement and methodically structured cost control, it is unlikely that an affordable and sustainable space transportation system LCC will ever be achieved. '

  14. Forward Modeling of Atmospheric Carbon Dioxide in GEOS-5: Uncertainties Related to Surface Fluxes and Sub-Grid Transport

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Ott, Lesley E.; Zhu, Zhengxin; Bowman, Kevin; Brix, Holger; Collatz, G. James; Dutkiewicz, Stephanie; Fisher, Joshua B.; Gregg, Watson W.; Hill, Chris; hide

    2011-01-01

    Forward GEOS-5 AGCM simulations of CO2, with transport constrained by analyzed meteorology for 2009-2010, are examined. The CO2 distributions are evaluated using AIRS upper tropospheric CO2 and ACOS-GOSAT total column CO2 observations. Different combinations of surface C02 fluxes are used to generate ensembles of runs that span some uncertainty in surface emissions and uptake. The fluxes are specified in GEOS-5 from different inventories (fossil and biofuel), different data-constrained estimates of land biological emissions, and different data-constrained ocean-biology estimates. One set of fluxes is based on the established "Transcom" database and others are constructed using contemporary satellite observations to constrain land and ocean process models. Likewise, different approximations to sub-grid transport are employed, to construct an ensemble of CO2 distributions related to transport variability. This work is part of NASA's "Carbon Monitoring System Flux Pilot Project,"

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levien, Mary

    The Freight Shuttle System (FSS) is designed to provide freight transportation services between those short and intermediate distance locations (within 600 miles) that are currently handling large volumes of freight traffic. Much like trucks, the FSS's transporters are autonomous: each transporter has its own propulsion and travels independently of other transporters. Inspired by railroads, each FSS transporter has steel wheels operating on a steel running surface and can carry either a standardsize freight container or an over-the-road truck trailer. However, unlike either rail or trucks, the FSS runs on an elevated, dedicated guideway to avoid the interference of other transportationmore » systems. The objective of this report is to examine the potential viability for an alternative transportation system for trailers and containers in a multi-national, cross-border setting. The El Paso-Ciudad Juarez region serves as the environment of this analysis.« less

  16. Analysis and testing of aeroelastic model stability augmentation systems. [for supersonic transport aircraft wing and B-52 aircraft control system

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.; Patel, S. M.

    1973-01-01

    Testing and evaluation of a stability augmentation system for aircraft flight control were performed. The flutter suppression system and synthesis conducted on a scale model of a supersonic wing for a transport aircraft are discussed. Mechanization and testing of the leading and trailing edge surface actuation systems are described. The ride control system analyses for a 375,000 pound gross weight B-52E aircraft are presented. Analyses of the B-52E aircraft maneuver load control system are included.

  17. Identification of Residues in the Lipopolysaccharide ABC Transporter That Coordinate ATPase Activity with Extractor Function.

    PubMed

    Simpson, Brent W; Owens, Tristan W; Orabella, Matthew J; Davis, Rebecca M; May, Janine M; Trauger, Sunia A; Kahne, Daniel; Ruiz, Natividad

    2016-10-18

    The surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS), creating a permeability barrier against toxic molecules, including many antimicrobials. To assemble LPS on their surface, Gram-negative bacteria must extract newly synthesized LPS from the inner membrane, transport it across the aqueous periplasm, and translocate it across the outer membrane. The LptA to -G proteins assemble into a transenvelope complex that transports LPS from the inner membrane to the cell surface. The Lpt system powers LPS transport from the inner membrane by using a poorly characterized ATP-binding cassette system composed of the ATPase LptB and the transmembrane domains LptFG. Here, we characterize a cluster of residues in the groove region of LptB that is important for controlling LPS transport. We also provide the first functional characterization of LptFG and identify their coupling helices that interact with the LptB groove. Substitutions at conserved residues in these coupling helices compromise both the assembly and function of the LptB 2 FG complex. Defects in LPS transport conferred by alterations in the LptFG coupling helices can be rescued by changing a residue in LptB that is adjacent to functionally important residues in the groove region. This suppression is achieved by increasing the ATPase activity of the LptB 2 FG complex. Taken together, these data identify a specific binding site in LptB for the coupling helices of LptFG that is responsible for coupling of ATP hydrolysis by LptB with LptFG function to achieve LPS extraction. Lipopolysaccharide (LPS) is synthesized at the cytoplasmic membrane of Gram-negative bacteria and transported across several compartments to the cell surface, where it forms a barrier that protects these organisms from antibiotics. The LptB 2 FG proteins form an ATP-binding cassette (ABC) transporter that uses energy from ATP hydrolysis in the cytoplasm to facilitate extraction of LPS from the outer face of the cytoplasmic membrane prior to transport to the cell surface. How ATP hydrolysis is coupled with LPS release from the membrane is not understood. We have identified residues at the interface between the ATPase and the transmembrane domains of this heteromeric ABC complex that are important for LPS transport, some of which coordinate ATPase activity with LPS release. Copyright © 2016 Simpson et al.

  18. Transport of a Power Plant Tracer Plume over Grand Canyon National Park.

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Bornstein, Robert; Lindsey, Charles G.

    1999-08-01

    Meteorological and air-quality data, as well as surface tracer concentration values, were collected during 1990 to assess the impacts of Navajo Generating Station (NGS) emissions on Grand Canyon National Park (GCNP) air quality. These data have been used in the present investigation to determine between direct and indirect transport routes taken by the NGS plume to produce measured high-tracer concentration events at GCNP.The meteorological data were used as input into a three-dimensional mass-consistent wind model, whose output was used as input into a horizontal forward-trajectory model. Calculated polluted air locations were compared with observed surface-tracer concentration values.Results show that complex-terrain features affect local wind-flow patterns during winter in the Grand Canyon area. Local channeling, decoupled canyon winds, and slope and valley flows dominate in the region when synoptic systems are weak. Direct NGS plume transport to GCNP occurs with northeasterly plume-height winds, while indirect transport to the park is caused by wind direction shifts associated with passing synoptic systems. Calculated polluted airmass positions along the modeled streak lines match measured surface-tracer observations in both space and time.

  19. Can We Control Contaminant Transport In Hydrologic Networks? Application Of Control Theory Concepts To Watershed Management

    NASA Astrophysics Data System (ADS)

    Yeghiazarian, L.; Riasi, M. S.

    2016-12-01

    Although controlling the level of contamination everywhere in the surface water network may not be feasible, it is vital to maintain safe water quality levels in specific areas, e.g. recreational waters. The question then is "what is the most efficient way to fully/partially control water quality in surface water networks?". This can be posed as a control problem where the goal is to efficiently drive the system to a desired state by manipulating few input variables. Such problems reduce to (1) finding the best control locations in the network to influence the state of the system; and (2) choosing the time-variant inputs at the control locations to achieve the desired state of the system with minimum effort. We demonstrate that the optimal solution to control the level of contamination in the network can be found through application of control theory concepts to transport in dendritic surface water networks.

  20. Influence of Heat Treatment of Nickel-Titanium Rotary Endodontic Instruments on Apical Preparation: A Micro-Computed Tomographic Study.

    PubMed

    de Almeida, Bernardo Corrêa; Ormiga, Fabíola; de Araújo, Marcos César Pimenta; Lopes, Ricardo Tadeu; Lima, Inayá Corrêa Barbosa; dos Santos, Bernardo Camargo; Gusman, Heloisa

    2015-12-01

    The aim of this study was to make a 3-dimensional comparison of the canal transportation and changes in apical geometry using micro-computed tomographic imaging after canal preparation with K3 (SybronEndo, Orange, CA) and K3XF (SybronEndo) file systems. Twenty-eight mandibular molars were randomly divided into 2 groups according to the rotary system used in instrumentation: K3 or K3XF. The specimens were scanned by micro-computed tomographic imaging before and after instrumentation. Images before and after instrumentation from each group were compared with regard to canal volume, surface area, and structure model index (SMI) (paired t test, P < .05). After instrumentation, the canals from each group were compared regarding the changes in volume, surface area, SMI, and canal transportation in the last 4 apical mm (t test, P < .05). Instrumentation with the 2 rotary systems significantly changed the canal volume, surface area, and SMI (P < .05). There were no significant differences between instrument types concerning these parameters (P > .05). There were no significant differences between the 2 groups with regard to canal transportation in the last 4 apical mm (P > .05). Both rotary systems showed adequate canal preparations with reduced values of canal transportation. Heat treatment did not influence changes in root canal geometry in the apical region. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Investigation of image archiving for pavement surface distress survey

    DOT National Transportation Integrated Search

    1999-07-26

    The categorization and quantification of the type, severity, and extent of pavement surface distress is a primary method for assessing pavement condition. The current data collection system in the Arkansas State Highway and Transportation Department ...

  2. Benefit-cost assessment of a maintenance decision support system (MDSS) implementation : the city and county of Denver.

    DOT National Transportation Integrated Search

    2009-12-07

    The Federal Highway Administration, U.S. Department of Transportation, has established a Road Weather Management Program (RWMP) that seeks to improve the safety, mobility and productivity of the nations surface transportation modes by integrating ...

  3. Highway Safety Information System guidebook for the Utah state data files. Volume 2 : single variable tabulations

    DOT National Transportation Integrated Search

    1996-07-01

    The increasingly sophisticated demands placed on transportation planning models by the 1990 Clean Air Act Amendments (CAAA), the 1991 Intermodal Surface Transportation Efficiency Act (ISTEA), and to a lesser extent some earlier legislation, have led ...

  4. Longitudinal Joint Repair Best Practices for the Ohio Department of Transportation

    DOT National Transportation Integrated Search

    2017-07-01

    The Ohio Department of Transportation (ODOT) has identified longitudinal joint (LJ) failure of existing hot-mix asphalt (HMA) paving as a systemic weakness in the structure of some asphalt surfaces. In the past, these joint failures were treated as i...

  5. Lunar base scenario cost estimates: Lunar base systems study task 6.1

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The projected development and production costs of each of the Lunar Base's systems are described and unit costs are estimated for transporting the systems to the lunar surface and for setting up the system.

  6. Coupled transport in field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Steinhauer, L. C.; Berk, H. L.; TAE Team

    2018-02-01

    Coupled transport is the close interconnection between the cross-field and parallel fluxes in different regions due to topological changes in the magnetic field. This occurs because perpendicular transport is necessary for particles or energy to leave closed field-line regions, while parallel transport strongly affects evolution of open field-line regions. In most toroidal confinement systems, the periphery, namely, the portion with open magnetic surfaces, is small in thickness and volume compared to the core plasma, the portion with closed surfaces. In field-reversed configurations (FRCs), the periphery plays an outsized role in overall confinement. This effect is addressed by an FRC-relevant model of coupled particle transport that is well suited for immediate interpretation of experiments. The focus here is particle confinement rather than energy confinement since the two track together in FRCs. The interpretive tool yields both the particle transport rate χn and the end-loss time τǁ. The results indicate that particle confinement depends on both χn across magnetic surfaces throughout the plasma and τǁ along open surfaces and that they provide roughly equal transport barriers, inhibiting particle loss. The interpretation of traditional FRCs shows Bohm-like χn and inertial (free-streaming) τǁ. However, in recent advanced beam-driven FRC experiments, χn approaches the classical rate and τǁ is comparable to classic empty-loss-cone mirrors.

  7. Improvement in Capsule Abort Performance Using Supersonic Aerodynamic Interaction by Fences

    NASA Astrophysics Data System (ADS)

    Koyama, Hiroto; Wang, Yunpeng; Ozawa, Hiroshi; Doi, Katsunori; Nakamura, Yoshiaki

    The space transportation system will need advanced abort systems to secure crew against serious accidents. Here this study deals with the capsule-type space transportation systems with a Launch Abort System (LAS). This system is composed of a conic capsule as a Launch Abort Vehicle (LAV) and a cylindrical rocket as a Service Module (SM), and the capsule is moved away from the rocket by supersonic aerodynamic interactions in an emergency. We propose a method to improve the performance of the LAV by installing fences at the edges of surfaces on the rocket and capsule sides. Their effects were investigated by experimental measurements and numerical simulations. Experimental results show that the fences on the rocket and capsule surfaces increase the aerodynamic thrust force on the capsule by 70% in a certain clearance between the capsule and rocket. Computational results show the detailed flow fields where the centripetal flow near the surface on the rocket side is induced by the fence on the rocket side and the centrifugal flow near the surface on the capsule side is blocked by the fence on the capsule side. These results can confirm favorable effects of the fences on the performance of the LAS.

  8. Effects of microscale inertia on heat or mass transfer from a drop

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Deepak; Subramanian, Ganesh

    2012-11-01

    Heat or mass transport from suspensions of solid particles or drops is ubiquitous in many industrial processes. In the zero inertia limit the transport is diffusion limited owing to the presence of closed streamlines around each particle. A small but finite amount of inertia though, results in a vastly different picture, greatly enhancing transport by destroying the closed streamline configuration. We develop a theoretical formulation to study the effects of weak inertia on transport from a density-matched drop in a 2D linear flow. It is shown that, unlike a solid particle, the near-surface streamlines are closed only when the viscosity ratio (λ) exceeds a critical value λc = 2 α / (1- α) , where α is the linear flow parameter measuring relative magnitudes of extension and vorticity. The velocity field on the drop surface can be characterized using a complex-valued analogue of the (C, τ) coordinate system used to describe Jeffrey orbits of an axisymmetric particle. In the open-streamline case (λ < λ c) , convective transport occurs even with zero inertia, and for large Peclet number (Pe) (the relative magnitude of convective to diffusive transport), the Nusselt number (dimensionless rate of heat transfer) is expected to scale as F(α, λ) Pe1/2 and is determined via a boundary layer analysis in the (C, τ) coordinate system. In the closed streamline case (λ > λ c) , similar to the solid particle, inertia plays a crucial role, and the Nusselt number must scale as G(α, λ)Re1/2Pe1/2. A methodology is developed to analyze the convection along spiraling streamlines using a physically motivated choice of coordinate system on the drop surface.

  9. Controlled surface-induced flows from the motion of self-assembled colloidal walkers.

    PubMed

    Sing, Charles E; Schmid, Lothar; Schneider, Matthias F; Franke, Thomas; Alexander-Katz, Alfredo

    2010-01-12

    Biological flows at the microscopic scale are important for the transport of nutrients, locomotion, and differentiation. Here, we present a unique approach for creating controlled, surface-induced flows inspired by a ubiquitous biological system, cilia. Our design is based on a collection of self-assembled colloidal rotors that "walk" along surfaces in the presence of a rotating magnetic field. These rotors are held together solely by magnetic forces that allow for reversible assembly and disassembly of the chains. Furthermore, rotation of the magnetic field allows for straightforward manipulation of the shape and motion of these chains. This system offers a simple and versatile approach for designing microfluidic devices as well as for studying fundamental questions in cooperative-driven motion and transport at the microscopic level.

  10. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    NASA Astrophysics Data System (ADS)

    Nagao, Yuki; Kubo, Takahiro

    2014-12-01

    Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120-670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  11. Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: II. Some general geologic applications

    USGS Publications Warehouse

    Hemley, J.J.; Hunt, J.P.

    1992-01-01

    The experimental metal solubilities for rock-buffered hydrothermal systems provide important insights into the acquisition, transport, and deposition of metals in real hydrothermal systems that produced base metal ore deposits. Water-rock reactions that determine pH, together with total chloride and changes in temperature and fluid pressure, play significant roles in controlling the solubility of metals and determining where metals are fixed to form ore deposits. Deposition of metals in hydrothermal systems occurs where changes such as cooling, pH increase due to rock alteration, boiling, or fluid mixing cause the aqueous metal concentration to exceed saturation. Metal zoning results from deposition occurring at successive saturation surfaces. Zoning is not a reflection simply of relative solubility but of the manner of intersection of transport concentration paths with those surfaces. Saturation surfaces will tend to migrate outward and inward in prograde and retrograde time, respectively, controlled by either temperature or chemical variables. -from Authors

  12. Hydrophobic/Hydrophilic Cooperative Janus System for Enhancement of Fog Collection.

    PubMed

    Cao, Moyuan; Xiao, Jiasheng; Yu, Cunming; Li, Kan; Jiang, Lei

    2015-09-09

    Harvesting micro-droplets from fog is a promising method for solving global freshwater crisis. Different types of fog collectors have been extensively reported during the last decade. The improvement of fog collection can be attributed to the immediate transportation of harvested water, the effective regeneration of the fog gathering surface, etc. Through learning from the nature's strategy for water preservation, the hydrophobic/hydrophilic cooperative Janus system that achieved reinforced fog collection ability is reported here. Directional delivery of the surface water, decreased re-evaporation rate of the harvested water, and thinner boundary layer of the collecting surface contribute to the enhancement of collection efficiency. Further designed cylinder Janus collector can facilely achieve a continuous process of efficient collection, directional transportation, and spontaneous preservation of fog water. This Janus fog harvesting system should improve the understanding of micro-droplet collection system and offer ideas to solve water resource crisis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Modeling and simulation of charged particle beam transport in the UTA 2 meter Time of Flight Positron Annihilation Induced Auger Spectrometer

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Lim, Lawrence; Kalaskar, Sushant; Shastry, Karthik; Satyal, Suman; Weiss, Alexander

    2010-10-01

    Time of Flight Positron Annihilation Induced Auger Electron Spectroscopy (TOF PAES) is a surface analytical technique with high surface selectivity. Almost 95% of the PAES signal originates from the sample's topmost layer due to the trapping of positrons just above the surface in an image-potential well before annihilation. This talk presents a description of the TOF technique as the results of modeling of the charged particle transport used in the design of the 2 meter TOF-PAES system currently under construction at UTA.

  14. Redesigning of Microbial Cell Surface and Its Application to Whole-Cell Biocatalysis and Biosensors.

    PubMed

    Han, Lei; Zhao, Yukun; Cui, Shan; Liang, Bo

    2018-06-01

    Microbial cell surface display technology can redesign cell surfaces with functional proteins and peptides to endow cells some unique features. Foreign peptides or proteins are transported out of cells and immobilized on cell surface by fusing with anchoring proteins, which is an effective solution to avoid substance transfer limitation, enzyme purification, and enzyme instability. As the most frequently used prokaryotic and eukaryotic protein surface display system, bacterial and yeast surface display systems have been widely applied in vaccine, biocatalysis, biosensor, bioadsorption, and polypeptide library screening. In this review of bacterial and yeast surface display systems, different cell surface display mechanisms and their applications in biocatalysis as well as biosensors are described with their strengths and shortcomings. In addition to single enzyme display systems, multi-enzyme co-display systems are presented here. Finally, future developments based on our and other previous reports are discussed.

  15. Assessment of key transport parameters in a karst system under different dynamic conditions based on tracer experiments: the Jeita karst system, Lebanon

    NASA Astrophysics Data System (ADS)

    Doummar, Joanna; Margane, Armin; Geyer, Tobias; Sauter, Martin

    2018-03-01

    Artificial tracer experiments were conducted in the mature karst system of Jeita (Lebanon) under various flow conditions using surface and subsurface tracer injection points, to determine the variation of transport parameters (attenuation of peak concentration, velocity, transit times, dispersivity, and proportion of immobile and mobile regions) along fast and slow flow pathways. Tracer breakthrough curves (TBCs) observed at the karst spring were interpreted using a two-region nonequilibrium approach (2RNEM) to account for the skewness in the TBCs' long tailings. The conduit test results revealed a discharge threshold in the system dynamics, beyond which the transport parameters vary significantly. The polynomial relationship between transport velocity and discharge can be related to the variation of the conduit's cross-sectional area. Longitudinal dispersivity in the conduit system is not a constant value (α = 7-10 m) and decreases linearly with increasing flow rate because of dilution effects. Additionally, the proportion of immobile regions (arising from conduit irregularities) increases with decreasing water level in the conduit system. From tracer tests with injection at the surface, longitudinal dispersivity values are found to be large (8-27 m). The tailing observed in some TBCs is generated in the unsaturated zone before the tracer actually arrives at the major subsurface conduit draining the system. This work allows the estimation and prediction of the key transport parameters in karst aquifers. It shows that these parameters vary with time and flow dynamics, and they reflect the geometry of the flow pathway and the origin of infiltrating (potentially contaminated) recharge.

  16. Power generation technology options for a Mars mission

    NASA Technical Reports Server (NTRS)

    Bozek, John M.; Cataldo, Robert L.

    1994-01-01

    The power requirements and resultant power system performances of an aggressive Mars mission are characterized. The power system technologies discussed will support both cargo and piloted space transport vehicles as well as a six-person crew on the Martian surface for 600 days. The mission uses materials transported by cargo vehicles and materials produced using in-situ planetary feed stock to establish a life-support cache and infrastructure for the follow-on piloted lander. Numerous power system technical options are sized to meet the mission power requirements using conventional and solar, nuclear, and wireless power transmission technologies for stationary, mobile surface, and space applications. Technology selections will depend on key criteria such as mass, volume, area, maturity, and application flexibility.

  17. The Role of the Papillary Epithelium in Stone Growth

    NASA Astrophysics Data System (ADS)

    Bergsland, Kristin J.

    2007-04-01

    The papillary surface epithelium (PSE) covers the renal papilla in mammalian kidneys and serves as a diffusion barrier between the urine on the apical surface and the interstitium on the basolateral surface. The PSE also plays a physiological role in transport of solutes between the urine and interstitium both by active transport and paracellular pathways. Permeability of the PSE may be affected by alterations in specific transporters, components of intercellular tight junctions, cell surface glycosaminoglycans and urine composition. In idiopathic calcium oxalate (CaOx) stone formers, apatite deposits known as Randall's plaque form in the papillary interstitium and lodge beneath the PSE. The presence of plaque may perturb the normal function of the PSE, possibly by provoking the up-regulation of pro-inflammatory cytokines such as TNFα in the interstitium. Disruption of the epithelial barrier may lead to increased permeability and exposure of the plaque matrix to urine constituents, followed by loss of the PSE and growth of CaOx stone over the plaque. To investigate the role of the PSE in stone development, new experimental systems are needed, including animal models of plaque formation as well as cell culture systems for papillary epithelial cells.

  18. Idea Project Final Report, A Prototype System For Real-Time Incident Likelihood Prediction

    DOT National Transportation Integrated Search

    1995-02-28

    THIS INVESTIGATION WAS COMPLETED AS PART OF THE ITS-IDEA PROGRAM WHICH IS ONE OF THREE IDEA PROGRAMS MANAGED BY THE TRANSPORTATION RESEARCH BOARD (TRB) TO FOSTER INNOVATIONS IN SURFACE TRANSPORTATION. IT FOCUSES ON PRODUCTS AND RESULT FOR THE DEVELOP...

  19. 14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... catastrophic failure (such as wing, empennage, control surfaces and their systems, the fuselage, engine... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Fatigue Evaluation § 25..., or by the service history of airplanes of similar structural design and sonic excitation environment...

  20. 14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... contribute to a catastrophic failure (such as wing, empennage, control surfaces and their systems, the... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Fatigue Evaluation § 25... of similar structural design and sonic excitation environment, that— (1) Sonic fatigue cracks are not...

  1. 14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... contribute to a catastrophic failure (such as wing, empennage, control surfaces and their systems, the... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Fatigue Evaluation § 25... of similar structural design and sonic excitation environment, that— (1) Sonic fatigue cracks are not...

  2. 14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... contribute to a catastrophic failure (such as wing, empennage, control surfaces and their systems, the... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Fatigue Evaluation § 25... of similar structural design and sonic excitation environment, that— (1) Sonic fatigue cracks are not...

  3. Final report of the evaluation of the FORETELL consortium operational test : weather information for surface transportation

    DOT National Transportation Integrated Search

    2003-04-01

    Over 17 percent of all fatal crashes occur during winter weather conditions. Of those, 60 percent happen in rural areas (most on non-interstate roadways). The Federal Highway Administration (FHWA) Intelligent Transportation System (ITS) Joint Program...

  4. Implementation of the National Intelligent Transportation Systems Program : 1997 report to Congress

    DOT National Transportation Integrated Search

    2000-07-01

    This report is the first biennial report on the status of the Federal Highway Administration's (FHWA) Value Pricing Pilot Program as required by the Intermodal Surface Transportation Efficiency Act of 1991, Section 1012(b)(5). It follows an iterim le...

  5. Modeled Watershed Runoff Associated with Variations in Precipitation Data with Implications for Contaminant Fluxes

    EPA Science Inventory

    Watershed-scale fate and transport models are important tools for estimating the sources, transformation, and transport of contaminants to surface water systems. Precipitation is one of the primary inputs to watershed biogeochemical models, influencing changes in the water budge...

  6. Xylem Surfactants Introduce a New Element to the Cohesion-Tension Theory1[OPEN

    PubMed Central

    Espino, Susana; Nima, Neda; Do, Aissa Y.T.; Michaud, Joseph M.; Papahadjopoulos-Sternberg, Brigitte; Yang, Jinlong; Steppe, Kathy

    2017-01-01

    Vascular plants transport water under negative pressure without constantly creating gas bubbles that would disable their hydraulic systems. Attempts to replicate this feat in artificial systems almost invariably result in bubble formation, except under highly controlled conditions with pure water and only hydrophilic surfaces present. In theory, conditions in the xylem should favor bubble nucleation even more: there are millions of conduits with at least some hydrophobic surfaces, and xylem sap is saturated or sometimes supersaturated with atmospheric gas and may contain surface-active molecules that can lower surface tension. So how do plants transport water under negative pressure? Here, we show that angiosperm xylem contains abundant hydrophobic surfaces as well as insoluble lipid surfactants, including phospholipids, and proteins, a composition similar to pulmonary surfactants. Lipid surfactants were found in xylem sap and as nanoparticles under transmission electron microscopy in pores of intervessel pit membranes and deposited on vessel wall surfaces. Nanoparticles observed in xylem sap via nanoparticle-tracking analysis included surfactant-coated nanobubbles when examined by freeze-fracture electron microscopy. Based on their fracture behavior, this technique is able to distinguish between dense-core particles, liquid-filled, bilayer-coated vesicles/liposomes, and gas-filled bubbles. Xylem surfactants showed strong surface activity that reduces surface tension to low values when concentrated as they are in pit membrane pores. We hypothesize that xylem surfactants support water transport under negative pressure as explained by the cohesion-tension theory by coating hydrophobic surfaces and nanobubbles, thereby keeping the latter below the critical size at which bubbles would expand to form embolisms. PMID:27927981

  7. Xylem Surfactants Introduce a New Element to the Cohesion-Tension Theory.

    PubMed

    Schenk, H Jochen; Espino, Susana; Romo, David M; Nima, Neda; Do, Aissa Y T; Michaud, Joseph M; Papahadjopoulos-Sternberg, Brigitte; Yang, Jinlong; Zuo, Yi Y; Steppe, Kathy; Jansen, Steven

    2017-02-01

    Vascular plants transport water under negative pressure without constantly creating gas bubbles that would disable their hydraulic systems. Attempts to replicate this feat in artificial systems almost invariably result in bubble formation, except under highly controlled conditions with pure water and only hydrophilic surfaces present. In theory, conditions in the xylem should favor bubble nucleation even more: there are millions of conduits with at least some hydrophobic surfaces, and xylem sap is saturated or sometimes supersaturated with atmospheric gas and may contain surface-active molecules that can lower surface tension. So how do plants transport water under negative pressure? Here, we show that angiosperm xylem contains abundant hydrophobic surfaces as well as insoluble lipid surfactants, including phospholipids, and proteins, a composition similar to pulmonary surfactants. Lipid surfactants were found in xylem sap and as nanoparticles under transmission electron microscopy in pores of intervessel pit membranes and deposited on vessel wall surfaces. Nanoparticles observed in xylem sap via nanoparticle-tracking analysis included surfactant-coated nanobubbles when examined by freeze-fracture electron microscopy. Based on their fracture behavior, this technique is able to distinguish between dense-core particles, liquid-filled, bilayer-coated vesicles/liposomes, and gas-filled bubbles. Xylem surfactants showed strong surface activity that reduces surface tension to low values when concentrated as they are in pit membrane pores. We hypothesize that xylem surfactants support water transport under negative pressure as explained by the cohesion-tension theory by coating hydrophobic surfaces and nanobubbles, thereby keeping the latter below the critical size at which bubbles would expand to form embolisms. © 2017 American Society of Plant Biologists. All Rights Reserved.

  8. Highway-rail grade crossing surface material performance.

    DOT National Transportation Integrated Search

    2014-04-01

    Highway-Railroad grade crossings are an integral part of the transportation system, allowing the : two modes to operate in the same areas. Performance of the surface material at grade : crossings has been an ongoing issue. This study reviewed the lit...

  9. Evaluation of high friction surface locations in Kansas : technical summary.

    DOT National Transportation Integrated Search

    2016-05-01

    In 2009, the Kansas Department of Transportation entered into an agreement with the Federal Highway Administration to fulfill the requirements of the High Friction Surface Materials Enhancing Safety at Horizontal Curves on the National Highway System...

  10. Methane Propulsion Elements for Mars

    NASA Technical Reports Server (NTRS)

    Percy, Tom; Polsgrove, Tara; Thomas, Dan

    2017-01-01

    Human exploration beyond LEO relies on a suite of propulsive elements to: (1) Launch elements into space, (2) Transport crew and cargo to and from various destinations, (3) Provide access to the surface of Mars, (4) Launch crew from the surface of Mars. Oxygen/Methane propulsion systems meet the unique requirements of Mars surface access. A common Oxygen/Methane propulsion system is being considered to reduce development costs and support a wide range of primary & alternative applications.

  11. Close binary evolution. II. Impact of tides, wind magnetic braking, and internal angular momentum transport

    NASA Astrophysics Data System (ADS)

    Song, H. F.; Meynet, G.; Maeder, A.; Ekström, S.; Eggenberger, P.; Georgy, C.; Qin, Y.; Fragos, T.; Soerensen, M.; Barblan, F.; Wade, G. A.

    2018-01-01

    Context. Massive stars with solar metallicity lose important amounts of rotational angular momentum through their winds. When a magnetic field is present at the surface of a star, efficient angular momentum losses can still be achieved even when the mass-loss rate is very modest, at lower metallicities, or for lower-initial-mass stars. In a close binary system, the effect of wind magnetic braking also interacts with the influence of tides, resulting in a complex evolution of rotation. Aims: We study the interactions between the process of wind magnetic braking and tides in close binary systems. Methods: We discuss the evolution of a 10 M⊙ star in a close binary system with a 7 M⊙ companion using the Geneva stellar evolution code. The initial orbital period is 1.2 days. The 10 M⊙ star has a surface magnetic field of 1 kG. Various initial rotations are considered. We use two different approaches for the internal angular momentum transport. In one of them, angular momentum is transported by shear and meridional currents. In the other, a strong internal magnetic field imposes nearly perfect solid-body rotation. The evolution of the primary is computed until the first mass-transfer episode occurs. The cases of different values for the magnetic fields and for various orbital periods and mass ratios are briefly discussed. Results: We show that, independently of the initial rotation rate of the primary and the efficiency of the internal angular momentum transport, the surface rotation of the primary will converge, in a time that is short with respect to the main-sequence lifetime, towards a slowly evolving velocity that is different from the synchronization velocity. This "equilibrium angular velocity" is always inferior to the angular orbital velocity. In a given close binary system at this equilibrium stage, the difference between the spin and the orbital angular velocities becomes larger when the mass losses and/or the surface magnetic field increase. The treatment of the internal angular momentum transport has a strong impact on the evolutionary tracks in the Hertzsprung-Russell Diagram as well as on the changes of the surface abundances resulting from rotational mixing. Our modelling suggests that the presence of an undetected close companion might explain rapidly rotating stars with strong surface magnetic fields, having ages well above the magnetic braking timescale. Our models predict that the rotation of most stars of this type increases as a function of time, except for a first initial phase in spin-down systems. The measure of their surface abundances, together, when possible, with their mass-luminosity ratio, provide interesting constraints on the transport efficiencies of angular momentum and chemical species. Conclusions: Close binaries, when studied at phases predating any mass transfer, are key objects to probe the physics of rotation and magnetic fields in stars.

  12. Effects of magnetic drift tangential to magnetic surfaces on neoclassical transport in non-axisymmetric plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuoka, Seikichi, E-mail: matsuoka@rist.or.jp; Satake, Shinsuke; Kanno, Ryutaro

    2015-07-15

    In evaluating neoclassical transport by radially local simulations, the magnetic drift tangential to a flux surface is usually ignored in order to keep the phase-space volume conservation. In this paper, effect of the tangential magnetic drift on the local neoclassical transport is investigated. To retain the effect of the tangential magnetic drift in the local treatment of neoclassical transport, a new local formulation for the drift kinetic simulation is developed. The compressibility of the phase-space volume caused by the tangential magnetic drift is regarded as a source term for the drift kinetic equation, which is solved by using a two-weightmore » δf Monte Carlo method for non-Hamiltonian system [G. Hu and J. A. Krommes, Phys. Plasmas 1, 863 (1994)]. It is demonstrated that the effect of the drift is negligible for the neoclassical transport in tokamaks. In non-axisymmetric systems, however, the tangential magnetic drift substantially changes the dependence of the neoclassical transport on the radial electric field E{sub r}. The peaked behavior of the neoclassical radial fluxes around E{sub r }={sub  }0 observed in conventional local neoclassical transport simulations is removed by taking the tangential magnetic drift into account.« less

  13. The space shuttle at work

    NASA Technical Reports Server (NTRS)

    Allaway, H.

    1979-01-01

    The concept of the orbital flight of the space shuttle and the development of the space transportation system are addressed. How the system came to be, why it is designed the way it is, what is expected of it, and how it may grow are among the questions considered. Emphasis is placed on the effect of the space transportation system on U.S. space exploration in the next decade, including plans to make space an extension of life on the Earth's surface.

  14. 14 CFR 25.395 - Control system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Control system. 25.395 Section 25.395... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.395 Control system. (a) Longitudinal, lateral, directional, and drag control system and their supporting structures must...

  15. 14 CFR 25.395 - Control system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Control system. 25.395 Section 25.395... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.395 Control system. (a) Longitudinal, lateral, directional, and drag control system and their supporting structures must...

  16. Code System for Performance Assessment Ground-water Analysis for Low-level Nuclear Waste.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MATTHEW,; KOZAK, W.

    1994-02-09

    Version 00 The PAGAN code system is a part of the performance assessment methodology developed for use by the U. S. Nuclear Regulatory Commission in evaluating license applications for low-level waste disposal facilities. In this methodology, PAGAN is used as one candidate approach for analysis of the ground-water pathway. PAGAN, Version 1.1 has the capability to model the source term, vadose-zone transport, and aquifer transport of radionuclides from a waste disposal unit. It combines the two codes SURFACE and DISPERSE which are used as semi-analytical solutions to the convective-dispersion equation. This system uses menu driven input/out for implementing a simplemore » ground-water transport analysis and incorporates statistical uncertainty functions for handling data uncertainties. The output from PAGAN includes a time- and location-dependent radionuclide concentration at a well in the aquifer, or a time- and location-dependent radionuclide flux into a surface-water body.« less

  17. U.S. Border Crossings with Canada and Mexico - Port Facilities, Inventory, and Constraints. Volume 2.

    DOT National Transportation Integrated Search

    1997-10-01

    The Federal Intelligent Transportation Systems (ITS) program, came into being as a result of the Intermodal Surface Transportation Efficiency Act of 1991. In the years since, the ITS field has developed from a collection of ideas and isolated applica...

  18. 14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... contribute to a catastrophic failure (such as wing, empennage, control surfaces and their systems, the... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Fatigue Evaluation § 25... and sonic excitation environment, that— (1) Sonic fatigue cracks are not probable in any part of the...

  19. Idea Project Final Report, Development Of An Intelligent Air Brake Warning System For Commercial Vehicles

    DOT National Transportation Integrated Search

    1996-05-31

    THIS INVESTIGATION WAS COMPLETED AS PART OF THE ITS-IDEA PROGRAM WHICH IS ONE OF THREE IDEA PROGRAMS MANAGED BY THE TRANSPORTATION RESEARCH BOARD (TRB) TO FOSTER INNOVATIONS IN SURFACE TRANSPORTATION. IT FOCUSES ON PRODUCTS AND RESULT FOR THE DEVELOP...

  20. 14 CFR 25.657 - Hinges.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.657 Hinges. (a) For control surface hinges, including ball, roller, and self-lubricated bearing hinges, the approved rating of... hinge line. [Amdt. 25-23, 35 FR 5674, Apr. 8, 1970] Control Systems ...

  1. 14 CFR 25.657 - Hinges.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.657 Hinges. (a) For control surface hinges, including ball, roller, and self-lubricated bearing hinges, the approved rating of... hinge line. [Amdt. 25-23, 35 FR 5674, Apr. 8, 1970] Control Systems ...

  2. 14 CFR 25.657 - Hinges.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.657 Hinges. (a) For control surface hinges, including ball, roller, and self-lubricated bearing hinges, the approved rating of... hinge line. [Amdt. 25-23, 35 FR 5674, Apr. 8, 1970] Control Systems ...

  3. 14 CFR 25.657 - Hinges.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.657 Hinges. (a) For control surface hinges, including ball, roller, and self-lubricated bearing hinges, the approved rating of... hinge line. [Amdt. 25-23, 35 FR 5674, Apr. 8, 1970] Control Systems ...

  4. Integrated Flight-propulsion Control Concepts for Supersonic Transport Airplanes

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gilyard, Glenn B.; Gelhausen, Paul A.

    1990-01-01

    Integration of propulsion and flight control systems will provide significant performance improvements for supersonic transport airplanes. Increased engine thrust and reduced fuel consumption can be obtained by controlling engine stall margin as a function of flight and engine operating conditions. Improved inlet pressure recovery and decreased inlet drag can result from inlet control system integration. Using propulsion system forces and moments to augment the flight control system and airplane stability can reduce the flight control surface and tail size, weight, and drag. Special control modes may also be desirable for minimizing community noise and for emergency procedures. The overall impact of integrated controls on the takeoff gross weight for a generic high speed civil transport is presented.

  5. A conceptual cross-scale approach for linking empirical discharge measurements and regional groundwater models with application to legacy nitrogen transport and coastal nitrogen management

    NASA Astrophysics Data System (ADS)

    Barclay, J. R.; Helton, A. M.; Starn, J. J.; Briggs, M. A.

    2016-12-01

    Despite years of management, seasonal hypoxia from excess nitrogen (N) is a pervasive problem in many coastal waters. Current approaches to managing coastal eutrophication in the United States (USA) focus on surface runoff and river transport of nutrients, and often assume that groundwater N is at steady state. This is not necessarily the case, as terrestrial N inputs are affected by changing land use and nutrient management practices. Furthermore, approximately 70% of surface water in the USA is derived from groundwater and there is widespread N contamination in many of our nation's aquifers. Nitrogen export via groundwater discharge to streams during baseflow may be the reason many impaired coastal systems show little improvement. There is a critical need to develop approaches that consider the effects of groundwater transport on N loading to surface waters. Aquifer transport times, which can be decades or even centuries longer than surface water transport times, introduce lags between changes in terrestrial management and reductions in coastal loads. Ignoring these lags can lead to overly ambitious and unrealistic load reduction goals, or incorrect conclusions regarding the effectiveness of management strategies. Additionally, regional groundwater models typically have a coarse resolution that makes it difficult to incorporate fine-scale processes that drive N transformations, such as groundwater-surface water exchange across steep redox gradients at stream bed interfaces. Despite this challenge, representing these important fine-scale processes well is essential to modeling groundwater transport of N across regional scales and to making informed management decisions. We present 1) a conceptual approach to linking regional models and fine-scale empirical measurements, and 2) preliminary groundwater flow and transport model results for the Housatonic and Farmington Rivers in Connecticut, USA. Our cross-scale approach utilizes thermal infrared imaging and vertical temperature profiling to calculate groundwater discharge and to iteratively refine and downscale the groundwater flow model. Model results may improve management of N loading from groundwater to sensitive coastal systems, such as the Long Island Sound.

  6. Transpiration Driven Hydrologic Transport in vegetated shallow water environments: Implications on Diel and Seasonal Soil Biogeochemical Processes and System Management

    NASA Astrophysics Data System (ADS)

    Bachand, P.; Bachand, S. M.; Fleck, J.; Anderson, F.

    2011-12-01

    Hydrology arguably plays the most important role in biogeochemical cycling of mercury in wetlands and other shallow aquatic systems. CFSTR, PFR and non-ideal reactor models are oftentimes currently used to hydrologically assess these systems and to account for the fate, transport and cycling of constituents of concern (COC) with systems assumed to be non-leaky and with diffusion dominating soil transport. Yet a number of results in the literature imply transpiration drives soil transport: transpiration into the root zone is in the range of 50 - 75% of ET seasonally; gaseous emissions from aquatic systems show a diel pattern that tracks diel ET patterns; in long detention time aquatic systems ET is the largest sink for applied surface waters; and non-reactive tracers when applied to surface waters can find themselves in the root zone and within plants. All these findings strongly suggest transpiration driven infiltration into the root zone, is a significant hydrologic pathway for constituents and is an important transport mechanism. This paper examines the annual water budget for four shallow aquatic land uses in the Yolo Bypass, California: rice, wild rice, fallowed fields and wetlands. Results indicate that differences in hydrology between the fields, particularly the temporal nature of transpiration, play a significant role in mercury transformations and transport. During the irrigation period, fallowed fields discharged 6 cm of surface water (15% applied water), rice fields 31 - 43 cm (27 - 31% applied water), and wild rice fields 16 - 39 cm (15 - 31% applied water). Evapotranspiration rates were in the range of 120 - 130 cm/y for all land uses (i.e. rice, wild rice, fallowed fields and seasonal wetlands) except for the permanent wetland which was about 1/3 higher at about 170 cm/y. During the summer, approximately 50% of the applied surface water was drawn into the root zone to meet transpiration demands. Based upon results from our water budget and utilizing modified Peclet No. calculations, we quantified the relative importance of upward diffusion from the sediments and downward advection from transpiration as hydrologic transport mechanisms in the root zone. Transpiration driven infiltration moves water past the diffusive zone within 1 - 2 days in this system during the summer months. With the waning seasons, evapotranspiration diminishes until by winter diffusion dominates throughout the entire root zone. This model has great implications on the analyses of soil biogeochemical process in the root zone of shallow aquatic systems. Downward advection is a major transport mechanism into the root zone of shallow flooded aquatic systems and provides an important physical mechanism that drives variability in the seasonal and diel storage; release and cycling of COCs; and the creation of both a physical and chemical barrierd to upward diffusion of soil-borne COCs into the water column. Models that do not account for root zone interactions may not be able to capture diel and seasonal differences. Moreover, these interactions may lead to unanticipated environmental consequences as a result of cultural practices.

  7. Integrated loessite-paleokarst depositional system, early Pennsylvanian Molas Formation, Paradox Basin, southwestern Colorado, U.S.A.

    NASA Astrophysics Data System (ADS)

    Evans, James E.; Reed, Jason M.

    2007-03-01

    Mississippian paleokarst served as a dust trap for the oldest known Paleozoic loessite in North America. The early Pennsylvanian Molas Formation consists of loessite facies (sorted, angular, coarse-grained quartz siltstone), infiltration facies (loess redeposited as cave sediments within paleokarst features of the underlying Mississippian Leadville Limestone), colluvium facies (loess infiltrated into colluvium surrounding paleokarst towers) and fluvial facies (siltstone-rich, fluvial channel and floodplain deposits with paleosols). The depositional system evolved from an initial phase of infiltration and colluvium facies that were spatially and temporally related to the paleokarst surface, to loessite facies that mantled the paleotopography, and to fluvial facies that were intercalated with marine-deltaic rocks of the overlying Pennsylvanian Hermosa Formation. This sequence is interpreted as a response to the modification of the dust-trapping ability of the paleokarst surface. Loess was initially eroded from the surface, transported and redeposited in the subsurface by the karst paleohydrologic system, maintaining the dust-trapping ability of the paleotopographic surface. Later, the paleotopographic surface was buried when loess accumulation rates exceeded the transport capacity of the karst paleohydrologic system. These changes could have occurred because of (1) increased dust input rates in western Pangaea, (2) rising base levels and/or (3) porosity loss due to deposition within paleokarst passageways.

  8. Studies of Cu adatom island ripening on Cu(100) by LEEM

    NASA Astrophysics Data System (ADS)

    Bussmann, Ezra; Kellogg, Gary L.

    2007-03-01

    Simple metal surfaces are model systems for characterizing kinetic processes governing the growth and stability of nanoscale structures. It is generally presumed that diffusive transport of adatoms across terraces determines the rate of these processes. However, STM studies in the temperature range T˜330-420 K reveal that transport between step edges on the Cu(100) surface is limited by detachment barriers at the step edges, rather than by the adatom diffusion barrier.^1 This is because on the Cu(100) surface, mass transport is mediated primarily by vacancies, instead of adatoms. We have used low energy electron microscopy (LEEM) movies to characterize coarsening of Cu islands on the Cu(100) surface in the range T˜460-560 K. By measuring the temperature dependence of the island decay rate we find an activation barrier of 0.9±0.1 eV. This value is comparable to the 0.80±0.03 eV barrier found in STM studies.^1 However, we are not able to conclude that transport is entirely detachment limited at these elevated temperatures. This work serves as background to establish whether or not Pd alloying in the Cu(100) surface will slow Cu surface transport. ^2 1. C. Kl"unker, et al., PRB 58, R7556 (1998). 2. M. L. Grant, et al., PRL 86, 4588 (2001). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. DOE NNSA, Contract No. DE-AC04-94AL85000.

  9. Surface Polarity and Self-Structured Nanogrooves Collaboratively Oriented Molecular Packing for High Crystallinity toward Efficient Charge Transport.

    PubMed

    Ji, Deyang; Xu, Xiaomin; Jiang, Longfeng; Amirjalayer, Saeed; Jiang, Lang; Zhen, Yonggang; Zou, Ye; Yao, Yifan; Dong, Huanli; Yu, Junsheng; Fuchs, Harald; Hu, Wenping

    2017-02-22

    Efficient charge transport in organic semiconductors is essential for construction of high performance optoelectronic devices. Herein, for the first time, we demonstrate that poly(amic acid) (PAA), a facilely deposited and annealing-free dielectric layer, can tailor the growth of organic semiconductor films with large area and high crystallinity toward efficient charge transport and high mobility in their thin film transistors. Pentacene is used as a model system to demonstrate the concept with mobility up to 30.6 cm 2 V -1 s -1 , comparable to its high quality single crystal devices. The structure of PAA has corrugations with OH groups pointing out of the surface, and the presence of an amide bond further allows adjacent polymer strands to interact via hydrogen bonding, leading to a self-rippled surface perpendicular to the corrugation. On the other hand, the strong polar groups (-COOH/-CONH) of PAA could provide repulsive forces between PAA and pentacene, which results in the vertical orientation of pentacene on the dielectric surface. Indeed, in comparison with its imidized counterpart polyimide (PI), PAA dielectric significantly enhances the film crystallinity, drastically increases the domain size, and decreases the interface trap density, giving rise to superior device performance with high mobility. This concept can be extended to more organic semiconducting systems, e.g., 2,6-diphenylanthracene (DPA), tetracene, copper phthalocyanine (CuPc), and copper hexadecafluorophthalocyanine (F 16 CuPc), demonstrating the general applicability. The results show the importance of combining surface nanogrooves with the strong polarity in orienting the molecular arrangement for high crystallinity toward efficient charge transport in organic semiconductors.

  10. CTAS and NASA Air Traffic Management Fact Sheets for En Route Descent Advisor and Surface Management System

    NASA Technical Reports Server (NTRS)

    Lee, Katharine

    2004-01-01

    The Surface Management System (SMS) is a decision support tool that will help controllers, traffic managers, and NAS users manage the movements of aircraft on the surface of busy airports, improving capacity, efficiency, and flexibility. The Advanced Air Transportation Technologies (AATT) Project at NASA is developing SMS in cooperation with the FAA's Free Flight Phase 2 (FFP2) pro5ram. SMS consists of three parts: a traffic management tool, a controller tool, and a National Airspace System (NAS) information tool.

  11. Interpreting OCO-2 Constrained CO2 Surface Flux Estimates Through the Lens of Atmospheric Transport Uncertainty.

    NASA Astrophysics Data System (ADS)

    Schuh, A. E.; Jacobson, A. R.; Basu, S.; Weir, B.; Baker, D. F.; Bowman, K. W.; Chevallier, F.; Crowell, S.; Deng, F.; Denning, S.; Feng, L.; Liu, J.

    2017-12-01

    The orbiting carbon observatory (OCO-2) was launched in July 2014 and has collected three years of column mean CO2 (XCO2) data. The OCO-2 model inter-comparison project (MIP) was formed to provide a means of analysis of results from many different atmospheric inversion modeling systems. Certain facets of the inversion systems, such as observations and fossil fuel CO2 fluxes were standardized to remove first order sources of difference between the systems. Nevertheless, large variations amongst the flux results from the systems still exist. In this presentation, we explore one dimension of this uncertainty, the impact of different atmospheric transport fields, i.e. wind speeds and directions. Early results illustrate a large systematic difference between two classes of atmospheric transport, arising from winds in the parent GEOS-DAS (NASA-GMAO) and ERA-Interim (ECMWF) data assimilation models. We explore these differences and their effect on inversion-based estimates of surface CO2 flux by using a combination of simplified inversion techniques as well as the full OCO-2 MIP suite of CO2 flux estimates.

  12. United States - Japan evaluation tools and methods.

    DOT National Transportation Integrated Search

    2014-01-01

    Cooperative systems based on intelligent transportation system (ITS) technologies can deliver significant benefits for all road users and the public, especially in terms of safer, more energy-efficient, and environmentally friendly surface transporta...

  13. System and method for controlling hydrogen elimination during carbon nanotube synthesis from hydrocarbons

    DOEpatents

    Reilly, Peter T. A.

    2010-03-23

    A system and method for producing carbon nanotubes by chemical vapor deposition includes a catalyst support having first and second surfaces. The catalyst support is capable of hydrogen transport from the first to the second surface. A catalyst is provided on the first surface of the catalyst support. The catalyst is selected to catalyze the chemical vapor deposition formation of carbon nanotubes. A fuel source is provided for supplying fuel to the catalyst.

  14. Verification tests of durable TPS concepts

    NASA Technical Reports Server (NTRS)

    Shideler, J. L.; Webb, G. L.; Pittman, C. M.

    1984-01-01

    Titanium multiwall, superalloy honeycomb, and Advanced Carbon-carbon (ACC) multipost Thermal Protection System (TPS) concepts are being developed to provide durable protection for surfaces of future space transportation systems. Verification tests including thermal, vibration, acoustic, water absorption, lightning strike, and aerothermal tests are described. Preliminary results indicate that the three TPS concepts are viable up to a surface temperature in excess of 2300 F.

  15. Relating a Jet-Surface Interaction Experiment to a Commercial Supersonic Transport Aircraft Using Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Dippold, Vance F., III; Friedlander, David

    2017-01-01

    NASA and industry partners desire to reintroduce commercial supersonic airliners to the air transportation system. There are a number of technical challenges that must be overcome by future commercial supersonic airliners to make them viable solutions in society. NASA is specifically concerned with the challenges of reducing boom during supersonic cruise, maximizing range, and reducing airport community noise to acceptable levels. Concepts for commercial supersonic transports, such as the concept aircraft by Lockheed Martin pictured in Figure 1, place the engine nozzles in close proximity to wing and tail surfaces. However, the effects of noise shielding and noise radiation are not fully understood for installed propulsion systems. A series of acoustic tests were conducted on the NASA Glenn Research Centers Nozzle Acoustic Test Rig (NATR) to address the challenge of reducing airport community noise, which is often dominated by jet noise. To best represent the conceptual aircraft in the acoustic tests, noise measurements were taken of the jet in close proximity of simulated aerodynamic surfaces, not simply of an isolated jet.

  16. Strong compensation hinders the p-type doping of ZnO: a glance over surface defect levels

    NASA Astrophysics Data System (ADS)

    Huang, B.

    2016-07-01

    We propose a surface doping model of ZnO to elucidate the p-type doping and compensations in ZnO nanomaterials. With an N-dopant, the effects of N on the ZnO surface demonstrate a relatively shallow acceptor level in the band gap. As the dimension of the ZnO materials decreases, the quantum confinement effects will increase and render the charge transfer on surface to influence the shifting of Fermi level, by evidence of transition level changes of the N-dopant. We report that this can overwhelm the intrinsic p-type conductivity and transport of the ZnO bulk system. This may provide a possible route of using surface doping to modify the electronic transport and conductivity of ZnO nanomaterials.

  17. Idea Project Final Report, A Sequential Hypothesis Testing-Based Decision-Making System For Freeway Incident Response

    DOT National Transportation Integrated Search

    1995-10-01

    THIS INVESTIGATION WAS COMPLETED AS PART OF THE ITS-IDEA PROGRAM WHICH IS ONE OF THREE IDEA PROGRAMS MANAGED BY THE TRANSPORTATION RESEARCH BOARD (TRB) TO FOSTER INNOVATIONS IN SURFACE TRANSPORTATION. IT FOCUSES ON PRODUCTS AND RESULT FOR THE DEVELOP...

  18. Quantification of turfgrass buffer performance in reducing transport of pesticides in surface runoff

    USDA-ARS?s Scientific Manuscript database

    Pesticides are used to control pests in managed biological system such as agricultural crops and golf course turf. Off-site transport of pesticides with runoff and their potential to adversely affect non-target aquatic organisms has inspired the evaluation of management practices to minimize pestic...

  19. 49 CFR 38.79 - Floors, steps and thresholds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Floors, steps and thresholds. 38.79 Section 38.79... SPECIFICATIONS FOR TRANSPORTATION VEHICLES Light Rail Vehicles and Systems § 38.79 Floors, steps and thresholds. (a) Floor surfaces on aisles, step treads, places for standees, and areas where wheelchair and...

  20. 49 CFR 38.99 - Floors, steps and thresholds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Floors, steps and thresholds. 38.99 Section 38.99... SPECIFICATIONS FOR TRANSPORTATION VEHICLES Commuter Rail Cars and Systems § 38.99 Floors, steps and thresholds. (a) Floor surfaces on aisles, step treads, places for standees, and areas where wheelchair and...

  1. 49 CFR 38.117 - Floors, steps and thresholds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Floors, steps and thresholds. 38.117 Section 38...) ACCESSIBILITY SPECIFICATIONS FOR TRANSPORTATION VEHICLES Intercity Rail Cars and Systems § 38.117 Floors, steps and thresholds. (a) Floor surfaces on aisles, step treads and areas where wheelchair and mobility aid...

  2. A COMPUTER-CONTROLLED SYSTEM FOR GENERATING UNIFORM SURFACE DEPOSITS TO STUDY THE TRANSPORT OF PARTICULATE MATTER

    EPA Science Inventory

    Improved methods for measuring and assessing microenvironmental exposure in individuals are needed. How human activities affect particulate matter in the personal cloud is poorly understood. A quality assurance tool to aid the study of particle transport mechanisms (e.g., re-en...

  3. Watershed Nitrogen Modeling: Benefits of Diverse Approaches Using a Case Study from New York State

    EPA Science Inventory

    Watershed-scale models have evolved as an important tool for estimating the sources, transformation, and transport of contaminants to surface water systems. A wide variety of modeling approaches exist for estimating inputs, fate, and transport of constituents but most are broadl...

  4. PAGAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, M.S.Y.

    1990-12-01

    The PAGAN code system is a part of the performance assessment methodology developed for use by the U.S. Nuclear Regulatory Commission in evaluating license applications for low-level waste disposal facilities. In this methodology, PAGAN is used as one candidate approach for analysis of the ground-water pathway. PAGAN, Version 1.1. has the capability to model the source term, vadose-zone transport, and aquifer transport of radionuclides from a waste disposal unit. It combines the two codes SURFACE and DISPERSE which are used as semi-analytical solutions to the convective-dispersion equation. This system uses menu driven input/out for implementing a simple ground-water transport analysismore » and incorporates statistical uncertainty functions for handling data uncertainties. The output from PAGAN includes a time and location-dependent radionuclide concentration at a well in the aquifer, or a time and location-dependent radionuclide flux into a surface-water body.« less

  5. An Integrated Hybrid Transportation Architecture for Human Mars Expeditions

    NASA Technical Reports Server (NTRS)

    Merrill, Raymond G.; Chai, Patrick R.; Qu, Min

    2015-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture that uses both chemical and electric propulsion systems on the same vehicle to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By applying chemical and electrical propulsion where each is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper presents an integrated Hybrid in-space transportation architecture for piloted missions and delivery of cargo. A concept for a Mars campaign including orbital and Mars surface missions is described in detail including a system concept of operations and conceptual design. Specific constraints, margin, and pinch points are identified for the architecture and opportunities for critical path commercial and international collaboration are discussed.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, Timothy D.; Babauta, Jerome T.; Davenport, Emily K.

    We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: (i) showing that serially increasing NaCl concentration up to 200mM increased current linearly up to a total of þ273% vs. 0mM NaCl under advective conditions; (ii) growing the biofilm with a starting concentration of 200mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and (iii) showing that un-colonized surface area remained even after steadystate current was reached. After accounting for iR effects, we confirmedmore » that the excess surface area existed despite a non-zero overpotential. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant.« less

  7. Surface Connectivity and Interocean Exchanges From Drifter-Based Transition Matrices

    NASA Astrophysics Data System (ADS)

    McAdam, Ronan; van Sebille, Erik

    2018-01-01

    Global surface transport in the ocean can be represented by using the observed trajectories of drifters to calculate probability distribution functions. The oceanographic applications of the Markov Chain approach to modeling include tracking of floating debris and water masses, globally and on yearly-to-centennial time scales. Here we analyze the error inherent with mapping trajectories onto a grid and the consequences for ocean transport modeling and detection of accumulation structures. A sensitivity analysis of Markov Chain parameters is performed in an idealized Stommel gyre and western boundary current as well as with observed ocean drifters, complementing previous studies on widespread floating debris accumulation. Focusing on two key areas of interocean exchange—the Agulhas system and the North Atlantic intergyre transport barrier—we assess the capacity of the Markov Chain methodology to detect surface connectivity and dynamic transport barriers. Finally, we extend the methodology's functionality to separate the geostrophic and nongeostrophic contributions to interocean exchange in these key regions.

  8. Meridional displacement of the Antarctic Circumpolar Current

    PubMed Central

    Gille, Sarah T.

    2014-01-01

    Observed long-term warming trends in the Southern Ocean have been interpreted as a sign of increased poleward eddy heat transport or of a poleward displacement of the entire Antarctic Circumpolar Current (ACC) frontal system. The two-decade-long record from satellite altimetry is an important source of information for evaluating the mechanisms governing these trends. While several recent studies have used sea surface height contours to index ACC frontal displacements, here altimeter data are instead used to track the latitude of mean ACC transport. Altimetric height contours indicate a poleward trend, regardless of whether they are associated with ACC fronts. The zonally averaged transport latitude index shows no long-term trend, implying that ACC meridional shifts determined from sea surface height might be associated with large-scale changes in sea surface height more than with localized shifts in frontal positions. The transport latitude index is weakly sensitive to the Southern Annular Mode, but is uncorrelated with El Niño/Southern Oscillation. PMID:24891396

  9. 30 CFR 57.6308 - Initiation systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Initiation systems. 57.6308 Section 57.6308 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Transportation-Surface and Underground § 57.6308 Initiation systems. Initiation systems shall be used in...

  10. 30 CFR 57.6308 - Initiation systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Initiation systems. 57.6308 Section 57.6308 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Transportation-Surface and Underground § 57.6308 Initiation systems. Initiation systems shall be used in...

  11. 30 CFR 57.6308 - Initiation systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Initiation systems. 57.6308 Section 57.6308 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Transportation-Surface and Underground § 57.6308 Initiation systems. Initiation systems shall be used in...

  12. Interactive transport of guanidinylated poly(propylene imine)-based dendrimers through liposomal and cellular membranes.

    PubMed

    Tsogas, Ioannis; Sideratou, Zili; Tsiourvas, Dimitris; Theodossiou, Theodossis A; Paleos, Constantinos M

    2007-10-15

    The ability of guanidinylated poly(propylene imine) dendrimers to translocate across lipid bilayers was assessed by employing either a model phosphate-bearing liposomal membrane system or A549 human lung carcinoma cells. Two dendrimer generations, differing in the number of surface guanidinium groups, were employed, while surface acetylation or the use of spacers affected the binding of the guanidinium group to the phosphate moiety and finally the transport efficiency. Following adhesion of dendrimers with liposomes, fusion or transport occurred. Transport through the liposomal bilayer was observed at low guanidinium/phosphate molar ratios, and was enhanced when the bilayer was in the liquid-crystalline phase. For effective transport through the liposomal membrane, an optimum balance between the binding strength and the degree of hydrophobicity of the guanidinylated dendrimer is required. In experiments performed in vitro with cells, efficient penetration and internalization in subcellular organelles and cytosol was observed.

  13. Ground-based measurement of surface temperature and thermal emissivity

    NASA Technical Reports Server (NTRS)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  14. Trafficking of cell surface beta-amyloid precursor protein: retrograde and transcytotic transport in cultured neurons

    PubMed Central

    1995-01-01

    Amyloid beta-protein (A beta), the principal constituent of senile plaques seen in Alzheimer's disease (AD), is derived by proteolysis from the beta-amyloid precursor protein (beta PP). The mechanism of A beta production in neurons, which are hypothesized to be a rich source of A beta in brain, remains to be defined. In this study, we describe a detailed localization of cell surface beta PP and its subsequent trafficking in primary cultured neurons. Full-length cell surface beta PP was present primarily on perikarya and axons, the latter with a characteristic discontinuous pattern. At growth cones, cell surface beta PP was inconsistently detected. By visualizing the distribution of beta PP monoclonal antibodies added to intact cultures, beta PP was shown to be internalized from distal axons or terminals and retrogradely transported back to perikarya in organelles which colocalized with fluid-phase endocytic markers. Retrograde transport of beta PP was shown in both hippocampal and peripheral sympathetic neurons, the latter using a compartment culture system that isolated cell bodies from distal axons and terminals. In addition, we demonstrated that beta PP from distal axons was transcytotically transported to the surface of perikarya from distal axons in sympathetic neurons. Indirect evidence of this transcytotic pathway was obtained in hippocampal neurons using antisense oligonucleotide to the kinesin heavy chain to inhibit anterograde beta PP transport. Taken together, these results demonstrate novel aspects of beta PP trafficking in neurons, including retrograde axonal transport and transcytosis. Moreover, the axonal predominance of cell surface beta PP is unexpected in view of the recent report of polarized sorting of beta PP to the basolateral domain of MDCK cells. PMID:7721945

  15. Surface-Water to Groundwater Transport of Pharmaceuticals in a Wastewater-Impacted Stream in the U.S.

    NASA Astrophysics Data System (ADS)

    Bradley, P. M.; Barber, L. B.; Duris, J. W.; Foreman, W. T.; Furlong, E. T.; Hubbard, L. E.; Hutchinson, K. J.; Keefe, S. H.; Kolpin, D. W.

    2014-12-01

    Wastewater pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to aqueous mobility and designed bioactivity of pharmaceuticals and due to effluent-driven hydraulic gradients. Improved understanding of the environmental fate and transport of wastewater-derived pharmaceuticals is essential for effective protection of vital aquatic ecosystem services, environmental health, and drinking-water supplies. Substantial longitudinal (downstream) transport of pharmaceutical contaminants has been documented in effluent-impacted streams. The comparative lack of information on vertical and lateral transport (infiltration) of wastewater contaminants from surface-water to hyporheic and shallow groundwater compartments is a critical scientific data gap, given the potential for contamination of groundwater supplies in effluent-impacted systems. Growing dependencies on bank filtration and artificial recharge applications for release of wastewater to the environment and for pretreatment of poor-quality surface-water for drinking water emphasize the critical need to better understand the exchange of wastewater contaminants, like pharmaceuticals, between surface-water and groundwater compartments. The potential transport of effluent-derived pharmaceutical contaminants from surface-water to hyporheic-water and shallow groundwater compartments was examined in a wastewater-treatment-facility (WWTF) impacted stream in Ankeny, Iowa under effluent-dominated (71-99% of downstream flow) conditions. Strong hydraulic gradients and hydrologic connectivity were evident between surface-water and shallow-groundwater compartments in the vicinity of the WWTF outfall. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater 10-20 meters from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed high percentage detections of pharmaceuticals (110 total analytes) in surface-water and groundwater samples. The results demonstrate the importance of effluent discharge as a driver of local hydrologic conditions in an effluent-impacted stream and thus as a fundamental control on surface-water to groundwater transport of effluent-derived pharmaceutical contaminants.

  16. Road Weather Information Systems (RWIS) data integration guidelines

    DOT National Transportation Integrated Search

    2002-01-01

    In an effort to reduce winter road maintenance costs, agencies are using Road Weather : Information Systems (RWIS) to gain more information for application to surface transportation. : RWIS technologies consist of roadside Environmental Sensor Statio...

  17. Identification of Residues in the Lipopolysaccharide ABC Transporter That Coordinate ATPase Activity with Extractor Function

    PubMed Central

    Simpson, Brent W.; Owens, Tristan W.; Orabella, Matthew J.; Davis, Rebecca M.; May, Janine M.; Trauger, Sunia A.

    2016-01-01

    ABSTRACT The surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS), creating a permeability barrier against toxic molecules, including many antimicrobials. To assemble LPS on their surface, Gram-negative bacteria must extract newly synthesized LPS from the inner membrane, transport it across the aqueous periplasm, and translocate it across the outer membrane. The LptA to -G proteins assemble into a transenvelope complex that transports LPS from the inner membrane to the cell surface. The Lpt system powers LPS transport from the inner membrane by using a poorly characterized ATP-binding cassette system composed of the ATPase LptB and the transmembrane domains LptFG. Here, we characterize a cluster of residues in the groove region of LptB that is important for controlling LPS transport. We also provide the first functional characterization of LptFG and identify their coupling helices that interact with the LptB groove. Substitutions at conserved residues in these coupling helices compromise both the assembly and function of the LptB2FG complex. Defects in LPS transport conferred by alterations in the LptFG coupling helices can be rescued by changing a residue in LptB that is adjacent to functionally important residues in the groove region. This suppression is achieved by increasing the ATPase activity of the LptB2FG complex. Taken together, these data identify a specific binding site in LptB for the coupling helices of LptFG that is responsible for coupling of ATP hydrolysis by LptB with LptFG function to achieve LPS extraction. PMID:27795402

  18. Transportation-Driven Mars Surface Operations Supporting an Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Toups, Larry; Brown, Kendall; Hoffman, Stephen J.

    2015-01-01

    This paper describes the results of a study evaluating options for supporting a series of human missions to a single Mars surface destination. In this scenario the infrastructure emplaced during previous visits to this site is leveraged in following missions. The goal of this single site approach to Mars surface infrastructure is to enable "Steady State" operations by at least 4 crew for up to 500 sols at this site. These characteristics, along with the transportation system used to deliver crew and equipment to and from Mars, are collectively known as the Evolvable Mars Campaign (EMC). Information in this paper is presented in the sequence in which it was accomplished. First, a logical buildup sequence of surface infrastructure was developed to achieve the desired "Steady State" operations on the Mars surface. This was based on a concept of operations that met objectives of the EMC. Second, infrastructure capabilities were identified to carry out this concept of operations. Third, systems (in the form of conceptual elements) were identified to provide these capabilities. This included top-level mass, power and volume estimates for these elements. Fourth, the results were then used in analyses to evaluate three options (18t, 27t, and 40t landed mass) of Mars Lander delivery capability to the surface. Finally, Mars arrival mass estimates were generated based upon the entry, descent, and landing requirements for inclusion in separate assessments of in-space transportation capabilities for the EMC.

  19. Evaluation of satellite and reanalysis‐based global net surface energy flux and uncertainty estimates

    PubMed Central

    Allan, Richard P.; Mayer, Michael; Hyder, Patrick; Loeb, Norman G.; Roberts, Chris D.; Valdivieso, Maria; Edwards, John M.; Vidale, Pier‐Luigi

    2017-01-01

    Abstract The net surface energy flux is central to the climate system yet observational limitations lead to substantial uncertainty. A combination of satellite‐derived radiative fluxes at the top of atmosphere adjusted using the latest estimation of the net heat uptake of the Earth system, and the atmospheric energy tendencies and transports from the ERA‐Interim reanalysis are used to estimate surface energy flux globally. To consider snowmelt and improve regional realism, land surface fluxes are adjusted through a simple energy balance approach at each grid point. This energy adjustment is redistributed over the oceans to ensure energy conservation and maintain realistic global ocean heat uptake, using a weighting function to avoid meridional discontinuities. Calculated surface energy fluxes are evaluated through comparison to ocean reanalyses. Derived turbulent energy flux variability is compared with the Objectively Analyzed air‐sea Fluxes (OAFLUX) product, and inferred meridional energy transports in the global ocean and the Atlantic are also evaluated using observations. Uncertainties in surface fluxes are investigated using a variety of approaches including comparison with a range of atmospheric reanalysis products. Decadal changes in the global mean and the interhemispheric energy imbalances are quantified, and present day cross‐equator heat transports are reevaluated at 0.22 ± 0.15 PW (petawatts) southward by the atmosphere and 0.32 ± 0.16 PW northward by the ocean considering the observed ocean heat sinks. PMID:28804697

  20. Space transportation nodes assumptions and requirements: Lunar base systems study task 2.1

    NASA Technical Reports Server (NTRS)

    Kahn, Taher Ali; Simonds, Charles H.; Stump, William R.

    1988-01-01

    The Space Transportation Nodes Assumptions and Requirements task was performed as part of the Advanced Space Transportation Support Contract, a NASA Johnson Space Center (JSC) study intended to provide planning for a Lunar Base near the year 2000. The original task statement has been revised to satisfy the following queries: (1) What vehicles are to be processed at the transportation node; (2) What is the flow of activities involved in a vehicle passing through the node; and (3) What node support resources are necessary to support a lunar scenario traffic model composed of a mix of vehicles in an active flight schedule. The Lunar Base Systems Study is concentrating on the initial years of the Phase 2 Lunar Base Scenario. The study will develop the first five years of that phase in order to define the transportation and surface systems (including mass, volumes, power requirements, and designs).

  1. Seasonal cycle of circulation in the Antarctic Peninsula and the off-shelf transport of shelf waters into southern Drake Passage and Scotia Sea

    NASA Astrophysics Data System (ADS)

    Jiang, Mingshun; Charette, Matthew A.; Measures, Christopher I.; Zhu, Yiwu; Zhou, Meng

    2013-06-01

    The seasonal cycle of circulation and transport in the Antarctic Peninsula shelf region is investigated using a high-resolution (˜2 km) regional model based on the Regional Oceanic Modeling System (ROMS). The model also includes a naturally occurring tracer with a strong source over the shelf (radium isotope 228Ra, t1/2=5.8 years) to investigate the sediment Fe input and its transport. The model is spun-up for three years using climatological boundary and surface forcing and then run for the 2004-2006 period using realistic forcing. Model results suggest a persistent and coherent circulation system throughout the year consisting of several major components that converge water masses from various sources toward Elephant Island. These currents are largely in geostrophic balance, driven by surface winds, topographic steering, and large-scale forcing. Strong off-shelf transport of the Fe-rich shelf waters takes place over the northeastern shelf/slope of Elephant Island, driven by a combination of topographic steering, extension of shelf currents, and strong horizontal mixing between the ACC and shelf waters. These results are generally consistent with recent and historical observational studies. Both the shelf circulation and off-shelf transport show a significant seasonality, mainly due to the seasonal changes of surface winds and large-scale circulation. Modeled and observed distributions of 228Ra suggest that a majority of Fe-rich upper layer waters exported off-shelf around Elephant Island are carried by the shelfbreak current and the Bransfield Strait Current from the shallow sills between Gerlache Strait and Livingston Island, and northern shelf of the South Shetland Islands, where strong winter mixing supplies much of the sediment derived nutrients (including Fe) input to the surface layer.

  2. Development of a Sediment Transport Component for DHSVM

    NASA Astrophysics Data System (ADS)

    Doten, C. O.; Bowling, L. C.; Maurer, E. P.; Voisin, N.; Lettenmaier, D. P.

    2003-12-01

    The effect of forest management and disturbance on aquatic resources is a problem of considerable, contemporary, scientific and public concern in the West. Sediment generation is one of the factors linking land surface conditions with aquatic systems, with implications for fisheries protection and enhancement. Better predictive techniques that allow assessment of the effects of fire and logging, in particular, on sediment transport could help to provide a more scientific basis for the management of forests in the West. We describe the development of a sediment transport component for the Distributed Hydrology Soil Vegetation Model (DHSVM), a spatially distributed hydrologic model that was developed specifically for assessment of the hydrologic consequences of forest management. The sediment transport module extends the hydrologic dynamics of DHSVM to predict sediment generation in response to dynamic meteorological inputs and hydrologic conditions via mass wasting and surface erosion from forest roads and hillslopes. The mass wasting component builds on existing stochastic slope stability models, by incorporating distributed basin hydrology (from DHSVM), and post-failure, rule-based redistribution of sediment downslope. The stochastic nature of the mass wasting component allows specification of probability distributions that describe the spatial variability of soil and vegetation characteristics used in the infinite slope model. The forest roads and hillslope surface erosion algorithms account for erosion from rain drop impact and overland erosion. A simple routing scheme is used to transport eroded sediment from mass wasting and forest roads surface erosion that reaches the channel system to the basin outlet. A sensitivity analysis of the model input parameters and forest cover conditions is described for the Little Wenatchee River basin in the northeastern Washington Cascades.

  3. Development of the Transport Class Model (TCM) Aircraft Simulation From a Sub-Scale Generic Transport Model (GTM) Simulation

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.

    2011-01-01

    A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.

  4. Rapid transport from the surface to wells in fractured rock: a unique infiltration tracer experiment.

    PubMed

    Levison, Jana K; Novakowski, Kent S

    2012-04-01

    A unique infiltration tracer experiment was performed whereby a fluorescent dye was applied to the land surface in an agricultural field, near Perth, Ontario, Canada, to simulate the transport of solutes to two pumped monitoring wells drilled into the granitic gneiss aquifer. This experiment, interpreted using the discrete-fracture capability of the numerical model HydroGeoSphere, showed that solute transport from the surface through thin soil (less than 2m) to wells in fractured bedrock can be extremely rapid (on the order of hours). Also, it was demonstrated that maximum concentrations of contaminants originating from the ground surface will not necessarily be the highest in the shallow aquifer horizon. These are important considerations for both private and government-owned drinking water systems that draw water from shallow fractured bedrock aquifers. This research illustrates the extreme importance of protecting drinking water at the source. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations

    NASA Astrophysics Data System (ADS)

    Tian, X.; Xie, Z.; Liu, Y.; Cai, Z.; Fu, Y.; Zhang, H.; Feng, L.

    2014-12-01

    We have developed a novel framework ("Tan-Tracker") for assimilating observations of atmospheric CO2 concentrations, based on the POD-based (proper orthogonal decomposition) ensemble four-dimensional variational data assimilation method (PODEn4DVar). The high flexibility and the high computational efficiency of the PODEn4DVar approach allow us to include both the atmospheric CO2 concentrations and the surface CO2 fluxes as part of the large state vector to be simultaneously estimated from assimilation of atmospheric CO2 observations. Compared to most modern top-down flux inversion approaches, where only surface fluxes are considered as control variables, one major advantage of our joint data assimilation system is that, in principle, no assumption on perfect transport models is needed. In addition, the possibility for Tan-Tracker to use a complete dynamic model to consistently describe the time evolution of CO2 surface fluxes (CFs) and the atmospheric CO2 concentrations represents a better use of observation information for recycling the analyses at each assimilation step in order to improve the forecasts for the following assimilations. An experimental Tan-Tracker system has been built based on a complete augmented dynamical model, where (1) the surface atmosphere CO2 exchanges are prescribed by using a persistent forecasting model for the scaling factors of the first-guess net CO2 surface fluxes and (2) the atmospheric CO2 transport is simulated by using the GEOS-Chem three-dimensional global chemistry transport model. Observing system simulation experiments (OSSEs) for assimilating synthetic in situ observations of surface CO2 concentrations are carefully designed to evaluate the effectiveness of the Tan-Tracker system. In particular, detailed comparisons are made with its simplified version (referred to as TT-S) with only CFs taken as the prognostic variables. It is found that our Tan-Tracker system is capable of outperforming TT-S with higher assimilation precision for both CO2 concentrations and CO2 fluxes, mainly due to the simultaneous estimation of CO2 concentrations and CFs in our Tan-Tracker data assimilation system. A experiment for assimilating the real dry-air column CO2 retrievals (XCO2) from the Japanese Greenhouse Gases Observation Satellite (GOSAT) further demonstrates its potential wide applications.

  6. Proceedings and findings of the 1976 Workshop on Ride Quality. [passenger acceptance of transportation systems

    NASA Technical Reports Server (NTRS)

    Kuhlthau, A. R. (Editor)

    1976-01-01

    The workshop was organized around the study of the three basic transfer functions required to evaluate and/or predict passenger acceptance of transportation systems: These are the vehicle, passenger, and value transfer functions. For the purpose of establishing working groups corresponding to the basic transfer functions, it was decided to split the vehicle transfer function into two distinct groups studying surface vehicles and air/marine vehicles, respectively.

  7. Mars manned transportation vehicle

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Faymon, Karl A.

    1987-01-01

    A viable power system technology for a surface transportation vehicle to explore the planet Mars is presented. A number of power traction systems were investigated, and it was found that a regenerative hydrogen-oxygen fuel cell appears to be attractive for a manned Mars rover application. Mission requirements were obtained from the Manned Mars Mission Working Group. Power systems weights, power, and reactants requirements were determined as a function of vehicle weights for vehicles weighing from 6,000 to 16,000 lb (2,722 to 7,257 kg), (Earth weight). The vehicle performance requirements were: velocity, 10 km/hr; range, 100 km; slope climbing capability, 30 deg uphill for 50 km; mission duration, 5 days; and crew, 5. Power requirements for the operation of scientific equipment and support system capabilities were also specified and included in this study. The concept developed here would also be applicable to a Lunar based vehicle for Lunar exploration. The reduced gravity on the Lunar surface, (over that on the Martian surface), would result in an increased range or capability over that of the Mars vehicle since many of the power and energy requirements for the vehicle are gravity dependent.

  8. Numerical simulation of the radiation environment on Martian surface

    NASA Astrophysics Data System (ADS)

    Zhao, L.

    2015-12-01

    The radiation environment on the Martian surface is significantly different from that on earth. Existing observation and studies reveal that the radiation environment on the Martian surface is highly variable regarding to both short- and long-term time scales. For example, its dose rate presents diurnal and seasonal variations associated with atmospheric pressure changes. Moreover, dose rate is also strongly influenced by the modulation from GCR flux. Numerical simulation and theoretical explanations are required to understand the mechanisms behind these features, and to predict the time variation of radiation environment on the Martian surface if aircraft is supposed to land on it in near future. The high energy galactic cosmic rays (GCRs) which are ubiquitous throughout the solar system are highly penetrating and extremely difficult to shield against beyond the Earth's protective atmosphere and magnetosphere. The goal of this article is to evaluate the long term radiation risk on the Martian surface. Therefore, we need to develop a realistic time-dependent GCR model, which will be integrated with Geant4 transport code subsequently to reproduce the observed variation of surface dose rate associated with the changing heliospheric conditions. In general, the propagation of cosmic rays in the interplanetary medium can be described by a Fokker-Planck equation (or Parker equation). In last decade,we witnessed a fast development of GCR transport models within the heliosphere based on accurate gas-dynamic and MHD backgrounds from global models of the heliosphere. The global MHD simulation produces a more realistic pattern of the 3-D heliospheric structure, as well as the interface between the solar system and the surrounding interstellar space. As a consequence, integrating plasma background obtained from global-dependent 3-D MHD simulation and stochastic Parker transport simulation, we expect to produce an accurate global physical-based GCR modulation model. Combined with the Geant4 transport code, this GCR model will provide valuable insight into the long-term dose rates variation on the Martian surface.

  9. Enhanced road weather forecasting : Clarus regional demonstrations.

    DOT National Transportation Integrated Search

    2011-01-01

    The quality of road weather forecasts has major impacts on users of surface transportation systems and managers of those systems. Improving the quality involves the ability to provide accurate, route-specific road weather information (e.g., timing an...

  10. Examples of variable speed limit applications : speed management workshop

    DOT National Transportation Integrated Search

    2000-01-09

    VSL systems are a type of Intelligent Transportation System (ITS) that utilizes traffic : speed and volume detection, weather information, and road surface condition technology to determine appropriate speeds at which drivers should be traveling, giv...

  11. Mechanical splitting of microtubules into protofilament bundles by surface-bound kinesin-1

    DOE PAGES

    VanDelinder, Virginia; Adams, Peter G.; Bachand, George D.

    2016-12-21

    The fundamental biophysics of gliding microtubule (MT) motility by surface-tethered kinesin-1 motor proteins has been widely studied, as well as applied to capture and transport analytes in bioanalytical microdevices. In these systems, phenomena such as molecular wear and fracture into shorter MTs have been reported due the mechanical forces applied on the MT during transport. In the present work, we show that MTs can be split longitudinally into protofilament bundles (PFBs) by the work performed by surface-bound kinesin motors. We examine the properties of these PFBs using several techniques (e.g., fluorescence microscopy, SEM, AFM), and show that the PFBs continuemore » to be mobile on the surface and display very high curvature compared to MT. Further, higher surface density of kinesin motors and shorter kinesin-surface tethers promote PFB formation, whereas modifying MT with GMPCPP or higher paclitaxel concentrations did not affect PFB formation.« less

  12. Improved fine-scale transport model performance using AUV and HSI feedback in a tidally dominated system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hibler, Lyle F.; Maxwell, Adam R.; Miller, Lee M.

    2008-08-22

    Applied numerical circulation and transport modeling study of Sequim Bay, WA focused on the simulation of the redistribution of rhodamine dye release at the water surface. Model sensitivity to bathymetric variation, side-wall boundary conditions, and thermal stratification is examined. Model results compared to observational datasets.

  13. Using digital databases to create geologic maps for the 21st century : a GIS model for geologic, environmental, cultural and transportation data from southern Rhode Island

    DOT National Transportation Integrated Search

    2002-05-01

    Knowledge of surface and subsurface geology is fundamental to the planning and development of new or modified transportation systems. Toward this : end, we have compiled a model GIS database consisting of important geologic, cartographic, environment...

  14. 49 CFR 38.153 - Doors, steps and thresholds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Doors, steps and thresholds. 38.153 Section 38.153... SPECIFICATIONS FOR TRANSPORTATION VEHICLES Over-the-Road Buses and Systems § 38.153 Doors, steps and thresholds. (a) Floor surfaces on aisles, step treads and areas where wheelchair and mobility aid users are to be...

  15. Ocean Winds and Turbulent Air-Sea Fluxes Inferred From Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bourassa, Mark A.; Gille, Sarah T.; Jackson, Daren L.; Roberts, J. Brent; Wick, Gary A.

    2010-01-01

    Air-sea turbulent fluxes determine the exchange of momentum, heat, freshwater, and gas between the atmosphere and ocean. These exchange processes are critical to a broad range of research questions spanning length scales from meters to thousands of kilometers and time scales from hours to decades. Examples are discussed (section 2). The estimation of surface turbulent fluxes from satellite is challenging and fraught with considerable errors (section 3); however, recent developments in retrievals (section 3) will greatly reduce these errors. Goals for the future observing system are summarized in section 4. Surface fluxes are defined as the rate per unit area at which something (e.g., momentum, energy, moisture, or CO Z ) is transferred across the air/sea interface. Wind- and buoyancy-driven surface fluxes are called surface turbulent fluxes because the mixing and transport are due to turbulence. Examples of nonturbulent processes are radiative fluxes (e.g., solar radiation) and precipitation (Schmitt et al., 2010). Turbulent fluxes are strongly dependent on wind speed; therefore, observations of wind speed are critical for the calculation of all turbulent surface fluxes. Wind stress, the vertical transport of horizontal momentum, also depends on wind direction. Stress is very important for many ocean processes, including upper ocean currents (Dohan and Maximenko, 2010) and deep ocean currents (Lee et al., 2010). On short time scales, this horizontal transport is usually small compared to surface fluxes. For long-term processes, transport can be very important but again is usually small compared to surface fluxes.

  16. 14 CFR 29.395 - Control system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Control system. 29.395 Section 29.395... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Control Surface and System Loads § 29.395 Control system. (a) The reaction to the loads prescribed in § 29.397 must be provided by— (1) The control...

  17. 14 CFR 25.679 - Control system gust locks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.679 Control system gust locks. (a) There must be a device to prevent damage to the control surfaces (including tabs... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Control system gust locks. 25.679 Section...

  18. 14 CFR 25.679 - Control system gust locks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.679 Control system gust locks. (a) There must be a device to prevent damage to the control surfaces (including tabs... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Control system gust locks. 25.679 Section...

  19. 14 CFR 25.679 - Control system gust locks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.679 Control system gust locks. (a) There must be a device to prevent damage to the control surfaces (including tabs... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Control system gust locks. 25.679 Section...

  20. 76 FR 9265 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... for transport category airplanes. These design features include an electronic flight control system... Design Features The GVI has an electronic flight control system and no direct coupling from the cockpit...: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control Surface Position Awareness AGENCY...

  1. 14 CFR 25.679 - Control system gust locks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.679 Control system gust locks. (a) There must be a device to prevent damage to the control surfaces (including tabs... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Control system gust locks. 25.679 Section...

  2. 14 CFR 25.651 - Proof of strength.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.651 Proof of strength. (a) Limit load tests of control surfaces are required. These tests must include the horn or fitting to which the control system is attached. (b) Compliance with the special factors requirements of...

  3. 14 CFR 25.651 - Proof of strength.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.651 Proof of strength. (a) Limit load tests of control surfaces are required. These tests must include the horn or fitting to which the control system is attached. (b) Compliance with the special factors requirements of...

  4. 14 CFR 25.651 - Proof of strength.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.651 Proof of strength. (a) Limit load tests of control surfaces are required. These tests must include the horn or fitting to which the control system is attached. (b) Compliance with the special factors requirements of...

  5. 14 CFR 25.651 - Proof of strength.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.651 Proof of strength. (a) Limit load tests of control surfaces are required. These tests must include the horn or fitting to which the control system is attached. (b) Compliance with the special factors requirements of...

  6. Scaling laws for oxygen transport across the space-filling system of respiratory membranes in the human lung

    NASA Astrophysics Data System (ADS)

    Hou, Chen

    Space-filling fractal surfaces play a fundamental role in how organisms function at various levels and in how structure determines function at different levels. In this thesis, we develop a quantitative theory of oxygen transport to and across the surface of the highly branched, space-filling system of alveoli, the fundamental gas exchange unit (acinar airways), in the human lung. Oxygen transport in the acinar airways is by diffusion, and we treat the two steps---diffusion through the branched airways, and transfer across the alveolar membranes---as a stationary diffusion-reaction problem, taking into account that there may be steep concentration gradients between the entrance and remote alveoli (screening). We develop a renormalization treatment of this screening effect and derive an analytic formula for the oxygen current across the cumulative alveolar membrane surface, modeled as a fractal, space-filling surface. The formula predicts the current from a minimum of morphological data of the acinus and appropriate values of the transport parameters, through a number of power laws (scaling laws). We find that the lung at rest operates near the borderline between partial screening and no screening; that it switches to no screening under exercise; and that the computed currents agree with measured values within experimental uncertainties. From an analysis of the computed current as a function of membrane permeability, we find that the space-filling structure of the gas exchanger is simultaneously optimal with respect to five criteria. The exchanger (i) generates a maximum oxygen current at minimum permeability; (ii) 'wastes' a minimum of surface area; (iii) maintains a minimum residence time of oxygen in the acinar airways; (iv) has a maximum fault tolerance to loss of permeability; and (v) generates a maximum current increase when switching from rest to exercise.

  7. How does the Redi parameter for mesoscale mixing impact global climate in an Earth System Model?

    NASA Astrophysics Data System (ADS)

    Pradal, Marie-Aude; Gnanadesikan, Anand

    2014-09-01

    A coupled climate model is used to examine the impact of an increase in the mixing due to mesoscale eddies on the global climate system. A sixfold increase in the Redi mixing coefficient ARedi, which is within the admissible range of variation, has the overall effect of warming the global-mean surface air and sea surface temperatures by more than 1°C. Locally, sea surface temperatures increase by up to 7°C in the North Pacific and by up to 4°C in the Southern Ocean, with corresponding impacts on the ice concentration and ice extent in polar regions. However, it is not clear that the changes in heat transport from tropics to poles associated with changing this coefficient are primarily responsible for these changes. We found that the changes in the transport of heat are often much smaller than changes in long-wave trapping and short-wave absorption. Additionally, changes in the advective and diffusive transport of heat toward the poles often oppose each other. However, we note that the poleward transport of salt increases near the surface as ARedi increases. We suggest a causal chain in which enhanced eddy stirring leads to increased high-latitude surface salinity reducing salt stratification and water column stability and enhancing convection, triggering two feedback loops. In one, deeper convection prevents sea ice formation, which decreases albedo, which increases SW absorption, further increasing SST and decreasing sea ice formation. In the other, increased SST and reduced sea ice allow for more water vapor in the atmosphere, trapping long-wave radiation. Destratifying the polar regions is thus a potential way in which changes in ocean circulation might warm the planet.

  8. Do septic systems contribute micropollutants and their transformation products to shallow groundwater?

    USDA-ARS?s Scientific Manuscript database

    Septic systems may contribute micropollutants to shallow groundwater and surface water. We constructed two in situ conventional drainfields (drip dispersal and gravel trench) and an advanced drainfield of septic systems to investigate the fate and transport of micropollutants to shallow groundwater....

  9. Large-Scale Transport Responses to Tropospheric Circulation Changes Using GEOS-5

    NASA Technical Reports Server (NTRS)

    Orbe, Clara; Molod, Andrea; Arnold, Nathan; Waugh, Darryn W.; Yang, Huang

    2017-01-01

    The mean age since air was last at the Northern Hemisphere midlatitude surface is a fundamental property of tropospheric transport. Recent comparisons among chemistry climate models, however, reveal that there are large differences in the mean age among models and that these differences are most likely related to differences in tropical (parameterized) convection. Here we use aquaplanet simulations of the Goddard Earth Observing System Model Version 5 (GEOS-5) to explore the sensitivity of the mean age to changes in the tropical circulation. Tropical circulation changes are forced by prescribed localized off-equatorial warm sea surface temperature anomalies that (qualitatively) reproduce the convection and circulation differences among the comprehensive models. Idealized chemical species subject to prescribed OH loss are also integrated in parallel in order to illustrate the impact of tropical transport changes on interhemispheric constituent transport.

  10. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, J.; Gajdos, F.; Blumberger, J., E-mail: j.blumberger@ucl.ac.uk

    2016-08-14

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on themore » adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.« less

  11. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    NASA Astrophysics Data System (ADS)

    Spencer, J.; Gajdos, F.; Blumberger, J.

    2016-08-01

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.

  12. Response of the global surface ozone distribution to Northern Hemisphere sea surface temperature changes: implications for long-range transport

    NASA Astrophysics Data System (ADS)

    Yi, Kan; Liu, Junfeng; Ban-Weiss, George; Zhang, Jiachen; Tao, Wei; Cheng, Yanli; Tao, Shu

    2017-07-01

    The response of surface ozone (O3) concentrations to basin-scale warming and cooling of Northern Hemisphere oceans is investigated using the Community Earth System Model (CESM). Idealized, spatially uniform sea surface temperature (SST) anomalies of ±1 °C are individually superimposed onto the North Pacific, North Atlantic, and North Indian oceans. Our simulations suggest large seasonal and regional variability in surface O3 in response to SST anomalies, especially in the boreal summer. The responses of surface O3 associated with basin-scale SST warming and cooling have similar magnitude but are opposite in sign. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv. With fixed emissions, SST increases in a specific ocean basin in the Northern Hemisphere tend to increase the summertime surface O3 concentrations over upwind regions, accompanied by a widespread reduction over downwind continents. We implement the integrated process rate (IPR) analysis in CESM and find that meteorological O3 transport in response to SST changes is the key process causing surface O3 perturbations in most cases. During the boreal summer, basin-scale SST warming facilitates the vertical transport of O3 to the surface over upwind regions while significantly reducing the vertical transport over downwind continents. This process, as confirmed by tagged CO-like tracers, indicates a considerable suppression of intercontinental O3 transport due to increased tropospheric stability at lower midlatitudes induced by SST changes. Conversely, the responses of chemical O3 production to regional SST warming can exert positive effects on surface O3 levels over highly polluted continents, except South Asia, where intensified cloud loading in response to North Indian SST warming depresses both the surface air temperature and solar radiation, and thus photochemical O3 production. Our findings indicate a robust linkage between basin-scale SST variability and continental surface O3 pollution, which should be considered in regional air quality management.

  13. A dynamical stabilizer in the climate system: a mechanism suggested by a simple model

    NASA Astrophysics Data System (ADS)

    Bates, J. R.

    1999-05-01

    A simple zonally averaged hemispheric model of the climate system is constructed, based on energy equations for two ocean basins separated at 30° latitude with the surface fluxes calculated explicitly. A combination of empirical input and theoretical calculation is used to determine an annual mean equilibrium climate for the model and to study its stability with respect to small perturbations. The insolation, the mean albedos and the equilibrium temperatures for the two model zones are prescribed from observation. The principal agent of interaction between the zones is the vertically integrated poleward transport of atmospheric angular momentum across their common boundary. This is parameterized using an empirical formula derived from a multiyear atmospheric data set. The surface winds are derived from the angular momentum transport assuming the atmosphere to be in a state of dynamic balance on the climatic timescales of interest. A further assumption that the air sea temperature difference and low level relative humidity remain fixed at their mean observed values then allows the surface fluxes of latent and sensible heat to be calculated. Results from a radiative model, which show a positive lower tropospheric water vapour/infrared radiative feedback on SST perturbations in both zones, are used to calculate the net upward infrared radiative fluxes at the surface. In the model's equilibrium climate, the principal processes balancing the solar radiation absorbed at the surface are evaporation in the tropical zone and net infrared radiation in the extratropical zone. The stability of small perturbations about the equilibrium is studied using a linearized form of the ocean energy equations. Ice-albedo and cloud feedbacks are omitted and attention is focussed on the competing effects of the water vapour/infrared radiative feedback and the turbulent surface flux and oceanic heat transport feedbacks associated with the angular momentum cycle. The perturbation equations involve inter-zone coupling and have coefficients dependent on the values of the equilibrium fluxes and the sensitivity of the angular momentum transport. Analytical solutions for the perturbations are obtained. These provide criteria for the stability of the equilibrium climate. If the evaporative feedback on SST perturbations is omitted, the equilibrium climate is unstable due to the influence of the water vapour/infrared radiative feedback, which dominates over the effects of the sensible heat and ocean heat transport feedbacks. The inclusion of evaporation gives a negative feedback which is of sufficient strength to stabilize the system. The stabilizing mechanism involves wind and humidity factors in the evaporative fluxes that are of comparable magnitude. Both factors involve the angular momentum transport. In including angular momentum and calculating the surface fluxes explicitly, the model presented here differs from the many simple climate models based on the Budyko Sellers formulation. In that formulation, an atmospheric energy balance equation is used to eliminate surface fluxes in favour of top-of-the-atmosphere radiative fluxes and meridional atmospheric energy transports. In the resulting models, infrared radiation appears as a stabilizing influence on SST perturbations and the dynamical stabilizing mechanism found here cannot be identified.

  14. Computational insights of water droplet transport on graphene sheet with chemical density

    NASA Astrophysics Data System (ADS)

    Zhang, Liuyang; Wang, Xianqiao

    2014-05-01

    Surface gradient has been emerging as an intriguing technique for nanoscale particle manipulation and transportation. Owing to its outstanding and stable chemical properties, graphene with covalently bonded chemical groups represents extraordinary potential for the investigation of nanoscale transport in the area of physics and biology. Here, we employ molecular dynamics simulations to investigate the fundamental mechanism of utilizing a chemical density on a graphene sheet to control water droplet motions on it. Simulation results have demonstrated that the binding energy difference among distinct segment of graphene in terms of interaction between the covalently bonded oxygen atoms on graphene and the water molecules provides a fundamental driving force to transport the water droplet across the graphene sheet. Also, the velocity of the water droplet has showed a strong dependence on the relative concentration of oxygen atoms between successive segments. Furthermore, a multi-direction channel provides insights to guide the transportation of objects towards a targeted position, separating the mixtures with a system of specific chemical functionalization. Our findings shed illuminating lights on the surface gradient method and therefore provide a feasible way to control nanoscale motion on the surface and mimic the channelless microfluidics.

  15. 14 CFR 29.307 - Proof of structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...

  16. 14 CFR 27.307 - Proof of structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...

  17. 14 CFR 27.307 - Proof of structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...

  18. 14 CFR 29.307 - Proof of structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...

  19. 14 CFR 29.307 - Proof of structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...

  20. 14 CFR 27.307 - Proof of structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...

  1. 14 CFR 27.307 - Proof of structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...

  2. 14 CFR 29.307 - Proof of structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...

  3. Rail fixed guideway systems : state safety oversight : final rule

    DOT National Transportation Integrated Search

    1995-12-27

    As required by the Intermodal Surface Transportation Efficiency Act of 1991, the Federal Transit Administration (FTA) issues a rule requiring states to oversee the safety of rail fixed guideway systems not regulated by the Federal Railroad Administra...

  4. Numerical studies of bacterial-carpet microflows

    NASA Astrophysics Data System (ADS)

    Huber, Greg; Tillberg, Dan; Powers, Thomas R.

    2004-03-01

    Bacterial carpets are arrays of motile bacteria attached to two-dimensional surfaces. Improved understanding of carpet flows is important in the design of microfluidic devices and transport systems powered by bacterial flagellar motion. In recent experiments by the group of Howard Berg, cells of swarming S. marcescens are stuck to the surface, with most of their flagella free to rotate in the fluid. These studies show modified transport and greatly enhanced diffusion near the active carpet surface. We present theoretical models of the flagella-driven flow, bridging the nano- to the macro-scale, simulate the diffusion and advection of passive tracers, and compare the numerical results with the tracking data of Berg et al.

  5. Dynamic nanoplatforms in biosensor and membrane constitutional systems.

    PubMed

    Mahon, Eugene; Aastrup, Teodor; Barboiu, Mihail

    2012-01-01

    Molecular recognition in biological systems occurs mainly at interfacial environments such as membrane surfaces, enzyme active sites, or the interior of the DNA double helix. At the cell membrane surface, carbohydrate-protein recognition principles apply to a range of specific non-covalent interactions including immune response, cell proliferation, adhesion and death, cell-cell interaction and communication. Protein-protein recognition meanwhile accounts for signalling processes and ion channel structure. In this chapter we aim to describe such constitutional dynamic interfaces for biosensing and membrane transport applications. Constitutionally adaptive interfaces may mimic the recognition capabilities intrinsic to natural recognition processes. We present some recent examples of 2D and 3D constructed sensors and membranes of this type and describe their sensing and transport capabilities.

  6. Simulating Donnan equilibria based on the Nernst-Planck equation

    NASA Astrophysics Data System (ADS)

    Gimmi, Thomas; Alt-Epping, Peter

    2018-07-01

    Understanding ion transport through clays and clay membranes is important for many geochemical and environmental applications. Ion transport is affected by electrostatic forces exerted by charged clay surfaces. Anions are partly excluded from pore water near these surfaces, whereas cations are enriched. Such effects can be modeled by the Donnan approach. Here we introduce a new, comparatively simple way to represent Donnan equilibria in transport simulations. We include charged surfaces as immobile ions in the balance equation and calculate coupled transport of all components, including the immobile charges, with the Nernst-Planck equation. This results in an additional diffusion potential that influences ion transport, leading to Donnan ion distributions while maintaining local charge balance. The validity of our new approach was demonstrated by comparing Nernst-Planck simulations using the reactive transport code Flotran with analytical solutions available for simple Donnan systems. Attention has to be paid to the numerical evaluation of the electrochemical migration term in the Nernst-Planck equation to obtain correct results for asymmetric electrolytes. Sensitivity simulations demonstrate the influence of various Donnan model parameters on simulated anion accessible porosities. It is furthermore shown that the salt diffusion coefficient in a Donnan pore depends on local concentrations, in contrast to the aqueous salt diffusion coefficient. Our approach can be easily implemented into other transport codes. It is versatile and facilitates, for instance, assessing the implications of different activity models for the Donnan porosity.

  7. TonB-Dependent Transporters Expressed by Neisseria gonorrhoeae

    PubMed Central

    Cornelissen, Cynthia Nau; Hollander, Aimee

    2011-01-01

    Neisseria gonorrhoeae causes the common sexually transmitted infection, gonorrhea. This microorganism is an obligate human pathogen, existing nowhere in nature except in association with humans. For growth and proliferation, N. gonorrhoeae requires iron and must acquire this nutrient from within its host. The gonococcus is well-adapted for growth in diverse niches within the human body because it expresses efficient transport systems enabling use of a diverse array of iron sources. Iron transport systems facilitating the use of transferrin, lactoferrin, and hemoglobin have two components: one TonB-dependent transporter and one lipoprotein. A single component TonB-dependent transporter also allows N. gonorrhoeae to avail itself of iron bound to heterologous siderophores produced by bacteria within the same ecological niche. Other TonB-dependent transporters are encoded by the gonococcus but have not been ascribed specific functions. The best characterized iron transport system expressed by N. gonorrhoeae enables the use of human transferrin as a sole iron source. This review summarizes the molecular mechanisms involved in gonococcal iron acquisition from human transferrin and also reviews what is currently known about the other TonB-dependent transport systems. No vaccine is available to prevent gonococcal infections and our options for treating this disease are compromised by the emergence of antibiotic resistance. Because iron transport systems are critical for the survival of the gonococcus in vivo, the surface-exposed components of these systems are attractive candidates for vaccine development or therapeutic intervention. PMID:21747812

  8. Technology and human purpose: the problem of solids transport on the Earth's surface

    NASA Astrophysics Data System (ADS)

    Haff, P. K.

    2012-11-01

    Displacement of mass of limited deformability ("solids") on the Earth's surface is opposed by friction and (the analog of) form resistance - impediments relaxed by rotational motion, self-powering of mass units, and transport infrastructure. These features of solids transport first evolved in the biosphere prior to the emergence of technology, allowing slope-independent, diffusion-like motion of discrete objects as massive as several tons, as illustrated by animal foraging and movement along game trails. However, high-energy-consumption technology powered by fossil fuels required a mechanism that could support fast advective transport of solids, i.e., long-distance, high-volume, high-speed, unidirectional, slope-independent transport across the land surface of materials like coal, containerized fluids, minerals, and economic goods. Pre-technology nature was able to sustain regional- and global-scale advection only in the limited form of piggybacking on geophysical flows of water (river sediment) and air (dust). The appearance of a mechanism for sustained advection of solids independent of fluid flows and gravity appeared only upon the emergence of human purpose. Purpose enables solids advection by, in effect, simulating a continuous potential gradient, otherwise lacking, between discrete and widely separated fossil-fuel energy sources and sinks. Invoking purpose as a mechanism in solids advection is an example of the need to import anthropic principles and concepts into the language and methodology of modern Earth system dynamics. As part of the emergence of a generalized solids advection mechanism, several additional transport requirements necessary to the function of modern large-scale technological systems were also satisfied. These include spatially accurate delivery of advected payload, targetability to essentially arbitrarily located destinations (such as cities), and independence of structure of advected payload from transport mechanism. The latter property enables the transport of an onboard power supply and delivery of persistent-memory, high-information-content payload, such as technological artifacts ("parts").

  9. Technology and human purpose: the problem of solids transport on the earth's surface

    NASA Astrophysics Data System (ADS)

    Haff, P. K.

    2012-05-01

    Displacement of mass of limited deformability ("solids") on the Earth's surface is opposed by friction and (the analog of) form resistance - impediments relaxed by rotational motion, self-powering of mass units, and transport infrastructure. These features of solids transport first evolved in the biosphere prior to the emergence of technology, allowing slope-independent, diffusion-like motion of discrete objects as massive as several tons, as illustrated by animal foraging and movement along game trails. However, high-energy-consumption technology powered by fossil fuels required a mechanism that could support advective transport of solids, i.e., long-distance, high-volume, high-speed, unidirectional, slope independent transport across the land surface of materials like coal, containerized fluids, and minerals. Pre-technology nature was able to sustain large-scale, long-distance solids advection only in the limited form of piggybacking on geophysical flows of water (river sediment) and air (dust). The appearance of a generalized mechanism for advection of solids independent of fluid flows and gravity appeared only upon the emergence of human purpose. Purpose enables solids advection by, in effect, enabling a simulated continuous potential gradient, otherwise lacking, between discrete and widely separated fossil-fuel energy sources and sinks. Invoking purpose as a mechanism in solids advection is an example of the need to import anthropic principles and concepts into the language and methodology of modern Earth system dynamics. As part of the emergence of a generalized solids advection mechanism, several additional transport requirements necessary to the function of modern large-scale technological systems were also satisfied. These include spatially accurate delivery of advected payload, targetability to essentially arbitrarily located destinations (such as cities), and independence of structure of advected payload from transport mechanism. The latter property enables the transport of an onboard power supply and delivery of persistent-memory, high-information-content payload, such as technological artifacts ("parts").

  10. Endmembers of Ice Shelf Melt

    NASA Astrophysics Data System (ADS)

    Boghosian, A.; Child, S. F.; Kingslake, J.; Tedesco, M.; Bell, R. E.; Alexandrov, O.; McMichael, S.

    2017-12-01

    Studies of surface melt on ice shelves have defined a spectrum of meltwater behavior. On one end the storage of meltwater in persistent surface ponds can trigger ice shelf collapse as in the 2002 event leading to the disintegration of the Larsen B Ice Shelf. On the other, meltwater export by rivers can stabilize an ice shelf as was recently shown on the Nansen Ice Shelf. We explore this dichotomy by quantifying the partitioning between stored and transported water on two glaciers adjacent to floating ice shelves, Nimrod (Antarctica) and Peterman (Greenland). We analyze optical satellite imagery (LANDSAT, WorldView), airborne imagery (Operation IceBridge, Trimetrogon Aerial Phototography), satellite radar (Sentinel-1), and digital elevation models (DEMs) to categorize surface meltwater fate and map the evolution of ice shelf hydrology and topographic features through time. On the floating Peterman Glacier tongue a sizable river exports water to the ocean. The surface hydrology of Nimrod Glacier, geometrically similar to Peterman but with ten times shallower surface slope, is dominated by storage in surface lakes. In contrast, the Nansen has the same surface slope as Nimrod but transports water through surface rivers. Slope alone is not the sole control on ice shelf hydrology. It is essential to track the storage and transport volumes for each of these systems. To estimate water storage and transport we analyze high resolution (40 cm - 2 m) modern and historical DEMs. We produce historical (1957 onwards) DEMs with structure-from-motion photogrammetry. The DEMs are used to constrain water storage potential estimates of observed basins and water routing/transport potential. We quantify the total volume of water stored seasonally and interannually. We use the normalize difference water index to map meltwater extent, and estimate lake water depth from optical data. We also consider the role of stored water in subsurface aquifers in recharging surface water after observing a pond and river reemerge after apparently freezing during the 2016-17 melt season. Using the ponds/rivers endmember scheme helps us to constrain the role storage and transport play on stabilizing ice shelves. By extending this analysis to other ice tongues and shelves we can better understand their vulnerability to a warming world.

  11. 14 CFR 25.427 - Unsymmetrical loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.427 Unsymmetrical... tail surfaces have dihedral angles greater than plus or minus 10 degrees, or are supported by the... specified in § 25.341(a) acting in any orientation at right angles to the flight path. (d) Unsymmetrical...

  12. 14 CFR 23.397 - Limit control forces and -torques.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Limit control forces and -torques. 23.397 Section 23.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface...

  13. 14 CFR 23.397 - Limit control forces and -torques.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Limit control forces and -torques. 23.397 Section 23.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface...

  14. 14 CFR 23.397 - Limit control forces and -torques.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit control forces and -torques. 23.397 Section 23.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface...

  15. 14 CFR 23.397 - Limit control forces and -torques.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Limit control forces and -torques. 23.397 Section 23.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface...

  16. 14 CFR 23.397 - Limit control forces and -torques.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Limit control forces and -torques. 23.397 Section 23.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Control Surface and System Loads § 23.397 Limit control forces and -torques. (a) In the control surface...

  17. Simulated-airline-service flight tests of laminar-flow control with perforated-surface suction system

    NASA Technical Reports Server (NTRS)

    Maddalon, Dal V.; Braslow, Albert L.

    1990-01-01

    The effectiveness and practicality of candidate leading edge systems for suction laminar flow control transport airplanes were investigated in a flight test program utilizing a modified JetStar airplane. The leading edge region imposes the most severe conditions on systems required for any type of laminar flow control. Tests of the leading edge systems, therefore, provided definitive results as to the feasibility of active laminar flow control on airplanes. The test airplane was operated under commercial transport operating procedures from various commercial airports and at various seasons of the year.

  18. Manifold Coal-Slurry Transport System

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Estus, J. M.; Lavin, M. L.

    1986-01-01

    Feeding several slurry pipes into main pipeline reduces congestion in coal mines. System based on manifold concept: feeder pipelines from each working entry joined to main pipeline that carries coal slurry out of panel and onto surface. Manifold concept makes coal-slurry haulage much simpler than existing slurry systems.

  19. Secondary ion collection and transport system for ion microprobe

    DOEpatents

    Ward, James W.; Schlanger, Herbert; McNulty, Jr., Hugh; Parker, Norman W.

    1985-01-01

    A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.

  20. Viral Tracer Studies Indicate Contamination of Marine Waters by Sewage Disposal Practices in Key Largo, Florida

    PubMed Central

    Paul, J. H.; Rose, J. B.; Brown, J.; Shinn, E. A.; Miller, S.; Farrah, S. R.

    1995-01-01

    Domestic wastewater disposal practices in the Florida Keys are primarily limited to on-site disposal systems such as septic tanks, injection wells, and illegal cesspits. Poorly treated sewage is thus released into the highly porous subsurface Key Largo limestone matrix. To investigate the fate and transport of sewage in the subsurface environment and the potential for contamination of marine surface waters, we employed bacteriophages as tracers in a domestic septic system and a simulated injection well in Key Largo, Florida. Transport of bacteriophage (Phi)HSIC-1 from the septic tank to adjacent surface canal waters and outstanding marine waters occurred in as little as 11 and 23 h, respectively. Transport of the Salmonella phage PRD1 from the simulated injection well to a canal adjacent to the injection site occurred in 11.2 h. Estimated rates of migration of viral tracers ranged from 0.57 to 24.2 m/h, over 500-fold greater than flow rates measured previously by subsurface flow meters in similar environments. These results suggest that current on-site disposal practices can lead to contamination of the subsurface and surface marine waters in the Keys. PMID:16535046

  1. Viral tracer studies indicate contamination of marine waters by sewage disposal practices in key largo, Florida.

    PubMed

    Paul, J H; Rose, J B; Brown, J; Shinn, E A; Miller, S; Farrah, S R

    1995-06-01

    Domestic wastewater disposal practices in the Florida Keys are primarily limited to on-site disposal systems such as septic tanks, injection wells, and illegal cesspits. Poorly treated sewage is thus released into the highly porous subsurface Key Largo limestone matrix. To investigate the fate and transport of sewage in the subsurface environment and the potential for contamination of marine surface waters, we employed bacteriophages as tracers in a domestic septic system and a simulated injection well in Key Largo, Florida. Transport of bacteriophage (Phi)HSIC-1 from the septic tank to adjacent surface canal waters and outstanding marine waters occurred in as little as 11 and 23 h, respectively. Transport of the Salmonella phage PRD1 from the simulated injection well to a canal adjacent to the injection site occurred in 11.2 h. Estimated rates of migration of viral tracers ranged from 0.57 to 24.2 m/h, over 500-fold greater than flow rates measured previously by subsurface flow meters in similar environments. These results suggest that current on-site disposal practices can lead to contamination of the subsurface and surface marine waters in the Keys.

  2. Modelling debris transport within glaciers by advection in a full-Stokes ice flow model

    NASA Astrophysics Data System (ADS)

    Wirbel, Anna; Jarosch, Alexander H.; Nicholson, Lindsey

    2018-01-01

    Glaciers with extensive surface debris cover respond differently to climate forcing than those without supraglacial debris. In order to include debris-covered glaciers in projections of glaciogenic runoff and sea level rise and to understand the paleoclimate proxy recorded by such glaciers, it is necessary to understand the manner and timescales over which a supraglacial debris cover develops. Because debris is delivered to the glacier by processes that are heterogeneous in space and time, and these debris inclusions are altered during englacial transport through the glacier system, correctly determining where, when and how much debris is delivered to the glacier surface requires knowledge of englacial transport pathways and deformation. To achieve this, we present a model of englacial debris transport in which we couple an advection scheme to a full-Stokes ice flow model. The model performs well in numerical benchmark tests, and we present both 2-D and 3-D glacier test cases that, for a set of prescribed debris inputs, reproduce the englacial features, deformation thereof and patterns of surface emergence predicted by theory and observations of structural glaciology. In a future step, coupling this model to (i) a debris-aware surface mass balance scheme and (ii) a supraglacial debris transport scheme will enable the co-evolution of debris cover and glacier geometry to be modelled.

  3. Magnetic resonance imaging reveals detailed spatial and temporal distribution of iron-based nanoparticles transported through water-saturated porous media

    NASA Astrophysics Data System (ADS)

    Cuny, Laure; Herrling, Maria Pia; Guthausen, Gisela; Horn, Harald; Delay, Markus

    2015-11-01

    The application of engineered nanoparticles (ENP) such as iron-based ENP in environmental systems or in the human body inevitably raises the question of their mobility. This also includes aspects of product optimization and assessment of their environmental fate. Therefore, the key aim was to investigate the mobility of iron-based ENP in water-saturated porous media. Laboratory-scale transport experiments were conducted using columns packed with quartz sand as model solid phase. Different superparamagnetic iron oxide nanoparticles (SPION) were selected to study the influence of primary particle size (dP = 20 nm and 80 nm) and surface functionalization (plain, -COOH and -NH2 groups) on particle mobility. In particular, the influence of natural organic matter (NOM) on the transport and retention behaviour of SPION was investigated. In our approach, a combination of conventional breakthrough curve (BTC) analysis and magnetic resonance imaging (MRI) to non-invasively and non-destructively visualize the SPION inside the column was applied. Particle surface properties (surface functionalization and resulting zeta potential) had a major influence while their primary particle size turned out to be less relevant. In particular, the mobility of SPION was significantly increased in the presence of NOM due to the sorption of NOM onto the particle surface resulting in a more negative zeta potential. MRI provided detailed spatially resolved information complementary to the quantitative BTC results. The approach can be transferred to other porous systems and contributes to a better understanding of particle transport in environmental porous media and porous media in technical applications.

  4. Sediment carbon fate in phreatic karst (Part 1): Conceptual model development

    NASA Astrophysics Data System (ADS)

    Husic, A.; Fox, J.; Agouridis, C.; Currens, J.; Ford, W.; Taylor, C.

    2017-06-01

    Recent research has paid increased attention to quantifying the fate of carbon pools within fluvial networks, but few, if any, studies consider the fate of sediment organic carbon in fluviokarst systems despite that karst landscapes cover 12% of the earth's land surface. The authors develop a conceptual model of sediment carbon fate in karst terrain with specific emphasis upon phreatic karst conduits, i.e., those located below the groundwater table that have the potential to trap surface-derived sediment and turnover carbon. To assist with their conceptual model development, the authors study a phreatic system and apply a mixture of methods traditional and novel to karst studies, including electrical resistivity imaging, well drilling, instantaneous velocimetry, dye tracing, stage recording, discrete and continuous sediment and water quality sampling, and elemental and stable carbon isotope fingerprinting. Results show that the sediment transport carrying capacity of the phreatic karst water is orders of magnitude less than surface streams during storm-activated periods promoting deposition of fine sediments in the phreatic karst. However, the sediment transport carrying capacity is sustained long after the hydrologic event has ended leading to sediment resuspension and prolonged transport. The surficial fine grained laminae occurs in the subsurface karst system; but unlike surface streams, the light-limited conditions of the subsurface karst promotes constant heterotrophy leading to carbon turnover. The coupling of the hydrological processes leads to a conceptual model that frames phreatic karst as a biologically active conveyor of sediment carbon that recharges degraded organic carbon back to surface streams. For example, fluvial sediment is estimated to lose 30% of its organic carbon by mass during a one year temporary residence within the phreatic karst. It is recommended that scientists consider karst pathways when attempting to estimate organic matter stocks and carbon transformation in fluvial networks.

  5. Transport studies of mesoscopic and magnetic topological insulators

    NASA Astrophysics Data System (ADS)

    Kandala, Abhinav

    Topological Insulators (TI) are a novel class of materials that are ideally insulating in the bulk, but have gapless, metallic states at the surface. These surface states have very exciting properties such as suppressed backscattering and spin-momentum locking, which are of great interest for research efforts towards dissipation-less electronics and spintronics. The popular thermo-electrics from the Bi chalcogenide family -- Bi2Se3 and Bi 2Te3 -- have been experimentally demonstrated to be promising candidate TI materials, and form the chosen material system for this dissertation research. The first part of this dissertation research focuses on low temperature magneto-transport measurements of mesoscopic topological insulator devices (Chapter 3). The top-down patterning of epitaxial thin films of Bi2Se 3 and Bi2Te3 (that are plagued with bulk conduction) is motivated, in part, by an effort to enhance the surface-to-volume ratio in mesoscopic channels. At cryogenic temperatures, transport measurements of these devices reveal periodic conductance fluctuations in straight channel devices, despite the lack of any explicit patterning of the TI film into a ring or a loop. A careful analysis of the surface morphology and comparison with the transport data then demonstrate that scattering off the edges of triangular plateaus at the surface leads to the creation of Aharonov-Bohm electronic orbits responsible for the periodicity. Another major focus of this dissertation work is on combining topological insulators with magnetism. This has been shown to open a gap in the surface states leading to possibilities of magnetic "gating" and the realization of dissipation-less transport at zero-field, amongst several other exotic quantum phenomena. In this dissertation, I present two different schemes for probing these effects in electrical transport devices -- interfacing with insulating ferromagnets (Chapter 4) and bulk magnetic doping (Chapter 5). In Chapter 4, I shall present the integration of GdN with Bi2Se 3 thin films. Careful structural, magnetic and electrical characterization of the heterostructures is employed to confirm that the magnetic species is solely restricted to the surface, and that the ferromagnetic GdN layer to be insulating, ensuring current flow solely through the TI layer. We also devise a novel device geometry that enables direct comparison of the magneto-transport properties of TI films with and without proximate magnetism, all, in a single device. A comparative study of weak anti-localization suggested that the overlying GdN suppressed quantum interference in the top surface state. In our second generation heterostructure devices, GdN is interfaced with low-carrier density, gate-tunable thin films of (Bi,Sb)2Te3 grown on SrTiO 3 substrates. These devices enable us to map out the comparison of magneto-transport, as the chemical potential is tuned from the bulk conduction band into the bulk valence band. In a second approach to study the effects of magnetism on TI's, I shall present, in Chapter 5, our results from magnetic doping of (Bi,Sb) 2Te3 thin films with Cr -- a system that was recently demonstrated to be a Quantum Anomalous Hall (QAH) insulator. In a Cr-rich regime, a highly insulating, high Curie temperature ferromagnetic phase is achieved. However, a careful, iterative process of tuning the composition of this complex alloy enabled access to the QAHE regime, with the observation of near dissipation-less transport and perfect Hall quantization at zero external field. Furthermore, we demonstrate a field tilt driven crossover between a quantum anomalous Hall phase and a gapless, ferromagnetic TI phase. This crossover manifests itself in an electrically tunable, giant anisotropic magneto-resistance effect that we employ as a quantitative probe of edge transport in this system.

  6. Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A two-year study conducted to establish a basis for industry decisions on the application of laminar flow control (LFC) to future commercial transports was presented. Areas of investigation included: (1) mission definition and baseline selection; (2) concepts evaluations; and (3) LFC transport configuration selection and component design. The development and evaluation of competing design concepts was conducted in the areas of aerodynamics, structures and materials, and systems. The results of supporting wind tunnel and laboratory testing on a full-scale LFC wing panel, suction surface opening concepts and structural samples were included. A final LFC transport was configured in incorporating the results of concept evaluation studies and potential performance improvements were assessed. Remaining problems together with recommendations for future research are discussed.

  7. Off-site transport of nitrogen fertilizer with runoff from golf course fairway turf: A comparison of creeping bentgrass with a fine fescue mixture

    USDA-ARS?s Scientific Manuscript database

    Maintaining quality golf course turf often requires irrigation and application of fertilizer. The transport of excess nutrients with runoff water from highly managed and fertilized biological systems to surrounding surface waters has been shown to result in enhanced algal blooms and promotion of eut...

  8. Ventilation Transport Trade Study for Future Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    Kempf, Robert; Vogel, Matthew; Paul, Heather L.

    2008-01-01

    A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.

  9. Protein kinase C activation decreases cell surface expression of the GLT-1 subtype of glutamate transporter. Requirement of a carboxyl-terminal domain and partial dependence on serine 486.

    PubMed

    Kalandadze, Avtandil; Wu, Ying; Robinson, Michael B

    2002-11-29

    Na(+)-dependent glutamate transporters are required for the clearance of extracellular glutamate and influence both physiological and pathological effects of this excitatory amino acid. In the present study, the effects of a protein kinase C (PKC) activator on the cell surface expression and activity of the GLT-1 subtype of glutamate transporter were examined in two model systems, primary co-cultures of neurons and astrocytes that endogenously express GLT-1 and C6 glioma cells transfected with GLT-1. In both systems, activation of PKC with phorbol ester caused a decrease in GLT-1 cell surface expression. This effect is opposite to the one observed for the EAAC1 subtype of glutamate transporter (Davis, K. E., Straff, D. J., Weinstein, E. A., Bannerman, P. G., Correale, D. M., Rothstein, J. D., and Robinson, M. B. (1998) J. Neurosci. 18, 2475-2485). Several recombinant chimeric proteins between GLT-1 and EAAC1 transporter subtypes were generated to identify domains required for the subtype-specific redistribution of GLT-1. We identified a carboxyl-terminal domain consisting of 43 amino acids (amino acids 475-517) that is required for PKC-induced GLT-1 redistribution. Mutation of a non-conserved serine residue at position 486 partially attenuated but did not completely abolish the PKC-dependent redistribution of GLT-1. Although we observed a phorbol ester-dependent incorporation of (32)P into immunoprecipitable GLT-1, mutation of serine 486 did not reduce this signal. We also found that chimeras containing the first 446 amino acids of GLT-1 were not functional unless amino acids 475-517 of GLT-1 were also present. These non-functional transporters were not as efficiently expressed on the cell surface and migrated to a smaller molecular weight, suggesting that a subtype-specific interaction is required for the formation of functional transporters. These studies demonstrate a novel effect of PKC on GLT-1 activity and define a unique carboxyl-terminal domain as an important determinant in cellular localization and regulation of GLT-1.

  10. 76 FR 50312 - Surface Transportation Environment and Planning Cooperative Research Program (STEP)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... DEPARTMENT OF TRANSPORTATION Federal Highway Administration Surface Transportation Environment and... Legacy for Users (SAFETEA-LU) established the Surface Transportation Environment and Planning Cooperative... national research on issues related to planning, environment, and realty will be included in future surface...

  11. 77 FR 38709 - Surface Transportation Environment and Planning Cooperative Research Program (STEP)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... DEPARTMENT OF TRANSPORTATION Federal Highway Administration Surface Transportation Environment and... Legacy for Users (SAFETEA-LU) established the Surface Transportation Environment and Planning Cooperative... national research on issues related to planning, environment, and realty will be included in future surface...

  12. 75 FR 38605 - Surface Transportation Environment and Planning Cooperative Research Program (STEP)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... DEPARTMENT OF TRANSPORTATION Federal Highway Administration Surface Transportation Environment and... Legacy for Users (SAFETEA-LU) established the Surface Transportation Environment and Planning Cooperative... national research on issues related to planning, environment, and realty will be included in future surface...

  13. 14 CFR 29.571 - Fatigue evaluation of structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., but are not limited to, rotors, rotor drive systems between the engines and rotor hubs, controls... drive systems between the engines and rotor hubs, controls, fuselage, fixed and movable control surfaces... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Fatigue Evaluation...

  14. Design of a CO2 laser power control system for a Spacelab microgravity experiment

    NASA Technical Reports Server (NTRS)

    Wenzler, Carl J.; Eichenberg, Dennis J.

    1990-01-01

    The surface tension driven convection experiment (STDCE) is a Space Transportation System flight experiment manifested to fly aboard the USML-1 Spacelab mission. A CO2 laser is used to heat a spot on the surface of silicone oil contained inside a test chamber. Several CO2 laser control systems were evaluated and the selected system will be interfaced with the balance of the experimental hardware to constitute a working engineering model. Descriptions and a discussion of these various design approaches are presented.

  15. Mass balance of a highly active rock glacier during the period 1954 and 2016

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas; Kaufmann, Viktor; Rieckh, Matthias

    2017-04-01

    Active rock glaciers are creep phenomena of permafrost in high-relief terrain moving slowly downwards and are often characterised by distinct flow structures with ridges and furrows. Active rock glaciers consist of ice and rock material. The ice component might be either congelation (refreezing of liquid water) or sedimentary ('glacier') ice whereas the rock material might be either of periglacial or glacial origin. The formation period of rock glaciers lasts for centuries to millennia as judged from relative or absolute dating approaches. The input of ice and debris onto the rock glacier mass transport system over such long periods might change substantially over time. Long-term monitoring of mass transport, mass changes and nourishment processes of rock glaciers are rare. In this study we analysed on a decadal-scale mass transport (based on photogrammetric and geodetic data; series 1969-2016), mass changes (geodetically-based mass balance quantification; series 1954-2012), and mass input (based on optical data from an automatic digital camera; series 2006-2016) onto the Hinteres Langtal Rock Glacier. This rock glacier is 900 m long, up to 300 m wide, covers an area of 0.17 km2 and is one of the most active ones in the Eastern European Alps. Mass transport rates at the surface indicate relatively low mean annual surface velocities until the beginning of this millennium. A first peak in the horizontal surface velocity was reached in 2003/04 followed by a period of deceleration until 2007/08. Afterwards the rates increased again substantially from year to year with maximum values in 2014/15 (exceeding 6 m/a). This increase in surface velocities during the last decades was accompanied by crevasse formation and landslide activities at its front. Mass changes show for all six analysed periods between 1954 and 2012 a clear negative surface elevation change with mean annual values ranging from -0.016 to -0.058 m/a. This implies a total volume decrease of -435,895 m3 (averaging to -7515 m3/a) over the 58-year period at the rock glacier system. The only area of substantial surface elevation gain was during all periods the rock glacier front indicating a rock glacier advance. Mass input onto the rock glacier transport system was assessed analysing 2044 terrestrial images taken automatically between September 2006 and August 2016 from the main rooting zone of the rock glacier. Results indicate that neither snow and ice nor rock material have been transported in large quantities to the rock glacier system during the 10 year monitoring period. Notable mass movement events have been detected only six times. Perennial snow patches in the rooting zone of the rock glacier only survived on average every second summer. We conclude that the rates of rock glacier mass transport and volumetric losses of the rock glacier are far higher than debris and ice input. This rock glacier is clearly in a state of detachment from its nourishment area and prone to starvation which will eventually lead to rock glacier inactivation. This is a feasible fate for many currently active rock glaciers in the European Alps.

  16. Applications of Response Surface-Based Methods to Noise Analysis in the Conceptual Design of Revolutionary Aircraft

    NASA Technical Reports Server (NTRS)

    Hill, Geoffrey A.; Olson, Erik D.

    2004-01-01

    Due to the growing problem of noise in today's air transportation system, there have arisen needs to incorporate noise considerations in the conceptual design of revolutionary aircraft. Through the use of response surfaces, complex noise models may be converted into polynomial equations for rapid and simplified evaluation. This conversion allows many of the commonly used response surface-based trade space exploration methods to be applied to noise analysis. This methodology is demonstrated using a noise model of a notional 300 passenger Blended-Wing-Body (BWB) transport. Response surfaces are created relating source noise levels of the BWB vehicle to its corresponding FAR-36 certification noise levels and the resulting trade space is explored. Methods demonstrated include: single point analysis, parametric study, an optimization technique for inverse analysis, sensitivity studies, and probabilistic analysis. Extended applications of response surface-based methods in noise analysis are also discussed.

  17. Fuel cell with interdigitated porous flow-field

    DOEpatents

    Wilson, Mahlon S.

    1997-01-01

    A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers.

  18. Fuel cell with interdigitated porous flow-field

    DOEpatents

    Wilson, M.S.

    1997-06-24

    A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers. 9 figs.

  19. Field-induced charge transport at the surface of pentacene single crystals: A method to study charge dynamics of two-dimensional electron systems in organic crystals

    NASA Astrophysics Data System (ADS)

    Takeya, J.; Goldmann, C.; Haas, S.; Pernstich, K. P.; Ketterer, B.; Batlogg, B.

    2003-11-01

    A method has been developed to inject mobile charges at the surface of organic molecular crystals, and the dc transport of field-induced holes has been measured at the surface of pentacene single crystals. To minimize damage to the soft and fragile surface, the crystals are attached to a prefabricated substrate which incorporates a gate dielectric (SiO2) and four probe pads. The surface mobility of the pentacene crystals ranges from 0.1 to 0.5 cm2/V s and is nearly temperature independent above ˜150 K, while it becomes thermally activated at lower temperatures when the induced charges become localized. Ruling out the influence of electric contacts and crystal grain boundaries, the results contribute to the microscopic understanding of trapping and detrapping mechanisms in organic molecular crystals.

  20. Synthesis and characterization of polymer layers for control of fluid transport

    NASA Astrophysics Data System (ADS)

    Vatansever, Fehime

    The level of wetting of fiber surface with liquids is an important characteristic of fibrous materials. It is related to fiber surface energy and the structure of the material. Surface energy can be changed by surface modification via the grafting methodologies that have been reported for introducing new and stable functionality to fibrous substrates without changing bulk properties. Present work is dedicated to synthesis and characterization of macromolecular layers grafted to fiber surface in order to achieve directional liquid transport for the modified fabric. Modification technique used here is based on formation of stable polymer layer on fabric surface using "grafting to" technique. Specifically, modification of fabric with wettability gradient for facilitated one way-liquid transport, and pointed modification of yarn-based channels on textile microfluidic device for directional liquid transport are reported here. First, fabric was activated with alkali (NaOH) solution. Second, poly (glycidyl methacrylate) (PGMA) was deposited on fabric as an anchoring layer. Finally, polymers of interest were grafted to surface through the epoxy functionality of PGMA. Effect of polymer grafting on the wicking property of the fabric has been evaluated by vertical wicking technique at the each step of surface modification. The results shows that wicking performance of fabric can be altered by grafting of a thin nanoscale polymeric film. For the facilitated liquid transport, the gradient polymer coating was created using "grafting to" technique and its dependence on the grafting temperature. Wettability gradient from hydrophilic to hydrophobic (change in water contact angle from 0 to 140 degrees on fabric) was achieved by grafting of polystyrene (PS) and polyacrylic acid (PAA) sequentially with concentration gradient. This study proposes that fabric with wettability gradient property can be used to transfer sweat from skin and support moisture management when it is used in a laminated garment structure. For cooling performance evaluation, modified fabrics were tested with surface differential scanning calorimeter, and improved cooling effect was found with the fabric that has wettability gradient. Directional liquid transport can be achieved on amphiphilic fabric. To this end, fabric consisting of PET and PP yarn is fabricated. Activation and PGMA deposition yields an array of highly reactive PET channels that are constrained by hydrophobic PP boundaries. Aqueous solutions are transported in the channels by capillary forces where the direction of the liquid transport is defined by pH-response of the grafted polymers. The system of pH-selective channels in the developed textile based microfluidic chip could find analytical applications and can be used for smart cloth.

  1. Development of a new LDL-based transport system for hydrophobic/amphiphilic drug delivery to cancer cells.

    PubMed

    Huntosova, Veronika; Buzova, Diana; Petrovajova, Dana; Kasak, Peter; Nadova, Zuzana; Jancura, Daniel; Sureau, Franck; Miskovsky, Pavol

    2012-10-15

    Low-density lipoproteins (LDL), a natural in vivo carrier of cholesterol in the vascular system, play a key role in the delivery of hydrophobic/amphiphilic photosensitizers to tumor cells in photodynamic therapy of cancer. To make this delivery system even more efficient, we have constructed a nano-delivery system by coating of LDL surface by dextran. Fluorescence spectroscopy, confocal fluorescence imaging, stopped-flow experiments and flow-cytometry were used to characterize redistribution of hypericin (Hyp), a natural occurring potent photosensitizer, loaded in LDL/dextran complex to free LDL molecules as well as to monitor cellular uptake of Hyp by U87-MG cells. It is shown that the redistribution process of Hyp between LDL molecules is significantly suppressed by dextran coating of LDL surface. The modification of LDL molecules by dextran does not inhibit their recognition by cellular LDL receptors and U-87 MG cellular uptake of Hyp loaded in LDL/dextran complex appears to be similar to that one observed for Hyp transported by unmodified LDL particles. Thus, it is proposed that dextran modified LDL molecules could be used as a basis for construction of a drug transport system for targeted delivery of hydrophobic/amphiphilic drugs to cancer cells expressing high level of LDL receptors. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. A microbeam slit system for high beam currents

    NASA Astrophysics Data System (ADS)

    Vallentin, T.; Moser, M.; Eschbaumer, S.; Greubel, C.; Haase, T.; Reichart, P.; Rösch, T.; Dollinger, G.

    2015-04-01

    A new microbeam slit system for high beam currents of 10 μA was built up to improve the brightness transport of a proton beam with a kinetic energy of up to 25 MeV into the microprobe SNAKE. The new slit system features a position accuracy of less than 1 μm under normal operating conditions and less than 2 μm if the beam is switched on and off. The thermal management with a powerful watercooling and potential-free thermocouple feedback controlled heating cables is optimized for constant slit aperture at thermal power input of up to 250 W. The transparent zone is optimized to 0.7 μm due to the use of tungsten formed to a cylindrical surface with a radius r = 100 mm and mechanically lapped surface to minimize small angle scattering effects and to minimize the number of ions passing the slits with low energy loss. Electrical isolation of the slit tip enables slit current monitoring, e.g. for tandem accelerator feedback control. With the ability to transport up to 10 μA of protons with the new microslit system, the brightness Bexp transported into the microprobe was increased by a factor of 2 compared to low current injection using the old slit system.

  3. Packing, Scheduling and Covering Problems in a Game-Theoretic Perspective

    NASA Astrophysics Data System (ADS)

    Karlstrom, Leif

    Magma transport pathways through Earth's crust span 12--15 orders of magnitude in time and space, with unsteadiness at all scales. However emergent organization of this system is widespread, recorded by spatial loci of volcanism at the surface and large-scale, rapid outpourings of magma throughout the geologic record. This thesis explores several mechanisms for the organization and time evolution of magma transport, from the deep crust to the surface. A primary focus (Chapters 2--5) is the filling, stability and drainage of magma chambers, structures which function both as reservoirs feeding individual volcanic eruptions and as stalling points in the crust where magma accumulates and differentiation occurs. We show that magma chambers may dictate the spatio-temporal organization of magma rising through crust (Chapters 2--3), control the surface eruptive progression of extreme mantle melting events (Chapter 4), and actively set the size of calderas that form during shallow, crystal rich eruptions (Chapter 5). Each of these chapters explores variations on a hypothesis: interactions between magma chamber stresses and the rheology of surrounding crustal materials evolve during magma transport and this unsteady process helps determine the magnitude, location, and timing of surface eruptions. The last part of this thesis (Chapters 6--7) focuses on surface transport processes, the meandering of melt channels on the surface of glaciers and lava flows. We show that the meandering instability is a generic feature of flow over an erodable substrate, despite significantly different fluid characteristics and erosion mechanics.

  4. Lunar Commercial Mining Logistics

    NASA Astrophysics Data System (ADS)

    Kistler, Walter P.; Citron, Bob; Taylor, Thomas C.

    2008-01-01

    Innovative commercial logistics is required for supporting lunar resource recovery operations and assisting larger consortiums in lunar mining, base operations, camp consumables and the future commercial sales of propellant over the next 50 years. To assist in lowering overall development costs, ``reuse'' innovation is suggested in reusing modified LTS in-space hardware for use on the moon's surface, developing product lines for recovered gases, regolith construction materials, surface logistics services, and other services as they evolve, (Kistler, Citron and Taylor, 2005) Surface logistics architecture is designed to have sustainable growth over 50 years, financed by private sector partners and capable of cargo transportation in both directions in support of lunar development and resource recovery development. The author's perspective on the importance of logistics is based on five years experience at remote sites on Earth, where remote base supply chain logistics didn't always work, (Taylor, 1975a). The planning and control of the flow of goods and materials to and from the moon's surface may be the most complicated logistics challenges yet to be attempted. Affordability is tied to the innovation and ingenuity used to keep the transportation and surface operations costs as low as practical. Eleven innovations are proposed and discussed by an entrepreneurial commercial space startup team that has had success in introducing commercial space innovation and reducing the cost of space operations in the past. This logistics architecture offers NASA and other exploring nations a commercial alternative for non-essential cargo. Five transportation technologies and eleven surface innovations create the logistics transportation system discussed.

  5. Evaluation of viscous drag reduction schemes for subsonic transports

    NASA Technical Reports Server (NTRS)

    Marino, A.; Economos, C.; Howard, F. G.

    1975-01-01

    The results are described of a theoretical study of viscous drag reduction schemes for potential application to the fuselage of a long-haul subsonic transport aircraft. The schemes which were examined included tangential slot injection on the fuselage and various synergetic combinations of tangential slot injection and distributed suction applied to wing and fuselage surfaces. Both passive and mechanical (utilizing turbo-machinery) systems were examined. Overall performance of the selected systems was determined at a fixed subsonic cruise condition corresponding to a flight Mach number of free stream M = 0.8 and an altitude of 11,000 m. The nominal aircraft to which most of the performance data was referenced was a wide-body transport of the Boeing 747 category. Some of the performance results obtained with wing suction are referenced to a Lockheed C-141 Star Lifter wing section. Alternate designs investigated involved combinations of boundary layer suction on the wing surfaces and injection on the fuselage, and suction and injection combinations applied to the fuselage only.

  6. High-Efficiency Fog Collector: Water Unidirectional Transport on Heterogeneous Rough Conical Wires.

    PubMed

    Xu, Ting; Lin, Yucai; Zhang, Miaoxin; Shi, Weiwei; Zheng, Yongmei

    2016-12-27

    An artificial periodic roughness-gradient conical copper wire (PCCW) can be fabricated by inspiration from cactus spines and wet spider silks. PCCW can harvest fog on periodic points of the conical surface from air and transports the drops for a long distance without external force, which is attributed to dynamic as-released energy generated from drop deformation in drop coalescence, in addition to both gradients of geometric curve (inducing Laplace pressure) and periodic roughness (inducing surface energy difference). It is found that the ability of fog collection can be related to various tilt-angle wires, thus a fog collector with an array system of PCCWs is further designed to achieve a continuous process of efficient water collection. As a result, the effect of water collection on PCCWs is better than previous results. These findings are significant to develop and design materials with water collection and water transport for promising application in fogwater systems to ease the water crisis.

  7. Flow prediction over a transport multi-element high-lift system and comparison with flight measurements

    NASA Technical Reports Server (NTRS)

    Vijgen, P. M. H. W.; Hardin, J. D.; Yip, L. P.

    1992-01-01

    Accurate prediction of surface-pressure distributions, merging boundary-layers, and separated-flow regions over multi-element high-lift airfoils is required to design advanced high-lift systems for efficient subsonic transport aircraft. The availability of detailed measurements of pressure distributions and both averaged and time-dependent boundary-layer flow parameters at flight Reynolds numbers is critical to evaluate computational methods and to model the turbulence structure for closure of the flow equations. Several detailed wind-tunnel measurements at subscale Reynolds numbers were conducted to obtain detailed flow information including the Reynolds-stress component. As part of a subsonic-transport high-lift research program, flight experiments are conducted using the NASA-Langley B737-100 research aircraft to obtain detailed flow characteristics for support of computational and wind-tunnel efforts. Planned flight measurements include pressure distributions at several spanwise locations, boundary-layer transition and separation locations, surface skin friction, as well as boundary-layer profiles and Reynolds stresses in adverse pressure-gradient flow.

  8. Large-aspect-ratio limit of neoclassical transport theory.

    PubMed

    Wong, S K; Chan, V S

    2003-06-01

    This paper presents a comprehensive description of neoclassical transport theory in the banana regime for large-aspect-ratio flux surfaces of arbitrary shapes. The method of matched-asymptotic expansions is used to obtain analytical solutions for plasma distribution functions and to compute transport coefficients. The method provides justification for retaining only the part of the Fokker-Planck operator that involves the second derivative with respect to the cosine of the pitch angle for the trapped and barely circulating particles. It leads to a simple equation for the freely circulating particles with boundary conditions that embody a discontinuity separating particles moving in opposite directions. Corrections to the transport coefficients are obtained by generalizing an existing boundary layer analysis. The system of moment and field equations is consistently taken in the cylinder limit, which facilitates the discussion of the treatment of dynamical constraints. It is shown that the nonlocal nature of Ohm's law in neoclassical theory renders the mathematical problem of plasma transport with changing flux surfaces nonstandard.

  9. Characterization of fracture connectivity in a siliciclastic bedrock aquifer near a public supply well (Wisconsin, USA)

    NASA Astrophysics Data System (ADS)

    Gellasch, Christopher A.; Bradbury, Kenneth R.; Hart, David J.; Bahr, Jean M.

    2013-03-01

    In order to protect public supply wells from a wide range of contaminants, it is imperative to understand physical flow and transport mechanisms in the aquifer system. Although flow through fractures has typically been associated with either crystalline or carbonate rocks, there is growing evidence that it can be an important component of flow in relatively permeable sandstone formations. The objective of this work is to determine the role that fractures serve in the transport of near-surface contaminants such as wastewater from leaking sewers, to public supply wells in a deep bedrock aquifer. A part of the Cambrian aquifer system in Madison, Wisconsin (USA), was studied using a combination of geophysical, geochemical, and hydraulic testing in a borehole adjacent to a public supply well. Data suggest that bedrock fractures are important transport pathways from the surface to the deep aquifer. These fractured intervals have transmissivity values several orders of magnitude higher than non-fractured intervals. With respect to rapid transport of contaminants, high transmissivity values of individual fractures make them the most likely preferential flow pathways. Results suggest that in a siliciclastic aquifer near a public supply well, fractures may have an important role in the transport of sewer-derived wastewater contaminants.

  10. STELLTRANS: A Transport Analysis Suite for Stellarators

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Joseph; Lazerson, Samuel; Pablant, Novimir; Weir, Gavin; W7-X Team

    2016-10-01

    The stellarator transport code STELLTRANS allows us to better analyze the power balance in W7-X. Although profiles of temperature and density are measured experimentally, geometrical factors are needed in conjunction with these measurements to properly analyze heat flux densities in stellarators. The STELLTRANS code interfaces with VMEC to find an equilibrium flux surface configuration and with TRAVIS to determine the RF heating and current drive in the plasma. Stationary transport equations are then considered which are solved using a boundary value differential equation solver. The equations and quantities considered are averaged over flux surfaces to reduce the system to an essentially one dimensional problem. We have applied this code to data from W-7X and were able to calculate the heat flux coefficients. We will also present extensions of the code to a predictive capacity which would utilize DKES to find neoclassical transport coefficients to update the temperature and density profiles.

  11. Bioinspired ion-transport properties of solid-state single nanochannels and their applications in sensing.

    PubMed

    Tian, Ye; Wen, Liping; Hou, Xu; Hou, Guanglei; Jiang, Lei

    2012-07-16

    Biological ion channels are able to control ion-transport processes precisely because of their intriguing properties, such as selectivity, rectification, and gating. Learning from nature, scientists have developed a promising system--solid-state single nanochannels--to mimic biological ion-transport properties. These nanochannels have many impressive properties, such as excess surface charge, making them selective; the ability to be produced or modified asymmetrically, endowing them with rectification; and chemical reactivity of the inner surface, imparting them with desired gating properties. Based on these unique characteristics, solid-state single nanochannels have been explored in various applications, such as sensing. In this context, we summarize recent developments of bioinspired solid-state single nanochannels with ion-transport properties that resemble their biological counterparts, including selectivity, rectification, and gating; their applications in sensing are also introduced briefly. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. On-line, continuous monitoring in solar cell and fuel cell manufacturing using spectral reflectance imaging

    DOEpatents

    Sopori, Bhushan; Rupnowski, Przemyslaw; Ulsh, Michael

    2016-01-12

    A monitoring system 100 comprising a material transport system 104 providing for the transportation of a substantially planar material 102, 107 through the monitoring zone 103 of the monitoring system 100. The system 100 also includes a line camera 106 positioned to obtain multiple line images across a width of the material 102, 107 as it is transported through the monitoring zone 103. The system 100 further includes an illumination source 108 providing for the illumination of the material 102, 107 transported through the monitoring zone 103 such that light reflected in a direction normal to the substantially planar surface of the material 102, 107 is detected by the line camera 106. A data processing system 110 is also provided in digital communication with the line camera 106. The data processing system 110 is configured to receive data output from the line camera 106 and further configured to calculate and provide substantially contemporaneous information relating to a quality parameter of the material 102, 107. Also disclosed are methods of monitoring a quality parameter of a material.

  13. Petit Grand Tour: Mission Concepts to Outer Planet Satellites Using Non-Conic Low Energy Trajectories

    NASA Technical Reports Server (NTRS)

    Lo, M. W.

    2001-01-01

    Our Solar System is connected by a vast Interplanetary Superhighway System (ISSys) providing low energy transport throughout. The Outer Planets with their satellites and rings are smaller replicas of the Solar System with their own ISSys, also providing low energy transport within their own satellite systems. This low energy transport system is generated by all of the Lagrange points of the planets and satellites within the Solar System. Figures show the tubular passage-ways near L1 of Jupiter and the ISSys of Jupiter schematically. These delicate and resilient dynamics may be used to great effect to produce free temporary captures of a spacecraft by a planet or satellite, low energy interplanetary and inter-satellite transfers, as well as precision impact orbits onto the surface of the satellites. Additional information is contained in the original extended abstract.

  14. High surface conductivity of Fermi-arc electrons in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Resta, Giacomo; Pi, Shu-Ting; Wan, Xiangang; Savrasov, Sergey Y.

    2018-02-01

    Weyl semimetals (WSMs), a new type of topological condensed matter, are currently attracting great interest due to their unusual electronic states and intriguing transport properties such as chiral anomaly induced negative magnetoresistance, a semiquantized anomalous Hall effect, and the debated chiral magnetic effect. These systems are close cousins of topological insulators (TIs) which are known for their disorder-tolerant surface states. Similarly, WSMs exhibit unique topologically protected Fermi-arc surface states. Here, we analyze electron-phonon scattering, a primary source of resistivity in metals at finite temperatures, as a function of the shape of the Fermi arc where we find that the impact on surface transport is significantly dependent on the arc curvature and disappears in the limit of a straight arc. Next, we discuss the effect of strong surface disorder on the resistivity by numerically simulating a tight-binding model with the presence of quenched surface vacancies using the coherent potential approximation and Kubo-Greenwood formalism. We find that the limit of a straight arc geometry is remarkably disorder tolerant, producing surface conductivity that is one to two orders of magnitude larger than a comparable setup with surface states of TI. This is primarily attributed to a significantly different hybridization strength of the surface states with the remaining electrons in two systems. Finally, a simulation of the effects of surface vacancies on TaAs is presented, illustrating the disorder tolerance of the topological surface states in a recently discovered WSM material.

  15. NASA Lewis Research Center's Program on Icing Research

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Shaw, R. J.; Olsen, W. A., Jr.

    1982-01-01

    The helicopter and general aviation, light transport, and commercial transport aircraft share common icing requirements: highly effective, lightweight, low power consuming deicing systems, and detailed knowledge of the aeropenalties due to ice on aircraft surfaces. To meet current and future needs, NASA has a broadbased icing research program which covers both research and engineering applications, and is well coordinated with the FAA, DOD, universities, industry, and some foreign governments. Research activity in ice protection systems, icing instrumentation, experimental methods, analytical modeling, and in-flight research are described.

  16. Explosive vapor detection payload for small robots

    NASA Astrophysics Data System (ADS)

    Stimac, Phil J.; Pettit, Michael; Wetzel, John P.; Haas, John W.

    2013-05-01

    Detection of explosive hazards is a critical component of enabling and improving operational mobility and protection of US Forces. The Autonomous Mine Detection System (AMDS) developed by the US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) is addressing this challenge for dismounted soldiers. Under the AMDS program, ARA has developed a vapor sampling system that enhances the detection of explosive residues using commercial-off-the-shelf (COTS) sensors. The Explosives Hazard Trace Detection (EHTD) payload is designed for plug-and-play installation and operation on small robotic platforms, addressing critical Army needs for more safely detecting concealed or exposed explosives in areas such as culverts, walls and vehicles. In this paper, we describe the development, robotic integration and performance of the explosive vapor sampling system, which consists of a sampling "head," a vapor transport tube and an extendable "boom." The sampling head and transport tube are integrated with the boom, allowing samples to be collected from targeted surfaces up to 7-ft away from the robotic platform. During sample collection, an IR lamp in the sampling head is used to heat a suspected object/surface and the vapors are drawn through the heated vapor transport tube to an ion mobility spectrometer (IMS) for detection. The EHTD payload is capable of quickly (less than 30 seconds) detecting explosives such as TNT, PETN, and RDX at nanogram levels on common surfaces (brick, concrete, wood, glass, etc.).

  17. Systemic delivery of blood-brain barrier-targeted polymeric nanoparticles enhances delivery to brain tissue.

    PubMed

    Saucier-Sawyer, Jennifer K; Deng, Yang; Seo, Young-Eun; Cheng, Christopher J; Zhang, Junwei; Quijano, Elias; Saltzman, W Mark

    2015-01-01

    Delivery of therapeutic agents to the central nervous system is a significant challenge, hindering progress in the treatment of diseases such as glioblastoma. Due to the presence of the blood-brain barrier (BBB), therapeutic agents do not readily transverse the brain endothelium to enter the parenchyma. Previous reports suggest that surface modification of polymer nanoparticles (NPs) can improve their ability to cross the BBB, but it is unclear whether the observed enhancements in transport are large enough to enhance therapy. In this study, we synthesized two degradable polymer NP systems surface-modified with ligands previously suggested to improve BBB transport, and tested their ability to cross the BBB after intravenous injection in mice. All the NP preparations were able to cross the BBB, although generally in low amounts (<0.5% of the injected dose), which was consistent with prior reports. One NP produced significantly higher brain uptake (∼0.8% of the injected dose): a block copolymer of polylactic acid and hyperbranched polyglycerol, surface modified with adenosine (PLA-HPG-Ad). PLA-HPG-Ad NPs provided controlled release of camptothecin, killing U87 glioma cells in culture. When administered intravenously in mice with intracranial U87 tumors, they failed to increase survival. These results suggest that enhancing NP transport across the BBB does not necessarily yield proportional pharmacological effects.

  18. Surface-directed capillary system; theory, experiments and applications.

    PubMed

    Bouaidat, Salim; Hansen, Ole; Bruus, Henrik; Berendsen, Christian; Bau-Madsen, Niels Kristian; Thomsen, Peter; Wolff, Anders; Jonsmann, Jacques

    2005-08-01

    We present a capillary flow system for liquid transport in microsystems. Our simple microfluidic system consists of two planar parallel surfaces, separated by spacers. One of the surfaces is entirely hydrophobic, the other mainly hydrophobic, but with hydrophilic pathways defined on it by photolithographic means. By controlling the wetting properties of the surfaces in this manner, the liquid can be confined to certain areas defined by the hydrophilic pathways. This technique eliminates the need for alignment of the two surfaces. Patterned plasma-polymerized hexafluoropropene constitutes the hydrophobic areas, whereas the untreated glass surface constitutes the hydrophilic pathways. We developed a theoretical model of the capillary flow and obtained analytical solutions which are in good agreement with the experimental results. The capillarity-driven microflow system was also used to pattern and immobilize biological material on planar substrates: well-defined 200 microm wide strips of human cells (HeLa) and fluorescence labelled proteins (fluorescein isothiocyanate-labelled bovine serum albumin, i.e., FITC-BSA) were fabricated using the capillary flow system presented here.

  19. Influence of the three-dimensional heterogeneous roughness on electrokinetic transport in microchannels.

    PubMed

    Hu, Yandong; Werner, Carsten; Li, Dongqing

    2004-12-15

    Surface roughness has been considered as a passive means of enhancing species mixing in electroosmotic flow through microfluidic systems. It is highly desirable to understand the synergetic effect of three-dimensional (3D) roughness and surface heterogeneity on the electrokinetic flow through microchannels. In this study, we developed a three-dimensional finite-volume-based numerical model to simulate electroosmotic transport in a slit microchannel (formed between two parallel plates) with numerous heterogeneous prismatic roughness elements arranged symmetrically and asymmetrically on the microchannel walls. We consider that all 3D prismatic rough elements have the same surface charge or zeta potential, the substrate (the microchannel wall) surface has a different zeta potential. The results showed that the rough channel's geometry and the electroosmotic mobility ratio of the roughness elements' surface to that of the substrate, epsilon(mu), have a dramatic influence on the induced-pressure field, the electroosmotic flow patterns, and the electroosmotic flow rate in the heterogeneous rough microchannels. The associated sample-species transport presents a tidal-wave-like concentration field at the intersection between four neighboring rough elements under low epsilon(mu) values and has a concentration field similar to that of the smooth channels under high epsilon(mu) values.

  20. Multilayer coatings for flexible high-barrier materials

    NASA Astrophysics Data System (ADS)

    Vaško, Karol; Noller, Klaus; Mikula, Milan; Amberg-Schwab, Sabine; Weber, Ulrike

    2009-06-01

    A multilayer, flexible, and transparent high-barrier system based on flexible plastic foils, polyethyleneterephthalate (PET) and ethylene-tetrafluoroethylene-copolymer (ETFE), combined with vacuum-deposited, inorganic SiOx layers and hybrid ORMOCER® varnish layers were prepared in different orders on a semiproduction level. Barrier properties of prepared systems, as water vapour transmission (WVTR) and oxygen transmission (OTR), were measured and studied in connection with surface energy, surface topography, and water vapour adsorption properties. Correlations among layers sequence, barrier properties, and other parameters are presented, including some basic principles of permeation of substances through multilayer barrier systems. A combination of several inorganic and hybrid varnish layers is necessary to achieve the technological demands from a barrier standpoint. It is easier to suppress the oxygen transport than the water transport, due to the additional active penetration of water through hydrogen bonds and silanol creations at oxide interfaces, capillary condensation, and swelling with high internal pressure, leading to new defects.

  1. Low-energy ion beamline scattering apparatus for surface science investigations

    NASA Astrophysics Data System (ADS)

    Gordon, M. J.; Giapis, K. P.

    2005-08-01

    We report on the design, construction, and performance of a high current (monolayers/s), mass-filtered ion beamline system for surface scattering studies using inert and reactive species at collision energies below 1500 eV. The system combines a high-density inductively coupled plasma ion source, high-voltage floating beam transport line with magnet mass-filter and neutral stripping, decelerator, and broad based detection capabilities (ions and neutrals in both mass and energy) for products leaving the target surface. The entire system was designed from the ground up to be a robust platform to study ion-surface interactions from a more global perspective, i.e., high fluxes (>100μA/cm2) of a single ion species at low, tunable energy (50-1400±5eV full width half maximum) can be delivered to a grounded target under ultrahigh vacuum conditions. The high current at low energy problem is solved using an accel-decel transport scheme where ions are created at the desired collision energy in the plasma source, extracted and accelerated to high transport energy (20 keV to fight space charge repulsion), and then decelerated back down to their original creation potential right before impacting the grounded target. Scattered species and those originating from the surface are directly analyzed in energy and mass using a triply pumped, hybrid detector composed of an electron impact ionizer, hemispherical electrostatic sector, and rf/dc quadrupole in series. With such a system, the collision kinematics, charge exchange, and chemistry occurring on the target surface can be separated by fully analyzing the scattered product flux. Key design aspects of the plasma source, beamline, and detection system are emphasized here to highlight how to work around physical limitations associated with high beam flux at low energy, pumping requirements, beam focusing, and scattered product analysis. Operational details of the beamline are discussed from the perspective of available beam current, mass resolution, projectile energy spread, and energy tunability. As well, performance of the overall system is demonstrated through three proof-of-concept examples: (1) elastic binary collisions at low energy, (2) core-level charge exchange reactions involving Ne+20 with Mg /Al/Si/P targets, and (3) reactive scattering of CF2+/CF3+ off Si. These studies clearly demonstrate why low, tunable incident energy, as well as mass and energy filtering of products leaving the target surface is advantageous and often essential for studies of inelastic energy losses, hard-collision charge exchange, and chemical reactions that occur during ion-surface scattering.

  2. Adjoint Sensitivity Analyses Of Sand And Dust Storms In East Asia

    NASA Astrophysics Data System (ADS)

    Kay, J.; Kim, H.

    2008-12-01

    Sand and Dust Storm (SDS) in East Asia, so called Asian dust, is a seasonal meteorological phenomenon. Mostly in spring, dust particles blown into atmosphere in the arid area over northern China desert and Manchuria are transported to East Asia by prevailing flows. Three SDS events in East Asia from 2005 to 2008 are chosen to investigate how sensitive the SDS forecasts to the initial condition uncertainties and thence to suggest the sensitive regions for adaptive observations of the SDS events. Adaptive observations are additional observations in sensitive regions where the observations may have the most impact on the forecast by decreasing the forecast error. Three SDS events are chosen to represent different transport passes from the dust source regions to the Korean peninsula. To investigate the sensitivities to the initial condition, adjoint sensitivities that calculate gradient of the forecast aspect (i.e., response function) with respect to the initial condition are used. The forecast aspects relevant to the SDS transport are forecast error of the surface pressure, surface pressure perturbation, and steering vector of winds in the lower troposphere. Because the surface low pressure system usually plays an important role for SDS transport, the forecast error of the surface pressure and the surface pressure perturbation are chosen as the response function of the adjoint calculation. Another response function relevant to SDS transport is the steering flow over the downstream region (i.e., Korean peninsula) because direction and intensity of the prevailing winds usually determine the intensity and occurrence of the SDS events at the destination. The results show that the sensitive regions for the forecast error of the surface pressure and surface pressure perturbation are initially located in the vicinity of the trough and then propagate eastward as the low system moves eastward. The vertical structures of the adjoint sensitivities are upshear tilted structures, which are typical structures of extratropical cyclones. The adjoint sensitivities for lower tropospheric steering flow are also located near the trough, which confirms that the accurate forecast on the location and movement of the trough is essential to have better forecasts of Asian dust events. More comprehensive results and discussions of the adjoint sensitivity analyses for Asian dust events will be presented in the meeting.

  3. The Innovative Technology Deployment (ITD)/ Commercial Vehicle Information Systems and Networks (CVISN) Program, 2016 annual report.

    DOT National Transportation Integrated Search

    2017-06-01

    On December 4, 2015, the Fixing Americas Surface Transportation Act, 2015 (FAST Act) (Pub. L. 114-94) established the Innovative Technology Deployment (ITD) Grant Program, replacing the long-standing Commercial Vehicle Information Systems and Netw...

  4. A geographic information system to predict soil erosion potential in rural transportation construction project

    DOT National Transportation Integrated Search

    1995-06-30

    Topographic surface modeling using a Geographic Information System (GIS) can be useful for the prediction of soil erosion resulting from highway construction projects. The assumption is that terrain, along with other parameters, will influence the po...

  5. Theoretical investigations on plasma processes in the Kaufman thruster. [electron and ion velocity distribution

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1974-01-01

    An analysis of the sputtering of metal surfaces and grids by ions of medium energies is given and it is shown that an exact, nonlinear, hyperbolic wave equation for the temperature field describes the transient transport of heat in metals. Quantum statistical and perturbation theoretical analysis of surface sputtering by low energy ions are used to develop the same expression for the sputtering rate. A transport model is formulated for the deposition of sputtered atoms on system components. Theoretical efforts in determining the potential distribution and the particle velocity distributions in low pressure discharges are briefly discussed.

  6. Microscale transport and sorting by kinesin molecular motors.

    PubMed

    Jia, Lili; Moorjani, Samira G; Jackson, Thomas N; Hancock, William O

    2004-03-01

    As biomolecular detection systems shrink in size, there is an increasing demand for systems that transport and position materials at micron- and nanoscale dimensions. Our goal is to combine cellular transport machinery-kinesin molecular motors and microtubules-with integrated optoelectronics into a hybrid biological/engineered microdevice that will bind, transport, and detect specific proteins, DNA/RNA molecules, viruses, or cells. For microscale transport, 1.5 microm deep channels were created with SU-8 photoresist on glass, kinesin motors adsorbed to the bottom of the channels, and the channel walls used to bend and redirect microtubules moving over the immobilized motors. Novel channel geometries were investigated as a means to redirect and sort microtubules moving in these channels. We show that DC and AC electric fields are sufficient to transport microtubules in solution, establishing an approach for redirecting microtubules moving in channels. Finally, we inverted the geometry to demonstrate that kinesins can transport gold nanowires along surface immobilized microtubules, providing a model for nanoscale directed assembly.

  7. Unstable behaviour of an upper ocean-atmosphere coupled model: role of atmospheric radiative processes and oceanic heat transport

    NASA Astrophysics Data System (ADS)

    Cohen-Solal, E.; Le Treut, H.

    We describe the initial bias of the climate simulated by a coupled ocean-atmosphere model. The atmospheric component is a state-of-the-art atmospheric general circulation model, whereas the ocean component is limited to the upper ocean and includes a mixed layer whose depth is computed by the model. As the full ocean general circulation is not computed by the model, the heat transport within the ocean is prescribed. When modifying the prescribed heat transport we also affect the initial drift of the model. We analyze here one of the experiments where this drift is very strong, in order to study the key processes relating the changes in the ocean transport and the evolution of the model's climate. In this simulation, the ocean surface temperature cools by 1.5°C in 20 y. We can distinguish two different phases. During the first period of 5 y, the sea surface temperatures become cooler, particularly in the intertropical area, but the outgoing longwave radiation at the top-of-the-atmosphere increases very quickly, in particular at the end of the period. An off-line version of the model radiative code enables us to decompose this behaviour into different contributions (cloudiness, specific humidity, air and surface temperatures, surface albedo). This partitioning shows that the longwave radiation evolution is due to a decrease of high level cirrus clouds in the intertropical troposphere. The decrease of the cloud cover also leads to a decrease of the planetary albedo and therefore an increase of the net short wave radiation absorbed by the system. But the dominant factor is the strong destabilization by the longwave cooling, which is able to throw the system out of equilibrium. During the remaining of the simulation (second phase), the cooling induced by the destabilization at the top-of-the-atmosphere is transmitted to the surface by various processes of the climate system. Hence, we show that small variations of ocean heat transport can force the model from a stable to an unstable state via atmospheric processes which arise wen the tropics are cooling. Even if possibly overestimated by our GCM, this mechanism may be pertinent to the maintenance of present climatic conditions in the tropics. The simplifications inherent in our model's design allow us to investigate the mechanism in some detail.

  8. Transport and transportation pathways of hazardous chemicals from solid waste disposal.

    PubMed Central

    Van Hook, R I

    1978-01-01

    To evaluate the impact of hazardous chemicals in solid wastes on man and other organisms, it is necessary to have information about amounts of chemical present, extent of exposure, and chemical toxicity. This paper addresses the question of organism exposure by considering the major physical and biological transport pathways and the physicochemical and biochemical transformations that may occur in sediments, soils, and water. Disposal of solid wastes in both terrestrial and oceanic environments is considered. Atmospheric transport is considered for emissions from incineration of solid wastes and for wind resuspension of particulates from surface waste deposits. Solid wastes deposited in terrestrial environments are subject to leaching by surface and ground waters. Leachates may then be transported to other surface waters and drinking water aquifers through hydrologic transport. Leachates also interact with natural organic matter, clays, and microorganisms in soils and sediments. These interactions may render chemical constituents in leachates more or less mobile, possibly change chemical and physical forms, and alter their biological activity. Oceanic waste disposal practices result in migration through diffusion and ocean currents. Surface area-to-volume ratios play a major role in the initial distributions of chemicals in the aquatic environment. Sediments serve as major sources and sinks of chemical contaminants. Food chain transport in both aquatic and terrestrial environments results in the movement of hazardous chemicals from lower to higher positions in the food web. Bioconcentration is observed in both terrestrial and aquatic food chains with certain elements and synthetic organics. Bioconcentration factors tend to be higher for synthetic organics, and higher in aquatic than in terrestrial systems. Biodilution is not atypical in terrestrial environments. Synergistic and antagonistic actions are common occurrences among chemical contaminants and can be particularly important toxicity considerations in aquatic environments receiving runoff from several terrestrial sources. PMID:367772

  9. Chlorothalonil and 2,4-D Losses in Surface Water Discharge From a Managed Turf Watershed

    USDA-ARS?s Scientific Manuscript database

    Managed turf sites (golf courses) are the most intensively managed landscapes in the urban environment. Yet, long-term watershed scale studies documenting the environmental transport of agrichemicals applied to these systems are rare. The objective of this study was to quantify the surface runoff lo...

  10. 14 CFR 25.407 - Trim tab effects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Trim tab effects. 25.407 Section 25.407... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.407 Trim tab effects. The effects of trim tabs on the control surface design conditions must be accounted for only where the...

  11. 14 CFR 25.407 - Trim tab effects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Trim tab effects. 25.407 Section 25.407... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.407 Trim tab effects. The effects of trim tabs on the control surface design conditions must be accounted for only where the...

  12. Electrohydrodynamic channeling effects in narrow fractures and pores

    NASA Astrophysics Data System (ADS)

    Bolet, Asger; Linga, Gaute; Mathiesen, Joachim

    2018-04-01

    In low-permeability rock, fluid and mineral transport occur in pores and fracture apertures at the scale of micrometers and below. At this scale, the presence of surface charge, and a resultant electrical double layer, may considerably alter transport properties. However, due to the inherent nonlinearity of the governing equations, numerical and theoretical studies of the coupling between electric double layers and flow have mostly been limited to two-dimensional or axisymmetric geometries. Here, we present comprehensive three-dimensional simulations of electrohydrodynamic flow in an idealized fracture geometry consisting of a sinusoidally undulated bottom surface and a flat top surface. We investigate the effects of varying the amplitude and the Debye length (relative to the fracture aperture) and quantify their impact on flow channeling. The results indicate that channeling can be significantly increased in the plane of flow. Local flow in the narrow regions can be slowed down by up to 5 % compared to the same geometry without charge, for the highest amplitude considered. This indicates that electrohydrodynamics may have consequences for transport phenomena and surface growth in geophysical systems.

  13. Effective mass and Fermi surface complexity factor from ab initio band structure calculations

    NASA Astrophysics Data System (ADS)

    Gibbs, Zachary M.; Ricci, Francesco; Li, Guodong; Zhu, Hong; Persson, Kristin; Ceder, Gerbrand; Hautier, Geoffroy; Jain, Anubhav; Snyder, G. Jeffrey

    2017-02-01

    The effective mass is a convenient descriptor of the electronic band structure used to characterize the density of states and electron transport based on a free electron model. While effective mass is an excellent first-order descriptor in real systems, the exact value can have several definitions, each of which describe a different aspect of electron transport. Here we use Boltzmann transport calculations applied to ab initio band structures to extract a density-of-states effective mass from the Seebeck Coefficient and an inertial mass from the electrical conductivity to characterize the band structure irrespective of the exact scattering mechanism. We identify a Fermi Surface Complexity Factor: Nv*K* from the ratio of these two masses, which in simple cases depends on the number of Fermi surface pockets (Nv* ) and their anisotropy K*, both of which are beneficial to high thermoelectric performance as exemplified by the high values found in PbTe. The Fermi Surface Complexity factor can be used in high-throughput search of promising thermoelectric materials.

  14. 36 CFR 13.460 - Use of snowmobiles, motorboats, dog teams, and other means of surface transportation...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., motorboats, dog teams, and other means of surface transportation traditionally employed by local rural... of snowmobiles, motorboats, dog teams, and other means of surface transportation traditionally... this chapter, the use of snowmobiles, motorboats, dog teams, and other means of surface transportation...

  15. 36 CFR 13.460 - Use of snowmobiles, motorboats, dog teams, and other means of surface transportation...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., motorboats, dog teams, and other means of surface transportation traditionally employed by local rural... of snowmobiles, motorboats, dog teams, and other means of surface transportation traditionally... this chapter, the use of snowmobiles, motorboats, dog teams, and other means of surface transportation...

  16. 36 CFR 13.460 - Use of snowmobiles, motorboats, dog teams, and other means of surface transportation...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., motorboats, dog teams, and other means of surface transportation traditionally employed by local rural... of snowmobiles, motorboats, dog teams, and other means of surface transportation traditionally... this chapter, the use of snowmobiles, motorboats, dog teams, and other means of surface transportation...

  17. 36 CFR 13.460 - Use of snowmobiles, motorboats, dog teams, and other means of surface transportation...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., motorboats, dog teams, and other means of surface transportation traditionally employed by local rural... of snowmobiles, motorboats, dog teams, and other means of surface transportation traditionally... this chapter, the use of snowmobiles, motorboats, dog teams, and other means of surface transportation...

  18. 36 CFR 13.460 - Use of snowmobiles, motorboats, dog teams, and other means of surface transportation...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., motorboats, dog teams, and other means of surface transportation traditionally employed by local rural... of snowmobiles, motorboats, dog teams, and other means of surface transportation traditionally... this chapter, the use of snowmobiles, motorboats, dog teams, and other means of surface transportation...

  19. ArcNLET: A GIS-based software to simulate groundwater nitrate load from septic systems to surface water bodies

    NASA Astrophysics Data System (ADS)

    Rios, J. Fernando; Ye, Ming; Wang, Liying; Lee, Paul Z.; Davis, Hal; Hicks, Rick

    2013-03-01

    Onsite wastewater treatment systems (OWTS), or septic systems, can be a significant source of nitrates in groundwater and surface water. The adverse effects that nitrates have on human and environmental health have given rise to the need to estimate the actual or potential level of nitrate contamination. With the goal of reducing data collection and preparation costs, and decreasing the time required to produce an estimate compared to complex nitrate modeling tools, we developed the ArcGIS-based Nitrate Load Estimation Toolkit (ArcNLET) software. Leveraging the power of geographic information systems (GIS), ArcNLET is an easy-to-use software capable of simulating nitrate transport in groundwater and estimating long-term nitrate loads from groundwater to surface water bodies. Data requirements are reduced by using simplified models of groundwater flow and nitrate transport which consider nitrate attenuation mechanisms (subsurface dispersion and denitrification) as well as spatial variability in the hydraulic parameters and septic tank distribution. ArcNLET provides a spatial distribution of nitrate plumes from multiple septic systems and a load estimate to water bodies. ArcNLET's conceptual model is divided into three sub-models: a groundwater flow model, a nitrate transport and fate model, and a load estimation model which are implemented as an extension to ArcGIS. The groundwater flow model uses a map of topography in order to generate a steady-state approximation of the water table. In a validation study, this approximation was found to correlate well with a water table produced by a calibrated numerical model although it was found that the degree to which the water table resembles the topography can vary greatly across the modeling domain. The transport model uses a semi-analytical solution to estimate the distribution of nitrate within groundwater, which is then used to estimate a nitrate load using a mass balance argument. The estimates given by ArcNLET are suitable for a screening-level analysis.

  20. Development and applications of a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System

    NASA Astrophysics Data System (ADS)

    Warner, J. C.; Armstrong, B. N.; He, R.; Zambon, J. B.; Olabarrieta, M.; Voulgaris, G.; Kumar, N.; Haas, K. A.

    2012-12-01

    Understanding processes responsible for coastal change is important for managing both our natural and economic coastal resources. Coastal processes respond from both local scale and larger regional scale forcings. Understanding these processes can lead to significant insight into how the coastal zone evolves. Storms are one of the primary driving forces causing coastal change from a coupling of wave and wind driven flows. Here we utilize a numerical modeling approach to investigate these dynamics of coastal storm impacts. We use the Coupled Ocean - Atmosphere - Wave - Sediment Transport (COAWST) Modeling System that utilizes the Model Coupling Toolkit to exchange prognostic variables between the ocean model ROMS, atmosphere model WRF, wave model SWAN, and the Community Sediment Transport Modeling System (CSTMS) sediment routines. The models exchange fields of sea-surface temperature, ocean currents, water levels, bathymetry, wave heights, lengths, periods, bottom orbital velocities, and atmospheric surface heat and momentum fluxes, atmospheric pressure, precipitation, and evaporation. Data fields are exchanged using regridded flux conservative sparse matrix interpolation weights computed from the SCRIP spherical coordinate remapping interpolation package. We describe the modeling components and the model field exchange methods. As part of the system, the wave and ocean models run with cascading, refined, spatial grids to provide increased resolution, scaling down to resolve nearshore wave driven flows simulated by the vortex force formulation, all within selected regions of a larger, coarser-scale coastal modeling system. The ocean and wave models are driven by the atmospheric component, which is affected by wave dependent ocean-surface roughness and sea surface temperature which modify the heat and momentum fluxes at the ocean-atmosphere interface. We describe the application of the modeling system to several regions of multi-scale complexity to identify the significance of larger scale forcing cascading down to smaller scales and to investigate the interactions of the coupled system with increasing degree of model-model interactions. Three examples include the impact of Hurricane Ivan in 2004 in the Gulf of Mexico, Hurricane Ida in 2009 that evolved into a tropical storm on the US East coast, and passage of strong cold fronts across the US southeast. Results identify that hurricane intensity is extremely sensitive to sea-surface temperature, with a reduction in intensity when the atmosphere is coupled to the ocean model due to rapid cooling of the ocean from the surface through the mixed layer. Coupling of the ocean to the atmosphere also results in decreased boundary layer stress and coupling of the waves to the atmosphere results in increased sea-surface stress. Wave results are sensitive to both ocean and atmospheric coupling due to wave-current interactions with the ocean and wave-growth from the atmospheric wind stress. Sediment resuspension at regional scale during the hurricane is controlled by shelf width and wave propagation during hurricane approach. Results from simulation of passage of cold fronts suggest that synoptic meteorological systems can strongly impact surf zone and inner shelf response, therefore act as a strong driver for long term littoral sediment transport. We will also present some of the challenges faced to develop the modeling system.

  1. Particle Transport in Therapeutic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Puri, Ishwar K.; Ganguly, Ranjan

    2014-01-01

    Iron oxide magnetic nanoparticles, in ferrofluids or as magnetic microspheres, offer magnetic maneuverability, biochemical surface functionalization, and magnetic relaxation under the influence of an alternating field. The use of these properties for clinical applications requires an understanding of particles, forces, and scalar transport at various length scales. This review explains the behavior of magnetic nano- and microparticles during magnetic drug targeting and magnetic fluid hyperthermia, and the microfluidic transport of these particles in bioMEMS (biomedical microelectromechanical systems) devices for ex vivo therapeutic and diagnostic applications. Magnetic particle transport, the momentum interaction of these particles with a host fluid in a flow, and thermal transport in a particle-infused tissue are characterized through the governing electrodynamic, hydrodynamic, and scalar transport equations.

  2. Coal Transportation Rate Sensitivity Analysis

    EIA Publications

    2005-01-01

    On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions. Specifically, the STB requested an analysis of changes in national and regional coal consumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System (NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.

  3. Invisible transportation infrastructure technology to mitigate energy and environment.

    PubMed

    Hossain, Md Faruque

    2017-01-01

    Traditional transportation infrastructure built by heat trapping products and the transportation vehiles run by fossil fuel, both causing deadly climate change. Thus, a new technology of invisible Flying Transportation system has been proposed to mitigate energy and environmental crisis caused by traditional infrastructure system. Underground Maglev system has been modeled to be constructed for all transportation systems to run the vehicle smoothly just over two feet over the earth surface by propulsive and impulsive force at flying stage. A wind energy modeling has also been added to meet the vehicle's energy demand when it runs on a non-maglev area. Naturally, all maglev infrastructures network to be covered by evergreen herb except pedestrian walkways to absorb CO 2 , ambient heat, and moisture (vapor) from the surrounding environment to make it cool. The research revealed that the vehicle will not require any energy since it will run by superconducting electromagnetic force while it runs on a maglev infrastructure area and directed by wind energy while it runs on non-maglev area. The proposed maglev transportation infrastructure technology will indeed be an innovative discovery in modern engineering science which will reduce fossil fuel energy consumption and climate change dramatically.

  4. Mathematical model reveals role of nucleotide signaling in airway surface liquid homeostasis and its dysregulation in cystic fibrosis

    PubMed Central

    Sandefur, Conner I.; Boucher, Richard C.; Elston, Timothy C.

    2017-01-01

    Mucociliary clearance is composed of three components (i.e., mucin secretion, airway surface hydration, and ciliary-activity) which function coordinately to clear inhaled microbes and other foreign particles from airway surfaces. Airway surface hydration is maintained by water fluxes driven predominantly by active chloride and sodium ion transport. The ion channels that mediate electrogenic ion transport are regulated by extracellular purinergic signals that signal through G protein-coupled receptors. These purinoreceptors and the signaling pathways they activate have been identified as possible therapeutic targets for treating lung disease. A systems-level description of airway surface liquid (ASL) homeostasis could accelerate development of such therapies. Accordingly, we developed a mathematical model to describe the dynamic coupling of ion and water transport to extracellular purinergic signaling. We trained our model from steady-state and time-dependent experimental measurements made using normal and cystic fibrosis (CF) cultured human airway epithelium. To reproduce CF conditions, reduced chloride secretion, increased potassium secretion, and increased sodium absorption were required. The model accurately predicted ASL height under basal normal and CF conditions and the collapse of surface hydration due to the accelerated nucleotide metabolism associated with CF exacerbations. Finally, the model predicted a therapeutic strategy to deliver nucleotide receptor agonists to effectively rehydrate the ASL of CF airways. PMID:28808008

  5. The Somali current at the equator: annual cycle of currents and transports in the upper 1000 m and connection to neighbouring latitudes

    NASA Astrophysics Data System (ADS)

    Schott, Friedrich; Swallow, John C.; Fieux, Michèle

    1990-12-01

    Current measurements were obtained with moored stations during October 1984 to October 1986 in two consecutive deployments across the Somali Current on the equator. For the transport calculations the deficiency of conventional subsurface moorings, i.e. no data from close to the surface, had to be overcome using the historical ship drift climatology. While the current structure during the summer monsoon is that typical of a western boundary current, the profile in winter is far from being a weaker southward reverse of the summer situation. Below a thin surface layer of southward flow, there is a northward undercurrent between about 120 and 400 m depth. Below that, the flow reverses again to southward. This results in drastic differences in cross-equatorial monsoon season transports. While the summer mean transport is 21 Sv for the upper 500 m, the winter monsoon mean for that depth range is close to zero. The annual mean transport in the upper 500 m is 10 Sv northward. Very little transport is measured in the 500-1000 m depth range in either season or the annual mean. The almost closed mass budget of the boundary current system during the winter circulation allows a calculation of cross-equatorial heat transport, which comes out to -3 × 10 14 W (southward) for the northeast monsoon season mean. The heat flux associated with the annually varying part of the boundary current is small, only about -0.3 × 10 14 W or about 5% of the total cross-equatorial heat flux as estimated by other methods. By combining the equatorial measurements with earlier off-equatorial current observations, particularly at 2°-4°S and 5°N, and with property distributions (salinity and oxygen) on isopycnal surfaces, analysed from the historical data file, a synopsis of the seasonal circulation changes of the entire Somali Current system between about 4°S and 12°N is then derived.

  6. Drop Tower Experiments concerning Fluid Management under Microgravity

    NASA Astrophysics Data System (ADS)

    Gaulke, Diana; Dreyer, Michael

    2012-07-01

    Transport and positioning of liquid under microgravity is done utilizing capillary forces. Therefore, capillary transport processes have to be understood for a wide variety of space applications, ranging from propellant management in tanks of space transportation systems to eating and drinking devices for astronauts. There are two types of liquid transportation in microgravity using capillary forces. First, the driven liquid flow in open channels where the capillary forces at free surfaces ensure a gas and vapor free flow. Here it is important to know the limiting flow rate through such an open channel before the free surface collapses and gas is sucked into the channel. A number of different experiments at the drop tower Bremen, on sounding rockets and at the ISS have been conducted to analyse this phenomenon within different geometries. As result a geometry dependent theory for calculating the maximum flow rate has been found. On the other hand liquid positioning and transportation requires the capillary pressure of curved surfaces to achieve a liquid flow to a desired area. Especially for space applications the weight of structure has to be taken into account for development. For example liquid positioning in tanks can be achieved via a complicated set of structure filling the whole tank resulting in heavy devices not reasonable in space applications. Astrium developed in cooperation with ZARM a propellant management device much smaller than the tank volume and ensuring a gas and vapour free supply of propellant to the propulsion system. In the drop tower Bremen a model of this device was tested concerning different microgravity scenarios. To further decrease weight and ensure functionality within different scenarios structure elements are designed as perforated geometries. Capillary transport between perforated plates has been analyzed concerning the influence of geometrical pattern of perforations. The conducted experiments at the drop tower Bremen show the remarkable influence of perforations on the capillary transport capability.

  7. Design and testing of a process-based groundwater vulnerability assessment (P-GWAVA) system for predicting concentrations of agrichemicals in groundwater across the United States

    USGS Publications Warehouse

    Barbash, Jack E; Voss, Frank D.

    2016-03-29

    Efforts to assess the likelihood of groundwater contamination from surface-derived compounds have spanned more than three decades. Relatively few of these assessments, however, have involved the use of process-based simulations of contaminant transport and fate in the subsurface, or compared the predictions from such models with measured data—especially over regional to national scales. To address this need, a process-based groundwater vulnerability assessment (P-GWAVA) system was constructed to use transport-and-fate simulations to predict the concentration of any surface-derived compound at a specified depth in the vadose zone anywhere in the conterminous United States. The system was then used to simulate the concentrations of selected agrichemicals in the vadose zone beneath agricultural areas in multiple locations across the conterminous United States. The simulated concentrations were compared with measured concentrations of the compounds detected in shallow groundwater (that is, groundwater drawn from within a depth of 6.3 ± 0.5 meters [mean ± 95 percent confidence interval] below the water table) in more than 1,400 locations across the United States. The results from these comparisons were used to select the simulation approaches that led to the closest agreement between the simulated and the measured concentrations.The P-GWAVA system uses computer simulations that account for a broader range of the hydrologic, physical, biological and chemical phenomena known to control the transport and fate of solutes in the subsurface than has been accounted for by any other vulnerability assessment over regional to national scales. Such phenomena include preferential transport and the influences of temperature, soil properties, and depth on the partitioning, transport, and transformation of pesticides in the subsurface. Published methods and detailed soil property data are used to estimate a wide range of model input parameters for each site, including surface albedo, surface crust permeability, soil water content, Brooks-Corey parameters, saturated hydraulic conductivity, macroporosity and sizes of microbial populations, as well as solute partition coefficients, reaction rates, and meso-micropore diffusion rates. To ensure geographic consistency among the predictions, the only site-specific input data that are used are those that are available for all of the 48 conterminous states.

  8. NASA Project Constellation Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2005-01-01

    NASA's Office of Exploration Systems (OExS) is organized to empower the Vision for Space Exploration with transportation systems that result in achievable, affordable, and sustainable human and robotic journeys to the Moon, Mars, and beyond. In the process of delivering these capabilities, the systems engineering function is key to implementing policies, managing mission requirements, and ensuring technical integration and verification of hardware and support systems in a timely, cost-effective manner. The OExS Development Programs Division includes three main areas: (1) human and robotic technology, (2) Project Prometheus for nuclear propulsion development, and (3) Constellation Systems for space transportation systems development, including a Crew Exploration Vehicle (CEV). Constellation Systems include Earth-to-orbit, in-space, and surface transportation systems; maintenance and science instrumentation; and robotic investigators and assistants. In parallel with development of the CEV, robotic explorers will serve as trailblazers to reduce the risk and costs of future human operations on the Moon, as well as missions to other destinations, including Mars. Additional information is included in the original extended abstract.

  9. Modeling of the fate of radionuclides in urban sewer systems after contamination due to nuclear or radiological incidents.

    PubMed

    Urso, L; Kaiser, J C; Andersson, K G; Andorfer, H; Angermair, G; Gusel, C; Tandler, R

    2013-04-01

    After an accidental radioactive contamination by aerosols in inhabited areas, the radiation exposure to man is determined by complex interactions between different factors such as dry or wet deposition, different types of ground surfaces, chemical properties of the radionuclides involved and building development as well as dependence on bomb construction e.g. design and geometry. At short-term, the first rainfall is an important way of natural decontamination: deposited radionuclides are washed off from surfaces and in urban areas the resulting contaminated runoff enters the sewer system and is collected in a sewage plant. Up to now the potential exposure caused by this process has received little attention and is estimated here with simulation models. The commercial rainfall-runoff model for urban sewer systems KANAL++ has been extended to include transport of radionuclides from surfaces through the drainage to various discharge facilities. The flow from surfaces is modeled by unit hydrographs, which produce boundary conditions for a system of 1d coupled flow and transport equations in a tube system. Initial conditions are provided by a map of surface contamination which is produced by geo-statistical interpolation of γ-dose rate measurements taking into account the detector environment. The corresponding methodology is implemented in the Inhabited Area Monitoring Module (IAMM) software module as part of the European decision system JRODOS. A hypothetical scenario is considered where a Radiation Dispersal Device (RDD) with Cs-137 is detonated in a small inhabited area whose drainage system is realistically modeled. The transition of deposited radionuclides due to rainfall into the surface runoff is accounted for by different nuclide-specific entrainment coefficients for paved and unpaved surfaces. The concentration of Cs-137 in water is calculated at the nodes of the drainage system and at the sewage treatment plant. The external exposure to staff of the treatment plant is estimated. For Cs-137 radiation levels in the plant are low since wash-off of cesium from surfaces is an ineffective process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Applications of advanced transport aircraft in developing countries

    NASA Technical Reports Server (NTRS)

    Gobetz, F. W.; Assarabowski, R. J.; Leshane, A. A.

    1978-01-01

    Four representative market scenarios were studied to evaluate the relative performance of air-and surface-based transportation systems in meeting the needs of two developing contries, Brazil and Indonesia, which were selected for detailed case studies. The market scenarios were: remote mining, low-density transport, tropical forestry, and large cargo aircraft serving processing centers in resource-rich, remote areas. The long-term potential of various aircraft types, together with fleet requirements and necessary technology advances, is determined for each application.

  11. 29 CFR 1926.902 - Surface transportation of explosives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Surface transportation of explosives. 1926.902 Section 1926... Explosives § 1926.902 Surface transportation of explosives. (a) Transportation of explosives shall meet the provisions of Department of Transportation regulations contained in 46 CFR parts 146-149, Water Carriers; 49...

  12. 29 CFR 1926.902 - Surface transportation of explosives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Surface transportation of explosives. 1926.902 Section 1926... Explosives § 1926.902 Surface transportation of explosives. (a) Transportation of explosives shall meet the provisions of Department of Transportation regulations contained in 46 CFR parts 146-149, Water Carriers; 49...

  13. 29 CFR 1926.902 - Surface transportation of explosives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Surface transportation of explosives. 1926.902 Section 1926... Explosives § 1926.902 Surface transportation of explosives. (a) Transportation of explosives shall meet the provisions of Department of Transportation regulations contained in 46 CFR parts 146-149, Water Carriers; 49...

  14. 29 CFR 1926.902 - Surface transportation of explosives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Surface transportation of explosives. 1926.902 Section 1926... Explosives § 1926.902 Surface transportation of explosives. (a) Transportation of explosives shall meet the provisions of Department of Transportation regulations contained in 46 CFR parts 146-149, Water Carriers; 49...

  15. Three-dimensional shape measurement system applied to superficial inspection of non-metallic pipes for the hydrocarbons transport

    NASA Astrophysics Data System (ADS)

    Arciniegas, Javier R.; González, Andrés. L.; Quintero, L. A.; Contreras, Carlos R.; Meneses, Jaime E.

    2014-05-01

    Three-dimensional shape measurement is a subject that consistently produces high scientific interest and provides information for medical, industrial and investigative applications, among others. In this paper, it is proposed to implement a three-dimensional (3D) reconstruction system for applications in superficial inspection of non-metallic pipes for the hydrocarbons transport. The system is formed by a CCD camera, a video-projector and a laptop and it is based on fringe projection technique. System functionality is evidenced by evaluating the quality of three-dimensional reconstructions obtained, which allow observing the failures and defects on the study object surface.

  16. Theoretical Discussion of Electron Transport Rate Constant at TCNQ / Ge and TiO2 System

    NASA Astrophysics Data System (ADS)

    Al-agealy, Hadi J. M.; Alshafaay, B.; Hassooni, Mohsin A.; Ashwiekh, Ahmed M.; Sadoon, Abbas K.; Majeed, Raad H.; Ghadhban, Rawnaq Q.; Mahdi, Shatha H.

    2018-05-01

    We have been studying and estimation the electronic transport constant at TCNQ / Ge and Tio2 interface by means of tunneling potential (TP), transport energy reorientation (TER), driving transition energy DTE and coupling coefficient constant. A simple quantum model for the transition processes was adapted to estimation and analysis depending on the quantum state for donor state |α D > and acceptor stated |α A > and assuming continuum levels of the system. Evaluation results were performed for the surfaces of Ge and Tio2 as best as for multilayer TCNQ. The results show an electronic transfer feature for electronic TCNQ density of states and a semiconductor behavior. The electronic rate constant result for both systems shows a good tool to election system in applied devices. All these results indicate the

  17. Surface transport processes in charged porous media

    DOE PAGES

    Gabitto, Jorge; Tsouris, Costas

    2017-03-03

    Surface transport processes are important in chemistry, colloidal sciences, engineering, biology, and geophysics. Natural or externally produced charges on surfaces create electrical double layers (EDLs) at the solid-liquid interface. The existence of the EDLs produces several complex processes including bulk and surface transport of ions. In this work, a model is presented to simulate bulk and transport processes in homogeneous porous media comprising big pores. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A volume averaging technique is used to derive the averaged transport equations inmore » the limit of thin electrical double layers. Description of the EDL between the electrolyte solution and the charged wall is accomplished using the Gouy-Chapman-Stern (GCS) model. The surface transport terms enter into the average equations due to the use of boundary conditions for diffuse interfaces. Two extra surface transports terms appear in the closed average equations. One is a surface diffusion term equivalent to the transport process in non-charged porous media. The second surface transport term is a migration term unique to charged porous media. The effective bulk and transport parameters for isotropic porous media are calculated solving the corresponding closure problems.« less

  18. Surface transport processes in charged porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabitto, Jorge; Tsouris, Costas

    Surface transport processes are important in chemistry, colloidal sciences, engineering, biology, and geophysics. Natural or externally produced charges on surfaces create electrical double layers (EDLs) at the solid-liquid interface. The existence of the EDLs produces several complex processes including bulk and surface transport of ions. In this work, a model is presented to simulate bulk and transport processes in homogeneous porous media comprising big pores. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A volume averaging technique is used to derive the averaged transport equations inmore » the limit of thin electrical double layers. Description of the EDL between the electrolyte solution and the charged wall is accomplished using the Gouy-Chapman-Stern (GCS) model. The surface transport terms enter into the average equations due to the use of boundary conditions for diffuse interfaces. Two extra surface transports terms appear in the closed average equations. One is a surface diffusion term equivalent to the transport process in non-charged porous media. The second surface transport term is a migration term unique to charged porous media. The effective bulk and transport parameters for isotropic porous media are calculated solving the corresponding closure problems.« less

  19. Modelling the influence of ionic and fluid transport on rebars corrosion in unsaturated cement systems

    NASA Astrophysics Data System (ADS)

    Dridi, W.; Dangla, P.; Foct, F.; Petre-Lazar, I.

    2006-11-01

    This paper deals with numerical modelling of rebar corrosion kinetics in unsaturated concrete structures. The corrosion kinetics is investigated in terms of mechanistic coupling between reaction rates at the steel surface and the ionic transport processes in the concrete pore system. The ionic and mass transport model consists of time-dependent equations for the concentration of dissolved species, the liquid pressure and the electrical potential. The complete set of nonlinear equations is solved using the finite-volume method. The nonlinear boundary conditions dealing with corrosion are introduced at the steel-concrete interface where they are implicitly coupled with the mass transport model in the concrete structure. Both the case of free corrosion and potentiostatic polarisation are discussed in a one dimensional model.

  20. THE EFFECT OF WATER CHEMISTRY ON THE PROPERTIES OF IRON PARTICLES AND IRON SUSPENSIONS

    EPA Science Inventory

    The structure and properties of iron colloids in aquatic systems is important in understanding their behavior in environmental and engineering systems. For example the adsorption of contaminants onto iron colloids and subsequent transport through ground water aquifers and surface...

  1. Surface charge transport in Silicon (111) nanomembranes

    NASA Astrophysics Data System (ADS)

    Hu, Weiwei; Scott, Shelley; Jacobson, Rb; Savage, Donald; Lagally, Max; The Lagally Group Team

    Using thin sheets (``nanomembranes'') of atomically flat crystalline semiconductors, we are able to investigate surface electronic properties, using back-gated van der Pauw measurement in UHV. The thinness of the sheet diminishes the bulk contribution, and the back gate tunes the conductivity until the surface dominates, enabling experimental determination of surface conductance. We have previously shown that Si(001) surface states interact with the body of the membrane altering the conductivity of the system. Here, we extended our prior measurements to Si(111) in order to probe the electronic transport properties of the Si(111) 7 ×7 reconstruction. Sharp (7 ×7) LEED images attest to the cleanliness of the Si(111) surface. Preliminary results reveal a highly conductive Si(111) 7 ×7 surface with a sheet conductance Rs of order of μS/ □, for 110nm thick membrane, and Rs is a very slowly varying function of the back gate voltage. This is in strong contrast to Si(001) nanomembranes which have a minimum conductance several orders of magnitude lower, and hints to the metallic nature of the Si(111) surface. Research supported by DOE.

  2. Coupling between Buoyancy Forces and Electroconvective Instability near Ion-Selective Surfaces.

    PubMed

    Karatay, Elif; Andersen, Mathias Bækbo; Wessling, Matthias; Mani, Ali

    2016-05-13

    Recent investigations have revealed that ion transport from aqueous electrolytes to ion-selective surfaces is subject to electroconvective instability that stems from coupling of hydrodynamics with electrostatic forces. These systems inherently involve fluid density variation set by salinity gradients. However, the coupling between the buoyancy effects and electroconvective instability has not yet been investigated although a wide range of electrochemical systems are naturally prone to these interplaying effects. In this study we thoroughly examine the interplay of gravitational convection and chaotic electroconvection. Our results reveal that buoyant forces can significantly influence the transport rates, otherwise set by electroconvection, when the Rayleigh number Ra of the system exceeds a value Ra∼1000. We show that buoyancy forces can significantly alter the flow patterns in these systems. When the buoyancy acts in the stabilizing direction, it limits the extent of penetration of electroconvection, but without eliminating it. When the buoyancy destabilizes the flow, it alters the electroconvective patterns by introducing upward and downward fingers of respectively light and heavy fluids.

  3. Vehicle/Guideway Interaction in Maglev Systems

    DTIC Science & Technology

    1992-03-01

    Technology Division Materials and Components in Maglev Systems Technology Division Materials and Components Technology Division byY. Cai, S. S. Chen, and D. M...Transportation Systems Reports (UC-330, Vehicle/Guideway Interaction in Maglev Systems by Y. Cai and S. S. Chen Materials and Components Technology Division D. M...Surface Irregularities ...................................... 32 4 Vehicle/Guideway Interaction in Transrapid Maglev System .................. 34 4.1

  4. 77 FR 25910 - National Trails System Act and Railroad Rights-of-Way

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ...] National Trails System Act and Railroad Rights-of-Way AGENCY: Surface Transportation Board, DOT. ACTION...) for rail banking and interim trail use under the National Trails System Act (Trails Act). New rules are adopted that require the parties jointly to notify the Board when an interim trail use/rail...

  5. 76 FR 8992 - National Trails System Act and Railroad Rights-of-Way

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ...] National Trails System Act and Railroad Rights-of-Way AGENCY: Surface Transportation Board, DOT. ACTION... procedures regarding the use of railroad rights-of-way for railbanking and interim trail use under the National Trails System Act (Trails Act). DATES: Comments are due by April 12, 2011; replies are due by May...

  6. A composite smeared finite element for mass transport in capillary systems and biological tissue.

    PubMed

    Kojic, M; Milosevic, M; Simic, V; Koay, E J; Fleming, J B; Nizzero, S; Kojic, N; Ziemys, A; Ferrari, M

    2017-09-01

    One of the key processes in living organisms is mass transport occurring from blood vessels to tissues for supplying tissues with oxygen, nutrients, drugs, immune cells, and - in the reverse direction - transport of waste products of cell metabolism to blood vessels. The mass exchange from blood vessels to tissue and vice versa occurs through blood vessel walls. This vital process has been investigated experimentally over centuries, and also in the last decades by the use of computational methods. Due to geometrical and functional complexity and heterogeneity of capillary systems, it is however not feasible to model in silico individual capillaries (including transport through the walls and coupling to tissue) within whole organ models. Hence, there is a need for simplified and robust computational models that address mass transport in capillary-tissue systems. We here introduce a smeared modeling concept for gradient-driven mass transport and formulate a new composite smeared finite element (CSFE). The transport from capillary system is first smeared to continuous mass sources within tissue, under the assumption of uniform concentration within capillaries. Here, the fundamental relation between capillary surface area and volumetric fraction is derived as the basis for modeling transport through capillary walls. Further, we formulate the CSFE which relies on the transformation of the one-dimensional (1D) constitutive relations (for transport within capillaries) into the continuum form expressed by Darcy's and diffusion tensors. The introduced CSFE is composed of two volumetric parts - capillary and tissue domains, and has four nodal degrees of freedom (DOF): pressure and concentration for each of the two domains. The domains are coupled by connectivity elements at each node. The fictitious connectivity elements take into account the surface area of capillary walls which belongs to each node, as well as the wall material properties (permeability and partitioning). The overall FE model contains geometrical and material characteristics of the entire capillary-tissue system, with physiologically measurable parameters assigned to each FE node within the model. The smeared concept is implemented into our implicit-iterative FE scheme and into FE package PAK. The first three examples illustrate accuracy of the CSFE element, while the liver and pancreas models demonstrate robustness of the introduced methodology and its applicability to real physiological conditions.

  7. Climate Products and Services to Meet the Challenges of Extreme Events

    NASA Astrophysics Data System (ADS)

    McCalla, M. R.

    2008-12-01

    The 2002 Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM1)-sponsored report, Weather Information for Surface Transportation: National Needs Assessment Report, addressed meteorological needs for six core modes of surface transportation: roadway, railway, transit, marine transportation/operations, pipeline, and airport ground operations. The report's goal was to articulate the weather information needs and attendant surface transportation weather products and services for those entities that use, operate, and manage America's surface transportation infrastructure. The report documented weather thresholds and associated impacts which are critical for decision-making in surface transportation. More recently, the 2008 Climate Change Science Program's (CCSP) Synthesis and Assessment Product (SAP) 4.7 entitled, Impacts of Climate Change and Variability on Transportation Systems and Infrastructure: Gulf Coast Study, Phase I, included many of the impacts from the OFCM- sponsored report in Table 1.1 of this SAP.2 The Intergovernmental Panel on Climate Change (IPCC) reported that since 1950, there has been an increase in the number of heat waves, heavy precipitation events, and areas of drought. Moreover, the IPCC indicated that greater wind speeds could accompany more severe tropical cyclones.3 Taken together, the OFCM, CCSP, and IPCC reports indicate not only the significance of extreme events, but also the potential increasing significance of many of the weather thresholds and associated impacts which are critical for decision-making in surface transportation. Accordingly, there is a real and urgent need to understand what climate products and services are available now to address the weather thresholds within the surface transportation arena. It is equally urgent to understand what new climate products and services are needed to address these weather thresholds, and articulate what can be done to fill the gap between the existing federal climate products and services and the needed federal climate products and services which will address these weather thresholds. Just as important, as we work to meet the needs, a robust education and outreach program is essential to take full advantage of new products, services and capabilities. To ascertain what climate products and services currently exist to address weather thresholds relative to surface transportation, what climate products and services are needed to address these weather thresholds, and how to bridge the gap between what is available and what is needed, the OFCM surveyed the federal meteorological community. Consistent with the extreme events highlighted in the IPCC report, the OFCM survey categorized the weather thresholds associated with surface transportation into the following extreme event areas: (a) excessive heat, (b) winter precipitation, (c) summer precipitation, (d) high winds, and (e) flooding and coastal inundation. The survey results, the gap analysis, as well as OFCM's planned, follow-on activities with additional categories (i.e., in addition to surface transportation) and weather thresholds will be shared with meeting participants. 1 The OFCM is an interdepartmental office established in response to Public Law 87-843 with the mission to ensure the effective use of federal meteorological resources by leading the systematic coordination of operational weather and climate requirements, products, services, and supporting research among the federal agencies. 2 http://www.climatescience.gov/Library/sap/sap4-7/final-report/sap4-7-final-ch1.pdf 3 http://www.gcrio.org/ipcc/ar4/wg1/faq/ar4wg1faq-3-3.pdf

  8. DNA-labeled micro- and nanoparticles: a new approach to study contaminant transport in the subsurface

    NASA Astrophysics Data System (ADS)

    McNew, C.; Wang, C.; Kocis, T. N.; Murphy, N. P.; Dahlke, H. E.

    2017-12-01

    Though our understanding of contaminant behavior in the subsurface has improved, our ability to measure and predict complex contaminant transport pathways at hillslope to watershed scales is still lacking. By utilizing bio-molecular nanotechnology developed for nano-medicines and drug delivery, we are able to produce DNA-labeled micro- and nanoparticles for use in a myriad of environmental systems. Control of the fabrication procedure allows us to produce particles of custom size, charge, and surface functionality to mimic the transport properties of the particulate contaminant or colloid of interest. The use of custom sequenced DNA allows for the fabrication of an enormous number of unique particle labels (approximately 1.61 x 1060 unique sequences) and the ability to discern between varied spatial and temporal applications, or the transport effect of varied particle size, charge, or surface properties. To date, this technology has been utilized to study contaminant transport from lab to field scales, including surface and open channel flow applications, transport in porous media, soil retention, and even subglacial flow pathways. Here, we present the technology for production and detection of the DNA-labeled particles along with the results from a current hillslope study at the Sierra Foothills Research and Extension Center (SFREC). This field study utilizes spatial and temporal variations in DNA-labeled particle applications to identify subsurface pollutant transport pathways through the four distinct soil horizons present at the SFREC site. Results from this and previous studies highlight the tremendous potential of the DNA-labeled particle technology for studying contaminant transport through the subsurface.

  9. Sub-pixel accuracy thickness calculation of poultry fillets from scattered laser profiles

    NASA Astrophysics Data System (ADS)

    Jing, Hansong; Chen, Xin; Tao, Yang; Zhu, Bin; Jin, Fenghua

    2005-11-01

    A laser range imaging system based on the triangulation method was designed and implemented for online high-resolution thickness calculation of poultry fillets. A laser pattern was projected onto the surface of the chicken fillet for calculation of the thickness of the meat. Because chicken fillets are relatively loosely-structured material, a laser light easily penetrates the meat, and scattering occurs both at and under the surface. When laser light is scattered under the surface it is reflected back and further blurs the laser line sharpness. To accurately calculate the thickness of the object, the light transportation has to be considered. In the system, the Bidirectional Reflectance Distribution Function (BSSRDF) was used to model the light transportation and the light pattern reflected into the cameras. BSSRDF gives the reflectance of a target as a function of illumination geometry and viewing geometry. Based on this function, an empirical method has been developed and it has been proven that this method can be used to accurately calculate the thickness of the object from a scattered laser profile. The laser range system is designed as a sub-system that complements the X-ray bone inspection system for non-invasive detection of hazardous materials in boneless poultry meat with irregular thickness.

  10. Modeling Pressure-Driven Transport of Proteins through a Nanochannel

    PubMed Central

    Carr, Rogan; Comer, Jeffrey; Ginsberg, Mark D.; Aksimentiev, Aleksei

    2012-01-01

    Reducing the size of a nanofluidic channel not only creates new opportunities for high-precision manipulation of biological macromolecules, but also makes the performance of the entire nanofluidic system more susceptible to undesirable interactions between the transported biomolecules and the walls of the channel. In this manuscript, we report molecular dynamics simulations of a pressure-driven flow through a silica nanochannel that characterized, with atomic resolution, adsorption of a model protein to its surface. Although the simulated adsorption of the proteins was found to be nonspecific, it had a dramatic effect on the rate of the protein transport. To determine the relative strength of the protein–silica interactions in different adsorbed states, we simulated flow-induced desorption of the proteins from the silica surface. Our analysis of the protein conformations in the adsorbed states did not reveal any simple dependence of the adsorption strength on the size and composition of the protein–silica contact, suggesting that the heterogeneity of the silica surface may be a important factor. PMID:22611338

  11. Controllable Molecule Transport and Release by a Restorable Surface-tethered DNA nanodevice

    PubMed Central

    Wang, Zhaoyin; Xu, Yuanyuan; Wang, Haiyan; Liu, Fengzhen; Ren, Zhenning; Wang, Zhaoxia

    2016-01-01

    In this paper, we report a novel surface-tethered DNA nanodevice that may present three states and undergo conformational changes under the operation of pH. Besides, convenient regulation on the electrode surface renders the construction and operation of this DNA nanodevice restorable. To make full use of this DNA nanodevice, ferrocene (Fc) has been further employed for the fabrication of the molecular device. On one hand, the state switches of the DNA nanodevice can be characterized conveniently and reliably by the obtained electrochemical signals from Fc. On the other hand, β-cyclodextrin-ferrocene (β-CD-Fc) host-guest system can be introduced by Fc, which functionalizes this molecular device. Based on different electrochemical behaviors of β-CD under different states, this DNA nanodevice can actualize directional loading, transporting and unloading of β-CD in nanoscale. Therefore, this DNA nanodevice bares promising applications in controllable molecular transport and release, which are of great value to molecular device design. PMID:27384943

  12. Mechanism for the antibacterial action of epigallocatechin gallate (EGCg) on Bacillus subtilis.

    PubMed

    Nakayama, Motokazu; Shimatani, Kanami; Ozawa, Tadahiro; Shigemune, Naofumi; Tomiyama, Daisuke; Yui, Koji; Katsuki, Mao; Ikeda, Keisuke; Nonaka, Ai; Miyamoto, Takahisa

    2015-01-01

    Catechins are a class of polyphenols and have high anti-bacterial activity against various microorganisms. Here, we report the mechanism for antibacterial activity of epigallocatechin gallate (EGCg) against Gram-positive bacteria Bacillus subtilis, which is highly sensitive to EGCg. Transmission electron microscope analysis revealed that deposits containing EGCg were found throughout the cell envelope from the outermost surface to the outer surface of cytoplasmic membrane. Aggregating forms of proteins and EGCg were identified as spots that disappeared or showed markedly decreased intensity after the treatment with EGCg compared to the control by two-dimensional electrophoresis. Among the identified proteins included 4 cell surface proteins, such as oligopeptide ABC transporter binding lipoprotein, glucose phosphotransferase system transporter protein, phosphate ABC transporter substrate-binding protein, and penicillin-binding protein 5. Observations of glucose uptake of cells and cell shape B. subtilis after the treatment with EGCg suggested that EGCg inhibits the major functions of these proteins, leading to growth inhibition of B. subtilis.

  13. Time-dependent transport of a localized surface plasmon through a linear array of metal nanoparticles: Precursor and normal mode contributions

    NASA Astrophysics Data System (ADS)

    Compaijen, P. J.; Malyshev, V. A.; Knoester, J.

    2018-02-01

    We theoretically investigate the time-dependent transport of a localized surface plasmon excitation through a linear array of identical and equidistantly spaced metal nanoparticles. Two different signals propagating through the array are found: one traveling with the group velocity of the surface plasmon polaritons of the system and damped exponentially, and the other running with the speed of light and decaying in a power-law fashion, as x-1 and x-2 for the transversal and longitudinal polarizations, respectively. The latter resembles the Sommerfeld-Brillouin forerunner and has not been identified in previous studies. The contribution of this signal dominates the plasmon transport at large distances. In addition, even though this signal is spread in the propagation direction and has the lateral dimension larger than the wavelength, the field profile close to the chain axis does not change with distance, indicating that this part of the signal is confined to the array.

  14. Canal Transportation, Unprepared Areas, and Dentin Removal after Preparation with BT-RaCe and ProTaper Next Systems.

    PubMed

    Brasil, Sabrina C; Marceliano-Alves, Marília F; Marques, Márcia L; Grillo, João P; Lacerda, Mariane F L S; Alves, Flávio R F; Siqueira, José F; Provenzano, José C

    2017-10-01

    This study compared the shaping ability of ProTaper Next (Dentsply Sirona, Tulsa, OK) and BT-RaCe (FKG Dentaire, La Chaux-de-Fonds, Switzerland) instrument systems in the mesial canals of mandibular molars using micro-computed tomographic (micro-CT) imaging. A total of 17 type IV mesial roots of extracted first mandibular molars were scanned using micro-CT imaging before and after root canal preparation with the 2 instrument systems. Both systems were used in the same root but alternating the mesial canals from root to root. The following parameters were analyzed: root canal volume, surface area, unprepared surface areas, transportation, canal/root width ratio, and preparation time. There were no statistically significant differences between the 2 systems for all evaluated parameters (P > .05). The unprepared surface areas for the full canal length and the apical 5-mm segment were 33% and 14% for BT-RaCe and 31% and 14% for ProTaper Next, respectively. After preparation, all root canals had a diameter that was not larger than 35% of the root diameter at the coronal and middle segments. The 2 systems showed no differences in any of the evaluated shaping parameters. None of the tested systems put the roots at risk of fracture because of excessive dentin removal. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Chemical interference with iron transport systems to suppress bacterial growth of Streptococcus pneumoniae.

    PubMed

    Yang, Xiao-Yan; Sun, Bin; Zhang, Liang; Li, Nan; Han, Junlong; Zhang, Jing; Sun, Xuesong; He, Qing-Yu

    2014-01-01

    Iron is an essential nutrient for the growth of most bacteria. To obtain iron, bacteria have developed specific iron-transport systems located on the membrane surface to uptake iron and iron complexes such as ferrichrome. Interference with the iron-acquisition systems should be therefore an efficient strategy to suppress bacterial growth and infection. Based on the chemical similarity of iron and ruthenium, we used a Ru(II) complex R-825 to compete with ferrichrome for the ferrichrome-transport pathway in Streptococcus pneumoniae. R-825 inhibited the bacterial growth of S. pneumoniae and stimulated the expression of PiuA, the iron-binding protein in the ferrichrome-uptake system on the cell surface. R-825 treatment decreased the cellular content of iron, accompanying with the increase of Ru(II) level in the bacterium. When the piuA gene (SPD_0915) was deleted in the bacterium, the mutant strain became resistant to R-825 treatment, with decreased content of Ru(II). Addition of ferrichrome can rescue the bacterial growth that was suppressed by R-825. Fluorescence spectral quenching showed that R-825 can bind with PiuA in a similar pattern to the ferrichrome-PiuA interaction in vitro. These observations demonstrated that Ru(II) complex R-825 can compete with ferrichrome for the ferrichrome-transport system to enter S. pneumoniae, reduce the cellular iron supply, and thus suppress the bacterial growth. This finding suggests a novel antimicrobial approach by interfering with iron-uptake pathways, which is different from the mechanisms used by current antibiotics.

  16. The East African monsoon system: Seasonal climatologies and recent variations: Chapter 10

    USGS Publications Warehouse

    Funk, Christopher C.; Hoell, Andrew; Shukla, Shraddhanand; Husak, Gregory J.; Michaelsen, J.

    2016-01-01

    This chapter briefly reviews the complex climatological cycle of the East African monsoon system, paying special attention to its connection to the larger Indo-Pacific-Asian monsoon cycle. We examine the seasonal monsoon cycle, and briefly explore recent circulation changes. The spatial footprint of our analysis corresponds with the “Greater Horn of Africa” (GHA) region, extending from Tanzania in the south to Yemen and Sudan in the north. During boreal winter, when northeast trade winds flow across the northwest Indian Ocean and the equatorial moisture transports over the Indian Ocean exhibit strong westerly mean flows over the equatorial Indian Ocean, East African precipitation is limited to a few highland areas. As the Indian monsoon circulation transitions during boreal spring, the trade winds over the northwest Indian Ocean reverse, and East African moisture convergence supports the “long” rains. In boreal summer, the southwesterly Somali Jet intensifies over eastern Africa. Subsidence forms along the westward flank of this jet, shutting down precipitation over eastern portions of East Africa. In boreal fall, the Jet subsides, but easterly moisture transports support rainfall in limited regions of the eastern Horn of Africa. We use regressions with the trend mode of global sea surface temperatures to explore potential changes in the seasonal monsoon circulations. Significant reductions in total precipitable water are indicated in Kenya, Tanzania, Rwanda, Burundi, Uganda, Ethiopia, South Sudan, Sudan, and Yemen, with moisture transports broadly responding in ways that reinforce the climatological moisture transports over the Indian Ocean. Over Kenya, southern Ethiopia and Somalia, regressions with velocity potential indicate increased convergence aloft. Near the surface, this convergence appears to manifest as a surface high pressure system that modifies moisture transports in these countries as well as Uganda, Tanzania, Rwanda, and Burundi. An analysis of rainfall changes indicates significant declines in parts of Tanzania, Rwanda, Burundi, Uganda, Kenya, Somalia, Ethiopia, and Yemen.

  17. Current status of the thiol redox model for the regulation of hexose transport by insulin.

    PubMed

    Czech, M P

    1976-12-01

    Data obtained over the last two years pertinent to the thiol redox model for the modulation of hexose transport activity by insulin is summarized. The model proposes that activation of hexose transport in fat cells involves sulfhydryl oxidation to the disulfide form in a key protein component of the fat cell surface membrane. Theoretically, the rapid activation of transport by insulin may involve either the conversion of inactive membrane carriers to the active form as originally proposed, or the conversion of a low Vmax transport system to a high Vmax form. The present experiments showed that the percent inhibition of insulin-activated transport rates by submaximal levels of cytochalasin B was decreased compared to its effects on basal transport. Treatment of fat cells with N-ethylmaleimide inhibited cytochalasin B action but not transport activity. When insulin or the oxidant vitamin K5 was added to cells 5 minutes before the N-ethylmaleimide, the elevated transport activity was also resistant to the sulfhydryl reagent, but cytochalasin B retained its potent inhibitory effect on transport. The data demonstrate that unique properties characterize basal versus insulin-activated transport activity with respect to the sensitivity of cytochalasin B action to sulfhydryl blockade in isolated fat cells. The data are consistent with the concept that activation of transport activity reflects the conversion of a reduced (sulfhydryl) system characterized by a low Vmax to an oxidized (disulfide), high Vmax transport system.

  18. 75 FR 48409 - Establishment of the Toxic by Inhalation Hazard Common Carrier Transportation Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. EP 698] Establishment of the... (FACA), 5 U.S.C. app., the Surface Transportation Board hereby gives notice that, following consultation... original and 10 copies to: Surface Transportation Board, Attn: STB Ex Parte No. 698, 395 E Street, SW...

  19. Hydrologic and Vegetative Removal of Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii Surrogate Microspheres in Coastal Wetlands

    PubMed Central

    Hogan, Jennifer N.; Daniels, Miles E.; Watson, Fred G.; Oates, Stori C.; Miller, Melissa A.; Conrad, Patricia A.; Shapiro, Karen; Hardin, Dane; Dominik, Clare; Melli, Ann; Jessup, David A.

    2013-01-01

    Constructed wetland systems are used to reduce pollutants and pathogens in wastewater effluent, but comparatively little is known about pathogen transport through natural wetland habitats. Fecal protozoans, including Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii, are waterborne pathogens of humans and animals, which are carried by surface waters from land-based sources into coastal waters. This study evaluated key factors of coastal wetlands for the reduction of protozoal parasites in surface waters using settling column and recirculating mesocosm tank experiments. Settling column experiments evaluated the effects of salinity, temperature, and water type (“pure” versus “environmental”) on the vertical settling velocities of C. parvum, G. lamblia, and T. gondii surrogates, with salinity and water type found to significantly affect settling of the parasites. The mesocosm tank experiments evaluated the effects of salinity, flow rate, and vegetation parameters on parasite and surrogate counts, with increased salinity and the presence of vegetation found to be significant factors for removal of parasites in a unidirectional transport wetland system. Overall, this study highlights the importance of water type, salinity, and vegetation parameters for pathogen transport within wetland systems, with implications for wetland management, restoration efforts, and coastal water quality. PMID:23315738

  20. Mean flow produced by small-amplitude vibrations of a liquid bridge with its free surface covered with an insoluble surfactant

    NASA Astrophysics Data System (ADS)

    Carrión, Luis M.; Herrada, Miguel A.; Montanero, José M.; Vega, José M.

    2017-09-01

    As is well known, confined fluid systems subject to forced vibrations produce mean flows, called in this context streaming flows. These mean flows promote an overall mass transport in the fluid that has consequences in the transport of passive scalars and surfactants, when these are present in a fluid interface. Such transport causes surfactant concentration inhomogeneities that are to be counterbalanced by Marangoni elasticity. Therefore, the interaction of streaming flows and Marangoni convection is expected to produce new flow structures that are different from those resulting when only one of these effects is present. The present paper focuses on this interaction using the liquid bridge geometry as a paradigmatic system for the analysis. Such analysis is based on an appropriate post-processing of the results obtained via direct numerical simulation of the system for moderately small viscosity, a condition consistent with typical experiments of vibrated millimetric liquid bridges. It is seen that the flow patterns show a nonmonotone behavior as the Marangoni number is increased. In addition, the strength of the mean flow at the free surface exhibits two well-defined regimes as the forcing amplitude increases. These regimes show fairly universal power-law behaviors.

  1. Altitude Effects on Thermal Ice Protection System Performance; a Study of an Alternative Approach

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Orchard, David; Wright, William B.; Oleskiw, Myron

    2016-01-01

    Research has been conducted to better understand the phenomena involved during operation of an aircraft's thermal ice protection system under running wet icing conditions. In such situations, supercooled water striking a thermally ice-protected surface does not fully evaporate but runs aft to a location where it freezes. The effects of altitude, in terms of air pressure and density, on the processes involved were of particular interest. Initial study results showed that the altitude effects on heat energy transfer were accurately modeled using existing methods, but water mass transport was not. Based upon those results, a new method to account for altitude effects on thermal ice protection system operation was proposed. The method employs a two-step process where heat energy and mass transport are sequentially matched, linked by matched surface temperatures. While not providing exact matching of heat and mass transport to reference conditions, the method produces a better simulation than other methods. Moreover, it does not rely on the application of empirical correction factors, but instead relies on the straightforward application of the primary physics involved. This report describes the method, shows results of testing the method, and discusses its limitations.

  2. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    NASA Astrophysics Data System (ADS)

    Li, Rong; Scholtz, M. Trevor; Yang, Fuquan; Sloan, James J.

    2011-07-01

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  3. Groundwater flow and its effect on salt dissolution in Gypsum Canyon watershed, Paradox Basin, southeast Utah, USA

    NASA Astrophysics Data System (ADS)

    Reitman, Nadine G.; Ge, Shemin; Mueller, Karl

    2014-09-01

    Groundwater flow is an important control on subsurface evaporite (salt) dissolution. Salt dissolution can drive faulting and associated subsidence on the land surface and increase salinity in groundwater. This study aims to understand the groundwater flow system of Gypsum Canyon watershed in the Paradox Basin, Utah, USA, and whether or not groundwater-driven dissolution affects surface deformation. The work characterizes the groundwater flow and solute transport systems of the watershed using a three-dimensional (3D) finite element flow and transport model, SUTRA. Spring samples were analyzed for stable isotopes of water and total dissolved solids. Spring water and hydraulic conductivity data provide constraints for model parameters. Model results indicate that regional groundwater flow is to the northwest towards the Colorado River, and shallow flow systems are influenced by topography. The low permeability obtained from laboratory tests is inconsistent with field observed discharges, supporting the notion that fracture permeability plays a significant role in controlling groundwater flow. Model output implies that groundwater-driven dissolution is small on average, and cannot account for volume changes in the evaporite deposits that could cause surface deformation, but it is speculated that dissolution may be highly localized and/or weaken evaporite deposits, and could lead to surface deformation over time.

  4. Report to Congress : Surface Transportation Research and Development Plan : Fourth Edition

    DOT National Transportation Integrated Search

    1997-01-01

    Section 6009(b) of the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) requires that the U.S. Department of Transportation (DOT) develop an integrated National Surface Transportation Research and Development (R&D) Plan that focuses o...

  5. Observation of a two-dimensional Fermi surface and Dirac dispersion in YbMnSb2

    NASA Astrophysics Data System (ADS)

    Kealhofer, Robert; Jang, Sooyoung; Griffin, Sinéad M.; John, Caolan; Benavides, Katherine A.; Doyle, Spencer; Helm, T.; Moll, Philip J. W.; Neaton, Jeffrey B.; Chan, Julia Y.; Denlinger, J. D.; Analytis, James G.

    2018-01-01

    We present the crystal structure, electronic structure, and transport properties of the material YbMnSb2, a candidate system for the investigation of Dirac physics in the presence of magnetic order. Our measurements reveal that this system is a low-carrier-density semimetal with a two-dimensional Fermi surface arising from a Dirac dispersion, consistent with the predictions of density-functional-theory calculations of the antiferromagnetic system. The low temperature resistivity is very large, suggesting that scattering in this system is highly efficient at dissipating momentum despite its Dirac-like nature.

  6. Rectification of nanopores in aprotic solvents - transport properties of nanopores with surface dipoles

    NASA Astrophysics Data System (ADS)

    Plett, Timothy; Shi, Wenqing; Zeng, Yuhan; Mann, William; Vlassiouk, Ivan; Baker, Lane A.; Siwy, Zuzanna S.

    2015-11-01

    Nanopores have become a model system to understand transport properties at the nanoscale. We report experiments and modeling of ionic current in aprotic solvents with different dipole moments through conically shaped nanopores in a polycarbonate film and through glass nanopipettes. We focus on solutions of the salt LiClO4, which is of great importance in modeling lithium based batteries. Results presented suggest ion current rectification observed results from two effects: (i) adsorption of Li+ ions to the pore walls, and (ii) a finite dipole moment rendered by adsorbed solvent molecules. Properties of surfaces in various solvents were probed by means of scanning ion conductance microscopy, which confirmed existence of an effectively positive surface potential in aprotic solvents with high dipole moments.Nanopores have become a model system to understand transport properties at the nanoscale. We report experiments and modeling of ionic current in aprotic solvents with different dipole moments through conically shaped nanopores in a polycarbonate film and through glass nanopipettes. We focus on solutions of the salt LiClO4, which is of great importance in modeling lithium based batteries. Results presented suggest ion current rectification observed results from two effects: (i) adsorption of Li+ ions to the pore walls, and (ii) a finite dipole moment rendered by adsorbed solvent molecules. Properties of surfaces in various solvents were probed by means of scanning ion conductance microscopy, which confirmed existence of an effectively positive surface potential in aprotic solvents with high dipole moments. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06340j

  7. Modeling In Vivo Interactions of Engineered Nanoparticles in the Pulmonary Alveolar Lining Fluid

    PubMed Central

    Mukherjee, Dwaipayan; Porter, Alexandra; Ryan, Mary; Schwander, Stephan; Chung, Kian Fan; Tetley, Teresa; Zhang, Junfeng; Georgopoulos, Panos

    2015-01-01

    Increasing use of engineered nanomaterials (ENMs) in consumer products may result in widespread human inhalation exposures. Due to their high surface area per unit mass, inhaled ENMs interact with multiple components of the pulmonary system, and these interactions affect their ultimate fate in the body. Modeling of ENM transport and clearance in vivo has traditionally treated tissues as well-mixed compartments, without consideration of nanoscale interaction and transformation mechanisms. ENM agglomeration, dissolution and transport, along with adsorption of biomolecules, such as surfactant lipids and proteins, cause irreversible changes to ENM morphology and surface properties. The model presented in this article quantifies ENM transformation and transport in the alveolar air to liquid interface and estimates eventual alveolar cell dosimetry. This formulation brings together established concepts from colloidal and surface science, physics, and biochemistry to provide a stochastic framework capable of capturing essential in vivo processes in the pulmonary alveolar lining layer. The model has been implemented for in vitro solutions with parameters estimated from relevant published in vitro measurements and has been extended here to in vivo systems simulating human inhalation exposures. Applications are presented for four different ENMs, and relevant kinetic rates are estimated, demonstrating an approach for improving human in vivo pulmonary dosimetry. PMID:26240755

  8. Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis

    PubMed Central

    Unciti-Broceta, Juan D.; Arias, José L.; Maceira, José; Soriano, Miguel; Ortiz-González, Matilde; Hernández-Quero, José; Muñóz-Torres, Manuel; de Koning, Harry P.; Magez, Stefan; Garcia-Salcedo, José A.

    2015-01-01

    African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs. PMID:26110623

  9. Gaseous oxygen cooling of the Space Transportation System launch pad environment

    NASA Astrophysics Data System (ADS)

    Ahmad, R. A.; Mathias, E. C.; Boraas, S.

    1991-12-01

    The external tank (ET) of the Space Transportation System (STS) contains liquid oxygen and hydrogen as oxidizer and fuel for the Space Shuttle main engines (SSMEs). During and subsequent to the loading of the ET prior to the launch of an STS, the cryogens boil in the near atmospheric conditions existing within their respective tanks. The gaseous oxygen (GOX) formed as a result of this boiling is vented overboard, mixes with air, and may, under certain wind conditions, be transported toward the STS to cause a cooling of its environment. This paper describes a two-dimensional computational fliud dynamics analysis to determine the magnitude of this cooling effect by determining the temperature depression and stratification caused by this GOX/air mixture in the region around the east redesigned solid rocket motor (RSRM), the ET, and below the STS assembly. For a severe wintertime launch temperature of -4.44 C, the maximum local temperature depression of the mixture was calculated to be 32.22 C in the inboard region next to the ET surface, and a surface temperature on the east RSRM was found to be as much as 13.89 C colder than ambient. The computed average surface temperatures on either side of the RSRM were in excellent agreement with a temperature determined from a correlation of prelaunch temperature measurements.

  10. Measurement of Rapid Amiloride-Dependent pH Changes at the Cell Surface Using a Proton-Sensitive Field-Effect Transistor.

    PubMed

    Schaffhauser, Daniel; Fine, Michael; Tabata, Miyuki; Goda, Tatsuro; Miyahara, Yuji

    2016-03-30

    We present a novel method for the rapid measurement of pH fluxes at close proximity to the surface of the plasma membrane in mammalian cells using an ion-sensitive field-effect transistor (ISFET). In conjuction with an efficient continuous superfusion system, the ISFET sensor was capable of recording rapid changes in pH at the cells' surface induced by intervals of ammonia loading and unloading, even when using highly buffered solutions. Furthermore, the system was able to isolate physiologically relevant signals by not only detecting the transients caused by ammonia loading and unloading, but display steady-state signals as would be expected by a proton transport-mediated influence on the extracellular proton-gradient. Proof of concept was demonstrated through the use of 5-(N-ethyl-N-isopropyl)amiloride (EIPA), a small molecule inhibitor of sodium/hydrogen exchangers (NHE). As the primary transporter responsible for proton balance during cellular regulation of pH, non-electrogenic NHE transport is notoriously difficult to detect with traditional methods. Using the NHE positive cell lines, Chinese hamster ovary (CHO) cells and NHE3-reconstituted mouse skin fibroblasts (MSF), the sensor exhibited a significant response to EIPA inhibition, whereas NHE-deficient MSF cells were unaffected by application of the inhibitor.

  11. Linear Quadratic Tracking Design for a Generic Transport Aircraft with Structural Load Constraints

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Frost, Susan A.; Taylor, Brian R.

    2011-01-01

    When designing control laws for systems with constraints added to the tracking performance, control allocation methods can be utilized. Control allocations methods are used when there are more command inputs than controlled variables. Constraints that require allocators are such task as; surface saturation limits, structural load limits, drag reduction constraints or actuator failures. Most transport aircraft have many actuated surfaces compared to the three controlled variables (such as angle of attack, roll rate & angle of side slip). To distribute the control effort among the redundant set of actuators a fixed mixer approach can be utilized or online control allocation techniques. The benefit of an online allocator is that constraints can be considered in the design whereas the fixed mixer cannot. However, an online control allocator mixer has a disadvantage of not guaranteeing a surface schedule, which can then produce ill defined loads on the aircraft. The load uncertainty and complexity has prevented some controller designs from using advanced allocation techniques. This paper considers actuator redundancy management for a class of over actuated systems with real-time structural load limits using linear quadratic tracking applied to the generic transport model. A roll maneuver example of an artificial load limit constraint is shown and compared to the same no load limitation maneuver.

  12. Final Research Report: Administrative and Legal Issues Associated with a Multi-State VMT-Based Charge System

    DOT National Transportation Integrated Search

    2010-11-01

    In May 2009, the I-95 Coalition convened a workshop of experts to discuss how the Coalition could best contribute to the national dialogue regarding VMT-based charge systems. Following the recommendations of the National Surface Transportation Policy...

  13. Hydrologic and Water Quality Assessment from Managed Turf

    USDA-ARS?s Scientific Manuscript database

    The potential for nutrients and pesticides to be transported to surface water from turf systems (especially golf courses) is often debated because of limited information on water quality exiting these systems. This four year study quantified the amount and quality of water draining from part of Nort...

  14. Transport of IRW, an ovotransferrin-derived antihypertensive peptide, in human intestinal epithelial Caco-2 cells.

    PubMed

    Bejjani, Satyanarayana; Wu, Jianping

    2013-02-20

    IRW is an egg ovotransferrin-derived ACE inhibitory peptide. The purpose of this study was to evaluate the stability and transcellular transport of IRW in Caco-2 cell monolayers. The stability of IRW was monitored on the apical (AP) surface while its transport was studied from AP to basal (BL) and from BL to AP surfaces. The results revealed that IRW is resistant against intestinal peptidase up to 60 min. Transport of IRW was not affected by addition of wortamanin, a transcytosis inhibitor. However, in the presence of cytochalasin D, a gap junction disruptor, transport of IRW was significantly increased, suggesting a possible passive transport from AP to BL surface. A higher transport of IRW from AP to BL surface than that from BL to AP surface suggests a passive-mediated transport. Moreover, in the presence of glycyl-sarcosine, a substrate for peptide transporter PepT 1, transport of IRW was reduced from AP to BL surface. The above observations showed atypical transport of IRW in Caco-2 cell monolayers. Thus, IRW may possibly be absorbed intact into the site of action for controlling hypertension.

  15. Initial evaluations of a Gulf of Mexico/Caribbean ocean forecast system in the context of the Deepwater Horizon disaster

    NASA Astrophysics Data System (ADS)

    Zaron, Edward D.; Fitzpatrick, Patrick J.; Cross, Scott L.; Harding, John M.; Bub, Frank L.; Wiggert, Jerry D.; Ko, Dong S.; Lau, Yee; Woodard, Katharine; Mooers, Christopher N. K.

    2015-12-01

    In response to the Deepwater Horizon (DwH) oil spill event in 2010, the Naval Oceanographic Office deployed a nowcast-forecast system covering the Gulf of Mexico and adjacent Caribbean Sea that was designated Americas Seas, or AMSEAS, which is documented in this manuscript. The DwH disaster provided a challenge to the application of available ocean-forecast capabilities, and also generated a historically large observational dataset. AMSEAS was evaluated by four complementary efforts, each with somewhat different aims and approaches: a university research consortium within an Integrated Ocean Observing System (IOOS) testbed; a petroleum industry consortium, the Gulf of Mexico 3-D Operational Ocean Forecast System Pilot Prediction Project (GOMEX-PPP); a British Petroleum (BP) funded project at the Northern Gulf Institute in response to the oil spill; and the Navy itself. Validation metrics are presented in these different projects for water temperature and salinity profiles, sea surface wind, sea surface temperature, sea surface height, and volume transport, for different forecast time scales. The validation found certain geographic and time biases/errors, and small but systematic improvements relative to earlier regional and global modeling efforts. On the basis of these positive AMSEAS validation studies, an oil spill transport simulation was conducted using archived AMSEAS nowcasts to examine transport into the estuaries east of the Mississippi River. This effort captured the influences of Hurricane Alex and a non-tropical cyclone off the Louisiana coast, both of which pushed oil into the western Mississippi Sound, illustrating the importance of the atmospheric influence on oil spills such as DwH.

  16. Sensitivity analysis of surface ozone to emission controls in Beijing and its neighboring area during the 2008 Olympic Games.

    PubMed

    Gao, Yi; Zhang, Meigen

    2012-01-01

    The regional air quality modeling system RAMS (regional atmospheric modeling system)-CMAQ (community multi-scale air quality modeling system) is applied to analyze temporal and spatial variations in surface ozone concentration over Beijing and its surrounding region from July to October 2008. Comparison of simulated and observed meteorological elements and concentration of nitrogen oxides (NOx) and ozone at one urban site and three rural sites during Olympic Games show that model can generally reproduce the main observed feature of wind, temperature and ozone, but NOx concentration is overestimated. Although ozone concentration decreased during Olympics, high ozone episodes occurred on 24 July and 24 August with concentration of 360 and 245 microg/m3 at Aoyuncun site, respectively. The analysis of sensitive test, with and without emission controls, shows that emission controls could reduce ozone concentration in the afternoon when ozone concentration was highest but increase it at night and in the morning. The evolution of the weather system during the ozone episodes (24 July and 24 August) indicates that hot and dry air and a stable weak pressure field intensified the production of ozone and allowed it to accumulate. Process analysis at the urban site and rural site shows that under favorable weather condition on 24 August, horizontal transport was the main contributor of the rural place and the pollution from the higher layer would be transported to the surface layer. On 24 July, as the wind velocity was smaller, the impact of transport on the rural place was not obvious.

  17. CARRIER PREPARATION BUILDING MATERIALS HANDLING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.F. Loros

    2000-06-28

    The Carrier Preparation Building Materials Handling System receives rail and truck shipping casks from the Carrier/Cask Transport System, and inspects and prepares the shipping casks for return to the Carrier/Cask Transport System. Carrier preparation operations for carriers/casks received at the surface repository include performing a radiation survey of the carrier and cask, removing/retracting the personnel barrier, measuring the cask temperature, removing/retracting the impact limiters, removing the cask tie-downs (if any), and installing the cask trunnions (if any). The shipping operations for carriers/casks leaving the surface repository include removing the cask trunnions (if any), installing the cask tie-downs (if any), installingmore » the impact limiters, performing a radiation survey of the cask, and installing the personnel barrier. There are four parallel carrier/cask preparation lines installed in the Carrier Preparation Building with two preparation bays in each line, each of which can accommodate carrier/cask shipping and receiving. The lines are operated concurrently to handle the waste shipping throughputs and to allow system maintenance operations. One remotely operated overhead bridge crane and one remotely operated manipulator is provided for each pair of carrier/cask preparation lines servicing four preparation bays. Remotely operated support equipment includes a manipulator and tooling and fixtures for removing and installing personnel barriers, impact limiters, cask trunnions, and cask tie-downs. Remote handling equipment is designed to facilitate maintenance, dose reduction, and replacement of interchangeable components where appropriate. Semi-automatic, manual, and backup control methods support normal, abnormal, and recovery operations. Laydown areas and equipment are included as required for transportation system components (e.g., personnel barriers and impact limiters), fixtures, and tooling to support abnormal and recovery operations. The Carrier Preparation Building Materials Handling System interfaces with the Cask/Carrier Transport System to move the carriers to and from the system. The Carrier Preparation Building System houses the equipment and provides the facility, utility, safety, communications, and auxiliary systems supporting operations and protecting personnel.« less

  18. Modeling of charged particles trajectories in order to optimize the design of a new, higher resolution, Time of flight- Positron Annihilation Induced Auger Electron Spectroscopy (TOF PAES) System

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Lim, L.; Satyal, Suman; Kalaskar, Sushant; Shastry, K.; Weiss, Alex

    2011-03-01

    Time of Flight Positron Annihilation Induced~Auger Electron Spectroscopy~(TOF PAES) is a surface analytical technique with high surface selectivity. TOF PAES is used to study elemental composition, surface defects, and various energy loss mechanisms. Positrons incident on the sample surface at low energies can be trapped in an image-potential well just above the surface Prior to annihilation. Consequently it is possible to use positron annihilation related signals to selectively probe the top-most atomic layer. This poster presents the results of modeling of the charge particle beam transport system performed in connection with the optimization of the the design of the new TOF-PAES system currently under construction at U T Arlington. The system will incorporate a 2 m long drift tube in order to achieve better energy resolution than our previous TOF-PAES system design which used a 1 m long drift tube NSF DMR 0907679, Welch Foundation Y 1100.

  19. 49 CFR 213.63 - Track surface.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Track surface. 213.63 Section 213.63 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Track Geometry § 213.63 Track surface. Each owner of the...

  20. 49 CFR 213.63 - Track surface.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Track surface. 213.63 Section 213.63 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Track Geometry § 213.63 Track surface. Each owner of the...

  1. Aviation Careers Series: Pilots and Flight Engineers

    DOT National Transportation Integrated Search

    1996-01-31

    Increasing travel in the United States is threatening the mobility the nations surface transportation system provides. Congestion, particularly in urbanized areas and along heavily traveled intercity corridors, is increasing dramatically. The cost...

  2. Assessing the effects of noise abatement measures on health risks: A case study in Istanbul

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ongel, Aybike, E-mail: aybike.ongel@eng.bahcesehir.edu.tr; Sezgin, Fatih, E-mail: fatih.sezgin@ibb.gov.tr

    In recent decades, noise pollution caused by industrialization and increased motorization has become a major concern around the world because of its adverse effects on human well-being. Therefore, transportation agencies have been implementing noise abatement measures in order to reduce road traffic noise. However, limited attention is given to noise in environmental assessment of road transportation systems. This paper presents a framework for a health impact assessment model for road transportation noise emissions. The model allows noise impacts to be addressed with the health effects of air pollutant and greenhouse gas emissions from road transportation. The health damages assessed inmore » the model include annoyance, sleep disturbance, and cardiovascular disease in terms of acute myocardial infarction. The model was applied in a case study in Istanbul in order to evaluate the change in health risks from the implementation of noise abatement strategies. The noise abatement strategies evaluated include altering pavement surfaces in order to absorb noise and introducing speed limits. It was shown that significant improvements in health risks can be achieved using open graded pavement surfaces and introducing speed limits on highways. - Highlights: • Transportation noise has a significant effect on health. • Noise should be included in the environmental assessment of transportation systems. • Traffic noise abatement measures include noise reducing pavements and speed limits. • Noise abatement measures help reduce the health risks of transportation noise. • Speed limit reduction on uncongested roads is an effective way to reduce health risks.« less

  3. Numerical modeling of coupled water flow and heat transport in soil and snow

    Treesearch

    Thijs J. Kelleners; Jeremy Koonce; Rose Shillito; Jelle Dijkema; Markus Berli; Michael H. Young; John M. Frank; William Massman

    2016-01-01

    A one-dimensional vertical numerical model for coupled water flow and heat transport in soil and snow was modified to include all three phases of water: vapor, liquid, and ice. The top boundary condition in the model is driven by incoming precipitation and the surface energy balance. The model was applied to three different terrestrial systems: A warm desert bare...

  4. Numerical modeling of heat and mass transport processes in an evaporative thermal protection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobrov, I.N.; Kuryachii, A.P.

    1992-08-01

    We propose a mathematical model of heat and mass transport processes in a moist, porous material subject to capillary action. The material is in contact with a heated surface, and the processes take place while the liquid is evaporating in a cavity with a drainage hole. A sample calculation based on the model is presented. 45 refs., 4 figs.

  5. Anti-collimation of ballistic electrons by a potential barrier

    NASA Astrophysics Data System (ADS)

    Coleridge, P. T.; Taylor, R. P.; Sachrajda, A. S.; Adams, J. A.

    1994-03-01

    A pair of Quantum Point Contacts separated by a continuous barrier have been fabricated using the surface gate technique. Transport measurements for each component of this system and for various combinations have shown both additive and non-additive behaviour. The results are explained by a combination of reflection by the barrier of electrons collimated by the Quantum Point Contacts and transport by diffusion across the barrier.

  6. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion.

    PubMed

    Gowrishankar, T R; Stewart, Donald A; Martin, Gregory T; Weaver, James C

    2004-11-17

    Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1) surface contact heating and (2) spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42 degrees C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45 degrees C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. The heat transport system model of the skin was solved by exploiting the mathematical analogy between local thermal models and local electrical (charge transport) models, thereby allowing robust, circuit simulation software to obtain solutions to Kirchhoff's laws for the system model. Transport lattices allow systematic introduction of realistic geometry and spatially heterogeneous heat transport mechanisms. Local representations for both simple, passive functions and more complex local models can be easily and intuitively included into the system model of a tissue.

  7. Tropical storm redistribution of Saharan dust to the upper troposphere and ocean surface

    NASA Astrophysics Data System (ADS)

    Herbener, Stephen R.; Saleeby, Stephen M.; Heever, Susan C.; Twohy, Cynthia H.

    2016-10-01

    As a tropical cyclone traverses the Saharan Air Layer (SAL), the storm will spatially redistribute the dust from the SAL. Dust deposited on the surface may affect ocean fertilization, and dust transported to the upper levels of the troposphere may impact radiative forcing. This study explores the relative amounts of dust that are vertically redistributed when a tropical cyclone crosses the SAL. The Regional Atmospheric Modeling System (RAMS) was configured to simulate the passage of Tropical Storm Debby (2006) through the SAL. A dust mass budget approach has been applied, enabled by a novel dust mass tracking capability of the model, to determine the amounts of dust deposited on the ocean surface and transferred aloft. The mass of dust removed to the ocean surface was predicted to be nearly 2 orders of magnitude greater than the amount of dust transported to the upper troposphere.

  8. [Nitrate storage and transport within a typical karst aquifer system in the paralleled ridge-valley of east Sichuan].

    PubMed

    Yang, Ping-Heng; Yuan, Dao-Xian; Ren, You-Rong; Xie, Shi-You; He, Qiu-Fang; Hu, Xiao-Feng

    2012-09-01

    In order to investigate the nitrate storage and transport in the karst aquifer system, the hydrochemical dynamics of Qingmuguan underground river system was monitored online by achieving high-resolution data during storm events and monthly data in normal weather. The principal component analysis was employed to analyze the karst water geochemistry. Results showed that nitrate in Jiangjia spring did not share the same source with soluble iron, manganese and aluminum, and exhibited different geochemical behaviors. Nitrate was derived from land surface and infiltrated together with soil water, which was mainly stored in fissure, pore and solution crack of karst unsaturated zone, whereas soluble iron, manganese and aluminum were derived from soil erosion and directly recharged the underground river through sinkholes and shafts. Nitrate transport in the karst aquifer system could be ideally divided into three phases, including input storage, fast output and re-inputting storage. Under similar external conditions, the karstification intensity of vadose zone was the key factor to determine the dynamics of nitrate concentrations in the groundwater during storm events. Nitrate stored in the karst vadose zone was easily released, which would impair the aquatic ecosystem and pose seriously threats to the local health. Thus, to strengthen the management of ecological system, changing the land-use patterns and scientifically applying fertilizer could effectively make a contribution to controlling mass nutrient input from the surface.

  9. Cerebrospinal and Interstitial Fluid Transport via the Glymphatic Pathway Modeled by Optimal Mass Transport

    PubMed Central

    Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2017-01-01

    The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4 min over ∼3 hrs in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. PMID:28323163

  10. Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport.

    PubMed

    Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2017-05-15

    The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4min over ∼3h in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. Copyright © 2017. Published by Elsevier Inc.

  11. Optics of the ozone lidar ELSA

    NASA Technical Reports Server (NTRS)

    Porteneuve, J.

    1992-01-01

    In order to study the ozone layer in the Arctic, we have to define a new optical concept for a lidar. It was necessary to build a transportable system with a large collecting surface in a minimum of volume. It was too useful to have a multichannel receptor. A description of the Emettor Receptor System, collecting system, and analysis system is provided.

  12. Airport Surface Network Architecture Definition

    NASA Technical Reports Server (NTRS)

    Nguyen, Thanh C.; Eddy, Wesley M.; Bretmersky, Steven C.; Lawas-Grodek, Fran; Ellis, Brenda L.

    2006-01-01

    Currently, airport surface communications are fragmented across multiple types of systems. These communication systems for airport operations at most airports today are based dedicated and separate architectures that cannot support system-wide interoperability and information sharing. The requirements placed upon the Communications, Navigation, and Surveillance (CNS) systems in airports are rapidly growing and integration is urgently needed if the future vision of the National Airspace System (NAS) and the Next Generation Air Transportation System (NGATS) 2025 concept are to be realized. To address this and other problems such as airport surface congestion, the Space Based Technologies Project s Surface ICNS Network Architecture team at NASA Glenn Research Center has assessed airport surface communications requirements, analyzed existing and future surface applications, and defined a set of architecture functions that will help design a scalable, reliable and flexible surface network architecture to meet the current and future needs of airport operations. This paper describes the systems approach or methodology to networking that was employed to assess airport surface communications requirements, analyze applications, and to define the surface network architecture functions as the building blocks or components of the network. The systems approach used for defining these functions is relatively new to networking. It is viewing the surface network, along with its environment (everything that the surface network interacts with or impacts), as a system. Associated with this system are sets of services that are offered by the network to the rest of the system. Therefore, the surface network is considered as part of the larger system (such as the NAS), with interactions and dependencies between the surface network and its users, applications, and devices. The surface network architecture includes components such as addressing/routing, network management, network performance and security.

  13. The effects of surface aging on nanoparticle fate and transport in natural and engineered porous media

    NASA Astrophysics Data System (ADS)

    Mittelman, Anjuliee M.

    Nanomaterials will be subjected to various surface transformations in the environment and within water and wastewater treatment systems. A comprehensive understanding of the fate and transport behavior of "aged" nanomaterials in both natural and engineered porous media is required in order to accurately quantify ecological and human health risks. This research sought to (1) evaluate the impact of ultraviolet (UV) light aging on nanoparticle transport in water-saturated porous media; and (2) assess the effects of influent water quality on silver nanoparticle retention and dissolution in ceramic water filters. Additionally, the value of quartz crystal microbalance (QCM-D) data in nanoparticle fate and transport studies was evaluated by comparing deposition behavior in complementary QCM-D and sand columns experiments. Silver (nAg) and iron oxide nanoparticles exposed to UV light were up to 50% more strongly retained in porous media compared with freshly prepared suspensions due to less negative surface charge and larger aggregate sizes. UV-aged nAg were more prone to dissolution in sand columns, resulting in effluent Ag+ concentrations as high as 1.2 mg/L. In ceramic water filters, dissolution and cation exchange processes controlled silver release into treated water. The use of acidic, high salinity, or high hardness water accelerated oxidative dissolution of the silver coating and resulted in effluent silver concentrations 5-10 times above international drinking water guidelines. Results support the recommendation for a regular filter replacement or silver re-application schedule to ensure ongoing efficacy. Taken in concert, these research findings suggest that oxidative aging of nanomaterial surfaces (either through exposure to UV light or aggressive water chemistries) will alter the fate of nanomaterials in the environment and may decrease the effective lifetime of devices which utilize nanotechnology. Corresponding QCM-D and column experiments revealed that nanoparticles were generally more mobile in QCM-D due to reduced diffusive transport of larger aggregates to the sensor surface and high primary energy barriers to deposition. While QCM-D may be used to provide qualitative data, direct comparisons of deposition rates in QCM-D with attachment rates obtained from column experiments may prove difficult due to differences in flow geometry and surface characteristics between the two systems.

  14. Rectification of nanopores in aprotic solvents--transport properties of nanopores with surface dipoles.

    PubMed

    Plett, Timothy; Shi, Wenqing; Zeng, Yuhan; Mann, William; Vlassiouk, Ivan; Baker, Lane A; Siwy, Zuzanna S

    2015-12-07

    Nanopores have become a model system to understand transport properties at the nanoscale. We report experiments and modeling of ionic current in aprotic solvents with different dipole moments through conically shaped nanopores in a polycarbonate film and through glass nanopipettes. We focus on solutions of the salt LiClO4, which is of great importance in modeling lithium based batteries. Results presented suggest ion current rectification observed results from two effects: (i) adsorption of Li(+) ions to the pore walls, and (ii) a finite dipole moment rendered by adsorbed solvent molecules. Properties of surfaces in various solvents were probed by means of scanning ion conductance microscopy, which confirmed existence of an effectively positive surface potential in aprotic solvents with high dipole moments.

  15. Hybrid-Particle-In-Cell Simulation of Backsputtered Carbon Transport in the Near-Field Plume of a Hall Thruster

    NASA Technical Reports Server (NTRS)

    Choi, Maria; Yim, John T.; Williams, George J.; Herman, Daniel A.; Gilland, James H.

    2018-01-01

    Magnetic shielding has eliminated boron nitride erosion as the life limiting mechanism in a Hall thruster but has resulted in erosion of the front magnetic field pole pieces. Recent experiments show that the erosion of graphite pole covers, which are added to protect the magnetic field pole pieces, causes carbon to redeposit on other surfaces, such as boron nitride discharge channel and cathode keeper surfaces. As a part of the risk-reduction activities for Advanced Electric Propulsion System thruster development, this study models transport of backsputtered carbon from the graphite front pole covers and vacuum facility walls. Fluxes, energy distributions, and redeposition rates of backsputtered carbon on the anode, discharge channel, and graphite cathode keeper surfaces are predicted.

  16. A sensory complex consisting of an ATP-binding cassette transporter and a two-component regulatory system controls bacitracin resistance in Bacillus subtilis.

    PubMed

    Dintner, Sebastian; Heermann, Ralf; Fang, Chong; Jung, Kirsten; Gebhard, Susanne

    2014-10-03

    Resistance against antimicrobial peptides in many Firmicutes bacteria is mediated by detoxification systems that are composed of a two-component regulatory system (TCS) and an ATP-binding cassette (ABC) transporter. The histidine kinases of these systems depend entirely on the transporter for sensing of antimicrobial peptides, suggesting a novel mode of signal transduction where the transporter constitutes the actual sensor. The aim of this study was to investigate the molecular mechanisms of this unusual signaling pathway in more detail, using the bacitracin resistance system BceRS-BceAB of Bacillus subtilis as an example. To analyze the proposed communication between TCS and the ABC transporter, we characterized their interactions by bacterial two-hybrid analyses and could show that the permease BceB and the histidine kinase BceS interact directly. In vitro pulldown assays confirmed this interaction, which was found to be independent of bacitracin. Because it was unknown whether BceAB-type transporters could detect their substrate peptides directly or instead recognized the peptide-target complex in the cell envelope, we next analyzed substrate binding by the transport permease, BceB. Direct and specific binding of bacitracin by BceB was demonstrated by surface plasmon resonance spectroscopy. Finally, in vitro signal transduction assays indicated that complex formation with the transporter influenced the autophosphorylation activity of the histidine kinase. Taken together, our findings clearly show the existence of a sensory complex composed of TCS and ABC transporters and provide the first functional insights into the mechanisms of stimulus perception, signal transduction, and antimicrobial resistance employed by Bce-like detoxification systems. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. A Sensory Complex Consisting of an ATP-binding Cassette Transporter and a Two-component Regulatory System Controls Bacitracin Resistance in Bacillus subtilis*

    PubMed Central

    Dintner, Sebastian; Heermann, Ralf; Fang, Chong; Jung, Kirsten; Gebhard, Susanne

    2014-01-01

    Resistance against antimicrobial peptides in many Firmicutes bacteria is mediated by detoxification systems that are composed of a two-component regulatory system (TCS) and an ATP-binding cassette (ABC) transporter. The histidine kinases of these systems depend entirely on the transporter for sensing of antimicrobial peptides, suggesting a novel mode of signal transduction where the transporter constitutes the actual sensor. The aim of this study was to investigate the molecular mechanisms of this unusual signaling pathway in more detail, using the bacitracin resistance system BceRS-BceAB of Bacillus subtilis as an example. To analyze the proposed communication between TCS and the ABC transporter, we characterized their interactions by bacterial two-hybrid analyses and could show that the permease BceB and the histidine kinase BceS interact directly. In vitro pulldown assays confirmed this interaction, which was found to be independent of bacitracin. Because it was unknown whether BceAB-type transporters could detect their substrate peptides directly or instead recognized the peptide-target complex in the cell envelope, we next analyzed substrate binding by the transport permease, BceB. Direct and specific binding of bacitracin by BceB was demonstrated by surface plasmon resonance spectroscopy. Finally, in vitro signal transduction assays indicated that complex formation with the transporter influenced the autophosphorylation activity of the histidine kinase. Taken together, our findings clearly show the existence of a sensory complex composed of TCS and ABC transporters and provide the first functional insights into the mechanisms of stimulus perception, signal transduction, and antimicrobial resistance employed by Bce-like detoxification systems. PMID:25118291

  18. 49 CFR 1106.5 - Waiver.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Waiver. 1106.5 Section 1106.5 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION RULES OF PRACTICE PROCEDURES FOR SURFACE TRANSPORTATION BOARD CONSIDERATION OF SAFETY INTEGRATION PLANS...

  19. Contemporary suspended sediment dynamics within two partly glacierized mountain drainage basins in western Norway (Erdalen and Bødalen, inner Nordfjord)

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.; Laute, Katja; Storms, Joep E. A.

    2017-06-01

    This paper focuses on environmental controls, spatiotemporal variability and rates of contemporary fluvial suspended sediment transport in the neighboring, partly glacierized and steep Erdalen (79.5 km2) and Bødalen (60.1 km2) drainage basins in the fjord landscape of the inner Nordfjord in western Norway. Field work, including extended samplings and measurements, was conducted since 2004 in Erdalen and since 2008 in Bødalen. The distinct intra- and inter-annual temporal variability of suspended sediment transport found is mostly controlled by meteorological events, with most suspended sediment transport occurring during pluvial events in autumn (September-November), followed by mostly thermally determined glacier melt in summer (July-August), and by mostly thermally determined snowmelt in spring (April-June). Extreme rainfall events (> 70 mm d- 1) in autumn can trigger significant debris-flow activity that can cause significant transfers of suspended sediments from ice-free surface areas with sedimentary covers into main stream channels and is particularly important for fluvial suspended sediment transport. In years with occurring relevant debris-flow activity the total annual drainage-basin wide suspended sediment yields are strongly determined by these single extreme events. The proportion of glacier coverage, followed by steepness of slopes, and degree of vegetation cover in ice-free surface areas with sedimentary covers are the main controls for the detected spatial variability of suspended sediment yields. The contemporary sediment supply from glacierized surface areas and the Jostedalsbreen ice cap through different defined outlet glaciers shows a high spatial variability. The fact that the mean annual suspended sediment yield of Bødalen is with 31.3 t km- 2 yr- 1 almost twice as high as the mean annual suspended sediment yield of Erdalen (16.4 t km- 2 yr- 1) is to a large extent explained by the higher proportion of glacier coverage in Bødalen (38% of the drainage basin surface area) as compared to Erdalen (18% of the drainage basin surface area) and by a significantly higher sediment yield from the glacierized area of the Bødalen drainage basin compared to the glacierized surface area in Erdalen. When looking at the total annual mass of suspended sediments being fluvially exported from both entire drainage basin systems, the total amount of suspended sediments coming from the ice-free drainage basin surface areas altogether dominates over the total amount of suspended sediments coming from the glacierized surface area of both drainage basins. Drainage-basin wide annual suspended sediment yields are rather low when compared with yields of other partly glacierized drainage basin systems in Norway and in other cold climate environments worldwide, which is mainly due to the high resistance of the predominant gneisses towards glacial erosion and weathering, the altogether only small amounts of sediments being available within the entire drainage basin systems, the stable and nearly closed vegetation cover in the ice-free surface areas with sedimentary covers, and the efficiency of proglacial lakes in trapping sediments supplied by defined outlet glaciers. Both contemporary and long-term suspended sediment yields are altogether supply-limited. Contemporary suspended sediment transport accounts for nearly two-thirds of the total fluvial transport and, accordingly, plays an important role within the sedimentary budgets of the entire Erdalen and Bødalen drainage basins.

  20. Deep Space Gateway - Enabling Missions to Mars

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle; Connolly, John

    2017-01-01

    There are many opportunities for commonality between Lunar vicinity and Mars mission hardware and operations. Best approach: Identify Mars mission risks that can be bought down with testing in the Lunar vicinity, then explore hardware and operational concepts that work for both missions with minimal compromise. Deep Space Transport will validate the systems and capabilities required to send humans to Mars orbit and return to Earth. Deep Space Gateway provides a convenient assembly, checkout, and refurbishment location to enable Mars missions Current deep space transport concept is to fly missions of increasing complexity: Shakedown cruise, Mars orbital mission, Mars surface mission; Mars surface mission would require additional elements.

Top