Science.gov

Sample records for surface treated montmorillonite

  1. Adsorption of organic phenols onto hexadecyltrimethylammonium-treated montmorillonite

    SciTech Connect

    Kim, Young S.; Song, Dong I.; Jeon, Young W.; Choi, Sang J.

    1996-12-01

    Montmorillonite used as an adsorbent was organically modified by using a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the removal capacity of organic phenol contaminants dissolved in an aqueous solution. This modification produces a change of the surface property of montmorillonite from hydrophilic to organophilic. The single- and multicomponent competitive adsorptions were performed in a batch reactor to investigate the removal of three toxic organic phenols, 2-chlorophenol, 3-cyanophenol, and 4-nitrophenol, on the modified HDTMA-montmorillonite. It was observed from the experimental results that the adsorption affinity for HDTMA-montmorillonite was 2-chlorophenol, 4-nitrophenol, 3-cyanophenol in decreasing order. Langmuir and the Redlich-Peterson models were used to analyze the single-component adsorption results, while the IAST and the LCM models predicted the multicomponent adsorption equilibria. These models yielded favorable representations of both individual and competitive adsorption behaviors.

  2. Interactions of aminomethylphosphonic acid and sarcosine with montmorillonite interlayer surfaces

    NASA Astrophysics Data System (ADS)

    Rennig, Amanda; Slutter, Annette; Tribe, Lorena

    The smectite clay, montmorillonite, can be found in many soils throughout the world. In addition to its importance in agriculture and soil remediation, montmorillonite has extensive applications in industry both in its natural form and as a component of composite materials. The adsorptive properties of montmorillonite have been explored in relation to its interactions with the common herbicide glyphosate. This herbicide, when exposed to microorganisms in the soil is degraded, forming two products: aminomethylphosphonic acid (AMPA) and sarcosine. The atomic-level interactions of these compounds with the montmorillonite interlayer surfaces are studied here using molecular mechanics. The final outcomes of these calculations are analyzed in terms of the proximity of the montmorillonite surface to the moieties of the degradation products. The phosphonate moiety was found to be the most important source of interactions for AMPA, while for sarcosine there was an even distribution between the amino and carboxylic moieties, and Na+ ion mediated surface complexes.0

  3. Monomers of cutin biopolymer: sorption and esterification on montmorillonite surfaces

    NASA Astrophysics Data System (ADS)

    Olshansky, Yaniv; Polubesova, Tamara; Chefetz, Benny

    2013-04-01

    One of the important precursors for soil organic matter is plant cuticle, a thin layer of predominantly lipids that cover all primary aerial surfaces of vascular plants. In most plant species cutin biopolymer is the major component of the cuticle (30-85% weight). Therefore cutin is the third most abundant plant biopolymer (after lignin and cellulose). Cutin is an insoluble, high molecular weight bio-polyester, which is constructed of inter-esterified cross linked hydroxy-fatty acids and hydroxyepoxy-fatty acids. The most common building blocks of the cutin are derivatives of palmitic acid, among them 9(10),16 dihydroxy palmitic acid (diHPA) is the main component. These fatty acids and their esters are commonly found in major organo-mineral soil fraction-humin. Hence, the complexes of cutin monomers with minerals may serve as model of humin. Both cutin and humin act as adsorption efficient domains for organic contaminants. However, only scarce information is available about the interactions of cutin with soil mineral surfaces, in particular with common soil mineral montmorillonite. The main hypothesize of the study is that adsorbed cutin monomers will be reconstituted on montmorillonite surface due to esterification and oligomerization, and that interactions of cutin monomers with montmorillonite will be affected by the type of exchangeable cation. Cutin monomers were obtained from the fruits of tomato (Lycopersicon esculentum). Adsorption of monomers was measured for crude Wyoming montmorillonites and montmorillonites saturated with Fe3+ and Ca2+. To understand the mechanism of monomer-clay interactions and to evaluate esterification on the clay surface, XRD and FTIR analyses of the montmorillonite-monomers complexes were performed. Our results demonstrated that the interactions of cutin monomers with montmorillonite are affected by the type of exchangeable cation. Isotherms of adsorption of cutin monomers on montmorillonites were fitted by a dual mode model of

  4. Adsorption of Crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension.

    PubMed

    Sarma, Gautam Kumar; Sen Gupta, Susmita; Bhattacharyya, Krishna G

    2016-04-15

    Crystal violet is used as a dye in cotton and silk textiles, paints and printing ink. The dye is hazardous and exposure to it may cause permanent injury to the cornea and conjunctiva including permanent blindness, and in severe cases, may lead to respiratory and kidney failure. The present work describes removal of Crystal violet from aqueous solution by adsorption on raw and acid-treated montmorillonite, K10. The clay mineral was treated with 0.25 and 0.50 M sulfuric acid and the resulting materials were characterized by XRD, zeta potential, SEM, FTIR, cation exchange capacity, BET surface area and pore volume measurements. The influences of pH, interaction time, adsorbent amount, and temperature on adsorption were monitored and explained on the basis of physico-chemical characteristics of the materials. Basic pH generally favors adsorption but considerable removal was possible even under neutral conditions. Adsorption was very rapid and equilibrium could be attained in 180 min. The kinetics conformed to second order model. Langmuir monolayer adsorption capacity of raw montmorillonite K10 was 370.37 mg g(-1) whereas 0.25 M and 0.50 M acid treated montmorillonite K10 had capacities of 384.62 and 400.0 mg g(-1) respectively at 303 K. Adsorption was exothermic and decreased in the temperature range of 293-323 K. Thermodynamically, the process was spontaneous with Gibbs energy decreasing with rise in temperature. The results suggest that montmorillonite K10 and its acid treated forms would be suitable for removing Crystal violet from aqueous solution.

  5. Modification of Wyoming montmorillonite surfaces using a cationic surfactant.

    PubMed

    Xi, Yunfei; Frost, Ray L; He, Hongping; Kloprogge, Theo; Bostrom, Thor

    2005-09-13

    Surfaces of Wyoming SWy-2-Na-montmorillonite were modified using ultrasonic and hydrothermal methods through the intercalation and adsorption of the cationic surfactant octadecyltrimethylammonium bromide (ODTMA). Changes in the surfaces and structure were characterized using X-ray diffraction (XRD), thermal analysis (TG), and electron microscopy. The ultrasonic preparation method results in a higher surfactant concentration within the montmorillonite interlayer when compared with that from the hydrothermal method. Three different molecular environments for surfactants within the surface-modified montmorillonite are proposed upon the basis of their different decomposition temperatures. Both XRD patterns and TEM images demonstrate that SWy-2-Na-montmorillonite contains superlayers. TEM images of organoclays prepared at high surfactant concentrations show alternate basal spacings between neighboring layers. SEM images show that modification with surfactant reduces the clay particle size and aggregation. Organoclays prepared at low surfactant concentration display curved flakes, whereas they become flat with increasing intercalated surfactant. Novel surfactant-modified montmorillonite results in the formation of new nanophases with the potential for the removal of organic impurities from aqueous media.

  6. Acidity of edge surface sites of montmorillonite and kaolinite

    NASA Astrophysics Data System (ADS)

    Liu, Xiandong; Lu, Xiancai; Sprik, Michiel; Cheng, Jun; Meijer, Evert Jan; Wang, Rucheng

    2013-09-01

    Acid-base chemistry of clay minerals is central to their interfacial properties, but up to now a quantitative understanding on the surface acidity is still lacking. In this study, with first principles molecular dynamics (FPMD) based vertical energy gap technique, we calculate the acidity constants of surface groups on (0 1 0)-type edges of montmorillonite and kaolinite, which are representatives of 2:1 and 1:1-type clay minerals, respectively. It shows that tbnd Si-OH and tbnd Al-OH2OH groups of kaolinite have pKas of 6.9 and 5.7 and those of montmorillonite have pKas of 7.0 and 8.3, respectively. For each mineral, the calculated pKas are consistent with the experimental ranges derived from fittings of titration curves, indicating that tbnd Si-OH and tbnd Al-OH2OH groups are the major acidic sites responsible to pH-dependent experimental observations. The effect of Mg substitution in montmorillonite is investigated and it is found that Mg substitution increases the pKas of the neighboring tbnd Si-OH and tbnd Si-OH2 groups by 2-3 pKa units. Furthermore, our calculation shows that the pKa of edge tbnd Mg-(OH2)2 is as high as 13.2, indicating the protonated state dominates under common pH. Together with previous adsorption experiments, our derived acidity constants suggest that tbnd Si-O- and tbnd Al-(OH)2 groups are the most probable edge sites for complexing heavy metal cations.

  7. Influence of the intercalated cations on the surface energy of montmorillonites: consequences for the morphology and gas barrier properties of polyethylene/montmorillonites nanocomposites.

    PubMed

    Picard, E; Gauthier, H; Gérard, J-F; Espuche, E

    2007-03-15

    Organically modified montmorillonites obtained by cation exchange from the same natural layered silicate were studied. The surface properties of the pristine and a series of organically modified clays were determined by inverse gas chromatography and the water adsorption mechanisms were studied by a gravimetric technique coupled with a microcalorimeter. A significant increase of the specific surface area, a decrease of the water adsorption, and a decrease of the dispersive component of the surface energy were observed when the sodium cations of the natural montmorillonite were exchanged for a quaternary ammonium. Slighter differences in surface properties were observed, on the other hand, between the different types of organically modified montmorillonites. Indeed, similar dispersive components of the surface energy were determined on the organoclays. Nevertheless, the specific surface area increased in the range 48-80 m(2)/g with increasing d-spacing values and the presence of specific groups attached to the quaternary ammonium, such as phenyl rings or hydroxyl groups, led to some specific behaviors, i.e., a more pronounced base character and a higher water adsorption at high activity, respectively. Differences in interlayer cation chain organization, denoted as crystallinity, were also observed as a function of the nature of the chains borne by the quaternary ammonium. In a later step, polyethylene-based nanocomposites were prepared with those organically modified montmorillonites. The clay dispersion and the barrier properties of the nanocomposites were discussed as a function of the montmorillonite characteristics and of the matrix/montmorillonite interactions expected from surface energy characterization.

  8. Surface area of montmorillonite from the dynamic sorption of nitrogen and carbon dioxide

    USGS Publications Warehouse

    Thomas, J.; Bohor, B.F.

    1968-01-01

    Surface area determinations were made on a montmorillonite with various cations emplaced on the exchangeable sites, utilizing nitrogen and carbon dioxide as adsorbates at 77 ??K and 195 ??K, respectively, in a dynamic system. From the fraction of a Mississippi montmorillonite less than about 1 ?? in size, samples were prepared by replacing the original exchangeable cations with Li+, Na+, K+, Rb+, Cs+, Mg++, Ca++, Ba++, and NH4+, forming a series of homoionic montmorillonite species. Surface areas from 3-point B.E.T. plots (half-hour adsorption points), with nitrogen as the adsorbate, ranged from 61 m2/g for Li-montmorillonite to 138 m2/g for Cs-montmorillonite, thus reflecting a certain degree of nitrogen penetration between layers. Complete penetration should theoretically result in a surface area of over 300 m2/g for this clay with a nitrogen monolayer between each pair of platelets. The experimental data indicate that the extent of penetration is time-dependent and is also a function of the interlayer forces as governed by the size and charge of the replaceable cation. This finding negates the generally accepted concept that nitrogen at 77 ??K does not penetrate the layers and provides a measure only of the external surface of expandable clay minerals. A further measure of the variation of interlayer forces is provided by the adsorption of carbon dioxide at 195 ??K. Surface area values ranged from 99 m2/g for Li-montmorillonite to 315 m2/g for Csmontmorillonite. Although the carbon dioxide molecule is larger than the nitrogen molecule, its greater penetration apparently is a result of its being kinetically more energetic (with a larger diffusion coefficient) at its higher adsorption temperature. Similar differences have been found with both adsorbates in the study of microporous substances, such as coal, where activated diffusion is of considerable significance. ?? 1968.

  9. Control of Montmorillonite Surface Coatings on Quartz Grains in Bentonite by Precursor Volcanic Glass

    NASA Astrophysics Data System (ADS)

    Wendlandt, R. F.; Harrison, W. J.

    2008-12-01

    The pathogenic tendencies of respirable-sized quartz grains may be dependent on inherent characteristics of the quartz as well as external factors. Surface coatings on quartz are of particular interest as they modify both physical and chemical properties of quartz grain surfaces and sequester the grain from contact with reactive lung fluids. Wendlandt et al. (Appl. Geochem. 22, 2007) investigated the surface properties of respirable-sized quartz grains in bentonites and recognized pervasive montmorillonite surface coatings on the quartz that resisted removal by repeated vigorous washings and reaction with HCl. To understand the persistence of montmorillonite coatings on quartz grains of igneous origin, volcanic ash deposits of varying age and degree of alteration to montmorillonite were sampled in Utah, including the distal Lava Creek (c. 0.64 Ma) and Bishop Tuffs (c. 0.74 Ma), and SW Colorado (Conejos Fm, San Juan Volcanic Field) for comparison with commercial grade Cretaceous-age "western" and "southern" bentonites. Quartz grains, hand-picked from these samples, were analyzed using FE-SEM and HRTEM. Continuous coatings of volcanic glass occur on quartz grains from the distal volcanic ash samples. As glass alteration to montmorillonite becomes more extensive, quartz grain surfaces start to display patches of montmorillonite. These patches become continuous in extent on quartz grains from the bentonites. Late precipitation of opal- CT lepispheres is consistent with the alteration reaction for volcanic glass: Volcanic glass + H2O = montmorillonite + SiO2(am) + ions(aq). HRTEM of quartz grains reveals an amorphous surface layer, consistent with a volcanic glass coating. Our results indicate that persistent montmorillonite coatings on quartz grains in bentonites are related to precursor volcanic glass coatings on these grains. The absence of glass coatings on other mineral grains in bentonite (feldspar, biotite) may be a consequence of the presence of strong cleavage

  10. Adsorption and characterization of MCPA on DDTMA- and raw-montmorillonite: Surface sites involved.

    PubMed

    Santiago, Cintia C; Fernández, Mariela A; Torres Sánchez, Rosa M

    2016-01-01

    The 4-chloro-2-methylphenoxy acid (MCPA) is an herbicide widely used in agriculture, which generates a great concern about contamination of surface water and serious consequences for human health and the environment. In this work, the adsorption of MCPA on an Argentine montmorillonite (MMT) and its organo-montmorillonite product (OMMT) with different dodecyl trimethyl ammonium loading was investigated. MCPA adsorption on OMMT increases at least 3 times, with respect to the amount determined for MMT. X-ray diffraction and zeta potential analyses indicated the inner (interlayer) and outer surface participate as adsorption sites. Changes in surface electric charge and also interlayer expansion suggest that dimethyl amine (MCPA counterion) was also surface-adsorbed. The larger aggregates of OMMT, without and with MCPA, obtained compared to those of MMT samples, generate an improvement in the coagulation efficiency. This property, particularly after MCPA retention, allows an easier separation of the solids from the solution and enables a simple technological process application.

  11. Surface catalyzed oxidative oligomerization of 17β-estradiol by Fe(3+)-saturated montmorillonite.

    PubMed

    Qin, Chao; Troya, Diego; Shang, Chao; Hildreth, Sherry; Helm, Rich; Xia, Kang

    2015-01-20

    With widespread detection of endocrine disrupting compounds including hormones in wastewater, there is a need to develop cost-effective remediation technologies for their removal from wastewater. Previous research has shown that Fe(3+)-saturated montmorillonite is effective in quickly transforming phenolic organic compounds such as pentachlorophenol, phenolic acids, and triclosan via surface-catalyzed oligomerization. However, little is known about its effectiveness and reaction mechanisms when reacting with hormones. In this study, the reaction kinetics of Fe(3+)-saturated montmorillonite catalyzed 17β-estradiol (βE2) transformation was investigated. The transformation products were identified using liquid chromatography coupled with mass spectrometry, and their structures were further confirmed using computational approach. Rapid βE2 transformation in the presence of Fe(3+)-saturated montmorillonite in an aqueous system was detected. The disappearance of βE2 follows first-order kinetics, while the overall catalytic reaction follows the second-order kinetics with an estimated reaction rate constant of 200 ± 24 (mmol βE2/g mineral)(−1) h(–1). The half-life of βE2 in this system was estimated to be 0.50 ± 0.06 h. βE2 oligomers were found to be the major products of βE2 transformation when exposed to Fe(3+)-saturated montmorillonite. About 98% of βE2 were transformed into βE2 oligomers which are >10(7) times less water-soluble than βE2 and, therefore, are much less bioavailable and mobile then βE2. The formed oligomers quickly settled from the aqueous phase and were not accumulated on the reaction sites of the interlayer surfaces of Fe(3+)-saturated montmorillonite, the major reason for the observed >84% βE2 removal efficiency even after five consecutive usages of the same of Fe(3+)-saturated montmorillonite. The results from this study clearly demonstrated that Fe(3+)-saturated montmorillonite has a great potential to be used as a cost

  12. Surface complexation modeling of Cd(II) sorption to montmorillonite, bacteria, and their composite

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Du, Huihui; Huang, Qiaoyun; Cai, Peng; Rong, Xingmin; Feng, Xionghan; Chen, Wenli

    2016-10-01

    Surface complexation modeling (SCM) has emerged as a powerful tool for simulating heavy metal adsorption processes on the surface of soil solid components under different geochemical conditions. The component additivity (CA) approach is one of the strategies that have been widely used in multicomponent systems. In this study, potentiometric titration, isothermal adsorption, zeta potential measurement, and extended X-ray absorption fine-structure (EXAFS) spectra analysis were conducted to investigate Cd adsorption on 2 : 1 clay mineral montmorillonite, on Gram-positive bacteria Bacillus subtilis, and their mineral-organic composite. We developed constant capacitance models of Cd adsorption on montmorillonite, bacterial cells, and mineral-organic composite. The adsorption behavior of Cd on the surface of the composite was well explained by CA-SCM. Some deviations were observed from the model simulations at pH < 5, where the values predicted by the model were lower than the experimental results. The Cd complexes of X2Cd, SOCd+, R-COOCd+, and R-POCd+ were the predominant species on the composite surface over the pH range of 3 to 8. The distribution ratio of the adsorbed Cd between montmorillonite and bacterial fractions in the composite as predicted by CA-SCM closely coincided with the estimated value of EXAFS at pH 6. The model could be useful for the prediction of heavy metal distribution at the interface of multicomponents and their risk evaluation in soils and associated environments.

  13. Reflectance spectroscopy of palagonite and iron-rich montmorillonite clay mixtures - Implications for the surface composition of Mars

    NASA Technical Reports Server (NTRS)

    Orenberg, James; Handy, Jonathan

    1992-01-01

    The diffuse reflectance spectra of Hawaiian palagonite mixtures with an Fe-rich montmorillonite have prompted their present use as spectral analogs of the Martian surface. Like the Mars spectrum and unlike clays, the 2.2-micron reflectance spectrum absorption band is not present in the palagonite sample; neither is the 2.2-micron Al-OH clay lattice band seen in palagonite-montmorillonite mixtures, where the latter component remains below 15 wt pct. Fe-rich montmorillonite clay may therefore be present in Mars, in combination with palagonite, while remaining undetected in remotely sensed spectra.

  14. Solid surface photochemistry of montmorillonite: mechanisms for the arsenite oxidation under UV-A irradiation.

    PubMed

    Yuan, Yanan; Wang, Yajie; Ding, Wei; Li, Jinjun; Wu, Feng

    2016-01-01

    Transformation of inorganic arsenic species has drawn great concern in recent decades because of worldwide and speciation-dependent pollution and the hazards that they pose to the environment and to human health. As(III) photooxidation in aquatic systems has received much attention, but little is known about photochemical transformation of arsenic species on top soil. As(III) photooxidation on natural montmorillonite under UV-A radiation was investigated by using a moisture- and temperature-controlled photochemical chamber with two black-light lamps. Initial As(III) concentration, pH, layer thickness, humic acid (HA) concentration, the presence of additional iron ions, and the contribution of reactive oxygen species (ROS) were examined. The results show that pH values of the clay layers greatly influenced As(III) photooxidation on montmorillonite. As(III) photooxidation followed the Langmuir-Hinshelwood model. HA and additional iron ions greatly promoted photooxidation, but excess Fe(II) competed with As(III) for oxidation by ROS. Scavenging experiments revealed that natural montmorillonite induced the conversion of As(III) to As(V) by generating ROS (mainly HO(•) and HO2(•)/O2(•-)) and that HO(•) radical was the predominant oxidant in this system. Our work demonstrates that photooxidation on the surface of natural clay minerals in top soil can be important to As(III) transformation. This allows understanding and predicting the speciation and behavior of arsenic on the soil surface.

  15. Modeling the Acid-Base Properties of Montmorillonite Edge Surfaces.

    PubMed

    Tournassat, Christophe; Davis, James A; Chiaberge, Christophe; Grangeon, Sylvain; Bourg, Ian C

    2016-12-20

    The surface reactivity of clay minerals remains challenging to characterize because of a duality of adsorption surfaces and mechanisms that does not exist in the case of simple oxide surfaces: edge surfaces of clay minerals have a variable proton surface charge arising from hydroxyl functional groups, whereas basal surfaces have a permanent negative charge arising from isomorphic substitutions. Hence, the relationship between surface charge and surface potential on edge surfaces cannot be described using the Gouy-Chapman relation, because of a spillover of negative electrostatic potential from the basal surface onto the edge surface. While surface complexation models can be modified to account for these features, a predictive fit of experimental data was not possible until recently, because of uncertainty regarding the densities and intrinsic pKa values of edge functional groups. Here, we reexamine this problem in light of new knowledge on intrinsic pKa values obtained over the past decade using ab initio molecular dynamics simulations, and we propose a new formalism to describe edge functional groups. Our simulation results yield reasonable predictions of the best available experimental acid-base titration data.

  16. Reflectance Spectroscopy of Palagonite and Iron-Rich Montmorillonite Clay Mixtures: Implications for the Surface Composition of Mars

    NASA Technical Reports Server (NTRS)

    Orenberg, James; Handy, Jonathan

    1992-01-01

    Mixtures of a Hawaiian palagonite and an iron-rich, montmorillonite clay (15.8 +/- 0.4 wt% Fe as Fe2O3) were evaluated as Mars surface spectral analogs from their diffuse reflectance spectra. The presence of the 2.2 microns absorption band in the reflectance spectrum of clays and its absence in the Mars spectrum have been interpreted as indicating that highly crystalline aluminous hydroxylated clays cannot be a major mineral component of the soil on Mars. The palagonite sample used in this study does not show this absorption feature in its spectrum. In mixtures of palagonite and iron-rich montmorillonite, the 2.2 microns Al-OH clay lattice band is not seen below 15 wt% montmorillonite. This suggests the possibility that iron-rich montmorillonite clay may be present in the soil of Mars at up to 15 wt% in combination with palagonite, and remain undetected in remotely sensed spectra of Mars.

  17. Sol-gel network silica/modified montmorillonite clay hybrid nanocomposites for hydrophobic surface coatings.

    PubMed

    Meera, Kamal Mohamed Seeni; Sankar, Rajavelu Murali; Murali, Adhigan; Jaisankar, Sellamuthu N; Mandal, Asit Baran

    2012-02-01

    Sol-gel silica/nanoclay composites were prepared through sol-gel polymerization technique using tetraethylorthosilicate precursor and montmorillonite (MMT) clay in aqueous media. In this study, both montmorillonite-K(+) and organically modified MMT (OMMT) clays were used. The prepared composites were coated on glass substrate by making 1 wt% solution in ethyltrichlorosilane. The incorporation of nanoclay does not alter the intensity of characteristic Si-O-Si peak of silica network. Thermogravimetric studies show that increasing clay content increased the degradation temperature of the composites. Differential scanning calorimetry (DSC) results of organically modified MMT nanoclay incorporated composite show a shift in the melting behavior up to 38°C. From DSC thermograms, we observed that the ΔH value decreased with increasing clay loading. X-ray diffraction patterns prove the presence of nanoclay in the composite and increase in the concentration of organically modified nanoclay from 3 to 5 wt% increases the intensity of the peak at 2θ=8° corresponds to OMMT. Morphology of the control silica gel composite was greatly influenced by the incorporation of OMMT. The presence of nanoclay changed the surface of control silica gel composite into cleaved surface with brittle in nature. Contact angle measurements were done for the coatings to study their surface behavior. These hybrid coatings on glass substrate may have applications for hydrophobic coatings on leather substrate.

  18. Reflectance spectroscopy of palagonite and iron-rich montmorillonite clay mixtures: Implications for the surface composition of Mars

    NASA Technical Reports Server (NTRS)

    Orenberg, J. B.; Handy, J.

    1991-01-01

    Because of the power of remote sensing reflectance spectroscopy in determining mineralogy, it was used as the major method of identifying possible mineral analogs of the Martian surface. A summary of proposed Martian surface compositions from reflectance spectroscopy before 1979 was presented. Since that time, iron-rich montmorillonite clay, nanocrystalline or nanophase hematite, and palagonite were suggested as Mars soil analog materials.

  19. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.

    PubMed

    Ijagbemi, Christianah Olakitan; Baek, Mi-Hwa; Kim, Dong-Su

    2009-07-15

    Surface properties of montmorillonite (MMT) and its adsorption characteristics for heavy metals have been investigated with nickel and copper as sorbate from aqueous solutions. Employing the potentiometric and mass titration techniques in batch experimental methods, the point of zero charge (PZC) and point of zero net proton charge (PZNPC) of MMT edges at different ionic strengths present pH(PZC) and pH(PZNPC) to be 3.4+/-0.2. A crossing point was observed for the proton adsorption vs. pH curves at different ionic strengths of KCl electrolyte and in investigating MMT remediation potentialities as sorbent for heavy metals polluted waters, the effects of heavy metal concentration, pH, MMT dosage, reaction time and temperature for Cu(2+) and Ni(2+) uptake were studied. The sorption of metal ions by MMT was pH dependent and the adsorption kinetics revealed sorption rate could be well fitted by the pseudo-second-order rate model. The data according to mass transfer and intraparticle diffusion models confirmed diffusion of solutes inside the clay particles as the rate-controlling step and more important for the adsorption rate than the external mass transfer. Adsorption isotherms showed that the uptake of Cu(2+) and Ni(2+) could be described by the Langmuir model and from calculations on thermodynamic parameters, the positive Delta G degrees values at different temperatures suggest that the sorption of both metal ions were non-spontaneous. Change in enthalpy (Delta H degrees) for Ni(2+) and Cu(2+) were 28.9 and 13.27 kJ/mol K respectively, hence an endothermic diffusion process, as ion uptake increased with increase in temperature. Values of DeltaS degrees indicate low randomness at the solid/solution interface during the uptake of both Cu(2+) and Ni(2+) by MMT. Montmorillonite has a considerable potential for the removal of heavy metal cationic species from aqueous solution and wastewater.

  20. Mobility of Na and Cs on montmorillonite surface under partially saturated conditions.

    PubMed

    Churakov, Sergey V

    2013-09-03

    Cs migration in soils at contaminated sites or in clay-rich backfill of waste disposal sites can take place under partially saturated conditions. To understand the molecular mechanism of Cs migration in partially saturated clays, Grand Canonical Monte Carlo simulations were applied to model adsorption of water films onto external surfaces of Cs and Na montmorillonites as function of partial water pressure. The surface complexation and diffusivity of Cs and Na at different partial water pressure was obtained by molecular dynamics simulations. The results suggest that ion mobility in adsorbed water films on external basal surfaces of clay is similar to that in the near-surface water of a saturated pore as far as the thickness of the adsorbed water film is more than two water layers. At lower partial water pressure (i.e., in thinner water films) the ion mobility dramatically decreases. In contrast, the average water mobility in thin water film is higher than in the water-saturated system due to enhanced mobility of water molecules close to vapor-film interface. The results of the simulations were applied to interpret recent laboratory measurements of tritiated water and Cs diffusivity in Callovo-Oxfordian Claystones under partially saturated conditions.

  1. Selective removal and inactivation of bacteria by nanoparticle composites prepared by surface modification of montmorillonite with quaternary ammonium compounds.

    PubMed

    Khalil, Rowaida K S

    2013-10-01

    The purpose of the present study was to prepare new nanocomposites with antibacterial activities by surface modification of montmorillonite using quaternary ammonium compounds that are widely applied as disinfectants and antiseptics in food-processing environments. The intercalation of four quaternary ammonium compounds namely benzalkonium chloride, cetylpyridinium chloride monohydrate, hexadecyltrimethylammonium bromide, tetraethylammonium chloride hydrate into montmorillonite layers was confirmed by X-ray diffraction. The antibacterial influences of the modified clay variants against important foodborne pathogens differed based on modifiers quantities, microbial cell densities, and length of contact. Elution experiments through 0.1 g of the studied montmorillonite variants indicated that Staphylococcus aureus, Pseudomonas aeroginosa, and Listeria monocytogenes were the most sensitive strains. 1 g of hexadecyltrimethylammonium bromide intercalated montmorillonites demonstrated maximum inactivation of L. monocytogenes populations, with 4.5 log c.f.u./ml units of reduction. In adsorption experiments, 0.1 g of tetraethylammonium chloride hydrate montmorillonite variants significantly reduced the growth of Escherichia coli O157:H7, L. monocytogenes, and S. aureus populations by 5.77, 6.33, and 7.38 log units respectively. Growth of wide variety of microorganisms was strongly inhibited to undetectable levels (montmorillonite variants. This investigation highlights that reduction in counts of microbial populations adsorbed to the new nanocomposites was substantially different from that in elution experiments, where interactions of nanocomposites with bacteria were specific and more complex than simple ability to inactivate. Treatment columns packed with modified variants maintained their inactivation capacity to the growth of Salmonella Tennessee and S. aureus populations after 48 h of incubation

  2. Surface characteristics of thermally treated titanium surfaces

    PubMed Central

    Lee, Yang-Jin; Cui, De-Zhe; Jeon, Ha-Ra; Chung, Hyun-Ju; Park, Yeong-Joon; Kim, Ok-Su

    2012-01-01

    Purpose The characteristics of oxidized titanium (Ti) surfaces varied according to treatment conditions such as duration time and temperature. Thermal oxidation can change Ti surface characteristics, which affect many cellular responses such as cell adhesion, proliferation, and differentiation. Thus, this study was conducted to evaluate the surface characteristics and cell response of thermally treated Ti surfaces. Methods The samples were divided into 4 groups. Control: machined smooth titanium (Ti-S) was untreated. Group I: Ti-S was treated in a furnace at 300℃ for 30 minutes. Group II: Ti-S was treated at 500℃ for 30 minutes. Group III: Ti-S was treated at 750℃ for 30 minutes. A scanning electron microscope, atomic force microscope, and X-ray diffraction were used to assess surface characteristics and chemical composition. The water contact angle and surface energy were measured to assess physical properties. Results The titanium dioxide (TiO2) thickness increased as the treatment temperature increased. Additional peaks belonging to rutile TiO2 were only found in group III. The contact angle in group III was significantly lower than any of the other groups. The surface energy significantly increased as the treatment temperature increased, especially in group III. In the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, after 24 hours of incubation, the assessment of cell viability showed that the optical density of the control had a higher tendency than any other group, but there was no significant difference. However, the alkaline phosphatase activity increased as the temperature increased, especially in group III. Conclusions Consequently, the surface characteristics and biocompatibility increased as the temperature increased. This indicates that surface modification by thermal treatment could be another useful method for medical and dental implants. PMID:22803009

  3. VERUCLAY – a new type of photo-adsorbent active in the visible light range: modification of montmorillonite surface with organic surfactant

    EPA Science Inventory

    Montmorillonite K10 was treated with VeruSOL-3, a biodegradable and food-grade surfactant mixture of coconut oil, castor oil and citrus extracts, to manufacture a benign catalytic adsorbent that is active in the visible light. Veruclay was characterized by SEM, XRD, TGA, UVDRS, a...

  4. A periodic DFT study of adsorption of water on sodium-montmorillonite (001) basal and (010) edge surface

    NASA Astrophysics Data System (ADS)

    Peng, Chenliang; Min, Fanfei; Liu, Lingyun; Chen, Jun

    2016-11-01

    Water molecules can be easily adsorbed on the surface or in the interlayer space of clay minerals. This process is named hydration which plays an important role in various application fields. In order to find how water interacted with surface through minimizing the interaction among multiple waters, the adsorptions of single water molecule on external surfaces of sodium-montmorillonite (Na-MMT), including (001) basal and (010) edge surface, were theoretically investigated based on periodic density functional theory (DFT) method. The adsorption energies and geometries as well as electronic properties were studied in the work. It was found that water molecule was adsorbed on Na-MMT (001) basal surface mainly through electrostatic interaction between water molecule and Na+ cation, and was adsorbed on (010) edge surface through hydrogen bonding between water and surface sbnd OH or sbnd OH2 groups. The adsorption energy Eads value of water molecule on (010) edge surface was larger than that on (001) basal surface. After adsorption, a part of electron density was transferred from both Na-MMT (001) and (010) surfaces to water molecule. Based on the PDOS, there was the bonding between Na 3s and Ow 2p orbitals on (001) basal surface and between H 1s and O 2p orbitals for hydrogen bonds on (010) edge surface.

  5. Effect of interlayer cations of montmorillonite on the biodegradation and adsorption of crude oil polycyclic aromatic compounds.

    PubMed

    Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I

    2014-09-01

    Cation exchange capacity, surface acidity and specific surface area are surface properties of clay minerals that make them act as catalysts or supports in most biogeochemical processes hence making them play important roles in environmental control. However, the role of homoionic clay minerals during the biodegradation of polycyclic aromatic compounds is not well reported. In this study, the effect of interlayer cations of montmorillonites in the removal of some crude oil polycyclic aromatic compounds during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The homoionic montmorillonites were prepared via cation exchange reactions by treating the unmodified montmorillonite with the relevant metallic chloride. The study indicated that potassium-montmorillonite and zinc-montmorillonite did not enhance the biodegradation of the polycyclic aromatic hydrocarbons whereas calcium-montmorillonite, and ferric-montmorillonite enhanced their biodegradation significantly. Adsorption of polycyclic aromatic hydrocarbons was significant during biodegradation with potassium- and zinc-montmorillonite where there was about 45% removal of the polycyclic aromatic compounds by adsorption in the experimental microcosm containing 5:1 ratio (w/w) of clay to oil.

  6. Free energies of absorption of alkali ions onto beidellite and montmorillonite surfaces from constrained molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Suter, James L.; Sprik, Michiel; Boek, Edo S.

    2012-08-01

    Ab initio Molecular dynamics have been performed to study the free energy of adsorption of alkali atoms onto smectite clay surfaces and to identify the most favourable region in the interlayer for the cations. This is achieved by potential of mean force calculations using a constraint method to determine the lowest free energy configurations of lithium, potassium and sodium beidellite and sodium montmorillonite clays with a monolayer and bilayer of water present in the interlayer region. The constraint method has allowed us to examine the changes in the lowest free energy configuration for each ion with increasing hydration. From this, we can interpret the likelihood of clay swelling from the monolayer to bilayer coverage and compare with experimental observations. We find, that with a bilayer of water present, both lithium beidellite and sodium montmorillonite have their free energy minimum in the centre of the interlayer. For monolayer coverage, the free energy minimum for lithium, sodium and potassium beidellite is approximately the mid-point of the interlayer. Na-beidellite has a lowest free energy region at 6.1 Å from the centre of the clay layer for both mono- and bi-layer coverage, while for the potassium counter-ion, commonly used as swelling inhibitor, the free energy profile for K-beidellite shows peaks close to both surfaces at approximately 6.2 and 8.6 Å. We find that for systems where the free energy minimum remains in the middle of the interlayer when the hydration levels increase from monolayer to bilayer, it is known experimentally that these systems will swell in contact with water. The move to the middle of the interlayer with increasing hydration is associated with the full hydration sphere of the ion being composed purely of water oxygen atoms, and no clay surface oxygen atoms.

  7. Reflectance spectroscopy and GEX simulation of palagonite and iron-rich montmorillonite clay mixtures: Implications for the surface composition of Mars

    NASA Technical Reports Server (NTRS)

    Orenberg, J. B.; Handy, J.; Quinn, R.

    1992-01-01

    Because of the power of remote sensing reflectance spectroscopy in determining mineralogy, it has been used as the major method of identifying a possible mineral analogue of the martian surface. A summary of proposed martian surface compositions from reflectance spectroscopy before 1979 was presented by Singer et al. Since that time, iron-rich montmorillonite clay, nanocrystalline or nanophase hematite, and palagonite have been suggested as Mars soil analogue materials. Palagonite in petrological terms is best described as an amorphous, hydrated, ferric iron, silica gel. Montmorillonite is a member of the smectite clay group, and its structure is characterized by an octahedral sheet in coordination with two tetrahedral sheets in which oxygen atoms are shared. The crystal unity of montmorillonite is well defined in contrast to palagonite where it is considered amorphous or poorly crystalline at best. Because of the absence of the diagnostic strong 2.2-micron reflectance band characteristic of clays in the near-infrared (NIR) spectrum of Mars and palagonite and based upon a consideration of wide wavelength coverage (0.3-50 microns), Roush et al. concluded that palagonite is a more likely Mars surface analogue. In spite of the spectral agreement of palagonite and the Mars reflectance spectrum in the 2.2-micron region, palagonite shows poor correspondence with the results of the Viking LR experiment. In contrast, iron-rich montmorillonite clays show relatively good agreement with the results of the Viking LR experiment. This spectral study was undertaken to evaluate the spectral properties of mixtures of palagonite and Mars analogue iron-rich montmorillonite clay (16-18 wt. percent Fe as Fe2O3) as a Mars surface mineralogical model. Mixtures of minerals as Mars surface analogue materials have been studied before, but the mixtures were restricted to crystalline clays and iron oxides.

  8. Wetting and nanodroplet contact angle of the clay 2:1 surface: The case of Na-montmorillonite (001)

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Zaoui, A.

    2017-02-01

    Molecular dynamics simulation method is performed to study the wetting and contact angle between a water nanodroplet and a surface of Na-montmorillonite (Na-MMT). The nanodroplet of 256, 500 and 1000 water molecules, based on SPC and TIP4P water models, is handled by means of Monte Carlo and Molecular Dynamics simulation methods The spreading of water molecules on Na-MMT's surface is not uniform. In fact, the contact line is not perfectly circlar; it depends on the distribution of cations on clay's surface. The average contact angle of air/water/clay corresponds to 25° for all cases of nanodroplets studied here, which reveals that Na-MMT is definitely hydrophilic. In the nanodroplet, most of water molecules remain at a distance between 3.5 and ∼4 Å to the clay's surface. However, at the edge of nanodroplet, water molecules are caught by the clay's surface oxygen and thus enter into the 0-3 Å zone, which blocks the spreading of nanodroplet.

  9. Np(V) and Pu(v) ion exchange and surface-mediated reduction mechanisms on montmorillonite.

    PubMed

    Zavarin, Mavrik; Powell, Brian A; Bourbin, Mathilde; Zhao, Pihong; Kersting, Annie B

    2012-03-06

    Due to their ubiquity and chemical reactivity, aluminosilicate clays play an important role in actinide retardation and colloid-facilitated transport in the environment. In this work, Pu(V) and Np(V) sorption to Na-montmorillonite was examined as a function of ionic strength, pH, and time. Np(V) sorption equilibrium was reached within 2 h. Sorption was relatively weak and showed a pH and ionic strength dependence. An approximate NpO(2)(+) → Na(+) Vanselow ion exchange coefficient (Kv) was determined on the basis of Np(V) sorption in 0.01 and 1.0 M NaCl solutions at pH < 5 (Kv ~ 0.3). In contrast to Np(V), Pu(V) sorption equilibrium was not achieved on the time-scale of weeks. Pu(V) sorption was much stronger than Np(V), and sorption rates exhibited both a pH and ionic strength dependence. Differences in Np(V) and Pu(V) sorption behavior are indicative of surface-mediated transformation of Pu(V) to Pu(IV) which has been reported for a number of redox-active and redox-inactive minerals. A model of the pH and ionic strength dependence of Pu(V) sorption rates suggests that H(+) exchangeable cations facilitate Pu(V) reduction. While surface complexation may play a dominant role in Pu sorption and colloid-facilitated transport under alkaline conditions, results from this study suggest that Pu(V) ion exchange and surface-mediated reduction to Pu(IV) can immobilize Pu or enhance its colloid-facilitated transport in the environment at neutral to mildly acidic pHs.

  10. Adsorption of phenol and nitrophenol isomers onto montmorillonite modified with hexadecyltrimethylammonium cation

    SciTech Connect

    Kwon, S.C.; Song, D.I.; Jeon, Y.W.

    1998-09-01

    Single- and two-component competitive adsorptions were carried out in a batch adsorber to investigate the adsorption behavior of phenol and 2-, 3-, and 4-nitrophenols in aqueous solution at 25 C onto hexadecyltrimethylammonium (HDTMA)-treated montmorillonite. HDTMA cation was exchanged for metal cations on the montmorillonite to prepare HDTMA-montmorillonite, changing its surface property from hydrophilic to organophilic. Effective solid diffusivity of HDTMA cation in the montmorillonite particle was estimated to be about 3 {times} 10{sup {minus}12} cm{sup 2}/s by fitting the film-solid diffusion model to a set of HDTMA adsorption kinetic data onto montmorillonite. Adsorption affinity on HDTMA-montmorillonite was found to be in the order 3-nitrophenol {approx} 4-nitrophenol > 2-nitrophenol > phenol. The Langmuir and the Redlich-Peterson (RP) adsorption models were used to analyze the single component adsorption equilibria. The ideal adsorbed solution theory (IAST) and the Langmuir competitive model (LCM) were used to predict the multicomponent competitive adsorption equilibria. These models yielded favorable representations of both individual and competitive adsorption behaviors.

  11. Adsorption of low molecular weight halocarbons by montmorillonite

    SciTech Connect

    Estes, T.J.; Shah, R.V.; Vilker, V.L. )

    1988-04-01

    Montmorillonite clay from Clay Spur, WY, was found to adsorb several low molecular weight, hydrophobic halocarbons from aqueous solution at sub-parts-per-million levels. The halocarbons studied were trichloroethylene, tetrachloroethylene, hexachloroethane, and dibromochloropropane. When the montmorillonite was treated with sodium citrate-bicarbonate-dithionite (CBD), it adsorbed higher levels of halocarbons than the untreated clay. In addition, the CBD-treated clay exhibited a maximum in halocarbon adsorption around pH 4, while untreated clay showed little variation in adsorption over the pH range 2-10. Adsorption of trichloroethylene was inhibited by low concentrations of sodium chloride (0.01 M or greater) in solution. Aging the CBD-treated clay in water decreased its capacity to adsorb trichloroethylene. Desorption studies showed that the sorption of tetrachloroethylene to CBD-treated clay is an irreversible process when compared to sorption by fumed silica. The ability of montmorillonite to adsorb halocarbons and the instability of the clay in water are postulated to involve changes in the oxide surface coating on the clay.

  12. Surface properties of in situ organo-montmorillonite modified wood flour and the influence on mechanical properties of composites with polypropylene

    NASA Astrophysics Data System (ADS)

    Liu, Ru; Sun, Wenjing; Cao, Jinzhen; Wang, Jiamin

    2016-01-01

    In this study, wood flours (WFs) were modified by sodium-montmorillonite (Na-MMT) and didecyl dimethyl ammonium chloride (DDAC) in two steps to form organo-montmorillonite (OMMT) inside WFs at different OMMT concentrations (0.25, 0.5, 0.75 and 1%, respectively). The surface properties of WFs were investigated as an approach to understand the compatibility of WF/polypropylene (PP) composites. The mechanical properties of the composites were also tested. The results showed that: (1) OMMT modification did not influence the surface morphologies of WFs; (2) owing to the covering of OMMT on WF surface, with increasing OMMT concentration, the surface free energies of WFs increased with both increases of dispersive and polar components, and the surface hydroxyl groups of WF decreased, suggesting good compatibility with non-polar PP; (3) the flexural and tensile strength were correlated with the dispersive component fraction. Significant improvements in flexural and tensile strength were found at OMMT concentration of 0.5%. With increase of OMMT concentration, the flexural and Young's modulus increased. However, the impact strength decreased.

  13. Electric discharge treatment of the surface of bentonite clay containing montmorillonite

    NASA Astrophysics Data System (ADS)

    Gashimov, A. M.; Gasanov, M. A.

    2009-07-01

    The electrification of solid porous adsorbents of the clay type was studied. It was found by the thermally stimulated relaxation method that clays contained centers of the accumulation of surface and volume charges. Adsorbent structural changes were studied by X-ray diffraction.

  14. Perovskite LaFeO3/montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Peng, Kang; Fu, Liangjie; Yang, Huaming; Ouyang, Jing

    2016-01-01

    Perovskite LaFeO3/montmorillonite nanocomposites (LaFeO3/MMT) have been successfully prepared via assembling LaFeO3 nanoparticles on the surface of montmorillonite with citric acid assisted sol-gel method. The results indicated that the uniform LaFeO3 nanoparticles were densely deposited onto the surface of montmorillonite, mainly ranging in diameter from 10 nm to 15 nm. The photocatalytic activity of LaFeO3/MMT was evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation, indicating that LaFeO3/MMT exhibited remarkable adsorption efficiency and excellent photocatalytic activity with the overall removal rate of RhB up to 99.34% after visible light irradiation lasting for 90 min. The interface characteristic and possible degradation mechanism were explored. The interface characterization of LaFeO3/MMT suggested that LaFeO3 nanoparticles could be immobilized on the surface of montmorillonite with the Si-O-Fe bonds. The abundant hydroxyl groups of montmorillonite, semiconductor photocatalysis of LaFeO3 and Fenton-like reaction could enhance the photocatalytic degradation through a synergistic effect. Therefore, the LaFeO3/MMT is a very promising photocatalyst in future industrial application to treat effectively wastewater of dyes.

  15. Perovskite LaFeO3/montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity

    PubMed Central

    Peng, Kang; Fu, Liangjie; Yang, Huaming; Ouyang, Jing

    2016-01-01

    Perovskite LaFeO3/montmorillonite nanocomposites (LaFeO3/MMT) have been successfully prepared via assembling LaFeO3 nanoparticles on the surface of montmorillonite with citric acid assisted sol-gel method. The results indicated that the uniform LaFeO3 nanoparticles were densely deposited onto the surface of montmorillonite, mainly ranging in diameter from 10 nm to 15 nm. The photocatalytic activity of LaFeO3/MMT was evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation, indicating that LaFeO3/MMT exhibited remarkable adsorption efficiency and excellent photocatalytic activity with the overall removal rate of RhB up to 99.34% after visible light irradiation lasting for 90 min. The interface characteristic and possible degradation mechanism were explored. The interface characterization of LaFeO3/MMT suggested that LaFeO3 nanoparticles could be immobilized on the surface of montmorillonite with the Si-O-Fe bonds. The abundant hydroxyl groups of montmorillonite, semiconductor photocatalysis of LaFeO3 and Fenton-like reaction could enhance the photocatalytic degradation through a synergistic effect. Therefore, the LaFeO3/MMT is a very promising photocatalyst in future industrial application to treat effectively wastewater of dyes. PMID:26778180

  16. Elaboration et caracterisation de nanocomposites polyethylene/montmorillonite

    NASA Astrophysics Data System (ADS)

    Stoeffler, Karen

    This research project consists in preparing polyethylene/montmorillonite nanocomposites for film packaging applications. Montmorillonite is a natural clay with an exceptional aspect ratio. In recent years, its incorporation in polymer matrices has attracted great interest. The pioneer work from Toyota on polyamide-6/montmorillonite composites has shown that it was possible to disperse the clay at a nanometric scale. Such a structure, so-called exfoliated, leads to a significant increase in mechanical, barrier and fire retardant properties, even at low volumetric fractions of clay. This allows a valorization of the polymeric material at moderate cost. Due to its high polarity, montmorilloite exfoliation in polymeric matrices is problematic. In the particular case of polyolefin matrices, the platelets dispersion remains limited: most frequently, the composites obtained exhibit conventional structures (microcomposites) or intercalated structures. To solve this problem, two techniques are commonly employed: the surface treatment of the clay, which allows the expansion of the interfoliar gallery while increasing the affinity between the clay and the polymer, and the use of a polar compatibilizing agent (grafted polyolefin). The first part of this thesis deals with the preparation and the characterization of highly thermally stable organophilic montmorillonites. Commercial organophilic montmorillonites are treated with quaternary ammonium intercalating agents. However, those intercalating agents present a poor thermal stability and are susceptible to decompose upon processing, thus affecting the clay dispersion and the final properties of the nanocomposites. In this work, it was proposed to modify the clay with alkyl pyridinium, alkyl imidazolium and alkyl phosphonium intercalating agents, which are more stable than ammonium based cations. Organophilic montmorillonites with enhanced thermal stabilites compared to commercial organoclays (+20°C to +70°C) were prepared

  17. Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.; Edwards, J. O.; Mancinelli, R. L.; Froschl, H.

    1995-01-01

    Spectroscopic analyses have shown that smectites enhanced in the laboratory with additional ferric species exhibit important similarities to those of the soils on Mars. Ferrihydrite in these chemically treated smectites has features in the visible to near-infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. New samples have been prepared with sulfate as well, because S was found by Viking to be a major component in the surface material on Mars. A suite of ferrihydrite-bearing and ferric sulfate-bearing montmorillonites, prepared with variable Fe3+ and S concentrations and variable pH conditions, has been analyzed using reflectance spectroscopy in the visible and infrared regions, Mossbauer spectroscopy at room temperature and 4 K, differential thermal analysis, and X-ray diffraction. These analyses support the formation of ferrihydrite of variable crystallinity in the ferrihydrite-bearing montmorillonites and a combination of schwertmannite and ferrihydrite in the ferric sulfate-bearing montmorillonites. Small quantities of poorly crystalline or nanophase forms of other ferric materials may also be present in these samples. The chemical formation conditions of the ferrihydrite-bearing and ferric sulfate-bearing montmorillonites influence the character of the low temperature Mossbauer sextets and the visible reflectance spectra. An absorption minimum is observed at 0.88-0.89 micrometers in spectra of the ferric sulfate-bearing samples, and at 0.89-0.92 micrometers in spectra of the ferrihydrate-bearing montmorillonites. Mossbauer spectra of the ferric sulfate-bearing montmorillonites indicate variable concentrations of ferrihydrite and schwertmannite in the interlaminar spaces and along grain surfaces. Dehydration under reduced atmospheric pressure conditions induces a greater effect on the adsorbed and interlayer water in ferrihydrite-bearing montmorillonite than on the water

  18. Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials.

    PubMed

    Bishop, J L; Pieters, C M; Burns, R G; Edwards, J O; Mancinelli, R L; Fröschl, H

    1995-09-01

    Spectroscopic analyses have shown that smectites enhanced in the laboratory with additional ferric species exhibit important similarities to those of the soils on Mars. Ferrihydrite in these chemically treated smectites has features in the visible to near-infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. New samples have been prepared with sulfate as well, because S was found by Viking to be a major component in the surface material on Mars. A suite of ferrihydrite-bearing and ferric sulfate-bearing montmorillonites, prepared with variable Fe3+ and S concentrations and variable pH conditions, has been analyzed using reflectance spectroscopy in the visible and infrared regions, Mössbauer spectroscopy at room temperature and 4 K, differential thermal analysis, and X-ray diffraction. These analyses support the formation of ferrihydrite of variable crystallinity in the ferrihydrite-bearing montmorillonites and a combination of schwertmannite and ferrihydrite in the ferric sulfate-bearing montmorillonites. Small quantities of poorly crystalline or nanophase forms of other ferric materials may also be present in these samples. The chemical formation conditions of the ferrihydrite-bearing and ferric sulfate-bearing montmorillonites influence the character of the low temperature Mössbauer sextets and the visible reflectance spectra. An absorption minimum is observed at 0.88-0.89 micrometers in spectra of the ferric sulfate-bearing samples, and at 0.89-0.92 micrometers in spectra of the ferrihydrate-bearing montmorillonites. Mössbauer spectra of the ferric sulfate-bearing montmorillonites indicate variable concentrations of ferrihydrite and schwertmannite in the interlaminar spaces and along grain surfaces. Dehydration under reduced atmospheric pressure conditions induces a greater effect on the adsorbed and interlayer water in ferrihydrite-bearing montmorillonite than on the

  19. Ferric sulfate montmorillonites as Mars soil analogs

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.

    1993-01-01

    Spectroscopic analyses have shown that Fe(3+)-doped smectites prepared in the laboratory exhibit important similarities to the soils on Mars. Ferrihydrite in these smectites has features in the visible to near-infrared region that resemble the energies and band-strengths of features in reflectance spectra observed for several bright regions on Mars. Ferric - sulfate - montmorillonite samples have been prepared more recently because they are a good compositional match with the surface material on Mars as measured by Viking. Reflectance spectra of montmorillonite doped with ferric sulfate in the interlayer regions include a strong 3 micron band that persists under dry conditions. This is in contrast to spectra of similarly prepared ferric-doped montmorillonites, which exhibit a relatively weaker 3 micron band under comparable dry environmental conditions. Presented here are reflectance spectra of a suite of ferric-sulfate exchanged montmorillonites prepared with variable ferric sulfate concentrations and variable pH conditions.

  20. Phenolic removal using phenylamine modified montmorillonite

    NASA Astrophysics Data System (ADS)

    Wiyantoko, Bayu; Lail, Jamalul; Kurniawati, Puji; Purbaningtias, Tri Esti; Nurrohmah, Ashri; Kurniandari, Safitri

    2017-03-01

    Synthesis, characterization, and application of phenylamine modified montmorillonite have been studied. Preparation of phenylamine modified montmorillonite was conducted by intercalation process using simple amine compound. The changes in physical and chemical properties were observed through the crystal structure, functional groups and acidity as well as the application as an adsorbent for phenolic compound. The diffractogram showed characteristic basal spacing of montmorillonite at 2θ = 7.0710° and 19.8856°, also peaks with sharp intense around 20-30° were 2θ = 28.6181° and 35.0112°. The reflection pattern of phenylamine modified montmorillonite exhibited the shifting of d001 basal spacing at 2θ = 7.0710° into 7.1624° that implied the phenylamine was attached to the surface of montmorillonite. The spectra of FTIR gave the difference of wave number for -OH stretching, -OH bending also Mg-O-Al vibration that distinguished between natural montmorillonite and prepared material. The prepared material has lower acidity value and different surface characters which confirmed by gravimetric and infrared spectrum. The phenolic adsorption using prepared material gave maximum pH at 5 and optimum contact time around 2 hours with adsorption capacity was 24.48%.

  1. Surface chemistry of kaolinite and Na-montmorillonite in aqueous electrolyte solutions at 25 and 60 °C: Experimental and modeling study

    NASA Astrophysics Data System (ADS)

    Tertre, E.; Castet, S.; Berger, G.; Loubet, M.; Giffaut, E.

    2006-09-01

    The aqueous interfacial chemistry of kaolinite and Na-montmorillonite samples was investigated by potentiometric measurements using acid/base continuous titrations and batch experiments at 25 and 60 °C. Using the batch experimental method, a continuous drift of pH was observed reflecting the mineral dissolution. Consequently, the continuous titration method appears to be the best way of studying solid surface reactions. For each clay mineral, the net proton surface excess/consumption was calculated as a function of pH and ionic strength (0.025, 0.1 and 0.5 M). At 25 °C, and according to the literature data, the pH corresponding to zero net proton consumption for montmorillonite appears to depend on ionic strength, whereas the value for kaolinite is constant and close to 5. Similar results are obtained at 60 °C, which suggests that the point of zero net proton consumption for clay minerals does not depend on temperature, at least up to 60 °C. On the other hand, the temperature rise induces a slight increase of the net proton surface excess. Finally, the diffuse double layer formalism (DDLM) is used to model the experimental data. The model involves two processes: the protonation/deprotonation of two types of edge sites (aluminol and silanol) and H +/Na + exchange reactions on basal surfaces, while a tiny proportion of the negative structural charge remains uncompensated. This last process maintains a negative surface potential whatever the pH of the solution, which is in agreement with electrokinetic data.

  2. The growth of carbon nanotubes on montmorillonite and zeolite (clinoptilolite)

    NASA Astrophysics Data System (ADS)

    Kadlečíková, M.; Breza, J.; Jesenák, K.; Pastorková, K.; Luptáková, V.; Kolmačka, M.; Vojačková, A.; Michalka, M.; Vávra, I.; Križanová, Z.

    2008-06-01

    Synthesis of carbon nanotubes described in the present work is based on activation of methane in a hot filament CVD reactor and subsequent creation of nanostructures on a catalyst pre-treated polished surface of silicon. An essential step of the synthesis is the use of natural minerals as catalysts. We have studied the catalyst parameters, the way of its application and the amount of Fe 3+ cations on the surface of aluminosilicates on the quality of the grown nanotube layers. The growth of carbon nanotubes catalyzed by montmorillonite and zeolite (clinoptilolite) was confirmed by scanning electron microscopy and Raman spectroscopy.

  3. NANOFILTRATION FOULANTS FROM A TREATED SURFACE WATER

    EPA Science Inventory

    The foulant from pilot nanofiltration membrane elements fed conventionally-treated surface water for 15 months was analyzed for organic, inorganic, and biological parameters. The foulant responsible for flux loss was shown to be a film layer 20 to 80 um thick with the greatest de...

  4. Theoretical study of the acid-base properties of the montmorillonite/electrolyte interface: influence of the surface heterogeneity and ionic strength on the potentiometric titration curves.

    PubMed

    Zarzycki, Piotr; Thomas, Fabien

    2006-10-15

    The parallel shape of the potentiometric titration curves for montmorillonite suspension is explained using the surface complexation model and taking into account the surface heterogeneity. The homogeneous models give accurate predictions only if they assume unphysically large values of the equilibrium constants for the exchange process occurring on the basal plane. However, the assumption that the basal plane is energetically heterogeneous allows to fit the experimental data (reported by Avena and De Pauli [M. Avena, C.P. De Pauli, J. Colloid Interface Sci. 202 (1998) 195-204]) for reasonable values of exchange equilibrium constant equal to 1.26 (suggested by Fletcher and Sposito [P. Fletcher, G. Sposito, Clay Miner. 24 (1989) 375-391]). Moreover, we observed the typical behavior of point of zero net proton charge (pznpc) as a function of logarithm of the electrolyte concentration (log[C]). We showed that the slope of the linear dependence, pznpc=f(log[C]), is proportional to the number of isomorphic substitutions in the crystal phase, which was also observed in the experimental studies.

  5. Effect of modified montmorillonites on the biodegradation and adsorption of biomarkers such as hopanes, steranes and diasteranes.

    PubMed

    Ugochukwu, Uzochukwu C; Head, Ian M; Manning, David A C

    2013-12-01

    The effect of modified montmorillonites on the biodegradation and adsorption of selected steranes, diasteranes and hopanes was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The unmodified montmorillonite was treated with didecyldimethylammonium bromide, hydrochloric acid and the relevant metallic chloride to produce organomontmorillonite, acid activated montmorillonite and homoionic montmorillonite respectively which were used in this study. The study indicated that organomontmorillonite, acid activated montmorillonite and potassium montmorillonite did not support the biodegradation of the selected steranes, diasteranes and hopanes as alteration of the biomarkers via biodegradation varied from a paltry 2-6 %. The adsorption of the selected biomarkers on acid activated montmorillonite and organomontmorillonite was also poor. However, adsorption of the biomarkers on potassium montmorillonite was relatively high. Sodium montmorillonite and unmodified montmorillonite appear to stimulate the biodegradation of the selected biomarkers moderately (30-35 %) with adsorption occurring at low level. Calcium montmorillonite and ferric montmorillonite effected significant biodegradation (51-60 %) of the selected biomarkers.

  6. Montmorillonite Dissolution in Simulated Lung Fluids

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Wendlandt, R. F.

    2008-12-01

    Because lung fluids" first interaction is with the surface of inhaled grains, the surface properties of inhaled mineral dusts may have a generally mitigating effect on cytotoxicity and carcinogenicity. Wendlandt et al. (Appl. Geochem. 22, 2007) investigated the surface properties of respirable-sized quartz grains in bentonites and recognized pervasive montmorillonite surface coatings on silica grains. The purpose of this study was to determine the dissolution rate and biodurability of montmorillonite in simulated lung fluids and to assess its potential to mitigate silica cytotoxicity. Modified batch reaction experiments were conducted on purified and size fractionated calcic (SAz-2; 0.4-5 μm) and sodic (DC-2; 0.4-2 μm) montmorillonites for 120 to 160 days of reaction time at 37°C in both simulated extracellular lung fluid (Lu) and simulated lysosomal fluid (Ly). Modified batch experiments simulated a flow-through setup and minimized sample handling difficulties. Reacted Lu and Ly fluid was analyzed for Mg, Al, and Si on an ICP-OE spectrometer. Steady state dissolution was reached 90-100 days after the start of the experiment and maintained for 40-60 days. Measured montmorillonite dissolution rates based on BET surface areas and Si steady state release range from 4.1x10-15 mol/m2/s at the slowest to 1.0x10-14 mol/m2/s at the fastest with relative uncertainties of less than 10%. Samples reacting in Ly (pH = 4.55) dissolved faster than those in Lu (pH = 7.40), and DC-2 dissolved faster than SAz-2. The measured range of biodurabilities was 1,300 to 3,400 years for a 1 μm grain assuming a spherical volume and a molar volume equal to that of illite. The difference in salinities of the two fluids was too slight to draw conclusions about the relationship of ionic strength to dissolution rate. Results indicate that montmorillonite dissolution is incongruent and edge controlled. Dissolution rates for DC- 2 and SAz-2 clays were comparable to those reported in the

  7. Peptide therapeutics for treating ocular surface infections.

    PubMed

    Brandt, Curtis R

    2014-11-01

    Microbial pathogens-bacteria, viruses, fungi, and parasites-are significant causes of blindness, particularly in developing countries. For bacterial and some viral infections a number of antimicrobial drugs are available for therapy but there are fewer available for use in treating fungal and parasitic keratitis. There are also problems with current antimicrobials, such as limited efficacy and the presence of drug-resistant microbes. Thus, there is a need to develop additional drugs. Nature has given us an example of 1 potential source of new antimicrobials: antimicrobial peptides and proteins that are either present in bodily fluids and tissues constitutively or are induced upon infection. Given the nature of peptides, topical applications are the most likely use to be successful and this is ideal for treating keratitis. Such peptides would also be active against drug-resistant pathogens and might act synergistically if used in combination therapy. Hundreds of peptides with antimicrobial properties have been isolated or synthesized but only a handful have been tested against ocular pathogens and even fewer have been tested in animal models. This review summarizes the currently available information on the use of peptides to treat keratitis, outlines some of the problems that have been identified, and discusses future studies that will be needed. Most of the peptides that have been tested have shown activity at concentrations that do not warrant further development, but 1 or 2 have promising activity raising the possibility that peptides can be developed to treat keratitis.

  8. Peptide Therapeutics for Treating Ocular Surface Infections

    PubMed Central

    2014-01-01

    Abstract Microbial pathogens—bacteria, viruses, fungi, and parasites—are significant causes of blindness, particularly in developing countries. For bacterial and some viral infections a number of antimicrobial drugs are available for therapy but there are fewer available for use in treating fungal and parasitic keratitis. There are also problems with current antimicrobials, such as limited efficacy and the presence of drug-resistant microbes. Thus, there is a need to develop additional drugs. Nature has given us an example of 1 potential source of new antimicrobials: antimicrobial peptides and proteins that are either present in bodily fluids and tissues constitutively or are induced upon infection. Given the nature of peptides, topical applications are the most likely use to be successful and this is ideal for treating keratitis. Such peptides would also be active against drug-resistant pathogens and might act synergistically if used in combination therapy. Hundreds of peptides with antimicrobial properties have been isolated or synthesized but only a handful have been tested against ocular pathogens and even fewer have been tested in animal models. This review summarizes the currently available information on the use of peptides to treat keratitis, outlines some of the problems that have been identified, and discusses future studies that will be needed. Most of the peptides that have been tested have shown activity at concentrations that do not warrant further development, but 1 or 2 have promising activity raising the possibility that peptides can be developed to treat keratitis. PMID:25250986

  9. Treating Surfaces To Obtain Narrowband Thermal Emission

    NASA Technical Reports Server (NTRS)

    Burger, Dale R.; Ong, Tiong P.

    1993-01-01

    Surfaces emitting electromagnetic radiation predominantly in desired narrow spectral bands when heated made more durable, and fabricated less expensively, according to proposal. Narrowband thermal emitters made by polishing metal substrates to specularity, then coating specular surfaces with films of rare-earth oxides approximately less than 1 micrometer thick. Metal substrates inherently resistant to mechanical shock. Resistance to thermal shock achieved by choosing metals and rare-earth oxides having equal or nearly equal coefficients of thermal expansion.

  10. Sol-gel hybrid films based on organosilane and montmorillonite for corrosion inhibition of AA2024.

    PubMed

    Dalmoro, V; dos Santos, J H Z; Armelin, E; Alemán, C; Azambuja, D S

    2014-07-15

    The present work reports the production of films on AA2024-T3 composed of vinyltrimethoxysilane (VTMS)/tetraethylorthosilicate (TEOS) with incorporation of montmorillonite (sodium montmorillonite and montmorillonite modified with quaternary ammonium salt, abbreviated Na and 30B, respectively), generated by the sol-gel process. According to FT-IR analyses the incorporation of montmorillonite does not affect silica network. Electrochemical characterization was performed by electrochemical impedance spectroscopy measurement in 0.05 mol L(-1) NaCl solution. Results indicate that montmorillonite incorporation improves the corrosion protection compared to the non-modified system. Scanning electron microscopy micrographs reveal that high concentrations of montmorillonite provide agglomerations on the metallic surface, which is in detriment of the anticorrosive performance. The VTMS/TEOS/30B films with the lowest concentration (22 mg L(-1)) of embedded clay provide the highest corrosion protection.

  11. [Adsorption of aflatoxin on montmorillonite modified by low-molecular-weight humic acids].

    PubMed

    Yao, Jia-Jia; Kang, Fu-Xing; Gao, Yan-Zheng

    2012-03-01

    The adsorption of a typical biogenic toxin aflatoxin B1 on montmorillonite modified by low-molecular-weight humic acids (M(r) < 3 500) was investigated. The montmorillonite rapidly adsorbed the aflatoxin B1 until amounting to the maximal capacity, and then the adsorbed aflatoxin B1 slowly released into solution and reached the sorption equilibrium state after 12 h. The sorption isotherm of aflatoxin B1 by montmorillonite could be well described by Langmiur model, while the sorption isotherm by humic acid-modified montmorillonite was well fitted by using the Freundlich model. The modification of the montmorillonite with humic acids obviously enhanced its adsorption capacity for aflatoxin B1, and the amounts of aflatoxin adsorbed by modified montmorillonite were obviously higher than those by montmorillonite. The sorption enhancement by humic acid modification was attributed to (1) the enlarged adsorption sites which owed to the surface collapse of crystal layers induced by organic acids, and (2) the binding of aflatoxin with the humic acid sorbed on mineral surface. In addition, the adsorption amounts of aflatoxin by montmorillonite and modified montmorillonite increased with the increase of pH values in solution, and more significant enhancement was observed for the latter than the former, which attributed to the release of humic acids from the modified montmorillonite with the high pH values in solution. This indicates that increasing the pH values resulted in the enhanced hydrophilic property and the release of the organic acids presented in modified montmorillonite, and more sorption sites were available for aflatoxin on the modified montmorillonite. Results of this work would strengthen our understanding of the behavior and fate of biological contaminants in the environment.

  12. Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium.

    PubMed

    Sen Gupta, Susmita; Bhattacharyya, Krishna G

    2008-04-01

    The present study investigates the immobilization of Pb(II), Cd(II) and Ni(II) on clays (kaolinite and montmorillonite) in aqueous medium through the process of adsorption under a set of variables (concentration of metal ion, amount of clay, pH, time and temperature of interaction). Increasing pH favours the removal of metal ions till they are precipitated as the insoluble hydroxides. The uptake is rapid with maximum adsorption being observed within 180 min for Pb(II) and Ni(II) and 240 min for Cd(II). A number of available models like the Lagergren pseudo first-order kinetics, second-order kinetics, Elovich equation, liquid film diffusion and intra-particle diffusion are utilized to evaluate the kinetics and the mechanism of the immobilization interactions. Two isotherm equations due to Langmuir and Freundlich showed good fits with the experimental data. Kaolinite and montmorillonite have considerable Langmuir monolayer capacity with respect to Pb(II), Cd(II) and Ni(II), the values being in the range of 6.8-11.5mg/g (kaolinite) and 21.1-31.1mg/g (montmorillonite). The Freundlich adsorption capacity follows a similar order. The thermodynamics of the immobilization process indicates the same to be exothermic with Pb(II) and Ni(II), but endothermic with Cd(II). The interactions with Pb(II) and Ni(II) are accompanied by decrease in entropy and Gibbs energy while the endothermic immobilization of Cd(II) is supported by an increase in entropy and an appreciable decrease in Gibbs energy. The results have established good potentiality for kaolinite and montmorillonite to remove heavy metals like Pb(II), Cd(II) and Ni(II) from aqueous medium through adsorption-mediated immobilization.

  13. Molecular dynamics simulation of TCDD adsorption on organo-montmorillonite.

    PubMed

    Zhu, Runliang; Hu, Wenhao; You, Zhimin; Ge, Fei; Tian, Kaixun

    2012-07-01

    In this work, molecular dynamics simulation was applied to investigate the adsorption of Tetrachlorodibenzo-p-Dioxin (TCDD) on tetramethylammonium (TMA) and tetrapropylammonium (TPA) modified montmorillonite, with the aim of providing novel information for understanding the adsorptive characteristics of organo-montmorillonite toward organic contaminants. The simulation results showed that on both outer surface and interlayer space of TPA modified montmorillonite (TPA-mont), TCDD was adsorbed between the TPA cations with the molecular edge facing siloxane surface. Similar result was observed for the adsorption on the outer surface of TMA modified montmorillonite (TMA-mont). These results indicated that TCDD had stronger interaction with organic cation than with siloxane surface. While in the interlayer space of TMA-mont, TCDD showed a coplanar orientation with the siloxane surfaces, which could be ascribed to the limited gallery height within TMA-mont interlayer. Comparing with TMA-mont, TPA-mont had larger adsorption energy toward TCDD but smaller interlayer space to accommodate TCDD. Our results indicated that molecular dynamics simulation can be a powerful tool in characterizing the adsorptive characteristics of organoclays and provided additional proof that for the organo-montmorillonite synthesized with small organic cations, the available interlayer space rather than the attractive force plays the dominant role for their adsorption capacity toward HOCs.

  14. The acid-base titration of montmorillonite

    NASA Astrophysics Data System (ADS)

    Bourg, I. C.; Sposito, G.; Bourg, A. C.

    2003-12-01

    Proton binding to clay minerals plays an important role in the chemical reactivity of soils (e.g., acidification, retention of nutrients or pollutants). If should also affect the performance of clay barriers for waste disposal. The surface acidity of clay minerals is commonly modelled empirically by assuming generic amphoteric surface sites (>SOH) on a flat surface, with fitted site densities and acidity constant. Current advances in experimental methods (notably spectroscopy) are rapidly improving our understanding of the structure and reactivity of the surface of clay minerals (arrangement of the particles, nature of the reactive surface sites, adsorption mechanisms). These developments are motivated by the difficulty of modelling the surface chemistry of mineral surfaces at the macro-scale (e.g., adsorption or titration) without a detailed (molecular-scale) picture of the mechanisms, and should be progressively incorporated into surface complexation models. In this view, we have combined recent estimates of montmorillonite surface properties (surface site density and structure, edge surface area, surface electrostatic potential) with surface site acidities obtained from the titration of alpha-Al2O3 and SiO2, and a novel method of accounting for the unknown initial net proton surface charge of the solid. The model predictions were compared to experimental titrations of SWy-1 montmorillonite and purified MX-80 bentonite in 0.1-0.5 mol/L NaClO4 and 0.005-0.5 mol/L NaNO3 background electrolytes, respectively. Most of the experimental data were appropriately described by the model after we adjusted a single parameter (silanol sites on the surface of montmorillonite were made to be slightly more acidic than those of silica). At low ionic strength and acidic pH the model underestimated the buffering capacity of the montmorillonite, perhaps due to clay swelling or to the interlayer adsorption of dissolved aluminum. The agreement between our model and the experimental

  15. Peptide formation mechanism on montmorillonite under thermal conditions.

    PubMed

    Fuchida, Shigeshi; Masuda, Harue; Shinoda, Keiji

    2014-02-01

    The oligomerization of amino acids is an essential process in the chemical evolution of proteins, which are precursors to life on Earth. Although some researchers have observed peptide formation on clay mineral surfaces, the mechanism of peptide bond formation on the clay mineral surface has not been clarified. In this study, the thermal behavior of glycine (Gly) adsorbed on montmorillonite was observed during heating experiments conducted at 150 °C for 336 h under dry, wet, and dry-wet conditions to clarify the mechanism. Approximately 13.9 % of the Gly monomers became peptides on montmorillonite under dry conditions, with diketopiperazine (cyclic dimer) being the main product. On the other hand, peptides were not synthesized in the absence of montmorillonite. Results of IR analysis showed that the Gly monomer was mainly adsorbed via hydrogen bonding between the positively charged amino groups and negatively charged surface sites (i.e., Lewis base sites) on the montmorillonite surface, indicating that the Lewis base site acts as a catalyst for peptide formation. In contrast, peptides were not detected on montmorillonite heated under wet conditions, since excess water shifted the equilibrium towards hydrolysis of the peptides. The presence of water is likely to control thermodynamic peptide production, and clay minerals, especially those with electrophilic defect sites, seem to act as a kinetic catalyst for the peptide formation reaction.

  16. Study of cetyltrimethylammonium and cetylpyridinium adsorption on montmorillonite.

    PubMed

    Praus, Petr; Turicová, Martina; Studentová, Sona; Ritz, Michal

    2006-12-01

    Adsorption of cetyltrimethylammonium (CTA) and cetylpyridinium (CP) onto Na-rich montmorillonite (MMT) was studied. For this purpose, the adsorption isotherms of CTA and CP, along with desorption curves of metal cations (Na+, K+, Ca2+, Mg2+), were obtained by means of capillary isotachophoresis and atomic absorption spectrometry. Infrared, X-ray diffraction pattern, specific surface area, porosity, and moisture adsorption measurements of montmorillonite revealed that CTA and CP were adsorbed in monolayer arrangements. CTA is assumed to be attached to the negatively charged MMT surface mainly by electrostatic forces. On the other hand, CP, adsorbed in higher amounts, can be additionally bound via other interactions of pyridinium rings, such as induced and pi-pi interactions. By the surfactant adsorption, the montmorillonite surface became hydrophobic and its micro- and mesopores were significantly diminished. Using scanning electron microscopy, aggregation of such organically modified MMT particles was observed.

  17. [Adsorptive Stabilization of Soil Cr (VI) Using HDTMA Modified Montmorillonite].

    PubMed

    2016-03-15

    A series of organo-montomorillonites were prepared using Na-montomorillonite and hexadecyl trimethyl ammonium bromide (HDTMA). The organo-montomorillonites were then investigated for the remediation of Cr(VI) contaminated soils. FT-IR, XRD, SEM and N2 -BET, CEC, Zeta potential measurement were conducted to understand the structural changes of montmorillonites as different amounts of HDTMAs were added as modifier. The characterization results indicated that the clay interlayer spacing distance increased from 1. 25 nm to 2. 13 nm, the clay surface roughness decreased, the clay surface area reduced from 38.91 m² · g⁻¹ to 0.42 m² · g⁻¹, the clay exchangeable cation amount reduced from 62 cmol · kg⁻¹ to 9.9 cmol · kg⁻¹ and the clay surface charge changed from -29.1 mV to 5.59 mV as the dosage of HDTMA in montmorillonite was increased. The TCLP (toxicity characteristic leaching procedure) was used to evaluate the leachate toxicity of Cr(VI). The effects of the initial soil Cr(VI) concentration, montmorillonites dosage, reaction time and HDTMA modification amount were investigated, respectively. The results revealed that modification of montmorillonites would manifest an attenuated physical adsorptive effect and an enhanced electrostatic adsorptive effect on Cr(VI), suggesting electrostatic effect was the major force that resulted in improved Cr(VI) adsorption onto HDTMA modified montmorillonites.

  18. Aflatoxin Toxicity Reduction in Feed by Enhanced Binding to Surface-Modified Clay Additives

    PubMed Central

    Jaynes, William F.; Zartman, Richard E.

    2011-01-01

    Animal feeding studies have demonstrated that clay additives, such as bentonites, can bind aflatoxins in ingested feed and reduce or eliminate the toxicity. Bentonite deposits are found throughout the world and mostly consist of expandable smectite minerals, such as montmorillonite. The surfaces of smectite minerals can be treated with organic compounds to create surface-modified clays that more readily bind some contaminants than the untreated clay. Montmorillonites treated with organic cations, such as hexadecyltrimethylammonium (HDTMA) and phenyltrimethylammonium (PTMA), more effectively remove organic contaminants, such as benzene and toluene, from water than untreated clay. Similarly, montmorillonite treated with PTMA (Kd = 24,100) retained more aflatoxin B1 (AfB1) from aqueous corn flour than untreated montmorillonite (Kd = 944). Feed additives that reduced aflatoxin toxicity in animal feeding studies adsorbed more AfB1 from aqueous corn flour than feed additives that were less effective. The organic cations HDTMA and PTMA are considered toxic and would not be suitable for clay additives used in feed or food, but other non-toxic or nutrient compounds can be used to prepare surface-modified clays. Montmorillonite (SWy) treated with choline (Kd = 13,800) and carnitine (Kd = 3960) adsorbed much more AfB1 from aqueous corn flour than the untreated clay (Kd = 944). A choline-treated clay prepared from a reduced-charge, high-charge montmorillonite (Kd = 20,100) adsorbed more AfB1 than the choline-treated high-charge montmorillonite (Kd = 1340) or the untreated montmorillonite (Kd = 293). Surface-modified clay additives prepared using low-charge smectites and nutrient or non-toxic organic compounds might be used to more effectively bind aflatoxins in contaminated feed or food and prevent toxicity. PMID:22069725

  19. Material, Mechanical, and Tribological Characterization of Laser-Treated Surfaces

    NASA Astrophysics Data System (ADS)

    Yilbas, Bekir Sami; Kumar, Aditya; Bhushan, Bharat; Aleem, B. J. Abdul

    2014-10-01

    Laser treatment under nitrogen assisting gas environment of cobalt-nickel-chromium-tungsten-based superalloy and high-velocity oxygen-fuel thermal spray coating of nickel-chromium-based superalloy on carbon steel was carried out to improve mechanical and tribological properties. Superalloy surface was preprepared to include B4C particles at the surface prior to the laser treatment process. Material and morphological changes in the laser-treated samples were examined using scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction (XRD) analysis. Residual stresses present at the surface region of the laser-treated layer were determined from the XRD data. The microhardness of the laser-treated surface was measured by indentation tests. Fracture toughness of the coating surfaces before and after laser treatment were also measured using overload indentation tests. Macrowear and macrofriction characterization were carried out using pin-on-disk tests.

  20. Interactions of sodium montmorillonite with poly(acrylic acid).

    PubMed

    Tran, Nguyen H; Dennis, Gary R; Milev, Adriyan S; Kannangara, G S Kamali; Wilson, Michael A; Lamb, Robert N

    2005-10-15

    The chemical-structural modifications of the natural clay sodium montmorillonite during interaction with poly(acrylic acid) were studied mainly by X-ray photoemission spectroscopy. Samples of modified montmorillonite were prepared from the reaction of sodium montmorillonite ( approximately 0.5 g) and an aqueous solution of poly(acrylic acid) (pH approximately 1.8, 50 g) at varying temperatures. X-ray diffraction indicated that the montmorillonite interlayer space ( approximately 13 A), formed by regular stacking of the silicate layers (dimension approximately 1x1000 nm), expanded to approximately 16 A as the reaction was carried out at room temperature and at 30 degrees C. At 60 degrees C, the interlayer space further expanded to approximately 20 A. The results of X-ray photoemission spectroscopy indicated that poly(acrylic acid) molecules exchange sodium ions on the surface of the silicate layers. These combined results allowed development of a reaction model that explains the dependency of the interlayer expansion with temperature. Information concerning the surface chemical reactions and systematic increases in the interlayer distances is particularly useful if montmorillonite and poly(acrylic acid) are to be used for formation of nanocomposite materials.

  1. Adsorption mechanism of chloroacetanilide herbicides to modified montmorillonite.

    PubMed

    El-Nahhal, Yasser

    2003-09-01

    This study was undertaken to characterize the adsorption mechanism of alachlor and metolachlor on montmorillonite modified with cationic surfactants. Adsorbed amounts of cationic surfactant on montmorillonite surfaces were determined by CNHSO analyzer. Equilibrium concentrations of alachlor and metolachlor were determined by GC and adsorption results were fit to a linear regression equation. The slope of the isotherms (Kd) was normalized to the fraction of organic carbon on montmorillonite complexes to produce corresponding Koc. Adsorption of surfactants fit very well to Langmuir equation. Increased basal spacing indicates that surfactant molecules could penetrate through the interlayer spacing and arrange themselves in different ways. Equilibrium data of alachlor and metolachlor suggest that adsorption may occur via physical or chemical bonds. Koc values of alachlor or metolachlor decreased as the fraction of the organic carbon increased in montmorillonite complexes indicating independent adsorption process. Changes of the molar free energy of the adsorption reactions were in the range of physical adsorption, indicating that adsorption reactions are spontaneous and the molecules either adsorb on the surface or penetrate into the inter-layers of montmorillonite-surfactant complex. Careful investigation of the adsorption data suggests that interaction may occur via the active groups such as carbonyl group (-C=O), anilidic (C-N) group and/or phenyl rings. This information may provide better understanding on adsorption mechanism and be useful in designing ecologically acceptable herbicide formulations.

  2. The Catalytic Behaviour of NanoAg@montmorillonite Composite Materials

    NASA Astrophysics Data System (ADS)

    Karlíková, Martina; Kvítek, Libor; Prucek, Robert; Panáček, Aleš; Filip, Jan; Pechoušek, Jiří; Adegboyega, Nathaniel F.

    The preparation of nanoAg@montmorillonite composite materials and their catalytic activity is reported in this article. The nanoAg@montmorillonite composite materials were prepared by the adsorption of silver NPs, with an average size about 30 nm, from their aqueous dispersion onto two types of montmorillonite with different chemical composition. Silver NPs were prepared via modified Tollens process, which involves the reduction of [Ag(NH3)2]+ complex cation by maltose. The amount of silver NPs anchored onto the MMT surfaces was determined by UV-VIS spectroscopy; the decrease in absorbance of the dispersion after the adsorption was monitored. Prepared nanocomposite materials were subsequently characterized by means of transmission electron microscopy (TEM) and powder X-ray diffraction (XRD). The reduction of 4-nitrophenol by sodium borohydride was chosen to examine the catalytic properties of the synthesized silver nanocomposite materials.

  3. High-Resolution of Electron Microscopy of Montmorillonite and Montmorillonite/Epoxy Nanocomposites

    DTIC Science & Technology

    2005-01-01

    AFRL-ML-WP-TP-2006-464 HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES Lawrence F...HIGH-RESOLUTION OF ELECTRON MICROSCOPY OF MONTMORILLONITE AND MONTMORILLONITE /EPOXY NANOCOMPOSITES 5c. PROGRAM ELEMENT NUMBER 62102F 5d...transmission electron microscopy the structure and morphology of montmorillonite (MMT), a material of current interest for use in polymer nanocomposites, was

  4. Surface treated polypropylene (PP) fibres for reinforced concrete

    SciTech Connect

    López-Buendía, Angel M.; Romero-Sánchez, María Dolores; Climent, Verónica

    2013-12-15

    Surface treatments on a polypropylene (PP) fibre have contributed to the improvement of fibre/concrete adhesion in fibre-reinforced concrete. The treatments to the PP fibre were characterized by contact angle measurements, ATR-IR and XPS to analyse chemical alterations. The surface topography and fibre/concrete interaction were analysed by several microscopic techniques, namely optical petrographic, and scanning electron microscopy. Treatment modified the surface chemistry and topography of the fibre by introducing sodium moieties and created additional fibre surface roughness. Modifications in the fibre surface led to an increase in the adhesion properties between the treated fibres and concrete and an improvement in the mechanical properties of the fibre-reinforced concrete composite as compared to the concrete containing untreated PP fibres. Compatibility with the concrete and increased roughness and mineral surface was also improved by nucleated portlandite and ettringite mineral association anchored on the alkaline PP fibre surface, which is induced during treatment.

  5. The mechanism of montmorillonite catalysis in RNA synthesis

    NASA Astrophysics Data System (ADS)

    Joshi, Prakash

    montmorillonite as reaction occurs. The application of the Scherer equation to the X-ray diffraction data showed differences in domain size. Modeling of the size of the activated nucleotide monomers and the charge on the montmorillonite surface provided an interpretation of how these factors influence adsorption. This research provides a basis for further understanding of the physical processes in the mechanism of this catalysis in prebiotic reactions. This research was supported by NASA Astrobiology Institute Grant NNA09DA80A. References: Aldersley, M.F., Joshi, P.C., Price, J.D., Ferris, J.P. The role of montmorillonite in its catalysis of RNA synthesis. Appl. Clay Sci. 54,1-14, 2011. Bishop, J.L., Dobrea, E.J.N., Mckeown, N.K., Parenta, M. Phyllos- ilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. Science 321, 830-833, 2008. Joshi, P.C., Aldersley, M.F., Delano, J.W., Ferris, J.P., Mechanism of montmorillonite catalysis in the formation of RNA oligomers, J. Am. Chem. Soc., 131, 13369-13374, 2009.

  6. Mechanical Properties of Unsaturated Polyester / Montmorillonite Composites

    DTIC Science & Technology

    2001-11-01

    Montmorillonite Composites DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Nanophase and...Mechanical Properties of Unsaturated Polyester / Montmorillonite Composites A. Baran Inceoglu and Ulku Yilmazer Middle East Technical University, Chemical...analysed the nature of the curing agent on structure. Kornmann, Berglund and Giannelis [8] studied nanocomposites based on montmorillonite modified

  7. Biocompatibility Evaluation of Nanosecond Laser Treated Titanium Surfaces

    NASA Astrophysics Data System (ADS)

    Honda, Ryo; Mizutani, Masayoshi; Ohmori, Hitoshi; Komotori, Jun

    We developed surface modification technologies for dental implants in this study. The study contributes to shortening the time required for adhesion between alveolar bone and fixtures which consist of dental implants. A Nd:YVO4 nanosecond laser was used to modify the surfaces of commercially pure titanium (CP Ti) disks, and their biocompatibility was evaluated cytocompatibility and bioactivity. First, rows of 200 µm spaced rectilinear laser treatments were performed on surfaces of CP Ti disks. Osteoblasts derived from rat mesenchymal stem cells were then cultured on the treated surfaces. Cytocompatibility on the laser treated area was evaluated by observing adhesion behavior of cells on these surfaces. The results indicated that the micro-order structure formed by the laser treatment promoted adhesion of osteoblasts and that traces of laser treatment without microstucture didn't affect the adhesion. Second, surfaces of CP Ti disks were completely covered by traces of laser treatment, which created complex microstructures of titania whose crystal structure is rutile and anatase. This phenomenon allowed the creation of hydroxyapatite on the surface of the disks in 1.5-times simulated body fluid (1.5SBF) while no hydroxyapatite was observed on conventional polished surfaces in the same conditions. This result indicates that bioactivity was enabled on CP Ti by the laser treatment. From these two results, laser treatment for CP Ti surfaces is an effective method for enhancing adhesion of osteoblasts and promoting bioactivity, which are highly appreciated properties for dental implants.

  8. Montmorillonite-Alginate Composites as a Drug delivery System: Intercalation and In vitro Release of Diclofenac sodium

    PubMed Central

    Kevadiya, B. D.; Patel, H. A.; Joshi, G. V.; Abdi, S. H. R.; Bajaj, H. C.

    2010-01-01

    Diclofenac sodium and alginate was intercalated into montmorillonite to form uniform sized beads by gelation method. The structure and surface morphology of the synthesized composite beads were characterized by powdered X-ray diffraction, Fourier transform infrared spectroscopy, thermo gravimetric analysis and scanning electron microscopy. Diclofenac release kinetics of the composite in simulated intestinal fluid medium (pH 7.4) and effect of montmorillonite content on the in vitro release of diclofenac from diclofenac-montmorillonite-alginate composites bead was investigated by UV/Vis spectrophotometer. Diclofenac encapsulation efficiency in the montmorillonite-alginate composites bead increases with an increase in the montmorillonite content. The control release of diclofenac from diclofenac-montmorillonite-alginate composites beads was observed to be better as compared to diclofenac-alginate beads. PMID:21969745

  9. Surface characterization of plasma-treated polypropylene fibers

    SciTech Connect

    Wei, Q.F

    2004-06-15

    Plasma treatment is increasingly being used for surface modification of different materials in many industries. In this study, different techniques were employed to characterize the surface properties of plasma treated polypropylene fibers. The chemical nature of the fiber sufaces has been investigated by X-ray photoelectron spectroscopy (XPS). The XPS examination indicated the presence of oxygen-containing functional groups on fiber surfaces after plasma treatment. The Atomic Force Microscopy (AFM) scans revealed the evolution of surface morphology under different experimental conditions. A Philips Environmental Scanning Electron Microscopy (ESEM) was also used to study the wetting behavior of the fibers. In the ESEM, relative humidity can be raised to 100% to facilitate the water condensation onto fiber surfaces for wetting observation. The ESEM observation revealed that the plasma treatment significantly altered the surface wettability of polypropylene fibers.

  10. The effect of pillaring montmorillonite and beidellite on the conversion of trimethylbenzenes

    SciTech Connect

    Kojima, M.; Hartford, R.; O'Connor, C.T. )

    1991-04-01

    Natural montmorillonite, synthetic mica-montmorillonite (SMM), and Ni-substituted SMM were treated with hydroxy-Al solutions and the activities of the respective unpillared and pillared clays were tested using 1,2 4-trimethylbenzene as a reactant. Pillaring montmorillonite and, to a lesser extent, synthetic beidellite gave the largest % increase in the conversion level. The selectivity to 1,2,4,5-tetramethylbenzene, the smallest of the tetramethylbenzene isomers, was found to be a function not of the extent of pillaring, but rather of the extent of isomerization of the alkylbenzenes.

  11. Molecular dynamics simulation of the intercalation behaviors of methane hydrate in montmorillonite.

    PubMed

    Yan, KeFeng; Li, XiaoSen; Xu, ChunGang; Lv, QiuNan; Ruan, XuKe

    2014-06-01

    The formation and mechanism of CH4 hydrate intercalated in montmorillonite are investigated by molecular dynamics (MD) simulation. The formation process of CH4 hydrate in montmorillonite with 1 ~ 8 H2O layers is observed. In the montmorillonite, the "surface H2O" constructs the network by hydrogen bonds with the surface Si-O ring of clay, forming the surface cage. The "interlayer H2O" constructs the network by hydrogen bonds, forming the interlayer cage. CH4 molecules and their surrounding H2O molecules form clathrate hydrates. The cation of montmorillonite has a steric effect on constructing the network and destroying the balance of hydrogen bonds between the H2O molecules, distorting the cage of hydrate in clay. Therefore, the cages are irregular, which is unlike the ideal CH4 clathrate hydrates cage. The pore size of montmorillonite is another impact factor to the hydrate formation. It is quite easier to form CH4 hydrate nucleation in montmorillonite with large pore size than in montmorillonite with small pore. The MD work provides the constructive information to the investigation of the reservoir formation for natural gas hydrate (NGH) in sediments.

  12. Transformation of montmorillonite to kaolinite during weathering

    USGS Publications Warehouse

    Altschuler, Z.S.; Dwornik, E.J.; Kramer, H.

    1963-01-01

    Extensive deposits of kaolinite in Florida are formed by transformation of montmorillonite during low-temperature supergene weathering. The transformation occurs by intracrystalline leaching of interlayer cations and tetrahedral silica layers. Interposition of stripped layers within montmorillonite creates a regular 1:1 mixed-layered montmorillonite-kaolinite, a new clay structure. Kaolin-like layers are nourished by lateral epitaxy, as the iron-rich montmorillonite decomposes. Hexagonal outgrowths of new kaolinite develop at the edges of montmorillonite flakes and nucleate new vertical growth. Kaolinitic sands impregnated with goethite are ultimately formed, and the released silica enriches groundwater and forms secondary chert.

  13. The adsorption and reaction of adenine nucleotides on montmorillonite

    NASA Astrophysics Data System (ADS)

    Ferris, James P.; Hagan, William J.

    1986-03-01

    The binding of AMP to Zn2+-montmorillonite was investigated in the presence of buffers and salts. Good's buffers, piperazine-N,N'-bis(2-ethanesulfonate) [PIPES] and morpholine-N-2-ethanesulfonate [MES], perturbed the exchangeable cations to a lesser extent (only 9% of Zn2+ displaced by 0.2 M buffer) than was observed with imidazole and lutidine buffers or NaCl and KCl salts (up to 80% of Zn2+ displaced). AMP adsorption isotherms measured in the presence of 0.2 M PIPES, MES or Na2SO4 exhibited normal Langmuir-type behavior. The adsorption coefficient, KL, is 3-fold greater in the presence of HEPES or PIPES than it is in the absence of buffers. Basal spacings measured by X-ray diffraction for Zn2+-montmorillonite are 13 and 15 Å in the presence of PIPES, while a value of 12.8 Å was determined in the absence of PIPES. These data are interpreted in a model in which the adsorption of AMP is mediated by a Zn2+ complex of PIPES in different orientations in the interlamellar region of the montmorillonite. The type of exchangeable cation does not affect the ability of the lattice-bound Fe3+ in the montmorillonite to oxidize diaminomaleonitrile (DAMN). Exchangeable Cu2+ oxidizes DAMN, but exchangeable Fe3+ is nearly ineffective as an oxidant. The addition if DISN to 3'-AMP bound to Zn2+-montmorillonite in the presence of 0.2 M PIPES resulted in a higher yield of 2', 3'-cAMP than is observed with a comparable concentration of Zn2+, a result which implicates surface catalystis by the montmorillonite.

  14. Utilization of surface-treated rubber particles from waste tires

    SciTech Connect

    Smith, F.G. |

    1994-12-01

    During a 12-month program, the author successfully demonstrated commercial applications for surface-treated rubber particles in two major markets: footwear (shoe soles and components) and urethane-foam carpet underlay (padding). In these markets, he has clearly demonstrated the ease of using R-4080 and R-4030 surface-treated rubber particles in existing manufacturing plants and processes and have shown that the material meets or exceeds existing standards for performance, quality, and cost-effectiveness. To produce R-4080 and R-4030, vulcanized rubber, whole-tire material is finely ground to particles of nominal 80 and mesh size respectively. Surface treatment is achieved by reacting these rubber particles with chlorine gas. In this report, the author describes the actual test and evaluations of the participant companies, and identifies other potential end uses.

  15. The effects of microstructural changes on montmorillonite-microbial interactions

    NASA Astrophysics Data System (ADS)

    Spence, Adrian; Robinson, Claion; Hanson, Richard E.

    2014-01-01

    Clay minerals are important natural adsorbents of soil organic matter (SOM) and therefore are natural modulators of soil-atmospheric carbon fluxes. Although such effects have been reported, little is known about the spatial distribution of organic matter (OM) on the surfaces of soil minerals and even less is known about the effects of microstructural changes on clay-organo interactions. Here we employ acid hydrolysis to induce varying degrees of microstructural changes to montmorillonite clay mineral as a function of time and combine IR spectroscopy, X-ray diffraction, and SEM-EDX as primary techniques to independently provide molecular-level information on the effects these changes on microbial interactions with the mineral. We observed that progressive dissolution of octahedral cations and the simultaneous enrichment of amorphous silica are prominent structural changes induced by hydrolysis, and that the adsorption of microbial-derived components (in particular lipids) on the surfaces of acid-treated clay decreases with increasing acid dissolution time. Although the precise mechanism(s) of interactions remains unclear, we speculate that this adsorption behavior is most likely due to spatial co-variation of microbial-derived OM with octahedral cations in the mineral, acid erosion of biochemically active binding sites, and/or a progressive increase in the hydrophilicity of the mineral surfaces by acid attack over time.

  16. Method of treating the surface of a glass member

    NASA Technical Reports Server (NTRS)

    Rice, S. H.; Spencer, R. S. (Inventor); Fleetwood, C. M., Jr.

    1977-01-01

    A method is described of treating a surface of a glass member intended to abut a transparent element for disrupting the light interference fringes formed between the surfaces. The method involves the steps of grinding the surface to form irregularities thereon; bathing the surface with an aqueous solution containing between substantially 41.3 percent and 45.7 percent by volume of sulfuric acid and between substantially 54.3 percent and 58.7 percent by volume of hydrofluoric acid for a time sufficient to polish the irregularities until the glass member is about 90 percent light transmissive; and washing the glass member with a liquid having a temperature substantially lower than the temperature of the aqueous solution for preventing further reaction between the aqueous solution and the surface.

  17. Sorption of sodium dodecylbenzene sulfonate by montmorillonite.

    PubMed

    Yang, Kun; Zhu, Lizhong; Xing, Baoshan

    2007-01-01

    Sorption of linear alkylbenzene sulfonates by soils and sediments is an important process that may affect their fate, transport, toxicity and their application in remediation of contaminated soil and groundwater. In this study, batch experiments were conducted to elucidate the sorption of a widely used anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), by montmorillonite. It was observed that: (i) SDBS was sorbed significantly by montmorillonite saturated with Ca(2+), but little by Na-saturated montmorillonite; (ii) the amount of SDBS sorbed by Ca(2+)-montmorillonite was enhanced by NaCl; and (iii) no significant intercalation of SDBS into Ca(2+)-montmorillonite was observed by X-ray diffraction (XRD) analysis. These results indicate that the removal of SDBS by Ca(2+)-montmorillonite was primarily attributed to the precipitation between DBS(-) and Ca(2+) in solution which was released from montmorillonite via cation exchange. These results will help us to understand the sorption behavior and environmental effects of anionic surfactants.

  18. Stability of plasma treated superhydrophobic surfaces under different ambient conditions.

    PubMed

    Chen, Faze; Liu, Jiyu; Cui, Yao; Huang, Shuai; Song, Jinlong; Sun, Jing; Xu, Wenji; Liu, Xin

    2016-05-15

    Plasma hydrophilizing of superhydrophobic substrates has become an important area of research, for example, superhydrophobic-(super)hydrophilic patterned surfaces have significant practical applications such as lab-on-chip systems, cell adhesion, and control of liquid transport. However, the stability of plasma-induced hydrophilicity is always considered as a key issue since the wettability tends to revert back to the untreated state (i.e. aging behavior). This paper focuses on the stability of plasma treated superhydrophobic surface under different ambient conditions (e.g. temperature and relative humidity). Water contact angle measurement and X-ray photoelectron spectroscopy are used to monitor the aging process. Results show that low temperature and low relative humidity are favorable to retard the aging process and that pre-storage at low temperature (-10°C) disables the treated surface to recover superhydrophobicity. When the aging is performed in water, a long-lasting hydropholicity is obtained. As the stability of plasma-induced hydrophilcity over a desired period of time is a very important issue, this work will contribute to the optimization of storage conditions of plasma treated superhydrophobic surfaces.

  19. Development of Surface Complexation Models of Cr(VI) Adsorption on Soils, Sediments and Model Mixtures of Kaolinite, Montmorillonite, γ-Alumina, Hydrous Manganese and Ferric Oxides and Goethite

    SciTech Connect

    Koretsky, Carla

    2013-11-29

    Hexavalent chromium is a highly toxic contaminant that has been introduced into aquifers and shallow sediments and soils via many anthropogenic activities. Hexavalent chromium contamination is a problem or potential problem in the shallow subsurface at several DOE sites, including Hanford, Idaho National Laboratory, Los Alamos National Laboratory and the Oak Ridge Reservation (DOE, 2008). To accurately quantify the fate and transport of hexavalent chromium at DOE and other contaminated sites, robust geochemical models, capable of correctly predicting changes in chromium chemical form resulting from chemical reactions occurring in subsurface environments are needed. One important chemical reaction that may greatly impact the bioavailability and mobility of hexavalent chromium in the subsurface is chemical binding to the surfaces of particulates, termed adsorption or surface complexation. Quantitative thermodynamic surface complexation models have been derived that can correctly calculate hexavalent chromium adsorption on well-characterized materials over ranges in subsurface conditions, such pH and salinity. However, models have not yet been developed for hexavalent chromium adsorption on many important constituents of natural soils and sediments, such as clay minerals. Furthermore, most of the existing thermodynamic models have been developed for relatively simple, single solid systems and have rarely been tested for the complex mixtures of solids present in real sediments and soils. In this study, the adsorption of hexavalent chromium was measured as a function of pH (3-10), salinity (0.001 to 0.1 M NaNO3), and partial pressure of carbon dioxide(0-5%) on a suite of naturally-occurring solids including goethite (FeOOH), hydrous manganese oxide (MnOOH), hydrous ferric oxide (Fe(OH)3), γ-alumina (Al2O3), kaolinite (Al2Si2O5(OH)4), and montmorillonite (Na3(Al, Mg)2Si4O10(OH)2-nH2O). The results show that all of these materials can bind substantial quantities of

  20. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media

    NASA Astrophysics Data System (ADS)

    Shen, Chongyang; Wang, Hong; Lazouskaya, Volha; Du, Yichun; Lu, Weilan; Wu, Junxue; Zhang, Hongyan; Huang, Yuanfang

    2015-06-01

    While bismerthiazol [N,N‧-methylene-bis-(2-amino-5-mercapto-1,3,4-thiadiazole)] is one of the most widely used bactericides, the transport of bismerthiazol in subsurface environments is unclear to date. Moreover, natural colloids are ubiquitous in the subsurface environments. The cotransport of bismerthiazol and natural colloids has not been investigated. This study conducted laboratory column experiments to examine the transport of bismerthiazol in saturated sand porous media both in the absence and presence of montmorillonite colloids. Results show that a fraction of bismerthiazol was retained in sand and the retention was higher at pH 7 than at pH 4 and 10. The retention did not change with ionic strength. The retention was attributed to the complex of bismerthiazol with metals/metal oxides on sand surfaces through ligand exchange. The transport of bismerthiazol was enhanced with montmorillonite colloids copresent in the solutions and, concurrently, the transport of montmorillonite colloids was facilitated by the bismerthiazol. The transport of montmorillonite colloids was enhanced likely because the bismerthiazol and the colloids competed for the attachment/adsorption sites on collector surfaces and the presence of bismerthiazol changed the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies between colloids and collectors. The transport of bismerthiazol was inhibited if montmorillonite colloids were pre-deposited in sand because bismerthiazol could adsorb onto the colloid surfaces. The adsorbed bismerthiazol could be co-remobilized with the colloids from primary minima by decreasing ionic strength. Whereas colloid-facilitated transport of pesticides has been emphasized, our study implies that transport of colloids could also be facilitated by the presence of pesticides.

  1. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media.

    PubMed

    Shen, Chongyang; Wang, Hong; Lazouskaya, Volha; Du, Yichun; Lu, Weilan; Wu, Junxue; Zhang, Hongyan; Huang, Yuanfang

    2015-01-01

    While bismerthiazol [N,N'-methylene-bis-(2-amino-5-mercapto-1,3,4-thiadiazole)] is one of the most widely used bactericides, the transport of bismerthiazol in subsurface environments is unclear to date. Moreover, natural colloids are ubiquitous in the subsurface environments. The cotransport of bismerthiazol and natural colloids has not been investigated. This study conducted laboratory column experiments to examine the transport of bismerthiazol in saturated sand porous media both in the absence and presence of montmorillonite colloids. Results show that a fraction of bismerthiazol was retained in sand and the retention was higher at pH7 than at pH 4 and 10. The retention did not change with ionic strength. The retention was attributed to the complex of bismerthiazol with metals/metal oxides on sand surfaces through ligand exchange. The transport of bismerthiazol was enhanced with montmorillonite colloids copresent in the solutions and, concurrently, the transport of montmorillonite colloids was facilitated by the bismerthiazol. The transport of montmorillonite colloids was enhanced likely because the bismerthiazol and the colloids competed for the attachment/adsorption sites on collector surfaces and the presence of bismerthiazol changed the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies between colloids and collectors. The transport of bismerthiazol was inhibited if montmorillonite colloids were pre-deposited in sand because bismerthiazol could adsorb onto the colloid surfaces. The adsorbed bismerthiazol could be co-remobilized with the colloids from primary minima by decreasing ionic strength. Whereas colloid-facilitated transport of pesticides has been emphasized, our study implies that transport of colloids could also be facilitated by the presence of pesticides.

  2. Surface characterization of silica glass substrates treated by atomic hydrogen

    SciTech Connect

    Inoue, Hiroyuki; Masuno, Atsunobu; Ishibashi, Keiji; Tawarayama, Hiromasa; Zhang, Yingjiu; Utsuno, Futoshi; Koya, Kazuo; Fujinoki, Akira; Kawazoe, Hiroshi

    2013-12-15

    Silica glass substrates with very flat surfaces were exposed to atomic hydrogen at different temperatures and durations. An atomic force microscope was used to measure root-mean-square (RMS) roughness and two-dimensional power spectral density (PSD). In the treatment with atomic hydrogen up to 900 °C, there was no significant change in the surface. By the treatment at 1000 °C, the changes in the RMS roughness and the PSD curves were observed. It was suggested that these changes were caused by etching due to reactions of atomic hydrogen with surface silica. By analysis based on the k-correlation model, it was found that the spatial frequency of the asperities became higher with an increase of the treatment time. Furthermore, the data showed that atomic hydrogen can flatten silica glass surfaces by controlling heat-treatment conditions. - Highlights: • Silica glass surface was treated by atomic hydrogen at various temperatures. • Surface roughness was measured by an atomic force microscope. • Roughness data were analyzed by two-dimensional power spectral density. • Atomic hydrogen can flatten silica glass surfaces.

  3. Montmorillonite enhanced ciprofloxacin transport in saturated porous media with sorbed ciprofloxacin showing antibiotic activity

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Gao, Bin; Yang, Liu-Yan; Ma, Lena Q.

    2015-02-01

    Antibiotic ciprofloxacin (CIP) is immobile in the subsurface but it has been frequently detected in the aquatic system. Therefore it is important to investigate the factors impacting CIP's mobilization in aquifer. Laboratory columns packed with sand were used to test colloid-facilitated CIP transport by 1) using kaolinite or montmorillonite to mobilize presorbed-CIP in a column or 2) co-transporting with CIP by pre-mixing them before transport. The Langmuir model showed that CIP sorption by montmorillonite (23 g kg- 1) was 100 times more effective than sand or kaolinite. Even with strong CIP complexation ability to Fe/Al coating on sand surface, montmorillonite promoted CIP transport, but not kaolinite. All presorbed-CIP by sand was mobilized by montmorillonite after 3 pore volumes through co-transporting of CIP with montmorillonite. The majority of CIP was fixed onto the montmorillonite interlayer but still showed inhibition of bacteria growth. Our results suggested that montmorillonite with high CIP sorption ability can act as a carrier to enhance CIP's mobility in aquifer.

  4. Flame retardant polypropylene nanocomposites reinforced with surface treated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Guleria, Abhishant

    Polypropylene nanocomposites are prepared by reinforcing carbon nanotubes by ex-situ solution mixing method. Interfacial dispersion of carbon nanotubes in polypropylene have been improved by surface modification of CNTs and adding surfactants. Polypropylene nanocomposites fabrication was done after treating CNTs. Firstly, oxidation of CNTs followed by silanization for addition of functionalized groups on the surface of CNTs. Maleic anhydride grafted PPs were used as surfactants. Maleic anhydrides with two different molecular weights were LAMPP and HMAPP. Successful oxidation of CNTs by nitric acid and functionalized CNTs by 3-Aminopropyltriethoxysilane was confirmed by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) with evidence of absorption peak at 1700 and 1100-1000 cm-1. Scanning electron microscopy (SEM) micrographs revealed that the CNTs dispersion quality was improved by directly adding LMAPP/HMAPP into PP/CNTs system and the PP-CNTs adhesion was enhanced through both the CNTs surface treatment and the addition of surfactant. Thermal gravimetric analysis (TGA) revealed an enhanced thermal stability in the PP/CNTs and PP/CNTs/MAPP. Differential scanning calorimetry (DSC) characterization demonstrated that the crystalline temperature, fusion heat and crystalline fraction of hosting PP were decreased with the introduction of CNTs and surface treated CNTs; however, melting temperature was only slightly changed. Melting rheological behaviors including complex viscosity, storage modulus, and loss modulus indicated significant changes in the PP/MAPP/CNTs system before and after functionalization of CNTs, and the mechanism were also discussed in details.

  5. Chitosan-Montmorillonite microspheres: A sustainable fertilizer delivery system.

    PubMed

    dos Santos, Bruna Rodrigues; Bacalhau, Fabiana Britti; Pereira, Tamires dos Santos; Souza, Claudinei Fonseca; Faez, Roselena

    2015-08-20

    Controlled release fertilizers are efficient tools that increase the sustainability of agricultural practices. However, the biodegradability of the matrices and the determination of the release into soil still require some investigation. This paper describes the preparation of potassium-containing microspheres based on chitosan and montmorillonite clay and the in situ soil release. The chitosan-montmorillonite microspheres were prepared using a coagulation method and different proportions of montmorillonite. The structural, thermal and morphological properties as well the water swelling and fertilizer sorption capacity were evaluated. The best formulations were applied in soil, and the fertilizer release was monitored using time-domain reflectometry (TDR). Montmorillonite clay provides better sorption properties than the chitosan microspheres because of the rough and porous surface. Due to these properties, high levels of fertilizer were sorbed onto the material. ChMMT33-containing potassium shows two specific periods of fertilizer release: the first one lasted approximately three days and was assigned to the external fertilizer on the microspheres. The second was assigned to the internal fertilizer. TDR is an important and fast tool and was used to determine the fertilizer release and the ion movement in the soil.

  6. Heterogeneous allylsilylation of aromatic and aliphatic alkenes catalyzed by proton-exchanged montmorillonite.

    PubMed

    Motokura, Ken; Matsunaga, Shigekazu; Miyaji, Akimitsu; Sakamoto, Yasuharu; Baba, Toshihide

    2010-04-02

    Allylsilylation of an alkene is the only known procedure to install both silyl and allyl groups onto a carbon-carbon double bond directly. Proton-exchanged montmorillonite showed excellent catalytic performances for the allylsilylation of alkenes. For example, the reaction of p-chlorostyrene with allyltrimethylsilane proceeded smoothly to afford the corresponding allylsilylated product in 95% yield. We also attempted to isolate the reaction intermediate on the montmorillonite surface to investigate the reaction mechanism.

  7. Surface energy increase of oxygen-plasma-treated PET

    SciTech Connect

    Cioffi, M.O.H.; Voorwald, H.J.C.; Mota, R.P

    2003-03-15

    Prosthetic composite is a widely used biomaterial that satisfies the criteria for application as an organic implant without adverse reactions. Polyethylene therephthalate (PET) fiber-reinforced composites have been used because of the excellent cell adhesion, biodegradability and biocompatibility. The chemical inertness and low surface energy of PET in general are associated with inadequate bonds for polymer reinforcements. It is recognized that the high strength of composites, which results from the interaction between the constituents, is directly related to the interfacial condition or to the interphase. A radio frequency plasma reactor using oxygen was used to treat PET fibers for 5, 20, 30 and 100 s. The treatment conditions were 13.56 MHz, 50 W, 40 Pa and 3.33x10{sup -7} m{sup 3}/s. A Rame-Hart goniometer was used to measure the contact angle and surface energy variation of fibers treated for different times. The experimental results showed contact angle values from 47 deg. to 13 deg. and surface energies from 6.4x10{sup -6} to 8.3x10{sup -6} J for the range of 5 to 100 s, respectively. These results were confirmed by the average ultimate tensile strength of the PET fiber/ polymethylmethacrylate (PMMA) matrix composite tested in tensile mode and by scanning electron microscopy.

  8. Exfoliation and intercalation of montmorillonite by small peptides.

    PubMed

    Block, Karin A; Trusiak, Adrianna; Katz, Al; Alimova, Alexandra; Wei, Hui; Gottlieb, Paul; Steiner, Jeffrey C

    2015-04-01

    Understanding structural changes in clay minerals induced by complexation with organic matter is relevant to soil science and agricultural applications. In this study, the effect of peptide storage in montmorillonite and the thermal stability of peptide-clay complexes was examined through characterization by X-ray diffraction (XRD), electron microscopy, UV absorption, and thermogravimetric analysis (TGA). XRD analysis of small peptide-montmorillonite clay complexes produced profiles consisting of reflections associated with the smectite 001 reflection and related peaks similar to that produced by a mixed layer clay mineral structure. Shifts in higher order diffraction maxima were attributed to disorder caused by the intercalation with the peptides. Increasing peptide concentrations resulted in greater shifts towards smaller 2θ from 6.37° (1.39 nm) to 5.45° (1.62 nm) as the interlayer space expanded. The expansion was accompanied by broadening of the 001 reflection (FWHM increases from 0.51 to 1.22° 2θ). The XRD line broadening was interpreted as caused by poorer crystallinity resulting from intercalation and tactoid exfoliation. SEM images revealed montmorillonite platelets with upwardly rolled edges that tend toward cylindrical structures with the production of tubules. High-resolution TEM images revealed bending of montmorillonite platelets, confirming exfoliation. The distribution of basal spacings in the micrographs was determined from the spatial frequencies obtained by Fourier analysis of density profiles. The distribution indicated the presence of discrete coherent crystallite domains. XRD and TGA results indicated that higher peptide concentrations resulted in a greater fraction of intercalated peptides and that surface adsorption of peptides mediated intercalation. Therefore, higher peptide concentration led to more stable organoclay complexes. However, UV absorption and TGA found that peptide adsorption onto montmorillonite had a finite limit at

  9. Exfoliation and intercalation of montmorillonite by small peptides

    PubMed Central

    Block, Karin A.; Trusiak, Adrianna; Katz, Al; Alimova, Alexandra; Wei, Hui; Gottlieb, Paul; Steiner, Jeffrey C.

    2015-01-01

    Understanding structural changes in clay minerals induced by complexation with organic matter is relevant to soil science and agricultural applications. In this study, the effect of peptide storage in montmorillonite and the thermal stability of peptide-clay complexes was examined through characterization by X-ray diffraction (XRD), electron microscopy, UV absorption, and thermogravimetric analysis (TGA). XRD analysis of small peptide-montmorillonite clay complexes produced profiles consisting of reflections associated with the smectite 001 reflection and related peaks similar to that produced by a mixed layer clay mineral structure. Shifts in higher order diffraction maxima were attributed to disorder caused by the intercalation with the peptides. Increasing peptide concentrations resulted in greater shifts towards smaller 2θ from 6.37° (1.39 nm) to 5.45° (1.62 nm) as the interlayer space expanded. The expansion was accompanied by broadening of the 001 reflection (FWHM increases from 0.51 to 1.22° 2θ). The XRD line broadening was interpreted as caused by poorer crystallinity resulting from intercalation and tactoid exfoliation. SEM images revealed montmorillonite platelets with upwardly rolled edges that tend toward cylindrical structures with the production of tubules. High-resolution TEM images revealed bending of montmorillonite platelets, confirming exfoliation. The distribution of basal spacings in the micrographs was determined from the spatial frequencies obtained by Fourier analysis of density profiles. The distribution indicated the presence of discrete coherent crystallite domains. XRD and TGA results indicated that higher peptide concentrations resulted in a greater fraction of intercalated peptides and that surface adsorption of peptides mediated intercalation. Therefore, higher peptide concentration led to more stable organoclay complexes. However, UV absorption and TGA found that peptide adsorption onto montmorillonite had a finite limit at

  10. Strength of Wet and Dry Montmorillonite

    NASA Astrophysics Data System (ADS)

    Morrow, C. A.; Lockner, D. A.; Moore, D. E.

    2015-12-01

    Montmorillonite, an expandable smectite clay, is a common mineral in fault zones to a depth of around 3 km. Its low strength relative to other common fault gouge minerals is important in many models of fault rheology. However, the coefficient of friction is not well constrained in the literature due to the difficulty of establishing fully drained or fully dried states in the laboratory. For instance, in some reported studies, samples were either partially saturated or possibly over pressured, leading to wide variability in reported shear strength. In this study, the coefficient of friction, μ, of both saturated and oven-dried (at 150°C) Na-montmorillonite was measured at normal stresses up to 680 MPa at room temperature and shortening rates from 1.0 to 0.01 μm/s. Care was taken to shear saturated samples slowly enough to avoid pore fluid overpressure in the clay layers. Coefficients of friction are reported after 8 mm of axial displacement in a triaxial apparatus on saw-cut samples containing a layer of montmorillonite gouge, with either granite or sandstone driving blocks. For saturated samples, μ increased from around 0.1 at low pressure to 0.25 at the highest test pressures. In contrast, values for oven-dried samples decreased asymptotically from approximately 0.78 at 10 MPa normal stress to around 0.45 at 400-680 MPa. While wet and dry strengths approached each other with increasing effective normal stress, wet strength remained only about half of the dry strength at 600 MPa effective normal stress. The increased coefficient of friction can be correlated with a reduction in the number of loosely bound lubricating surface water layers on the clay platelets due to applied normal stress under saturated conditions. The steady-state rate dependence of friction, a-b, was positive and dependent on normal stress. For saturated samples, a-b increased linearly with applied normal stress from ~0 to 0.004, while for dry samples a-b decreased with increasing normal

  11. Nontronite and Montmorillonite as Nutrient Sources for Life on Mars

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Mickol, R. L.; Archer, P. D.; Kral, T. A.

    2017-01-01

    Clay minerals have been identified on Mars' oldest (Noachian) terrain and their presence suggests long-term water-rock interactions. The most commonly identified clay minerals on Mars to date are nontronite (Fe-smectite) and montmorillonite (Al-smectite) [1], both of which contain variable amounts of water both adsorbed on their surface and within their structural layers. Over Mars' history, these clay miner-al-water assemblages may have served as nutrient sources for microbial life.

  12. Adsorption of phosphate on hydroxyaluminum- and hydroxyiron-montmorillonite complexes.

    PubMed

    Zhu, Mao-Xu; Ding, Kui-Ying; Xu, Shao-Hui; Jiang, Xin

    2009-06-15

    One hydroxyaluminum-montmorillonite complex (HyAl-Mt), two hydroxyiron-montmorillonite complexes (HyFe-Mts) with different iron contents, and three hydroxyiron/aluminum-montmorillonite complexes (HyFeAl-Mts) with various Fe:Al molar ratios were synthesized. Behavior and kinetics of phosphate (P) sorption on selected Mt-complexes mentioned above were investigated under acidic conditions. The results indicated that the intercalations of polymeric HyFe and/or HyAl ions in interlayers of Na-saturated montmorillonite (Na-Mt) caused significant changes in surface properties of the Na-Mt, such as cation exchange capacity, specific surface area, pH at zero point of charge. In pH range tested (3.0-6.5), P adsorption on the Mt-complexes decreased with increasing pH, whereas the effect became weaker with increasing Fe contents in the Mt-complexes. The adsorption capacities of the HyFeAl-Mts were greater than those of the HyAl-Mt and HyFe-Mt, which could be attributed to decreasing crystallinity of Fe and Al oxides in the HyFeAl-Mts. The equilibrium adsorption of P on the Mt-complexes could be well described using the Langmuir isotherm, and the kinetics of P adsorption could be well described by both the pseudo-second-order and Elovich models. An increase in Fe contents in the Mt-complexes could enhance the initial kinetic rate of P adsorption, as suggested by the Elovich models. It is inferred that a great number of Fe-related active sorption sites have been located on the outer surfaces of the HyFe-Mt, as indicated by extremely high alpha value in the Elovich model. Previous studies focusing mainly on P sorption on HyAl-Mt complexes might have underestimated the contributions of Mt-complexes to P retention in acidic soils high in Fe contents.

  13. Influence of the organic complex concentration on adsorption of herbicide in organic modified montmorillonite

    NASA Astrophysics Data System (ADS)

    Kaludjerovic, Lazar; Tomic, Zorica; Djurovic, Rada; Milosevic, Maja

    2016-04-01

    Pesticides are recognized as an important source of potential pollution to soil and water due to their mobility and degradation in soils. Results presented in this paper show impact of the organic complex concentration on the adsorption of herbicides (acetochlor) at the surface of the organic modified montmorillonite. In this work, natural montmorillonite from Bogovina, located near Boljevac municipality, was used for organic modification. Cation-exchange capacity of this montmorillonite was determined by extraction with ammonium acetate (86 mmol/100g of clay). Montmorillonite have been modified first with NaCl and than with two organic complexes, hexadecyltrimethylammonium bromide (HDTMA) and phenyltrimethylammonium chloride (PTMA). For both organic complexes, three saturation concentrations were selected for monitoring of the herbicide adsorption (43 mmol/100g of clay (0.5 CEC), 86 mmol/100g of clay (1 CEC) and 129 mmol/100g of clay (1.5 CEC)). Changes in the properties of the inorganic and organic bentonite have been examined using the X-ray powder diffraction (XRPD) and batch equilibrium method. Increase in basal spacing (d) of montmorillonites saturated with 1.5 CEC of organic cation indicate that sorption of PTMA and HDTMA can exceed the saturation of 1 CEC. Both organic montmorillonites have shown higher uptake of the herbicide, compared to the inorganic montmorillonite. Comparing the values Freundlich coefficients in batch equilibrium method, (presented in the form of log Kf and 1/n), it can be seen that the sorption decreases in the series: 0.5CEC> 1CEC> 1.5CEC> NaM, for both organic montmorillonites.

  14. An investigation of the adsorption of organic dyes onto organo-montmorillonite.

    PubMed

    Lee, S H; Song, D I; Jeon, Y W

    2001-03-01

    Adsorption of organic dyes, crystal violet (CV), orange II (OR), and phenol red (PR), onto organo-clay was investigated in a batch type reactor at 25 degrees C. The organo-clay was obtained by modifying montmorillonite with a cationic surfactant, cetylpyridinium (CP), and used as an adsorbent. We conducted experiments to find out the effect of pH and solvent on the adsorption affinity of organic dyes for the modified montmorillonite. From the results, we observed that the adsorption capacity on the organo-montmorillonite decreased in the order CV > OR > PR at all pH values examined (pH 3, pH 7, and pH 11). It mostly resulted from the difference in solubility and the molecular weight of the solutes. In a 30-V/V % methanol/water cosolvent solution, the adsorption capacity of the dyes decreased compared to that in aqueous solution. In addition, the adsorption capacities of OR and PR on CV-montmorillonite were lower than those on CP-montmorillonite. These results might show that partitioning by CP was superior to the adsorption by CV to hold the solute molecules on the surface of montmorillonite. The Langmuir and Redlich-Peterson (RP) models were used to represent the adsorption equilibria of the organic dyes.

  15. A Density Functional Theory Study of a Calcium- Montmorillonite: A First Investigation for Medicine Application

    NASA Astrophysics Data System (ADS)

    Dewi Kencana Wungu, Triati; Fauzan, Muhammad Rifqi Al; Widayani; Suprijadi

    2016-08-01

    In this study, we performed structural geometry and electronic properties calculations of calcium - based clay mineral for medicine application using first principles calculation by means of Density Functional Theory. Here, a kind of clay mineral used was Ca- montmorillonite and it is applied as an absorber of dangerous metal contained in a human body, such as Pb, which causes osteoporosis. Osteoporosis is a disease associated with bone mass decreases. Since montmorillonite has ability to exchange its cation (Ca+2), therefore, it plays an important role in preventing or/and cure human bone from osteoporosis. In order to understand how Ca-montmorillonite can do detoxification in the human body, we firstly investigated the mechanism of Pb adsorption on the surface of Ca-montmorillonite in an atomic level point of view. We found that the repulsive interactions between H of OH groups with Ca and Pb yielding the rotation of the H of OH groups of montmorillonite. A relatively small movement of Ca was observed when Pb is adsorbed and the band gap of Ca- montmorillonite becomes 1.87 eV narrow.

  16. Hydrothermal Synthesis and Characterization of Ni-Al Montmorillonite-Like Phyllosilicates

    PubMed Central

    Reinholdt, Marc X.; Brendlé, Jocelyne; Tuilier, Marie-Hélène; Kaliaguine, Serge; Ambroise, Emmanuelle

    2013-01-01

    This work describes the first hydrothermal synthesis in fluoride medium of Ni-Al montmorillonite-like phyllosilicates, in which the only metallic elements in the octahedral sheet are Ni and Al. X-ray diffraction , chemical analysis, thermogravimetric and differential thermal analysis, scanning electron microscopy and transmission electron microscopy confirm that the synthesized samples are montmorillonite-like phyllosilicates having the expected chemical composition. The specific surface areas of the samples are relatively large (>100 m2 g−1) compared to naturally occurring montmorillonites. 29Si and 27Al nuclear magnetic resonance (NMR) indicate substitutions of Al for Si in the tetrahedral sheet. 19F NMR and Ni K-edge extended X-ray absorption fine structure (EXAFS) local probes highlight a clustering of the metal elements and of the vacancies in the octahedral sheet of the samples. These Ni-Al phyllosilicates exhibit a higher local order than in previously synthesized Zn-Al phyllosilicates. Unlike natural montmorillonites, where the distribution of transition metal cations ensures a charge equilibrium allowing a stability of the framework, synthetic montmorillonites entail clustering and instability of the lattice when the content of divalent element in the octahedral sheet exceeds ca. 20%. Synthesis of Ni-Al montmorillonite-like phyllosilicates, was successfully achieved for the first time. These new synthetic materials may find potential applications as catalysts or as materials with magnetic, optical or staining properties. PMID:28348321

  17. Infrared investigation of organo-montmorillonites prepared from different surfactants.

    PubMed

    Ma, Yuehong; Zhu, Jianxi; He, Hongping; Yuan, Peng; Shen, Wei; Liu, Dong

    2010-07-01

    In this paper, a series of organoclays were prepared from montmorillonites with different CEC and surfactants with different alkyl chain numbers and chain length. Then, FTIR spectroscopy using ATR, DRIFT and KBr pressed disk techniques was used to characterize the local environments of surfactant and host clays in various surfactants modified montmorillonites under wet and dry states. The present study demonstrates that the alkyl chain length and chain number have significant influences on the local environment of the intercalated surfactants. Also, this study indicates that the surface property of the resulting organoclays is affected by the loading and configuration of the intercalated surfactants. In wet state, more gauche conformers are introduced into the alkyl chains in the organoclays with low surfactant loading, evidenced by the shift of CH(2) vibration to higher frequency. Meanwhile, in the case of the organo-montmorillonites with high surfactant loading, the interaction between the surfactant and silicate surface results in a re-arrangement of SiO(4) tetrahedral sheets and a splitting of Si-O stretching vibration. The KBr pressed disk technique is suitable to probe the conformational ordering of the confined amine chains and the reflectance spectroscopy with ATR and/or DRIFT technique is more suitable to probe the water in organoclays. These findings are of high importance to the preparation of organoclays with proper surfactants and investigation of the microstructure of the resulting organoclays using suitable techniques.

  18. Characterization of sodium dodecyl sulfate modified iron pillared montmorillonite and its application for the removal of aqueous Cu(II) and Co(II).

    PubMed

    Li, Shu-Zhen; Wu, Ping-Xiao

    2010-01-15

    Anionic surfactant modified Fe-pillared montmorillonites were prepared by Fe-hydrate solution and sodium dodecyl sulfate (SDS) solution. These organo-inorgano complex montmorillonites were divided into three types (CM1, CM2 and CM3) depending on different intercalation processes. X-ray diffraction spectra, the Fourier transform infrared (FTIR) spectra were used to analyze the structure of the raw and modified montmorillonites. X-ray photoelectron spectra of the samples have been studied to determine spectral characteristics to allow the identification of Fe(III) hydroxide. The specific surface area of the host montmorillonite (M0) is 73.2m(2)/g, while for the modified montmorillonites it is 114.0m(2)/g, 117.2m(2)/g, and 115.8m(2)/g, respectively. The mesopore volumes of the montmorillonites decrease after modification. Ions of copper and cobalt were selected as adsorbates to evaluate the adsorption performance of each montmorillonite. The adsorption data was analyzed by both Freundlich and Langmuir isotherm models and the data was well fit by the Langmuir isotherm model. The adsorption was efficient and significantly influenced by metal speciation, metal concentration, contact time, and pH. Higher adsorption capacity of the modified montmorillonites were obtained at pH 5-6. The results of desorption indicated that the metal ions were covalently bound to the modified montmorillonites.

  19. Comparison of removal torques between laser-treated and SLA-treated implant surfaces in rabbit tibiae

    PubMed Central

    Kang, Nam-Seok; Li, Lin-Jie

    2014-01-01

    PURPOSE The purpose of this study was to compare removal torques and surface topography between laser treated and sandblasted, large-grit, acid-etched (SLA) treated implants. MATERIALS AND METHODS Laser-treated implants (experimental group) and SLA-treated implants (control group) 8 mm in length and 3.4 mm in diameter were inserted into both sides of the tibiae of 12 rabbits. Surface analysis was accomplished using a field emission scanning electron microscope (FE-SEM; Hitachi S-4800; Japan) under ×25, ×150 and ×1,000 magnification. Surface components were analyzed using energy dispersive spectroscopy (EDS). Rabbits were sacrificed after a 6-week healing period. The removal torque was measured using the MGT-12 digital torque meter (Mark-10 Co., Copiague, NY, USA). RESULTS In the experimental group, the surface analysis showed uniform porous structures under ×25, ×150 and ×1,000 magnification. Pore sizes in the experimental group were 20-40 mm and consisted of numerous small pores, whereas pore sizes in the control group were 0.5-2.0 mm. EDS analysis showed no significant difference between the two groups. The mean removal torque in the laser-treated and the SLA-treated implant groups were 79.4 Ncm (SD = 20.4; range 34.6-104.3 Ncm) and 52.7 Ncm (SD = 17.2; range 18.7-73.8 Ncm), respectively. The removal torque in the laser-treated surface implant group was significantly higher than that in the control group (P=.004). CONCLUSION In this study, removal torque values were significantly higher for laser-treated surface implants than for SLA-treated surface implants. PMID:25177474

  20. Method and system for treating an interior surface of a workpiece using a charged particle beam

    DOEpatents

    Swenson, David Richard

    2007-05-23

    A method and system of treating an interior surface on an internal cavity of a workpiece using a charged particle beam. A beam deflector surface of a beam deflector is placed within the internal cavity of the workpiece and is used to redirect the charged particle beam toward the interior surface to treat the interior surface.

  1. Adsorption of Enrofloxacin on montmorillonite: two-dimensional correlation ATR/FTIR spectroscopy study.

    PubMed

    Yan, Wei; Zhang, Jianfeng; Jing, Chuanyong

    2013-01-15

    Adsorption of Enrofloxacin (ENR) on minerals dominates the fate and transport of ENR in the environment. In this study, the sorption process of ENR on montmorillonite and the impact of dissolved organic matters (DOMs) on ENR-montmorillonite interactions were investigated using in situ ATR-FTIR spectroscopy and two-dimensional correlation analysis (2D-COS). Negative peaks were observed in the 3400-2900 cm(-1) region due to the loss of hydrated protons at montmorillonite surfaces. The primary characteristic peaks of adsorbed ENR molecules were resolved in the 1800-1100 cm(-1) range. The results of 2D-COS suggested the sorption process was initiated by the interaction of hydrated protons on montmorillonite surfaces with diverse moieties of ENR molecules depending on pH. The sorption mechanism of ENR was mainly cation exchange at acidic condition, charge neutralization at neutral condition, and proton transfer at alkaline condition. DOM could interact with piperazinyl amine groups of dissolved ENR, which changed the interaction sequence of ENR molecule with montmorillonite surfaces. Electrostatic interaction was the predominant driving force for the interaction between DOM and dissolved ENR. H-donor-acceptor interaction and π-π interaction may also be responsible to this interaction. Insights gained from this study improve our understandings on sorption mechanism of ENR and similar ionic organic pollutants in soil systems.

  2. Octachlorodibenzodioxin formation on Fe(III)-montmorillonite clay.

    PubMed

    Gu, Cheng; Li, Hui; Teppen, Brian J; Boyd, Stephen A

    2008-07-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) are ubiquitous and highly toxic environmental contaminants found in surface and subsurface soils and in clay deposits. Interestingly, the congener profiles of such PCDDs are inexplicably dissimilar to those of known anthropogenic (e.g., pesticide manufacture, waste incineration) or natural (e.g., forest fire) sources. Characteristic features of soil or clay-associated PCDDs are the dominance of octachlorodibenzo-p-dioxin (OCDD) as the most abundant congener and very low levels of polychlorinated dibenzofurans (PCDFs). These propensities led to the hypothesis of in situ PCDD formation in soils and geologic clay deposits. In this study, we demonstrate the formation of OCDD on the naturally occurring and widely distributed clay mineral montmorillonite under environmentally relevant conditions. When pentachlorophenol (PCP)was mixed with Fe(III)-montmorillonite, significant amounts of OCDD were rapidly (minutes to days) formed (approximately 5 mg OCDD/kg clay) at ambient temperature in the presence of water. This reaction is initiated by single electron transfer from PCP to Fe(III)-montmorillonite thereby forming the PCP radical cation. Subsequent dimerization, dechlorination, and ring closure reactions result in formation of OCDD. This study provides the first direct evidence for clay-catalyzed formation of OCDD supporting the plausibility of its in situ formation in soils.

  3. Controlled Release of Agrochemicals Intercalated into Montmorillonite Interlayer Space

    PubMed Central

    2014-01-01

    Periodic application of agrochemicals has led to high cost of production and serious environmental pollution. In this study, the ability of montmorillonite (MMT) clay to act as a controlled release carrier for model agrochemical molecules has been investigated. Urea was loaded into MMT by a simple immersion technique while loading of metalaxyl was achieved by a rotary evaporation method. The successful incorporation of the agrochemicals into the interlayer space of MMT was confirmed by several techniques, such as, significant expansion of the interlayer space, reduction of Barrett-Joyner-Halenda (BJH) pore volumes and Brunauer-Emmett-Teller (BET) surface areas, and appearance of urea and metalaxyl characteristic bands on the Fourier-transform infrared spectra of the urea loaded montmorillonite (UMMT) and metalaxyl loaded montmorillonite (RMMT) complexes. Controlled release of the trapped molecules from the matrix was done in water and in the soil. The results reveal slow and sustained release behaviour for UMMT for a period of 10 days in soil. For a period of 30 days, MMT delayed the release of metalaxyl in soil by more than 6 times. It is evident that MMT could be used to improve the efficiency of urea and metalaxyl delivery in the soil. PMID:24696655

  4. Controlled release of agrochemicals intercalated into montmorillonite interlayer space.

    PubMed

    Wanyika, Harrison

    2014-01-01

    Periodic application of agrochemicals has led to high cost of production and serious environmental pollution. In this study, the ability of montmorillonite (MMT) clay to act as a controlled release carrier for model agrochemical molecules has been investigated. Urea was loaded into MMT by a simple immersion technique while loading of metalaxyl was achieved by a rotary evaporation method. The successful incorporation of the agrochemicals into the interlayer space of MMT was confirmed by several techniques, such as, significant expansion of the interlayer space, reduction of Barrett-Joyner-Halenda (BJH) pore volumes and Brunauer-Emmett-Teller (BET) surface areas, and appearance of urea and metalaxyl characteristic bands on the Fourier-transform infrared spectra of the urea loaded montmorillonite (UMMT) and metalaxyl loaded montmorillonite (RMMT) complexes. Controlled release of the trapped molecules from the matrix was done in water and in the soil. The results reveal slow and sustained release behaviour for UMMT for a period of 10 days in soil. For a period of 30 days, MMT delayed the release of metalaxyl in soil by more than 6 times. It is evident that MMT could be used to improve the efficiency of urea and metalaxyl delivery in the soil.

  5. Controllable surface morphology and properties via mist polymerization on a plasma-treated polymethyl methacrylate surface.

    PubMed

    Wan, S J; Wang, L; Xu, X J; Zhao, C H; Liu, X D

    2014-02-14

    Surface modification by grafting polymers on solid materials is an important strategy used to improve surface properties. This article reports that under appropriate conditions, very thin layers with desired morphologies may be constructed on a plasma-treated substrate by feeding a small quantity of a monomer with a mist stream carrying droplets produced from monomer solutions. We investigate the effects of process parameters that affect layer morphology, including exposure time to the mist stream, concentration of the monomer solution, and solvent selectivity. For a methyl methacrylate solution in ethanol, nanoparticles are uniformly grown with increasing monomer concentration or exposure time and finally form a porous layer at 3.65 mol L(-1) for 30 min. Decreasing solvent polarity not only affects surface morphology, but also increases hydrophobicity of the resulting surface. With 2,2,3,4,4,4-hexafluorobutyl methacrylate as the monomer, SEM and AFM micrographs indicated that mist polymerization results in numerous microspheres on the activated surface. These experimental results were interpreted by a mechanism in terms of an in situ polymerization accompanied by a phase transformation of the resulting polymer. Specifically, plasma treatment provides highly active cations and radicals to initiate very rapid polymerization, and the resulting polymers are consequently deposited from the liquid onto the surface under phase transition mechanisms.

  6. Fractal characterization and wettability of ion treated silicon surfaces

    NASA Astrophysics Data System (ADS)

    Yadav, R. P.; Kumar, Tanuj; Baranwal, V.; Vandana, Kumar, Manvendra; Priya, P. K.; Pandey, S. N.; Mittal, A. K.

    2017-02-01

    Fractal characterization of surface morphology can be useful as a tool for tailoring the wetting properties of solid surfaces. In this work, rippled surfaces of Si (100) are grown using 200 keV Ar+ ion beam irradiation at different ion doses. Relationship between fractal and wetting properties of these surfaces are explored. The height-height correlation function extracted from atomic force microscopic images, demonstrates an increase in roughness exponent with an increase in ion doses. A steep variation in contact angle values is found for low fractal dimensions. Roughness exponent and fractal dimensions are found correlated with the static water contact angle measurement. It is observed that after a crossover of the roughness exponent, the surface morphology has a rippled structure. Larger values of interface width indicate the larger ripples on the surface. The contact angle of water drops on such surfaces is observed to be lowest. Autocorrelation function is used for the measurement of ripple wavelength.

  7. Monitoring the sorption of propanoic acid by montmorillonite using Diffuse Reflectance Fourier Transform Infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Parker, R. W.; Frost, R. L.

    1998-06-01

    This paper describes how Diffuse Reflectance Fourier Transform Infrared (DRIFT) spectroscopy was used to monitor the sorption behavior of a short chain fatty acid, propanoic acid, on the clay mineral, montmorillonite. Organic acids bind to montmorillonite in two ways, either by dipole interaction with the oxygens in the interlayer space, or by bonding of the carboxylate anions to exposed aluminum ions. The DRIFT spectra of propanoic acid-montmorillonite complexes have bands at 1728 and 1554 cm-1, which are attributed to the symmetric, and antisymmetric stretching vibrations, respectively, of the C=O, ν(C=O)s, and O-C-O, ν(O-C-O)a, bonds of the carboxylic acid group. Each band represents one of the two different binding modes. These bands can be used to monitor the physical and chemical adsorption of the acid by the montmorillonite. When the peak area of each vibration is plotted against increasing acid concentration, both increase to a maximum. However the peak area for the ν(O-C-O)a vibration reaches a maximum at a much lower acid concentration than the ν(O=O)s vibration. The former maximum corresponds to saturation of the available binding sites on the edge surface aluminum ions. This concentration can be used to calculate the number of binding sites on the clay crystal. Where propanoic acid is allowed to diffuse from the clay, the bound fraction remains on the montmorillonite reducing the available acid that can be desorbed or leached from the clay.

  8. Effect of heat-treated titanium surfaces on protein adsorption and osteoblast precursor cell initial attachment.

    PubMed

    Kern, Travis; Yang, Yunzhi; Glover, Renee; Ong, Joo L

    2005-03-01

    The clinical success of dental implants is governed in part by surface properties of implants and their interactions with the surrounding tissues. The objective of this study was to investigate the effect of heat-treated titanium surfaces on protein adsorption and osteoblast precursor cell attachment in vitro. Passivated titanium samples used in this study were either non heat treated or heat treated at 750 degrees C for 90 minutes. It was observed that the contact angle on heat-treated titanium surfaces was statistically lower compared with the non-heat-treated titanium surfaces. The non-heat-treated titanium surface was also observed to be amorphous oxide, whereas heat treatment of titanium resulted in the conversion of amorphous oxide to crystalline anatase oxide. No significant difference in albumin and fibronectin adsorption was observed between the heat-treated and non-heat-treated titanium surfaces. In addition, no significant difference in initial cell attachment was observed between the two groups. It was concluded that heat treatment of titanium resulted in significantly more hydrophilic surfaces compared to non-heat-treated titanium surfaces. However, differences in oxide crystallinity and wettability were not observed to affect protein adsorption and initial osteoblast precursor cell attachment.

  9. Microstructure and mechanical properties of neoprene montmorillonite nanocomposites

    NASA Astrophysics Data System (ADS)

    Yeh, Meng-Heng; Hwang, Weng-Sing; Cheng, Lin-Ri

    2007-03-01

    To investigate the microstructure and mechanical properties of neoprene-montmorillonite nanocomposite, three modified montmorillonite are used. An X-ray diffractometer is used to measure the corresponding change in d-spacing. Scanning electron microscopy is employed to investigate the morphology of the various composites. Transmission electron microscopy is employed to investigate the composite of montmorillonite and neoprene. The results indicate that the addition of montmorillonite enhances the mechanical properties of neoprene significantly.

  10. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-08-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effects of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that after a 20-s 9:1 HF dip without rinse, the Si(100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si(100) surface was observed, in an ultrahigh vacuum (UHV) chamber, and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface-layer, after being heated to approximately 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  11. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-06-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effect of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that, after a 20-sec 9:1 HF dip without rinse, the Si (100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si (100) surface was observed, in an ultrahigh vacuum chamber (UHV), and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface layer, after being heated to about 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  12. Fractionation of humic acids upon adsorption on montmorillonite and palygorskite

    NASA Astrophysics Data System (ADS)

    Alekseeva, T. V.; Zolotareva, B. N.

    2013-06-01

    The adsorption of three humic acid (HA) preparations by clays—montmorillonite (Wyoming, USA) and palygorskite (Kolomenskoe district, Moscow oblast)—has been studied. The HA preparations were isolated from samples of the humus-accumulative horizons of a leached chernozem (Voronezh) and a chestnut soil (Volgograd), and a commercial preparation of sodium humate (Aldrich) was also used. The solid-state 13C NMR spectroscopy and IR spectroscopy revealed the selective adsorption of structural HA fragments (alkyls, O-alkyls (carbohydrates), and acetal groups) on these minerals. As a result, the aromaticity of the organic matter (OM) in the organic-mineral complexes (OMCs) and the degree of its humification have been found to be lower compared to the original HA preparations. The fractionation of HAs is controlled by the properties of the mineral surfaces. The predominant enrichment of OMCs with alkyls has been observed for montmorillonite, as well as an enrichment with O-alkyls (carbohydrates) for palygorskite. A decrease in the C : N ratio has been noted in the elemental composition of the OM in complexes, which reflected its more aromatic nature and (or) predominant sorption of N-containing structural components of HA molecules. The adsorption of HA preparations by montmorillonite predominantly occurs on the external surface of mineral particles, and the interaction of nonpolar alkyl groups of HAs with this mineral belongs to weak (van der Waals, hydrophobic) interactions. The adsorption of HA preparations by palygorskite is at least partly of chemical nature: Si-OH groups of minerals are involved in the adsorption process. The formation of strong bonds between the OM and palygorskite explains the long-term (over 300 million years) retention of fossil fulvate-type OM in its complex with palygorskite, which we revealed previously.

  13. Distribution of hexavalent Cr species across the clay mineral surface-water interface.

    PubMed

    Fritzen, Mauricia B; Souza, Aloisio J; Silva, Tiago A G; Souza, Luciana; Nome, Rene A; Fiedler, Haidi D; Nome, Faruk

    2006-04-15

    The adsorption isotherms of Cr(VI) on kaolinite, montmorillonite, and alumina were adequately treated with Langmuir model showing behavior characteristic of single-layer adsorption. The efficiency of the adsorbents in removing Cr(VI) from water follows the order alumina > kaolinite > montmorillonite > silica. Speciation studies indicate that hydrogen chromate ions were the major adsorbed species and simultaneous adsorption of dichromate ion occurred at concentrations greater than approximately 10(-3) mol L(-1). It is most probable that the mechanism of adsorption of the hydrogen chromate ion at the surface of alumina is predominantly electrostatic adsorption, with outer sphere complex formation.

  14. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions.

    PubMed

    Yuan, Peng; Fan, Mingde; Yang, Dan; He, Hongping; Liu, Dong; Yuan, Aihua; Zhu, JianXi; Chen, TianHu

    2009-07-30

    Montmorillonite-supported magnetite nanoparticles were prepared by co-precipitation and hydrosol method. The obtained materials were characterized by X-ray diffraction, nitrogen adsorption, elemental analysis, differential scanning calorimetry, transmission electron microscopy and X-ray photoelectron spectroscopy. The average sizes of the magnetite nanoparticles without and with montmorillonite support are around 25 and 15 nm, respectively. The montmorillonite-supported magnetite nanoparticles exist on the surface or inside the interparticle pores of clays, with better dispersing and less coaggregation than the ones without montmorillonite support. Batch tests were carried out to investigate the removal mechanism of hexavalent chromium [Cr(VI)] by these synthesized magnetite nanoparticles. The Cr(VI) uptake was mainly governed by a physico-chemical process, which included an electrostatic attraction followed by a redox process in which Cr(VI) was reduced into trivalent chromium. The adsorption of Cr(VI) was highly pH-dependent and the kinetics of the adsorption followed the Pseudo-second-order model. The adsorption data of unsupported and clay-supported magnetite nanoparticles fit well with the Langmuir and Freundlich isotherm equations. The montmorillonite-supported magnetite nanoparticles showed a much better adsorption capacity per unit mass of magnetite (15.3mg/g) than unsupported magnetite (10.6 mg/g), and were more thermally stable than their unsupported counterparts. These fundamental results demonstrate that the montmorillonite-supported magnetite nanoparticles are readily prepared, enabling promising applications for the removal of Cr(VI) from aqueous solution.

  15. Adsorption of polyetheramines on montmorillonite at high pH.

    PubMed

    Cui, Yannan; van Duijneveldt, Jeroen S

    2010-11-16

    Adsorption of a series of polyetheramines on montmorillonite in aqueous suspension was investigated by a range of methods: elemental analysis, atomic absorption spectroscopy, measurement of pH, conductivity and electrophoretic mobility, and small-angle X-ray scattering. Adsorption proceeds through an ion exchange mechanism. The maximum surface coverage attained is equivalent to about 40% of the cationic exchange capacity of the clay. Adsorption of the poly(oxypropylene) block adjacent to the amine group onto the clay surface may contribute to this. Surprisingly the adsorption takes place at pH conditions well above the pK(a) of the amine surfactants, where they are not protonated in the bulk solution. The surface coverage as a function of molar mass broadly agrees with predictions assuming adsorbed polymers adopt a densely packed mushroom configuration at the clay surface.

  16. Bone regeneration performance of surface-treated porous titanium.

    PubMed

    Amin Yavari, Saber; van der Stok, Johan; Chai, Yoke Chin; Wauthle, Ruben; Tahmasebi Birgani, Zeinab; Habibovic, Pamela; Mulier, Michiel; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir Abbas

    2014-08-01

    The large surface area of highly porous titanium structures produced by additive manufacturing can be modified using biofunctionalizing surface treatments to improve the bone regeneration performance of these otherwise bioinert biomaterials. In this longitudinal study, we applied and compared three types of biofunctionalizing surface treatments, namely acid-alkali (AcAl), alkali-acid-heat treatment (AlAcH), and anodizing-heat treatment (AnH). The effects of treatments on apatite forming ability, cell attachment, cell proliferation, osteogenic gene expression, bone regeneration, biomechanical stability, and bone-biomaterial contact were evaluated using apatite forming ability test, cell culture assays, and animal experiments. It was found that AcAl and AnH work through completely different routes. While AcAl improved the apatite forming ability of as-manufactured (AsM) specimens, it did not have any positive effect on cell attachment, cell proliferation, and osteogenic gene expression. In contrast, AnH did not improve the apatite forming ability of AsM specimens but showed significantly better cell attachment, cell proliferation, and expression of osteogenic markers. The performance of AlAcH in terms of apatite forming ability and cell response was in between both extremes of AnH and AsM. AcAl resulted in significantly larger volumes of newly formed bone within the pores of the scaffold as compared to AnH. Interestingly, larger volumes of regenerated bone did not translate into improved biomechanical stability as AnH exhibited significantly better biomechanical stability as compared to AcAl suggesting that the beneficial effects of cell-nanotopography modulations somehow surpassed the benefits of improved apatite forming ability. In conclusion, the applied surface treatments have considerable effects on apatite forming ability, cell attachment, cell proliferation, and bone ingrowth of the studied biomaterials. The relationship between these properties and the bone

  17. Surface chemical composition analysis of heat-treated bamboo

    NASA Astrophysics Data System (ADS)

    Meng, Fan-dan; Yu, Yang-lun; Zhang, Ya-mei; Yu, Wen-ji; Gao, Jian-min

    2016-05-01

    In this study, the effect of heat treatment on the chemical composition of bamboo slivers was studied. The chemical properties of the samples were examined by chemical analysis. Results showed a decrease in the contents of holocellulose and α-cellulose, as well as an increase in the contents of lignin and extractives. Changes in the chemical structure of bamboo components were analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). FTIR spectroscopy results indicated that hemicellulose contents decrease, whereas lignin contents increase after heat treatment. Ester formation linked to lignin decreased the hygroscopicity of the bamboo samples and consequently improved their dimensional stability and durability. XPS spectroscopy results showed that hemicelluloses and celluloses are relatively more sensitive to the heating process than lignin. As a consequence, hemicellulose and cellulose contents decreased, whereas lignin contents increased during heat treatment. The results obtained in this study provide useful information for the future utilization of heat-treated bamboo.

  18. Surface Treated Natural Fibres as Filler in Biocomposites

    NASA Astrophysics Data System (ADS)

    Schwarzova, I.; Stevulova, N.; Singovszka, E.; Terpakova, E.

    2015-11-01

    Biocomposites based on natural fibres as organic filler have been studied for several years because traditional building materials such as concrete are increasingly being replaced by advanced composite materials. Natural fibres are a potential replacement of glass fibres in composite materials. Inherent advantages such as low density, biodegradability and comparable specific mechanical properties make natural fibres an attractive option. However, limitations such as poor thermal stability, moisture absorption and poor compatibility with matrix are challenges that need to be resolved. The primary objective of this research was to study the effect of surface treatment on properties of hemp hurds like a natural lignocellulosic material and composites made thereof. Industrial hemp fibre is the one of the most suitable fibres for use in composite materials because of its good specific properties, as well as it being biologically degradable and CO2 neutral. Improving interfacial bonding between fibres and matrix is an important factor in using hemp fibres as reinforcement in composites. In order to improve interfacial bonding, modifications can be made to the hemp fibres to remove non- cellulosic compounds, separate hemp fibres from their bundles, and modify the fibre surface. This paper contains the comparison of FTIR spectra caused by combination of physical and chemical treatment of hemp material with unmodified sample. Modification of hemp hurds was carried out by NaOH solution and by ultrasonic treatment (deionized water and NaOH solution were used as the cleaning mediums).

  19. Anomalously large band-bending for HF-treated p-Si surfaces

    NASA Astrophysics Data System (ADS)

    Watanabe, D.; En, A.; Nakamura, S.; Suhara, M.; Okumura, T.

    2003-06-01

    Electronic properties of the HF-treated Si surfaces have been characterized by the Kelvin method combined with surface photovoltage (SPV) measurements. With the use of 340 nm ultraviolet light source, a relatively large SPV of -0.45 V was detected at a photocurrent density of 1 mA/cm 2 for the diluted (e.g. 4.5%) HF-treated p-Si(0 0 1) surface. On the other hand, no SPV was induced for the HF-treated n-Si(0 0 1) wafer. This result indicates that there is anomalously large surface band-bending toward the surface, and Fermi-level position at the surface is pinned in the vicinity of the bottom of the conduction band at the HF-treated p-Si(1 0 0). It is considered that the residual fluorine responsible for an anomalously large band-bending at the p-Si(1 0 0) surface treated with HF. Furthermore, the value of the built-in potential for the HF-treated p-Si(0 0 1) surface was estimated to be about 0.60 eV at the room temperature from the result of the temperature dependence of the effective saturation current.

  20. Apparent diffusion coefficients and chemical species of neptunium (V) in compacted Na-montmorillonite.

    PubMed

    Kozai, N; Inada, K; Kozaki, T; Sato, S; Ohashi, H; Banba, T

    2001-02-01

    Diffusion of neptunium (V) in compacted Na-montmorillonite was studied through the non-steady state diffusion method. In this study, two experimental attempts were carried out to understand the diffusion mechanism of neptunium. One was to establish the diffusion activation energy, which was then used to determine the diffusion process in the montmorillonite. The other was the measurement of the distribution of neptunium in the montmorillonite by a sequential batch extraction. The apparent diffusion coefficients of neptunium in the montmorillonite at a dry density of 1.0 Mg m-3 were from 3.7 x 10(-12) m2 s-1 at 288 K to 9.2 x 10(-12) m2 s-1 at 323 K. At a dry density of 1.6 Mg m-3, the apparent diffusion coefficients ranged between 1.5 x 10(-13) m2 s-1 at 288 K and 8.7 x 10(-13) m2 s-1 at 323 K. The activation energy for the diffusion of neptunium at a dry density of 1.0 Mg m-3 was 17.5 +/- 1.9 kJ mol-1. This value is similar to those reported for diffusion of other ions in free water, e.g., 18.4 and 17.4 kJ mol-1 for Na+ and Cl-, respectively. At a dry density of 1.6 Mg.m-3, the activation energy was 39.8 +/- 1.9 kJ mol-1. The change in the activation energy suggests that the diffusion process changes depending on the dry density of the compacted montmorillonite. A characteristic distribution profile was obtained by the sequential extraction procedure for neptunium diffused in compacted montmorillonite. The estimated fraction of neptunium in the pore water was between 3% and 11% at a dry density of 1.6 Mg m-3 and at a temperature of 313 K. The major fraction of the neptunium in the montmorillonite was identified as neptunyl ions sorbed on the outer surface of the montmorillonite. These findings suggested that the activation energy for diffusion and the distribution profile of the involved nuclides could become powerful parameters in understanding the diffusion mechanism.

  1. Heterogeneous freezing of water droplets containing kaolinite and montmorillonite particles

    NASA Astrophysics Data System (ADS)

    Murray, Benjamin J.; Broadley, Sarah; Wilson, Theodore; Bull, Sophia; Wills, Rebecca

    2010-05-01

    Clouds composed of both ice particles and supercooled liquid water droplets, known as mixed phase clouds, exist at temperatures above ~236 K. These clouds, which strongly impact climate, are very sensitive to the presence of particles that can catalyse ice particle formation. In this paper we describe experiments to determine at which temperatures water droplets containing clay mineral particles froze. Water droplets containing a known amount of clay mineral were supported on a hydrophobic surface and the temperatures at which individual droplets froze, as they were cooled down, was determined by optical microscopy. The hydrophobic substrate does not significantly catalyse ice formation in droplets and pure water droplets freeze around 236 K. Droplets containing kaolinite and montmorillonite nucleate ice at warmer temperatures. The mean nucleation temperature increases from close to or at the homogeneous nucleation limit (236 K) to 240.8 ± 0.6 K as the kaolinite concentration is increased from 0.005 wt% to 1 wt%. In contrast, ice always nucleates at 245.8 ± 0.6 K when water droplets are contaminated with montmorillonite independent of mineral concentration. These results highlight the importance of understanding the ice nucleating properties of individual minerals rather than complex mixtures of minerals found in natural dusts and so-called test dusts. In addition we parameterise the results in a form suitable for modelling studies and also derive contact angles for kaolinite.

  2. Amino acid conjugated self assembling molecules for enhancing surface wettability of fiber laser treated titanium surfaces

    NASA Astrophysics Data System (ADS)

    Akkan, Cagri K.; Hür, Deniz; Uzun, Lokman; Garipcan, Bora

    2016-03-01

    Surface wetting properties of implants are one of the most critical parameter, which determine the interaction of proteins and cells with the implant surface. In this regards, acid etching and sand blasting are the mostly used methods at surface modification of Titanium (Ti) for enhanced surface wettability. Besides, these kinds of modifications may cause a conflict whether the surface wettability is influenced by the process related surface contaminations or by the surface roughness. In contrast, lasers might be an option for the alteration of surface wetting properties via supporting micro and/or nano surface topographies while preventing surface chemical contaminations. In this work, we focused on two steps of surface processing approaches of Ti surface: physical and chemical modifications. Herein, we hierarchically structured Ti surfaces by using microsecond modulated pulsed fiber laser. Subsequently, laser structured and non-structured Ti surfaces were further modified with novel histidine and leucine Amino Acid conjugated Self-Assembled Molecules (His1-SAMs2 and Leu3-SAMs) to alter the surface wettability by introducing biologically hydrophilic and hydrophobic groups. Modification of Ti surfaces with His-SAMs and Leu-SAMs ended up with stable wetting properties when compared to non-modified surfaces after 7 days which may enhances the cell-surface interaction.

  3. Investigation on surface structure of potassium permanganate/nitric acid treated poly(tetrafluoroethylene)

    NASA Astrophysics Data System (ADS)

    Fu, Congli; Liu, Shuling; Gong, Tianlong; Gu, Aiqun; Yu, Zili

    2014-10-01

    In the previous articles concerning the treatment of poly(tetrafluoroethylene) (PTFE) with potassium permanganate/nitric acid mixture, the conversion of a hydrophobic to a hydrophilic surface was partially assigned to the defluorination of PTFE and then the introduction of carbonyl and hydroxyl groups into the defluorinated sites. In the present work, PTFE sheets were treated with potassium permanganate/nitric acid, and the surfaces before and after treatment were comparatively characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The surface sediments of the treated PTFE were also determined by atomic absorption spectroscopy (AAS). The results indicate that the conversion of the hydrophobicity to the hydrophilicity on the modified PTFE surface is mainly due to the deposition of hydrophilic manganese oxides which covered the fluorocarbon surface, and no detectable chemical reactions of PTFE occur in the treating process.

  4. Surface characteristics, corrosion and bioactivity of chemically treated biomedical grade NiTi alloy.

    PubMed

    Chembath, Manju; Balaraju, J N; Sujata, M

    2015-11-01

    The surface of NiTi alloy was chemically modified using acidified ferric chloride solution and the characteristics of the alloy surface were studied from the view point of application as a bioimplant. Chemically treated NiTi was also subjected to post treatments by annealing at 400°C and passivation in nitric acid. The surface of NiTi alloy after chemical treatment developed a nanogrid structure with a combination of one dimensional channel and two dimensional network-like patterns. From SEM studies, it was found that the undulations formed after chemical treatment remained unaffected after annealing, while after passivation process the undulated surface was filled with oxides of titanium. XPS analysis revealed that the surface of passivated sample was enriched with oxides of titanium, predominantly TiO2. The influence of post treatment on the corrosion resistance of chemically treated NiTi alloy was monitored using Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) in Phosphate Buffered Saline (PBS) solution. In the chemically treated condition, NiTi alloy exhibited poor corrosion resistance due to the instability of the surface. On the other hand, the breakdown potential (0.8V) obtained was highest for the passivated samples compared to other surface treated samples. During anodic polarization, chemically treated samples displayed dissolution phenomenon which was predominantly activation controlled. But after annealing and passivation processes, the behavior of anodic polarization was typical of a diffusion controlled process which confirmed the enhanced passivity of the post treated surfaces. The total resistance, including the porous and barrier layer, was in the range of mega ohms for passivated surfaces, which could be attributed to the decrease in surface nickel content and formation of compact titanium oxide. The passivated sample displayed good bioactivity in terms of hydroxyapatite growth, noticed after 14days immersion in

  5. Nanostructured Montmorillonite Clay for Controlling the Lipase-Mediated Digestion of Medium Chain Triglycerides.

    PubMed

    Dening, Tahnee J; Joyce, Paul; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-12-07

    Biocompatible lipid hybrid particles composed of montmorillonite and medium chain triglycerides were engineered for the first time by spray drying oil-in-water emulsions stabilized by montmorillonite platelets to form montmorillonite-lipid hybrid (MLH) microparticles containing up to 75% w/w lipid. In vitro lipolysis studies under simulated intestinal conditions indicated that the specific porous nanoarchitecture and surface chemistry of MLH particles significantly increased the rate (>10-fold) and extent of lipase-mediated digestion compared to that of coarse and homogenized submicrometer triglyceride emulsions. Proton nuclear magnetic resonance studies verified the rapid and enhanced production of fatty acids for MLH particles; these are electrostatically repelled by the negatively charged montmorillonite platelet faces and avoid the "interfacial poisoning" caused by incomplete digestion that retards lipid droplet digestion. MLH particles are a novel biomaterial and encapsulation system that optimize lipase enzyme efficiency and have excellent potential as a smart delivery system for lipophilic biomolecules owing to their exceptional physicochemical and biologically active properties. These particles can be readily fabricated with varying lipid loads and thus may be tailored to optimize the solubilization of specific bioactive molecules requiring reformulation.

  6. Spectroscopic study of the polymerization of intercalated anilinium ions in different montmorillonite clays

    NASA Astrophysics Data System (ADS)

    do Nascimento, Gustavo M.; Temperini, Marcia L. A.

    2011-09-01

    The polymerization of the intercalated aniline ions was studied in three different clays, Swy2-montmorillonite (MMT), synthetic mica-montmorillonite (Syn1) and pillarized Swy2-montmorillonite (PILC). PANI is formed between the MMT and Syn1 clay layers, being confirmed by the shift of d001 peak in the X-ray pattern. X-ray Absorption near to Si K edge (Si K XANES) data show that the structures of clays are preserved after the polymerization process and in addition to the SEM images show that morphologies of the clays are maintained after polymerization, indicating no polymerization in their external surface. UV-vis-NIR and resonance Raman data display that the PANI formed in Syn1 galleries has higher amount of phenazinic rings than observed for PANI intercalated in montmorillonite (MMT) clay. No polymer formation was detected in the PILC. N K XANES and EPR spectroscopies show the presence of azo and radical nitrogen in intercalated PANI chains. Hence, the results are rationalized considering the structural differences between the clays for understanding the role of the anilinium polymerization within the clays galleries.

  7. Further work on sodium montmorillonite as catalyst for the polymerization of activated amino acids

    NASA Technical Reports Server (NTRS)

    Eirich, F. R.; Paecht-Horowitz, M.

    1986-01-01

    When the polycondensation of amino acid acylates was catalyzed with Na-montmorillonite, the polypeptides were consistently found to exhibit a distribution of discrete molecular weights, for as yet undiscovered reasons. One possible explanation was connected to the stepwise mode of monomer addition. New experiments have eliminated this possibility, so that there is the general assumption that this discreteness is the result of a preference of shorter oligomers to add to others of the same length, a feature that could be attributed to some structure of the platelet aggregates of the montmorillonite. The production of optical stereoisomers is anticipated when D,L-amino acids are polymerized on montmorillonite. Having used an optically active surface, the essence of the results lies not only in the occurrence of optically active oligomers and polymers, but also in the fact that the latter exhibit the same molecular weight characteristics as the D,L-polymers. Preparatory to work contemplated on a parallel synthesis of amino acid and nucleotide oligomers, studies were continued on the co-adsorption of amino acids, nucleotides, and amino acid-nucleotides on montmorillonite.

  8. Montmorillonite, oligonucleotides, RNA and origin of life

    NASA Technical Reports Server (NTRS)

    Ertem, Gozen

    2004-01-01

    Na-montmorillonite prepared from Volclay by the titration method facilitates the self-condensation of ImpA, the 5'-phosphorimidazolide derivative of adenosine. As was shown by AE-HPLC analysis and selective enzymatic hydrolysis of products, oligo(A)s formed in this reaction are 10 monomer units long and contain 67% 3',5'-phosphodiester bonds (Ferris and Ertem, 1992a). Under the same reaction conditions, 5'-phosphorimidazolide derivatives of cytidine, uridine and guanosine also undergo self-condensation producing oligomers containing up to 12-14 monomer units for oligo(C)s to 6 monomer units for oligo(G)s. In oligo(C)s and oligo(U)s, 75-80% of the monomers are linked by 2',5'-phosphodiester bonds. Hexamer and higher oligomers isolated from synthetic oligo(C)s formed by montmorillonite catalysis, which contain both 3',5'- and 2',5'-linkages, serve as catalysts for the non-enzymatic template directed synthesis of oligo(G)s from activated monomer 2-MeImpG, guanosine 5'-phospho-2-methylimidazolide (Ertem and Ferris, 1996). Pentamer and higher oligomers containing exclusively 2',5'-linkages, which were isolated from the synthetic oligo(C)s, also serve as templates and produce oligo(G)s with both 2',5'- and 3',5'-phosphodiester bonds. Kinetic studies on montmorillonite catalyzed elongation rates of oligomers using the computer program SIMFIT demonstrated that the rate constants for the formation of oligo(A)s increased in the order of 2-mer < 3-mer < 4-mer ... < 7-mer (Kawamura and Ferris, 1994). A decameric primer, dA(pdA)8pA bound to montmorillonite was elongated to contain up to 50 monomer units by daily addition of activated monomer ImpA to the reaction mixture (Ferris, Hill and Orgel, 1996). Analysis of dimer fractions formed in the montmorillonite catalyzed reaction of binary and quaternary mixtures of ImpA, ImpC, 2-MeImpG and ImpU suggested that only a limited number of oligomers could have formed on the primitive Earth rather than equal amounts of all possible

  9. Montmorillonite, Oligonucleotides, RNA and Origin of Life

    NASA Astrophysics Data System (ADS)

    Ertem, Gözen

    2004-12-01

    Na-montmorillonite prepared from Volclay by the titration method facilitates the self-condensation of ImpA, the 5'-phosphorimidazolide derivative of adenosine. As was shown by AE-HPLC analysis and selective enzymatic hydrolysis of products, oligo(A)s formed in this reaction are 10 monomer units long and contain 67% 3',5'-phosphodiester bonds (Ferris and Ertem, 1992a). Under the same reaction conditions, 5'-phosphorimidazolide derivatives of cytidine, uridine and guanosine also undergo self-condensation producing oligomers containing up to 12-14 monomer units for oligo(C)s to 6 monomer units for oligo(G)s. In oligo(C)s and oligo(U)s, 75-80% of the monomers are linked by 2',5'-phosphodiester bonds. Hexamer and higher oligomers isolated from synthetic oligo(C)s formed by montmorillonite catalysis, which contain both 3',5'- and 2',5'-linkages, serve as catalysts for the non-enzymatic template directed synthesis of oligo(G)s from activated monomer 2-MeImpG, guanosine 5'-phospho-2-methylimidazolide (Ertem and Ferris, 1996). Pentamer and higher oligomers containing exclusively 2',5'-linkages, which were isolated from the synthetic oligo(C)s, also serve as templates and produce oligo(G)s with both 2',5'- and 3',5'-phosphodiester bonds. Kinetic studies on montmorillonite catalyzed elongation rates of oligomers using the computer program SIMFIT demonstrated that the rate constants for the formation of oligo(A)s increased in the order of 2-mer <3-mer <4-mer ... <7-mer (Kawamura and Ferris, 1994). A decameric primer, dA(pdA)8pA bound to montmorillonite was elongated to contain up to 50 monomer units by daily addition of activated monomer ImpA to the reaction mixture (Ferris, Hill and Orgel, 1996). Analysis of dimer fractions formed in the montmorillonite catalyzed reaction of binary and quaternary mixtures of ImpA, ImpC, 2-MeImpG and ImpU suggested that only a limited number of oligomers could have formed on the primitive Earth rather than equal amounts of all possible isomers

  10. Preparation and characterization of antibacterial silver/vermiculites and silver/montmorillonites

    NASA Astrophysics Data System (ADS)

    Valášková, Marta; Hundáková, Marianna; Kutláková, Kateřina Mamulová; Seidlerová, Jana; Čapková, Pavla; Pazdziora, Erich; Matějová, Kateřina; Heřmánek, Martin; Klemm, Volker; Rafaja, David

    2010-11-01

    The reason for the preparation and characterization of the novel antibacterial silver/vermiculites (Ag/V) together with the silver/montmorillonites (Ag/M) was that the information on the vermiculite structure change and stability of Ag/V in water as well as its effect on bacteria are sporadic. The vermiculite (V), (Si 3.02Al 0.98) IV (Mg 2.27Al 0.12Fe0.283+Fe0.052+Ti 0.07) VI O 10(OH) 2 Ca 0.09Na 0.21K 0.50 from West China and montmorillonite (M), (Si 3.96Al 0.04) IV (Al 1.20Fe0.343+Mg 0.42Ti 0.02) VI O 10 (OH) 2Ca 0.15Na 0.14K 0.08 from Ivančice (Czech Republic), fraction <0.4 μm were the starting clay materials for sample preparation. The samples V1 and M1 were prepared via reaction of the V and M with the 0.01 mol L -1 AgNO 3 aqueous solution. The samples V2 and M2 were treated with the aqueous solution of AgNO 3 for two times. The cation exchange and reduced metallic silver on M1 and V1 evoked the specific surface area (SSA) diminution, the mean particle-size diameter extension and appearance of micropores with radius (<0.4 nm). Repeated silver cation exchange in M2 and V2 reduced particle size, increased slightly SSA and micropores with radius of 0.4-0.5 nm. Samples Ag/V and Ag/M showed higher content of pores with radius 0.5-1.0 nm than original V and M. The Ag concentration was found higher in Ag/V than in Ag/M and higher in repeatedly treated samples: 0.9 wt.% Ag in V1, 1.4 wt.% Ag in V2, 0.6 wt.% Ag in M1 and 1.0 wt.% Ag in M2. Vermiculite structure consisting of the hydrated interstratified phases and the mica-like phase changed to the cation-one-zero layer hydrate interstratification structure in V1 and to the random of two-one layer hydrate interstratifications in V2. Infrared and Mössbauer spectroscopy revealed no changes in the structure of the clay minerals that could be related directly to the sorption and crystallization of silver. Transmission electron microscopy showed that the silver nanoparticles size distribution was much narrower for the

  11. 40 CFR 721.10573 - Magnesium hydroxide surface treated with substituted alkoxysilanes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Magnesium hydroxide surface treated... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10573 Magnesium hydroxide surface... to reporting. (1) The chemical substance identified generically as magnesium hydroxide...

  12. 40 CFR 721.10573 - Magnesium hydroxide surface treated with substituted alkoxysilanes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Magnesium hydroxide surface treated... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10573 Magnesium hydroxide surface... to reporting. (1) The chemical substance identified generically as magnesium hydroxide...

  13. Effect of UV exposure on the surface chemistry of wood veneers treated with ionic liquids

    NASA Astrophysics Data System (ADS)

    Patachia, Silvia; Croitoru, Catalin; Friedrich, Christian

    2012-07-01

    In this paper, the influence of four types of imidazolium-based ionic liquids (ILs) on the chemical alteration of the surface of wood veneers exposed to 254 nm UV irradiation have been studied by using image analysis, Fourier transform infrared spectroscopy and surface energy calculation. The wood treated with ionic liquids showed better stability to UV light, as demonstrated by the low lignin, carbonyl index and cellulose crystallinity index variation, as well as very small color modification of the surface with the increase of the UV exposure period, by comparing to non-treated wood. The results show that the tested ionic liquids could be effective as UV stabilizers.

  14. Extending a transonic small disturbance code to treat swept vertical surfaces

    NASA Technical Reports Server (NTRS)

    Gibbons, Michael D.

    1992-01-01

    A flexible-swept vertical surface capability has been developed and implemented within the CAP-TSD transonic small disturbance (TSD) code. The new capability required a modification to the TSD equation and a grid transformation for swept vertical surfaces. Modifications to the vertical surface boundary conditions allow it to be treated as a flexible surface. The new capability extends the range of problems which the code can treat. In order to assess the accuracy of the modifications, calculations were performed for a rectangular T-tail configuration and an AGARD T-tail configuration. Unsteady forces and moments are presented for the rectangular T-tail oscillating in yaw for a range of reduced frequencies. Comparisons are presented with linear theory and experiment. Steady and unsteady surface pressures are presented for the AGARD T-tail along with generalized aerodynamic forces. Comparisons are made with linear theory. The comparisons demonstrate the accuracy of the vertical surface modifications.

  15. Preparation and Characterization of Novel Montmorillonite Nanocomposites

    NASA Astrophysics Data System (ADS)

    Mansa, Rola

    Clay minerals have historically played a consequential role in human health. While the beginnings were rooted in geophagy, a primitive act of consuming earth, the health-related uses of clay minerals have evolved and diversified over time.. As excipients in pharmaceutical formulations, clay minerals can attribute novel properties onto intercalated compounds. Intercalating oxybenzone, a UV filter, within the interlamellar space of montmorillonite is desirable in order to minimize direct contact with skin. Intercalating resveratrol, a compound known for attributing beneficial effects onto human health, may be advantageous since this compound is susceptible to cis-trans isomerisation. The strategy of using alkylammonium--modified clay was undertaken and proved successful for the intercalation of oxybenzone. The field of biopolymer/layered silicate nanocomposites is heavily researched for use in a multitude of applications. Novel montmorillonite nanocomposites were prepared with neutral guar gum and cationic guar gum, using an environmentally friendly process and are fully characterized.

  16. Mouse embryonic fibroblasts accumulate differentially on titanium surfaces treated with nanosecond laser pulses.

    PubMed

    Radmanesh, Mitra; Ektesabi, Amin M; Wyatt, Rachael A; Crawford, Bryan D; Kiani, Amirkianoosh

    2016-10-01

    Biomaterial engineering, specifically in bone implant and osseointegration, is currently facing a critical challenge regarding the response of cells to foreign objects and general biocompatibility of the materials used in the production of these implants. Using the developing technology of the laser surface treatment, this study investigates the effects of the laser repetition rate (frequency) on cell distribution across the surface of the titanium substrates. The main objective of this research is building a fundamental understanding of how cells interact with treated titanium and how different treatments affect cell accumulation. Cells respond differently to surfaces treated with different frequency lasers. The results of this research identify the influence of frequency on surface topography properties and oxidation of titanium, and their subsequent effects on the pattern of cell accumulation on its surface. Despite increased oxidation in laser-treated regions, the authors observe that fibroblast cells prefer untreated titanium to laser-treated regions, except the regions treated with 25 kHz pulses, which become preferentially colonized after 72 h.

  17. Desorption of plutonium from montmorillonite: An experimental and modeling study

    NASA Astrophysics Data System (ADS)

    Begg, James D.; Zavarin, Mavrik; Kersting, Annie B.

    2017-01-01

    Desorption of plutonium (Pu) will likely control the extent to which it is transported by mineral colloids. We evaluated the adsorption/desorption behavior of Pu on SWy-1 montmorillonite colloids at pH 4, pH 6, and pH 8 using batch adsorption and flow cell desorption experiments. After 21 days adsorption, Pu(IV) affinity for montmorillonite displayed a pH dependency, with Kd values highest at pH 4 and lowest at pH 8. The pH 8 experiment was further allowed to equilibrate for 6 months and showed an increase in Kd, indicating that true sorption equilibrium was not achieved within the first 21 days. For the desorption experiments, aliquots of the sorption suspensions were placed in a flow cell, and Pu-free solutions were then pumped through the cell for a period of 12 days. Changes in influent solution flow rate were used to investigate the kinetics of Pu desorption and demonstrated that it was rate-limited over the experimental timescales. At the end of the 12-day flow cell experiments, the extent of desorption was again pH dependent, with pH 8 > pH 6 > pH 4. Further, at pH 8, less Pu was desorbed after an adsorption contact time of 6 months than after a contact time of 21 days, consistent with an aging of Pu on the clay surface. A conceptual model for Pu adsorption/desorption that incorporated known surface-mediated Pu redox reactions was used to fit the experimental data. The resulting rate constants indicated processes occurring on timescales of months and even years which may, in part, explain observations of clay colloid-facilitated Pu transport on decadal timescales. Importantly, however, our results also imply that migration of Pu adsorbed to montmorillonite colloids at long (50-100 year) timescales under oxic conditions may not be possible without considering additional phenomena, such as co-precipitation.

  18. Desorption of plutonium from montmorillonite: An experimental and modeling study

    DOE PAGES

    Begg, James D.; Zavarin, Mavrik; Kersting, Annie B.

    2017-01-15

    Desorption of plutonium (Pu) will likely control the extent to which it is transported by mineral colloids. In this article, we evaluated the adsorption/desorption behavior of Pu on SWy-1 montmorillonite colloids at pH 4, pH 6, and pH 8 using batch adsorption and flow cell desorption experiments. After 21 days adsorption, Pu(IV) affinity for montmorillonite displayed a pH dependency, with Kd values highest at pH 4 and lowest at pH 8. The pH 8 experiment was further allowed to equilibrate for 6 months and showed an increase in Kd, indicating that true sorption equilibrium was not achieved within the firstmore » 21 days. For the desorption experiments, aliquots of the sorption suspensions were placed in a flow cell, and Pu-free solutions were then pumped through the cell for a period of 12 days. Changes in influent solution flow rate were used to investigate the kinetics of Pu desorption and demonstrated that it was rate-limited over the experimental timescales. At the end of the 12-day flow cell experiments, the extent of desorption was again pH dependent, with pH 8 > pH 6 > pH 4. Further, at pH 8, less Pu was desorbed after an adsorption contact time of 6 months than after a contact time of 21 days, consistent with an aging of Pu on the clay surface. In addition, a conceptual model for Pu adsorption/desorption that incorporated known surface-mediated Pu redox reactions was used to fit the experimental data. The resulting rate constants indicated processes occurring on timescales of months and even years which may, in part, explain observations of clay colloid-facilitated Pu transport on decadal timescales. Importantly, however, our results also imply that migration of Pu adsorbed to montmorillonite colloids at long (50–100 year) timescales under oxic conditions may not be possible without considering additional phenomena, such as co-precipitation.« less

  19. Surface modification of argon/oxygen plasma treated vulcanized ethylene propylene diene polymethylene surfaces for improved adhesion with natural rubber

    NASA Astrophysics Data System (ADS)

    Basak, Ganesh C.; Bandyopadhyay, Abhijit; Neogi, Sudarsan; Bhowmick, Anil K.

    2011-01-01

    Vulcanized ethylene propylene diene polymethylene (EPDM) rubber surface was treated in a radio frequency capacitatively coupled low pressure argon/oxygen plasma to improve adhesion with compounded natural rubber (NR) during co-vulcanization. The plasma modified surfaces were analyzed by means of contact angle measurement, surface energy, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray sulfur mapping and atomic force microscopy. Several experimental variables such as plasma power, length of exposure time and composition of the argon-oxygen gas mixture were considered. It was delineated that plasma treatment changed both surface composition and roughness, and consequently increased peel strength. The change in surface composition was mainly ascribed to the formation of C-O and -Cdbnd O functional groups on the vulcanized surfaces. A maximum of 98% improvement in peel strength was observed after plasma treatment.

  20. Characterization of the surface and the interphase of PVC-copper amine-treated wood composites

    NASA Astrophysics Data System (ADS)

    Jiang, Haihong; Kamdem, D. Pascal

    2010-05-01

    Contact angles and surface energy of wood, as well as interfacial shear strength between wood and polyvinyl chloride (PVC) were investigated and used to monitor the modifications generated on the surfaces of wood treated with a copper ethanolamine solution. An increase in surface energy of wood after treatments promotes wetting of PVC on wood surfaces. Improved interfacial shear strength between treated wood and PVC matrix can be attributed to the formation of a stronger wood-PVC interphase. This suggests that treatment may be used to improve the adhesion between wood surface and PVC in the formulation of wood fiber composites to yield products with enhanced mechanical properties and better biological and physical performance against decay and insect destroying wood.

  1. Surface characterization of alkali- and heat-treated Ti with or without prior acid etching

    NASA Astrophysics Data System (ADS)

    An, Sang-Hyun; Matsumoto, Takuya; Miyajima, Hiroyuki; Sasaki, Jun-Ichi; Narayanan, Ramaswamy; Kim, Kyo-Han

    2012-03-01

    Titanium and its alloys are used as implant materials in dental and orthopaedic applications. The material affinities to host bone tissue greatly concern with the recovery period and good prognosis. To obtain a material surface having excellent affinity to bone, acid etching prior to alkali- and heat-treatment of Ti was conducted. The surface characteristics of the prepared sample indicated that the roughness as well as the wettability increased by pre-etching. Bone-like apatite was formed on pre-etched, alkali- and heat-treated Ti surface in simulated body fluid (SBF) within 3 days, while it takes 5 days on the solely alkali- and heat-treated surface. Osteoblastic cells showed better compatibility on the per-etched surface compared to the pure Ti surface or alkali- and heat-treated surface. Moreover, the pre-etched surface showed better pull-off tensile adhesion strength against the deposited apatite. Thus, acid etching prior to alkali- and heat-treatment would be a promising method for enhancing the affinity of Ti to host bone tissue.

  2. Thermal stability of octadecyltrimethylammonium bromide modified montmorillonite organoclay.

    PubMed

    Xi, Yunfei; Zhou, Qin; Frost, Ray L; He, Hongping

    2007-07-15

    Organoclays are significant for providing a mechanism for the adsorption of organic molecules from potable water. As such their thermal stability is important. A combination of thermogravimetric analysis and infrared emission spectroscopy was used to determine this stability. Infrared emission spectroscopy (IES) was used to investigate the changes in the structure and surface characteristics of water and surfactant molecules in montmorillonite, octadecyltrimethylammonium bromide and organoclays prepared with the surfactant octadecyltrimethylammonium bromide with different surfactant loadings. These spectra collected at different temperatures give support to the results obtained from the thermal analysis and also provide additional evidence for the dehydration which is difficult to obtain by normal thermoanalytical techniques. The spectra provide information on the conformation of the surfactant molecules in the clay layers and the thermal decomposition of the organoclays. Infrared emission spectroscopy proved to be a useful tool for the study of the thermal stability of the organoclays.

  3. Samarium Ion Exchanged Montmorillonite for High Temperature Cumene Cracking Reaction

    NASA Astrophysics Data System (ADS)

    Binitha, N. N.; Silija, P. P.; Suraj, V.; Yaakob, Z.; Sugunan, S.

    2011-02-01

    Montmorillonite clay is cation exchanged with samarium and its catalytic influence in cumene cracking reaction is investigated. Effect of exchange with sodium ions on further exchange with samarium ions is also noted. Acidity measurements are done using Temperature Programmed Desorption (TPD) of ammonia. The retention of basic structure is proved from FTIR spectra and XRD patterns. Elemental analysis result shows that samarium exchange has occurred, which is responsible for the higher catalytic activity. Surface area and pore volume remains more or less unaffected upon exchange. Thermogravimetric analysis indicates the enhanced thermal stability on exchanging. Cumene cracking reaction is carried out at atmospheric pressure in a fixed bed glass reactor at 673 K. The predominance of Brønsted acidity is confirmed from high selectivity to benzene.

  4. Fabrication of thromboresistant multilayer thin film on plasma treated poly (vinyl chloride) surface.

    PubMed

    Tan, Qinggang; Ji, Jian; Zhao, Feng; Fan, De-Zeng; Sun, Fu-Yu; Shen, Jia-Cong

    2005-07-01

    Layer-by-layer deposited anticoagulant multilayer films were prepared on ammonia plasma treated poly (vinyl chloride) (PVC). Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and contact angle results revealed the presence of -NH2 on the ammonia plasma treated PVC surfaces and the layer-by-layer self-assembly process. The stability of multilayer film was studied with the radio labeled method. The remainder bovine serum albumin (BSA) in cross-linked 5(heparin/BSA) multilayer films dipped in phosphate buffered saline (PBS, pH 7.4) was more than 90% in 40 days. The static platelet adhesion result indicated the anticoagulant multilayer films deposited on the plasma treated PVC reduced platelet adhesion drastically and no thrombus forming. The plasma recalcification time revealed that the multilayer modified surfaces greatly prolonged the plasma recalcification time. Such an easy processing and shape-independent method may have good potential for surface modification of cardiovascular devices.

  5. Batch sorption and spectroscopic speciation studies of neptunium uptake by montmorillonite and corundum

    NASA Astrophysics Data System (ADS)

    Elo, O.; Müller, K.; Ikeda-Ohno, A.; Bok, F.; Scheinost, A. C.; Hölttä, P.; Huittinen, N.

    2017-02-01

    Detailed information on neptunium(V) speciation on montmorillonite and corundum surfaces was obtained by batch sorption and desorption studies combined with surface complexation modelling using the Diffuse Double-Layer (DDL) model, in situ time-resolved Attenuated Total Reflection Fourier-Transform Infrared (ATR FT-IR) and X-ray absorption (XAS) spectroscopies. The pH-dependent batch sorption studies and the spectroscopic investigations were conducted under carbonate-free conditions in 10 mM NaClO4 or 10 mM NaCl. Solid concentrations of 0.5 g/l and 5 g/l were used depending on the experiment. The neptunium(V) desorption from the two mineral surfaces was investigated at pH values ranging from 8 to 10, using the replenishment technique. Neptunium(V) was found to desorb from the mineral surface, however, the extent of desorption was dependent on the solution pH. The desorption of neptunium(V) was confirmed in the ATR FT-IR spectroscopic studies at pH 10, where all of the identified inner-sphere complexed neptunium(V), characterized by a vibrational band at 790 cm-1, was desorbed from both mineral surfaces upon flushing the mineral films with a blank electrolyte solution. In XAS investigations of neptunium(V) uptake by corundum, the obtained structural parameters confirm the formation of an inner-sphere complex adsorbed on the surface in a bidentate fashion. As the inner-sphere complexes found in the IR-studies are characterized by identical sorption bands on both corundum and montmorillonite, we tentatively assigned the neptunium(V) inner-sphere complex on montmorillonite to the same bidentate complex found on corundum in the XAS investigations. Finally, the obtained batch sorption and spectroscopic results were modelled with surface complexation modelling to explain the neptunium(V) speciation on montmorillonite over the entire investigated pH range. The modelling results show that cation exchange in the interlayer space as well as two pH-dependent surface complexes

  6. Oxygen plasma-treated thermoresponsive polymer surfaces for cell sheet engineering.

    PubMed

    Shimizu, Kazunori; Fujita, Hideaki; Nagamori, Eiji

    2010-06-01

    Although cell sheet tissue engineering is a potent and promising method for tissue engineering, an increase of mechanical strength of a cell sheet is needed for easy manipulation of it during transplantation or 3D tissue fabrication. Previously, we developed a cell sheet-polymer film complex that had enough mechanical strength that can be manipulated even by tweezers (Fujita et al., 2009. Biotechnol Bioeng 103(2): 370-377). We confirmed the polymer film involving a temperature sensitive polymer and extracellular matrix (ECM) proteins could be removed by lowering temperature after transplantation, and its potential use in regenerative medicine was demonstrated. However, the use of ECM proteins conflicted with high stability in long-term storage and low cost. In the present study, to overcome these drawbacks, we employed the oxygen plasma treatment instead of using the ECM proteins. A cast and dried film of thermoresponsive poly-N-isopropylacrylamide (PNIPAAm) was fabricated and treated with high-intensity oxygen plasma. The cells became possible to adhere to the oxygen plasma-treated PNIPAAm surface, whereas could not to the inherent surface of bulk PNIPAAm without treatment. Characterizations of the treated surface revealed the surface had high stability. The surface roughness, wettability, and composition were changed, depending on the plasma intensity. Interestingly, although bulk PNIPAAm layer had thermoresponsiveness and dissolved below lower critical solution temperature (LCST), it was found that the oxygen plasma-treated PNIPAAm surface lost its thermoresponsiveness and remained insoluble in water below LCST as a thin layer. Skeletal muscle C2C12 cells could be cultured on the oxygen plasma-treated PNIPAAm surface, a skeletal muscle cell sheet with the insoluble thin layer could be released in the medium, and thus the possibility of use of the cell sheet for transplantation was demonstrated.

  7. Constructing covalent interface in rubber/clay nanocomposite by combining structural modification and interlamellar silylation of montmorillonite.

    PubMed

    Zha, Chao; Wang, Wencai; Lu, Yonglai; Zhang, Liqun

    2014-11-12

    Strong interfacial interaction and nanodispersion are necessary for polymer nanocomposites with expectations on mechanical performance. In this work, montmorillonite (MMT) was first structurally modified by acid treatment to produce more silanol groups on the layer surface. This was followed by chemical modification of γ-methacryloxy propyl trimethoxysilane molecule (KH570) through covalent grafting with the silanol groups. (29)Si and (27)Al magic angle spinning (MAS) NMR results revealed the microstructural changes of MMT after acid treatment and confirmed the increase of silanol groups on acid-treated MMT surfaces. Thermogravimetric analysis indicated an increase in the grafted amount of organosilane on the MMT surface. X-ray diffraction (XRD) showed that the functionalization process changed the highly ordered stacking structure of the MMT mineral into a highly disordered structure, indicating successful grafting of organosilane to the interlayer surface of the crystalline sheets. The styrene-butadiene rubber (SBR)/MMT nanocomposites were further prepared by co-coagulating with SBR latex and grafted-MMT aqueous suspension. During vulcanization, a covalent interface between modified MMT and rubber was established through peroxide-radical-initiated reactions, and layer aggregation was effectively prevented. The SBR/MMT nanocomposites had highly and uniformly dispersed MMT layers, and the covalent interfacial interaction was finally achieved and exhibited high performance.

  8. Effectiveness of activated carbon and Egyptian montmorillonite in the protection against deoxynivalenol-induced cytotoxicity and genotoxicity in rats.

    PubMed

    Abdel-Wahhab, Mosaad A; El-Kady, Ahmed A; Hassan, Aziza M; Abd El-Moneim, Omaima M; Abdel-Aziem, Sekena H

    2015-09-01

    This study was conducted to prepare and characterize activated carbon (AC) and to evaluate its protective effect against deoxynivalenol (DON) toxicity in rats compared to Egyptian montmorillonite (EM). AC was prepared using a single-step chemical activation with phosphoric acid (H3PO4). The resulted AC has a high surface area and a high total pore volume. Male Sprague-Dawley rats were divided into 6 groups (n = 10) and treated for 3 weeks as follow: the control group, the groups fed AC or EM-supplemented diet (0.5% w/w), the group treated orally with DON (5 mg/kg b.w.) and the groups fed AC or EM-supplemented diet and treated with DON. Blood and liver samples were collected for different analyses. Treatment with DON increased liver function enzymes, lipid peroxidation, tumor necrosis factor α, DNA fragmentation, decreased hepatic glutathione content, up regulating mRNA Fas and TNF-α genes expression and increased micronucleated polychromatic erythrocytes and normochromatic erythrocytes in bone marrow. Co-treatment of DON plus AC or EM succeeded to normalize the levels of the biochemical parameters, reduced the cytotoxicity of bone marrow and ameliorated the hepatic genotoxicity. Moreover, AC was more effective than EM and has a high affinity to adsorb DON and to reduce its cytotoxicity and genotoxicity.

  9. Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior.

    PubMed

    Zhang, Y M; Bataillon-Linez, P; Huang, P; Zhao, Y M; Han, Y; Traisnel, M; Xu, K W; Hildebrand, H F

    2004-02-01

    Osteoblast adhesion on the implant material surface is essential for the success of any implant in which osteointegration is required. Surface properties of implant material have a critical role in the cell adhesion progress. Titanium and its alloys are widespread and increasingly used as implant material in dentistry and orthopedics because of their excellent biocompatibility, which is attributed to a passive layer of TiO2 on the surface. In this study, the micro-arc oxidizing (MAO) and hydrothermally synthesizing (HS) methods were used to modify the TiO2 layer on the titanium surface. The surface microstructure was observed by scanning electron microscopy. The surface energy was assessed. The mouse osteoblastic cell line (MC3T3-E1) was seeded on the treated surfaces to evaluate their effect on cell behavior. This included cell adhesion kinetics, cell proliferation, cell morphology, and cytoskeletal organization. The surface structure of MAO samples exhibited micropores with a diameter of 1-3 microm, whereas the MAO-HS-treated samples showed additional multiple crystalline microparticles on the microporous surface. The surface energy of MAO and MAO-HS was higher than that of titanium. The cell adhesion rate was higher on the MAO-HS surface than on the MAO and titanium surface, but without any significant difference between them. After 3 days of culture, cells proliferated significantly more on the MAO and titanium surface than on the MAO-HS surface. The cytoskeletal organization was analyzed by actin and vinculin staining on all the samples. We conclude that the MAO and MAO-HS methods change the surface energy of TiO2 layer on the titanium surface. This may have an influence on the initial cell attachment. Other surface characteristics may be involved in the cell proliferation, which is different from cell attachment on the sample surface. A longer-duration cell experiment should be conducted to see the effect on cell differentiation. Future in vivo evaluation may

  10. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    NASA Astrophysics Data System (ADS)

    Jheeta, Sohan; Joshi, Prakash C.

    2014-08-01

    This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the "Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)" conference at the Open University, Milton Keynes, UK, 5-6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1). Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7) produced only dimers from its monomers in water, addition of sodium chloride (1 M) enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl- > Br- > I-. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt.

  11. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    PubMed Central

    Jheeta, Sohan; Joshi, Prakash C.

    2014-01-01

    This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the “Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)” conference at the Open University, Milton Keynes, UK, 5–6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1). Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7) produced only dimers from its monomers in water, addition of sodium chloride (1 M) enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl− > Br− > I−. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt. PMID:25370375

  12. Biocompatibility of surface treated pure titanium and titanium alloy by in vivo and in vitro test

    NASA Astrophysics Data System (ADS)

    Lee, Min-Ho; Yoon, Dong-Joo; Won, Dae-Hee; Bae, Tae-Sung; Watari, Fumio

    2003-02-01

    In the present study, commercial pure Ti and Ti-6Al-4V alloy specimens with and without alkali and heat treatments were implanted in the abdominal connective tissue of mice. Conventional stainless steel 316L was also implanted for comparison. After three months, their biocompatibility was evaluated by in vitro and in vivo experiments. Surface structural changes of specimens due to the alkali treatment and soaking in Hank's solution were analyzed by XRD, SEM, XPS and AES. An apatite layer, which accelerates the connection with bone, was formed more easily on the alkali treated specimens than the non-treated specimens. The number of macrophages, which is known to increase as the inflammatory reaction proceeds, was much lower for the alkali and heat treated specimens than for the others. The average thickness of the fibrous capsule formed around the implant was much thinner for the alkali and heat treated specimens than for the others.

  13. Pedogenic formation of montmorillonite from a 2:1-2:2 intergrade clay mineral

    USGS Publications Warehouse

    Malcolm, R.L.; Nettleton, W.D.; McCracken, R.J.

    1969-01-01

    Montmorillonite was found to be the dominant clay mineral in surface horizons of certain soils of the North Carolina Coastal Plain whereas a 2:1-2:2 intergrade clay mineral was dominant in subjacent horizons. In all soils where this clay mineral sequence was found, the surface horizon was low in pH (below 4??5) and high in organic matter content. In contrast, data from studies of other soils of this region (Weed and Nelson, 1962) show that: (1) montmorillonite occurs infrequently; (2) maximum accumulation of the 2:1-2:2 intergrade normally occurs in the surface horizon and decreases with depth in the profile; (3) organic matter contents are low; and (4) pH values are only moderately acid (pH 5-6). It is theorized that the montmorillonite in the surface horizon of the soils studied originated by pedogenic weathering of the 2:1-2:2 intergrade clay mineral. The combined effects of low pH (below 4??5) and high organic matter content in surface horizons are believed to be the agents responsible for this mineral transformation. The protonation and solubilization (reverse of hydrolysis) of Al-polymers in the interlayer of expansible clay minerals will occur at or below pH 4??5 depending on the charge and steric effects of the interlayer. A low pH alone may cause this solubilization and thus mineral transformation, but in the soils studied the organic matter is believed to facilitate and accelerage the transformation. The intermediates of organic matter decomposition provide an acid environment, a source of protons, and a source of watersoluble mobile organic substances (principally fulvic acids) which have the ability to complex the solubilized aluminum and move it down the profile. This continuous removal of solubilized aluminum would provide for a favorable gradient for aluminum solubilization. The drainage class or position in a catena is believed to be less important than the chemical factors in formation of montmorillonite from 2:1-2:2 intergrade, because

  14. Surface composition XPS analysis of a plasma treated polystyrene: Evolution over long storage periods.

    PubMed

    Ba, Ousmane M; Marmey, Pascal; Anselme, Karine; Duncan, Anthony C; Ponche, Arnaud

    2016-09-01

    A polystyrene surface (PS) was initially treated by cold nitrogen and oxygen plasma in order to incorporate in particular amine and hydroxyl functions, respectively. The evolution of the chemical nature of the surface was further monitored over a long time period (580 days) by chemical assay, XPS and contact angle measurements. Surface density quantification of primary amine groups was performed using three chemical amine assays: 4-nitrobenzaldehyde (4-NBZ), Sulfo succinimidyl 6-[3'(2 pyridyldithio)-pionamido] hexanoate (Sulfo-LC-SPDP) and iminothiolane (ITL). The results showed amine densities were in the range of 2 per square nanometer (comparable to the results described in the literature) after 5min of nitrogen plasma treatment. Over the time period investigated, chemical assays, XPS and contact angles suggest a drastic significant evolution of the chemical nature of the surface within the first two weeks. Beyond that time period and up to almost two years, nitrogen plasma modified substrates exhibits a slow and continuous oxidation whereas oxygen plasma modifed polystyrene surface is chemically stable after two weeks of storage. The latter appeared to "ease of" showing relatively mild changes within the one year period. Our results suggest that it may be preferable to wait for a chemical "stabilization" period of two weeks before subsequent covalent immobilization of proteins onto the surface. The originality of this work resides in the study of the plasma treated surface chemistry evolution over long periods of storage time (580 days) considerably exceeding those described in the literature.

  15. Fibroblastic response and surface characterization of O(2)-plasma-treated thermoplastic polyetherurethane.

    PubMed

    Schlicht, Henning; Haugen, Håvard J; Sabetrasekh, Roya; Wintermantel, Erich

    2010-04-01

    Injection-molded samples of thermoplastic polyetherurethane (TPU) were treated with low-temperature oxygen plasma for different processing times in order to enhance cellular attachment for a gastric implant. Its effects were investigated by contact angle measurement, surface topography, cytotoxicity and cell colonization tests. No significant changes were found in the surface roughness of plasma treatment with plasma treatment time of less than 5 min. Longer treatment showed significantly higher surface roughness. It seems that there was a link between the changes in contact angle and enhanced cell growth on the treated surface, although only for the range up to plasma treatment times of 3 min. Prolonged treatment times did not cause any major changes in the water contact angle, but strongly improved the number of growing cells on the surface. Plasma treatment for 3-7 min led to a twofold increase in the number of cells compared to untreated samples and did not significantly alter the WST-1 nor worsened the lactate dehydrogenase activity compared to the control. Thus, it appears that O(2) plasma treatment is a suitable surface modification method for a gastric implant made of TPU in order to improve surface cell attachment where 3-7 min is the recommended treatment time.

  16. Interaction of Pseudomonas putida with kaolinite and montmorillonite: a combination study by equilibrium adsorption, ITC, SEM and FTIR.

    PubMed

    Rong, Xingmin; Huang, Qiaoyun; He, Xiaomin; Chen, Hao; Cai, Peng; Liang, Wei

    2008-06-15

    Equilibrium adsorption along with isothermal titration calorimetry (ITC), Fourier transform infrared spectra (FTIR) and scanning electron microscopy (SEM) techniques were employed to investigate the adsorption of Pseudomonas putida on kaolinite and montmorillonite. A higher affinity as well as larger amounts of adsorption of P. putida was found on kaolinite. The majority of sorbed bacterial cells (88.7%) could be released by water from montmorillonite, while only a small proportion (9.3%) of bacteria desorbed from kaolinite surface. More bacterial cells were observed to form aggregates with kaolinite, while fewer cells were within the larger bacteria-montmorillonite particles. The sorption of bacteria on kaolinite was enthalpically more favorable than that on montmorillonite. Based on our findings, it is proposed that the non-electrostatic forces other than electrostatic force play a more important role in bacterial adsorption by kaolinite and montmorillonite. Adsorption of bacteria on clay minerals resulted in obvious shifts of infrared absorption bands of water molecules, showing the importance of hydrogen bonding in bacteria-clay mineral adsorption. The enthalpies of -4.1+/-2.1 x 10(-8) and -2.5+/-1.4 x 10(-8)mJ cell(-1) for the adsorption of bacteria on kaolinite and montmorillonite, respectively, at 25 degrees C and pH 7.0 were firstly reported in this paper. The enthalpy of bacteria-mineral adsorption was higher than that reported previously for bacteria-biomolecule interaction but lower than that of bacterial coaggregation. The bacteria-mineral adsorption enthalpies increased at higher temperature, suggesting that the enthalpy-entropy compensation mechanism could be involved in the adsorption of P. putida on clay minerals. Data obtained in this study would provide valuable information for a better understanding of the mechanisms of mineral-microorganism interactions in soil and associated environments.

  17. Laser restoring the glass surface treated with acid-based paint

    NASA Astrophysics Data System (ADS)

    Strusevich, Anastasia V.; Poltaev, Yuriy A.; Sinev, Dmitrii A.

    2013-11-01

    The modern city facilities are often being attacked by graffiti artists, and increasingly vandals leave "tags" using paints, which compound based on acids, hydrofluoric or acetic commonly. These paints not only ink the surface, but also increase the surface roughness, and such impact can not be corrected by conventional cleaning. Thus, it was requested to develop technology that would not only clean the surface, but also to restore its structure by smoothing out irregularities and roughness formed after exposure in acid. In this work we investigated the effect of restoring the surface of the glass, spoiled by acid-based paint and then treated with CO2-laser. During the experiments, it was found that it is real to create the single-step laser surface restoring technology.

  18. Structural analysis of heat-treated birch (Betule papyrifera) surface during artificial weathering

    NASA Astrophysics Data System (ADS)

    Huang, Xianai; Kocaefe, Duygu; Kocaefe, Yasar; Boluk, Yaman; Krause, Cornélia

    2013-01-01

    Effect of artificial weathering on the surface structural changes of birch (Betule papyrifera) wood, heat-treated to different temperatures, was studied using the fluorescence microscopy and the scanning electron microscopy (SEM). Changes in the chemical structure of wood components were analyzed by FTIR in order to understand the mechanism of degradation taking place due to heat treatment and artificial weathering. The results are compared with those of the untreated (kiln-dried) birch. The SEM analysis results show that the effect of weathering on the cell wall of the untreated birch surface is more than that of heat-treated samples. The FTIR spectroscopy results indicate that lignin is the most sensitive component of heat-treated birch to the weathering degradation process. Elimination of the amorphous and highly crystallised cellulose is observed for both heat-treated and untreated wood during weathering. It is also observed that heat treatment increases the lignin and crystallised cellulose contents, which to some extent protects heat-treated birch against degradation due to weathering.

  19. Sorption/Desorption Interactions of Plutonium with Montmorillonite

    NASA Astrophysics Data System (ADS)

    Begg, J.; Zavarin, M.; Zhao, P.; Kersting, A. B.

    2012-12-01

    Plutonium (Pu) release to the environment through nuclear weapon development and the nuclear fuel cycle is an unfortunate legacy of the nuclear age. In part due to public health concerns over the risk of Pu contamination of drinking water, predicting the behavior of Pu in both surface and sub-surface water is a topic of continued interest. Typically it was assumed that Pu mobility in groundwater would be severely restricted, as laboratory adsorption studies commonly show that naturally occurring minerals can effectively remove plutonium from solution. However, evidence for the transport of Pu over significant distances at field sites highlights a relative lack of understanding of the fundamental processes controlling plutonium behavior in natural systems. At several field locations, enhanced mobility is due to Pu association with colloidal particles that serve to increase the transport of sorbed contaminants (Kersting et al., 1999; Santschi et al., 2002, Novikov et al., 2006). The ability for mineral colloids to transport Pu is in part controlled by its oxidation state and the rate of plutonium adsorption to, and desorption from, the mineral surface. Previously we have investigated the adsorption affinity of Pu for montmorillonite colloids, finding affinities to be similar over a wide range of Pu concentrations. In the present study we examine the stability of adsorbed Pu on the mineral surface. Pu(IV) at an initial concentration of 10-10 M was pre-equilibrated with montmorillonite in a background electrolyte at pH values of 4, 6 and 8. Following equilibration, aliquots of the suspensions were placed in a flow cell and Pu-free background electrolyte at the relevant pH was passed through the system. Flow rates were varied in order to investigate the kinetics of desorption and hence gain a mechanistic understanding of the desorption process. The flow cell experiments demonstrate that desorption of Pu from the montmorillonite surface cannot be modeled as a simple

  20. Aggregation of montmorillonite and organic matter in aqueous media containing artificial seawater

    PubMed Central

    2009-01-01

    Background The dispersion-aggregation behaviors of suspended colloids in rivers and estuaries are affected by the compositions of suspended materials (i.e., clay minerals vs. organic macromolecules) and salinity. Laboratory experiments were conducted to investigate the dispersion and aggregation mechanisms of suspended particles under simulated river and estuarine conditions. The average hydrodynamic diameters of suspended particles (representing degree of aggregation) and zeta potential (representing the electrokinetic properties of suspended colloids and aggregates) were determined for systems containing suspended montmorillonite, humic acid, and/or chitin at the circumneutral pH over a range of salinity (0 – 7.2 psu). Results The montmorillonite-only system increased the degree of aggregation with salinity increase, as would be expected for suspended colloids whose dispersion-aggregation behavior is largely controlled by the surface electrostatic properties and van der Waals forces. When montmorillonite is combined with humic acid or chitin, the aggregation of montmorillonite was effectively inhibited. The surface interaction energy model calculations reveal that the steric repulsion, rather than the increase in electronegativity, is the primary cause for the inhibition of aggregation by the addition of humic acid or chitin. Conclusion These results help explain the range of dispersion-aggregation behaviors observed in natural river and estuarine systems. It is postulated that the composition of suspended particles, specifically the availability of steric polymers such as those contained in humic acid, determine whether the river suspension is rapidly aggregated and settled or remains dispersed in suspension when it encounters increasingly saline environments of estuaries and oceans. PMID:19166595

  1. Sorption of tetracycline on organo-montmorillonites.

    PubMed

    Liu, Niu; Wang, Ming-xia; Liu, Ming-ming; Liu, Fan; Weng, Liping; Koopal, Luuk K; Tan, Wen-feng

    2012-07-30

    Tetracycline (TC) is a veterinary antibiotic that is frequently detected as pollutant in the environment. Powerful adsorbents are required for removing TC. The present paper compares the TC adsorption capacity of Na-montmorillonite (Na-mont) with six organo-montmorillonites (organo-monts). Three quaternary ammonium cations (QACs) with different alkyl-chain lengths were used as modifiers. Powder X-ray diffraction indicated that the d(001) values of organo-monts increased with increasing the QACs loading and alkyl-chain length. The CECs of the organo-monts were substantially lower than that of Na-mont and decreased with QACs chain length and increased loading. The modeling of the adsorption kinetics revealed that the processes of TC adsorption on the tested samples could be well fitted by the pseudo-second-order equation. The maximum adsorption capacities of TC on the organo-monts (1000-2000mmol/kg) were considerably higher than that on Na-mont (769mmol/kg). Both the Langmuir and Freundlich model could fit the adsorption isotherms. The TC adsorption to the organo-monts increase significantly with decreasing the pH below 5.5 because of the electrostatic interaction, and a high QACs loading performed better than a low loading at around pH 3.

  2. Spectra investigation on surface characteristics of graphene oxide nanosheets treated with tartaric, malic and oxalic acids

    NASA Astrophysics Data System (ADS)

    Teng, Xiyao; Yan, Manqing; Bi, Hong

    2014-01-01

    The surface characteristics of graphene oxide nanosheets (GO) treated respectively with tartaric acid, malic acid and oxalic acid, have been investigated by mainly using optical spectroscopic methods including Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible (UV-Vis) absorption and Raman spectroscopy. Additionally, the electrochemical property of the products has also been studied. The data revealed that oxygen-containing groups such as sbnd OH, sbnd COOH and sbnd Cdbnd O on the GO surface have been almost removed and thus reduced graphene oxide nanosheets (RGN) were obtained. Interestingly, the number of sp2 domains of RGN increases as treated by tartaric acid < malic acid < oxalic acid whereas the steric hindrance (SH) decreases and the ionization constant (IC) differs among these three acids. Furthermore, the specific capacitances (Cs) of GO have been greatly promoted from 2.4 F g-1 to 100.8, 112.4, and 147 F g-1 after treated with tartaric, malic and oxalic acids, respectively. This finding agrees well with the spectra result of the tendency of surface conjugated degree alteration. We claim that the difference in both SH and IC among these acids is the main reason for the diverse surface characteristics as well as the improved Cs of the RGN.

  3. Spectra investigation on surface characteristics of graphene oxide nanosheets treated with tartaric, malic and oxalic acids.

    PubMed

    Teng, Xiyao; Yan, Manqing; Bi, Hong

    2014-01-24

    The surface characteristics of graphene oxide nanosheets (GO) treated respectively with tartaric acid, malic acid and oxalic acid, have been investigated by mainly using optical spectroscopic methods including Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible (UV-Vis) absorption and Raman spectroscopy. Additionally, the electrochemical property of the products has also been studied. The data revealed that oxygen-containing groups such as OH, COOH and CO on the GO surface have been almost removed and thus reduced graphene oxide nanosheets (RGN) were obtained. Interestingly, the number of sp(2) domains of RGN increases as treated by tartaric acidtreated with tartaric, malic and oxalic acids, respectively. This finding agrees well with the spectra result of the tendency of surface conjugated degree alteration. We claim that the difference in both SH and IC among these acids is the main reason for the diverse surface characteristics as well as the improved Cs of the RGN.

  4. Nickel sorption to goethite and montmorillonite in presence of citrate.

    PubMed

    Marcussen, Helle; Holm, Peter E; Strobel, Bjarne W; Hansen, Hans Chr B

    2009-02-15

    Mobility and bioavailability of nickel (Ni) in soil strongly depends on the interaction between Ni(II), ligands, and sorbents like organic matter and minerals. Sorption of Ni(II) and Ni(II)-citrate complexes to goethite and montmorillonite was examined in batch experiments with and without citrate as ligand in the pH range pH 4-7.5. Without citrate, montmorillonite shows higher Ni sorption than goethite. Citrate strongly decreases Ni sorption to montmorillonite; in presence of 100 microM citrate goethite becomes a stronger Ni sorbent than montmorillonite. Ni and citrate sorption was modeled successfully using the diffuse double layer model with the following reactions: Goethite: 3 [triple bond]FeOH + Citrate(3-) + 3H+ <=> [triple bond] Fe3Citrate + 3H2O, [triple bond]FeOH + Ni2+ <=> [triple bond] FeONi + H+ and 2 [triple bond] FeOH + Citrate(3)- + Ni2+ <=> [triple bond] FeONiCitrate(2-) + H+. Montmorillonite: 2X- + Ni2+ <=> X2Ni and [triple bond] AIOH + Ni2+ <=> AIONi+ + H+. Sorption of Ni to a mixture of goethite and montmorillonite could be calculated by use of reactions and constants for the monomineral systems. Without citrate, the sorbed amount of Ni per mass unit in the mixture can be found as a simple average of sorption to the two single sorbents, while in presence of citrate Ni sorption to montmorillonite is strongly influenced by citrate sorption to goethite.

  5. Coadsorption of ciprofloxacin and Cu(II) on montmorillonite and kaolinite as affected by solution pH.

    PubMed

    Pei, Zhiguo; Shan, Xiao-Quan; Kong, Jingjing; Wen, Bei; Owens, Gary

    2010-02-01

    The coadsorption of ciprofloxacin (Cip) and Cu(II) on montmorillonite and kaolinite was studied between pH 4.0 and 9.5. At pH < 5.0, Cu(2+), Cip(+) and [Cu(II)(Cip(+/-))](2+) were the main species in solution. Between pH 5.0-7.0 [Cu(II)(Cip(+/-))](2+) was the dominant complex species. Above pH 8.0 [Cu(II)(Cip(-))(2)](0) precipitated. The presence of Cu(II) exerted no effect on the Cip sorption onto montmorillonite at low pH, whereas it increased Cip sorption on montmorillonite at pH > 6.0 due to the stronger affinity of Cip-Cu(II) complexes compared to sole Cip(-) or Cip(+/-), or Cip sorption via a Cu(II) bridge increased. In contrast, Cip increased Cu(II) adsorption on montmorillonite at pH < 7.0, whereas it decreased the adsorption of Cu(II) on kaolinite at pH 6.0-8.0. Cip was sorbed onto the kaolinite surface via interaction of carboxyl groups over the entire pH range. At pH 4.0-4.7, Cip(+) sorption onto kaolinite's positively charged surface was more favorable than sorption of Cip-Cu(II) complexes. Batch experiments and FTIR analyses indicated that the coordination between Cip(+/-), Cip(-) and Cu(II) were most likely present on kaolinite surface at pH 7.0. At pH > 8.0, Cu(OH)(2) (s) and [Cu(II)(Cip(-))(2)](0) precipitated out of solution or on the montmorillonite or kaolinite surface, which was not considered evidence for either the sorption of Cip or the adsorption of Cu(II).

  6. Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods

    NASA Astrophysics Data System (ADS)

    Cao, Zhi; Daly, Michael; Clémence, Lopez; Geever, Luke M.; Major, Ian; Higginbotham, Clement L.; Devine, Declan M.

    2016-08-01

    Calcium carbonate (CaCO3) is often treated with stearic acid (SA) to decrease its polarity. However, the method of application of the SA treatments has a strong influence on CaCO3 thermoplastic composite's interfacial structure and distribution. Several of papers describe the promising effects of SA surface treatment, but few compare the treatment process and its effect on the properties of the final thermoplastic composite. In the current study, we assessed a new SA treatment method, namely, complex treatment for polymer composite fabrication with HDPE. Subsequently, a comparative study was performed between the "complex" process and the other existing methods. The composites were assessed using different experiments included scanning electron microscopy (SEM), void content, density, wettability, differential scanning calorimetry (DSC), and tensile tests. It was observed that the "complex" surface treatment yielded composites with a significantly lower voids content and higher density compared to other surface treatments. This indicates that after the "complex" treatment process, the CaCO3 particles and HDPE matrix are more tightly packed than other methods. DSC and wettability results suggest that the "wet" and "complex" treated CaCO3 composites had a significantly higher heat of fusion and moisture resistance compared to the "dry" treated CaCO3 composites. Furthermore, "wet" and "complex" treated CaCO3 composites have a significantly higher tensile strength than the composites containing untreated and "dry" treated CaCO3. This is mainly because the "wet" and "complex" treatment processes have increased adsorption density of stearate, which enhances the interfacial interaction between matrix and filler. These results confirm that the chemical adsorption of the surfactant ions at the solid-liquid interface is higher than at other interface. From this study, it was concluded that the utilization of the "complex" method minimised the negative effects of void

  7. [Characterization of Wood Surface Treated with Electroless Copper Plating by Near Infrared Spectroscopy Technology].

    PubMed

    Qin, Jing; Zhang, Mao-mao; Zhao, Guang-jie; Yang, Zhong

    2015-05-01

    Wood electromagnetic shielding material, which was made by treating wood with electroless plating, not only keep the superior characteristics of wood, but also improve the conductivity, thermal conductivity and electromagnetic shielding properties of wood. The emergence of this material opens the way to the value-added exploitation of wood and widens the processing and application field for the electromagnetic shielding material. In order to explore the feasibility of using NIR technology to investigate the properties of wood electromagnetic shielding material, this study analysis the samples before and after copper plated process by the NIR spectroscopy coupled with principal component analysis (PCA). The results showed that (1) there exist significant differences between samples before and after copper plated process both on the spectral shape and absorption, and the great differences can also be seen in the samples with different treat time, especially for the samples with 5 min treat time; (2) after PCA analysis, six clusters from the samples before and after copper plated process were separately distributed in the score plot, and the properties of untreated wood and sensitized wood were similar, and the properties of samples for 25 and 40 min treat time were also similar in order that these samples were close to each other, all of which might suggest that the NIR spectroscopy reflected major feature information about material treatment; (3) After comparing the PCA performance between NIR and visible spectral region, it could be found that the classification performance of samples before and after copper plated process based on the NIR region were better than that based on the visible region, and the information of color on the surface of samples were preferably reflected in the visible region, which could indicate that there are more information about samples' surface characters using the visible spectroscopy coupled with NIR spectroscopy and it is feasible to

  8. Intestinal morphology, brush border and digesta enzyme activities of broilers fed on a diet containing Cu2+-loaded montmorillonite.

    PubMed

    Ma, Y L; Guo, T

    2008-01-01

    1. A total of 320 1-d-old Arbor Acres broiler chicks were used to investigate the effect of Cu(2+)-loaded montmorillonite (CM) on the growth performance, intestinal morphology and activities of brush border enzyme in the intestinal mucosa and digestive enzyme in the intestinal digesta of broilers. 2. The chicks were assigned randomly into 4 groups with 80 chicks per treatment. The 4 dietary treatments were: basal diet only (control group), basal diet + 2 g montmorillonite/kg, basal diet + 1 g CM/kg, and basal diet + 2 g CM/kg. The chicks were raised in cages and feed and water were provided ad libitum for a period of 42 d. 3. The addition of CM to the diet of broilers significantly increased body weight and feed efficiency. Similarly, birds receiving montmorillonite had higher feed efficiency than the control after 42 d of feeding. 4. Data on villus height and crypt depth for duodenum, jejunum and ileum indicated that treating the diet of broilers with either CM or montmorillonite improved the mucosal morphology of the small intestine. 5. The presence of CM in the diet of broilers significantly increased the activities of maltase, aminopeptidase N and alkaline phosphatase in small intestinal mucosa. However, the activities of protease, trypsin, chymotrypsin, amylase and lipase in small intestinal digesta of broilers fed on the CM-supplemented diet were slightly higher than control values.

  9. Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid

    NASA Astrophysics Data System (ADS)

    Sadeghiani, N.; Barbosa, L. S.; Silva, L. P.; Azevedo, R. B.; Morais, P. C.; Lacava, Z. G. M.

    2005-03-01

    In this study, some biological tests were carried out with a magnetic fluid (MF) sample based on magnetite nanoparticles (MNPs) surface coated with polyaspartic acid (PAMF). The tests were performed from 1 to 30 days after injection of 50 μL of PAMF in Swiss mice. The PAMF biocompatibility/toxicity was evaluated through cytometry, micronuclei assay, and morphology of several organs. All observed results were time and dose dependent. The data indicate that MNPs surface-treated with polyaspartic acid may be considered as a potential precursor of anticancer drugs.

  10. X-Ray Photoemission Analysis of Chemically Treated CdZnTe Semiconductor Surfaces

    NASA Astrophysics Data System (ADS)

    Nelson, Art; Vazquez, Daniel; Bliss, Ann; Evans, Cheryl; Ferreira, Jim; Nikoloc, Rebecca; Payne, Steve

    2007-03-01

    Device-grade Cd(1-x)ZnxTe was subjected to various chemical treatments commonly used in device fabrication to determine the resulting microscopic surface composition/morphology and the effect on contact formation. Br-MeOH (2% Br), N2H4, NH4F/H2O2, and (NH4)2S solutions were used to modify the surface chemistry of the Cd(1-x)ZnxTe crystals. Scanning electron microscopy was used to evaluate the resultant surface morphology. Angle-resolved high-resolution photoemission measurements on the valence band electronic structure and Zn 2p, Cd 3d, Te 3d, O 1s core lines were used to evaluate the chemistry of the chemically treated surfaces. Metal overlayers were then deposited on these chemically treated surfaces and the I-V characteristics were measured. The measurements were correlated to understand the effect of interface chemistry on the electronic structure at these interfaces with the goal of optimizing the metal/Cd(1-x)ZnxTe Schottky barrier for radiation detector devices. This work was performed under the auspices of the U.S. Dept. of Energy by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  11. Vibrational and NMR probe studies of S Az-1 montmorillonite

    SciTech Connect

    Johnston, C.T.; Erickson, C.; Earl, W.L.

    1992-09-01

    This paper reports a study of the interactions of exchangeable metal cations with mineral surfaces using a combined spectroscopic/macroscopic approach. Objectives were to examine the use of water molecules and metal cations as molecular probes of smectite water interactions. The {nu}{sub 2} mode of water is used as a diagnostic vibrational band. An FTIR-gravimetric cell is used to examine the FTIR spectra of water on homoionic smectites. The {sup 23}Na NMR resonance is used to probe metal-water interactions on the surface. Results show that there are strong changes in both position and absorption coefficient of the H-O-H bending mode of water sorbed on SAz-1 montmorillonite as a function of water content. These changes are attributed to strong electrostatic forces and mobility changes that occur when the water in the interlammelar space is associated with the metal ion. The clay surface is viewed as having at least two distinct sites to which a hydrated Na{sup +} can bind. 32 refs, 5 figs. (DLC)

  12. Vibrational and NMR probe studies of S Az-1 montmorillonite

    SciTech Connect

    Johnston, C.T.; Erickson, C. . Dept. of Soil Science); Earl, W.L. )

    1992-01-01

    This paper reports a study of the interactions of exchangeable metal cations with mineral surfaces using a combined spectroscopic/macroscopic approach. Objectives were to examine the use of water molecules and metal cations as molecular probes of smectite water interactions. The {nu}{sub 2} mode of water is used as a diagnostic vibrational band. An FTIR-gravimetric cell is used to examine the FTIR spectra of water on homoionic smectites. The {sup 23}Na NMR resonance is used to probe metal-water interactions on the surface. Results show that there are strong changes in both position and absorption coefficient of the H-O-H bending mode of water sorbed on SAz-1 montmorillonite as a function of water content. These changes are attributed to strong electrostatic forces and mobility changes that occur when the water in the interlammelar space is associated with the metal ion. The clay surface is viewed as having at least two distinct sites to which a hydrated Na{sup +} can bind. 32 refs, 5 figs. (DLC)

  13. Carbonate formation in Wyoming montmorillonite under high pressure carbon dioxide

    SciTech Connect

    Hur, Tae-Bong; Baltrus, John P.; Howard, Bret H.; Harbert, William P.; Romanov, Vyacheslav N.

    2013-03-01

    Carbonation reaction with silicate minerals that are common components of the host rock and cap rock within geological storage reservoirs and the associated structural deformation were investigated for better understanding of the geochemical reactions associated with geologic CO2 storage. Exposure of a model expanding clay, Wyoming montmorillonite, SWy-2, to high-pressure CO2 resulted in the formation of a mineral carbonate phase via dry CO2–clay mineral interactions at two different temperatures. The experimental evidence suggests that the properties of CO2 fluid at 70 °C provide more favorable conditions for carbonate formation at the clay surface less accessible to CO2 at 22 °C. The carbonation reaction occurred predominantly within the first couple of days of exposure to the fluid and then proceeded slower with continuing exposure. As compared to the as-received clay under the same ambient conditions, the (0 0 1) basal spacing of the clay bearing carbonates (after the CO2 exposure) was slightly expanded at a relative humidity (RH) level of 12% but it was slightly collapsed at the RH level of 40%. Finally, experimental observations suggest that the carbonation reaction occurs at the external surface as well as internal surface (interlayer) of the clay particles.

  14. Highly anisotropic conductivity of tablets pressed from polyaniline-montmorillonite nanocomposite

    SciTech Connect

    Tokarský, Jonáš

    2016-03-15

    Highlights: • Montmorillonite (MMT) can be intercalated with polyaniline (PANI) chains. • Tablets pressed from PANI/MMT exhibit high anisotropy in electrical conductivity. • Pressure 28MPa is sufficient to reach the anisotropy. • Tablets pressed from pure PANI also exhibit anisotropy in electrical conductivity. - Abstract: Polyaniline-montmorillonite nanocomposite was prepared from anilinium sulfate (precursor) and ammonium peroxodisulfate (oxidizing agent) using simple one-step method. The resulting nanocomposite obtained in powder form has been pressed into tablets using various compression pressures (28–400 MPa). Electrical conductivities of tablets in two perpendicular directions, i.e. direction parallel with the main surface of tablet (σ=) and in orthogonal direction (σ⊥), and corresponding anisotropy factors (i.e., the ratio σ=/σ⊥) have been studied in dependence on compression pressure used during the preparation. Polyaniline-montmorillonite nanocomposite was characterized using X-ray diffraction analysis, raman spectroscopy, transmission electron microscopy, thermogravimetric analysis and molecular modeling which led to the understanding of the internal structure. Measurement of hardness performed on pressed tablets has been also involved. Taking into account the highest value of anisotropy factor reached (σ=/σ⊥ = 490), present study shows a chance to design conductors with nearly two-dimensional conductivity.

  15. An investigation on the sorption behaviour of montmorillonite for selected organochlorine pesticides from water.

    PubMed

    Ozcan, Senar; Tor, Ali; Aydin, Mehmet Emin

    2012-06-01

    The sorption behaviour of montmorillonite towards organochlorine pesticides (OCPs) from aqueous solutions is reported. After preliminary investigation of the sorption capability of clay for selected OCPs, aldrin was used as a model compound for further experiments. The batch sorption experiments were carried out as functions of contact time, pH of the solution, initial aldrin concentration and dosage of the montmorillonite. After traditional liquid-liquid extraction, the determination of OCPs was carried out by gas chromatography coupled with a micro-electron capture detector (GC-microECD). The results indicated that sorption of aldrin followed the second-order kinetic model and that the equilibrium time depended on the initial aldrin concentration. The film diffusion was found to be a main sorption rate control mechanism. The removal was explained according to the electrostatic bonding mechanism. The Freundlich isotherm model better represented the sorption data than the Langmuir model. The montmorillonite was also used efficiently for the removal of OCPs from fortified tap and surface (lake) water samples.

  16. Molecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers

    SciTech Connect

    Greathouse, Jeffery A.; Cygan, Randall T.; Fredrich, Joanne T.; Jerauld, Gary R.

    2016-01-20

    In this study, the diffusion of water and ions in the interlayer region of smectite clay minerals represents a direct probe of the type and strength of clay–fluid interactions. Interlayer diffusion also represents an important link between molecular simulation and macroscopic experiments. Here we use molecular dynamics simulation to investigate trends in cation and water diffusion in montmorillonite interlayers, looking specifically at the effects of layer charge, interlayer cation and cation charge (sodium or calcium), water content, and temperature. For Na-montmorillonite, the largest increase in ion and water diffusion coefficients occurs between the one-layer and two-layer hydrates, corresponding to the transition from inner-sphere to outer-sphere surface complexes. Calculated activation energies for ion and water diffusion in Na-montmorillonite are similar to each other and to the water hydrogen bond energy, suggesting the breaking of water–water and water–clay hydrogen bonds as a likely mechanism for interlayer diffusion. A comparison of interlayer diffusion with that of bulk electrolyte solutions reveals a clear trend of decreasing diffusion coefficient with increasing electrolyte concentration, and in most cases the interlayer diffusion results are nearly coincident with the corresponding bulk solutions. Trends in electrical conductivities computed from the ion diffusion coefficients are also compared.

  17. Treatment of an automobile effluent from heavy metals contamination by an eco-friendly montmorillonite

    PubMed Central

    Akpomie, Kovo G.; Dawodu, Folasegun A.

    2014-01-01

    Unmodified montmorillonite clay was utilized as a low cost adsorbent for the removal of heavy metals from a contaminated automobile effluent. Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy were used to characterize the adsorbent. Batch sorption experiments were performed at an optimum effluent pH of 6.5, adsorbent dose of 0.1 g, particle size of 100 μm and equilibrium contact time of 180 min. Thermodynamic analysis was also conducted. Equilibrium data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models. A heterogeneous surface of the adsorbent was indicated by the Freundlich model. The Langmuir maximum adsorption capacity of the montmorillonite for metals was found in the following order: Zn (5.7 mg/g) > Cu (1.58 mg/g) > Mn (0.59 mg/g) > Cd (0.33 mg/g) > Pb (0.10 mg/g) ≡ Ni (0.10 mg/g). This was directly related to the concentration of the metal ions in solution. The pseudo-first order, pseudo-second order, intraparticle diffusion and liquid film diffusion models were applied for kinetic analysis. The mechanism of sorption was found to be dominated by the film diffusion mechanism. The results of this study revealed the potential of the montmorillonite for treatment of heavy metal contaminated effluents. PMID:26644939

  18. Molecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers

    DOE PAGES

    Greathouse, Jeffery A.; Cygan, Randall T.; Fredrich, Joanne T.; ...

    2016-01-20

    In this study, the diffusion of water and ions in the interlayer region of smectite clay minerals represents a direct probe of the type and strength of clay–fluid interactions. Interlayer diffusion also represents an important link between molecular simulation and macroscopic experiments. Here we use molecular dynamics simulation to investigate trends in cation and water diffusion in montmorillonite interlayers, looking specifically at the effects of layer charge, interlayer cation and cation charge (sodium or calcium), water content, and temperature. For Na-montmorillonite, the largest increase in ion and water diffusion coefficients occurs between the one-layer and two-layer hydrates, corresponding to themore » transition from inner-sphere to outer-sphere surface complexes. Calculated activation energies for ion and water diffusion in Na-montmorillonite are similar to each other and to the water hydrogen bond energy, suggesting the breaking of water–water and water–clay hydrogen bonds as a likely mechanism for interlayer diffusion. A comparison of interlayer diffusion with that of bulk electrolyte solutions reveals a clear trend of decreasing diffusion coefficient with increasing electrolyte concentration, and in most cases the interlayer diffusion results are nearly coincident with the corresponding bulk solutions. Trends in electrical conductivities computed from the ion diffusion coefficients are also compared.« less

  19. Mechanism of the reduction of hexavalent chromium by organo-montmorillonite supported iron nanoparticles.

    PubMed

    Wu, Pingxiao; Li, Shuzhen; Ju, Liting; Zhu, Nengwu; Wu, Jinhua; Li, Ping; Dang, Zhi

    2012-06-15

    Iron nanoparticles exhibit greater reactivity than micro-sized Fe(0), and they impart advantages for groundwater remediation. In this paper, supported iron nanoparticles were synthesized to further enhance the speed and efficiency of remediation. Natural montmorillonite and organo-montmorillonite were chosen as supporting materials. The capacity of supported iron nanoparticles was evaluated, compared to unsupported iron nanoparticles, for the reduction of aqueous Cr(VI). The reduction of Cr(VI) was much greater with organo-montmorillonite supported iron nanoparticles and fitted the pseudo-second order equation better. With a dose at 0.47 g/L, a total removal capacity of 106 mg Cr/g Fe(0) was obtained. Other factors that affect the efficiency of Cr(VI) removal, such as pH values, the initial Cr(VI) concentration and storage time of nanoparticles were investigated. X-ray photoelectron spectrometry (XPS) and X-ray absorption near edge structure (XANES) were used to figure out the mechanism of the removal of Cr(VI). XPS indicated that the Cr(VI) bound to the particle surface was completely reduced to Cr(III) under a range of conditions. XANES confirmed that the Cr(VI) reacted with iron nanoparticles was completely reduced to Cr(III).

  20. Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Pourahmad, A.; Mehdipour Moghaddam, M. J.; Sadeghi, A.

    2015-02-01

    Silver carbonate and silver nanoparticles (NPs) over of stabilizer montmorillonite (MMT) have been synthesized in aqueous and polyol solvent, respectively. Dispersions of silver nanoparticles have been prepared by the reduction of silver nitrate over of MMT in presence and absence of Na2CO3 compound in ethylene glycol. It was observed that montmorillonite was capable of stabilizing formed Ag nanoparticles through the reduction of Ag+ ions in ethylene glycol. Na2CO3 was used as carbonate source in synthesis of Ag2CO3 NPs in water solvent and also for controlling of Ag nanoparticles size in ethylene glycol medium. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The TEM images showed that Ag NPs size in presence Na2CO3 salts was smaller than without that. The results indicated intercalation of Ag and Ag2CO3 nanoparticles into the montmorillonite clay layers. The diffuse reflectance spectra exhibited a strong surface plasmon resonance (SPR) adsorption peak in the visible region, resulting from Ag nanoparticles. The antibacterial testing results showed that the Ag2CO3-MMT nanocomposite exhibited an antibacterial activity higher than Ag-MMT sample against Escherichia coli.

  1. Fe(II) uptake on natural montmorillonites. I. Macroscopic and spectroscopic characterization.

    PubMed

    Soltermann, Daniela; Marques Fernandes, Maria; Baeyens, Bart; Dähn, Rainer; Joshi, Prachi A; Scheinost, Andreas C; Gorski, Christopher A

    2014-01-01

    Iron is an important redox-active element that is ubiquitous in both engineered and natural environments. In this study, the retention mechanism of Fe(II) on clay minerals was investigated using macroscopic sorption experiments combined with Mössbauer and extended X-ray absorption fine structure (EXAFS) spectroscopy. Sorption edges and isotherms were measured under anoxic conditions on natural Fe-bearing montmorillonites (STx, SWy, and SWa) having different structural Fe contents ranging from 0.5 to 15.4 wt % and different initial Fe redox states. Batch experiments indicated that, in the case of low Fe-bearing (STx) and dithionite-reduced clays, the Fe(II) uptake follows the sorption behavior of other divalent transition metals, whereas Fe(II) sorption increased by up to 2 orders of magnitude on the unreduced, Fe(III)-rich montmorillonites (SWy and SWa). Mössbauer spectroscopy analysis revealed that nearly all the sorbed Fe(II) was oxidized to surface-bound Fe(III) and secondary Fe(III) precipitates were formed on the Fe(III)-rich montmorillonite, while sorbed Fe is predominantly present as Fe(II) on Fe-low and dithionite-reduced clays. The results provide compelling evidence that Fe(II) uptake characteristics on clay minerals are strongly correlated to the redox properties of the structural Fe(III). The improved understanding of the interfacial redox interactions between sorbed Fe(II) and clay minerals gained in this study is essential for future studies developing Fe(II) sorption models on natural montmorillonites.

  2. Insights into tetracycline adsorption onto kaolinite and montmorillonite: experiments and modeling.

    PubMed

    Zhao, Yanping; Gu, Xueyuan; Li, Shiyin; Han, Ruiming; Wang, Guoxiang

    2015-11-01

    Adsorption of tetracycline (TC) on kaolinite and montmorillonite was investigated using batch adsorption experiments with different pH, ionic strength, and surface coverage. As a result, pH and ionic strength-dependent adsorption of TC was observed for the two clay minerals. The adsorption of TC decreased with the increase of pH and ionic strength, and high initial TC concentration had high adsorption. In addition, a triple-layer model was used to predict the adsorption and surface speciation of TC on the two minerals. As a result, four complex species on kaolinite (≡X(-)∙H3TC(+), ≡X(-)∙H2TC(±), ≡SOH(0)∙H2TC(±), and ≡SOH(0)∙HTC(-)) and three species on montmorillonite (≡X(-)∙H3TC(+), ≡X(-)∙H2TC(±), and ≡SOH(0)∙HTC(-)) were structurally constrained by spectroscopy, and these species were also successfully fitted to the adsorption edges of TC. Three functional groups of TC were involved in these adsorption reactions, including the positively charged dimethylamino group, the C=O amide I group, and the C=O group at the C ring. Combining adsorption experiments and model in this study, the adsorption of TC on kaolinite and montmorillonite was mainly attributed to cation exchange on the surface sites (≡X(-)) compared to surface complexation on the edge sites (≡SOH) at natural soil pH condition. Moreover, the surface adsorption species, the corresponding adsorption modes, and the binding constants for the surface reactions were also estimated.

  3. Dissolution of alkaline earth sulfates in the presence of montmorillonite

    USGS Publications Warehouse

    Eberl, D.D.; Landa, E.R.

    1985-01-01

    In a study of the effect of montmorillonite on the dissolution of BaSO4 (barite), SrSO4 (celestite), and 226Ra from U mill tailings, it was found that: (1) More of these substances dissolve in an aqueous system that contains montmorillonite than dissolve in a similar system without clay, due to the ion exchange properties of the clay; (2) Na-montmorillonite is more effective in aiding dissolution than is Ca-montmorillonite; (3) the amount of Ra that moves from mill tailings to an exchanger increases as solution sulfate activity decreases. Leaching experiments suggest that 226Ra from H2SO4-circuit U mill tailings from Edgemont, South Dakota, is not present as pure Ra sulfate or as an impurity in anhydrite or gypsum; it is less soluble, and probably occurs as a trace constituent in barite.

  4. Pillared montmorillonite catalysts for coal liquefaction

    SciTech Connect

    Sharma, R.K.; Olson, E.S.

    1994-12-31

    Pillared clays contain large micropores and have considerable potential for catalytic hydrogenation and cleavage of coal macromolecules. Pillared montmorillonite-supported catalysts were prepared by the intercalation of polynuclear hydroxychromium cations and subsequent impregnation of nickel and molybdenum. Infrared and thermogravimetric studies of pyridine-adsorbed catalysts indicated the presence of both Lewis and Bronsted acid sites. Thus, the catalysts have both acidic properties that can aid in hydrocracking and cleavage of carbon-heteroatom bonds as well as hydrogen-activating bimetallic sites. These catalysts were applied to the hydrodesulfurization and liquefaction of coal-derived intermediates. The reactions of model organosulfur compounds and coal liquids were carried out at 300{degrees}-400{degrees}C for 3 hours in the presence of 1000 psi of molecular hydrogen. Reaction products were analyzed by GC/FT-IR/MS/AED. The catalysts have been found to be very effective in removing sulfur from model compounds as well as liquefaction products.

  5. Cuprous Ion Conducting Montmorillonite- Polypyrrole Nanocomposites

    NASA Astrophysics Data System (ADS)

    Krishantha, D. M. M.; Rajapakse, R. M. G.; Tennakoon, D. T. B.; Bandara, W. M. A. T.; Thilakarathna, P. N. L.

    2006-06-01

    Solid state polymer-Silicate nanocomposite based on Polypyrrole-Cu+-montmorilonite were prepared and electrical properties were investigated. In this preparation, Na-montmorillonite (Na+-MMT) was purified by repeated washing with distilled water and the intergallery cations were exchanged for Cu(II). The cupric ions exchanged-MMT(Cu(II)-- MMT) was again exposed to pyrrole in aqueous acidic solution to yield polypyrrole-Cu+-MMT nanocomposite. DC polarization test and AC impedance measurement reveal that the materials are mixed conductors. The ionic conductivity is due to the motion of cuprous ions which is facilitated by microstructure of polypyrrrole present in the intergalleries. An electrochemical cell was fabricated using the materials which can be represented by Cu(s)/ Cu+-PPY-MMT/Cu2SO4 (s)/Na2SO4(S)-Na2S2O8(s)/ and gave a 1.00 V. The cell is rechargeable.

  6. Montmorillonite-induced Bacteriophage φ6 Disassembly

    NASA Astrophysics Data System (ADS)

    Trusiak, A.; Gottlieb, P.; Katz, A.; Alimova, A.; Steiner, J. C.; Block, K. A.

    2012-12-01

    It is estimated that there are 1031 virus particles on Earth making viruses an order of magnitude more prevalent in number than prokaryotes with the vast majority of viruses being bacteriophages. Clays are a major component of soils and aquatic sediments and can react with RNA, proteins and bacterial biofilms. The clays in soils serve as an important moderator between phage and their host bacteria, helping to preserve the evolutionary balance. Studies on the effects of clays on viral infectivity have given somewhat contradictory results; possibly a consequence of clay-virus interactions being dependent on the unique structure of particular viruses. In this work, the interaction between montmorillonite and the bacteriophage φ6 is investigated. φ6 is a member of the cystovirus family that infects Pseudomonas syringe, a common plant pathogen. As a member of the cystovirus family with an enveloped structure, φ6 serves as a model for reoviruses, a human pathogen. Experiments were conducted with φ6 suspended in dilute, purified homoionic commercial-grade montmorillonite over a range of virus:clay ratios. At a 1:100000 virus:clay ratio, the clay reduced viral infectivity by 99%. The minimum clay to virus ratio which results in a measurable reduction of P. syringae infection is 1:1. Electron microscopy demonstrates that mixed suspensions of smectite and virus co-aggregate to form flocs encompassing virions within the smectite. Both free viral particles as well as those imbedded in the flocs are seen in the micrographs to be missing the envelope- leaving only the nucleocapsid (NC) intact; indicating that smectite inactivates the virus by envelope disassembly. These results have strong implications in the evolution of both the φ6 virus and its P. syringae host cells. TEM of aggregate showing several disassembled NCs.

  7. Disassembly of the cystovirus ϕ6 envelope by montmorillonite clay.

    PubMed

    Block, Karin A; Trusiak, Adrianna; Katz, Al; Gottlieb, Paul; Alimova, Alexandra; Wei, Hui; Morales, Jorge; Rice, William J; Steiner, Jeffrey C

    2014-02-01

    Prior studies of clay-virus interactions have focused on the stability and infectivity of nonenveloped viruses, yielding contradictory results. We hypothesize that the surface charge distribution of the clay and virus envelope dictates how the components react and affect aggregation, viral stability, and infectivity. The bacteriophage Cystoviridae species φ6 used in this study is a good model for enveloped pathogens. The interaction between φ6 and montmorillonite (MMT) clay (the primary component of bentonite) is explored by transmission electron microscopy. The analyses show that MMT-φ6 mixtures undergo heteroaggregation, forming structures in which virtually all the virions are either sequestered between MMT platelet layers or attached to platelet edges. The virions swell and undergo disassembly resulting in partial or total envelope loss. Edge-attached viral envelopes distort to increase contact area with the positively charged platelet edges indicating that the virion surface is negatively charged. The nucleocapsid (NCs) remaining after envelope removal also exhibit distortion, in contrast to detergent-produced NCs which exhibit no distortion. This visually discernible disassembly is a mechanism for loss of infectivity previously unreported by studies of nonenveloped viruses. The MMT-mediated sequestration and disassembly result in reduced infectivity, suggesting that clays may reduce infectivity of enveloped pathogenic viruses in soils and sediments.

  8. Disassembly of the cystovirus ϕ6 envelope by montmorillonite clay

    PubMed Central

    Block, Karin A; Trusiak, Adrianna; Katz, Al; Gottlieb, Paul; Alimova, Alexandra; Wei, Hui; Morales, Jorge; Rice, William J; Steiner, Jeffrey C

    2014-01-01

    Prior studies of clay–virus interactions have focused on the stability and infectivity of nonenveloped viruses, yielding contradictory results. We hypothesize that the surface charge distribution of the clay and virus envelope dictates how the components react and affect aggregation, viral stability, and infectivity. The bacteriophage Cystoviridae species φ6 used in this study is a good model for enveloped pathogens. The interaction between φ6 and montmorillonite (MMT) clay (the primary component of bentonite) is explored by transmission electron microscopy. The analyses show that MMT–φ6 mixtures undergo heteroaggregation, forming structures in which virtually all the virions are either sequestered between MMT platelet layers or attached to platelet edges. The virions swell and undergo disassembly resulting in partial or total envelope loss. Edge-attached viral envelopes distort to increase contact area with the positively charged platelet edges indicating that the virion surface is negatively charged. The nucleocapsid (NCs) remaining after envelope removal also exhibit distortion, in contrast to detergent-produced NCs which exhibit no distortion. This visually discernible disassembly is a mechanism for loss of infectivity previously unreported by studies of nonenveloped viruses. The MMT-mediated sequestration and disassembly result in reduced infectivity, suggesting that clays may reduce infectivity of enveloped pathogenic viruses in soils and sediments. PMID:24357622

  9. Role of uniform pore structure and high positive charges in the arsenate adsorption performance of Al13-modified montmorillonite.

    PubMed

    Zhao, Shou; Feng, Chenghong; Huang, Xiangning; Li, Baohua; Niu, Junfeng; Shen, Zhenyao

    2012-02-15

    Four modified montmorillonite adsorbents with varied Al(13) contents (i.e., Na-Mont, AC-Mont, PAC(20)-Mont, and Al(13)-Mont) were synthesized and characterized by N(2) adsorption/desorption, X-ray diffraction, and Fourier-transform infrared analyses. The arsenate adsorption performance of the four adsorbents were also investigated to determine the role of intercalated Al(13), especially its high purity, high positive charge (+7), and special Keggin structure. With increased Al(13) content, the physicochemical properties (e.g., surface area, structural uniformity, basal spacing, and pore volume) and adsorption performance of the modified montmorillonites were significantly but disproportionately improved. The adsorption data well fitted the Freundlich and Redlich-Peterson isotherm model, whereas the kinetic data better correlated with the pseudo-second-order kinetic model. The arsenate sorption mechanism of the montmorillonites changed from physical to chemisorption after intercalation with Al(13). Increasing charges of the intercalated ions enhanced the arsenate adsorption kinetics, but had minimal effect on the structural changes of the montmorillonites. The uniform pore structure formed by intercalation with high-purity Al(13) greatly enhanced the pore diffusion and adsorption rate of arsenate, resulting in the high adsorption performance of Al(13)-Mont.

  10. Removal of o-nitrobenzoic acid by adsorption on to a new organoclay: montmorillonite modified with HDTMA microemulsion.

    PubMed

    Xin, Xiao-Dong; Wang, Jin; Yu, Hai-Qin; Du, Bin; Wei, Qin; Yan, Liang-Guo

    2011-01-01

    A new organoclay, consisting of montmorillonite modified by a hexadecyl trimethyl ammonium (HDTMA) microemulsion, was synthesized, characterized and used as an adsorbent for the removal of o-nitrobenzoic acid from aqueous solution. Adsorption kinetics, isotherms and effects of operating variables, such as adsorbent dosage, ionic strength and initial solution pH, were also investigated. The results of Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis and BET surface area determination indicated that HDTMA molecules had entered into the interlayer of the montmorillonite. The optimized experimental conditions for the adsorption of o-nitrobenzoic acid by montmorillonite modified by HDTMA microemulsion were 0.5 g adsorbent dosage, 0.4 mL of 0.1 mol lbL(-1) CaCl2 solution, initial solution pH of 6.0 and contact time of 6 h. The adsorption isotherms of o-nitrobenzoic acid fitted the Langmuir model well (R2 = 0.9880). The adsorption kinetics data fitted the pseudo-second-order equation (R2 = 0.9999). These above results indicate that montmorillonite modified by an HDTMA microemulsion can be used as adsorbent for o-nitrobenzoic acid because of its high adsorption capacity and low cost.

  11. Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid.

    PubMed

    Behera, Shishir Kumar; Oh, Seok-Young; Park, Hung-Suck

    2010-07-15

    Sorption of triclosan on three sorbents, viz., activated carbon, kaolinite and montmorillonite was studied as a function of pH, ionic strength and humic acid (HA) concentration through controlled batch experiments. Triclosan sorption was found to be higher in the acidic pH range, as varying pH showed significant influence on the surface charge of the sorbents and degree of ionization of the sorbate. Sorption capacity of the sorbents increased with an increase in the ionic strength of solution. At low pH (pH 3), the overall increase in triclosan sorption was 1.2, approximately 4 and 3.5 times, respectively for activated carbon, kaolinite and montmorillonite when ionic strength was increased from 1x10(-3) to 5x10(-1) M. Triclosan sorption onto activated carbon decreased from 31.4 to 10.6 mg g(-1) by increasing the HA concentration to 200 mg C L(-1). However, during sorption onto kaolinite and montmorillonite, the effect of HA was very complex probably due to (i) hydrophobicity (log K(ow)=4.76) of triclosan; and (ii) complexation of HA with triclosan. Though triclosan sorption onto activated carbon is higher, the potential of kaolinite and montmorillonite in controlling the transport of triclosan in subsurface environment can still be appreciable.

  12. The stability of radio-frequency plasma-treated polydimethylsiloxane surfaces.

    PubMed

    Chen, I-Jane; Lindner, Ernö

    2007-03-13

    Polydimethylsiloxane (PDMS) is a widely used material for manufacturing lab-on-chip devices. However, the hydrophobic nature of PDMS is a disadvantage in microfluidic systems. To transform the hydrophobic PDMS surface to hydrophilic, it was treated with radio-frequency (RF) air plasma at 150, 300, and 500 mTorr pressures for up to 30 min. Following the surface treatment, the PDMS specimens were stored in air, deionized water, or 0.14 M NaCl solution at 4 degrees C, 20 degrees C, and 70 degrees C. The change in the hydrophilicity (wettability) of the PDMS surfaces was followed by contact angle measurements and Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy as a function of time. As an effect of the RF plasma treatment, the contact angles measured on PDMS surfaces dropped from 113 +/- 4 degrees to 9 +/- 3 degrees . The chamber pressure and the treatment time had no or negligible effect on the results. However, the PDMS surface gradually lost its hydrophilic properties in time. The rate of this process is influenced by the difference in the dielectric constants of the PDMS and its ambient environment. It was the smallest at low temperatures in deionized water and largest at high temperatures in air. Apparently, the OH groups generated on the PDMS surface during the plasma treatment tended toward a more hydrophilic/less hydrophobic environment during the relaxation processes. The correlation between the FTIR-ATR spectral information and the contact angle data supports this interpretation.

  13. Adsorption of phenol on inorganic-organic pillared montmorillonite in polluted water.

    PubMed

    Wu, P X; Liao, Z W; Zhang, H F; Guo, J G

    2001-05-01

    Both inorganic- and organic-pillared montmorillonites (PMts) were used to adsorb phenol to study suitable conditions for adsorption and adsorption isotherms. The adsorbing capacity of modified clays depends not only surface area, but mainly on micropore structure and surface components. After incandescing at 500 degrees C, the pillar structure and the basal interlayer spacing (1.83 nm) remained stable. Using modified PMt with surfactant can improve adsorbing capacity greatly. The PMt can be recycled, and it is a potential substance for adsorption of environmental pollutants.

  14. Distribution pattern of rare earth ions between water and montmorillonite and its relation to the sorbed species of the ions.

    PubMed

    Takahashi, Yoshio; Tada, Akisa; Shimizu, Hiroshi

    2004-09-01

    REE (rare earth element) distribution coefficients (Kd) between the aqueous phase and montmorillonite surface were obtained to investigate the relation between the REE distribution patterns and the species of REE sorbed on the solid-water interface. It was shown that the features in the REE patterns, such as the slope of the REE patterns, the tetrad effect, and the Y/Ho ratio, were closely related to the REE species at the montmorillonite-water interface. In a binary system (REE-montmorillonite) below pH 5, three features (a larger Kd value for a lighter REE, the absence of the tetrad effect, and the Y/Ho ratio being unchanged from its initial value) suggest that hydrated REE are directly sorbed as an outer-sphere complex at the montmorillonite-water interface. Above pH 5.5, the features in the REE patterns, the larger Kd value for heavier REE, the M-type tetrad effect, and the reduced Y/Ho ratio, showed the formation of an inner-sphere complex of REE with -OH group at the montmorillonite surface. In addition, the REE patterns in the presence of humic acid at pH 5.9 were also studied, where the REE patterns became flat, suggesting that the humate complex is dominant as both dissolved and sorbed species of REE in the ternary system. All of these results were consistent with the spectroscopic data (laser-induced fluorescence spectroscopy) showing the local structure of Eu(III) conducted in the same experimental system. The present results suggest that the features in the REE distribution patterns include information on the REE species at the solid-water interface.

  15. Influence of montmorillonite on antimicrobial activity of tetracycline and ciprofloxacin

    NASA Astrophysics Data System (ADS)

    Lv, Guocheng; Pearce, Cody W.; Gleason, Andrea; Liao, Libing; MacWilliams, Maria P.; Li, Zhaohui

    2013-11-01

    Antibiotics are used not only to fight infections and inhibit bacterial growth, but also as growth promotants in farm livestock. Farm runoff and other farm-linked waste have led to increased antibiotic levels present in the environment, the impact of which is not completely understood. Soil, more specifically clays, that the antibiotic contacts may alter its effectiveness against bacteria. In this study a swelling clay mineral montmorillonite was preloaded with antibiotics tetracycline and ciprofloxacin at varying concentrations and bioassays were conducted to examine whether the antibiotics still inhibited bacterial growth in the presence of montmorillonite. Escherichia coli was incubated with montmorillonite or antibiotic-adsorbed montmorillonite, and then the number of viable bacteria per mL was determined. The antimicrobial activity of tetracycline was affected in the presence of montmorillonite, as the growth of non-resistant bacteria was still found even when extremely high TC doses were used. Conversely, in the presence of montmorillonite, ciprofloxacin did inhibit E. coli bacterial growth at high concentrations. These results suggest that the effectiveness of antimicrobial agents in clayey soils depends on the amount of antibiotic substance present, and on the interactions between the antibiotic and the clays in the soil, as well.

  16. Effects of surface treating methods of high-strength carbon fibers on interfacial properties of epoxy resin matrix composite

    NASA Astrophysics Data System (ADS)

    Ma, Quansheng; Gu, Yizhuo; Li, Min; Wang, Shaokai; Zhang, Zuoguang

    2016-08-01

    This paper aims to study the effects of surface treating methods, including electrolysis of anodic oxidation, sizing and heat treatment at 200 °C, on physical and chemical properties of T700 grade high-strength carbon fiber GQ4522. The fiber surface roughness, surface energy and chemical properties were analyzed for different treated carbon fibers, using atom force microscopy, contact angle, Fourier transformed infrared and X-ray photoelectron spectroscopy, respectively. The results show that the adopted surface treating methods significantly affect surface roughness, surface energy and active chemical groups of the studied carbon fibers. Electrolysis and sizing can increase the roughness, surface energy and chemical groups on surface, while heat treatment leads to decreases in surface energy and chemical groups due to chemical reaction of sizing. Then, unidirectional epoxy 5228 matrix composite laminates were prepared using different treated GQ4522 fibers, and interlaminar shear strength and flexural property were measured. It is revealed that the composite using electrolysis and sizing-fiber has the strongest interfacial bonding strength, indicating the important roles of the two treating processes on interfacial adhesion. Moreover, the composite using heat-treating fiber has lower mechanical properties, which is attributed to the decrease of chemical bonding between fiber surface and matrix after high temperature treatment of fiber.

  17. Three-species biofilm model onto plasma-treated titanium implant surface.

    PubMed

    Matos, Adaias O; Ricomini-Filho, Antônio P; Beline, Thamara; Ogawa, Erika S; Costa-Oliveira, Bárbara E; de Almeida, Amanda B; Nociti Junior, Francisco H; Rangel, Elidiane C; da Cruz, Nilson C; Sukotjo, Cortino; Mathew, Mathew T; Barão, Valentim A R

    2017-04-01

    In this study, titanium (Ti) was modified with biofunctional and novel surface by micro-arc oxidation (MAO) and glow discharge plasma (GDP) and we tested the development of a three-species periodontopatogenic biofilm onto the treated commercially-pure titanium (cpTi) surfaces. Machined and sandblasted surfaces were used as control group. Several techniques for surface characterizations and monoculture on bone tissue cells were performed. A multispecies biofilm composed of Streptococcus sanguinis, Actinomyces naeslundii and Fusobacterium nucleatum was developed onto cpTi discs for 16.5h (early biofilm) and 64.5h (mature biofilm). The number of viable microorganisms and the composition of the extracellular matrix (proteins and carbohydrates) were determined. The biofilm organization was analyzed by scanning electron microscopy (SEM) and Confocal laser scanning microscopy (CLSM). In addition, MC3T3-E1 cells were cultured on the Ti surfaces and cell proliferation (MTT) and morphology (SEM) were assessed. MAO treatment produced oxide films rich in calcium and phosphorus with a volcano appearance while GDP treatment produced silicon-based smooth thin-film. Plasma treatments were able to increase the wettability of cpTi (p<0.05). An increase of surface roughness (p<0.05) and formation of anatase and rutile structures was noted after MAO treatment. GDP had the greatest surface free energy (p<0.05) while maintaining the surface roughness compared to the machined control (p>0.05). Plasma treatment did not affect the viable microorganisms counts, but the counts of F. nucleatum was lower for MAO treatment at early biofilm phase. Biofilm extracellular matrix was similar among the groups, excepted for GDP that presented the lowest protein content. Moreover, cell proliferation was not significantly affected by the experimental, except for MAO at 6days that resulted in an increased cell proliferative. Together, these findings indicate that plasma treatments are a viable and

  18. Formation and characterization of hydrophobic glass surface treated by atmospheric pressure He/CH4 plasma

    NASA Astrophysics Data System (ADS)

    Noh, Sooryun; Youn Moon, Se

    2014-01-01

    Atmospheric pressure helium plasmas, generated in the open air by 13.56 MHz rf power, were applied for the glass surface wettability modification. The plasma gas temperature, measured by the spectroscopic method, was under 400 K which is low enough to treat the samples without thermal damages. The hydrophobicity of the samples determined by the water droplet contact angle method was dependent on the methane gas content and the plasma exposure time. Adding the methane gas by a small amount of 0.25%, the contact angle was remarkably increased from 10° to 83° after the 10 s plasma treatment. From the analysis of the treated surface and the plasma, it was shown that the deposition of alkane functional groups such as C-H stretch, CH2 bend, and CH3 bend was one of the contributing factors for the hydrophobicity development. In addition, the hydrophobic properties lasted over 2 months even after the single treatment. From the results, the atmospheric pressure plasma treatment promises the fast and low-cost method for the thermally-weak surface modification.

  19. Electrochemical analysis of the UV treated bactericidal Ti6Al4V surfaces.

    PubMed

    Pacha-Olivenza, Miguel A; Gallardo-Moreno, Amparo M; Vadillo-Rodríguez, Virginia; González-Martín, M Luisa; Pérez-Giraldo, Ciro; Galván, Juan C

    2013-04-01

    This research investigates in detail the bactericidal effect exhibited by the surface of the biomaterial Ti6Al4V after being subjected to UV-C light. It has been recently hypothesized that small surface currents, occurring as a consequence of the electron-hole pair recombination taking place after the excitation process, are behind the bactericidal properties displayed by this UV-treated material. To corroborate this hypothesis we have used different electrochemical techniques, such as electrochemical impedance spectroscopy (EIS), potentiodynamic polarization plots and Mott-Schottky plots. EIS and Mott-Schottky plots have shown that UV-C treatment causes an initial increase on the surface electrical conduction of this material. In addition, EIS and polarization plots demonstrated that higher corrosion currents occur at the UV treated than at the non-irradiated samples. Despite this increase in the corrosion currents, EIS has also shown that such currents are not likely to affect the good stability of this material oxide film since the irradiated samples completely recovered the control values after being stored in dark conditions for a period not longer than 24h. These results agree with the already-published in vitro transitory behavior of the bactericidal effect, which was shown to be present at initial times after the biomaterial implantation, a crucial moment to avoid a large number of biomaterial associated infections.

  20. Characterization of Surface Treated Aero Engine Alloys by Rayleigh Wave Velocity Dispersion

    NASA Astrophysics Data System (ADS)

    Köhler, B.; Barth, M.; Schubert, F.; Bamberg, J.; Baron, H.-U.

    2010-02-01

    In aero engines mechanically high stressed components made of high-strength alloys like IN718 and Ti6Al4V are usually surface treated by shot-peening. Other methods, e.g. laser-peening, deep rolling and low plasticity burnishing are also available. All methods introduce compres-sive residual stress desired for minimize sensitivity to fatigue or stress corrosion failure mechanisms, resulting in improved performance and increased lifetime of components. Beside that, also cold work is introduced in an amount varying from method to method. To determine the remaining life time of critical aero engine components like compressor and turbine discs, a quantitative non-destructive determination of compressive stresses is required. The opportunity to estimate residual stress in surface treated aero engine alloys by SAW phase velocity measurements has been re-examined. For that original engine relevant material IN718 has been used. Contrary to other publications a significant effect of the surface treatment to the sound velocity was observed which disappeared after thermal treatment. Also preliminary measurements of the acousto-elastic coefficient fit into this picture.

  1. Shear bond strength of enamel surface treated with air-abrasive system.

    PubMed

    Borsatto, Maria Cristina; Catirse, Alma Blásida Elisaur Benitez; Palma Dibb, Regina Guenka; Nascimento, Telma Nunes do; Rocha, Renata Andréa Salvitti de Sá; Corona, Silmara Aparecida Milori

    2002-01-01

    The aim of this study was to evaluate the shear bond strength of a composite resin to dental enamel, using three different surface treatments. Fifteen sound third molars were randomly assigned to three groups. The mesial and distal surfaces were flattened and covered using adhesive tape with a central orifice delimiting the adhesion area (7.07 mm2). Group I, the enamel surface was conditioned with 37% phosphoric acid for 15 s; group II, the surface was treated using air abrasion with aluminum oxide; group III, the enamel surface was treated using an association of air abrasion with aluminum oxide and 37% phosphoric acid. The Single Bond (3M) adhesive system was applied and a Teflon matrix was placed and filled with composite resin Z-100 (3M) and light-cured. The shear bond strength test was performed with a universal testing machine. The acid etching technique and air abrasion with aluminum oxide associated with acid etching had the highest shear bond strength values. Data were subjected to statistical analysis using ANOVA and the Turkey test, and no statistically significant difference in shear bond strength was observed between group I (12.49 +/- 2.85 MPa) and group III (12.59 +/- 2.68 MPa). In contrast, both groups had statistically better shear bond strengths compared to group II (0.29 +/- 0.56 MPa; p < 0.05). Air abrasion with aluminum oxide does not substitute acid etching. The association of these methods to obtain adequate adhesion to the substrate is necessary.

  2. Potential Dependent Structural Changes of Underpotentially Deposited Copper on an Iodine Treated Platinum Surface Determined In Situ by Surface EXAFS and Its Polarization Dependence

    DTIC Science & Technology

    1993-08-25

    of Underpotentially Deposited Copper on an Iodine Treated Platinum Surface Determined In Situ by Surface EXAFS and Its Polarization Dependence G.M...fiCAtson) Potential Dependent Structural Changes of Underpotentially Deposited Copper on an Irodine Treated Platinum Surface Determined In Situ by...necessary and identify by block number) An in situ structural investigation of the underpotential deposition of copper on an iodine covered platinum

  3. Adhesion strength measurements of excimer-laser-treated PTFE surfaces using liquid photoreagents

    NASA Astrophysics Data System (ADS)

    Hopp, Bela; Smausz, Tomi; Kresz, Norbert; Ignacz, Ferenc

    2003-04-01

    The most known feature of polytetrafluoroethylene (PTFE) is its adhesion behavior: it is hydrophobic and oleophobic at the same time. This can cause serious problems and obstacles during the surface treatment and fixing of PTFE objects. During our experiments Teflon films were irradiated by an ArF excimer laser beam in presence of liquid photoreagents containing amine groups (aminoethanol, 1,2-diaminoethane, triethylene-tetramine). In consequence of the treatment the adhesion of the modified surfaces significantly increased, the samples could be glued and moistened. The adhesion strength of the glued surfaces was measured in the function of the applied laser fluence. The adhesion strength increased drastically between 0 - 1 mJ/cm2 and showed saturation above 1 mJ/cm2 at approximately 5 - 9 MPa values depending on the applied photoreagents. On the basis of our experiments it was found that the treatment with triethylene-tetramine was the most effective. The surface chemical modifications of the treated Teflon samples can be due to the incorporation of amine groups into the surface layer.

  4. Microtensile bond strength and micromorphologic analysis of surface-treated resin nanoceramics

    PubMed Central

    Park, Joon-Ho

    2016-01-01

    PURPOSE The aim of this study was to evaluate the influence of different surface treatment methods on the microtensile bond strength of resin cement to resin nanoceramic (RNC). MATERIALS AND METHODS RNC onlays (Lava Ultimate) (n=30) were treated using air abrasion with and without a universal adhesive, or HF etching followed by a universal adhesive with and without a silane coupling agent, or tribological silica coating with and without a universal adhesive, and divided into 6 groups. Onlays were luted with resin cement to dentin surfaces. A microtensile bond strength test was performed and evaluated by one-way ANOVA and Tukey HSD test (α=.05). A nanoscratch test, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy were used for micromorphologic analysis (α=.05). The roughness and elemental proportion were evaluated by Kruskal–Wallis test and Mann–Whitney U test. RESULTS Tribological silica coating showed the highest roughness, followed by air abrasion and HF etching. After HF etching, the RNC surface presented a decrease in oxygen, silicon, and zirconium ratio with increasing carbon ratio. Air abrasion with universal adhesive showed the highest bond strength followed by tribological silica coating with universal adhesive. HF etching with universal adhesive showed the lowest bond strength. CONCLUSION An improved understanding of the effect of surface treatment of RNC could enhance the durability of resin bonding when used for indirect restorations. When using RNC for restoration, effective and systemic surface roughening methods and an appropriate adhesive are required. PMID:27555896

  5. Osteoclasts but not osteoblasts are affected by a calcified surface treated with zoledronic acid in vitro

    SciTech Connect

    Schindeler, Aaron . E-mail: AaronS@chw.edu.au; Little, David G.

    2005-12-16

    Bisphosphonates are potent inhibitors of osteoclast-mediated bone resorption. Recent interest has centered on the effects of bisphosphonates on osteoblasts. Chronic dosing of osteoblasts with solubilized bisphosphonates has been reported to enhance osteogenesis and mineralization in vitro. However, this methodology poorly reflects the in vivo situation, where free bisphosphonate becomes rapidly bound to mineralized bone surfaces. To establish a more clinically relevant cell culture model, we cultured bone cells on calcium phosphate coated quartz discs pre-treated with the potent nitrogen-containing bisphosphonate, zoledronic acid (ZA). Binding studies utilizing [{sup 14}C]-labeled ZA confirmed that the bisphosphonate bound in a concentration-dependent manner over the 1-50 {mu}M dose range. When grown on ZA-treated discs, the viability of bone-marrow derived osteoclasts was greatly reduced, while the viability and mineralization of the osteoblastic MC3T3-E1 cell line were largely unaffected. This suggests that only bone resorbing cells are affected by bound bisphosphonate. However, this system does not account for transient exposure to unbound bisphosphonate in the hours following a clinical dosing. To model this event, we transiently treated osteoblasts with ZA in the absence of a calcified surface. Osteoblasts proved highly resistant to all transitory treatment regimes, even when utilizing ZA concentrations that prevented mineralization and/or induced cell death when dosed chronically. This study represents a pharmacologically more relevant approach to modeling bisphosphonate treatment on cultured bone cells and implies that bisphosphonate therapies may not directly affect osteoblasts at bone surfaces.

  6. Modification of the Steel Surface Treated by a Volume Discharge Plasma in Nitrogen at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Erofeev, M. V.; Shulepov, M. A.; Ivanov, Yu. F.; Oskomov, K. V.; Tarasenko, V. F.

    2016-03-01

    Effect of volume discharge plasma initiated by an avalanche electron beam on the composition, structure, and properties of the surface steel layer is investigated. Voltage pulses with incident wave amplitude up to 30 kV, full width at half maximum of about 4 ns, and wave front of about 2.5 ns were applied to the gap with an inhomogeneous electric field. Changes indicating the hardening effect of the volume discharge initiated by an avalanche electron beam are revealed in St3-grade steel specimens treated by the discharge of this type.

  7. Preparation of ZrO2/Al2O3-montmorillonite composite as catalyst for phenol hydroxylation

    PubMed Central

    Fatimah, Is

    2013-01-01

    Zirconium dispersed in aluminum-pillared montmorillonite was prepared as a catalyst for phenol hydroxylation. The effects of varying the Zr content on the catalyst’s physicochemical character and activity were studied with XRD, BET surface area analysis, surface acidity measurements and scanning electron microscopy before investigating the performance for phenol conversion. The zirconia dispersion significantly affects the specific surface area, the total surface acidity and surface acidity distribution related to the formation of porous zirconia particles on the surface. The prepared samples exhibited excellent catalytic activity during phenol hydroxylation. PMID:25685535

  8. Surface and crystalline analysis of aluminum oxide single crystal treated by quasistationary compression plasma flow

    SciTech Connect

    Maletic, S.; Popovic, D.M.; Cubrovic, V.; Zekic, A.A.; Dojcilovic, J.

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer The effects of treatment of Al{sub 2}O{sub 3} (0001) surface by CPF are analyzed. Black-Right-Pointing-Pointer Oriented low-dimensional structures are occurred for the treated Al{sub 2}O{sub 3} crystal. Black-Right-Pointing-Pointer The dimension of these ripples are 1 {mu}m and the distance between them is about 10 {mu}m. Black-Right-Pointing-Pointer The ripple-shaped structures contain a higher percentage of oxygen than the surroundings. Black-Right-Pointing-Pointer Results could promote CPF as a tool for producing organized oxygen-rich structures. -- Abstract: Material such as aluminum oxide (Al{sub 2}O{sub 3}) is important in electronics industry. On the other hand, plasma is one of the most efficient and sophisticated tools for materials processing. In this work a treatment of Al{sub 2}O{sub 3} (0001) surface by quasistationary compression plasma flow (CPF) is analyzed in detail. Offline metrology was performed using dielectric measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). Oriented low-dimensional periodic structures are occurred for the plasma treated Al{sub 2}O{sub 3} single crystal. In the paper is reported that these oriented ripple-shaped structures contain a higher percentage of oxygen than the surrounding crystal surface. This could be the framework for usage of CPF as a tool in manufacturing of surfaces containing the highly organized oxygen-rich structures.

  9. Adsorptive property of Cu(2+)-loaded montmorillonite clays for Escherichia coli K88 in vitro.

    PubMed

    Guo, Tong; Cao, Shoujun; Su, Rui; Li, Zhiqiang; Hu, Ping; Xu, Zirong

    2011-01-01

    The adsorption properties of Cu(2+)-loaded montmorillonite clays (MMT-Cu) for Escherichia coli K88 as a function of time, bacteria concentrations, pH, ionic strength and temperature were investigated. The results showed that the bacteria adsorption onto MMT-Cu surface reached equilibrium after 90 min. The percentages of E. coli K88 adsorbed onto the surfaces of MMT-Cu and montmorillonite clays (MMT) at equilibrium were 88.9% and 56.5%, respectively. Scanning electron microscopy revealed that a lot of E. coli K88 adhered to the surface of MMT-Cu. The zeta potential of MMT-Cu was relatively high as compared to that of MMT. The adsorptive ability of MMT-Cu for E. coli K88 was higher than that of MMT (P < 0.05). Moreover, pH, ionic strength and temperature produced a strong influence on the extent of E. coli K88 adsorption to surface of MMT-Cu and MMT. The mechanism of adsorption of E. coli onto MMT-Cu may involve electrostatic attraction and physiochemical properties of bacterial cell walls and minerals surfaces.

  10. X-ray photoemission analysis of chemically treated GaTe semiconductor surfaces for radiation detector applications

    SciTech Connect

    Nelson, A. J.; Conway, A. M.; Sturm, B. W.; Behymer, E. M.; Reinhardt, C. E.; Nikolic, R. J.; Payne, S. A.; Pabst, G.; Mandal, K. C.

    2009-07-15

    The surface of the layered III-VI chalcogenide semiconductor GaTe was subjected to various chemical treatments commonly used in device fabrication to determine the effect of the resulting microscopic surface composition on transport properties. Various mixtures of H{sub 3}PO{sub 4}:H{sub 2}O{sub 2}:H{sub 2}O were accessed and the treated surfaces were allowed to oxidize in air at ambient temperature. High-resolution core-level photoemission measurements were used to evaluate the subsequent chemistry of the chemically treated surfaces. Metal electrodes were created on laminar (cleaved) and nonlaminar (cut and polished) GaTe surfaces followed by chemical surface treatment and the current versus voltage characteristics were measured. The measurements were correlated to understand the effect of surface chemistry on the electronic structure at these surfaces with the goal of minimizing the surface leakage currents for radiation detector devices.

  11. Surface-modified gatifloxacin nanoparticles with potential for treating central nervous system tuberculosis

    PubMed Central

    Marcianes, Patricia; Negro, Sofia; García-García, Luis; Montejo, Consuelo; Barcia, Emilia; Fernández-Carballido, Ana

    2017-01-01

    A new nanocarrier is developed for the passage of gatifloxacin through the blood–brain barrier to treat central nervous system tuberculosis. Gatifloxacin nanoparticles were prepared by nanoprecipitation using poly(lactic-co-glycolic acid) (PLGA) 502 and polysorbate 80 or Labrafil as surface modifiers. The evaluation of in vivo blood–brain barrier transport was carried out in male Wistar rats using rhodamine-loaded PLGA nanoparticles prepared with and without the surface modifiers. At 30 and 60 minutes after administration, nanoparticle biodistribution into the brain (hippocampus and cortex), lungs, and liver was studied. The results obtained from the cerebral cortex and hippocampus showed that functionalization of rhodamine nanoparticles significantly increased their passage into the central nervous system. At 60 minutes, rhodamine concentrations decreased in both the lungs and the liver but were still high in the cerebral cortex. To distinguish the effect between the surfactants, gatifloxacin-loaded PLGA nanoparticles were prepared. The best results corresponded to the formulation prepared with polysorbate 80 with regard to encapsulation efficiency (28.2%), particle size (176.5 nm), and ζ-potential (−20.1 mV), thereby resulting in a promising drug delivery system to treat cerebral tuberculosis. PMID:28331318

  12. Adhesive forces and surface properties of cold gas plasma treated UHMWPE.

    PubMed

    Preedy, Emily Callard; Brousseau, Emmanuel; Evans, Sam L; Perni, Stefano; Prokopovich, Polina

    2014-10-20

    Cold atmospheric plasma (CAP) treatment was used on ultra-high molecular weight polyethylene (UHMWPE), a common articulating counter material employed in hip and knee replacements. UHMWPE is a biocompatible polymer with low friction coefficient, yet does not have robust wear characteristics. CAP effectively cross-links the polymer chains of the UHMWPE improving wear performance (Perni et al., Acta Biomater. 8(3) (2012) 1357). In this work, interactions between CAP treated UHMWPE and spherical borosilicate sphere (representing model material for bone) were considered employing AFM technique. Adhesive forces increased, in the presence of PBS, after treatment with helium and helium/oxygen cold gas plasmas. Furthermore, a more hydrophilic surface of UHMWPE was observed after both treatments, determined through a reduction of up to a third in the contact angles of water. On the other hand, the asperity density also decreased by half, yet the asperity height had a three-fold decrease. This work shows that CAP treatment can be a very effective technique at enhancing the adhesion between bone and UHMWPE implant material as aided by the increased adhesion forces. Moreover, the hydrophilicity of the CAP treated UHMWPE can lead to proteins and cells adhesion to the surface of the implant stimulating osseointegration process.

  13. Effect of Surface Treated Silicon Dioxide Nanoparticles on Some Mechanical Properties of Maxillofacial Silicone Elastomer

    PubMed Central

    Zayed, Sara M.; Alshimy, Ahmad M.; Fahmy, Amal E.

    2014-01-01

    Current materials used for maxillofacial prostheses are far from ideal and there is a need for novel improved materials which mimic as close as possible the natural behavior of facial soft tissues. This study aimed to evaluate the effect of adding different concentrations of surface treated silicon dioxide nanoparticles (SiO2) on clinically important mechanical properties of a maxillofacial silicone elastomer. 147 specimens of the silicone elastomer were prepared and divided into seven groups (n = 21). One control group was prepared without nanoparticles and six study groups with different concentrations of nanoparticles, from 0.5% to 3% by weight. Specimens were tested for tear strength (ASTM D624), tensile strength (ASTM D412), percent elongation, and shore A hardness. SEM was used to assess the dispersion of nano-SiO2 within the elastomer matrix. Data were analyzed by one-way ANOVA and Scheffe test (α = 0.05). Results revealed significant improvement in all mechanical properties tested, as the concentration of the nanoparticles increased. This was supported by the results of the SEM. Hence, it can be concluded that the incorporation of surface treated SiO2 nanoparticles at concentration of 3% enhanced the overall mechanical properties of A-2186 silicone elastomer. PMID:25574170

  14. Adhesive forces and surface properties of cold gas plasma treated UHMWPE

    PubMed Central

    Preedy, Emily Callard; Brousseau, Emmanuel; Evans, Sam L.; Perni, Stefano; Prokopovich, Polina

    2014-01-01

    Cold atmospheric plasma (CAP) treatment was used on ultra-high molecular weight polyethylene (UHMWPE), a common articulating counter material employed in hip and knee replacements. UHMWPE is a biocompatible polymer with low friction coefficient, yet does not have robust wear characteristics. CAP effectively cross-links the polymer chains of the UHMWPE improving wear performance (Perni et al., Acta Biomater. 8(3) (2012) 1357). In this work, interactions between CAP treated UHMWPE and spherical borosilicate sphere (representing model material for bone) were considered employing AFM technique. Adhesive forces increased, in the presence of PBS, after treatment with helium and helium/oxygen cold gas plasmas. Furthermore, a more hydrophilic surface of UHMWPE was observed after both treatments, determined through a reduction of up to a third in the contact angles of water. On the other hand, the asperity density also decreased by half, yet the asperity height had a three-fold decrease. This work shows that CAP treatment can be a very effective technique at enhancing the adhesion between bone and UHMWPE implant material as aided by the increased adhesion forces. Moreover, the hydrophilicity of the CAP treated UHMWPE can lead to proteins and cells adhesion to the surface of the implant stimulating osseointegration process. PMID:25431523

  15. Structure of tetraalkylammonium ionic liquids in the interlayer of modified montmorillonite

    NASA Astrophysics Data System (ADS)

    Duarte, Daniel; Salanne, Mathieu; Rotenberg, Benjamin; Bizeto, Marcos A.; Siqueira, Leonardo J. A.

    2014-07-01

    We perform molecular dynamics simulations of tetraalkylammonium ionic liquids confined in the interlayer of montmorillonite (MMT). We study the structure and energetics of the systems, which consist of cations with two different alkyl chain lengths and several ionic liquid concentrations. The results we obtained for the structure, namely the presence of a strong layering in all systems and the formation of nonpolar domains with interdigitated alkyl chains in some cases, are largely consistent with previous surface force balance experiments performed on similar systems. Finally, we show that swelling of the organo-modified MMT by a large amount of ionic liquid seems energetically favorable in all cases.

  16. Effects of exchanged cation on the microporosity of montmorillonite

    USGS Publications Warehouse

    Rutherford, D.W.; Chiou, C.T.; Eberl, D.D.

    1997-01-01

    The micropore volumes of 2 montmorillonites (SAz- 1 and SWy-1), each exchanged with Ca, Na, K, Cs and tetramethylammonium (TMA) ions, were calculated from the measured vapor adsorption data of N2 and neo-hexane by use of t- and ??s-plots. The corresponding surface areas of the exchanged clays were determined from Brunauer-Emmett-Teller (BET) plots of N2 adsorption data. Micropore volumes and surface areas of the samples increased with the size of exchanged cation: TMA > Cs > K> Ca > Na. The SAz-1 exchanged clays showed generally greater micropore volumes and surface areas than the corresponding SWy-1 clays. The vapor adsorption data and d(001) measurements for dry clay samples were used together to evaluate the likely locations and accessibility of clay micropores, especially the relative accessibility of their interlayer spacing. For both source clays exchanged with Na, Ca and K ions, the interlayer spacing appeared to be too small to admit nonpolar gases and the accessible micropores appeared to have dimensions greater than 5.0 A??, the limiting molecular dimension of neo -hexane. In these systems, there was a good consistency of micropore volumes detected by N2 and neo-hexane. When the clays were intercalated with relatively large cations (TMA and possibly Cs), the large layer expansion created additional microporosity, which was more readily accessible to small N2 than to relatively large neo-hexane. Hence, the micropore volume as detected by N2 was greater than that detected by neo-hexane. The micropore volumes with pore dimensions greater than 5 A?? determined for clays exchanged with Na, Ca and K likely resulted from the pores on particle edges and void created by overlap regions of layers. The increase in micropore volumes with pore dimensions less than 5 A?? determined for clays exchanged with TMA and possibly Cs could be caused by opening of the interlayer region by the intercalation of these large cations.

  17. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite

    SciTech Connect

    Fernandez, Rodrigo; Martirena, Fernando; Scrivener, Karen L.

    2011-01-15

    This paper investigates the decomposition of three clayey structures (kaolinite, illite and montmorillonite) when thermally treated at 600 {sup o}C and 800 {sup o}C and the effect of this treatment on their pozzolanic activity in cementitious materials. Raw and calcined clay minerals were characterized by the XRF, XRD, {sup 27}Al NMR, DTG and BET techniques. Cement pastes and mortars were produced with a 30% substitution by calcined clay minerals. The pozzolanic activity and the degree of hydration of the clinker component were monitored on pastes using DTG and BSE-IA, respectively. Compressive strength and sorptivity properties were assessed on standard mortars. It was shown that kaolinite, due to the amount and location of OH groups in its structure, has a different decomposition process than illite or montmorillonite, which results in an important loss of crystallinity. This explains its enhanced pozzolanic activity compared to other calcined clay-cement blends.

  18. Transformation of Triclosan by Fe(III)-saturated montmorillonite.

    PubMed

    Liyanapatirana, Chamindu; Gwaltney, Steven R; Xia, Kang

    2010-01-15

    Abiotic transformation of triclosan (TCS) was investigated by incubating TCS with Fe(III)- and Na-montmorillonite at 40% relative humidity and room temperature for up to 100 days. The TCS transformation products were characterized using LC/MS, GC/MS, and computational modeling and quantified using HPLC/UV and GC/MS. Within 1-5 days, depending on the initial TCS concentrations, about 55% of the TCS was rapidly transformed in the presence of Fe(III)-montmorillonite, producing 2,4-dichlorophenol, 3-chlorophenol, 2,4-dichlorophenol dimer, chlorophenoxy phenols, and TCS dimers and trimers. Computational modeling based on density functional theory confirmed the formation of four TCS dimer conformers and six TCS trimer conformers. The TCS phenoxy radicals, produced by Fe(III) oxidation of TCS, react with other TCS molecules to form TCS dimers. The TCS trimers were formed by attachment of TCS dimer phenoxy radicals, produced by Fe(III) oxidation of TCS dimers, with TCS molecules. Significantly smaller quantities of TCS transformation products were detected in the reactions with Na-montmorillonite compared to the reactions with Fe(III)-montmorillonite. Formation of a significant amount of 2,4-dichlorophenol, especially in reaction with Fe(III)-montmorillonite, may have negative impact on the environment because of its toxicity. However, mineral-facilitated TCS polymerization may reduce its mobility and bioavailability in soils.

  19. Thermodynamic properties of water in compacted sodium montmorillonite

    SciTech Connect

    Torikai, Yuji; Sato, Seichi; Ohashi, Hiroshi

    1996-07-01

    Compacted bentonite is a promising material as an engineering barrier to enclose nuclear waste. The migration of nuclides occurs in the water of bentonite, where the major mineral is sodium montmorillonite. To determine the thermodynamic properties of water in compacted sodium montmorillonite, the equilibrium vapor pressure of the water in the montmorillonite was measured as a function of water content and temperature, without external pressure. The thermodynamic properties depend on water content but not on the dry density of unsaturated specimens. In montmorillonite, single-layer adsorption may proceed from 0 to 16 wt% water content, two-layer adsorption from 16 to 27 wt%, and three-layer adsorption above 27 wt%; pore water appears only in the last region. It is probable that 30 wt% of the total water included in saturated montmorillonite is not in the interlayer between platelets at 45.0 wt% water content and 0.80 {times} 10{sup 3} kg/m{sup 3} dry density. There is a very slight amount of water, which is not bound between platelets at dry densities of 1.20 and 1.76 {times} 10{sup 3} kg/m{sup 3}. This water is not a dilute electrolytic solution but has higher ionic strength, like typical seawater of salinity 23{per_thousand} and saturated NaCl.

  20. Sorption of endrin to montmorillonite and kaolinite clays.

    PubMed

    Peng, Xianjia; Wang, Jun; Fan, Bin; Luan, Zhaokun

    2009-08-30

    It has been discovered previously that clay minerals may have a greater potential for sorption of pesticides. In this paper, the sorption of endrin, a nonionic persistent organochlorine pesticide, to montmorillonite and kaolinite was investigated. The effect of pH, ionic strength on the sorption was studied. The effect of intercalation of hydroxyl aluminium species on sorption of endrin to montmorillonite was also investigated. The results show that, the sorption isotherm of endrin to montmorillonite and kaolinite was linear. The sorption increases with the increase in ionic strength. pH has effect on the sorption and the sorption on both montmorillonite and kaolinite has obvious troughs at pH about 7.2 and 5.4, respectively. The intercalation of hydroxyl aluminium species decreases the sorption. Sorption mechanism of endrin to montmorillonite and kaolinite was suggested to be a combination of hydrophobic interaction and charge-dipole interaction and troughs in the effect of pH on sorption was attributed to the proton shift reaction of the broken bonds at the clay edges.

  1. Microbiome Remodeling via the Montmorillonite Adsorption-Excretion Axis Prevents Obesity-related Metabolic Disorders.

    PubMed

    Xu, Pengfei; Hong, Fan; Wang, Jialin; Cong, Yusheng; Dai, Shu; Wang, Sheng; Wang, Jing; Jin, Xi; Wang, Fang; Liu, Jin; Zhai, Yonggong

    2017-02-01

    Obesity and its related metabolic disorders are closely correlated with gut dysbiosis. Montmorillonite is a common medicine used to treat diarrhea. We have previously found that dietary lipid adsorbent-montmorillonite (DLA-M) has an unexpected role in preventing obesity. The aim of this study was to further investigate whether DLA-M regulates intestinal absorption and gut microbiota to prevent obesity-related metabolic disorders. Here, we show that DLA-M absorbs free fatty acids (FFA) and endotoxins in vitro and in vivo. Moreover, the combination of fluorescent tracer technique and polarized light microscopy showed that DLA-M crystals immobilized BODIPY® FL C16 and FITC-LPS, respectively, in the digestive tract in situ. HFD-fed mice treated with DLA-M showed mild changes in the composition of the gut microbiota, particularly increases in short-chain fatty acids (SCFA)-producing Blautia bacteria and decreases in endotoxin-producing Desulfovibrio bacteria, these changes were positively correlated with obesity and inflammation. Our results indicated that DLA-M immobilizes FFA and endotoxins in the digestive tract via the adsorption-excretion axis and DLA-M may potentially be used as a prebiotic to prevent intestinal dysbiosis and obesity-associated metabolic disorders in obese individuals.

  2. Estimating Dermal Transfer of Copper Particles from the Surfaces of Pressure-Treated Lumber and Implications for Exposure

    EPA Science Inventory

    Lumber pressure-treated with micronized copper was examined for the release of copper and copper micro/nanoparticles using a surface wipe method to simulate dermal transfer. In 2003, the wood industry began replacing CCA treated lumber products for residential use with copper ba...

  3. Surface treated titanium dioxide nanoparticles as inorganic UV filters in sunscreen products.

    PubMed

    Veronovski, Nika; Lešnik, Maja; Lubej, Andrej; Verhovšek, Dejan

    2014-01-01

    TiO(2) nanoparticles were used in this research as an inorganic UV absorber for preparation of a sunscreen that ensures optically transparent films with adequate SPF. TiO(2) nanoparticles in rutile crystal form, produced in Cinkarna Celje, were used in this research. The elementary principle of the nanograde TiO(2) production is the sulphate synthesis process, which is upgraded for the synthesis of final nano product. TiO(2) nanoparticles were subsequently surface modified by coating with sodium silicate as the source of silica. The resulting silica coated TiO(2) nanoparticles were examined by scanning (SEM) and transmission electron microscopy (TEM). Uniform particles distribution and homogeneous amorphous coatings, formed in heterogeneous nucleation of silica molecules on the surface of TiO(2) nanoparticles, were observed. Sun-protection factor (SPF) of 28 was determined for sunscreen with incorporated 9.0 wt. % TiO(2) nanoparticles, surface treated with 5.0 wt. % silica according to the "Method for the In Vitro Determination of UVA Protection Provided by Sunscreen Products".

  4. Polymerization of alanine in the presence of a non-swelling montmorillonite

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.; Lahav, N.

    1977-01-01

    Alanine, starting from alanine-adenylate, has been polymerized in the presence of non-swelling Al-montmorillonite. The yield of polymerization is much lower than that obtained in the presence of swelling Na-montmorillonite. The possibility that the changing interlayer spacing in Na-montmorillonite might be responsible for its catalytic properties, is discussed.

  5. Montmorillonite Functionalized with Pralidoxime as a Material for Chemical Protection against Organophosphorous Compounds

    DTIC Science & Technology

    2011-03-25

    implied is via iondipole forces.5,6 It is well-known that clays such as montmorillonite and kaolinite accelerate the degradation of insecticides such...REPORT Montmorillonite Functionalized with Pralidoxime As a Material for Chemical Protection against Organophosphorous Compounds 14. ABSTRACT 16...SECURITY CLASSIFICATION OF: Montmorillonite K-10 functionalized with ?-nucleophilic 2-pralidoxime (PAM) and its zwitterionic oximate form (PAMNa) is

  6. Aggregation of Montmorillonite and Organic Matter in Aqueous Media Containing Artificial Seawater

    DTIC Science & Technology

    2009-01-23

    laboratory kaolinite and montmorillonite aggregation in which the dispersion-aggregation properties of pure clay suspensions were found to be primarily...Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Aggregation of montmorillonite and organic matter in aqueous media containing...properties of suspended colloids and aggregates) were determined for systems containing suspended montmorillonite , humic acid, and/or chitin at the

  7. THM and HAA formation from NOM in raw and treated surface waters.

    PubMed

    Golea, D M; Upton, A; Jarvis, P; Moore, G; Sutherland, S; Parsons, S A; Judd, S J

    2017-04-01

    The disinfection by-product (DBP) formation potential (FP) of natural organic matter (NOM) in surface water sources has been studied with reference to the key water quality determinants (WQDs) of UV absorption (UV254), colour, and dissolved organic carbon (DOC) concentration. The data set used encompassed raw and treated water sampled over a 30-month period from 30 water treatment works (WTWs) across Scotland, all employing conventional clarification. Both trihalomethane (THM) and haloacetic acid (HAA) FPs were considered. In addition to the standard bulk WQDs, the DOC content was fractionated and analysed for the hydrophobic (HPO) and hydrophilic (HPI) fractions. Results were quantified in terms of the yield (dDBPFP/dWQD) and the linear regression coefficient R(2) of the yield trend. The NOM in the raw waters was found to comprise 30-84% (average 66%) of the more reactive HPO material, with this proportion falling to 18-63% (average 50%) in the treated water. Results suggested UV254 to be as good an indicator of DBPFP as DOC or HPO for the raw waters, with R(2) values ranging from 0.79 to 0.82 for THMs and from 0.71 to 0.73 for HAAs for these three determinants. For treated waters the corresponding values were significantly lower at 0.52-0.67 and 0.46-0.47 respectively, reflecting the lower HPO concentration and thus UV254 absorption and commensurately reduced precision due to the limit of detection of the analytical instrument. It is concluded that fractionation offers little benefit in attempting to discern or predict chlorinated carbonaceous DBP yield for the waters across the geographical region studied. UV254 offered an adequate estimate of DBPFP based on a mean yield of ∼2600 and ∼2800 μg per cm(-1) absorbance for THMFP for the raw and treated waters respectively and ∼3800 and2900 μg cm(-1) for HAAFP, albeit with reduced precision for the treated waters.

  8. Efficient Removal of Co2+ from Aqueous Solution by 3-Aminopropyltriethoxysilane Functionalized Montmorillonite with Enhanced Adsorption Capacity

    PubMed Central

    Huang, Zhujian; Gong, Beini; Dai, Yaping; Chiang, Pen-Chi; Lai, Xiaolin; Yu, Guangwei

    2016-01-01

    To achieve a satisfactory removal efficiency of heavy metal ions from wastewater, silane-functionalized montmorillonite with abundant ligand-binding sites (-NH2) was synthesized as an efficient adsorbent. Ca-montmorillonite (Ca-Mt) was functionalized with 3-aminopropyl triethoxysilane (APTES) to obtain the APTES-Mt products (APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt, APTES4.0CEC-Mt) with enhanced adsorption capacity for Co2+. The physico-chemical properties of the synthesized adsorbents were characterized by spectroscopic and microscopic methods, and the results demonstrated that APTES was successfully intercalated into the gallery of Ca-Mt or grafted onto the surface of Ca-Mt through Si-O bonds. The effect of solution pH, ionic strength, temperature, initial concentrations and contact time on adsorption of Co2+ by APTES-Mt was evaluated. The results indicated that adsorption of Co2+ onto Ca-Mt, APTES1.0CEC-Mt and APTES2.0CEC-Mt can be considered to be a pseudo-second-order process. In contrast, adsorption of Co2+ onto APTES3.0CEC-Mt and APTES4.0CEC-Mt fitted well with the pseudo-first-order kinetics. The adsorption isotherms were described by the Langmuir model, and the maximum adsorption capacities of APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt and APTES4.0CEC-Mt were 25.1, 33.8, 61.6, and 61.9 mg·g-1, respectively. In addition, reaction temperature had no impact on the adsorption capacity, while both the pH and ionic strength significantly affected the adsorption process. A synergistic effect of ion exchange and coordination interactions on adsorption was observed, thereby leading to a significant enhancement of Co2+ adsorption by the composites. Thus, APTES-Mt could be a cost-effective and environmental-friendly adsorbent, with potential for treating Co2+-rich wastewater. PMID:27448094

  9. Adhesion of different bacterial strains to low-temperature plasma treated biomedical PVC catheter surfaces.

    PubMed

    Yousefi Rad, A; Ayhan, H; Kisa, U; Pişkin, E

    1998-01-01

    In this study, firstly five different bacteria (i.e. Coagulase positive and negative staphylococcus, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa) with their different strains were isolated and used. The contact angle, surface free energy, p-xylene adhesion, and zeta potential of these bacteria were in the range of 43-69 deg, 45.4-61.8 erg cm(-2), 2.3-80.3%, and from -650.2 to + 17.5 mV, respectively. Most of the bacteria were negatively charged. Attachment of these bacteria to PVC catheter and its DMAEMA- and AAc-plasma treated forms were investigated. Bacterial attachment to the hydrophobic PVC catheter was high. Both plasma treatments caused significant drops in bacterial attachment in most of the cases. The effects of AAc-plasma treatment was more significant.

  10. Performance evaluation of attached growth membrane bioreactor for treating polluted surface water.

    PubMed

    Li, Lu; Suwanate, Siwaporn; Visvanathan, C

    2017-01-25

    Attached growth membrane bioreactor (aMBR) process was investigated for treating polluted surface water with CODMn around 10mg/L of raw water. Lab scale reactors, aMBR with 15% PVA-gel as carrier and conventional membrane filtration reactor (MF) were tested in parallel. aMBR achieved two times higher CODMn removal than MF system. Ammonia removal occurred almost completely in both MF and aMBR system - around 94% and 96%, respectively. Permeate turbidity was almost totally removed while UV254 removal was around 15% in MF and 20% in aMBR system. aMBR system largely mitigated membrane fouling and prolonged the system operation time. Results showed 2h hydraulic retention time provided relatively higher removal efficiency and stable operation performance. Modified Stover Kincannon model was able to match the aMBR system.

  11. Immobilization of self-assembled pre-dispersed nano-TiO2 onto montmorillonite and its photocatalytic activity.

    PubMed

    Zhang, Tingting; Luo, Yuan; Jia, Bing; Li, Yan; Yuan, Lingling; Yu, Jiang

    2015-06-01

    The immobilization of pre-dispersed TiO2 colloids onto the external surface of the clay mineral montmorillonite (Mt) was accomplished and regulated via a self-assembly method employing the cationic surfactant cetyltrimethylammonium bromide (CTAB). The role of CTAB in the synthesis process was investigated by preparing a series of TiO2-CTAB-Mt composites (TCM) with various CTAB doses. The results indicated that a uniform and continuous TiO2 film was deposited on the external surface of montmorillonite in the composite synthesized with 0.1 wt.% of CTAB, and the TCM nano-composites showed much higher values for specific surface area, average pore size and pore volume than the raw montmorillonite clay. Then, the formed TCM materials were applied in photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP) in aqueous solution. The degradation efficiency reached as high as 94.7%. Based on the degradation intermediates benezoquinone, fumaric acid and oxalic acid identified by LC-MS analysis, a mechanism for the photocatalytic oxidation of 2,4-DCP on TiO2/Mt nano-composites is proposed.

  12. Bone cutting capacity and osseointegration of surface-treated orthodontic mini-implants

    PubMed Central

    Kim, Ho-Young

    2016-01-01

    Objective The objective of the study was to evaluate the practicality and the validity of different surface treatments of self-drilling orthodontic mini-implants (OMIs) by comparing bone cutting capacity and osseointegration. Methods Self-drilling OMIs were surface-treated in three ways: Acid etched (Etched), resorbable blasting media (RBM), partially resorbabla balsting media (Hybrid). We compared the bone cutting capacity by measuring insertion depths into artificial bone (polyurethane foam). To compare osseointegration, OMIs were placed in the tibia of 25 rabbits and the removal torque value was measured at 1, 2, 4, and 8 weeks after placement. The specimens were analyzed by optical microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Results The bone cutting capacity of the etched and hybrid group was lower than the machined (control) group, and was most inhibited in the RBM group (p < 0.05). At 4 weeks, the removal torque in the machined group was significantly decreased (p < 0.05), but was increased in the etched group (p < 0.05). In the hybrid group, the removal torque significantly increased at 2 weeks, and was the highest among all measured values at 8 weeks (p < 0.05). The infiltration of bone-like tissue surface was evaluated by SEM, and calcium and phosphorus were detected via EDS only in the hybrid group. Conclusions Partial RBM surface treatment (hybrid type in this study) produced the most stable self-drilling OMIs, without a corresponding reduction in bone cutting capacity. PMID:27896213

  13. Optimization of electrocoagulation process to treat grey wastewater in batch mode using response surface methodology

    PubMed Central

    2014-01-01

    Background Discharge of grey wastewater into the ecological system causes the negative impact effect on receiving water bodies. Methods In this present study, electrocoagulation process (EC) was investigated to treat grey wastewater under different operating conditions such as initial pH (4–8), current density (10–30 mA/cm2), electrode distance (4–6 cm) and electrolysis time (5–25 min) by using stainless steel (SS) anode in batch mode. Four factors with five levels Box-Behnken response surface design (BBD) was employed to optimize and investigate the effect of process variables on the responses such as total solids (TS), chemical oxygen demand (COD) and fecal coliform (FC) removal. Results The process variables showed significant effect on the electrocoagulation treatment process. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were developed in order to study the electrocoagulation process statistically. The optimal operating conditions were found to be: initial pH of 7, current density of 20 mA/cm2, electrode distance of 5 cm and electrolysis time of 20 min. Conclusion These results indicated that EC process can be scale up in large scale level to treat grey wastewater with high removal efficiency of TS, COD and FC. PMID:24410752

  14. Adsorptive property of Cu2+-ZnO/cetylpyridinium-montmorillonite complexes for pathogenic bacterium in vitro.

    PubMed

    Ma, Yu-Long; Yang, Bo; Xie, Li

    2010-09-01

    Cu(2+)-ZnO/cetylpyridinium-montmorillonite (Cu(2+)-ZnO/CP-MMT) complexes were prepared using montmorillonite (MMT), Cu(2+), Zn(2+), and cetylpyridinium (CP). The goal was to assess comparatively the adsorption properties of Cu(2+)-ZnO/CP-MMT in vitro using pathogenic Escherichia coli. The results showed that Cu(2+)-ZnO/CP-MMT adsorbed significantly (P<0.05) more E. coli compared with the parent clay. The adsorption process of bacterial cells occurring on the modified MMT surface reached equilibrium after 90 min. The percentages of E. coli adsorbed onto the surfaces of Cu(2+)-ZnO/CP-MMT and MMT in adsorption equilibrium were 84.66% and 47.01%, respectively. Adsorption data from the bacteria-clay systems followed the Langmuir and Freundlich isotherms, but not the BET isotherm. Adsorption of E. coli in acidic medium was higher than in alkaline medium. The extent of bacteria adsorption onto the modified MMT increased with decreasing ionic strength, and with increasing temperature. The processes of E. coli adsorption onto the tested adsorbents were endothermic and spontaneous at the experimental temperature. The mechanism of adsorption of bacteria on Cu(2+)-ZnO/CP-MMT may involve enhanced hydrophobicity and the reversal of surface charge from negative to positive.

  15. Formation of RNA oligomers on montmorillonite: site of catalysis

    NASA Technical Reports Server (NTRS)

    Ertem, G.; Ferris, J. P.

    1998-01-01

    Certain montmorillonites catalyze the self condensation of the 5'-phosphorimidazolide of nucleosides in pH 8 aqueous electrolyte solutions at ambient temperatures leading to formation of RNA oligomers. In order to establish the nature of the sites on montmorillonite responsible for this catalytic activity, oligomerization reactions were run with montmorillonites which had been selectively modified (I) at the edges by (a) fluoride treatment, (b) silylation, (c) metaphosphate treatment of the anion exchange sites (II) in the interlayer by (a) saturation with quaternary alkylammonium ions of increasing size, (b) aluminum polyoxo cations. High pressure liquid chromatography, HPLC, analysis of condensation products for their chain lengths and yields indicated that modification at the edges did not affect the catalytic activity to a significant extent, while blocking the interlayer strongly inhibited product formation.

  16. Speciation of uranium(VI) sorption complexes on montmorillonite

    SciTech Connect

    Chisholm-Brause, C.J.; Morris, D.E.; Richard, R.E.

    1992-05-01

    Environmental contaminant releases that contain uranium are among the most serious problems that must be confronted by restoration programs. To facilitate restoration, information concerning the speciation of uranium is needed. Under oxidizing conditions, dissolved uranium is predominantly in the U(VI) (uranyl) form and is quite mobile in the environment, however sorption onto soils may retard its movement. In this study, we have investigated the effects of changes in solution speciation on the nature of uranyl sorption complexes on montmorillonite, a common soil constituent. Aqueous U(VI) solutions between pH 3 to 7 were batch-equilibrated with montmorillonite for several days; specific pH values were selected such that the solutions consisted of dominantly monomeric, oligomeric, or a mix of monomeric and oligomeric aqueous uranyl species. Emission spectroscopy was used to investigate the nature of U(VI) sorbed to montmorillonite.

  17. Retention of gases by hexadecyltrimethylammonium-montmorillonite clays.

    PubMed

    Volzone, C; Rinaldi, J O; Ortiga, J

    2006-05-01

    Intercalated montmorillonite clays with different amounts of organic hexadecyltrimethylammonium (HDTMA) cations were studied to analyse their CO, CH(4), and SO(2) gas retentions. Equilibrium adsorption was measured by using a standard volumetric apparatus at 25 degrees C and 0.1 MPa. The solids were characterised by X-ray diffraction. The levels of adsorption of SO(2) by organo-montmorillonites (0.3595-1.6403 mmol/g) were higher than those of CO (up to 0.0202 mmol/g) and CH(4) (up to 0.0273 mmol/g) gases. HDTMA montmorillonites may be effective adsorbents for removing SO(2) and for its potential separation in the presence of CO and/or CH(4) molecules, which can be present in contaminated air.

  18. Biocompatibility evaluation of surface-treated AISI 316L austenitic stainless steel in human cell cultures.

    PubMed

    Martinesi, M; Bruni, S; Stio, M; Treves, C; Bacci, T; Borgioli, F

    2007-01-01

    The effects of AISI 316L austenitic stainless steel, tested in untreated state or subjected to glow-discharge nitriding (at 10 or 20 hPa) and nitriding + post-oxidizing treatments, on human umbilical vein endothelial cells (HUVEC) and on peripheral blood mononuclear cells (PBMC) were evaluated. All the treated samples showed a better corrosion resistance in PBS and higher surface hardness in comparison with the untreated alloy. In HUVEC put in contact for 72 h with the sample types, proliferation and apoptosis decreased and increased, respectively, in the presence of the nitrided + post-oxidized samples, while only slight differences in cytokine (TNF-alpha, IL-6, and TGF-beta1) release were registered. Intercellular adhesion molecule-1 (ICAM-1) increased in HUVEC incubated with all the treated samples, while vascular cell adhesion molecule-1 (VCAM-1) and E-selectin increased in the presence of all the sample types. PBMC incubated for 48 h with the samples showed a decrease in proliferation and an increase in apoptosis in the presence of the untreated samples and the nitrided + post-oxidized ones. All the sample types induced a remarkable increase in TNF-alpha and IL-6 release in PBMC culture medium, while only the untreated sample and the nitrided at 10 hPa induced an increase in ICAM-1 expression. In HUVEC cocultured with PBMC, previously put in contact with the treated AISI 316L samples, increased levels of ICAM-1 were detected. In HUVEC coincubated with the culture medium of PBMC, previously put in contact with the samples under study, a noteworthy increase in ICAM-1, VCAM-1, and E-selectin levels was always registered, with the exception of VCAM-1, which was not affected by the untreated sample. In conclusion, even if the treated samples do not show a marked increase in biocompatibility in comparison with the untreated alloy, their higher corrosion resistance may suggest a better performance as the contact with physiological environment becomes longer.

  19. LiBr treated porous silicon used for efficient surface passivation of crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Zarroug, Ahmed; Haddadi, Ikbel; Derbali, Lotfi; Ezzaouia, Hatem

    2015-04-01

    A simple but effective passivation method of both front and rear surfaces using porous silicon (PS) has been developed. This paper investigates the effect of LiBr on the passivation of PS. The immersion of as-etched PS in dilute LiBr solution followed by an annealing in an infrared furnace, under a controlled atmosphere at different temperatures, led to the passivation of the PS layer and the improvement of the electronic properties of the crystalline silicon substrates. The influence of substrate temperature was investigated, since the processed wafers were found to be sensitive to heat, which in turn was optimized to have a gettering effect. The bromide of lithium can effectively saturate dangling bonds and hence contributed to the formation of a stable passivation film, at both front and back surfaces. Such a reaction was found to have a beneficial effect on the passivation process of the PS layer grown on both sides. The obtained results exhibited a significant improvement of the minority carrier lifetime, which is an important parameter that defines the quality of crystalline silicon substrates, and an apparent enhancement of its photoluminescence (PL). The internal quantum efficiency was investigated and found to be significantly improved. The qualitative effect of the above-mentioned procedure proved a significant enhancement of the electronic quality of the treated substrates.

  20. [Joint prostheses components of warm-forged and surface treated Ti-6Al-7Nb alloy].

    PubMed

    Semlitsch, M; Weber, H; Streicher, R M; Schön, R

    1991-05-01

    In 1978 development of a TiAl alloy with the inert alloying element niobium was initiated. In 1984, the optimal composition was found to be Ti-6Al-7Nb (Protasul-100). This custom-made alloy for implants has the same alpha/beta micro-structure and equally good mechanical properties as Ti-6Al-4V. The corrosion resistance of Ti-6Al-7Nb is better than that of pure titanium and Ti-6Al-4V, due to the very dense and stable passive layer. Since 1985, highly stressed anchoring stems of various hip prosthesis designs have been manufactured from hot-forged Ti-6Al-7Nb/Protasul-100. Polished surfaces of hip, knee or wrist joints made of Ti-6Al-7Nb intended to articulate with polyethylene are surface-treated by the application of a very hard, 3-5 microns thick titanium nitride coating (Tribosul-TiN), or by oxygen diffusion hardening (Tribosul-ODH) to a depth of 30 microns.

  1. Simple preparation of a cadmium selenide-montmorillonite hybrid.

    PubMed

    Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto

    2011-05-15

    The immobilization of organically modified cadmium selenide on montmorillonite was investigated by the reaction of modified cadmium selenide nanoparticles with montmorillonite. The intercalation of the nanoparticles was indicated by the expansion of the interlayer space and spectroscopic observations. The diffuse reflectance absorption spectrum of the product showed absorption onset at 567 nm. In comparison to the bulk cadmium selenide, the blue shift of the absorption onset of the hybrid was ascribed to the quantum size effect of the modified cadmium selenide nanoparticles. This study provides a new method for introducing nanoparticles into the interlayer space of layered inorganic materials.

  2. Modified montmorillonite as vector for gene delivery.

    PubMed

    Lin, Feng-Huei; Chen, Chia-Hao; Cheng, Winston T K; Kuo, Tzang-Fu

    2006-06-01

    Currently, gene delivery systems can be divided into two parts: viral or non-viral vectors. In general, viral vectors have a higher efficiency on gene delivery. However, they may sometimes provoke mutagenesis and carcinogenesis once re-activating in human body. Lots of non-viral vectors have been developed that tried to solve the problems happened on viral vectors. Unfortunately, most of non-viral vectors showed relatively lower transfection rate. The aim of this study is to develop a non-viral vector for gene delivery system. Montmorillonite (MMT) is one of clay minerals that consist of hydrated aluminum with Si-O tetrahedrons on the bottom of the layer and Al-O(OH)2 octahedrons on the top. The inter-layer space is about 12 A. The room is not enough to accommodate DNA for gene delivery. In the study, the cationic hexadecyltrimethylammonium (HDTMA) will be intercalated into the interlayer of MMT as a layer expander to expand the layer space for DNA accommodation. The optimal condition for the preparation of DNA-HDTMA-MMT is as follows: 1 mg of 1.5CEC HDTMA-MMT was prepared under pH value of 10.7 and with soaking time for 2 h. The DNA molecules can be protected from nuclease degradation, which can be proven by the electrophoresis analysis. DNA was successfully transfected into the nucleus of human dermal fibroblast and expressed enhanced green fluorescent protein (EGFP) gene with green fluorescence emission. The HDTMA-MMT has a great potential as a vector for gene delivery in the future.

  3. Study of Np(V) Sorption by Ionic Exchange on Na, K, Ca and Mg-Montmorillonite

    NASA Astrophysics Data System (ADS)

    Benedicto, A.; Begg, J.; Zhao, P.; Kersting, A. B.; Zavarin, M.

    2012-12-01

    The transport behavior of actinides in soil and ground water are highly influenced by clay minerals due to their ubiquity in the environment, reactivity and colloidal properties. Neptunium(V) has been introduced in the environment as a result of nuclear weapons testing [e.g. 1, 2] and is a radionuclide of potential interest for safety assessment of high level radioactive waste disposal because its long half-life and high toxicity [3]. Surface complexation and ionic exchange have been identified as Np(V) sorption mechanisms onto montmorillonite. At pH below 5, Np(V) sorption is mainly attributed to ionic exchange. This study examines Np(V) ion exchange on Na, K, Ca and Mg forms of montmorillonite. Experiments were carried out using 237Np concentrations between 2 x 10-8 M and 5 x 10-6 M at three different ionic strengths 0.1, 0.01 and 0.001M. The pH was maintained at 4.5. Np(V) sorption to montmorillonite homoionized with monovalent cations (Na and K) demonstrated a markedly different behavior to that observed for montmorillonite homoionized with divalent cations (Ca and Mg). Np sorption to Na and K-montmorillonite was greater than Np sorption to Ca and Mg-montmorillonite. Isotherms with Na and K-montmorillonite showed a strong dependence on ionic strength: the percentage of Np adsorbed was near zero at 0.1M ionic strength, but increased to 30% at 0.001 M ionic strength. This suggests ionic exchange is the main Np adsorption mechanism under the experimental conditions investigated. Dependence on ionic strength was not observed in the Np sorption isotherms for Ca and Mg-montmorillonite indicating a low exchange capacity between Np and divalent cations. Modeling of the sorption experimental data will allow determination of the Na+↔NpO2+ and K+↔NpO2+ ionic exchange constants on montmorillonite. References: [1] A. R. Felmy; K. J. Cantrell; S. D. Conradson, Phys. Chem. Earth 2010, 35, 292-297 [2] D. K. Smith; D. L. Finnegan; S. M. Bowen, J. Environ. Radioact. 2003, 67

  4. Uranium uptake by hectorite and montmorillonite: a solution chemistry and polarized EXAFS study.

    PubMed

    Schlegel, Michel L; Descostes, Michael

    2009-11-15

    The mechanism of U(VI) retention on montmorillonite and hectorite at high ionic strength (0.5 M NaCl) was investigated by solution chemistry and, at near-neutral pH, polarized EXAFS spectroscopy. Uranium(VI) sorption increases from pH 3 to 7 on the two clays, but with a steeper edge for hectorite. Uranium(VI) is no longer retained at pH > 9, presumably owing to the formation of soluble anionic complexes. Polarized EXAFS showed that U(VI) retains its uranyl conformation on montmorillonite (U_mont) and hectorite (U_hect), with uranyl O at 1.79(2) A for U_mont and 1.82(2) A for U_hect, and split equatorial O shells at 2.29(2) and 2.47(2) A (U_mont), or 2.35(2) and 2.53(2) A (U_hect). An additional atomic shell of approximately 0.5 Al/Si at 3.3 A is detected for U_mont, but neither the oxygen nor the cationic shell exhibit clear angular dependence. These results indicate the formation of mononuclear complexes at the edges of montmorillonite platelets, with the orientation of the uranyl axis equal to the magic angle, as constrained by the edges' structural properties. In contrast to U_mont, the U-O signal varies with the polarization angle in U_hect, and the cationic Mg/Si contribution at 3.2 A is weak. The structure of this surface complex is not completely elucidated; it may correspond either to sorption on silanol sites, or to coprecipitation. These results lay out the fundamental molecular-scale basis to understand U retention by neoformed clay layers of nuclear glasses.

  5. A comparative study and evaluation of sulfamethoxazole adsorption onto organo-montmorillonites.

    PubMed

    Lu, Laifu; Gao, Manglai; Gu, Zheng; Yang, Senfeng; Liu, Yuening

    2014-12-01

    Three organo-montmorillonites were prepared using surfactants, and their adsorption behaviors toward sulfamethoxazole (SMX) were investigated. The surfactants used were cetyltrimethyl ammonium bromide (CTMAB), 3-(N,N-dimethylhexadecylammonio) propane sulfonate (HDAPS) and 1,3-bis(hexadecyldimethylammonio)-propane dibromide (BHDAP). The properties of the organo-montmorillonites were characterized by X-ray diffraction, scanning electron microscopy and N2 adsorption-desorption isotherm measurements. Results showed that the interlayer spacing of montmorillonite was increased and the surface area as well as the morphology were changed. Batch adsorption experiments showed that the surfactant loading amount had a great effect on the adsorption of SMX. The adsorption process was pH dependent and the maximum adsorption capacity was obtained at pH3 for HDAPS-Mt, while CTMAB-Mt and BHDAP-Mt showed a high removal efficiency at 3-11. The adsorption capacity increased with the initial SMX concentration and contact time but decreased with increasing solution ionic strength. Kinetic data were best described by the pseudo second-order model. Equilibrium data were best represented by the Langmuir model, and the Freundlich constant (n) indicated a favorable adsorption process. The maximum adsorption capacity of SMX was 235.29 mg/g for CTMAB-Mt, 155.28 mg/g for HDAPS-Mt and 242.72 mg/g for BHDAP-Mt. Thermodynamic parameters were calculated to evaluate the spontaneity and endothermic or exothermic nature. The adsorption mechanism was found to be dominated by electrostatic interaction, while hydrophobic interaction played a secondary role.

  6. Effect of Phosphate on U(VI) Sorption to Montmorillonite: Ternary Complexation and Precipitation Barriers

    SciTech Connect

    Troyer, Lyndsay D.; Maillot, Fabien; Wang, Zheming; Wang, Zimeng; Mehta, Vrajesh; Giammar, Daniel; Catalano, Jeffrey G.

    2016-02-15

    Phosphate addition is a potential treatment method to lower the solubility of U(VI) in soil and groundwater systems by causing U(VI) phosphate precipitation as well as enhancing adsorption. Previous work has shown that iron oxide surfaces may facilitate the nucleation of U(VI) phosphate minerals and, that under weakly acidic conditions, phosphate also enhances U(VI) adsorption to such phases. Like iron oxides, clays are important reactive phases in the subsurface but little is known about the interaction of U(VI) and phosphate with these minerals. The effect of aqueous phosphate on U(VI) binding to Wyoming montmorillonite (SWy-2) in air-equilibrated systems was investigated. Equilibrium U(VI) uptake to montmorillonite was determined at pH 4, 6 and 8 at discrete initial phosphate concentrations between 0 and 100 μM. The observed behavior of U(VI) indicates a transition from adsorption to precipitation with increasing total uranium and phosphate concentrations at all pH values. At the highest phosphate concentration examined at each pH value, a barrier to U(VI) phosphate nucleation is observed. At lower concentrations, phosphate has no effect on macroscopic U(VI) adsorption. To assess the mechanisms of U(VI)-phosphate interactions on smectite surfaces, U(VI) speciation was investigated under selected conditions using laser-induced fluorescence spectroscopy (LIFS) and extended X-ray absorption fine-structure (EXAFS) spectroscopy. Samples above the precipitation threshold display EXAFS and LIFS spectral signatures consistent with the autunite family of U(VI) phosphate minerals. However, at lower U(VI) concentrations, changes in LIFS spectra upon phosphate addition suggest that U(VI)-phosphate ternary surface complexes form on the montmorillonite surface at pH 4 and 6 despite the lack of a macroscopic effect on adsorption. The speciation of solid-associated U(VI) below the precipitation threshold at pH 8 is dominated by U(VI)-carbonate surface complexes. This work

  7. Hexadimethrine-montmorillonite nanocomposite: Characterization and application as a pesticide adsorbent

    NASA Astrophysics Data System (ADS)

    Gámiz, B.; Hermosín, M. C.; Cornejo, J.; Celis, R.

    2015-03-01

    The goal of this work was to prepare and characterize a novel functional material by the modification of SAz-1 montmorillonite with the cationic polymer hexadimethrine (SA-HEXAD), and to explore the potential use of this nanocomposite as a pesticide adsorbent. Comparative preparation and characterization with the well-known hexadecyltrimethylammonium-modified SAz-1 montmorillonite (SA-HDTMA) was also assessed. The characterization was performed by elemental analysis, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), physisorption of N2, scanning electron microscopy (SEM) and Z potential measurements. The characterization and adsorption experiments showed that the extent of pesticide adsorption was markedly subjected to the structure and features of the surface of each organo-clay and also to the nature of the considered pesticide. SA-HEXAD displayed a high affinity for anionic pesticides which, presumably, were adsorbed by electrostatic attraction on positively-charged ammonium groups of the polymer not directly interacting with the clay. In contrast, SA-HDTMA displayed great adsorption of both uncharged and anionic pesticides with predominance of hydrophobic interactions. This work provided information about the surface properties of a new organic-inorganic nanohybrid material, SA-HEXAD, and its potential as an adsorbent for the removal of anionic organic pollutants from aqueous solutions.

  8. Solvent-based nanocomposite coatings I. Dispersion of organophilic montmorillonite in organic solvents.

    PubMed

    Burgentzlé, D; Duchet, J; Gérard, J F; Jupin, A; Fillon, B

    2004-10-01

    This study aims to determine the relevant parameters controlling the organophilic montmorillonite dispersion in various organic solvents which can be used as dispersion media for polymer coatings. These suspensions were studied at three scales: At nanometer scale by looking to interlayer distance: When the solvent surface energy is higher than the organophilic clay surface energy, i.e., gamma solvent > or = gamma montmorillonite, the intercalated organic chains of the quaternary ammonium modifier swell, leading to an increase of the interlayer distance. The balance between hydrophilic and hydrophobic character is the key to dispersion of nanoclays. At micrometer scale by studying the rheological behaviour of clay suspensions: Gels are formed by percolation of microgels, based on swollen 3-4 platelet tactoids. The viscoelastic properties and the flow behavior reveal the gel structuration by measuring the gel stiffness and the flowing stress. At macroscopic scale analyzed from the swelling of the nanoclay into solvents: The compatibility between solvent and organophilic clay governs the macroscopic swelling, i.e., interactions between organic chains borne by the intercalated ions and solvents govern the final suspension morphologies. The same methodology can be adopted for monomers or prepolymers selected for one in situ intercalation/exfoliation processing route.

  9. Treating of produced water for surface discharge at the Arun gas condensate field

    SciTech Connect

    Madian, E.S.; Moelyodihardjo, T.; Snavely, E.S.; Jan, R.J.

    1995-11-01

    Mobil`s Arun Field in northern Sumatra produces natural gas, hydrocarbon liquids and water condensate. Purification of the water for surface disposal is the subject of this paper. The Arun waste water contains about 2,000 ppm of liquid hydrocarbons in the form of a very stable oil-in-water emulsion. Stability of the emulsion is enhanced by the small diameters of the oil droplets, low salt content of the water and low pH. The water is saturated with carbon dioxide and hydrocarbon gases which bubble from the water when pressure is released. Returns of acids, surfactants, emulsifying agents and corrosion inhibitors from acid fracturing operations also contribute to the composition of Arun waste water. Increases in waste water production, now about 32,000 BPD, and relatively high concentrations of BOD, phenols and ammonia have prompted Mobil to upgrade the Arun waste water treating facilities to protect the receiving bodies of water from contamination. The upgrade focused on two areas of water treating: (1) removal of suspended liquid hydrocarbons from the water; and (2) biological oxidation of dissolved organics. Demulsifier chemical and a skim tank were added to the oil removal facility; the decarbonator and caustic addition before air flotation were eliminated. Without added caustic, the gas flotation units remove acid gases from the water very effectively. The new skim tank removes over 90% of the suspended hydrocarbons. The biological oxidation ponds were upgraded by adding barriers to improved plug flow, increasing dispersed air flow, increasing sludge recycle volume, lowering the oil input and by adding nutrients and biological seeding. Results of the biological pond upgrades are not yet available because increased sludge recirculation and the optimization of biological seeding are not yet completed. Tests of the use of locally-produced biological sludge are planned.

  10. Mechanical properties of the sodium montmorillonite interlayer intercalated with amino acids.

    PubMed

    Katti, Dinesh R; Ghosh, Pijush; Schmidt, Steven; Katti, Kalpana S

    2005-01-01

    Nanosized montmorillonite clay dispersed in small amounts in polymer results in polymer nanocomposites having superior engineering properties compared to those of the native polymer. These nanoinclusions are created by treating clay with an organic modifier which makes clay organophilic and results in intercalation or exfoliation of the montmorillonite. The modifiers used are usually long carbon chains with alkylammonium or alkylphosphonium cations. In this work, we have investigated the use of some alternative molecules which can act as modifiers for clay composites using clay for reinforcing a matrix of biopeptides or proteins. Such composites have potential applications in the fields of biomedical engineering and pharmaceutical science. In this work, the amino acids arginine and lysine are used as modifiers. The intercalation and mechanical behavior of the interlayer spacing with these amino acids as inclusions under compression and tension are studied using molecular dynamics simulations. Significant differences in the responses are observed. This work also provides an insight into the orientation and interaction of amino acids in the interlayer under different stress paths.

  11. Properties of thermo-chemically surface treated carbon fibers and of their epoxy and vinyl ester composites

    SciTech Connect

    Vautard, Frederic; Ozcan, Soydan; Meyer III, Harry M

    2012-01-01

    High strength carbon fibers were surface treated by a continuous gas phase thermo-chemical surface treatment. The surface and the mechanical properties of the fibers were investigated before and after treatment and compared to the properties obtained with a conventional industrial electro-chemical surface treatment. An increase of the oxygen atomic content from 3 % to 20 % with a preferential generation of carboxylic acid functionalities and hydroxyl groups was highlighted after the thermo-chemical surface treatment, compared to an oxygen atomic content of 7 % and a wide variety of oxygen moieties with the electro-chemical surface treatment. The tensile strength of the fibers increased slightly after the thermo-chemical surface treatment and remained the same after the electro-chemical surface treatment. Short beam shear and 90 flexural tests of composites revealed that the improvement of interfacial adhesion with a vinyl ester matrix was limited, revealing that oxidation of the carbon fiber surface alone cannot tremendously improve the mechanical properties of carbon fiber-vinyl ester composites. Atomic force microscopy showed that the creation of roughness with both surface treatments at a nanometric scale. Although the surface is slightly rougher after the electro-chemical surface treatment and is expected to lead to higher adhesion due to mechanical interlocking between the fiber surface and the matrix, the effect of covalent bonding coming from the high concentration of chemical groups on the surface results in higher adhesion strength, as obtained with the thermo-chemical surface treatment.

  12. Effect of adsorbed iron on thermoluminescence and electron spin resonance spectra of Ca-Fe-exchanged montmorillonite

    NASA Technical Reports Server (NTRS)

    Coyne, Lelia M.; Banin, Amos

    1986-01-01

    The ESR spectra and the natural and gamma-induced thermoluminescence (TL) glow curves of a series of variably cation-exchanged Fe-Ca-clays prepared from SWy-1 montmorillonite were examined. The ESR signal intensity associated with surface Fe increased linearly with surface Fe content up to a nominal concentration of 50 percent exchangeable Fe. At above 50 percent exchangeable Fe, no appreciable increase in the signal was noted. The TL intensity decreased linearly with increasing surface Fe up to 50 percent nominal exchangeable Fe. At above 50 percent, the signal was not appreciably further diminished. Possible effects of Fe on quenching of TL are considered.

  13. Self-diffusion of sodium ions in compacted sodium montmorillonite

    SciTech Connect

    Kozaki, Tamotsu; Fujishima, Atsushi; Sato, Seichi; Ohashi, Hiroshi

    1998-01-01

    Diffusion of sodium ions through compacted sodium montmorillonite in a water-saturated state was studied to obtain fundamental information for performance assessments of geological disposal of high-level radioactive waste. Basal spacings obtained from X-ray diffraction measurements indicated a decrease in the interlamellar spacing with increasing dry density of the montmorillonite; the three-water-layer hydrate was observed at low dry density, and the two-water-layer hydrate was observed at high dry density, whereas both were observed at dry densities between 1.4 and 1.5 Mg/m{sup 3}. Activation energies from 14.1 to 24.7 kJ/mol were obtained from the temperature dependence of the self-diffusion coefficients of sodium ions. Activation energies lower than that for the diffusion of sodium ions in free water were found for montmorillonite specimens with dry densities of {le} 1.2 Mg/m{sup 3}, while higher activation energies were observed at dry densities {ge} 1.4 Mg/m{sup 3}. The pore water diffusion model, the general model used for migration of nuclides, is based on geometric parameters; however, findings cannot be explained by only the changes in the geometric parameters. Possible explanations for the dry density dependence of the activation energy are changes in the temperature dependence of the distribution coefficients of sodium ions on the montmorillonite, changes in the diffusion process with an increase in dry density, or both.

  14. Modeling of alkyl quaternary ammonium cations intercalated into montmorillonite lattice

    SciTech Connect

    Daoudi, El Mehdi; Boughaleb, Yahia; El Gaini, Layla; Meghea, Irina; Bakasse, Mina

    2013-05-15

    Highlights: ► The modification of montmorillonites by three surfactants increases the basal spacing. ► The model proposed show a bilayer conformation for the surfactant ODTMA. ► The DODMA and TOMA surfactants adopt a paraffin type arrangement. ► Behavior of surfactants in interlayer space was confirmed by TGA and ATR analysis. - Abstract: The objective of this work was to study the conformation of the quaternary ammonium cations viz., octadecyl trimethyl ammonium (ODTMA), dioctadecyl dimethyl ammonium (DMDOA) and trioctadecyl methyl ammonium (TOMA) intercalated within montmorillonite. The modified montmorillonite was characterized by X-ray diffraction in small angle (SAXS), thermal analysis (TGA) and infrared spectroscopy of attenuated total reflection (ATR). The modification of organophilic montmorillonites by the three surfactants ODTMA, DMDOA and TOMA increases the basal spacing from their respective intercalated distances of 1.9 nm, 2.6 nm and 3.4 nm respectively. The increase in the spacing due to the basic organic modification was confirmed by the results of thermal analysis (TGA) and infrared spectroscopy (ATR), and also supported by theoretical calculations of longitudinal and transversal chain sizes of these alkyl quaternary ammonium cations.

  15. Purification ability and carbon dioxide flux from surface flow constructed wetlands treating sewage treatment plant effluent.

    PubMed

    Wu, Haiming; Lin, Li; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Liu, Hai

    2016-11-01

    In this study, a two-year experiment was carried out to investigate variation of carbon dioxide (CO2) flux from free water surface constructed wetlands (FWS CW) systems treating sewage treatment plant effluent, and treatment performance was also evaluated. The better 74.6-76.6% COD, 92.7-94.4% NH4(+)-N, 60.1-84.7% TN and 49.3-70.7% TP removal efficiencies were achieved in planted CW systems compared with unplanted systems. The planted CW was a net CO2 sink, while the unplanted CW was a net CO2 source in the entire study period. An obvious annual and seasonal variability of CO2 fluxes from different wetland systems was also presented with the average CO2 flux ranging from -592.83mgm(-2)h(-1) to 553.91mgm(-2)h(-1) during 2012-2013. In addition, the net exchange of CO2 between CW systems and the atmosphere was significantly affected by air temperature, and the presence of plants also had the significant effect on total CO2 emissions.

  16. Nanoscale protein arrays of rich morphologies via self-assembly on chemically treated diblock copolymer surfaces

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Milchak, Marissa; Zhou, Hebing; Lee, Thomas; Hanscom, Mark; Hahm, Jong-in

    2013-03-01

    Well-controlled assembly of proteins on supramolecular templates of block copolymers can be extremely useful for high-throughput biodetection. We report the adsorption and assembly characteristics of a model antibody protein to various polystyrene-block-poly(4-vinylpyridine) templates whose distinctive nanoscale structures are obtained through time-regulated exposure to chloroform vapor. The strong adsorption preference of the protein to the polystyrene segment in the diblock copolymer templates leads to an easily predictable, controllable, rich set of nanoscale protein morphologies through self-assembly. We also demonstrate that the chemical identities of various subareas within individual nanostructures can be readily elucidated by investigating the corresponding protein adsorption behavior on each chemically distinct area of the template. In our approach, a rich set of intricate nanoscale morphologies of protein arrays that cannot be easily attained through other means can be generated straightforwardly via self-assembly of proteins on chemically treated diblock copolymer surfaces, without the use of clean-room-based fabrication tools. Our approach provides much-needed flexibility and versatility for the use of block copolymer-based protein arrays in biodetection. The ease of fabrication in producing well-defined and self-assembled templates can contribute to a high degree of versatility and simplicity in acquiring an intricate nanoscale geometry and spatial distribution of proteins in arrays. These advantages can be extremely beneficial both for fundamental research and biomedical detection, especially in the areas of solid-state-based, high-throughput protein sensing.

  17. Morphology and Structure of Amino-fatty Acid Intercalated Montmorillonite

    NASA Astrophysics Data System (ADS)

    Reyes, Larry; Sumera, Florentino

    2015-04-01

    Natural clays and its modified forms have been studied for their wide range of applications, including polymer-layered silicate, catalysts and adsorbents. For nanocomposite production, montmorillonite (MMT) clays are often modified with organic surfactants to favor its intermixing with the polymer matrix. In the present study, Na+-montmorillonite (Na+-MMT) was subjected to organo-modification with a protonated 12-aminolauric acid (12-ALA). The amount of amino fatty acid surfactants loaded was 25, 50, 100 and 200% the cation exchange capacity (CEC) of Na+-MMT (25CEC-AMMT, 50CEC-AMMT, 100CEC-AMMT and 200CEC-AMMT). Fatty acid-derived surfactants are an attractive resource of intercalating agents for clays due to their renewability and abundance. X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were performed to determine the occurrence of intercalation of 12-ALA and their molecular structure in the clay's silicates. XRD analysis revealed that the interlayer spacing between the alumino-silicate layers increased from 1.25 nm to 1.82 nm with increasing ALA content. The amino fatty acid chains were considered to be in a flat monolayer structure at low surfactant loading, and a bilayered to a pseudotrilayered structure at high surfactant loading. On the other hand, FTIR revealed that the alkyl chains adopt a gauche conformation, indicating their disordered state based on their CH2symmetric and asymmetric vibrations. Thermogravimetric analyses (TGA) allows the determination of the moisture and organic content in clays. Here, TGA revealed that the surfactant in the clay was thermally stable, with Td ranging from 353° C to 417° C. The difference in the melting behavior of the pristine amino fatty acids and confined fatty acids in the interlayer galleries of the clay were evaluated by Differential Scanning Calorimerty (DSC). The melting temperatures (Tm) of the amino fatty acid in the clay were initially found to be higher than those of the free

  18. Microstructure and corrosion behavior of laser surface-treated AZ31B Mg bio-implant material.

    PubMed

    Wu, Tso-Chang; Ho, Yee-Hsien; Joshi, Sameehan S; Rajamure, Ravi S; Dahotre, Narendra B

    2017-03-02

    Although magnesium and magnesium alloys are considered biocompatible and biodegradable, they suffer from poor corrosion performance in the human body environment. In light of this, surface modification via rapid surface melting of AZ31B Mg alloy using a continuous-wave Nd:YAG laser was conducted. Laser processing was performed with laser energy ranging from 1.06 to 3.18 J/mm(2). The corrosion behavior in simulated body fluid of laser surface-treated and untreated AZ31B Mg alloy samples was evaluated using electrochemical technique. The effect of laser surface treatment on phase and microstructure evolution was evaluated using X-ray diffraction and scanning electron microscopy. Microstructure examination revealed grain refinement as well as formation and uniform distribution of Mg17Al12 phase along the grain boundary for laser surface-treated samples. Evolution of such unique microstructure during laser surface treatment indicated enhancement in the corrosion resistance of laser surface-treated samples compared to untreated alloy.

  19. Monte Carlo study of the adsorption and aggregation of alkyltrimethylammonium chloride on the montmorillonite-water interface.

    PubMed

    Klebow, Birthe; Meleshyn, Artur

    2012-09-18

    Organically modified clays exhibit adsorption capacities for cations, anions, and nonpolar organic compounds, which make them valuable for various environmental technical applications. To improve the understanding of the adsorption processes, the molecular-scale characterization of the structures of organic aggregates assembled on the external basal surfaces of clay particles is essential. The focus of this Monte Carlo simulation study was on the effects of the surface coverage and the alkyl chain length n on the structures of alkyltrimethylammonium chloride ((C(n)TMA)Cl) aggregates assembled on the montmorillonite-water interface. We found that the amount of adsorbed C(n)TMA(+) ions is independent of the alkyl chain length and increases with the C(n)TMA(+) surface coverage. The C(n)TMA(+) ions predominantly adsorb as inner-sphere complexes; the fraction of outer-sphere adsorbed ions equals only about 10%. The conformational order of the C(n)TMA(+) alkyl chains substantially decreases with decreasing alkyl chain length. In agreement with previous experiments, the amount of C(n)TMA(+) ions that are aggregated at the mineral surface increases with increasing chain length. The maximum value of 0.66 C(n)TMA(+) adsorption complex per unit cell area of the clay surface considerably exceeds the amount of cations required to compensate the negative charge of the montmorillonite surface. Furthermore, in most of the studied systems, fractions of Na(+) surface cations remain adsorbed on montmorillonite. The resulting interfacial positive charge excess is counterbalanced by coadsorbed chloride ions forming ion pairs with both C(n)TMA(+) and Na(+).

  20. Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces: modified sandblasted with large grit and acid-etched (MSLA), laser-treated, and laser and acid-treated Ti surfaces

    PubMed Central

    Li, Lin-Jie; Kim, So-Nam

    2016-01-01

    PURPOSE In this study, the aim of this study was to evaluate the effect of implant surface treatment on cell differentiation of osteoblast cells. For this purpose, three surfaces were compared: (1) a modified SLA (MSLA: sand-blasted with large grit, acid-etched, and immersed in 0.9% NaCl), (2) a laser treatment (LT: laser treatment) titanium surface and (3) a laser and acid-treated (LAT: laser treatment, acid-etched) titanium surface. MATERIALS AND METHODS The MSLA surfaces were considered as the control group, and LT and LAT surfaces as test groups. Alkaline phosphatase expression (ALP) was used to quantify osteoblastic differentiation of MC3T3-E1 cell. Surface roughness was evaluated by a contact profilometer (URFPAK-SV; Mitutoyo, Kawasaki, Japan) and characterized by two parameters: mean roughness (Ra) and maximum peak-to-valley height (Rt). RESULTS Scanning electron microscope revealed that MSLA (control group) surface was not as rough as LT, LAT surface (test groups). Alkaline phosphatase expression, the measure of osteoblastic differentiation, and total ALP expression by surface-adherent cells were found to be highest at 21 days for all three surfaces tested (P<.05). Furthermore, ALP expression levels of MSLA and LAT surfaces were significantly higher than expression levels of LT surface-adherent cells at 7, 14, and 21 days, respectively (P<.05). However, ALP expression levels between MSLA and LAT surface were equal at 7, 14, and 21 days (P>.05). CONCLUSION This study suggested that MSLA and LAT surfaces exhibited more favorable environment for osteoblast differentiation when compared with LT surface, the results that are important for implant surface modification studies. PMID:27350860

  1. Sorption of chlorimuron-ethyl on montmorillonite clays: effects of exchangeable cations, pH, and ionic strength.

    PubMed

    Ren, Wenjie; Teng, Ying; Zhou, Qixing; Paschke, Albrecht; Schüürmann, Gerrit

    2014-10-01

    Sorption interaction of chlorimuron-ethyl with montmorillonite clays was investigated under varied types of exchangeable cation, pH, and ionic strength conditions. Chlorimuron-ethyl sorption on bentonites exhibited pronounced cation dependency, and the sorption ability increased as the sequence Ca(2+)- < Na(+)- < Al(3+)- < Fe(3+)-bentonite, due to different sorption mechanisms, whereas the cation dependency was influenced by the clay type and much weaker for montmorillonites. The decrease of pH at the range of 4.0-6.0 prominently increased sorption of chlorimuron-ethyl on all cation-exchanged montmorillonite clays, and nearly a neglected sorption (about 2 %) can be observed at pH over 7.0. In the presence of CaCl2, sorption of chlorimuron-ethyl on Fe(3+)-bentonite was promoted because of complexion of Ca(2+) and the surface of Fe(3+)-bentonite. However, as the concentration of CaCl2 increased, chlorimuron-ethyl sorption on Ca(2+)- and Fe(3+)-exchanged bentonite decreased, suggesting that Ca bridging was not the prevailing mechanism for sorption of chlorimuron-ethyl on these clays. Furthermore, chlorimuron-ethyl sorption was relatively sensitive to pH, and the change of pH may obscure effect of other factors on the sorption, so it was quite necessary to control pH at a constant value when the effect of other factor was being studied.

  2. Characterization and Catalytic Performance of Montmorillonites with Mixed Aluminium/Lanthanide Pillars

    NASA Astrophysics Data System (ADS)

    González, F.; Pesquera, C.; Blanco, C.

    Pillared montmorillonites with mixed Al/lanthanide pillars were prepared. The materials present characteristics that are very different from montmorillonite pillared with only aluminium. Nuclear magnetic resonance studies indicated total absence of tetrahedral aluminium in the pillars when lanthanide cations are incorporated between the clay layers. They have a high thermal stability, high specific surface area and porosity, with pores at the limit between the microporosity and mesoporosity. The textural parameters maintained high values up to 700 °C. The number and the strength of the acid sites in these materials were also high. The increase of the conversion in dehydration of 1-butanol as in hydroisomerization of n-heptane shows their better behaviour as acid catalysts. The Al/lanthanide-pillared samples showed increased conversion and improved the selectivity towards the products of cracking. The study of 1-butanol dehydration showed that there is an increase in the acidity, thermal stability and smaller deactivation by carbonaceous deposits in the Al/lanthanide-pillared sample.

  3. Removal of hexavalent chromium from aqueous solution using exfoliated polyaniline/montmorillonite composite.

    PubMed

    Chen, Jun; Hong, Xiaoqin; Zhao, Yongteng; Zhang, Qianfeng

    2014-01-01

    Exfoliated polyaniline/montmorillonite (PANI/MMT) composites with nanosheet structure were successfully prepared by in situ chemical oxidation polymerization with MMT platelets as the scaffold. Amphoteric polymer, (2-methacryloyloxyethyl)trimethyl ammonium chloride and methacrylate acid copolymer, was used to modify montmorillonite and a large number of carboxylic acids were introduced on the surface of the clay platelets, which can be used as a dopant of PANI and play a 'bridge' role to combine PANI with clay. Adsorption experiments were carried out to study the effects of pH, contact time, Cr(VI) concentration, adsorbent dose and temperature. The adsorption of Cr(VI) on the PANI/MMT was highly pH dependent and the adsorption kinetics followed a pseudo-second-order model. The Langmuir isothermal model described the adsorption isotherm data well and the maximum adsorption capacity increased with the increase in temperature. Thermodynamic investigation indicated that the adsorption process is spontaneous, endothermic and marked with an increase in randomness at the adsorbent - liquid interface. The maximum adsorption capacity of the PANI/MMT composites for Cr(VI) was 308.6 mg/g at 25 °C. The excellent adsorption characteristic of exfoliated PANI/MMT composites will render it a highly efficient and economically viable adsorbent for Cr(VI) removal.

  4. Adsorption and degradation of model volatile organic compounds by a combined titania-montmorillonite-silica photocatalyst.

    PubMed

    Chen, Jiangyao; Li, Guiying; He, Zhigui; An, Taicheng

    2011-06-15

    A series of adsorptive photocatalysts, combined titania-montmorillonite-silica were synthesized. The resultant photocatalysts consisted of more and more spherically agglomerated TiO(2) particles with increasing of TiO(2) content, and anatase was the only crystalline phase with nano-scale TiO(2) particles. With increasing of the cation exchange capacity to TiO(2) molar ratio, specific surface area and pore volume increased very slightly. In a fluidized bed photocatalytic reactor by choosing toluene, ethyl acetate and ethanethiol as model pollutants, all catalysts had relatively high adsorption capacities and preferred to adsorb higher polarity pollutants. Langmuir isotherm model better described equilibrium data compared to Freundlich model. Competitive adsorptions were observed for the mixed pollutants on the catalysts, leading to decrease adsorption capacity for each pollutant. The combined titania-montmorillonite-silica photocatalyst exhibited excellent photocatalytic removal ability to model pollutants of various components. Almost 100% of degradation efficiency was achieved within 120 min for each pollutant with about 500 ppb initial concentration, though the efficiencies of multi-component compounds slightly decreased. All photocatalytic reactions followed the Langmuir-Hinshelwood model. Degradation rate constants of multi-component systems were lower than those for single systems, following the order of toluene

  5. Adsorption of cationic monomeric and gemini surfactants on montmorillonite and adsolubilization of vitamin E.

    PubMed

    Sakai, Kenichi; Nakajima, Erimi; Takamatsu, Yuichiro; Sharma, Suraj C; Torigoe, Kanjiro; Yoshimura, Tomokazu; Esumi, Kunio; Sakai, Hideki; Abe, Masahiko

    2008-01-01

    Adsorption of a cationic gemini surfactant (1,2-bis(dodecyldimethylammonio) ethane dibromide, 12-2-12) and the corresponding monomeric surfactant (dodecyltrimethylammonium bromide, DTAB) on montmorillonite has been characterized with a combination of adsorption isotherm, interlayer spacing and FT-IR spectroscopic data. Adsolubilization of vitamin E into the adsorbed surfactant layers has also been studied. The adsorption isotherm data reveal that the adsorption of the two surfactants is driven by the two factors: one is the cation exchange that occurs on the interlayer basal planes and the other is the hydrophobic interaction between hydrocarbon chains of the surfactants. Although the adsorbed amount measured in the saturation region (in mol g(-1)) is almost identical for the two surfactants, the conformation of the intercalated surfactant molecules differs significantly from each other. The adsorption of DTAB results in a lateral bilayer arrangement in the limited interlayer space, whereas 12-2-12 gives a normal bilayer arrangement in the expanded interlayer space. Adsolubilization of vitamin E takes place into the adsorbed surfactant layers, and interestingly, all the vitamin E molecules added in the montmorillonite suspensions are hybridized at lower surfactant concentrations due to the great specific surface area of the clay material. Since the maximum adsolubilization amount is usually obtained just below the critical micelle concentration, the gemini surfactant is deemed to be more efficient than the corresponding monomeric one to achieve the great adsolubilization amount.

  6. Anaerobic ammonium oxidation in sediments of surface flow constructed wetlands treating swine wastewater.

    PubMed

    Chen, Liang; Liu, Feng; Jia, Fen; Hu, Ya-Jun; Lai, Cui; Li, Xi; Luo, Pei; Xiao, Run-Lin; Li, Yong; Wu, Jin-Shui

    2017-02-01

    Anaerobic ammonium oxidation (anammox) was suggested to be involved in the nitrogen (N) removal process in constructed wetlands (CWs). Nevertheless, its occurrence and role in CWs treating swine wastewater have not been well evaluated yet. In this study, we investigated the diversity, activity, and role of anammox bacteria in sediments of mesoscale surface flow CWs (SFCWs) subjected to different N loads of swine wastewater. We found that anammox bacteria were abundant in SFCW sediments, as indicated by 7.5 × 10(5) to 3.5 × 10(6) copies of the marker hzsB gene per gram of dry soil. Based on stable isotope tracing, potential anammox rates ranged from 1.03 to 12.5 nmol N g(-1) dry soil h(-1), accounting for 8.63-57.1% of total N2 production. We estimated that a total N removal rate of 0.83-2.68 kg N year(-1) was linked to the anammox process, representing ca. 10% of the N load. Phylogenetic analyses of 16S ribosomal RNA (rRNA) revealed the presence of multiple co-occurring anammox genera, including "Candidatus Brocadia" as the most common one, "Ca. Kuenenia," "Ca. Scalindua," and four novel unidentified clusters. Correlation analyses suggested that the activity and abundance of anammox bacteria were strongly related to sediments pH, NH4(+)-N, and NO2(-)-N. In conclusion, our results confirmed the presence of diverse anammox bacteria and indicated that the anammox process could serve as a promising N removal pathway in the treatment of swine wastewater by SFCWs.

  7. Five year water and nitrogen balance for a constructed surface flow wetland treating agricultural drainage waters.

    PubMed

    Borin, Maurizio; Tocchetto, Davide

    2007-07-15

    The performance of a constructed surface flow wetland in reducing diffuse N pollution coming from croplands is being investigated in an ongoing experiment, begun in 1998 in NE Italy. The 0.32 ha wetland is vegetated with Phragmites australis (Cav.) Trin. and Typha latifolia (L.). It receives drainage water from 6 ha of land managed for an experiment on drainage systems, where maize, sugarbeet, winter wheat and soybean are cultivated. During the period 1998-2002, the wetland received from 4698 to 8412 mm of water per year (on average, about 9 times the environmental rainfall); its water regimen was discontinuous and flooding occurred on a variable number of days per year (from 13 to 126). Nitric nitrogen was the most important form of element load. Its concentration in the inflow water over time was rather discontinuous, with median values ranging from 0.2 (in 2001) to 4.5 (in 2000) mg L(-1). Inflow nitric N concentrations were occasionally in the 5-15 mg L(-1) range. Concentrations reduced passing through the wetland, with a more evident effect in the last year. Over 5 years, the wetland received slightly more than 2000 kg ha(-1) of nitrogen, 87% in nitric form mostly from farmland drainage. The remaining 13% of N was applied as organic slurry directly onto the wetland, with 5 distributions during 1998 to assess wetland performance in treating occasional organic loads. Field drainage loads had a discontinuous time pattern and occurred mostly during autumn-winter, with the exception of the 2001-2002 season which was a very dry. The wetland discharged 206 kg ha(-1) of N, over the 5-year period, with an apparent removal efficiency of about 90%. The disappearance was mostly due to plant uptake (1110 kg ha(-1)) and soil accumulation (570 kg ha(-1)), with the contribution of denitrification being estimated at around 7%.

  8. Natural montmorillonite induced photooxidation of As(III) in aqueous suspensions: roles and sources of hydroxyl and hydroperoxyl/superoxide radicals.

    PubMed

    Wang, Yajie; Xu, Jing; Li, Jinjun; Wu, Feng

    2013-09-15

    Photooxidation of arsenite(As(III)) in a suspension of natural montmorillonite under the irradiation of metal halide lamp (λ ≥ 313 nm)has been investigated. The results showed that the natural montmorillonite induced the photooxidation of As(III) by generating hydroxyl radicals (HO·) and hydroperoxyl/superoxide radicals (HO₂·/O₂⁻·). HO· which was responsible for the As(III) photooxidation. Approximately 38% of HO· was generated by the photolysis of ferric ions, and the formation of the remaining 62% was strongly dependent on the HO₂·/O₂⁻·. The presence of free ironions (Fe(2+) and Fe(3+)), made significant contributions to the photogeneration of these reactive oxygen species (ROS). The photooxidation of As(III) in natural montmorillonite suspensions was greatly influenced by the pH values. The photooxidation of As(III) by natural montmorillonite followed the Langmuir-Hinshelwood equation. In addition, the photooxidation of As(III) could be enhanced by the addition of humic acid. This work demonstrates that photooxidation may be an important environmental process for the oxidation of As(III) and may be a way to remove As(III) from acidic surface water containing iron-bearing clay minerals.

  9. Radionuclide desorption kinetics on synthetic Zn/Ni-labeled montmorillonite nanoparticles

    NASA Astrophysics Data System (ADS)

    Huber, F. M.; Heck, S.; Truche, L.; Bouby, M.; Brendlé, J.; Hoess, P.; Schäfer, T.

    2015-01-01

    Sorption/desorption kinetics for selected radionuclides (99Tc(VII), 232Th(IV), 233U(VI), 237Np(V), 242Pu and 243Am(III)) under Grimsel (Switzerland) ground water conditions (pH 9.7 and ionic strength of ∼1 mM) in the presence of synthetic Zn or Ni containing montmorillonite nanoparticles and granodiorite fracture filling material (FFM) from Grimsel were examined in batch studies. The structurally bound Zn or Ni in the octahedral sheet of the synthetic colloids rendered them suitable as colloid markers. Only a weak interaction of the montmorillonite colloids with the fracture filling material occurs over the experimental duration of 10,000 h (∼13 months). The tri- and tetravalent radionuclides are initially strongly associated with nanoparticles in contrast to 99Tc(VII), 233U(VI) and 237Np(V) which showed no sorption to the montmorillonite colloids. Radionuclide desorption of the nanoparticles followed by sorption to the fracture filling material is observed for 232Th(IV), 242Pu and 243Am(III). Based on the conceptual model that the driving force for the kinetically controlled radionuclide desorption from nanoparticles and subsequent association to the FFM is the excess in surface area offered by the FFM, the observed desorption kinetics are related to the colloid/FFM surface area ratio. The observed decrease in concentration of the redox sensitive elements 99Tc(VII), 233U(VI) and 237Np(V) may be explained by reduction to lower oxidation states in line with Eh-pH conditions prevailing in the experiments and thermodynamic considerations leading to (i) precipitation of a sparingly soluble phase, (ii) sorption to the fracture filling material, (iii) possible formation of eigencolloids and/or (iv) sorption to the montmorillonite colloids. Subsequent to the sorption/desorption kinetics study, an additional experiment was conducted investigating the potential remobilization of radionuclides/colloids attached to the FFM used in the sorption/desorption kinetic

  10. A review of metallic, ceramic and surface-treated metals used for bearing surfaces in human joint replacements.

    PubMed

    Dearnley, P A

    1999-01-01

    A review of established and advanced materials used for the bearing surfaces of total hip replacements (THRs), their standards, methods of manufacture and corrosion testing is presented. Some account is also taken of parallel developments in femoral components used in total knee replacements (TKRs). Metallic, ceramic and surface-modified metallic materials are separately reviewed, but wherever possible common practices are collated. Coated implant bearing surfaces are in an advanced state of development and some designs are receiving clinical evaluation. To date, however, no standard methods of manufacturing and testing these materials have been agreed. Accordingly, corrosion and other key quality test methods suitable for surface-modified implant bearing materials are reviewed.

  11. Absorption of lithium in montmorillonite: a density functional theory (DFT) study.

    PubMed

    Wungu, Triati Dewi Kencana; Aspera, Susan Menez; David, Melanie Yadao; Dipojono, Hermawan Kresno; Nakanishi, Hiroshi; Kasai, Hideaki

    2011-04-01

    The absorption of lithium in montmorillonite [LiSi8(Al3Mg)O20(OH)4] was investigated using Density Functional Theory (DFT). The final position of lithium after absorption was found to be in good agreement with an experimental observation where lithium atom migrated from the interlayer into the vacant octahedral site of montmorillonite. The lithium absorbed on montmorillonite was held together by a very strong attraction between ions and exhibited an insulating behavior as depicted from the density of states curve. Due to the presence of lithium in the octahedral site of montmorillonite, the OH group reoriented itself perpendicular to the ab plane and an electron of lithium was transferred in order to compensate the existing net charge of montmorillonite caused by isomorphous substitutions. Relative small charge transfer was observed between lithium and montmorillonite.

  12. Silver bromide in montmorillonite as visible light-driven photocatalyst and the role of montmorillonite

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Pourahmad, A.; Razavi, M.

    2016-09-01

    In this study, novel plasmonic photocatalyst, Ag/AgBr-montmorillonite (MMT) nanocomposite, was prepared by dispersion method and light irradiation. The structure, composition and optical properties of such material was investigated by transmission electron microscopy, UV-visible diffuse reflectance spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The powder X-ray diffraction showed intercalation of Ag/AgBr nanoparticles into the clay interlayer space. The results showed that the prepared sample has a similar phase composition. However, their photocatalytic activity varied significantly. The photocatalytic testing result showed that the Ag/AgBr-MMT nanocomposite was more efficient photocatalyst in the discoloration of methylene blue under visible light illumination. The Ag/AgBr-MMT nanocomposite in pH = 2 and under visible light degraded 92 % of dye at the irradiation time of 20 min. MMT as matrix showed excellent role in separation efficiency of electron-hole pairs. The mechanism of separation of the photogenerated electrons and holes at the Ag/AgBr-MMT nanocomposite was discussed.

  13. Nanoscale mechanical and tribological properties of fluorocarbon films grafted onto plasma-treated low-density polyethylene surfaces

    NASA Astrophysics Data System (ADS)

    Cheng, Q.; Komvopoulos, K.

    2012-03-01

    Fluorocarbon (FC) films were grafted onto Ar plasma-treated low-density polyethylene (LDPE) surfaces by plasma polymerization and deposition. The evolution of the surface morphology of the grafted FC films was investigated at different scales with an atomic force microscope. Nanoscale sliding experiments performed with a surface force microscope provided insight into the nanotribological properties of Ar plasma-treated LDPE, with and without grafted FC films, in terms of applied normal load and number of sliding cycles. The observed trends are explained in the context of microstructure models accounting for morphological and structure changes at the LDPE surface due to the effects of plasma treatment (e.g., selective etching of amorphous phase, chain crosslinking and FC film grafting) and surface sliding (e.g., crystalline lamellae alignment along the sliding direction). Nanoindentation experiments elucidated the effect of plasma treatment on surface viscoelasticity and global contact stiffness. The results of this study demonstrate that plasma-assisted grafting of FC films is an effective surface modification method for tuning the nanomechanical/tribological properties of polymers.

  14. Competitive sorption of anionic and cationic dyes onto cetylpyridinium-modified montmorillonite.

    PubMed

    Shin, Won Sik

    2008-10-01

    Single-and multi-solute competitive sorptions of anionic dyes; Eriochrome Black T (EBT), Orange II (OR) and Methyl Orange (MO) and cationic dyes; Thioflavin T (TT), Methylene Blue (MB) and Crystal Violet (CV) onto montmorillonite modified with a cationic surfactant, cetylpyridinium chloride (CP), were investigated. In single-solute sorption, the sorption affinity, as represented by Freundlich sorption coefficient (K(F)) and Langmuir sorption capacity (q(mL)), was in the order of EBT > OR > MO for anionic dyes and in the order of TT > MB > CV for cationic dyes. The sorption affinity of the cationic dye was higher than that of the anionic dye mainly due to the difference in sorption mechanisms: ion exchange to the bare montmorillonite surface plus two dimensional surface adsorption onto the pseudo-organic medium formed by the conglomeration of the long-chain hydrocarbon tail groups of the CP cation on the montmorillonite for cationic dyes vs. two dimensional surface adsorption only for anionic dyes. Three-parameter models (dual-mode and Song models) fitted better than the two-parameter models (Freundlich, Langmuir and Dubinin-Radushkevich models) due to the number of parameters involved. The conventional Dubinin-Radushkevich (D-R) model often used to classify sorption mechanisms based on the mean free energy were not able to explain the higher sorption of cationic dyes than anionic dyes. Among the tested models, the Song model was the best in predicting single-solute sorption in terms of the coefficient of determination (R2) and the sum of squared errors (SSE) values. Although both dual-mode and Song models fitted well to the sorption data, the results of asymptotic behavior analyses showed that Song model was better than dual-mode model in predicting sorption behaviors and in explaining sorption mechanisms. Competition between the solutes in the bisolute and trisolute system reduced the sorbed amount of each solute compared with that in the single-solute system

  15. Preparation of Optically Transparent Films of Poly(methyl methacrylate) (PMMA) and Montmorillonite

    DTIC Science & Technology

    2001-11-01

    methacrylate] [PMMA] and Montmorillonite DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report...Society V6.4 Preparation of Optically Transparent Films of Poly(methyl methacrylate) (PMMA) and Montmorillonite Elena Vasiliul, Chyi-Shan Wang"’ 2...exchanged with 1.40 meq/g of dimethyl dehydrogenated tallow ammonium from a sodium montmorillonite , Cloisite Na+ (CNa). Since the cation-exchange

  16. Effect of Dissolved NaC1 on Freezing Curves of Kaolinite, Montmorillonite, and Sand Pastes,

    DTIC Science & Technology

    1999-01-01

    test this procedure. Pastes of kaolinite clay, montmorillonite , and quartz sand were prepared by washing repeatedly with aque- ous solutions of 0.1...Cold Regions Research & Engineering Laboratory Effect of Dissolved NaCI on Freezing Curves of Kaolinite , Montmorillonite , and Sand Pastes S.A...of kaolinite pastes warmed from -66.6°C to 0°C 8 4. Unfrozen-water contents, as measured by pulsed NMR, of montmorillonite pastes cooled from 0

  17. PARAMETERS OF TREATED STAINLESS STEEL SURFACES IMPORTANT FOR RESISTANCE TO BACTERIAL CONTAMINATION

    EPA Science Inventory

    Use of materials that are resistant to bacterial contamination could enhance food safety during processing. Common finishing treatments of stainless steel surfaces used for components of poultry processing equipment were tested for resistance to bacterial attachment. Surface char...

  18. Near infrared spectroscopy of stearic acid adsorbed on montmorillonite.

    PubMed

    Lu, Longfei; Cai, Jingong; Frost, Ray L

    2010-03-01

    The adsorption of stearic acid on both sodium montmorillonites and calcium montmorillonites has been studied by near infrared spectroscopy complimented with infrared spectroscopy. Upon adsorption of stearic acid on Ca-Mt additional near infrared bands are observed at 8236 cm(-1) and is assigned to an interaction of stearic acid with the water of hydration. Upon adsorption of the stearic acid on Na-Mt, the NIR bands are now observed at 5671, 5778, 5848 and 5912 cm(-1) and are assigned to the overtone and combination bands of the CH fundamentals. Additional bands at 4177, 4250, 4324, 4337, 4689 and 4809 cm(-1) are attributed to CH combination bands resulting from the adsorption of the stearic acid. Stearic acid is used as a model molecule for adsorption studies. The application of near infrared spectroscopy to the study of this adsorption proved most useful.

  19. The adsorption and reaction of adenine nucleotides on montmorillonite

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Hagan, William J., Jr.

    1986-01-01

    The binding of AMP to Zn(2+)-montmorillonite is investigated in the presence of salts and Good's zwitterion buffers, PIPES and MES. The initial concentrations of nucleotide and the percent adsorbtion are used to calculate the adsorption isotherms, and the Langmuir adsorption equation is used for the analysis of data. The adsorption coefficient was found to be three times greater in the presence of 0.2 M PIPES than in its absence. In addition, basal spacings measured by X-ray diffraction were increased by the buffer. These results are interpreted in terms of a model in which the adsorption of AMP is mediated by a Zn(2+) complex of PIPES in different orientations in the interlamellar region of the montmorillonite. Mixed ligand complexes of this type are reminiscent of the complexes observed between metal ions and biological molecules in living systems.

  20. Proton conductive montmorillonite-Nafion composite membranes for direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, Xiu-Wen; Wu, Nan; Shi, Chun-Qing; Zheng, Zhi-Yuan; Qi, Hong-Bin; Wang, Ya-Fang

    2016-12-01

    The preparation of Nafion membranes modified with montmorillonites is less studied, and most relative works mainly applied in direct methanol fuel cells, less in direct ethanol fuel cells. Organic/inorganic composite membranes are prepared with different montmorillonites (Ca-montmorillonite, Na-montmorillonite, K-montmorillonite, Mg-montmorillonite, and H-montmorillonite) and Nafion solution via casting method at 293 K in air, and with balance of their proton conductivity and ethanol permeability. The ethanol permeability and proton conductivity of the membranes are comparatively studied. The montmorillonites can well decrease the ethanol permeability of the membranes via inserted them in the membranes, while less decrease the proton conductivities of the membranes depending on the inserted amount and type of montmorillonites. The proton conductivities of the membranes are between 36.0 mS/cm and 38.5 mS/cm. The ethanol permeability of the membranes is between 0.69 × 10-6 cm2/s and 2.67 × 10-6 cm2/s.

  1. Synthesis of silver/montmorillonite nanocomposites using γ-irradiation

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Gharayebi, Yadollah; Sedaghat, Sajjad

    2010-01-01

    Silver nanoparticles (Ag-NPs) were synthesized into the interlamellar space of montmorillonite (MMT) by using the γ-irradiation technique in the absence of any reducing agent or heat treatment. Silver nitrate and γ-irradiation were used as the silver precursor and physical reducing agent in MMT as a solid support. The MMT was suspended in the aqueous AgNO3 solution, and after the absorption of silver ions, Ag+ was reduced using the γ-irradiation technique. The properties of Ag/MMT nanocomposites and the diameters of Ag-NPs were studied as a function of γ-irradiation doses. The interlamellar space limited particle growth (d-spacing [ds] = 1.24–1.42 nm); powder X-ray diffraction and transmission electron microscopy (TEM) measurements showed the production of face-centered cubic Ag-NPs with a mean diameter of about 21.57–30.63 nm. Scanning electron microscopy images indicated that there were structure changes between the initial MMT and Ag/MMT nanocomposites under the increased doses of γ-irradiation. Furthermore, energy dispersive X-ray fluorescence spectra for the MMT and Ag/ MMT nanocomposites confirmed the presence of elemental compounds in MMT and Ag-NPs. The results from ultraviolet-visible spectroscopy and TEM demonstrated that increasing the γ-irradiation dose enhanced the concentration of Ag-NPs. In addition, the particle size of the Ag-NPs gradually increased from 1 to 20 kGy. When the γ-irradiation dose increased from 20 to 40 kGy, the particle diameters decreased suddenly as a result of the induced fragmentation of Ag-NPs. Thus, Fourier transform infrared spectroscopy suggested that the interactions between Ag-NPs with the surface of MMT were weak due to the presence of van der Waals interactions. The synthesized Ag/MMT suspension was found to be stable over a long period of time (ie, more than 3 months) without any sign of precipitation. PMID:21170354

  2. Vis-NIR Spectroscopy of Mineral Mixtures with Montmorillonite and Silica: Implications for Detecting Alteration Products on Mars

    NASA Astrophysics Data System (ADS)

    Rampe, E. B.; Kraft, M. D.; Sharp, T. G.

    2009-12-01

    generally present in silica-mixture spectra that contain >10 wt% silica. Conclusions. Vis-NIR spectra of our mineral mixtures show that montmorillonite has a lower detection limit than amorphous silica, based on the presence of the ~2.2 μm absorption. This indicates that chemically weathered surfaces on Mars that contain silica must have much more alteration material to be detected than surfaces with clay. Furthermore, the shape and position of the 1.4 and 1.9 μm features changes with igneous mineral type and silica abundance, which adds to the difficulty in using vis-NIR to detect amorphous silica on Mars. Our study is consistent with a previous study that demonstrates the inability to detect thin silica coatings on basaltic particulates by vis-NIR spectroscopy [5], and suggests acidic chemical weathering and the precipitation of amorphous silica on Mars may be more pervasive and intense than vis-NIR spectroscopic data indicate. References. [1] J.-P. Bibring et al. (2006) Science, 312, 400-404. [2] F. Poulet et al. (2005) Nature, 438, 623-627. [3] J.F. Mustard et al. (2008) Nature, 454, 305-309. [4] R.E. Milliken et al. (2008) Geology, 36, 847-850. [5] M.D. Kraft et al. (2007) 7th Int. Conf. Mars, 3396.

  3. Evidence of irreversible CO2 intercalation in montmorillonite

    SciTech Connect

    Romanov, V

    2013-02-13

    Mitigation of the global climate change via sequestration of anthropogenic carbon dioxide (CO2) in geologic formations requires assessment of the reservoir storage capacity and cap rock seal integrity. The typical cap rock is shale or mudstone rich in clay minerals that may significantly affect the effectiveness of the CO2 trapping. Specific objectives of this study were to conduct experimental investigation into the processes associated with CO2 and H2O trapped in swelling clay, namely, Wyoming and Texas montmorillonite powder. Combined (same-sample) multi-technique data ? manometric sorption isotherm hysteresis, diffuse reflectance infrared spectroscopy ?trapped CO2? fingerprints, irreversible X-ray diffraction patterns for the clay interlayer in intermediate hydration state, and HF acid digestion resulting in formation of non-extractable F:CO2 adducts ? corroborate a hypothesis that carbon dioxide molecules can be irreversibly trapped via anomalous extreme confinement in the galleries associated with montmorillonite interlayer, which may result in formation of carbonates in the longer term. Validation on Arizona montmorillonite lumps substantiated the evidence that such processes may occur in natural clay deposits but possibly on a different scale and at a different rate.

  4. Uranium(VI) Diffusion in Sodium-Montmorillonite at Alkaline pH Conditions

    NASA Astrophysics Data System (ADS)

    Tinnacher, R. M.; Davis, J. A.; Tournassat, C.; Birkholzer, J. T.

    2015-12-01

    Diffusive transport of uranium(VI) in montmorillonite clay and bentonite has important implications for uranium(VI) mobility in engineered barrier systems or host rocks in high level radioactive waste repositories, and clay-rich soils and sediments in the environment. The prediction of uranium(VI) adsorption and diffusion in clay-rich media, however, is complicated by (1) the complexity of the mineralogical structure of montmorillonite, in terms of its pore-size distributions and available surface site types, and (2) the complex uranium(VI) solution speciation, which can include cationic, uncharged, and anionic complexes, depending on solution conditions. For instance, a partial or full exclusion of anions from negatively charged clay interlayer spaces could change the effective 'anion-accessible' porosity and decrease the diffusive flux of these solutes under steady state conditions. In contrast, weak cation exchange reactions can result in 'surface diffusion' of adsorbed cations, such as UO2OH+, in addition to diffusion in the liquid phase, resulting in greater diffusive fluxes at steady state. In order to investigate these complex interactions, we performed two, lab-scale uranium(VI) through-diffusion experiments in lightly compacted Na-montmorillonite at slightly different, alkaline pH conditions (average pH values of 8.69 and 8.87). Observed uranium(VI) diffusive fluxes were decreased by approximately an order of magnitude in comparison to a tritium tracer. This indicates a relevance of 'anion exclusion' effects, the full or partial exclusion of anionic U(VI)-carbonato species from clay interlayer spaces. In addition, uranium(VI) sorption reactions were shown to be relevant in the diffusion experiments, even at alkaline pH values of around 8.7 and 8.9, where uranium(VI) sorption is low compared to other pH conditions. Despite the similarity of pH conditions, different degrees of uranium(VI) retardation were determined for the two systems. Additionally, we

  5. Effect of amylose content and nanoclay incorporation order in physicochemical properties of starch/montmorillonite composites.

    PubMed

    Romero-Bastida, C A; Tapia-Blácido, D R; Méndez-Montealvo, G; Bello-Pérez, L A; Velázquez, G; Alvarez-Ramirez, J

    2016-11-05

    The effects of the amylose content and the preparation sequence in physicochemical properties of starch/montmorillonite (MMT) composites were studied in this work. Native (30%) and high amylose Hylon VII (70%) starches were considered for assessing the effects of amylose content. Glycerol and MMT were used as additives to evaluate the effects of the former as plasticizer and the latter as reinforcer. The glycerol was incorporated before (Method M1) and after (Method M2) the addition of MMT. FTIR studies indicated that water bonding was affected by amylose content. Sorption isotherms indicated that method M2 favoured water adsorption and method M1 reduced water adsorption due to competition for active sites for interaction. TGA showed that method M1 induced a higher degradation rate than method M2. Wettability analysis by contact angle measurements showed that plasticizer promoted the hydrophilicity of the film, whereas MMT promoted a hydrophobic surface for both cases of amylose content.

  6. Relevance of Pore Structure and Diffusion-Accessible Porosity for Calcium-Bromide Diffusion in Na-Montmorillonite

    NASA Astrophysics Data System (ADS)

    Tinnacher, R. M.; Davis, J. A.

    2013-12-01

    Bentonite is an important hydraulic barrier material in many geotechnical applications, such as geosynthetic clay liners at solid waste landfills, or as proposed backfill material in engineered barrier systems at nuclear waste repositories. The limited permeability of bentonite is at least partially the result of its low porosity and the swelling of Na-montmorillonite, its major mineralogical component, in water. Due to these characteristics, the transport of contaminants through bentonite layers is expected to be limited and dominated by diffusion processes. In bentonite, the majority of the connected porosity is associated with montmorillonite particles, which consist of stacks of negatively-charged smectite layers. As a result, compacted smectite has two types of porosities: (1) large pores between clay particles, where diffusion is less affected by electric-double-layer forces, and (2) very thin interlayer spaces within individual clay particles, where diffusion is strongly impacted by surface charge and ionic strength. As diffusion is expected to take place differently in these two volumes, this essentially creates two 'small-scale diffusion pathways', where each may become dominant under different system conditions. Furthermore, for surface-reactive solutes, these two porous regimes differ with regards to surface complexation reactions. Electrostatic and hydration forces only are thought to govern interlayer binding, whereas chemical bonding with surface ligands is dominant for reactions at edge sites of layered clay particles and for iron oxide nanoparticles on outer basal planes. In this presentation, we will demonstrate the relevance of clay pore structure and diffusion-accessible porosity for solute diffusion rates, and hence, contaminant mobility in bentonites. First, we will discuss the effects of chemical solution conditions on montmorillonite properties, such as clay surface charge, diffusion-accessible porosity, clay tortuosity and constrictivity

  7. Nonequilibrium structural condition in the medical TiNi-based alloy surface layer treated by electron beam

    SciTech Connect

    Neiman, Aleksei A. Lotkov, Aleksandr I.; Meisner, Ludmila L. Semin, Viktor O.; Koval, Nikolai N.; Teresov, Anton D.

    2014-11-14

    The research is devoted to study the structural condition and their evolution from the surface to the depth of TiNi specimens treated by low-energy high-current electron beams with surface melting at a beam energy density E = 10 J/cm{sup 2}, number of pulses N = 10, and pulse duration τ = 50 μs. Determined thickness of the remelted layer, found that it has a layered structure in which each layer differs in phase composition and structural phase state. Refinement B2 phase lattice parameters in local areas showed the presence of strong inhomogeneous lattice strain.

  8. Effects of blending of desalinated and conventionally treated surface water on iron corrosion and its release from corroding surfaces and pre-existing scales.

    PubMed

    Liu, Haizhou; Schonberger, Kenneth D; Peng, Ching-Yu; Ferguson, John F; Desormeaux, Erik; Meyerhofer, Paul; Luckenbach, Heidi; Korshin, Gregory V

    2013-07-01

    This study examined effects of blending desalinated water with conventionally treated surface water on iron corrosion and release from corroding metal surfaces and pre-existing scales exposed to waters having varying fractions of desalinated water, alkalinities, pH values and orthophosphate levels. The presence of desalinated water resulted in markedly decreased 0.45 μm-filtered soluble iron concentrations. However, higher fractions of desalinated water in the blends were also associated with more fragile corroding surfaces, lower retention of iron oxidation products and release of larger iron particles in the bulk water. SEM, XRD and XANES data showed that in surface water, a dense layer of amorphous ferrihydrite phase predominated in the corrosion products. More crystalline surface phases developed in the presence of desalinated water. These solid phases transformed from goethite to lepidocrocite with increased fraction of desalinated water. These effects are likely to result from a combination of chemical parameters, notably variations of the concentrations of natural organic matter, calcium, chloride and sulfate when desalinated and conventionally treated waters are blended.

  9. Atomic force microscopy observation of enamel surfaces treated with self-etching primer.

    PubMed

    Hashimoto, Yusuke; Hashimoto, Yoshiya; Nishiura, Aki; Matsumoto, Naoyuki

    2013-01-01

    Orthodontists use a self-etching adhesive system when attaching brackets to enamel. The purpose of this study was to evaluate the erosion effects of common clinically used adhesive systems on human enamel surfaces by atomic force microscopy (AFM). Four commercially available adhesive systems (i. e., Kurasper F, Beauty Ortho Bond, Orthophia LC, and Transbond XT) were applied to ground enamel surfaces of extracted human teeth. Enamel surface roughness (ESR), absolute depth profile (ADP), and surface hardness were evaluated by AFM. The ESR and ADP were significantly higher after the pretreatment with the phosphoric acid-etching adhesive system than after the pretreatments with the three self-etching adhesive systems. The surface nanohardness decreased after the pretreatment with the phosphoric acid-etching adhesive system but increased after the pretreatments with the self-etching adhesive systems. These results suggest that the use of a self-etching primer for enamel conditioning might prevent decalcification caused by phosphoric acid etching.

  10. Correlation Between the Extent of Catalytic Activity and Charge Density of Montmorillonites

    NASA Astrophysics Data System (ADS)

    Ertem, Gözen; Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer

    2010-09-01

    The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH3-(CH2)n-NH3]+, where n = 3-16 and 18, and then measuring d(001), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed.

  11. Correlation Between the Extent of Catalytic Activity and Charge Density of Montmorillonites

    PubMed Central

    Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer

    2010-01-01

    Abstract The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH3-(CH2)n-NH3]+, where n = 3–16 and 18, and then measuring d(001), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed. Key Words: Mars—Origin of life—Montmorillonite—Mineral catalysis—Layer charge density—X–ray diffractometry. Astrobiology 10, 743–749. PMID:20854214

  12. Correlation between the extent of catalytic activity and charge density of montmorillonites.

    PubMed

    Ertem, Gözen; Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer

    2010-09-01

    The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH₃-(CH₂)(n)-NH₃](+), where n = 3-16 and 18, and then measuring d(₀₀₁), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed.

  13. Enhanced differentiation of human osteoblasts on Ti surfaces pre-treated with human whole blood.

    PubMed

    Kopf, Brigitte S; Schipanski, Angela; Rottmar, Markus; Berner, Simon; Maniura-Weber, Katharina

    2015-06-01

    Early and effective integration of a metal implant into bone tissue is of crucial importance for its long-term stability. While different material properties including surface roughness and wettability but also initial blood-implant surface interaction are known to influence this osseointegration, implications of the latter process are still poorly understood. In this study, early interaction between blood and the implant surface and how this affects the mechanism of osseointegration were investigated. For this, blood coagulation on a micro-roughened hydrophobic titanium (Ti) surface (SLA-H(phob)) and on a hydrophilic micro-roughened Ti surface with nanostructures (SLActive-H(phil)NS), as well as the effects of whole human blood pre-incubation of these two surfaces on the differentiation potential of primary human bone cells (HBC) was assessed. Interestingly, pre-incubation with blood resulted in a dense fibrin network over the entire surface on SLActive-H(phil)NS but only in single patches of fibrin and small isolated fibre complexes on SLA-H(phob). On SLActive-H(phil)NS, the number of HBCs attaching to the fibrin network was greatly increased and the cells displayed enhanced cell contact to the fibrin network. Notably, HBCs displayed increased expression of the osteogenic marker proteins alkaline phosphatase and collagen-I when cultivated on both surfaces upon blood pre-incubation. Additionally, blood pre-treatment promoted an earlier and enhanced mineralization of HBCs cultivated on SLActive-H(phil)NS compared to SLA-H(phob). The results presented in this study therefore suggest that blood pre-incubation of implant surfaces mimics a more physiological situation, eventually providing a more predictive in vitro model for the evaluation of novel bone implant surfaces.

  14. Kinetic and Conformational Insights of Protein Adsorption onto Montmorillonite Revealed Using in Situ ATR-FTIR/2D-COS.

    PubMed

    Schmidt, Michael P; Martínez, Carmen Enid

    2016-08-09

    Protein adsorption onto clay minerals is a process with wide-ranging impacts on the environmental cycling of nutrients and contaminants. This process is influenced by kinetic and conformational factors that are often challenging to probe in situ. This study represents an in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic investigation of the adsorption of a model protein (bovine serum albumin (BSA)) onto a clay mineral (montmorillonite) at four concentrations (1.50, 3.75, 7.50, and 15.0 μM) under environmentally relevant conditions. At all concentrations probed, FTIR spectra show that BSA readily adsorbs onto montmorillonite. Adsorption kinetics follow an Elovich model, suggesting that primary limitations on adsorption rates are surface-related heterogeneous energetic restrictions associated with protein rearrangement and lateral protein-protein interaction. BSA adsorption onto montmorillonite fits the Langmuir model, yielding K = 5.97 × 10(5) M(-1). Deconvolution and curve fitting of the amide I band at the end of the adsorption process (∼120 min) shows a large extent of BSA unfolding upon adsorption at 1.50 μM, with extended chains and turns increasing at the expense of α-helices. At higher concentrations/surface coverages, BSA unfolding is less pronounced and a more compact structure is assumed. Two-dimensional correlation spectroscopic (2D-COS) analysis reveals three different pathways corresponding to adsorbed conformations. At 1.50 μM, adsorption increases extended chains, followed by a loss in α-helices and a subsequent increase in turns. At 3.75 μM, extended chains decrease and then aggregated strands increase and side chains decrease, followed by a decrease in turns. With 7.50 and 15.0 μM BSA, the loss of side-chain vibrations is followed by an increase in aggregated strands and a subsequent decrease in turns and extended chains. Overall, the BSA concentration and resultant surface coverage have a profound

  15. Changes in wetting properties of silica surface treated with DPPC in the presence of phospholipase A 2 enzyme

    NASA Astrophysics Data System (ADS)

    Wiącek, Agnieszka Ewa

    2010-10-01

    Wetting properties of silica plates contacted with dipalmitoylphosphatidylcholine (DPPC) or DPPC/enzyme (phospholipase PLA 2) in NaCl solution were determined by thin layer wicking and with a help of Washburn equation. The wicking experiments were performed both for bare plates and the silica plates precontacted overnight with the probe liquid saturated vapors the silica plates, as well as untreated and DPPC (or DPPC/enzyme) treated. Adsorption of DPPC on original silica plates increases a bit hydrophobic character of silica surface in such a way that hydrocarbon chains are directed outwards and the polar part towards the silica surface. However, after the enzyme action the products of DPPC hydrolysis by PLA 2 (palmitic acid and lysophosphatidylcholine) increase again hydrophilic character of silica surface (an increase in acid-base interactions, γsAB). The changes of silica surface wettability are evidently dependent on the time of enzyme contacting with DPPC in NaCl solution. Although, the changes of total surface free energy of silica after treatment with DPPC/enzyme solution are minor about 2-6 mJ/m 2, the changes of the electron-donor ( γs-) and Lifshitz-van der Waals ( γsLW) component of the surface free energy are noticeable. Despite, these results are somehow preliminary, it seems that thin layer wicking method is an interesting tool for investigation of the effect of adsorbed DPPC on hydrophobicity/hydrophilicity of silica surface and influence of enzyme PLA 2 action.

  16. Functional attachment of horse radish peroxidase to plasma-treated surfaces

    NASA Astrophysics Data System (ADS)

    Bilek, Marcela M.; McKenzie, David R.; Nosworthy, Neil; Davies, Kerrie; Morrow, Richard; Thordarson, Palli; Gan, Bee K.; dos Remedios, Cristobal G.

    2004-02-01

    Controlling the interaction of surfaces with macromolecules, such as proteins and antibodies, is the key to producing biocompatible prosthetic devices, biosensors and diagnostic arrays. The development of technologies to control these interactions will result in the early detection of disease and have the potential to dramatically reduce costs associated with clinical treatment. For example, tethering functional anti-bodies to a surface in a patterned array allows the selection of specific proteins from a microlitre serum sample, immediately identifying diseases, well before the symptoms are manifested. Unfortunately, simple physical absorption of proteins onto most surfaces results in changes in their structure and loss of function. The use of ions from plasmas allows flexibility in surface modification by accessing a variety of ion energies and activated chemical species. In this paper we describe plasma based techniques which are being developed to modify the chemistry and morphology of surfaces in order to optimise their interaction with biomolecules. Early results of plasma processes to activate surfaces for non specific attachment of proteins by hydrophilic /hydrophobic interactions are presented, with particular attention to the time stability of such treatments, which is of special interest.

  17. Chromium(III) and chromium(VI) surface treated galvanized steel for outdoor constructions: environmental aspects.

    PubMed

    Lindström, David; Hedberg, Yolanda; Odnevall Wallinder, Inger

    2010-06-01

    The long-term degradation of chromium(III) (Zn-Cr(III)) and chromium(VI)-based (Zn-Cr(VI)) surface treatments on galvanized steel and their capacities to hinder the release of zinc induced by atmospheric corrosion at nonsheltered urban and marine exposure conditions for 2 years are investigated. Compared to bare zinc sheet, both surface treatments revealed high corrosion protection abilities and capacities to hinder the release of zinc, still evident after 2 years of exposure. The zinc barrier properties of the thinner Zn-Cr(VI) (10 nm) treatment were during the first 100 days of urban exposure slightly improved compared with Zn-Cr(III) (35 nm). However, their long-term protection capacities were inverse. Released concentrations of total chromium correspond to annual release rates less than 0.000032 (Zn-Cr(III)) and 0.00014 g Cr m(-2) yr(-1) (Zn-Cr(VI)) after 1 year of urban exposure. Aging by indoor storage of the surface treatments prior to outdoor exposure reduced the released Cr concentrations from the surface treatments. No Cr(VI) was released from the aged surfaces but from the freshly exposed Zn-Cr(VI). Marine exposure conditions resulted in a faster reduction of chromate to chromium(III)oxide compared with urban conditions, and a significantly lower amount of both chromium(III) and chromium(VI) released from Zn-Cr(VI) at the marine site compared with the urban site.

  18. Nanoscale evaluation of laser-based surface treated 12Ni maraging steel

    NASA Astrophysics Data System (ADS)

    Grum, J.; Slabe, J. M.

    2005-07-01

    Maraging steels are used in several high-tech areas. Among them are highly thermo-mechanically loaded vital parts of die casting dies for pressure die casting of aluminium and magnesium alloys. From the economic point of view, the operation life of dies is extremely important to the price of the castings. Operational life can be successfully extended by a regular maintenance of die parts. Laser surfacing is a very promising process for rebuilding of worn out surfaces of vital die parts. In this research, the state in the maraging steel 1.2799 (DIN) after the application of laser surfacing process has been analysed using scanning electron microscope. The analysis revealed diverse microstructure through-depth of the laser-surfaced specimens. On the basis of the estimated size and volume fraction of the nano-precipitates in the individual microstructure zones located through-depth of the heat-affected zone, a through-depth variation of microhardness was predicted. The results are supported by Vickers microhardness tests. It was confirmed that the mechanical properties of the 1.2799 maraging steel strongly depend on the characteristic at the nano or micro level. Some of the results obtained can be also applied to laser surface heat treatment of maraging steels.

  19. Reaction of montmorillonite in alkaline solution at 60 C, 90 C, 120 C and 180 C

    SciTech Connect

    Amaya, Takayuki; Shimojo, Mikio; Fujihara, Hiroshi; Yokoyama, Katsuhiko

    1999-07-01

    The reaction of montmorillonite was investigated. Three kinds of bentonites with different montmorillonite composition were mixed with 0.3M NaOH solution and 0.3M Ca(OH){sub 2} slurry. They were immersed at 60 C, 90 C, 120 C, and 180 C for one month, three months and six months. The concentrations of the soluble ions were measured and the bentonites were analyzed quantitatively after the immersion. 50% of the montmorillonite was reacted within two weeks at greater than 90 C. Montmorillonite reacts less when mixed with Si-minerals. It extensively reacted in 0.3M Ca(OH){sub 2} slurry. These results suggest that the reaction mechanism of the montmorillonite in alkaline solution was dominantly Si dissolution, and would decrease by controlling the concentration of Si ion. The cement/bentonite system under Si saturated conditions is discussed.

  20. Analysis of cell surface alterations in Legionella pneumophila cells treated with human apolipoprotein E.

    PubMed

    Palusinska-Szysz, Marta; Zdybicka-Barabas, Agnieszka; Cytryńska, Małgorzata; Wdowiak-Wróbel, Sylwia; Chmiel, Elżbieta; Gruszecki, Wiesław I

    2015-03-01

    Binding of human apolipoprotein E (apoE) to Legionella pneumophila lipopolysaccharide was analysed at the molecular level by Fourier-transform infrared spectroscopy, thereby providing biophysical evidence for apoE-L. pneumophila lipopolysaccharide interaction. Atomic force microscopy imaging of apoE-exposed L. pneumophila cells revealed alterations in the bacterial cell surface topography and nanomechanical properties in comparison with control bacteria. The changes induced by apoE binding to lipopolysaccharide on the surface of L. pneumophila cells may participate in: (1) impeding the penetration of host cells by the bacteria; (2) suppression of pathogen intracellular growth and eventually; and (3) inhibition of the development of infection.

  1. Surface structure and corrosion resistance of short-time heat-treated NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Vojtěch, D.; Voděrová, M.; Fojt, J.; Novák, P.; Kubásek, T.

    2010-12-01

    NiTi alloys are attractive materials that are used for medicine, however, Ni-release may cause allergic reactions in an organism. The Ni-release rate is strongly affected by the surface state of the NiTi alloy that is mainly determined by its processing route. In this study, a NiTi shape memory alloy (50.9 at.% Ni) was heat-treated by several regimes simulating the shape setting procedure, the last step in the manufacture of implants. Heating temperatures were between 500 and 550 °C and durations from 5 to 10 min. Heat treatments were performed in air at normal and low pressure and in a salt bath. The purpose of the treatments was to obtain and compare different surface states of the Ni-Ti alloy. The surface state and chemistry of heat-treated samples were investigated by electron microscopy, X-ray photoelectron spectroscopy and Raman spectrometry. The amount of nickel released into a model physiological solution of pH 2 and into concentrated HCl was taken as a measure of the corrosion rate. It was found that the heat treatments produced surface TiO 2 layers measuring 15-50 nm in thickness that were depleted in nickel. The sample covered by the 15-nm thick oxide that was treated at 500 °C/5 min in a low pressure air showed the best corrosion performance in terms of Ni-release. As the oxide thickness increased, due to either temperature or oxygen activity change, Ni-release into the physiological solution accelerated. This finding is discussed in relation to the internal structure of the oxide layers.

  2. Structure and wettability property of the growth and nucleation surfaces of thermally treated freestanding CVD diamond films

    NASA Astrophysics Data System (ADS)

    Pei, Xiaoqiang; Cheng, Shaoheng; Ma, Yibo; Wu, Danfeng; Liu, Junsong; Wang, Qiliang; Yang, Yizhou; Li, Hongdong

    2015-08-01

    This paper reports the surface features and wettability properties of the (1 0 0)-textured freestanding chemical vapor deposited (CVD) diamond films after thermal exposure in air at high temperature. Thermal oxidation at proper conditions eliminates selectively nanodiamonds and non-diamond carbons in the films. The growth side of the films contains (1 0 0)-oriented micrometer-sized columns, while its nucleation side is formed of nano-sized tips. The examined wettability properties of the as-treated diamond films reveal a hydrophilicity and superhydrophilicity on the growth surface and nucleation surface, respectively, which is determined by oxygen termination and geometry structure of the surface. When the surface termination is hydrogenated, the wettability of nucleation side converted from superhydrophilicity to high hydrophobicity, while the hydrophilicity of the growth side does not change significantly. The findings open a possibility for realizing freestanding diamond films having not only novel surface structures but also multifunction applications, especially proposed on the selected growth side or nucleation side in one product.

  3. Improvement of fatigue behavior of mechanically surface treated materials by annealing

    SciTech Connect

    Altenberger, I.; Scholtes, B.

    1999-09-10

    The positive effects of mechanical surface optimization methods for fatigue lifetime and strength are generally attributed to the formation of compressive residual stresses and strain hardening in near surface layers. This work concentrates on the cyclic deformation behavior of three different commercial, widely used alloys (steels SAE 1045 and AISI 304, magnesium wrought alloy AZ31) subjected to thermal treatment after mechanical surface optimization. In the case of SAE 1045 fatigue lifetime as well as fatigue endurance strength were shown to be affected positively by different heat treatments in spite of residual macro and micro stress relaxation. Macroscopically according to Manson-Coffin`s law this improvement can be explained by the reduction of plastic strain amplitude. Microscopically, strain ageing can be identified as the responsible process. For all three materials, optimum heat treatment temperatures and times are suggested, derived from hysteresis measurements and cyclic lifetimes. Finally, it will be shown that further surface optimization can be achieved by simultaneously applying mechanical and thermal treatments (thermomechanical rolling or peening).

  4. Characterization of plasma treated surfaces for food safety by terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Sulovská, Kateřina; Lehocký, Marián.

    2014-10-01

    A physico-chemical approach to modify surfaces not only for use in medicine, but also for preservation of food is nowadays widely studied to lower the risks of increased number of bacterial pathogens that are in a direct contact with people. Food safety is very important part of preserving sustainability during crises, especially after the enterohaemorrhagic Escherichia coli outbreak in Europe in 2011. One of the possibility how we can protect food against various pathogens is the modification of packing materials that are directly in contact with preserved food. This contribution deals with the characterization of modified surfaces with antibacterial properties via Terahertz spectroscopy. For the purpose of this paper, three monomers were used for grafting onto air radiofrequency plasma activated low density polyethylene surface, which created a brush-like structure. Next, the antibacterial agents, Irgasan and Chlorhexidine, were anchored to these surfaces. These antibacterial agents were selected for supposed effect on two most frequently occurring bacterial strains - Escherichia coli and Staphylococcus aureus. Materials were further tested for the presence of antibacterial agent molecules, in our case by means of terahertz spectroscopy. Each material was tested on two spectroscopes - the SPECTRA and the OSCAT terahertz instruments.

  5. An Infrared Spectroscopy Study Of Pb(II) And Siderophore Sorption To Montmorillonite

    NASA Astrophysics Data System (ADS)

    Maurice, P. A.; Hunter, E. L.; Quicksall, A. N.; Haack, E.; Johnston, C. T.

    2010-12-01

    Aerobic microorganisms exude low molecular weight organic ligands known as siderophores in order to acquire nutrient Fe. Because siderophores can also bind other metals such as Pb, Zn, and Cd, they may affect metal sorption, fate, and transport. This study combined batch sorption experiments, thermodynamic modeling, X-ray diffraction (XRD), and spectroscopic analysis, to investigate Pb(II) and desferrioxamine B (DFOB) sorption to montmorillonite, alone and in combination, at pH 3-9, ~22 C, and in 0.1 M NaCl. Samples at pH 3, 5.5, and 7.5 were analyzed by XRD and Fourier-Transform Infrared Spectroscopy (FTIR) and samples at pH5.5 were analyzed by in-situ Attenuated Total Reflection Infrared Spectroscopy (ATR-FTIR). DFOB does not bind Pb substantially at pH 3, and sorption results showed that the ligand only minimally affects Pb sorption at this pH. However, combination of batch sorption experiments with XRD, FTIR, and ATR-FTIR analysis suggested that Pb(II)/DFOB (co)absorption in the interlayer is likely an important sorption mechanism at pH 5.5 and 7.5 under both air-dried and aqueous conditions. The precise structure of the sorption complex(es) could not be determined by these methods. Some adsorption of Pb(II)/DFOB to the external clay surface is also possible. In the absence of DFOB, a Pb-carbonate complex or precipitate (perhaps hydrocerrusite) was detected by FTIR. Overall, results showed that a microbial siderophore may affect Pb sorption to montmorillonite, that (co)absorption in the interlayer region can be important, and that sorption effects can vary substantially depending upon solution conditions.

  6. Effectiveness of electrolyzed water as a sanitizer for treating different surfaces.

    PubMed

    Park, Hoon; Hung, Yen-Con; Kim, Chyer

    2002-08-01

    The effectiveness of electrolyzed (EO) water at killing Enterobacter aerogenes and Staphylococcus aureus in pure culture was evaluated. One milliliter (approximately 10(9) CFU/ml) of each bacterium was subjected to 9 ml of EO water or control water (EO water containing 10% neutralizing buffer) at room temperature for 30 s. Inactivation (reduction of > 9 log10 CFU/ ml) of both pathogens occurred within 30 s after exposure to EO water containing approximately 25 or 50 mg of residual chlorine per liter. The effectiveness of EO water in reducing E. aerogenes and S. aureus on different surfaces (glass, stainless steel, glazed ceramic tile, unglazed ceramic tile, and vitreous china) was also evaluated. After immersion of the tested surfaces in EO water for 5 min without agitation, populations of E. aerogenes and S. aureus were reduced by 2.2 to 2.4 log10 CFU/ cm2 and by 1.7 to 1.9 log10 CFU/cm2, respectively, whereas washing with control water resulted in a reduction of only 0.1 to 0.3 log10 CFU/cm2. The washing of tested surfaces in EO water with agitation (50 rpm) reduced populations of viable cells on the tested surfaces to < 1 CFU/cm2. For the control water treatment with agitation, the surviving numbers of both strains on the tested surfaces were approximately 3 log10 CFU/cm2. No viable cells of either strain were observed in the EO water after treatment, regardless of agitation. However, large populations of both pathogens were recovered from control wash solution after treatment.

  7. Treated wastewater effluent as a source of microbial pollution of surface water resources.

    PubMed

    Naidoo, Shalinee; Olaniran, Ademola O

    2013-12-23

    Since 1990, more than 1.8 billion people have gained access to potable water and improved sanitation worldwide. Whilst this represents a vital step towards improving global health and well-being, accelerated population growth coupled with rapid urbanization has further strained existing water supplies. Whilst South Africa aims at spending 0.5% of its GDP on improving sanitation, additional factors such as hydrological variability and growing agricultural needs have further increased dependence on this finite resource. Increasing pressure on existing wastewater treatment plants has led to the discharge of inadequately treated effluent, reinforcing the need to improve and adopt more stringent methods for monitoring discharged effluent and surrounding water sources. This review provides an overview of the relative efficiencies of the different steps involved in wastewater treatment as well as the commonly detected microbial indicators with their associated health implications. In addition, it highlights the need to enforce more stringent measures to ensure compliance of treated effluent quality to the existing guidelines.

  8. Treated Wastewater Effluent as a Source of Microbial Pollution of Surface Water Resources

    PubMed Central

    Naidoo, Shalinee; Olaniran, Ademola O.

    2013-01-01

    Since 1990, more than 1.8 billion people have gained access to potable water and improved sanitation worldwide. Whilst this represents a vital step towards improving global health and well-being, accelerated population growth coupled with rapid urbanization has further strained existing water supplies. Whilst South Africa aims at spending 0.5% of its GDP on improving sanitation, additional factors such as hydrological variability and growing agricultural needs have further increased dependence on this finite resource. Increasing pressure on existing wastewater treatment plants has led to the discharge of inadequately treated effluent, reinforcing the need to improve and adopt more stringent methods for monitoring discharged effluent and surrounding water sources. This review provides an overview of the relative efficiencies of the different steps involved in wastewater treatment as well as the commonly detected microbial indicators with their associated health implications. In addition, it highlights the need to enforce more stringent measures to ensure compliance of treated effluent quality to the existing guidelines. PMID:24366046

  9. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay - The effect of mononucleotide structure, phosphate activation and montmorillonite composition on phosphodiester bond formation

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; KAMALUDDIN; Ertem, Gozen

    1990-01-01

    The 2(prime)-d-5(prime)-GMP and 2(prime)-d-5(prime)-AMP bind 2 times more strongly to montmorillonite 22A than do 2(prime)-d-5(prime)-CMP and 5(prime)-TMP. The dinucleotide d(pG)2 forms in 9.2 percent yield and the cyclic dinucleotide c(dpG)2 in 5.4 percent yield in the reaction of 2(prime)-d-5(prime)-GMP with EDAC in the presence of montmorillonite 22A. The yield of dimers which contain the phosphodiester bond decreases as the reaction medium is changed from 0.2 M NaCl to a mixture of 0.2 M NaCl and 0.075 M MgCl2. A low yield of d(pA)2 was observed in the condensation reaction of 5(prime)-ImdpA on montmorillonite 22A. The yield of d(pA)2 obtained when EDAC is used as the condensing agent increases with increasing iron content of the Na(+)-montmorillonite used as catalyst. Evidence is presented which shows that the acidity of the Na(+)-montmorillonite is a necessary but not sufficient factor for the montmorillonite catalysis of phosphodiester bond formation.

  10. Thermal Characteristics of ThermoBrachytherapy Surface Applicators (TBSA) for Treating Chestwall Recurrence

    PubMed Central

    Arunachalam, K.; Maccarini, P. F.; Craciunescu, O. I.; Schlorff, J. L.; Stauffer, P. R.

    2010-01-01

    Purpose To study temperature and thermal dose distributions of ThermoBrachytherapy Surface Applicators (TBSA) developed for concurrent or sequential high dose rate (HDR) brachytherapy and microwave hyperthermia treatment of chest wall recurrence and other superficial disease. Methods A steady state thermodynamics model coupled with the fluid dynamics of water bolus and electromagnetic radiation of hyperthermia applicator is used to characterize the temperature distributions achievable with TBSA applicators in an elliptical phantom model of the human torso. Power deposited by 915 MHz conformal microwave array (CMA) applicators is used to assess the specific absorption rate (SAR) distributions of rectangular (500 cm2) and L-shaped (875 cm2) TBSA. The SAR distribution in tissue and fluid flow distribution inside the Dual-Input Dual-Output (DIDO) water bolus are coupled to solve the steady state temperature and thermal dose distributions of rectangular TBSA (R-TBSA) for superficial tumor targets extending 10–15 mm beneath the skin surface. Thermal simulations are carried out for a range of bolus inlet temperature (Tb=38–43°C), water flow rate (Qb=2–4 L/min) and tumor blood perfusion (ωb=2–5 kg/m3/s) to characterize their influence on thermal dosimetry. Results Steady state SAR patterns of R- and L-TBSA demonstrate the ability to produce conformal and localized power deposition inside tumor target sparing surrounding normal tissues and nearby critical organs. Acceptably low variation in tissue surface cooling and surface temperature homogeneity was observed for the new DIDO bolus at 2 L/min water flow rate. Temperature depth profiles and thermal dose volume histograms indicate bolus inlet temperature (Tb) to be the most influential factor on thermal dosimetry. A 42 °C water bolus was observed to be the optimal choice for superficial tumors extending 10–15 mm from the surface even under significant blood perfusion. Lower bolus temperature may be chosen to

  11. Spectroscopic study for a chromium-adsorbed montmorillonite

    NASA Astrophysics Data System (ADS)

    Nurtay, Maidina ·; Tuersun, Maierdan ·; Cai, Yuanfeng; Açıkgöz, Muhammed; Wang, Hongtao; Pan, Yuguan; Zhang, Xiaoke; Ma, Xiaomei

    2017-02-01

    Samples of purified montmorillonite with trace amounts of quartz were subjected to different concentrations of chromium sulphate solutions for one week to allow cation exchange. The chromium-bearing montmorillonites were verified and tested using powder X-ray diffractometry (XRD), X-ray fluorescence spectrometry, electron spin resonance (ESR) spectrometry and Fourier transformation infrared (FTIR) spectroscopy to explore the occupation sites of the chromium. The ESR spectra recorded before and after the chromium exchange show clear differences: a strong and broad resonance with two shoulders at the lower magnetic field side was present to start, and its intensity as well as that of the ferric iron resonance, increased with the concentration of added chromium. The signals introduced by the chromium, for example at g = 1.975 and 2.510 etc., suggested that the chromium had several occupational sites. The ESR peak with g = 2.510 in the second derivative spectrum suggested that Cr3+ was weakly bounded to TOT with the form of [Cr(H2O)3]3+ in hexagonal cavities. This was verified by comparing the FTIR spectra of the pure and modified montmorillonite. The main resonance centred at g = 1.975 indicated that the majority of Cr3+ occupied the interlayer region as [Cr(H2O)6]3+. The substitution of Ca2 + by Cr3+ also greatly affected the vibration of the hydrogens associate to water, ranged from 3500 to 2600 cm-1 in FTIR. Furthermore, the presence of two diffraction lines in the XRD results (specifically those with d-values of 1.5171 and 1.2673 nm) and the calculations of the size of the interlayer space suggested the presence of two types of montmorillonite with different hydration cations in the sample exposed to 0.2 M chromium sulphate. The two diffraction lines were assigned to [Cr(H2O)6]3+ and [Cr(H2O)3O3]3+, respectively. This also suggested that the species of hydration cation was constrained by the concentration of the chromium solution.

  12. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell.

    PubMed

    Kim, Beom-Su; Kim, Jin Seong; Park, Young Min; Choi, Bo-Young; Lee, Jun

    2013-04-01

    Magnesium (Mg) is one of the most important ions associated with bone osseointegration. The aim of this study was to evaluate the cellular effects of Mg implantation in titanium (Ti) surfaces treated with sand blast using large grit and acid etching (SLA). Mg ions were implanted into the surface via vacuum arc source ion implantation. The surface morphology, chemical properties, and the amount of Mg ion release were evaluated by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS), and inductively coupled plasma-optical emission spectrometer (ICP-OES). Human mesenchymal stem cells (hMSCs) were used to evaluate cellular parameters such as proliferation, cytotoxicity, and adhesion morphology by MTS assay, live/dead assay, and SEM. Furthermore, osteoblast differentiation was determined on the basis of alkaline phosphatase (ALP) activity and the degree of calcium accumulation. In the Mg ion-implanted disk, 2.3×10(16) ions/cm(2) was retained. However, after Mg ion implantation, the surface morphology did not change. Implanted Mg ions were rapidly released during the first 7 days in vitro. The MTS assay, live/dead assay, and SEM demonstrated increased cell attachment and growth on the Mg ion-implanted surface. In particular, Mg ion implantation increased the initial cell adhesion, and in an osteoblast differentiation assay, ALP activity and calcium accumulation. These findings suggest that Mg ion implantation using the plasma source ion implantation (PSII) technique may be useful for SLA-treated Ti dental implants to improve their osseointegration capacity.

  13. Treating enamel surfaces with a prepared pumice prophy paste prior to bonding.

    PubMed

    Gultz, J; Kaim, J; Scherer, W

    1999-01-01

    The use of pumice to remove the salivary pellicle, plaque, and/or surface debris is a well-known procedure. However, pumice can act as a contaminant. Therefore, a slurry of pumice without additives is recommended for use prior to bonding procedures. This article presents a review of the shear bond strengths obtained by bonding composite resin to enamel after the enamel had been cleansed with a slurry of pumice and a premixed caplet of pumice.

  14. Evaluation of Residual Stress Relaxation in Surface-Treated Engine Alloys

    DTIC Science & Technology

    2008-06-01

    improve the fatigue resistance and foreign object damage tolerance of metallic components by introducing beneficial near-surface compressive...i.e., it increases the conductivity in tension, when the material cools down, and reduces it in compression, when the material heats up. For high...and make it rather difficult to achieve accurate AECC measurements above 25 MHz. The inductive and capacitive effects on the lift-off sensitivity of

  15. Thinking outside the boxes: Using current reading models to assess and treat developmental surface dyslexia.

    PubMed

    Law, Caroline; Cupples, Linda

    2017-03-01

    Improving the reading performance of children with developmental surface dyslexia has proved challenging, with limited generalisation of reading skills typically reported after intervention. The aim of this study was to provide tailored, theoretically motivated intervention to two children with developmental surface dyslexia. Our objectives were to improve their reading performance, and to evaluate the utility of current reading models in therapeutic practice. Detailed reading and cognitive profiles for two male children with developmental surface dyslexia were compared to the results obtained by age-matched control groups. The specific area of single-word reading difficulty for each child was identified within the dual route model (DRM) of reading, following which a theoretically motivated intervention programme was devised. Both children showed significant improvements in single-word reading ability after training, with generalisation effects observed for untrained words. However, the assessment and intervention results also differed for each child, reinforcing the view that the causes and consequences of developmental dyslexia, even within subtypes, are not homogeneous. Overall, the results of the interventions corresponded more closely with the DRM than other current reading models, in that real word reading improved in the absence of enhanced nonword reading for both children.

  16. Remediation studies of trace metals in natural and treated water using surface modified biopolymer nanofibers

    NASA Astrophysics Data System (ADS)

    Musyoka, Stephen Makali; Ngila, Jane Catherine; Mamba, Bhekie B.

    In this study, remediation results of trace metals in natural water and treated water using three functionalized nanofiber mats of cellulose and chitosan are reported. The nanofiber materials, packed in mini-columns, were employed for the remediation of five toxic trace metals (Cd, Pb, Cu, Cr and Ni) from natural water samples. Trace metals in real water samples were undetectable as the concentrations were lower than the instrument’s detection limits of 0.27 × 10-3 (Cd) and 4.2 × 10-2 (Pb) μg mL-1, respectively. However, after percolation through the functionalised biosorbents in cartridges, detectability of the metal ions was enhanced. The starting volume of the natural water sample was 100 mL, which was passed through a column containing the nanofibers sorbent and the retained metals eluted with 5 mL of 2.0 M nitric acid. The eluate was analyzed for metals concentrations. An enrichment factor of 20 for the metals was realized as a result of the pre-concentration procedure applied to handle the determination of the metals at trace levels. The order of remediation of the studied metals using the nanofibers was as follows: chitosan/PAM-g-furan-2,5-dione < cellulose-g-furan-2,5-dione < cellulose-g-oxolane-2,5-dione. The modified biopolymer nanofibers were able to adsorb trace metals from the river water and treated water, thereby confirming their capability of water purification. These materials are proposed as useful tools and innovative approach for improving the quality of drinking for those consumers in small scale households.

  17. Mobility of adsorbed Cry1Aa insecticidal toxin from Bacillus thuringiensis (Bt) on montmorillonite measured by fluorescence recovery after photobleaching (FRAP)

    NASA Astrophysics Data System (ADS)

    Helassa, Nordine; Daudin, Gabrielle; Noinville, Sylvie; Janot, Jean-Marc; Déjardin, Philippe; Staunton, Siobhán; Quiquampoix, Hervé

    2010-06-01

    The insecticidal toxins produced by genetically modified Bt crops are introduced into soil through root exudates and tissue decomposition and adsorb readily on soil components, especially on clays. This immobilisation and the consequent concentration of the toxins in "hot spots" could increase the exposure of soil organisms. Whereas the effects on non-target organisms are well documented, few studies consider the migration of the toxin in soil. In this study, the residual mobility of Bt Cry1Aa insecticidal toxin adsorbed on montmorillonite was assessed using fluorescence recovery after photobleaching (FRAP). This technique, which is usually used to study dynamics of cytoplasmic and membrane molecules in live cells, was applied for the first time to a protein adsorbed on a finely divided swelling clay mineral, montmorillonite. No mobility of adsorbed toxin was observed at any pH and at different degrees of surface saturation.

  18. Comparison of characteristics of montmorillonite supported nano zero valent iron (M-nZVI) and nano zero valent iron (nZVI)

    NASA Astrophysics Data System (ADS)

    How, Ho Kuok; Wan Zuhairi W., Y.

    2015-09-01

    In this study, synthesized montmorillonite supported nano zero valent iron (M-nZVI) and nano zero valent iron (nZVI) are compared physically and chemically. The samples were prepared using chemical reduction method that includes sodium borohydride and ethanol. Due to the tendency of nZVI to aggregate, montmorillonite is used as a supporting material. TEM and FESEM images show that the M-nZVI has decreased the aggregation by dispersing the particles on the surface of montmorillonite whereas images of nZVI show chain-like particle due to aggregation. Both images also show particles synthesized are nanoparticles. With less aggregation, the surface area of the M-nZVI is greater than nZVI which is 45.46 m2/g and 10.49 m2/g respectively. XRD patterns have shown Fe0 are synthesized and small amount of iron oxides are produced. M-nZVI has the capability in reducing aggregation which might lead to the increase in reactivity of the particles thus enhancing the performance of nZVI.

  19. Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature interlayer cation, and charge location effects

    DOE PAGES

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Jove-Colon, Carlos F.; ...

    2015-08-27

    In this study, the swelling properties of smectite clay minerals are relevant to many engineering applications including environmental remediation, repository design for nuclear waste disposal, borehole stability in drilling operations, and additives for numerous industrial processes and commercial products. We used molecular dynamics and grand canonical Monte Carlo simulations to study the effects of layer charge location, interlayer cation, and temperature on intracrystalline swelling of montmorillonite and beidellite clay minerals. For a beidellite model with layer charge exclusively in the tetrahedral sheet, strong ion–surface interactions shift the onset of the two-layer hydrate to higher water contents. In contrast, for amore » montmorillonite model with layer charge exclusively in the octahedral sheet, weaker ion–surface interactions result in the formation of fully hydrated ions (two-layer hydrate) at much lower water contents. Clay hydration enthalpies and interlayer atomic density profiles are consistent with the swelling results. Water adsorption isotherms from grand canonical Monte Carlo simulations are used to relate interlayer hydration states to relative humidity, in good agreement with experimental findings.« less

  20. Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature interlayer cation, and charge location effects

    SciTech Connect

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Jove-Colon, Carlos F.; Cygan, Randall Timothy

    2015-08-27

    In this study, the swelling properties of smectite clay minerals are relevant to many engineering applications including environmental remediation, repository design for nuclear waste disposal, borehole stability in drilling operations, and additives for numerous industrial processes and commercial products. We used molecular dynamics and grand canonical Monte Carlo simulations to study the effects of layer charge location, interlayer cation, and temperature on intracrystalline swelling of montmorillonite and beidellite clay minerals. For a beidellite model with layer charge exclusively in the tetrahedral sheet, strong ion–surface interactions shift the onset of the two-layer hydrate to higher water contents. In contrast, for a montmorillonite model with layer charge exclusively in the octahedral sheet, weaker ion–surface interactions result in the formation of fully hydrated ions (two-layer hydrate) at much lower water contents. Clay hydration enthalpies and interlayer atomic density profiles are consistent with the swelling results. Water adsorption isotherms from grand canonical Monte Carlo simulations are used to relate interlayer hydration states to relative humidity, in good agreement with experimental findings.

  1. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution - The possible role of montmorillonite clays

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Ertem, Gozen; KAMALUDDIN; Agarwal, Vipin; Hua, Lu Lin

    1989-01-01

    The possible role of montmorillonite clays in the spontaneous formation on the primitive earth of the phosphodiester bond in the presence of water was investigated in experiments measuring the binding of various nucleosides and nucleotides with Na(+)-montmorillonite 22A and the reactions of these compounds with a water-soluble carbodiimide. It was found that, at neutral pH, adenine derivatives bind stronger than the corresponding uracil derivatives, consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. The reaction of the 5-prime-AMP with carbodiimide resulted in the formation of 2-prime,5-prime-pApA (18.9 percent), 3-prime,5-prime-pApA (11 percent), and AppA (4.8 percent). The yields of these oligomers obtained when poly(U) was used in place of the clay were 15.5 percent, 3.7 percent, and 14.9 percent AppA, respectively.

  2. Surface Analytical Study of CuInSe2 Treated in Cd-Containing Partial Electrolyte Solution

    SciTech Connect

    Asher, S. E.; Ramanathan, K.; Wiesner H.; Moutinho, H.; Niles, D. W.

    1998-11-19

    Junction formation in CuInSe2 (CIS) has been studied by exposing thin films and single-crystal samples to solutions containing NH4OH and CdSO4. The treated samples were analyzed by secondary ion mass spectrometry to determine the amount and distribution of Cd deposited on the surface of the films. Cadmium is found to react with the surface for all the solution exposure times and temperatures studied. The reaction rapidly approaches the endpoint and remains relatively unchanged for subsequent solution exposure. Cadmium in-diffusion, as measured by secondary ion mass spectrometry, is obscured by topography effects in the thin-film samples and by ion-beam mixing and topography in the single-crystal sample.

  3. Corrosion resistance, surface mechanical properties, and cytocompatibility of plasma immersion ion implantation-treated nickel-titanium shape memory alloys.

    PubMed

    Yeung, K W K; Poon, R W Y; Liu, X Y; Ho, J P Y; Chung, C Y; Chu, P K; Lu, W W; Chan, D; Cheung, K M C

    2005-11-01

    Nickel-titanium shape memory alloys are promising materials in orthopedic applications because of their unique properties. However, for prolonged use in a human body, deterioration of the corrosion resistance of the materials becomes a critical issue because of the increasing possibility of deleterious ions released from the substrate to living tissues. We have investigated the use of nitrogen, acetylene, and oxygen plasma immersion ion implantation (PIII) to improve the corrosion resistance and mechanical properties of the materials. Our results reveal that the corrosion resistance and mechanical properties such as hardness and elastic modulus are significantly enhanced after surface treatment. The release of nickel is drastically reduced as compared with the untreated control. In addition, our in vitro tests show that the plasma-treated surfaces are well tolerated by osteoblasts. Among the three types of samples, the best biological effects are observed on the nitrogen PIII samples.

  4. Surface characterization and antibacterial response of silver nanowire arrays supported on laser-treated polyethylene naphthalate.

    PubMed

    Polívková, M; Štrublová, V; Hubáček, T; Rimpelová, S; Švorčík, V; Siegel, J

    2017-03-01

    Polymeric biomaterials with antibacterial effects are requisite materials in the fight against hospital-acquired infections. An effective way for constructing a second generation of antibacterials is to exploit the synergic effect of (i) patterning of polymeric materials by a laser, and (ii) deposition of noble metals in their nanostructured forms. With this approach, we prepared highly-ordered periodic structures (ripples) on polyethylene naphthalate (PEN). Subsequent deposition of Ag under the glancing angle of 70° resulted in the formation of self-organized, fully separated Ag nanowire (Ag NW) arrays homogenously distributed on PEN surface. Surface properties of these samples were characterized by AFM and XPS. Vacuum evaporation of Ag at the glancing angle geometry of 70° caused that Ag NWs were formed predominantly from one side of the ripples, near to the top of the ridges. The release of Ag(+) ions into physiological solution was studied by ICP-MS. The results of antibacterial tests predetermine these novel structures as promising materials able to fight against a broad spectrum of microorganisms, however, their observed cytotoxicity warns about their applications in the contact with living tissues.

  5. Deformable Surface Model for the Evaluation of Abdominal Aortic Aneurysms Treated with an Endovascular Sealing System.

    PubMed

    Casciaro, Mariano E; El-Batti, Salma; Chironi, Gilles; Simon, Alain; Mousseaux, Elie; Armentano, Ricardo L; Alsac, Jean-Marc; Craiem, Damian

    2016-05-01

    Rupture of abdominal aortic aneurysms (AAA) is responsible for 1-3% of all deaths among the elderly population in developed countries. A novel endograft proposes an endovascular aneurysm sealing (EVAS) system that isolates the aneurysm wall from blood flow using a polymer-filled endobag that surrounds two balloon-expandable stents. The volume of injected polymer is determined by monitoring the endobag pressure but the final AAA expansion remains unknown. We conceived and developed a fully deformable surface model for the comparison of pre-operative sac lumen size and final endobag size (measured using a follow-up scan) with the volume of injected polymer. Computed tomography images were acquired for eight patients. Aneurysms were manually and automatically segmented twice by the same observer. The injected polymer volume resulted 9% higher than the aneurysm pre-operative lumen size (p < 0.05), and 11% lower than the final follow-up endobag volume (p < 0.01). The automated method required minimal user interaction; it was fast and used a single set of parameters for all subjects. Intra-observer and manual vs. automated variability of measured volumes were 0.35 ± 2.11 and 0.07 ± 3.04 mL, respectively. Deformable surface models were used to quantify AAA size and showed that EVAS system devices tended to expand the sac lumen size.

  6. Corrosion behavior of surface treated steel in liquid sodium negative electrode of liquid metal battery

    NASA Astrophysics Data System (ADS)

    Lee, Jeonghyeon; Shin, Sang Hun; Lee, Jung Ki; Choi, Sungyeol; Kim, Ji Hyun

    2016-03-01

    While liquid metal batteries are attractive options for grid-scale energy storage applications as they have flexible siting capacities and small footprints, the compatibility between structural materials such as current collectors and negative electrode such as sodium is one of major issues for liquid metal batteries. Non-metallic elements such as carbon, oxygen, and nitrogen in the liquid sodium influence the material behaviors of the cell construction materials in the battery system. In this study, the compatibility of structural materials with sodium is investigated in high temperature liquid sodium, and electrochemical impedance spectroscopy (EIS) is used to monitor in-situ the corrosion behavior at the surface of materials in sodium. Chemical vapor deposition (CVD) coatings of SiC and Si3N4 are applied as protective barriers against dissolution and corrosion on the steel surface. The results show that CVD coating of Si compounds can delay corrosion of steel in high temperature liquid sodium comparing to the result of as-received specimens, while SiC coating is more durable than Si3N4 coating in high temperature liquid sodium.

  7. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.

    PubMed

    Wu, Tingting; Wang, Gang; Zhan, Fei; Dong, Qiang; Ren, Qidi; Wang, Jianren; Qiu, Jieshan

    2016-04-15

    The potential of zero charge (Epzc) of electrodes can greatly influence the salt removal capacity, charge efficiency and cyclic stability of capacitive deionization (CDI). Thus optimizing the Epzc of CDI electrodes is of great importance. A simple strategy to negatively shift the Epzc of CDI electrodes by modifying commercial activated carbon with quaternized poly (4-vinylpyridine) (AC-QPVP) is reported in this work. The Epzc of the prepared AC-QPVP composite electrode is as negative as -0.745 V vs. Ag/AgCl. Benefiting from the optimized Epzc of electrodes, the asymmetric CDI cell which consists of the AC-QPVP electrode and a nitric acid treated activated carbon (AC-HNO3) electrode exhibits excellent CDI performance. For inverted CDI, the working potential window of the asymmetric CDI cell can reach 1.4 V, and its salt removal capacity can be as high as 9.6 mg/g. For extended voltage CDI, the salt removal capacity of the asymmetric CDI cell at 1.2/-1.2 V is 20.6 mg/g, which is comparable to that of membrane CDI using pristine activated carbon as the electrodes (19.5 mg/g). The present work provides a simple method to prepare highly positively charged CDI electrodes and may pave the way for the development of high-performance CDI cells.

  8. Sodium montmorillonite silylation: unexpected effect of the aminosilane chain length.

    PubMed

    Piscitelli, Filomena; Posocco, Paola; Toth, Radovan; Fermeglia, Maurizio; Pricl, Sabrina; Mensitieri, Giuseppe; Lavorgna, Marino

    2010-11-01

    In this work, the silylation of sodium montmorillonite (Na-MMT) was performed in glycerol using 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane and 3-[2-(2-aminoethylamino)ethylamino]-propyl-trimethoxysilane. The effects on the d-spacing of sodium montmorillonite (Na-MMT) upon reaction with three aminosilanes of different chain length were studied in details by combining experimental and computational techniques. Infrared spectroscopy was used to monitor the grafting process, while the degree of grafting was calculated using thermogravimetric analysis. X-ray diffraction experiments were carried out to evaluate the shift of the (0 0 1) basal spacing. It was found that the degree of silylation of Na-MMT increases with increasing the length of the aminosilane organic moieties, the overall aminosilane concentration, and temperature. The same beneficial effects were observed on the silicate d-spacing, as its value increases with increasing silane concentration and reaction temperature. Remarkably, however, increasing the length of the organic chains in the silane modifiers resulted in decreasing values of the Na-MMT interlayer distance. A rationale for this behavior is proposed on the basis of atomistic molecular dynamics simulation evidences.

  9. Sorption of perfluorooctane sulfonate on organo-montmorillonites.

    PubMed

    Zhou, Qin; Deng, Shubo; Yu, Qiang; Zhang, Qiaoying; Yu, Gang; Huang, Jun; He, Hongping

    2010-02-01

    Perfluorinated compound as one of the emerging pollutants has caused great attention in recent years. In this study, the organo-montmorillonites (organo-Mts) with different amounts and arrangements of hexadecyltrimethylammonium bromide (HDTMAB) were prepared as effective sorbents for PFOS removal from water. Batch sorption experiments including sorption kinetics, sorption isotherm as well as effect of solution pH were studied. The Elovich and pseudo-second-order models were selected to fit the kinetic data and the latter described the sorption kinetic better. Sorption isotherms showed that the sorption amount of PFOS increased with increasing amount of HDTMAB loaded in the montmorillonites, indicating that hydrophobic interaction played an important role in the sorption process. Comparative sorption of other perfluorinated compounds (PFCs) with different length of C-F chains and different functional groups further verified that hydrophobic interaction was the main force for the sorption of PFCs on the organo-Mts. X-ray diffraction (XRD) analysis demonstrated the significant decrease of interlayer distance after PFOS sorption, suggesting that the HDTMAB molecules were rearranged in the interlayer of organo-Mts. The PFOS molecules first diffused into the organo-Mts via hydrophobic interaction, and then the rearrangement occurred through electrostatic interaction between the two surfactants, resulting in the microstructure change within the organo-Mts.

  10. Mineralization of CO2 in hydrated calcium Montmorillonite

    NASA Astrophysics Data System (ADS)

    Yang, W.; Zaoui, A.

    2016-12-01

    We perform here a theoretical study based on both Monte Carlo and Molecular dynamic simulations in order to investigate CO2 mineral carbonation in hydrated calcium Montmorillonite (Ca-MMT). Thermodynamical, structural and dynamical properties have been evaluated in order to understand the mineral carbonation characteristics of CO2 in Ca-MMT. To simulate the behavior of CO2 through mineral carbonation, we consider calcium Montmorillonite clays at equilibrium with H2 O-CO2-H3O+- CO32- mixture under different hydration and different CO32- concentration. Radial distribution function results indicate that average calcium-oxygen (CO32-) distance is about 2.275 Å, which is rather short because of the charge attraction. These carbonation reactions produce the stable limestone. The carbonation energy for different CO32- concentrations is calculated at different temperatures varying from 280 K to 460 K, gradually with 20 K. The calculated diffusion coefficient indicates that the diffusion of calcium ions decreases with CO32- concentrations. Finally, the obtained mineralization energy was found in increase with carbonate concentration and burial depth.

  11. Electrospun novel super-absorbent based on polysaccharide-polyvinyl alcohol-montmorillonite clay nanocomposites.

    PubMed

    Islam, Md Shahidul; Rahaman, Md Saifur; Yeum, Jeong Hyun

    2015-01-22

    A novel super-absorbent material was fabricated by electrospinning the natural polysaccharide pullulan (PULL) with polyvinyl alcohol (PVA) and montmorillonite (MMT) clay to form nonwoven webs, which were then heat treated. Transmission electron microscopy (TEM) micrographs, X-ray diffraction (XRD) patterns, and Fourier transform infrared (FTIR) analysis of the novel super-absorbent nanofibers suggest the coexistence of PULL, PVA, and MMT through the exfoliation of MMT layers in the super-absorbent nanofiber composite. The heat-treated PULL/PVA/MMT webs loaded with 5 wt% MMT electrospun nanofibers exhibited a water absorbency of 143.42 g g(-1) in distilled water and a water absorbency of 39.75 g g(-1) in a 0.9 wt% NaCl solution. Under extremely dry conditions, the PULL/PVA/MMT webs exhibited the ability to retain 43% distilled water and 38% saline water after being exposed to the atmosphere for one week. The heat treatment improved the crystallinity of the electrospun PULL/PVA/MMT super-absorbent webs and thus made the webs highly stable in aqueous environments. Overall, the addition of MMT resulted in improved thermal stability and mechanical properties and increased the water absorbency of the PULL/PVA/MMT composite.

  12. Plutonium(IV) sorption to montmorillonite in the presence of organic matter.

    PubMed

    Boggs, Mark A; Dai, Zurong; Kersting, Annie B; Zavarin, Mavrik

    2015-03-01

    The effect of altering the order of addition in a ternary system of plutonium(IV), organic matter (fulvic acid, humic acid and desferrioxamine B), and montmorillonite was investigated. A decrease in Pu(IV) sorption to montmorillonite in the presence of fulvic and humic acid relative to the binary Pu-montmorillonite system, is attributed to strong organic aqueous complex formation with aqueous Pu(IV). No dependence on the order of addition was observed. In contrast, in the system where Pu(IV) was equilibrated with desferrioxamine B (DFOB) prior to addition of montmorillonite, an increase in Pu(IV) sorption was observed relative to the binary system. When DFOB was equilibrated with montmorillonite prior to addition of Pu(IV), Pu(IV) sorption was equivalent to the binary system. X-ray diffraction and transmission electron microscopy revealed that DFOB accumulated in the interlayer of montmorillonite. The order of DFOB addition plays an important role in the observed sorption/desorption behavior of Pu. The irreversible nature of DFOB accumulation in the montmorillonite interlayer leads to an apparent dependence of Pu sorption on the order of addition in the ternary system. This work demonstrates that the order of addition will be relevant in ternary systems in which at least one component exhibits irreversible sorption behavior.

  13. Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes

    SciTech Connect

    Liu, F. B.; Jing, B.; Cui, Y.; Di, J. J.; Qu, M.

    2015-04-15

    The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond film are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed.

  14. Renewable Solid Electrodes in Microfluidics: Recovering the Electrochemical Activity without Treating the Surface.

    PubMed

    Teixeira, Carlos A; Giordano, Gabriela F; Beltrame, Maisa B; Vieira, Luis C S; Gobbi, Angelo L; Lima, Renato S

    2016-11-15

    The contamination, passivation, or fouling of the detection electrodes is a serious problem undermining the analytical performance of electroanalytical devices. The methods to regenerate the electrochemical activity of the solid electrodes involve mechanical, physical, or chemical surface treatments that usually add operational time, complexity, chemicals, and further instrumental requirements to the analysis. In this paper, we describe for the first time a reproducible method for renewing solid electrodes whenever their morphology or composition are nonspecifically changed without any surface treatment. These renewable electrodes are the closest analogue to the mercury drop electrodes. Our approach was applied in microfluidics, where the downsides related to nonspecific modifications of the electrode are more critical. The renewal consisted in manually sliding metal-coated microwires across a channel with the sample. For this purpose, the chip was composed of a single piece of polydimethylsiloxane (PDMS) with three parallel channels interconnected to one perpendicular and top channel. The microwires were inserted in each one of the parallel channels acting as working, counter, and pseudoreference electrodes for voltammetry. This assembly allowed the renewal of all the three electrodes by simply pulling the microwires. The absence of any interfaces in the chips and the elastomeric nature of the PDMS allowed us to pull the microwires without the occurrence of leakages for the electrode channels even at harsh flow rates of up to 40.0 mL min(-1). We expect this paper can assist the researchers to develop new microfluidic platforms that eliminate any steps of electrode cleaning, representing a powerful alternative for precise and robust analyses to real samples.

  15. Microstructure, Hardness and Impact Toughness of Heat-Treated Nanodispersed Surface and Friction Stir-Processed Aluminum Alloy AA7075

    NASA Astrophysics Data System (ADS)

    Refat, M.; Elashery, A.; Toschi, S.; Ahmed, M. M. Z.; Morri, A.; El-Mahallawi, I.; Ceschini, L.

    2016-11-01

    Friction stir processing (FSP) is a recent surface engineering processing technique that is gaining wide recognition for manufacturing nanodispersed surface composites, which are of high specific strength, hardness and resistance to wear and corrosion. Herein, four-pass FSP was applied on aluminum alloy 7075 (AA7075-O) with and without the addition of alumina nanoparticles (Al2O3) of average size 40 nm. All FSP parameters were constant at 40 mm/min transverse speed, 500 rpm and tilt angle of 3°. FSP rotation direction was reversed every other pass. The friction stir-processed materials were sectioned and solution treated at 515 °C for 1.5 h, followed by age hardening at 120 °C for 12, 24, 36, 48 and 60 h. The effect of heat treatment regimes on microstructure, hardness and toughness was examined, as well as the fracture mode. The new friction stir-processed surfaces without and with nanodispersion showed enhancement in the hardness of the surface of the AA7075-O material (65 HV) to almost a double (100 and 140 HV) after four-pass FSP (before heat treatment) without and with incorporating nanoalumina particles, respectively. After 48-h aging at 120 °C, a significant enhancement in impact toughness was achieved for both the friction stir-processed without and with nanodispersion (181 and 134 J, respectively), compared to the reference material AA7075 in T6 condition (104 J).

  16. pH profile of the adsorption of nucleotides onto montmorillonite. II - Adsorption and desorption of 5-prime-AMP in iron-calcium montmorillonite systems

    NASA Technical Reports Server (NTRS)

    Banin, A.; Lawless, J. G.; Mazzurco, J.; Church, F. M.; Margulies, L.; Orenberg, J. B.

    1985-01-01

    The interaction of 5-prime-AMP with montmorillonite saturated with various ratios of two metals found ubiquitously on the surface of earth, that is, iron and calcium, is investigated. Adsorption and desorption of the nucleotide were studied in the pH range of 2-12 at three levels of addition: 0.080, 0.268 and 0.803 mmole 5-prime-AMP per gram of clay. Two desorption stages were employed - H2O wash and NaOH extraction (pH = 12.0). 5-prime-AMP was preferentially adsorbed on the Fe-containing clays relative to the Ca clay. The nucleotide was fully recovered by the two desorption stages, mostly by the NaOH extraction. The evidence at hand indicates that 5-prime-AMP reaction with clay is affected by electrostatic interactions involving both attraction and repulsion forces. Some specific adsorption, possibly the result of covalent bonding and complex formation with the adsorbed ion, cannot be ruled out for iron but does not appear to operate for calcium. Changes in pH cause varying degrees of attaction and repulsion of 5-prime-AMP and may have been operating on the primitive earth, leading to sequences of adsorption and release of this biomolecule.

  17. A B-lymphoma cell line that forms rosettes with neuraminidase-treated sheep erythrocytes through monoclonal surface immunoglobulin.

    PubMed

    Tsutsumi, Y; Suzuki, S; Mikata, A; Suzuki, H; Kageyama, K; Watanabe, S; Minato, K; Shimoyama, M

    1982-06-01

    Undifferentiated lymphoma from a 39-year-old female became serially xenotransplantable to preirradiated nude mice. The tumor cells (KT) possessed a monoclonal surface immunoglobulin (SIg mu, kappa) and formed rosettes with neuraminidase-treated sheep erythrocytes (SEn). Precise characterizations of the SEn rosette, however, revealed the following facts: (1) Neuraminidase-untreated or 2-aminoethylisothiuronium bromide (AET) treated sheep erythrocytes were not bound to the KT cells. (2) SEn rosettes on the KT cells did not show a temperature dependency. (3) Neuraminidase-treated erythrocytes from man, horse, mouse, and rabbit were not bound to the KT cells. (4) Preincubation of the KT cells with antipolyvalent immunoglobulin or anti-kappa-chain serum abolished the SEn rosette formation. (5) Trypsinization decreased both SEn rosettes and SIg on the KT cells. (6) SEn rosettes on the KT cells were too loose to be separated from nonrosetting cells by a Percoll gradient centrifugation method. Summarizing these results, the monoclonal SIg on the KT cells recognized sheep erythrocyte antigen(s) that were exposed only after the neuraminidase treatment. Therefore, this was considered to be a case with peculiar B-lymphoma cells that bound SEn through their SIg.

  18. Estimating dermal transfer of copper particles from the surfaces of pressure-treated lumber and implications for exposure.

    PubMed

    Platten, William E; Sylvest, Nicholas; Warren, Casey; Arambewela, Mahendranath; Harmon, Steve; Bradham, Karen; Rogers, Kim; Thomas, Treye; Luxton, Todd Peter

    2016-04-01

    Lumber pressure-treated with micronized copper was examined for the release of copper and copper micro/nanoparticles using a surface wipe method to simulate dermal transfer. In 2003, the wood industry began replacing CCA treated lumber products for residential use with copper based formulations. Micronized copper (nano to micron sized particles) has become the preferred treatment formulation. There is a lack of information on the release of copper, the fate of the particles during dermal contact, and the copper exposure level to children from hand-to-mouth transfer. For the current study, three treated lumber products, two micronized copper and one ionic copper, were purchased from commercial retailers. The boards were left to weather outdoors for approximately 1year. Over the year time period, hand wipe samples were collected periodically to determine copper transfer from the wood surfaces. The two micronized formulations and the ionic formulation released similar levels of total copper. The amount of copper released was high initially, but decreased to a constant level (~1.5mgm(-2)) after the first month of outdoor exposure. Copper particles were identified on the sampling cloths during the first two months of the experiment, after which the levels of copper were insufficient to collect interpretable data. After 1month, the particles exhibited minimal changes in shape and size. At the end of 2-months, significant deterioration of the particles was evident. Based on the wipe sample data, a playground visit may result in a potential exposure to 2.58mg of copper, which is near or exceeds the daily tolerable upper intake limits for children under the age of 8, if completely ingested through hand-to-mouth transfer. While nanoparticles were found, there is not enough information to estimate the exposure from the released particles due to a lack of published literature on copper carbonate.

  19. Odor Events in Surface and Treated Water: The Case of 1,3-Dioxane Related Compounds.

    PubMed

    Quintana, Jordi; Vegué, Lídia; Martín-Alonso, Jordi; Paraira, Miquel; Boleda, M Rosa; Ventura, Francesc

    2016-01-05

    A study has been carried out to identify the origin of the odorous compounds at trace levels detected in surface waters and in Barcelona's tap water (NE Spain) which caused consumer complaints. The malodorous compounds were 2,5,5-trimethyl-1,3-dioxane (TMD) and 2-ethyl-5,5-dimethyl-1,3-dioxane (2EDD) which impart a distinctive sickening or olive-oil odor to drinking water at low ng/L levels. Flavor profile analysis (FPA) or threshold odor number (TON) were used for organoleptic purposes. Levels up to 749 ng/L for TMD and 658 ng/L for 2EDD were measured at the entrance of the drinking water treatment plant. Three wastewater treatment plants (WWTPs) using industrial byproducts coming from resin manufacturing plants to promote codigestion were found to be the origin of the event. Corrective measures were applied, including the prohibition to use these byproducts for codigestion in the WWTPs involved. A similar event was already recorded in the same area 20 years ago.

  20. Tribocorrosion behaviour of anodic treated titanium surfaces intended for dental implants

    NASA Astrophysics Data System (ADS)

    Alves, A. C.; Oliveira, F.; Wenger, F.; Ponthiaux, P.; Celis, J.-P.; Rocha, L. A.

    2013-10-01

    Tribocorrosion plays an important role in the lifetime of metallic implants. Once implanted, biomaterials are subjected to micro-movements in aggressive biological fluids. Titanium is widely used as an implant material because it spontaneously forms a compact and protective nanometric thick oxide layer, mainly TiO2, in ambient air. That layer provides good corrosion resistance, and very low toxicity, but its low wear resistance is a concern. In this work, an anodizing treatment was performed on commercial pure titanium to form a homogeneous thick oxide surface layer in order to provide bioactivity and improve the biological, chemical and mechanical properties. Anodizing was performed in an electrolyte containing β-glycerophosphate and calcium acetate. The influence of the calcium acetate content on the tribocorrosion behaviour of the anodized material was studied. The concentration of calcium acetate in the electrolyte was found to largely affect the crystallographic structure of the resulting oxide layer. Better tribocorrosion behaviour was noticed on increasing the calcium acetate concentration.

  1. Determining the cation exchange capacity of montmorillonite by simultaneous thermal analysis method

    NASA Astrophysics Data System (ADS)

    Boeva, N. M.; Bocharnikova, Yu. I.; Belousov, P. E.; Zhigarev, V. V.

    2016-08-01

    A way of determining the cation exchange capacity of montmorillonite by simultaneous thermal analysis is developed using as an example the bentonites of the 10th Khutor deposit (Republic of Khakassia) and the Vodopadnyi area (Sakhalin Island). A correlation is established between the cation exchange capacity of smectite and its weight loss upon heating in the range of dehydration; the enthalpy of dehydration of montmorillonite; and the weight loss and the enthalpy of thermal dissociation of ethylene glycol contained in the interlayer space of the mineral's crystal structure. These data open up new possibilities for determining the cation exchange capacity of montmorillonite, the most important technological indicator of the natural clay nanomineral.

  2. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay - The effect of mononucleotide structure on phosphodiester bond formation

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; KAMALUDDIN

    1989-01-01

    The formation of oligomers from deoxynucleotides, catalyzed by Na(+)-montmorillonite, was investigated with special attention given to the effect of the monomer structure on the phosphodiester bond formation. It was found that adenine deoxynucleotides bind more strongly to montmorillonite than do the corresponding ribonucleotides and thymidine nucleotides. Tetramers of 2-prime-dpA were detected in the reaction of 2-prime-d-5-prime-AMP with a water-soluble carbodiimide EDAC in the presence of Na(+)-montmorillonite, illustrating the possible role of minerals in the formation of biopolymers on the primitive earth.

  3. Greenhouse gas emissions from surface flow and subsurface flow constructed wetlands treating dairy wastewater.

    PubMed

    VanderZaag, A C; Gordon, R J; Burton, D L; Jamieson, R C; Stratton, G W

    2010-01-01

    Agricultural wastewater treatment is important for protecting water quality in rural ecosystems, and constructed wetlands are an effective treatment option. During treatment, however, some C and N are converted to CH(4), N(2)O, respectively, which are potent greenhouse gases (GHGs). The objective of this study was to assess CH(4), N(2)O, and CO(2) emissions from surface flow (SF) and subsurface flow (SSF) constructed wetlands. Six constructed wetlands (three SF and three SSF; 6.6 m(2) each) were loaded with dairy wastewater in Truro, Nova Scotia, Canada. From August 2005 through September 2006, GHG fluxes were measured continuously using transparent steady-state chambers that encompassed the entire wetlands. Flux densities of all gases were significantly (p < 0.01) different between SF and SSF wetlands changed significantly with time. Overall, SF wetlands had significantly (p < 0.01) higher emissions of CH(4) N(2)O than SSF wetlands and therefore had 180% higher total GHG emissions. The ratio of N(2)O to CH(4) emissions (CO(2)-equivalent) was nearly 1:1 in both wetland types. Emissions of CH(4)-C as a percentage of C removal varied seasonally from 0.2 to 27% were 2 to 3x higher in SF than SSF wetlands. The ratio of N(2)O-N emitted to N removed was between 0.1 and 1.6%, and the difference between wetland types was inconsistent. Thus, N(2)O emissions had a similar contribution to N removal in both wetland types, but SSF wetlands emitted less CH(4) while removing more C from the wastewater than SF wetlands.

  4. Tracking inorganic foulants irreversibly accumulated on low-pressure membranes for treating surface water.

    PubMed

    Yamamura, Hiroshi; Kimura, Katsuki; Higuchi, Kumiko; Watanabe, Yoshimasa; Ding, Qing; Hafuka, Akira

    2015-12-15

    While low-pressure membrane filtration processes (i.e., microfiltration and ultrafiltration) can offer precise filtration than sand filtration, they pose the problem of reduced efficiency due to membrane fouling. Although many studies have examined membrane fouling by organic substances, there is still not enough data available concerning membrane fouling by inorganic substances. The present research investigated changes in the amounts of inorganic components deposited on the surface of membrane filters over time using membrane specimens sampled thirteen times at arbitrary time intervals during pilot testing in order to determine the mechanism by which irreversible fouling by inorganic substances progresses. The experiments showed that the inorganic components that primarily contribute to irreversible fouling vary as filtration continues. It was discovered that, in the initial stage of operation, the main membrane-fouling substance was iron, whereas the primary membrane-fouling substances when operation finished were manganese, calcium, and silica. The amount of iron accumulated on the membrane increased up to the thirtieth day of operation, after which it reached a steady state. After the accumulation of iron became static, subsequent accumulation of manganese was observed. The fact that the removal rates of these inorganic components also increased gradually shows that the size of the exclusion pores of the membrane filter narrows as operation continues. Studying particle size distributions of inorganic components contained in source water revealed that while many iron particles are approximately the same size as membrane pores, the fraction of manganese particles slightly smaller than the pores in diameter was large. From these results, it is surmised that iron particles approximately the same size as the pores block them soon after the start of operation, and as the membrane pores narrow with the development of fouling, they become further blocked by manganese

  5. Surface Roughness and Tool Wear on Cryogenic Treated CBN Insert on Titanium and Inconel 718 Alloy Steel

    NASA Astrophysics Data System (ADS)

    Thamizhmanii, S.; Mohideen, R.; Zaidi, A. M. A.; Hasan, S.

    2015-12-01

    Machining of materials by super hard tools like cubic boron nitride (cbn) and poly cubic boron nitride (pcbn) is to reduce tool wear to obtain dimensional accuracy, smooth surface and more number of parts per cutting edge. wear of tools is inevitable due to rubbing action between work material and tool edge. however, the tool wear can be minimized by using super hard tools by enhancing the strength of the cutting inserts. one such process is cryogenic process. this process is used in all materials and cutting inserts which requires wear resistance. the cryogenic process is executed under subzero temperature -186° celsius for longer period of time in a closed chamber which contains liquid nitrogen. in this research, cbn inserts with cryogenically treated was used to turn difficult to cut metals like titanium, inconel 718 etc. the turning parameters used is different cutting speeds, feed rates and depth of cut. in this research, titanium and inconel 718 material were used. the results obtained are surface roughness, flank wear and crater wear. the surface roughness obtained on titanium was lower at high cutting speed compared with inconel 718. the flank wear was low while turning titanium than inconel 718. crater wear is less on inconel 718 than titanium alloy. all the two materials produced saw tooth chips.

  6. Efficient degradation of phenol using iron-montmorillonite as a Fenton catalyst: Importance of visible light irradiation and intermediates.

    PubMed

    Wei, Xipeng; Wu, Honghai; He, Guangping; Guan, Yufeng

    2017-01-05

    Iron-montmorillonite (Fe-Mt) with delaminated structures was synthesized via the introduction of iron oxides into Na-montmorillonite. Fe-Mt showed significant increases in the available iron content, surface area and pore volume, along with a slight increase in the basal spacing from d001=1.26 (Na-Mt) to 1.53nm (Fe-Mt). The Fenton process was efficient for phenol removal using Fe-Mt as a catalyst under visible light irradiation, and the process had two-stage pseudo-first order kinetics. The overall reaction had a higher degradation rate even when it was only irradiated with visible light for the first 40min period. Further investigation confirmed that the irradiation increased the presence of certain intermediates. Among them, 1,4-benzoquinone, hydroquinone, and catechol all enhanced the Fenton reaction rates. Either catechol or hydroquinone was added to the Fenton system with Fe-Mt/H2O2 with or without visible light irradiation, and they both accelerated phenol degradation because catechol and hydroquinone are capable of reductively and effectively transforming Fe(III) into Fe(II). The concentrations of dissolved total Fe increased with the increase in the oxalic acid concentration, which can strongly chelate Fe(III). Hence, iron was released from Fe-Mt, and reductive transformation played an important role in promoting the Fenton reaction process for phenol removal.

  7. Molecular simulation of preferential adsorption of CO2 over CH4 in Na-montmorillonite clay material

    NASA Astrophysics Data System (ADS)

    Yang, Nannan; Liu, Shuyan; Yang, Xiaoning

    2015-11-01

    Grand canonical Monte Carlo simulations have been conducted to study the adsorption of carbon dioxide and methane, as well as their binary mixtures on Na-montmorillonite clay material. It was found that the adsorption behavior near the clay structure for the two species is distinctively different. The Na-montmorillonite clay shows obviously high adsorption capacity for CO2, as compared with CH4. The adsorption behavior and mechanism have been characterized by the interlayer interfacial structures and isosteric heats of adsorption. Meanwhile, the mixture adsorption demonstrates that CO2 molecules with enhanced adsorption strength are able to competitively replace CH4 molecules within the clay structure. The high separation selectivity of CO2 over CH4 implies the possibility of separating CO2 from natural gas mixtures using the clay minerals. The interlayer sodium cations and negatively charged clay surface can provide enhanced interaction with CO2 molecules that have high quadrupole moment, which is responsible for the higher adsorption loading of CO2.

  8. Green Synthesis of Silver Nano-particles by Macrococcus bovicus and Its Immobilization onto Montmorillonite Clay for Antimicrobial Functionality.

    PubMed

    Abdel-Aziz, Mohamed S; Abou-El-Sherbini, Khaled S; Hamzawy, Esmat M A; Amr, Mohey H A; El-Dafrawy, Shady

    2015-08-01

    Macrococcus bovicus was locally isolated from soil and used in the green synthesis of nano-scaling silver (NSAg). It was immobilized on a sodic-montmorillonite clay (MMT1) and cetyltrimethylammonium bromide-modified montmorillonite (MMT2) which was also calcined at 300 °C (MMT3). The NSAg clays were characterized by X-ray fluorescence, Fourier transform infrared spectra, X-ray diffractometry, surface area measurement, UV-Vis spectrometry, scanning electron microscope, transmission electron microscope and thermogravimetric analysis. NSAg was confirmed to be included in the interparticular cavities of the clay sheets and its mechanical stability was evidenced. The antimicrobial activity of the NSAg-modified clays was investigated against Staphylococcus aureus, Escherichia coli and Candida albicans using the cup plate and the plate count techniques. The antimicrobial activity of the NSAg clays was confirmed and attributed to the caging of NSAg in MMT cavities. MMT3 was found to inhibit the microbial growth to as high as 65 % as observed from the plate count method. Graphical Abstract Scheme of the biosynthesis of nano-scaling Ag and its immobilization and antimicrobial application.

  9. Sodium montmorillonite/amine-containing drugs complexes: new insights on intercalated drugs arrangement into layered carrier material.

    PubMed

    Bello, Murilo L; Junior, Aridio M; Vieira, Bárbara A; Dias, Luiza R S; de Sousa, Valéria P; Castro, Helena C; Rodrigues, Carlos R; Cabral, Lucio M

    2015-01-01

    Layered drug delivery carriers are current targets of nanotechnology studies since they are able to accommodate pharmacologically active substances and are effective at modulating drug release. Sodium montmorillonite (Na-MMT) is a clay that has suitable properties for developing new pharmaceutical materials due to its high degree of surface area and high capacity for cation exchange. Therefore Na-MMT is a versatile material for the preparation of new drug delivery systems, especially for slow release of protonable drugs. Herein, we describe the intercalation of several amine-containing drugs with Na-MMT so we can derive a better understanding of how these drugs molecules interact with and distribute throughout the Na-MMT interlayer space. Therefore, for this purpose nine sodium montmorillonite/amine-containing drugs complexes (Na-MMT/drug) were prepared and characterized. In addition, the physicochemical properties of the drugs molecules in combination with different experimental conditions were assessed to determine how these factors influenced experimental outcomes (e.g. increase of the interlayer spacing versus drugs arrangement and orientation). We also performed a molecular modeling study of these amine-containing drugs associated with different Na-MMT/drug complex models to analyze the orientation and arrangement of the drugs molecules in the complexes studied. Six amine-containing drugs (rivastigmine, doxazosin, 5-fluorouracil, chlorhexidine, dapsone, nystatin) were found to successfully intercalate Na-MMT. These findings provide important insights on the interlayer aspect of the molecular systems formed and may contribute to produce more efficient drug delivery nanosystems.

  10. Genotoxicity of unmodified and organo-modified montmorillonite.

    PubMed

    Sharma, Anoop Kumar; Schmidt, Bjørn; Frandsen, Henrik; Jacobsen, Nicklas Raun; Larsen, Erik Husfeldt; Binderup, Mona-Lise

    2010-07-19

    The natural clay mineral montmorillonite (Cloisite) Na+) and an organo-modified montmorillonite (Cloisite 30B) were investigated for genotoxic potential as crude suspensions and as suspensions filtrated through a 0.2-microm pore-size filter to remove particles above the nanometre range. Filtered and unfiltered water suspensions of both clays did not induce mutations in the Salmonella/microsome assay at concentrations up to 141microg/ml of the crude clay, using the tester strains TA98 and TA100. Filtered and unfiltered Cloisite) Na+ suspensions in culture medium did not induce DNA strand-breaks in Caco-2 cells after 24h of exposure, as tested in the alkaline comet assay. However, both the filtered and the unfiltered samples of Cloisite 30B induced DNA strand-breaks in a concentration-dependent manner and the two highest test concentrations produced statistically significantly different results from those seen with control samples (p<0.01 and p<0.001) and (p<0.05 and p<0.01), respectively. The unfiltered samples were tested up to concentrations of 170microg/ml and the filtered samples up to 216microg/ml before filtration. When tested in the same concentration range as used in the comet assay, none of the clays produced ROS in a cell-free test system (the DCFH-DA assay). Inductively coupled plasma mass-spectrometry (ICP-MS) was used to detect clay particles in the filtered samples using aluminium as a tracer element characteristic to clay. The results indicated that clay particles were absent in the filtered samples, which was independently confirmed by dynamic light-scattering measurements. Detection and identification of free quaternary ammonium modifier in the filtered sample was carried out by HPLC-Q-TOF/MS and revealed a total concentration of a mixture of quaternary ammonium analogues of 1.57microg/ml. These findings suggest that the genotoxicity of organo-modified montmorillonite was caused by the organo-modifier. The detected organo-modifier mixture was

  11. Eco-Friendly Magnetic Iron Oxide Pillared Montmorillonite for Advanced Catalytic Degradation of Dichlorophenol

    EPA Science Inventory

    Eco-friendly pillared montmorillonites, in which the pillars consist of iron oxide are expected to have interesting and unusual magnetic properties that are applicable for environmental decontamination. Completely “green” and effective composite was synthesized using mild reactio...

  12. Bioavailability of labile and desorption-resistant phenanthrene sorbed to montmorillonite clay containing humic fractions

    SciTech Connect

    Lahlou, M.; Ortega-Calvo, J.J.

    1999-12-01

    The biodegradation of {sup 14}C-labeled phenanthrene in the presence of particles of montmorillonite and fulvic and humic acid-montmorillonite complexes was studied in a batch system. A mathematical model that takes into account the contribution to mineralization by the slowly desorbing compound was used to calculate the initial mineralization rates. Sorption of phenanthrene to the particles was determined in sorption isotherms, and desorption was measured during successive water extractions. Mineralization rates in equilibrated suspensions were higher than predicted from aqueous equilibrium concentrations, and in some cases, montmorillonite and fulvic acid-montmorillonite complexes stimulated the phenanthrene transformation rates. In contrast with the high bioavailability exhibited by phenanthrene sorbed as a labile form, biodegradation of the desorption-resistant phenanthrene occurred slowly and followed zero-order kinetics, which indicated a limitation caused by slow desorption. The results suggest that the mechanism of sorption may cause a differential bioavailability of the sorbed compound.

  13. Theoretical Studies on the Extrinsic Defects of Montmorillonite in Soft Rock

    NASA Astrophysics Data System (ADS)

    He, Man-Chao; Fang, Zhi-Jie; Zhang, Ping

    Using the first-principles methods, we study the formation energetics and charge doping properties of the extrinsic substitutional defects in montmorillonite. Especially, we choose Be, Mg, Ca, Fe, Cr, Mn, Cu, Zn as extrinsic defects to substitute for Al atoms. By systematically calculating the impurity formation energies and transition energy levels, we find that all Group II defects introduce the relative shallow transition energy levels in montmorillonite. Among them, MgAl has the shallowest transition energy level at 0.10 eV above the valence band maximum. The transition-elemental defects FeAl, CrAl, and MnAl are found to have relatively low formation energies, suggesting their easy formation in montmorillonite under natural surrounding conditions. Our calculations show that the defects CuAl and ZnAl have high formation energies, which exclude the possibility of their formation in montmorillonite.

  14. Removal of 8-quinolinecarboxylic acid pesticide from aqueous solution by adsorption on activated montmorillonites.

    PubMed

    Mekhloufi, M; Zehhaf, A; Benyoucef, A; Quijada, C; Morallon, E

    2013-12-01

    Sodium montmorillonite (Na-M), acidic montmorillonite (H-M), and organo-acidic montmorillonite (Org-H-M) were applied to remove the herbicide 8-quinolinecarboxylic acid (8-QCA). The montmorillonites containing adsorbed 8-QCA were investigated by transmission electron microscopy, FT-IR spectroscopy, X-ray diffraction analysis, X-ray fluorescence thermogravimetric analysis, and physical adsorption of gases. Experiments showed that the amount of adsorbed 8-QCA increased at lower pH, reaching a maximum at pH 2. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The Langmuir model provided the best correlation of experimental data for adsorption equilibria. The adsorption of 8-QCA decreased in the order Org-H-M > H-M > Na-M. Isotherms were also used to obtain the thermodynamic parameters. The negative values of ΔG indicated the spontaneous nature of the adsorption process.

  15. Detect-to-treat: development of analysis of bacilli spores in nasal mucus by surfaced-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Inscore, Frank E.; Gift, Alan D.; Farquharson, Stuart

    2004-12-01

    As the war on terrorism in Afghanistan and Iraq continue, future attacks both abroad and in the U.S.A. are expected. In an effort to aid civilian and military personnel, we have been investigating the potential of using a surface-enhanced Raman spectroscopy (SERS) sampling device to detect Bacillus anthracis spores in nasal swab samples. Such a device would be extremely beneficial to medical responders and management in assessing the extent of a bioterrorist attack and making detect-to-treat decisions. The disposable sample device consists of a glass capillary filled with a silver-doped sol-gel that is capable of extracting dipicolinic acid (DPA), a chemical signature of Bacilli, and generating SERS spectra. The sampling device and preliminary measurements of DPA extracted from spores and nasal mucus will be presented.

  16. Microstructure and its effect on toughness and wear resistance of laser surface melted and post heat treated high speed steel

    NASA Astrophysics Data System (ADS)

    Åhman, Leif

    1984-10-01

    High speed steel hacksaw blade blanks were laser surface melted and rapidly solidified along one edge. The laser melting resulted in complete carbide dissolution. By subsequent machining and heat treatments saw teeth were manufactured with a refined internal structure of the edges and corners. The structure was fully martensitic with a uniform and dense dispersion of small primary carbides. Sawing tests in quenched and tempered steel showed that blade life was somewhat improved, as compared to conventionally heat treated blades. The increased wear resistance is believed to be due to improved toughness along with high hardness caused by the refined carbide structure. Sawing tests in austenitic stainless steel did not give any significant improvement in performance. The effect of the altered microstructure on performance is likely to be more or less pronounced depending on application, tool and work material.

  17. Enterococcal surface protein Esp does not facilitate intestinal colonization or translocation of Enterococcus faecalis in clindamycin-treated mice.

    PubMed

    Pultz, Nicole J; Shankar, Nathan; Baghdayan, Arto S; Donskey, Curtis J

    2005-01-15

    Enterococcal surface protein (Esp) is a cell wall-associated protein of Enterococcus faecalis that has been identified as a potential virulence factor. We used a mouse model to examine whether Esp facilitates intestinal colonization or translocation of E. faecalis to mesenteric lymph nodes. After clindamycin treatment, similar levels of high-density colonization were established after orogastric inoculation of an E. faecalis isolate containing the esp gene within a large pathogenicity island and an isogenic mutant created by allelic replacement of the esp gene with a chloramphenicol resistance cassette (P=0.7); translocation to mesenteric lymph nodes was detected in 3 of 12 (25%) mice in both groups. Isogenic mutants of FA2-2 (a plasmid-free derivative of E. faecalis strain JH2) with or without the esp gene failed to establish colonization of clindamycin-treated mice. These results suggest that Esp does not facilitate intestinal colonization or translocation of E. faecalis.

  18. Characterization of synthesized polyurethane/montmorillonite nanocomposites foams

    NASA Astrophysics Data System (ADS)

    Ansari, Farahnaz; Sachse, Sophia; Michalowski, S.; Kavosh, Masoud; Pielichowski, Krzysztof; Njuguna, James

    2014-08-01

    Nanophased hybrid composites based on polyurethane/montmorillonite (PU/MMT) have been fabricated. The nanocomposite which was formed by the addition of a polyol premix with 4,4'-diphenylmethane diisocyanate to obtain nanophased polyurethane foams which were then used for fabrication of nanocomposite panels has been shown to have raised strength, stiffness and thermal insulation properties. The nanophased polyurethane foam was characterized by means of scanning electron microscope (SEM), transmission electron microscope (TEM) measurements and X-ray diffraction (XRD). TEM and SEM analysis indicated that nanophased particles are dispersed homogeneously in the polyurethane matrix on the nanometer scale indicating that PU/MMT is an intercalated nanocomposite with a 2-3 nm nanolayer thickness.

  19. Maghemite Intercalated Montmorillonite as New Nanofillers for Photopolymers

    PubMed Central

    Tarablsi, Bassam; Delaite, Christelle; Brendle, Jocelyne; Croutxe-Barghorn, Celine

    2012-01-01

    In this work, maghemite intercalated montmorillonite (γFe2O3-MMT)/polymer nanocomposites loaded with 1 or 2 wt.% of nanofillers were obtained by photopolymerization of difunctional acrylate monomers. The γFe2O3-MMT nanofillers were prepared by a new method based on the in situ formation of maghemite in the interlayer space of Fe-MMT using a three step process. X-ray diffraction (XRD), chemical analysis, TG/DTA and transmission electron microscopy (TEM) characterization of these nanofillers indicated the efficiency of the synthesis. When following the kinetics of the photopolymerization of diacrylate-γFe2O3-MMT nanocomposites using FTIR spectroscopy no significant inhibition effect of the nanofillers was observed at a loading up to 2 wt.%. These innovative nanocomposites exhibit improved mechanical properties compared to the crude polymer. PMID:28348316

  20. Characterization of montmorillonite doped PVA/SA blends using X-ray diffraction

    SciTech Connect

    Hemalatha, K.; Somashekarappa, H.; Mahadevaiah,; Somashekar, R.

    2014-04-24

    PVA films doped with Montmorillonite was prepared by slow evaporation technique. These films have been used to record X-ray patterns at room temperature. Correlation lengths and microstructural parameters were computed using in-house program employing X-ray data. Results show that correlation lengths as well as crystallite size increases with increase in the concentration of Montmorillonite which is inconformity with the conductivity studies.

  1. Electrochemical energy storage in montmorillonite K10 clay based composite as supercapacitor using ionic liquid electrolyte.

    PubMed

    Maiti, Sandipan; Pramanik, Atin; Chattopadhyay, Shreyasi; De, Goutam; Mahanty, Sourindra

    2016-02-15

    Exploring new electrode materials is the key to realize high performance energy storage devices for effective utilization of renewable energy. Natural clays with layered structure and high surface area are prospective materials for electrical double layer capacitors (EDLC). In this work, a novel hybrid composite based on acid-leached montmorillonite (K10), multi-walled carbon nanotube (MWCNT) and manganese dioxide (MnO2) was prepared and its electrochemical properties were investigated by fabricating two-electrode asymmetric supercapacitor cells against activated carbon (AC) using 1.0M tetraethylammonium tetrafluroborate (Et4NBF4) in acetonitrile (AN) as electrolyte. The asymmetric supercapacitors, capable of operating in a wide potential window of 0.0-2.7V, showed a high energy density of 171Whkg(-1) at a power density of ∼1.98kWkg(-1). Such high EDLC performance could possibly be linked to the acid-base interaction of K10 through its surface hydroxyl groups with the tetraethylammonium cation [(C2H5)4N(+) or TEA(+)] of the ionic liquid electrolyte. Even at a very high power density of 96.4kWkg(-1), the cells could still deliver an energy density of 91.1Whkg(-1) exhibiting an outstanding rate capability. The present study demonstrates for the first time, the excellent potential of clay-based composites for high power energy storage device applications.

  2. A facile method to synthesize the photocatalytic TiO2/montmorillonite nanocomposites with enhanced photoactivity

    NASA Astrophysics Data System (ADS)

    Chen, Daimei; Zhu, Honglei; Wang, Xue

    2014-11-01

    A new method for immobilizing nano-scaled TiO2 on the surface of montmorillonite (Mt) clay has been developed. First, cationic surfactants were introduced into the Mt galleries through ion exchange and physical adsorption processes. Next a titanium precursor with negative charges was allowed to hydrolyze and condense around the nature clay to form meso-phase assemblies on the external and internal surface of the Mt. After the removal of the surfactant, a highly porous TiO2 pillared clay with mesopores was formed. The cationic surfactant has a templating role, which not only tailored the formation of TiO2 but also controlled the TiO2 content in the composite. The photocatalytic performances of these new porous materials were evaluated by using methylene blue degradation. The photocatalytic activity of these TiO2 composite is higher than that of P25 although TiO2 only accounts for about one-third of the sample's mass in the composite samples.

  3. The disinfection performance and mechanisms of Ag/lysozyme nanoparticles supported with montmorillonite clay.

    PubMed

    Jiang, Jing; Zhang, Chang; Zeng, Guang-Ming; Gong, Ji-Lai; Chang, Ying-Na; Song, Biao; Deng, Can-Hui; Liu, Hong-Yu

    2016-11-05

    The fabrication of montmorillonite (Mt) decorated with lysozyme-modified silver nanoparticles (Ag/lyz-Mt) was reported. The lysozyme (lyz) was served as both reducing and capping reagent. Coupling the bactericidal activity of the lyz with AgNPs, along with the high porous structure and large specific surface area of the Mt, prevented aggregation of AgNPs and promoted nanomaterial-bacteria interactions, resulting in a greatly enhanced bactericidal capability against both Gram positive and Gram negative bacteria. This paper systematically elucidated the bactericidal mechanisms of Ag/lyz-Mt. Direct contact between the Ag/lyz-Mt surface and the bacterial cell was essential to the disinfection. Physical disruption of bacterial membrane was considered to be one of the bactericidal mechanisms of Ag/lyz-Mt. Results revealed that Ag(+) was involved in the bactericidal activity of Ag/lyz-Mt via tests conducted using Ag(+) scavengers. A positive ROS (reactive oxygen species) scavenging test indirectly confirmed the involvement of ROS (O2(-), H2O2, and OH) in the bactericidal mechanism. Furthermore, the concentrations of individual ROS were quantified. Results showed that Ag/lyz-Mt nanomaterial could be a promising bactericide for water disinfection.

  4. Preparation and characterization of silver loaded montmorillonite modified with sulfur amino acid

    NASA Astrophysics Data System (ADS)

    Li, Tian; Lin, Oulian; Lu, Zhiyuan; He, Liuimei; Wang, Xiaosheng

    2014-06-01

    The Na+ montmorillonite (MMT) was modified with sulfur containing amino acid (L-cystine, L-cysteine or L-methionine) and characterized by energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectrum (FT-IR). The results showed the modification was smooth and the surface condition of MMT was changed with sulfur containing groups. Then silver was loaded on the modified MMTs via ion-exchange reaction under microwave irradiation, the spectra of X-ray photoelectron spectroscopy (XPS), EDS and FT-IR confirmed the successful loading of massive silver and the strong interaction between sulfur and silver, the silver loaded L-cystine modified MMT (Ag@AA-MMT-3) with a silver content of 10.93 wt% was the highest of all. Further more, the Ag@AA-MMT-3 was under the irradiation of a UV lamp to turn silver ions to silver nano particles (Ag NPs). The XPS, specific surface area (SSA), transmission electron microscopy (TEM), XRD patterns and UV-vis spectra proved the existence of uniform nano scaled metallic Ag NPs. By contrast, the UV irradiated Ag@AA-MMT-3 (Ag@AA-MMT-UV) showed a much better slow release property than Ag@AA-MMT-3 or Ag@MMT. The Ag@AA-MMT-UV showing a large inhibition zone and high inhibition ratio presented very good antibacterial property.

  5. Biodegradable nanocomposites from toughened polyhydroxybutyrate and titanate-modified montmorillonite clay.

    PubMed

    Parulekar, Yashodhan; Mohanty, Amar K; Imam, Syed H

    2007-10-01

    Montmorillonite clay treated with neopentyl (diallyl)oxy tri(dioctyl) pyrophosphato titanate was used as a reinforcement for toughened bacterial bioplastic, Polyhydroxybutyrate (PHB) in order to develop novel biodegradable nanocomposites. The modified clay, PHB, toughening partner and specific compatibilizer were processed by extrusion followed by injection molding. Different microscopy and goniometry techniques, rheology analysis, X-ray diffraction and thermo-mechanical testing were used to characterize the nanocomposites. Results showed that the nanocomposites with 5 wt% titanate-modified clay loading exhibited about 400% improvement in impact properties and 40% reduction in modulus in comparison with virgin PHB. The novel aspect of the titanate-based modification was that the nanocomposites still maintained nearly the same impact strength value as that of toughened PHB. The diffraction patterns suggest exfoliation of the organically modified clays and this was further supported by transmission electron microscopy and melt rheological analysis. The mechanical properties of the nanocomposites were correlated with a modified Halpin-Tsai theoretical model and the predictions matched significantly with the experimental results. Toughened and compatibilized PHB showed significantly lower biodegradation rate than virgin PHB and most significantly the addition of the titanate-modified clay in the same formulation enhanced the biodegradation several fold.

  6. LIMITATIONS OF EDDY CURRENT RESIDUAL STRESS PROFILING IN SURFACE-TREATED ENGINE ALLOYS OF VARIOUS HARDNESS LEVELS

    SciTech Connect

    Abu-Nabah, B. A.; Hassan, W. T.; Blodgett, M. P.; Nagy, P. B.

    2010-02-22

    Recent research results indicated that eddy current conductivity measurements might be exploited for nondestructive evaluation of subsurface residual stresses in surface-treated nickel-base superalloy components. This paper presents new results that indicate that in some popular nickel-base superalloys the relationship between the electric conductivity profile and the sought residual stress profile is more tenuous than previously thought. It is shown that in IN718 the relationship is very sensitive to the state of precipitation hardening and, if left uncorrected, could render the eddy current technique unsuitable for residual stress profiling in components of 36 HRC or harder, i.e., in most critical engine applications. The presented experimental results show that the observed dramatic change in the eddy current response of hardened IN718 to surface treatment is caused by very fine nanometer-scale features of the microstructure, such as gamma' and gamma'' precipitates, rather than micrometer-scale features, such as changing grain size or carbide precipitates.

  7. Characterization of cell surface polypeptides of unfertilized, fertilized, and protease-treated zona-free mouse eggs

    SciTech Connect

    Boldt, J.; Gunter, L.E.; Howe, A.M. )

    1989-05-01

    The polypeptide composition of unfertilized, fertilized, and protease-treated zona-free mouse eggs was evaluated in this study. Zona-free eggs were radioiodinated by an Iodogen-catalyzed reaction. Light microscopic autoradiography of egg sections revealed that labeling was restricted to the cell surface. Labeled eggs were solubilized, and cell surface polypeptides were identified by one-dimensional SDS polyacrylamide gel electrophoresis and autoradiography. The unfertilized egg demonstrated 8-10 peptides that incorporated {sup 125}I, with major bands observed at approximately 145-150, 94, and 23 kilodaltons (kD). Zona-free eggs fertilized in vitro and then radiolabeled demonstrated several new bands in comparison to unfertilized eggs, with a major band appearing at approximately 36 kD. Treatment of radiolabeled unfertilized eggs with either trypsin or chymotrypsin (1 mg/ml for 5-20 min) caused enzyme-specific modifications in labeled polypeptides. Trypsin (T) treatment resulted in time-dependant modification of the three major peptides at 145-150, 94, and 23 kD. Chymotrypsin (CT) treatment, in contrast, was associated with loss or modification of the 94 kD band, with no apparent effect on either the 145-150 or 23 kD band. Taken together with previous data indicating that T or CT egg treatment interferes with sperm-egg attachment and fusion, these results suggest a possible role for the 94 kD protein in sperm-egg interaction.

  8. Surface degradation of CeO2 stabilized acrylic polyurethane coated thermally treated jack pine during accelerated weathering

    NASA Astrophysics Data System (ADS)

    Saha, Sudeshna; Kocaefe, Duygu; Boluk, Yaman; Pichette, Andre

    2013-07-01

    The thermally treated wood is a new value-added product and is very important for the diversification of forestry products. It drew the attention of consumers due to its attractive dark brown color. However, it loses its color when exposed to outside environment. Therefore, development of a protective coating for this value added product is necessary. In the present study, the efficiency of CeO2 nano particles alone or in combination with lignin stabilizer and/or bark extracts in acrylic polyurethane polymer was investigated by performing an accelerated weathering test. The color measurement results after accelerated weathering demonstrated that the coating containing CeO2 nano particles was the most effective whereas visual assessment suggested the coating containing CeO2 nano particles and lignin stabilizer as the most effective coating. The surface polarity changed for all the coatings during weathering and increase in contact angle after weathering suggested cross linking and reorientation of the polymer chain during weathering. The surface chemistry altered during weathering was evaluated by ATR-FTIR analysis. It suggested formation of different carbonyl byproducts during weathering. The chain scission reactions of the urethane linkages were not found to be significant during weathering.

  9. Joint replacement components made of hot-forged and surface-treated Ti-6Al-7Nb alloy.

    PubMed

    Semlitsch, M F; Weber, H; Streicher, R M; Schön, R

    1992-01-01

    We have developed a titanium-aluminium alloy with the inert alloying element niobium. The optimal composition was found to be Ti-6Al-7Nb (Protasul-100). This custom-made alloy designed for implants shows the same alpha/beta structure as Ti-6Al-4V and exhibits equally good mechanical properties. The corrosion resistance of Ti-6Al-7Nb in sodium chloride solution is equivalent to that of pure titanium and Ti-6Al-4V. This is due to a very dense and stable passive layer. Highly stressed anchorage stems of different hip prosthesis designs have been made from hot-forged Ti-6Al-7Nb. The polished surfaces of hip, knee and wrist joints made of Ti-6Al-7Nb and articulating against polyethylene are surface-treated by means of a very hard and 3-5 microns thick titanium nitride coating (Tribosul-TiN) or by oxygen diffusion hardening (Tribosul-ODH) to a depth of 30 microns.

  10. Anti-graffiti nanocomposite materials for surface protection of a very porous stone

    NASA Astrophysics Data System (ADS)

    Licchelli, Maurizio; Malagodi, Marco; Weththimuni, Maduka; Zanchi, Chiara

    2014-09-01

    The preservation of stone substrates from defacement induced by graffiti represents a very challenging task, which can be faced by applying suitable protective agents on the surface. Although different anti-graffiti materials have been developed, it is often found that their effectiveness is unsatisfactory, most of all when applied on very porous stones, e.g. Lecce stone. The aim of this work was to study the anti-graffiti behaviour of new nanocomposite materials obtained by dispersing montmorillonite nanoparticles (layered aluminosilicates with a high-aspect ratio) into a fluorinated polymer matrix (a fluorinated polyurethane based on perfluoropolyether blocks). Polymeric structure was modified by inducing a cross-linking process, in order to produce a durable anti-graffiti coating with enhanced barrier properties. Several composites were prepared using a naturally occurring and an organically modified montmorillonite clay (1, 3, and 5 % w/w concentrations). Materials were applied on Lecce stone specimens, and then their treated surfaces were soiled by a black ink permanent marker or by a black acrylic spray paint. Several repeated staining/cleaning cycles were performed in order to evaluate anti-graffiti effectiveness. Colorimetric measurements were selected to assess the anti-graffiti performance. It was found that the presence of 3 % w/w organically modified montmorillonite in the polymer coating is enough to induce a durable anti-graffiti effect when the stone surface is stained by acrylic paint. Less promising results are obtained when staining by permanent marker is considered as all the investigated treatments afford a reasonable protection from ink only for the first staining/cleaning cycle.

  11. Do Contaminants Originating from State-of-the-Art Treated Wastewater Impact the Ecological Quality of Surface Waters?

    PubMed Central

    Stalter, Daniel; Magdeburg, Axel; Quednow, Kristin; Botzat, Alexandra; Oehlmann, Jörg

    2013-01-01

    Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0–100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this

  12. Investigations on the inflammatory and genotoxic lung effects of two types of titanium dioxide: untreated and surface treated.

    PubMed

    Rehn, B; Seiler, F; Rehn, S; Bruch, J; Maier, M

    2003-06-01

    TiO(2) is considered to be toxicologically inert, at least under nonoverload conditions. To study if there are differences in lung effects of surface treated or untreated TiO(2) we investigated the inflammatory and genotoxic lung effects of two types of commercially available TiO(2) at low doses relevant to the working environment. Rats were exposed by instillation to a single dose of 0.15, 0.3, 0.6, and 1.2 mg of TiO(2) P25 (untreated, hydrophilic surface) or TiO(2) T805 (silanized, hydrophobic surface) particles, suspended in 0.2 ml of physiological saline supplemented with 0.25% lecithin. As control, animals were instilled with the vehicle medium only or with a single dose of 0.6 mg quartz DQ12. At days 3, 21, and 90 after instillation bronchoalveolar lavage was performed and inflammatory signs such as cells, protein, tumor necrosis factor-alpha, fibronectin, and surfactant phospholipids were determined. Additionally, 8 microm frozen sections of the left lobe of the lung were cut and stored at -80 degrees C. The sections were used for immunohistochemical detection of 8-oxoguanine (8-oxoGua) by a polyclonal antibody in the DNA of individual lung cells. In the quartz-exposed animals a strong progression in the lung inflammatory response was observed. Ninety days after exposure a significant increase in the amount of 8-oxoGua in DNA of lung cells was detected. In contrast, animals exposed to TiO(2) P25 or TiO(2) T805 showed no signs of inflammation. The amount of 8-oxoGua as a marker of DNA damage was at the level of control. The results indicate that both types of TiO(2) are inert at applicated doses.

  13. Surface Substructure and Properties of ZrB2p/6061Al Composite Treated by Laser Surface Melting under Extreme Cooling Conditions

    NASA Astrophysics Data System (ADS)

    Zeng, Yida; Chao, Yuhjin; Luo, Zhen; Huang, Yongxian; Cai, Yangchuan; Deng, Lingzhu; Guo, Weijia; Lei, Yuchen; Lu, Tong; Wang, Zihao

    2017-01-01

    Particulate reinforcement composite ZrB2p/6061Al was fabricated from Al-K2ZrF6-KBF4 by a direct melt reaction. Laser surface melting was used to improve the surface strength of the in situ ZrB2p/6061Al composite, which includes a series of laser-melted composites with different laser power and cooling conditions processed by a 2-kW yttrium aluminum garnet laser generator. The surface substructure of these laser-treated specimens was investigated by light optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffractometry and transmission electron microscopy. The penetration depth of the molten pool increases with increases in power density, and decreases with increases in the degree of undercooling. The Vickers hardness of the laser-melted composites reached 60-75.2 HV in liquid nitrogen and 56-64.0 HV in air, and increased by 50.4 % and 28 %. Grain refinement with decreased cellular spacing is important in strength performance. Because of a thermocapillary flow vortex and α-Al phase precipitation, nano-ZrB2 particles were distributed along the cellular dendrite boundary as observed by scanning electron microscopy. This was considered to be a key factor responsible for the improved mechanical composite properties. When cooling under liquid nitrogen, the thermal mismatch stress between particles and the matrix generates a high dislocation density. The dislocation grows along the interface between the matrix and particles and provides the laser-melted composites with additional strength.

  14. Stability of Na-, K-, and Ca-montmorillonite at high temperatures and pressures: a Monte Carlo simulation.

    PubMed

    de Pablo, Liberto; Chávez, Maria L; de Pablo, Juan J

    2005-11-08

    Monte Carlo grand canonical molecular simulations on the hydration of Na-, K-, and Ca-montmorillonite show that between 333 and 533 K and 300-1300 bar Na-montmorillonite forms stable one-layer hydrates of d(001) spacings 12.64-12.38 Angstroms, K-montmorillonite of 12.78-12.59 Angstroms, and Ca-montmorillonite of 12.48-12.32 Angstroms. A two-layer hydrate of 14.80 Angstroms occurs for Na-montmorillonite at 533 K and 1300 bar, for K-montmorillonite of 15.32 Angstroms at 533 K and 1300 bar and of 14.74 Angstroms at 533 K and 2000 bar, and for Ca-montmorillonite of 13.83 Angstroms at 473 K and 1000 bar. Three-layer hydrates may possibly form within these same ranges. Outside of them, one-layer hydrates simulate as the only stable hydrates. In sedimentary basins, the two-layer hydrate of Ca-montmorillonite will locate at 6.7 km depth and those of Na- and K-montmorillonite at 8.7 km depth; above and below these depths, the one-layer hydrates are the stable phases.

  15. Optimization by Response Surface Methodology of the adsorption of Coomassie Blue dye on natural and acid-treated clays.

    PubMed

    de Sales, Priscila F; Magriotis, Zuy M; Rossi, Marco A L S; Resende, Ricardo F; Nunes, Cleiton A

    2013-11-30

    The effect of acid treatment on natural agalmatolite (AN) and natural kaolinite (KN) was investigated, together with the influence of those modifications on the removal of Coomassie Blue (CB) dye. The process was optimized using the Response Surface Methodology (RSM) developed by the application of the quadratic model associated with the Central Composite Design. Adsorption was promoted by initial CB concentration of 25 mg L(-1), pH 2 and adsorbent mass of 0.1 g. The adsorption kinetics study carried out in optimized conditions established that the equilibrium times were 1 h for AN and AA (treated agalmatolite), 4 h for KN and 2 h for KA (treated kaolinite). The kinetics data for AN, KN and KA were best fitted to the pseudo second order model, whilst for AA, the result pointed to the pseudo first order model. In the isotherm of adsorption the maximum quantities were obtained with reference to 11.29 mg g(-1), 9.84 mg g(-1), 22.89 mg g(-1) and 30.08 mg g(-1) for the samples AN, AA, KN and KA respectively. The data fitting showed that the Sips model was the most satisfactory for all the adsorbents. The calculated thermodynamic parameters showed that the process was spontaneous in all the adsorbents, endothermic for the KN and KA samples, exothermic for AN and AA, involved the disorganization of the adsorption system for the KN and KA and its organization for the AN and AA samples. The results showed that the KN and KA samples were more appropriate for use as adsorbents.

  16. Effects of exchanged cation and layer charge on the sorption of water and EGME vapors on montmorillonite clays

    USGS Publications Warehouse

    Chiou, C.T.; Rutherford, D.W.

    1997-01-01

    The effects of exchanged cation and layer charge on the sorption of water and ethylene glycol monoethyl ether (EGME) vapors on montmorillonite have been studied on SAz-1 and SWy-1 source clays, each exchanged respectively with Ca, Na, K, Cs and tetramethylammonium (TMA) cations. The corresponding lattice expansions were also determined, and the corresponding N2 adsorption data were provided for comparison. For clays exchanged with cations of low hydrating powers (such as K, Cs and TMA), water shows a notably lower uptake than does N2 at low relative pressures (P/P0). By contrast, EGME shows higher uptakes than N2 on all exchanged clays at all P/P0. The anomaly for water is attributed to its relatively low attraction for siloxane surfaces of montmorillonite because of its high cohesive energy density. In addition to solvating cations and expanding interlayers, water and EGME vapors condense into small clay pores and interlayer voids created by interlayer expansion. The initial (dry) interlayer separation varies more significantly with cation type than with layer charge; the water-saturated interlayer separation varies more with cation type than the EGME-saturated interlayer separation. Because of the differences in surface adsorption and interlayer expansion for water and EGME, no general correspondence is found between the isotherms of water and EGME on exchanged clays, nor is a simple relation observed between the overall uptake of either vapor and the cation solvating power. The excess interlayer capacities of water and of EGME that result from lattice expansion of the exchanged clays are estimated by correcting for amounts of vapor adsorption on planar clay surfaces and of vapor condensation into intrinsic clay pores. The resulting data follow more closely the relative solvating powers of the exchanged cations.

  17. An X-ray photoelectron spectroscopy study of surface changes on brominated and sulfur-treated activated carbon sorbents during mercury capture: performance of pellet versus fiber sorbents.

    PubMed

    Saha, Arindom; Abram, David N; Kuhl, Kendra P; Paradis, Jennifer; Crawford, Jenni L; Sasmaz, Erdem; Chang, Ramsay; Jaramillo, Thomas F; Wilcox, Jennifer

    2013-12-03

    This work explores surface changes and the Hg capture performance of brominated activated carbon (AC) pellets, sulfur-treated AC pellets, and sulfur-treated AC fibers upon exposure to simulated Powder River Basin-fired flue gas. Hg breakthrough curves yielded specific Hg capture amounts by means of the breakthrough shapes and times for the three samples. The brominated AC pellets showed a sharp breakthrough after 170-180 h and a capacity of 585 μg of Hg/g, the sulfur-treated AC pellets exhibited a gradual breakthrough after 80-90 h and a capacity of 661 μg of Hg/g, and the sulfur-treated AC fibers showed no breakthrough even after 1400 h, exhibiting a capacity of >9700 μg of Hg/g. X-ray photoelectron spectroscopy was used to analyze sorbent surfaces before and after testing to show important changes in quantification and oxidation states of surface Br, N, and S after exposure to the simulated flue gas. For the brominated and sulfur-treated AC pellet samples, the amount of surface-bound Br and reduced sulfur groups decreased upon Hg capture testing, while the level of weaker Hg-binding surface S(VI) and N species (perhaps as NH4(+)) increased significantly. A high initial concentration of strong Hg-binding reduced sulfur groups on the surface of the sulfur-treated AC fiber is likely responsible for this sorbent's minimal accumulation of S(VI) species during exposure to the simulated flue gas and is linked to its superior Hg capture performance compared to that of the brominated and sulfur-treated AC pellet samples.

  18. Synthesis and characterization of TiO2 pillared montmorillonites: application for methylene blue degradation.

    PubMed

    Chen, Daimei; Du, Gaoxiang; Zhu, Qian; Zhou, Fengsan

    2013-11-01

    TiO2 pillared clay composites were prepared by modifying of montmorillonite (Mt) with cetyl-trimethyammoniumbromide (CTAB) and then using an acidic solution of hydrolyzed Ti alkoxide to intercalate into the interlayer space of the organic modified Mt. The as-prepared materials were characterized by XRD, FTIR, TEM, SEM TG-DTA, specific surface area and porosity measurements. The composites had a porous delaminated structure with pillared fragments and well dispersed TiO2 nanoparticles. Introduction of CTAB into the synthetic system accelerated the hydrolysis and condensation of the Ti source, which promoted TiO2 formation. In addition, the CTAB also significantly increased the porosity and surface area of the composites. A number of anatase particles, with crystal sizes of 5-10 nm, were homogenously distributed on the surface of the Mt as the result of the templating role of CTAB. The resultant TiO2 pillared Mt exhibited good thermal stability as indicated by its surface area after calcination at 800°C. No phase transformations from anatase to rutile were observed even under calcination at 900°C. The grain size of the anatase in prepared sample increased from 2.67 nm to 13.42 nm as the calcination temperature increased from 300°C to 900°C. The photocatalytic performance of these new porous materials was evaluated by using methylene blue degradation. The composite exhibited better photocatalytic property than P 25. The maximum removal efficiency of this composite was up to 99% within 60 min.

  19. Competitive adsorption of Pb and Cd on bacteria-montmorillonite composite.

    PubMed

    Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Feng, Xionghan; Huang, Qiaoyun

    2016-11-01

    The characteristics and mechanisms of competitive adsorption of trace metals on bacteria-associated clay mineral composites have never been studied, despite their being among the most common organic-mineral complexes in geological systems. Herein, competitive adsorption of Pb and Cd on Pseudomonas putida-montmorillonite composite was investigated through adsorption-desorption experiment, isothermal titration calorimetry (ITC), and synchrotron micro X-ray fluorescence (μ-XRF). From the experiment, stronger competition was observed on clay mineral than on bacteria-clay composite because more non-specific sites accounted for heavy metal adsorption on clay mineral surface at the studied pH 5. Both competing heavy metals tended to react with bacterial fractions in the composite, which was verified by the higher correlation of Cd (and Pb) with Zn (R(2) = 0.41) elemental distribution than with Si (R(2) = 0.10). ITC results showed that competitive adsorption exhibited a lower entropy change (ΔS) at the metal-sorbent interfaces compared with single-metal adsorption, revealing that Cd and Pb are bound to the same types of adsorption sites on the sorbent. The competitive effect on bacteria-clay composite was found to be helpful for a better understanding on the fixation, remobilization and subsequent migration of heavy metals in multi-metal contaminated environments.

  20. Simultaneous adsorption of Cd²⁺ and BPA on amphoteric surfactant activated montmorillonite.

    PubMed

    Liu, Chongmin; Wu, Pingxiao; Zhu, Yajie; Tran, Lytuong

    2016-02-01

    The study mainly investigated the simultaneous adsorption of bisphenol A (BPA) and Cd(2+) from aqueous solution on octadecane-betaine modified montmorillonite (BS-Mt). The characteristics of the obtained materials were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), Specific surface area (BET) and Scanning electron microscopy/Energy disperse spectroscopy (SEM/EDS), confirming that BS-18 was successfully introduced into Mt. Also, factors including initial solution pH, initial Cd(2+)/BPA concentration, contact time and adsorbent dosage on the adsorption processes were shown to be crucial for Cd(2+) adsorption, whereas had negligible effects on BPA adsorption. In this study, we found that pseudo-second-order model fitted well with the adsorption kinetic studies for both Cd(2+) and BPA with an equilibrium time of 24 h. The Cd(2+) and BPA adsorption isotherm could be well described by Freundlich model and Langmuir model, respectively. On the basis of kinetic models, the maximum adsorption capacity of Cd(2+) in aqueous solution was slightly enhanced after modification, indicating that Cd(2+) adsorption on BS-Mt was mainly attributed to direct electrostatic attraction and the chelate reaction, while the dramatic enhancement of maximum adsorption capacity for BPA was due to the hydrophobic interaction.

  1. Seeming steady-state uphill diffusion of 22Na+ in compacted montmorillonite.

    PubMed

    Glaus, Martin A; Birgersson, Martin; Karnland, Ola; Van Loon, Luc R

    2013-10-15

    Whereas the transport of solutes in nonreactive porous media can mostly be described by diffusion driven by the concentration gradients in the external bulk water phase, the situation for dense clays and clay rocks has been less clear for a long time. The presence of fixed negative surface charges complicates the application of Fick's laws in the case of ionic species. Here we report the seeming uphill diffusion of a (22)Na(+) tracer in compacted sodium montmorillonite, that is, transport directed from a low to a high tracer concentration reservoir. In contrast to the classical through-diffusion technique the present experiments were carried out under the conditions of a gradient in the background electrolyte and using equal initial (22)Na(+) tracer concentrations on both sides of the clay sample. We conclude that the dominant driving force for diffusion is the concentration gradient of exchangeable cations in the nanopores. Commonly used diffusion models, based on concentration gradients in the external bulk water phase, may thus predict incorrect fluxes both in terms of magnitude and direction.

  2. Self-healable, tough, and ultrastretchable nanocomposite hydrogels based on reversible polyacrylamide/montmorillonite adsorption.

    PubMed

    Gao, Guorong; Du, Gaolai; Sun, Yuanna; Fu, Jun

    2015-03-04

    Nanocomposite hydrogels with unprecedented stretchability, toughness, and self-healing have been developed by in situ polymerization of acrylamide with the presence of exfoliated montmorillonite (MMT) layers as noncovalent cross-linkers. The exfoliated MMT clay nanoplatelets with high aspect ratios, as confirmed by transmission electron microscopy (TEM) and X-ray diffraction (XRD) results, are well dispersed in the polyacrylamide matrix. Strong polymer/MMT interaction was confirmed by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The effective cross-link densities of these hydrogels are estimated in the range of 2.2-5.7 mol m(-3). Uniaxial tensile tests showed a very high fracture elongation up to 11 800% and a fracture toughness up to 10.1 MJ m(-3). Cyclic loading-unloading tests showed remarkable hysteresis, which indicates energy dissipation upon deformation. Residual strain after cyclic loadings could be recovered under mild conditions, with the recovery extent depending on clay content. A mechanism based on reversible desorption/adsorption of polymer chains on clay platelets surface is discussed. Finally, these nanocomposite hydrogels are demonstrated to fully heal by dry-reswell treatments.

  3. Photocatalytic reactions of nanocomposite of ZnS nanoparticles and montmorillonite

    NASA Astrophysics Data System (ADS)

    Praus, P.; Reli, M.; Kočí, K.; Obalová, L.

    2013-06-01

    ZnS nanoparticles stabilized by cetyltrimethylammonium bromide (CTAB) were deposited on montmorillonite (MMT) forming a ZnS-CTA-MMT nanocomposite. The nanocomposite was characterized by scanning electron microscopy (SEM), Fourier transformed infrared (FTIR) and UV diffuse reflectance spectra (DRS) spectrometry, X-ray powder diffraction (XRD) and specific surface area measurements. Thereafter, it was used for photocatalytic reactions under UV irradiation (Hg lamp) in three different reaction media with different pH: NaOH solution, HCl solution and water. Prior to the photocatalytic reactions the dispersions were saturated by carbon dioxide to buffer the systems. The main reaction products in gas phase determined by gas chromatography were hydrogen and methane. The reactions were monitored by measuring oxidation-reduction potentials. The highest yields of hydrogen were obtained in the dispersion acidified by HCl but the concentrations of methane were similar in all tested media. Hydrogen was supposed to be formed by the reaction of two hydrogen radicals. Methane was formed by the reduction of carbon dioxide and by the partial decomposition of CTAB.

  4. Spectroscopic study of silver halides in montmorillonite and their antibacterial activity.

    PubMed

    Sohrabnezhad, Sh; Rassa, M; Mohammadi Dahanesari, E

    2016-10-01

    In this study silver halides (AgX, X=Cl, Br, I) in montmorillonite (MMT) were prepared by dispersion method in dark. AgNO3 was used as a silver precursor. The nanocomposites (NCs) (AgX-MMT) were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The powder X-ray diffraction showed intercalation of AgCl and AgBr nanoparticles (NPs) into the clay interlayer space. The diffuse reflectance spectra indicated a broad surface plasmon resonance (SPR) absorption band in the visible region for AgCl-MMT and AgBr-MMT NCs, resulting of metallic Ag nanoparticles (Ag NPs). But the results were opposite in case of AgI-MMT NC. The antibacterial activity of NCs was investigated against Gram-positive bacteria, i.e., Staphylococcus aureus and Micrococcus luteus and Gram-negative bacteria, i.e., Escherichia coli, Pseudomonas aeruginosa, by the well diffusion method. The antibacterial effects on Staphylococcus aureus, Micrococcus luteus and Escherichia coli decrease in the order: AgCl-MMT>AgBr-MMT>AgI-MMT. No antibacterial activity was detected for Pseudomonas aeruginosa.

  5. Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites

    NASA Astrophysics Data System (ADS)

    Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Dai, Ke; Peacock, Caroline L.; Huang, Qiaoyun

    2016-01-01

    Soil components (e.g., clays, bacteria and humic substances) are known to produce mineral-organic composites in natural systems. Herein, batch sorption isotherms, isothermal titration calorimetry (ITC), and Cd K-edge EXAFS spectroscopy were applied to investigate the binding characteristics of Cd on montmorillonite(Mont)-humic acid(HA)-bacteria composites. Additive sorption and non-additive Cd(II) sorption behaviour is observed for the binary Mont-bacteria and ternary Mont-HA-bacteria composite, respectively. Specifically, in the ternary composite, the coexistence of HA and bacteria inhibits Cd adsorption, suggesting a “blocking effect” between humic acid and bacterial cells. Large positive entropies (68.1 ~ 114.4 J/mol/K), and linear combination fitting of the EXAFS spectra for Cd adsorbed onto Mont-bacteria and Mont-HA-bacteria composites, demonstrate that Cd is mostly bound to bacterial surface functional groups by forming inner-sphere complexes. All our results together support the assertion that there is a degree of site masking in the ternary clay mineral-humic acid-bacteria composite. Because of this, in the ternary composite, Cd preferentially binds to the higher affinity components-i.e., the bacteria.

  6. Removal of herbicides from aqueous solutions by modified forms of montmorillonite.

    PubMed

    Park, Yuri; Sun, Zhiming; Ayoko, Godwin A; Frost, Ray L

    2014-02-01

    This investigation for the removal of agricultural pollutants, imazaquin and atrazine was conducted using montmorillonite (MMT) exchanged with organic cations through ion exchange. The study found that the adsorption of the herbicides was affected by the degree of organic cation saturations, the size of organic cations and the different natures of the herbicides. The modified clays intercalated with the larger surfactant molecules at the higher concentrations tended to enhance the adsorption of imazaquin and atrazine. In particular, the organoclays were highly efficient for the removal of imazaquin while the adsorption of atrazine was minimal due to the different hydrophobicities. Both imazaquin and atrazine were influenced by the changes of pH. The amphoteric imazaquin exists as an anion at the pH 5-7 and the anionic imazaquin was protonated to a neutral and further a cationic form when the pH is lower. The weak base, atrazine was also protonated at lower pH values. The anionic imazaquin had a strong affinity to the organoclays on the external surface as well as in the interlayer space of the MMT through electrostatic and hydrophobic interactions. In this study, the electrostatic interaction can be the primary mechanism involved during the adsorption process. This study also investigated a comparative adsorption for the imazaquin and atrazine and the lower adsorption of atrazine was enhanced and this phenomenon was due to the synergetic effect. This work highlights a potential mechanism for the removal of specific persistence herbicides from the environment.

  7. Sonocatalytic removal of naproxen by synthesized zinc oxide nanoparticles on montmorillonite.

    PubMed

    Karaca, Melike; Kıranşan, Murat; Karaca, Semra; Khataee, Alireza; Karimi, Atefeh

    2016-07-01

    ZnO/MMT nanocomposite as sonocatalyst was prepared by immobilizing synthesized ZnO on the montmorillonite surface. The characteristics of as-prepared nanocomposite were studied by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD) techniques. The synthesized samples were used as a catalyst for sonocatalytic degradation of naproxen. ZnO/MMT catalyst in the presence of ultrasound irradiation was more effective compared to pure ZnO nanoparticles and MMT particles in the sonocatalysis of naproxen. The effect of different operational parameters on the sonocatalytic degradation of naproxen including initial drug concentration, sonocatalyst dosage, solution pH, ultrasonic power and the presence of organic and inorganic scavengers were evaluated. It was found that the presence of the scavengers suppressed the sonocatalytic degradation efficiency. The reusability of the nanocomposite was examined in several consecutive runs, and the degradation efficiency decreased only 2% after 5 repeated runs. The main intermediates of naproxen degradation were determined by gas chromatography-mass spectrometry (GC-Mass).

  8. Studies on the defluoridation of water using conducting polymer/montmorillonite composites.

    PubMed

    Karthikeyan, M; Kumar, K K Satheesh; Elango, K P

    2012-01-01

    Conducting polymer/inorganic hybrid composites have large surface areas, which makes the adsorbent properties of the polymer composites as good the constituents. Polyaniline/montmorilonite (PANi-MMT) and polypyrrole/montmorillonite (PPy-MMT) composites were prepared, characterized (Fourier transform infrared, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction patterns) and were employed as adsorbents for the removal of fluoride ions from aqueous solution by the batch sorption method. The spectral studies of the adsorbents before and after the adsorption are recorded to get better insight into the mechanism of the adsorption process. The results indicated that the removal of fluoride ions from water by these composites occurs via the combined effect of both the constituents, that is, through a physico-chemical mechanism. The amount of fluoride ion adsorbed by PANi-MMT and PPy-MMT at 30 degrees C is observed to be 2.3 and 5.1 mg g(-1), respectively, when compared to 0.77 and 2.66 mg g(-1), respectively, for the polymers alone. The Langmuir, Freundlich and Dubinin-Radushkevich isotherms were used to describe the adsorption equilibrium.

  9. Hemicelluloses/montmorillonite hybrid films with improved mechanical and barrier properties

    NASA Astrophysics Data System (ADS)

    Chen, Ge-Gu; Qi, Xian-Ming; Li, Ming-Peng; Guan, Ying; Bian, Jing; Peng, Feng; Yao, Chun-Li; Sun, Run-Cang

    2015-11-01

    A facile and environmentally friendly method was introduced to incorporate montmorillonite (MMT) as an inorganic phase into quaternized hemicelluloses (QH) for forming hemicellulose-based films. Two fillers, polyvinyl alcohol (PVA) and chitin nanowhiskers (NCH), were added into the hemicelluloses/MMT hybrid matrices to prepare hybrid films, respectively. The hybrid films were nanocomposites with nacre-like structure and multifunctional characteristics including higher strength and good oxygen barrier properties via the electrostatic and hydrogen bonding interactions. The addition of PVA and NCH could induce changes in surface topography, and effectively enhance mechanical strength, thermal stability, transparency, and oxygen barrier properties. The tensile strengths of the composite films FPVA(0.3), FPVA(0.5), and FNCH(0.8) were 53.7, 46.3, and 50.1 MPa, respectively, which were 171%, 134%, and 153% larger than the FQH-MMT film (19.8 MPa). The tensile strength, and oxygen transmission rate of QH-MMT-PVA film were better than those of quaternized hemicelluloses/MMT films. Thus, the proper filler is very important for the strength of the hybrid film. These results provide insights into the understanding of the structural relationships of hemicellulose-based composite films in coating and packaging application for the future.

  10. Bisphenol A sorption by organo-montmorillonite: implications for the removal of organic contaminants from water.

    PubMed

    Park, Yuri; Sun, Zhiming; Ayoko, Godwin A; Frost, Ray L

    2014-07-01

    Remediation of bisphenol A (BPA) from aqueous solutions by adsorption using organoclays synthesized from montmorillonite (MMT) with different types of organic surfactant molecules was demonstrated. High adsorption capacities of the organoclays for the uptake of BPA were observed and these demonstrated their potential application as strong adsorbents for noxious organic water contaminants. The adsorption of BPA was significantly influenced by pH, with increased adsorption of BPA in acidic pH range. However, the organoclays intercalated with highly loaded surfactants and/or large surfactant molecules were less influenced by the pH of the environment and this was thought to be due to the shielding the negative charge from surfactant molecules and the development of more positive charge on the clay surface, which leads to the attraction of anionic BPA even at alkaline pH. The hydrophobic phase created by loaded surfactant molecules contributed to a partitioning phase, interacting with BPA molecules strongly through hydrophobic interaction. Pseudo-second order kinetic model and Langmuir isotherm provided the best fit for the adsorption of BPA onto the organoclays. In addition, the adsorption process was spontaneous and exothermic with lower temperature facilitating the adsorption of BPA onto the organoclays. The described process provides a potential pathway for the removal of BPA from contaminated waters.

  11. Pulsed electric linear dichroism of triphenylmethane dyes adsorbed on montmorillonite K10 in aqueous media

    SciTech Connect

    Yamaoka, Kiwamu; Sasai, Ryo

    2000-05-01

    Electric linear dichroism (ELD) spectra of two cationic triphenylmethane dyes, crystal violet (CV) and malachite green (MG), bound to sodium montmorillonite K10 (MK-10) were studied at 20 C in aqueous media at two mixing ratios, D/S, of 0.10 and 0.24 in the 700- to 400 nm wavelength region and in the applied electric field strength range between 0 and 3 kV/cm. The specific parallel and perpendicular dichroism ({Delta}A{sub {parallel}}/A and {Delta}A{sub {perpendicular}}/A) spectra of dye-adsorbed MK-10 suspension were measured at a fixed field strength with an apparatus equipped with a 512-channel photodiode array detector. By changing the field strength over a wide range, a series of the reduced dichroism values of the bound dyes were measured at a fixed wavelength. By fitting these dichroism values to theoretical orientation functions, the intrinsic reduced dichroism ({Delta}A/A){sub int} spectra at the limiting high fields (ELD spectrum) were determined for CV and MG bound to MK-10. No appreciable difference was observed at the two D/S values. The ELD spectra of these bound dyes are undulatory but never constant, throughout their absorption region; thus, the dye plane does not lie flatly either on the surface or between layers of MK-10 particle.

  12. Activity of Laccase Immobilized on TiO2-Montmorillonite Complexes

    PubMed Central

    Wang, Qingqing; Peng, Lin; Li, Guohui; Zhang, Ping; Li, Dawei; Huang, Fenglin; Wei, Qufu

    2013-01-01

    The TiO2-montmorillonite (TiO2-MMT) complex was prepared by blending TiO2 sol and MMT with certain ratio, and its properties as an enzyme immobilization support were investigated. The pristine MMT and TiO2-MMT calcined at 800 °C (TiO2-MMT800) were used for comparison to better understand the immobilization mechanism. The structures of the pristine MMT, TiO2-MMT, and TiO2-MMT800 were examined by HR-TEM, XRD and BET. SEM was employed to study different morphologies before and after laccase immobilization. Activity and kinetic parameters of the immobilized laccase were also determined. It was found that the TiO2 nanoparticles were successfully introduced into the MMT layer structure, and this intercalation enlarged the “d value” of two adjacent MMT layers and increased the surface area, while the calcination process led to a complete collapse of the MMT layers. SEM results showed that the clays were well coated with adsorbed enzymes. The study of laccase activity revealed that the optimum pH and temperature were pH = 3 and 60 °C, respectively. In addition, the storage stability for the immobilized laccase was satisfactory. The kinetic properties indicated that laccase immobilized on TiO2-MMT complexes had a good affinity to the substrate. It has been proved that TiO2-MMT complex is a good candidate for enzyme immobilization. PMID:23771020

  13. Hemicelluloses/montmorillonite hybrid films with improved mechanical and barrier properties

    PubMed Central

    Chen, Ge-Gu; Qi, Xian-Ming; Li, Ming-Peng; Guan, Ying; Bian, Jing; Peng, Feng; Yao, Chun-Li; Sun, Run-Cang

    2015-01-01

    A facile and environmentally friendly method was introduced to incorporate montmorillonite (MMT) as an inorganic phase into quaternized hemicelluloses (QH) for forming hemicellulose-based films. Two fillers, polyvinyl alcohol (PVA) and chitin nanowhiskers (NCH), were added into the hemicelluloses/MMT hybrid matrices to prepare hybrid films, respectively. The hybrid films were nanocomposites with nacre-like structure and multifunctional characteristics including higher strength and good oxygen barrier properties via the electrostatic and hydrogen bonding interactions. The addition of PVA and NCH could induce changes in surface topography, and effectively enhance mechanical strength, thermal stability, transparency, and oxygen barrier properties. The tensile strengths of the composite films FPVA(0.3), FPVA(0.5), and FNCH(0.8) were 53.7, 46.3, and 50.1 MPa, respectively, which were 171%, 134%, and 153% larger than the FQH-MMT film (19.8 MPa). The tensile strength, and oxygen transmission rate of QH-MMT-PVA film were better than those of quaternized hemicelluloses/MMT films. Thus, the proper filler is very important for the strength of the hybrid film. These results provide insights into the understanding of the structural relationships of hemicellulose-based composite films in coating and packaging application for the future. PMID:26549418

  14. Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites

    PubMed Central

    Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Dai, Ke; Peacock, Caroline L.; Huang, Qiaoyun

    2016-01-01

    Soil components (e.g., clays, bacteria and humic substances) are known to produce mineral-organic composites in natural systems. Herein, batch sorption isotherms, isothermal titration calorimetry (ITC), and Cd K-edge EXAFS spectroscopy were applied to investigate the binding characteristics of Cd on montmorillonite(Mont)-humic acid(HA)-bacteria composites. Additive sorption and non-additive Cd(II) sorption behaviour is observed for the binary Mont-bacteria and ternary Mont-HA-bacteria composite, respectively. Specifically, in the ternary composite, the coexistence of HA and bacteria inhibits Cd adsorption, suggesting a “blocking effect” between humic acid and bacterial cells. Large positive entropies (68.1 ~ 114.4 J/mol/K), and linear combination fitting of the EXAFS spectra for Cd adsorbed onto Mont-bacteria and Mont-HA-bacteria composites, demonstrate that Cd is mostly bound to bacterial surface functional groups by forming inner-sphere complexes. All our results together support the assertion that there is a degree of site masking in the ternary clay mineral-humic acid-bacteria composite. Because of this, in the ternary composite, Cd preferentially binds to the higher affinity components-i.e., the bacteria. PMID:26792640

  15. Kinetics and thermodynamics studies of copper exchange on Na-montmorillonite clay mineral.

    PubMed

    El-Batouti, Mervette; Sadek, Olfat M; Assaad, Fayez F

    2003-03-15

    The kinetics of Cu ion exchange on Na-montmorillonite clay has been investigated at 20, 30, and 40 degrees C in water, methanol, and ethanol. The reaction is endothermic in nature. Solvent effects on the reaction rate have been discussed. The thermodynamic activation parameters were calculated and discussed in terms of solvation effects. A multiple reaction rate order equation was used to describe the adsorption process. Lower rates and higher activation energies (Ea) were observed in aqueous solution than in either of the alcohols. The Ea values ranged from 20.88 kJmol(-1) in water to 9.20 kJmol(-1) in ethanol, while at 20 degrees C the rate constant (k) varied from 0.111 ppm(-1)s(-1) in water to 0.205 ppm(-1)s(-1) in ethanol. The main factor influencing the rate of the adsorption process is the mobility of the adsorbed Cu cations, which is apparently larger in alcohols than in water, due to the difference in the molar activation energy of the solvent. The determined isokinetic temperature indicates that the reaction is enthalpy-controlled, where the interaction between solvent and clay surface plays an important role. A reaction mechanism that describes the solvent effect on the rate of Cu ion exchange is proposed.

  16. Comparison Study on the Effect of Interlayer Hydration and Solvation on Montmorillonite Delamination

    NASA Astrophysics Data System (ADS)

    Li, Hongliang; Song, Shaoxian; Zhao, Yunliang; Nahmad, Yuri; Chen, Tianxing

    2017-02-01

    The effect of water and isopropanol intercalation on montmorillonite (MMT) delamination was investigated in order to compare the roles of hydration and solvation in the delamination. Transmittance results showed that water has a significant effect on the delamination of MMT compared with isopropanol. This observation was attributed to the difference of the intercalation of water and isopropanol. Thermogravimetric (TG) results illustrate that the intercalation mass of water was greater than that of isopropanol when the pressure remained constant. Weighing test results show that the intercalation mass of water was smaller than that of isopropanol when the volume of MMT remained constant. Molecule dynamic simulation results show that the water and isopropanol molecules were interacting with Na+ and siloxane surface of MMT, respectively. It was demonstrated that the hydration of the MMT interlayer followed two steps: in step 1, the Na+ in the interlayer was hydrated, thereby expanding the interlayer spacing; in step 2, additional water molecules were absorbed into the expanded interlayer space. It was found that step 2 could not be actuated until the completion of step 1. For the solvation of the MMT interlayer with isopropanol, however, only one step was required, in which isopropanol was absorbed onto the siloxane sites of the interlayer while maintaining the interlayer spacing.

  17. Competitive sorption and selective sequence of Cu(II) and Ni(II) on montmorillonite: Batch, modeling, EPR and XAS studies

    NASA Astrophysics Data System (ADS)

    Yang, Shitong; Ren, Xuemei; Zhao, Guixia; Shi, Weiqun; Montavon, Gilles; Grambow, Bernd; Wang, Xiangke

    2015-10-01

    Heavy metal ions that leach from various industrial and agricultural processes are simultaneously present in the contaminated soil and water systems. The competitive sorption of these toxic metal ions on the natural soil components and sediments significantly influences their migration, bioavailability and ecotoxicity in the geochemical environment. In this study, the competitive sorption and selectivity order of Cu(II) and Ni(II) on montmorillonite are investigated by combining the batch experiments, X-ray diffraction (XRD), electron paramagnetic resonance (EPR), surface complexation modeling and X-ray Absorption Spectroscopy (XAS). The batch experimental data show that the coexisting Ni(II) exhibits a negligible influence on the sorption behavior of Cu(II), whereas the coexisting Cu(II) reduces the Ni(II) sorption percentage and changes the shape of the Ni(II) sorption isotherm. The sorption species of Cu(II) and Ni(II) on montmorillonite over the acidic and near-neutral pH range are well simulated by the surface complexation modeling. However, this model cannot identify the occurrence of surface nucleation and the co-precipitation processes at a highly alkaline pH. Based on the results of the EPR and XAS analyses, the microstructures of Cu(II) on montmorillonite are identified as the hydrated free Cu(II) ions at pH 5.0, inner-sphere surface complexes at pH 6.0 and the surface dimers/Cu(OH)2(s) precipitate at pH 8.0 in the single-solute and the binary-solute systems. For the Ni(II) sorption in the single-solute system, the formed microstructure varies from the hydrated free Ni(II) ions at the pH values of 5.0 and 6.0 to the inner-sphere surface complexes at pH 8.0. For the Ni(II) sorption in the binary-solute system, the coexisting Cu(II) induces the formation of the inner-sphere complexes at pH 6.0. In contrast, Ni(II) is adsorbed on montmorillonite via the formation of Ni phyllosilicate co-precipitate/α-Ni(OH)2(s) precipitate at pH 8.0. The selective sequence

  18. Experimental sorption of Ni 2+, Cs + and Ln 3+ onto a montmorillonite up to 150°C

    NASA Astrophysics Data System (ADS)

    Tertre, Emmanuel; Berger, Gilles; Castet, Sylvie; Loubet, Michel; Giffaut, Eric

    2005-11-01

    ionic strength), the temperature effect is negligible. In the case of surface complexation (high pH and high ionic strength), the observed increase of Kd with temperature reflects either an increase of the sorption equilibrium constant with temperature or an endothermic property for reactions describing the montmorillonite surface chemistry.

  19. Attenuated total reflectance Fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces

    NASA Astrophysics Data System (ADS)

    Kubicki, J. D.; Schroeter, L. M.; Itoh, M. J.; Nguyen, B. N.; Apitz, S. E.

    1999-09-01

    A suite of naturally-occurring carboxylic acids (acetic, oxalic, citric, benzoic, salicylic and phthalic) and their corresponding sodium salts were adsorbed onto a set of common mineral substrates (quartz, albite, illite, kaolinite and montmorillonite) in batch slurry experiments. Solution pH's of approximately 3 and 6 were used to examine the effects of pH on sorption mechanisms. Attenuated total reflectance Fourier-transform infrared (ATR FTIR) spectroscopy was employed to obtain vibrational frequencies of the organic ligands on the mineral surfaces and in solution. UV/visible spectroscopy on supernatant solutions was also employed to confirm that adsorption from solution had taken place for benzoic, salicylic and phthalic acids. Molecular orbital calculations were used to model possible surface complexes and interpret the experimental spectra. In general, the tectosilicates, quartz and albite feldspar, did not chemisorb (i.e., strong, inner-sphere adsorption) the carboxylate anions in sufficient amounts to produce infrared spectra of the organics after rinsing in distilled water. The clays (illite, kaolinite and montmorillonite) each exhibited similar ATR FTIR spectra. However, the illite sample used in this study reacted to form strong surface and aqueous complexes with salicylic acid before being treated to remove free Fe-hydroxides. Chemisorption of carboxylic acids onto clays is shown to be limited without the presence of Fe-hydroxides within the clay matrix.

  20. Effects of Graded Levels of Montmorillonite on Performance, Hematological Parameters and Bone Mineralization in Weaned Pigs

    PubMed Central

    Duan, Q. W.; Li, J. T.; Gong, L. M.; Wu, H.; Zhang, L. Y.

    2013-01-01

    The aim of this study was to investigate the effects of graded levels of montmorillonite, a constituent of clay, on performance, hematological parameters and bone mineralization in weaned pigs. One hundred and twenty, 35-d-old crossbred pigs (Duroc×Large White×Landrace, 10.50±1.20 kg) were used in a 28-d experiment and fed either an unsupplemented corn-soybean meal basal diet or similar diets supplemented with 0.5, 1.0, 2.5 or 5.0% montmorillonite added at the expense of wheat bran. Each treatment was replicated six times with four pigs (two barrows and two gilts) per replicate. Feed intake declined (linear and quadratic effect, p< 0.01) with increasing level of montmorillonite while feed conversion was improved (linear and quadratic effect, p<0.01). Daily gain was unaffected by dietary treatment. Plasma myeloperoxidase declined linearly (p = 0.03) with increasing dietary level of montmorillonite. Plasma malondialdehyde and nitric oxide levels were quadratically affected (p<0.01) by montmorillonite with increases observed for pigs fed the 0.5 and 1.0% levels which then declined for pigs fed the 2.5 and 5.0% treatments. In bone, the content of potassium, sodium, copper, iron, manganese and magnesium were decreased (linear and quadratic effect, p<0.01) in response to an increase of dietary montmorillonite. These results suggest that dietary inclusion of montmorillonite at levels as high as 5.0% does not result in overt toxicity but could induce potential oxidative damage and reduce bone mineralization in pigs. PMID:25049749

  1. Response Surface Optimization of Process Parameters and Fuzzy Analysis of Sensory Data of High Pressure-Temperature Treated Pineapple Puree.

    PubMed

    Chakraborty, Snehasis; Rao, Pavuluri Srinivasa; Mishra, Hari Niwas

    2015-08-01

    The high-pressure processing conditions were optimized for pineapple puree within the domain of 400-600 MPa, 40-60 °C, and 10-20 min using the response surface methodology (RSM). The target was to maximize the inactivation of polyphenoloxidase (PPO) along with a minimal loss in beneficial bromelain (BRM) activity, ascorbic acid (AA) content, antioxidant capacity, and color in the sample. The optimum condition was 600 MPa, 50 °C, and 13 min, having the highest desirability of 0.604, which resulted in 44% PPO and 47% BRM activities. However, 93% antioxidant activity and 85% AA were retained in optimized sample with a total color change (∆E*) value less than 2.5. A 10-fold reduction in PPO activity was obtained at 600 MPa/70 °C/20 min; however, the thermal degradation of nutrients was severe at this condition. Fuzzy mathematical approach confirmed that sensory acceptance of the optimized sample was close to the fresh sample; whereas, the thermally pasteurized sample (treated at 0.1 MPa, 95 °C for 12 min) had the least sensory score as compared to others.

  2. SURFACE ARTHROPLASTY FOR TREATING PRIMARY AND/OR SECONDARY SHOULDER OSTEOARTHROSIS BY MEANS OF THE HEMICAP-ARTHROSURFACE® SYSTEM

    PubMed Central

    Visco, Adalberto; Vieira, Luis Alfredo Gómez; Gonçalves, Felipe Borges; Fernandes, Luis Filipe Daneu; dos Santos, Murilo Cunha Rafael; Filho, Nivaldo Souza Cardozo; Cordero, Nicolas Gerardo Gómez

    2015-01-01

    Objective: To present the surgical technique for the He-miCAP-Arthrosurface® system and evaluate our results from this technique for treating primary and/or secondary shoulder osteoarthrosis. Method: Between June 2007 and June 2009, 10 shoulders of 10 patients (nine with primary osteoarthrosis and one with avascular necrosis of the humeral head) underwent surface arthroplasty using the HemiCAP-Arthrosurface® system to correct the problem. The follow-up time ranged from six to 29 months (mean of 17 months). The patients’ ages ranged from 62 to 73 years (mean of 67.5 years). Six patients were female and four patients were male. The patients were followed up weekly for the first month after the surgical procedure and every three months thereafter. The clinic evaluation was done using the criteria of the University of California at Los Angeles (UCLA) and a visual analogue pain scale. Results: All the patients said that they were satisfied with the results from the surgical treatment, with a mean UCLA score of 30 points and a mean analogue pain score of two points. Conclusion: The HemiCAP-Arthrosurface® system for shoulder surgery for a specific group of patients is a technique that preserves the bone stock with good functional and antalgic results. PMID:27047820

  3. In situ surface-enhanced Raman scattering spectroscopy exploring molecular changes of drug-treated cancer cell nucleus.

    PubMed

    Liang, Lijia; Huang, Dianshuai; Wang, Hailong; Li, Haibo; Xu, Shuping; Chang, Yixin; Li, Hui; Yang, Ying-Wei; Liang, Chongyang; Xu, Weiqing

    2015-02-17

    Investigating the molecular changes of cancer cell nucleus with drugs treatment is crucial for the design of new anticancer drugs, the development of novel diagnostic strategies, and the advancement of cancer therapy efficiency. In order to better understand the action effects of drugs, accurate location and in situ acquisition of the molecular information of the cell nuclei are necessary. In this work, we report a microspectroscopic technique called dark-field and fluorescence coimaging assisted surface-enhanced Raman scattering (SERS) spectroscopy, combined with nuclear targeting nanoprobes, to in situ study Soma Gastric Cancer (SGC-7901) cell nuclei treated with two model drugs, e.g., DNA binder (Hoechst33342) and anticancer drug (doxorubicin, Dox) via spectral analysis at the molecular level. Nuclear targeting nanoprobes with an assembly structure of thiol-modified polyethylene glycol polymers (PEG) and nuclear localizing signal peptides (NLS) around gold nanorods (AuNRs) were prepared to achieve the amplified SERS signals of biomolecules in the cell nuclei. With the assistance of dark field/fluorescence imaging with simultaneous location, in situ SERS spectra in one cell nucleus were measured and analyzed to disclose the effects of Hoechst33342 and Dox on main biomolecules in the cell nuclei. The experimental results show that this method possesses great potential to investigate the targets of new anticancer drugs and the real-time monitoring of the dynamic changes of cells caused by exogenous molecules.

  4. Montmorillonite-based porous clay heterostructures (PCHs) intercalated with silica-titania pillars—synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Chmielarz, Lucjan; Gil, Barbara; Kuśtrowski, Piotr; Piwowarska, Zofia; Dudek, Barbara; Michalik, Marek

    2009-05-01

    Porous clay heterostructures (PCHs) were synthesized using natural montmorillonite as a raw material. Apart from pure silica pillars also silica-titania pillars were intercalated into the interlayer space of the parent clay. The detailed studies of the calcination process of the as-prepared PCH samples as well as thermal stability of the pillared structure of these materials were performed. The pillared structure of PCHs intercalated with both silica and silica-titania clusters was found to be thermally stable up to temperatures exceeding 600 °C. It was found that titanium incorporated into the silica pillars was present mainly in the form of separated tetracoordinated cations. For the samples with the higher Ti loading also small contribution of titanium in the form of the polymeric oxide species was detected. Titanium incorporated into the PCH materials significantly increased their surface acidity forming mainly Brønsted acid sites.

  5. Effect of sonication on the particle size of montmorillonite clays.

    PubMed

    Poli, Alessandra L; Batista, Tatiana; Schmitt, Carla C; Gessner, Fergus; Neumann, Miguel G

    2008-09-15

    This paper reports on the effect of sonication on SAz-1 and SWy-1 montmorillonite suspensions. Changes in the size of the particles of these materials and modifications of their properties have been investigated. The variation of the particle size has been analyzed by DLS (dynamic light scattering). In all cases the clay particles show a bimodal distribution. Sonication resulted in a decrease of the larger modal diameter, as well as a reduction of its volume percentage. Simultaneously, the proportion of the smallest particles increases. After 60 min of sonication, SAz-1 presented a very broad particle size distribution with a modal diameter of 283 nm. On the other hand, the SWy-1 sonicated for 60 min presents a bimodal distribution of particles at 140 and 454 nm. Changes in the properties of the clay suspensions due to sonication were evaluated spectroscopically from dye-clay interactions, using Methylene Blue. The acidic sites present in the interlamellar region, which are responsible for dye protonation, disappeared after sonication of the clay. The changes in the size of the scattering particles and the lack of acidic sites after sonication suggest that sonication induces delamination of the clay particles.

  6. Insights into asphaltene aggregation in the Na-montmorillonite interlayer.

    PubMed

    Zhu, Xinzhe; Chen, Daoyi; Wu, Guozhong

    2016-10-01

    This study aimed to provide insights into the diffusion and aggregation of asphaltenes in the Na-montmorillonite (MMT) interlayer with different water saturation, salinity, interlayer space and humic substances. The molecular configuration, density profile, diffusion coefficient and aggregation intensity were determined by molecular dynamic simulation, while the 3D topography and particle size of the aggregates were characterized by atomic force microscopy. Results indicated that the diffusivity of asphaltenes was up to 5-fold higher in the MMT interlayer filled with fresh water than with saline water (salinity: 35‰). However, salinity had little impact on the asphaltene aggregation. This study also showed a marked decrease in the mobility of asphaltenes with decrease in the pore water content and the interlayer space of MMT. This was more pronounced in the organo-MMT where the humic substances were present. The co-aggregation process resulted in the sequestration of asphaltenes in the hollow cone-shaped cavity of humic substances in the MMT interlayer, which decreased the asphaltene diffusion by up to one-order of magnitude and increased the asphaltene aggregation by about 33%. These findings have important ramifications for evaluating the fate and transport of heavy fractions of the residual oil in the contaminated soils.

  7. Mechanism of amitriptyline adsorption on Ca-montmorillonite (SAz-2).

    PubMed

    Chang, Po-Hsiang; Jiang, Wei-Teh; Li, Zhaohui; Kuo, Chung-Yih; Jean, Jiin-Shuh; Chen, Wan-Ru; Lv, Guocheng

    2014-07-30

    The uptake of amitriptyline (AMI) from aqueous environment by Ca-montmorillonite (SAz-2) was studied in a batch system under different physicochemical conditions. The adsorbent was characterized by X-ray diffraction and Fourier transform infrared (FTIR) analyses. The AMI adsorption on SAz-2 obeyed the Langmuir isotherm with a capacity of 330mg/g (1.05mmol/g) at pH 6-7. The adsorption kinetics was fast, almost reaching equilibrium in 2h, and followed a pseudo-second-order kinetic model. Desorption of exchangeable cations correlated with the AMI adsorption well, indicating that cation exchange was the major mechanism. X-ray diffraction patterns showing significant expansions of the d001 spacing and characteristic FTIR band shifts toward higher frequencies after AMI adsorption onto SAz-2 indicated that the adsorbed AMI molecules were intercalated into the interlayers of the mineral. Thermodynamic parameters based on partitioning coefficients suggested that the AMI adsorption was an endothermic physisorption at high adsorption levels. At low and higher AMI adsorption levels, the intercalated AMI molecules take a horizontal monolayer and bilayer conformation, respectively. The higher adsorption capacity suggested that SAz-2 could be a good candidate to remove AMI from wastewater and would be an important environmental sink for the fate and transport of AMI in soils and groundwater.

  8. Transport mechanisms of small molecules through polyamide 12/montmorillonite nanocomposites.

    PubMed

    Alexandre, B; Colasse, L; Langevin, D; Médéric, P; Aubry, T; Chappey, C; Marais, S

    2010-07-15

    The aim of this work is to study the transport of small molecules through the hybrid systems polyamide 12 (PA12)/organo-modified montmorillonite (Cloisite 30B, C30B) prepared by melt blending, using two blending conditions. The transport mechanisms were investigated by using three probe molecules: nitrogen, water, and toluene. While a barrier effect appears clearly with nitrogen, this effect changes with the amount of fillers for water and disappears for toluene. The reduction of permeability for nitrogen is mainly due to the increase of tortuosity. For water and toluene, the permeation kinetics reveals many concomitant phenomena responsible for the permeation behavior. Despite the tortuosity effect, the toluene permeability of nanocomposites increases with C30B fraction. The water and toluene molecules interact differently with fillers according to their hydrophilic/hydrophobic character. Moreover, the plasticization effect of water and toluene in the matrix, involving a concentration-dependent diffusion coefficient, is correctly described by the law D = D(0)e(gammaC). On the basis of Nielsen's tortuosity concept, we suggest a new approach for relative permeability modeling, not only based on the geometrical parameters (aspect ratio, orientation, recovery) but also including phenomenological parameters deduced from structural characterization and permeation kinetics.

  9. Dielectrophoretic alignment of montmorillonite nanoplatelet suspensions in an organic matrix

    NASA Astrophysics Data System (ADS)

    Manias, Evangelos; Polizos, Georgios; Koerner, Hilmar; Vaia, Richard

    2006-03-01

    High orientational alignment of pseudo-two-dimensional inorganic platelets in an organic matrix is achieved by external AC electric fields (˜0.5V/μm, rms). Namely, montmorillonite alumino-silicate platelets are organically modified by alkyl-ammonium surfactants and dispersed in an uncrosslinked epoxy. Orientation is quantified through wide angle 2D X-Ray diffraction under an AC electric field (˜0.05-4V/μm), following the reorientation of inorganic stacks (tactoids), resulting in Hermans orientation factors of 0.7--0.9 even at moderate field strengths. The degree of orientation dependence on the electric field frequency and strength is presented. The electrophoretic motion of the cationic surfactants as a possible mechanism to produce alignment is delineated via broadband (10-2-10^7 Hz) dielectric relaxation spectroscopy, and dipole moment theoretical analyses. The cationic electrophoretic motion does not have any major contribution for the platelet alignment, suggesting that the primary cause is due to induced dipoles (image charges) on the dielectric inorganic platelets.

  10. The effect of dispersion technique of montmorillonite on polyisocyanurate nanocomposites

    NASA Astrophysics Data System (ADS)

    Cabulis, U.; Fridrihsone, A.; Andersons, J.; Vlcek, T.

    2014-05-01

    The biomass represents an abundant, renewable, competitive and low cost resource that can play an alternative role to petrochemical resources. The central topic of the research activity reported is the use of rape seed oil (RO) as a raw material for the production of rigid polyisocyanurate foams (PIR). The content of the renewable resource-derived polymers achieved in ready foams is up to 20%. By using biopolymers as a matrix, a prospective way is to reinforce them with nanoparticles, organically modified clays, for improvement of mechanical properties while, at the same time, replacing petrochemical raw materials. Organoclay Cloisite® 15A was tested as a filler of PIR foams. Three different techniques - ultrasonification, mixing by three-roll mills, and high-pressure homogenization were used for dispergation of nanoclays in polyols. Composite polyisocyanurate foams and solid polymer samples were produced and tested for stiffness and strength. This paper discusses the studies into the use of RO as a renewable source in rigid PIR foams filled with organomodified montmorillonite clay with loadings from 1 to 5% by weight.

  11. Synthesis of silver nanoparticles in montmorillonite and their antibacterial behavior

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Rustaiyan, Abdolhossein; Ibrahim, Nor Azowa

    2011-01-01

    Silver nanoparticles (Ag NPs) were synthesized by the chemical reducing method in the external and interlamellar space of montmorillonite (MMT) as a solid support at room temperature. AgNO3 and NaBH4 were used as a silver precursor and reducing agent, respectively. The most favorable experimental conditions for synthesizing Ag NPs in the MMT are described in terms of the initial concentration of AgNO3. The interlamellar space limits changed little (d-spacing = 1.24–1.47 nm); therefore, Ag NPs formed on the MMT suspension with d-average = 4.19–8.53 nm diameter. The Ag/MMT nanocomposites (NCs), formed from AgNO3/MMT suspension, were characterizations with different instruments, for example UV-visible, PXRD, TEM, SEM, EDXRF, FT-IR, and ICP-OES analyzer. The antibacterial activity of different sizes of Ag NPs in MMT were investigated against Gram-positive, ie, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) and Gram-negative bacteria, ie, Escherichia coli, Escherichia coli O157:H7, and Klebsiella pneumoniae, by the disk diffusion method using Mueller-Hinton agar (MHA). The smaller Ag NPs were found to have significantly higher antibacterial activity. These results showed that Ag NPs can be used as effective growth inhibitors in different biological systems, making them applicable to medical applications. PMID:21674015

  12. New polyelectrolyte complex from pectin/chitosan and montmorillonite clay.

    PubMed

    da Costa, Marcia Parente Melo; de Mello Ferreira, Ivana Lourenço; de Macedo Cruz, Mauricio Tavares

    2016-08-01

    A new nanocomposite hydrogel was prepared by forming a crosslinked hybrid polymer network based on chitosan and pectin in the presence of montmorillonite clay. The influence of clay concentration (0.5 and 2% wt) as well as polymer ratios (1:1, 1:2 and 2:1) was investigated carefully. The samples were characterized by different techniques: transmission and scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, swelling degree and compression test. Most samples presented swelling degree above 1000%, which permits characterizing them as superabsorbent material. Images obtained by transmission electron microscopy showed the presence of clay nanoparticles into hydrogel. The hydrogels' morphological properties were evaluated by scanning electron microscope in high and low-vacuum. The micrographs showed that the samples presented porous. The incorporation of clay produced hydrogels with differentiated morphology. Thermogravimetric analysis results revealed that the incorporation of clay in the samples provided greater thermal stability to the hydrogels. The compression resistance also increased with addition of clay.

  13. Influence of calcium and silica on hydraulic properties of sodium montmorillonite assemblages under alkaline conditions.

    PubMed

    Kinsela, Andrew S; Tjitradjaja, Alice; Collins, Richard N; Waite, T David; Payne, Timothy E; Macdonald, Bennett C T; White, Ian

    2010-03-01

    A sodium-washed montmorillonite was exposed to calcium and silica under alkaline conditions in order to gain insight into possible interactions of engineered clay barriers and cementitious leachates found in many waste storage facilities. The changes in physico-chemical properties of the material were investigated using a combination of dead-end filtration, electrophoresis and scanning electron microscopy. The results show minimal differentiation between unaltered Na-montmorillonite samples at the two pH values tested (9 and 12), with the structure of the resulting assemblages arising from repulsive tactoid interactions. The addition of calcium (50 mM) greatly decreases the size of the structural network, and in doing so, increases the hydraulic conductivity approximately 65-fold, with the effect being greatest at pH 12. Whilst the addition of silica alone (10 mM) produced little change in the hydraulic properties of montmorillonite, its combined effect with calcium produced alterations to the structural assemblages that could not be accounted for by the presence of calcium alone. The likely binding of calcium with multiple silanol groups appears to enhance the retention of water within the Na-montmorillonite assemblage, whilst still allowing the fluent passage of water. The results confirm that polyvalent cations such as Ca(2+) may have a dramatic effect on the structural and hydraulic properties of montmorillonite assemblages while the effects of solutions containing both silicate and calcium are complex and influenced by silica-cation interactions.

  14. Characterisation, in vitro release study, and antibacterial activity of montmorillonite-gentamicin complex material.

    PubMed

    Rapacz-Kmita, A; Bućko, M M; Stodolak-Zych, E; Mikołajczyk, M; Dudek, P; Trybus, M

    2017-01-01

    The present paper concerns the potential use of montmorillonite as a drug carrier and focusses on the intercalation of the studied clay with gentamicin (an aminoglycoside antibiotic) at various temperatures (20, 50 and 80°C). The experiments were performed to identify the temperature required for the optimum intercalation of gentamicin into the interlayer of montmorillonite. The structural and microstructural properties of gentamicin and the potential for introducing it between smectite clay layers were investigated by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopic techniques, and SEM with EDS analysis. Additionally, the in vitro drug release behaviour of the montmorillonite-gentamicin complex and its antibacterial activity against Escherichia coli (E. coli) bacteria was investigated. Based on these studies, the impact of temperature on the intercalation of the drug between layers of smectite was evaluated. It was found that an intercalation temperature of 50°C resulted in the highest shift in the position of principle peak d(001) as measured by XRD, suggesting, that the greatest amount of gentamicin had been introduced into the interlayer space of montmorillonite at this temperature. Subsequently, the montmorillonite-gentamicin complex material obtained at 50°C revealed the greatest capacity for killing E. coli bacteria during an in vitro test.

  15. Photoinduced catalytic adsorption of model contaminants on Bi/Cu pillared montmorillonite in the visible light range

    EPA Science Inventory

    Montmorillonite K10 clay was pillared with BiCl3 and Cu(NO3)2 to extend its applicability as catalytic adsorbent to degrade aqueous solution of anionic azo-dye Methyl Orange (MO) in the presence of visible light irradiation. The preparation of Bi/Cu-montmorillonite utilized benig...

  16. Evaluation of Subsurface Flow and Free-water Surface Wetlands Treating NPR-3 Produced Water - Year No. 1

    SciTech Connect

    Myers, J. E.; Jackson, L. M.

    2001-10-13

    This paper is a summary of some of the activities conducted during the first year of a three-year cooperative research and development agreement (CRADA) between the Department of Energy (DOE) Rocky Mountain Oilfield Testing Center (RMOTC) and Texaco relating to the treatment of produced water by constructed wetlands. The first year of the CRADA is for design, construction and acclimation of the wetland pilot units. The second and third years of the CRADA are for tracking performance of pilot wetlands as the plant and microbial communities mature. A treatment wetland is a proven technology for the secondary and tertiary treatment of produced water, storm water and other wastewaters. Treatment wetlands are typically classified as either free-water surface (FWS) or subsurface flow (SSF). Both FWS and SSF wetlands work well when properly designed and operated. This paper presents a collection of kinetic data gathered from pilot units fed a slipstream of Wyoming (NPR-3) produced water. The pilot units are set up outdoors to test climatic influences on treatment. Monitoring parameters include evapotranspiration, plant growth, temperature, and NPDES discharge limits. The pilot wetlands (FWS and SSF) consist of a series of 100-gal plastic tubs filled with local soils, gravel, sharp sand and native wetland plants (cattail (Typha spp.), bulrush (Scirpus spp.), dwarf spikerush (Eleocharis)). Feed pumps control hydraulic retention time (HRT) and simple water control structures control the depth of water. The treated water is returned to the existing produced water treatment system. All NPDES discharge limits are met. Observations are included on training RMOTC summer students to do environmental work.

  17. CO2 hydrate nucleation kinetics enhanced by an organo-mineral complex formed at the montmorillonite-water interface.

    PubMed

    Kyung, Daeseung; Lim, Hyung-Kyu; Kim, Hyungjun; Lee, Woojin

    2015-01-20

    In this study, we investigated experimentally and computationally the effect of organo-mineral complexes on the nucleation kinetics of CO2 hydrate. These complexes formed via adsorption of zwitter-ionic glycine (Gly-zw) onto the surface of sodium montmorillonite (Na-MMT). The electrostatic attraction between the −NH3(+) group of Gly-zw, and the negatively charged Na-MMT surface, provides the thermodynamic driving force for the organo-mineral complexation. We suggest that the complexation of Gly-zw on the Na-MMT surface accelerates CO2 hydrate nucleation kinetics by increasing the mineral–water interfacial area (thus increasing the number of effective hydrate-nucleation sites), and also by suppressing the thermal fluctuation of solvated Na(+) (a well-known hydrate formation inhibitor) in the vicinity of the mineral surface by coordinating with the −COO(–) groups of Gly-zw. We further confirmed that the local density of hydrate-forming molecules (i.e., reactants of CO2 and water) at the mineral surface (regardless of the presence of Gly-zw) becomes greater than that of bulk phase. This is expected to promote the hydrate nucleation kinetics at the surface. Our study sheds new light on CO2 hydrate nucleation kinetics in heterogeneous marine environments, and could provide knowledge fundamental to successful CO2 sequestration under seabed sediments.

  18. The effects of steam on the surface properties of palygorskite: Implications for palygorskite-water interactions

    NASA Astrophysics Data System (ADS)

    Kadakia, Abhy

    Early studies on the effects of steam on montmorillonite reported a loss of osmotic swelling capacity and gelling ability of montmorillonite (Bish et al., 1997; Couture, 1985; Oscarson and Dixon, 1989; Zhu, 2009). However, the crystal structure, cation-exchange capacity, and hydration/dehydration behavior of montmorillonite were preserved. Similar steaming experiments were conducted in the current studies on palygorskite (PFl-1) at 225°C for six days in Teflon-lined Parr vessels. All untreated and steam-treated materials were examined by X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), ζ-potential, and rheological measurements. XRD and TGA data show that the crystal structure, mineralogy, and dehydration behavior of steamed palygorskites were unchanged after steam treatment. XPS revealed no changes in binding-energy peak positions of the surface Si, Mg, and O ions (XPS provides no information on the chemical state of H atoms). Rheological measurements showed that suspensions of steam-treated palygorskite in deionized H2O (5% w/w) are unstable, and the suspensions are Newtonian in nature. The flow curves also revealed a significant reduction in yield stresses after steam treatment, indicating collapse of the clay particle network in water. The ζ-potential decreased after steam treatment, with untreated palygorskite having a value of -26.1 mV and steam-treated material having a value of -18.3 mV. The reduction of surface charge may be sufficient to reduce the electrostatic repulsion between the clay particles, thereby allowing van der Waal attractive forces to dominate. Hence, steam-treated palygorskite flocculates and settles quickly in water. The decreased ζ-potentials are likely associated with decreased Lewis basicity, which can render the clay particles less hydrophilic or even moderately hydrophobic. Both N 2 (BET) and ethylene glycol monoethyl ether (EGME) adsorption surface areas of palygorskite

  19. Inhibition of cadmium- induced genotoxicity and histopathological changes in Nile tilapia fish by Egyptian and Tunisian montmorillonite clay.

    PubMed

    Mahrous, Karima F; Hassan, Aziza M; Radwan, Hasnaa A; Mahmoud, M A

    2015-09-01

    Cadmium (Cd) is an important inorganic toxicant widely distributed in the environment because of its various industrial uses. The aims of the current study were to investigate the efficacy of purified Egyptian and Tunisian montmorillonite clays (EMC and TMC) to inhibit genotoxicity and histological alterations induced by cadmium chloride (CdCl2) utilizing the Nile tilapia fish as an in vivo model. Chromosomal aberrations (CAs), micronucleus (MN) frequencies and DNA fingerprinting profile were genotoxic end points and histopathological changes that were used in this investigation. Six groups of fish were treated for 2 weeks and included control group, CdCl2-treated group and groups treated with EMC or TMC alone or in combination with CdCl2. The present results revealed that, treatment of fish with CdCl2 exhibited significant increased in the number of micronucleated erythrocytes (MnRBCs), frequency of CAs and instability of genomic DNA. Treatment of EMC and TMC in combination with CdCl2 significantly reduced the frequency of MnRBCs by the percentage of 53.28% and 60.77% and the frequency of CAs by 43.91% and 52.17% respectively. As well as, normalized DNA fingerprinting profile and significantly improved histopathological picture induced by Cadmium treatment. It is worth mention that both clays have the ability to tightly bind CdCl2 and decreased its cytotoxicity and genotoxicity; however, Tunisian clay was more efficient in binding with the CdCl2 than Egyptian clay.

  20. Behavior of Listeria monocytogenes on frankfurters surface treated with lauric arginate and/or a liquid smoke extract delivered using the Sprayed Lethality in Container (SLIC®) technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the viability of Listeria monocytogenes (LM) on commercially-produced frankfurters prepared without lactates that were surface treated with 0 or 4 mL of a blend of LAE (CytoGuard; 1.0% LAE final concentration) diluted in a concentrated liquid smoke extrac...

  1. Intercalation behavior of poly(ethylene glycol) in organically modified montmorillonite

    NASA Astrophysics Data System (ADS)

    Zhu, Shipeng; Peng, Hongmei; Chen, Jinyao; Li, Huilin; Cao, Ya; Yang, Yunhua; Feng, Zhihai

    2013-07-01

    In this paper, two kinds of organically modified montmorillonite (OMMT) were prepared using alkylammonium surfactants with different alkyl chain numbers. XRD results showed the interlayer spacing of OMMT increased with low concentration surfactants. With further increasing the surfactants concentration, the interlayer spacing of OMMT was unchanged. Meanwhile, FTIR was used to characterize the local environments of surfactants in the interlayer space of OMMT. The results suggested that the double chain surfactant D-18 preferred to adopt highly ordered conformation compared with single chain surfactant S-18 in interlayer space of OMMT. It indicated that the surface property of the OMMT is affected by the concentration and configuration of the intercalated surfactants. Moreover, the effect of the OMMT type, or more particularly the chemical nature of the organic modifier in the interlayer spacing and the poly(ethylene glycol) (PEG) concentration onintercalation behavior of PEG chains in OMMT were investigated with XRD and DSC.The results indicated that PEG chains could not intercalate into Na-MMT when the surfactants were saturated in interlayer space of Na-MMT. PEG chains could intercalate into the interlayer space of SM when the S-18 concentration was lower than 2.00CEC, implying that the low surfactant concentration modified SM provided a better environment (presumably through the balanced hydrophobic and hydrophilic surfaces) for the PEG intercalation as well. However, PEG did not intercalate into the interlayer space of DM when the D-18 concentration was higher than 1.00CEC. It could be attributed to the hydrophobic double alkyl chains of DM increased with D-18. The increased hydrophobic properties in the interlayer space of 1.50DM hybrids can prevent the intercalation of hydrophilic PEG.

  2. Low-temperature atomic layer deposition of Al{sub 2}O{sub 3} on blown polyethylene films with plasma-treated surfaces

    SciTech Connect

    Beom Lee, Gyeong; Sik Son, Kyung; Won Park, Suk; Hyung Shim, Joon; Choi, Byoung-Ho

    2013-01-15

    In this study, a layer of Al{sub 2}O{sub 3} was deposited on blown polyethylene films by atomic layer deposition (ALD) at low temperatures, and the surface characteristics of these Al{sub 2}O{sub 3}-coated blown polyethylene films were analyzed. In order to examine the effects of the plasma treatment of the surfaces of the blown polyethylene films on the properties of the films, both untreated and plasma-treated film samples were prepared under various processing conditions. The surface characteristics of the samples were determined by x-ray photoelectron spectroscopy, as well as by measuring their surface contact angles. It was confirmed that the surfaces of the plasma-treated samples contained a hydroxyl group, which helped the precursor and the polyethylene substrate to bind. ALD of Al{sub 2}O{sub 3} was performed through sequential exposures to trimethylaluminum and H{sub 2}O at 60 Degree-Sign C. The surface morphologies of the Al{sub 2}O{sub 3}-coated blown polyethylene films were observed using atomic force microscopy and scanning electron microscopy/energy-dispersive x-ray spectroscopy. Further, it was confirmed that after ALD, the surface of the plasma-treated film was covered with alumina grains more uniformly than was the case for the surface of the untreated polymer film. It was also confirmed via the focused ion beam technique that the layer Al{sub 2}O{sub 3} conformed to the surface of the blown polyethylene film.

  3. Laser-treated stainless steel mini-screw implants: 3D surface roughness, bone-implant contact, and fracture resistance analysis

    PubMed Central

    Kang, He-Kyong; Chu, Tien-Min; Dechow, Paul; Stewart, Kelton; Kyung, Hee-Moon

    2016-01-01

    Summary Background/Objectives: This study investigated the biomechanical properties and bone-implant intersurface response of machined and laser surface-treated stainless steel (SS) mini-screw implants (MSIs). Material and Methods: Forty-eight 1.3mm in diameter and 6mm long SS MSIs were divided into two groups. The control (machined surface) group received no surface treatment; the laser-treated group received Nd-YAG laser surface treatment. Half in each group was used for examining surface roughness (Sa and Sq), surface texture, and facture resistance. The remaining MSIs were placed in the maxilla of six skeletally mature male beagle dogs in a randomized split-mouth design. A pair with the same surface treatment was placed on the same side and immediately loaded with 200g nickel–titanium coil springs for 8 weeks. After killing, the bone-implant contact (BIC) for each MSI was calculated using micro computed tomography. Analysis of variance model and two-sample t test were used for statistical analysis with a significance level of P <0.05. Results: The mean values of Sa and Sq were significantly higher in the laser-treated group compared with the machined group (P <0.05). There were no significant differences in fracture resistance and BIC between the two groups. Limitation: animal study Conclusions/Implications: Laser treatment increased surface roughness without compromising fracture resistance. Despite increasing surface roughness, laser treatment did not improve BIC. Overall, it appears that medical grade SS has the potential to be substituted for titanium alloy MSIs. PMID:25908868

  4. Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Shabanzadeh, Parvaneh; Moghaddam, Mansour Ghaffari

    2011-01-01

    Silver nanoparticles (AgNPs) of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts) as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24–1.54 nm); therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28–9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC) systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical applications, including surgical devices and drug delivery vehicles. PMID:21499424

  5. Sodium Montmorillonite/Amine-Containing Drugs Complexes: New Insights on Intercalated Drugs Arrangement into Layered Carrier Material

    PubMed Central

    Vieira, Bárbara A.; Dias, Luiza R. S.; de Sousa, Valéria P.; Castro, Helena C.; Rodrigues, Carlos R.; Cabral, Lucio M.

    2015-01-01

    Layered drug delivery carriers are current targets of nanotechnology studies since they are able to accommodate pharmacologically active substances and are effective at modulating drug release. Sodium montmorillonite (Na-MMT) is a clay that has suitable properties for developing new pharmaceutical materials due to its high degree of surface area and high capacity for cation exchange. Therefore Na-MMT is a versatile material for the preparation of new drug delivery systems, especially for slow release of protonable drugs. Herein, we describe the intercalation of several amine-containing drugs with Na-MMT so we can derive a better understanding of how these drugs molecules interact with and distribute throughout the Na-MMT interlayer space. Therefore, for this purpose nine sodium montmorillonite/amine-containing drugs complexes (Na-MMT/drug) were prepared and characterized. In addition, the physicochemical properties of the drugs molecules in combination with different experimental conditions were assessed to determine how these factors influenced experimental outcomes (e.g. increase of the interlayer spacing versus drugs arrangement and orientation). We also performed a molecular modeling study of these amine-containing drugs associated with different Na-MMT/drug complex models to analyze the orientation and arrangement of the drugs molecules in the complexes studied. Six amine-containing drugs (rivastigmine, doxazosin, 5-fluorouracil, chlorhexidine, dapsone, nystatin) were found to successfully intercalate Na-MMT. These findings provide important insights on the interlayer aspect of the molecular systems formed and may contribute to produce more efficient drug delivery nanosystems. PMID:25803292

  6. Microstructures and wear properties of surface treated Ti-36Nb-2Ta-3Zr-0.35O alloy by electron beam melting (EBM)

    NASA Astrophysics Data System (ADS)

    Chen, Zijin; Liu, Yong; Wu, Hong; Zhang, Weidong; Guo, Wei; Tang, Huiping; Liu, Nan

    2015-12-01

    Ti-36Nb-2Ta-3Zr-0.35O (wt.%) (TNTZO, also called gum metal) alloy was surface treated by electron beam melting (EBM), in order to improve wear properties. The microstructures and phase constitutions of the treated surface were characterized by optical microscopy (OM), scanning electron microscopy (SEM), grazing incidence X-ray diffraction (GIXD) and electron backscattered diffraction (EBSD). The results showed that the martensitic phase and dendrites were formed from the β phase alloy after the EBM treatment, and microstructures in the surface changed with the processing parameters. Compared with the untreated TNTZO alloy, the surface modified TNTZO alloys exhibited higher nano-hardness, 8.0 GPa, and the wear loss was also decreased apparently. The samples treated at a scanning speed of 0.5 m/s exhibited the highest wear resistance due to the fast cooling rate and the precipitation of acicular α″ phase. The relationship between the wear property and the surface microstructure of TNTZO alloy was discussed.

  7. Sol formation ability of Ca/Na-montmorillonite at low ionic strength

    NASA Astrophysics Data System (ADS)

    Birgersson, Martin; Hedström, Magnus; Karnland, Ola

    Various colloidal phases of Wyoming type Ca/Na-montmorillonite have been investigated experimentally by sedimentation and swelling tests of originally pure Ca- or Na-montmorillonite in different CaCl 2/NaCl solutions of low ionic strength. Forces contributing to colloid (de)stability are discussed, and the experimental findings are compared with a theoretical sol formation zone in the [Ca 2+]-[Na +] diagram derived from simple assumptions regarding the forces. It is found that the sol formation ability drastically lowers when calcium ions are present in the system. This effect could be due to an explicit influence of these ions on edge face interactions.

  8. Characterization of Ti6Al4V implant surface treated by Nd:YAG laser and emery paper for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Khosroshahi, M. E.; Mahmoodi, M.; Tavakoli, J.

    2007-08-01

    A more noble and biocompatible Ti alloy was achieved at fluence of 140 J cm -2 where the implant indicated a higher degree of hardness (825HV), higher corrosion resistance (-0.21 V) and highest hydrophilicity (i.e. θc = 37°) compared with 70° of the control sample. These values corresponded to 58 and 39 mN m -1 of surface tension respectively. The laser treated samples at 140 J cm -2 showed higher wettability characteristics than mechanically roughened surface. Cell growth and their spreading condition in a specific area were analyzed by SEM and Image J Program software. Clearly, more cells were attached (1.2 × 10 5) to and spread (488 μm 2) over the surface at 140 J cm -2 than in any other condition. Pathologically, the treated samples indicated no sign of infection.

  9. The Study on Inhibition of Planktonic Bacterial Growth by Non-Thermal Atmospheric Pressure Plasma Jet Treated Surfaces for Dental Application.

    PubMed

    Yoo, Eun-Mi; Uhm, Soo-Hyuk; Kwon, Jae-Sung; Choi, Hye-Sook; Choi, Eun Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2015-02-01

    Investigation of the effects by non-thermal atmospheric pressure plasma jet (NTAPPJ) treatment on the titanium dental implant surfaces for the inhibition of two common pathogens related with dental infections, Streptococcus mutans and Staphylococcus aureus, was carried out in this study. The commercially pure titanium was used as specimen, which were irradiated by NTAPPJ for 30, 60 and 120 seconds. Specimen without being treated with NTAPPJ was assigned as the control group. The X-ray photoelectron spectroscope and surface contact angle goniometer were used to analyze the effects of NTAPPJ treatment on surface chemistry and hydrophilicity of the specimen. The effects of the NTAPPJ treatment on surfaces, in terms of bacterial attachment, growth, morphology and structural changes were evaluated by the number of colony forming units (CFU) and scanning electron microscopy (SEM) observations. The results showed that there was a reduction of CFUs and the significant change in morphology of bacteria as they were cultured on the titanium surfaces treated with NTAPPJ. These results were related to surface chemical changes and hydrophilicity changes by NTAPPJ. The NTAPPJ treatment is very effective on the dental implant titanium surface treatment that resulted in the inhibition of bacteria and has a great potential to be a promising technique in various clinical dental applications.

  10. FT-IR study of montmorillonite-chitosan nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Paluszkiewicz, C.; Stodolak, E.; Hasik, M.; Blazewicz, M.

    2011-08-01

    Bone defect is one of the most frequent problems in bone tissue reconstruction in which application of a biomaterial filling is necessary. It creates a still rising demand of biomaterials for bone surgery. Polymer-ceramic nanocomposites (e.g. based on chitosan matrix) is a group of novel materials whose properties such as strength, Young's modulus, bioactivity and controlled degradation time make them suitable materials for filling bone defects. Investigations of nanocomposite foils which consisted of biopolymer-chitosan (CS) matrix and montmorillonite (MMT) as a nano-filler was the subject of the work. The nanocomposite materials were produced by a two-step dispersion of the nanoparticles in the biopolymer matrix. The first stage involved mechanical stirring and the second one - ultrasonic agitation. Mechanical tests were performed on the nanocomposites and their Young's modulus was estimated. Significant improvement of mechanical properties of the nanocomposites in comparison with the pure polymer (CS) was observed. The nanocomposite foils (CS/MMT) were subjected to FT-IR spectroscopy investigations whose objective was to explain the reason of the change in mechanical characteristics of the nanocomposites. Transmission and ATR techniques operating in MIR range were used to study the nanocomposites. The FT-IR techniques were used to determine interactions at nanoparticle-biopolymer matrix interface. A pure unmodified CS foil was used as a reference material for FT-IR studies. It was proven that application of FT-IR techniques allows not only to identify phases, but also to explain structural changes in the systems studied.

  11. Raw and biologically treated paper mill wastewater effluents and the recipient surface waters: Cytotoxic and genotoxic activity and the presence of endocrine disrupting compounds.

    PubMed

    Balabanič, Damjan; Filipič, Metka; Krivograd Klemenčič, Aleksandra; Žegura, Bojana

    2017-01-01

    Paper mill effluents are complex mixtures containing different toxic compounds including endocrine-disrupting (EDCs) and genotoxic compounds. In the present study non-concentrated raw and biologically treated wastewaters from two paper mill plants with different paper production technologies i) Paper mill A uses virgin fibres, and ii) Paper mill B uses recycled fibres for paper production and the corresponding receiving surface waters, were assessed for their cytotoxic/genotoxic activity with SOS/umuC, Ames MPF 98/100 Aqua, and comet assay with human hepatoma HepG2 cells. In addition the levels of seven selected EDCs were quantified in wastewater samples and receiving surface waters. All investigated EDCs were confirmed in raw and biologically treated effluents from both paper mills with concentrations being markedly higher in Paper mill B effluents. In the receiving surface waters three of the studied EDCs were determined downstream of both paper mills effluent discharge. The wastewater samples and the recipient surface water samples from Paper mill A were not mutagenic for bacteria and did not induce DNA damage in HepG2 cells. On the contrary, half of the raw wastewater samples from Paper mill B were mutagenic whereas biologically treated wastewater and the recipient surface water samples were negative. In HepG2 cells most of the raw and biologically treated wastewater samples from Paper mill B as well as surface water samples collected downstream of Paper mill B effluent discharge induced DNA damage. The results confirmed that genotoxic contaminants were present only in wastewaters from Paper mill B that uses recycled fibres for paper production, and that the combined aerobic and anaerobic wastewater treatment procedure efficiently reduced contaminants that are bacterial mutagens, but not those that induce DNA damage in HepG2 cells. This study highlights that in addition to chemical analyses bioassays are needed for a comprehensive toxicological evaluation of

  12. One-pot synthesis of visible-light-driven Ag/Ag3PO4 photocatalyst immobilized on exfoliated montmorillonite by clay-mediated in situ reduction

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Zhang, Xiaoyuan; Wu, Jianning; Meng, Guihua; Guo, Xuhong; Liu, Zhiyong

    2016-11-01

    In order to find efficient photocatalytic materials and convenient preparation method, a well-designed Ag/Ag3PO4-OMMT (organically modified montmorillonite) plasmonic photocatalyst was synthesized via the "one-pot" process without any reducing species. Ag+ could be reduced by Si-OH moiety on the surface of OMMT. The resulting samples were thoroughly studied by using X-ray diffraction, X-ray photoelectron spectra, transmission electron microscopy, scanning electron microscope, energy-dispersive X-ray spectroscopy, UV-Vis diffuse reflectance spectra, and so on. The as-prepared Ag/Ag3PO4-OMMT photocatalyst exhibited efficient, stable photocatalytic activity and recyclability for the degradation of Rhodamine B (RhB) under visible light radiation ( λ > 420 nm). The optimum synergetic effect of Ag3PO4/OMMT was found at a weight ratio of 50 %. The degradation efficiency of RhB over Ag/Ag3PO4-OMMT (1:1) was about 92.9 %, and photocatalytic activity remained stable after three cycles. The results show that the designed photocatalyst is feasible and effective. The proposed photocatalysis mechanism is probably attributed to surface plasmon resonance of metallic Ag nanoparticles (NPs) and also attributed to negatively charged exfoliated montmorillonite. The Ag/Ag3PO4-OMMT composites showed highly visible light photocatalytic activity, which makes them promising nanomaterials for further applications in water treatment.

  13. Determination of bulk and surface superconducting properties of N2-doped cold worked, heat treated and electro-polished SRF grade niobium

    DOE PAGES

    Chetri, Santosh; Larbalestier, David C.; Lee, Peter J.; ...

    2015-12-01

    In this study, nitrogen-doped cavities show significant performance improvement in the medium accelerating field regime due to a lowered RF surface resistivity. However, the mechanism of enhancement has not been clearly explained. Our experiments explore how N2-doping influences Nb bulk and surface superconducting properties, and compare the N2-doped properties with those obtained previously with conventionally treated samples. High purity Nb-rod was mechanically deformed and post treated based on a typical SRF cavity treatment recipe. The onset of flux penetration at Hc1, and the upper and the surface critical fields, Hc2 and Hc3, were characterized by magnetic hysteresis and AC susceptibilitymore » techniques. The surface depth profile responsible for superconductivity was examined by changing AC amplitude in AC susceptibility, and the microstructure was directly observed with EBSD-OIM. We are also investigating surface chemistry for detailed composition using XPS. We have found that N2-doping at 800 °C significantly reduces the Hc3/Hc2 ratio towards the ideal value of ~1.7, and conclude that AC susceptibility is capable of following changes to the surface properties induced by N2-doping.« less

  14. Determination of bulk and surface superconducting properties of N2-doped cold worked, heat treated and electro-polished SRF grade niobium

    SciTech Connect

    Chetri, Santosh; Larbalestier, David C.; Lee, Peter J.; Dhakal, Pashupati; Sung, Zu -Hawn

    2015-12-01

    In this study, nitrogen-doped cavities show significant performance improvement in the medium accelerating field regime due to a lowered RF surface resistivity. However, the mechanism of enhancement has not been clearly explained. Our experiments explore how N2-doping influences Nb bulk and surface superconducting properties, and compare the N2-doped properties with those obtained previously with conventionally treated samples. High purity Nb-rod was mechanically deformed and post treated based on a typical SRF cavity treatment recipe. The onset of flux penetration at Hc1, and the upper and the surface critical fields, Hc2 and Hc3, were characterized by magnetic hysteresis and AC susceptibility techniques. The surface depth profile responsible for superconductivity was examined by changing AC amplitude in AC susceptibility, and the microstructure was directly observed with EBSD-OIM. We are also investigating surface chemistry for detailed composition using XPS. We have found that N2-doping at 800 °C significantly reduces the Hc3/Hc2 ratio towards the ideal value of ~1.7, and conclude that AC susceptibility is capable of following changes to the surface properties induced by N2-doping.

  15. Adsorption of aniline and toluidines on montmorillonite: Implications for the disposal of shale oil production wastes

    SciTech Connect

    Essington, M.E.; Bowen, J.M.; Wills, R.A.; Hart, B.K.

    1992-01-01

    Bentonite clay liners are commonly employed to mitigate the movement of contaminants from waste disposal sites. Solid and liquid waste materials that arise from the production of shale oil contain a vast array of organic compounds. Common among these compounds are the aromatic amines. in order to assess the ability of clay liner material to restrict organic compound mobility, the adsorption of aniline and o-, m-, and p-toluidine on Ca{sup 2+} - and K{sup +}-saturated Wyoming bentonite was investigated. Adsorption experiments were performed under conditions of varied pH, ionic strength, and dominate electrolyte cation and anion. organic adsorption on Ca{sup 2+} - and K{sup +}-saturated montmorillonite is pH dependent. For any given organic compound, maximum adsorption increases with decreasing ionic strength. organic compound adsorption is inhibited in the presence of sulfate and is greater in the Ca{sup 2+} systems than in the K{sup +} systems at any given ionic strength. High salt content and K{sup +} collapse the bentonite layers and limit access to and compete for adsorption sites. The K{sup +} ion is also more difficult to displace than Ca{sup 2+} from interlayer positions. Fourier transform infrared spectroscopic data show that the aniline compounds are adsorbed on bentonite through the hydrogen bonding of an amine hydrogen to a surface silica oxygen. Sulfate reduces amine adsorption by removing positively charged anilinium species from solution to form negatively charge sulfate complexes. Although adsorption of the substituted amines on bentonite is observed, aniline and toluidine adsorption is minimal in saline systems and not detected in alkaline systems. Thus, in shale oil process waste disposal sites, the mobility of the anilines through bentonite liners will not be mitigated by sorption processes, as spent oil shale leachates are both highly alkaline and saline.

  16. Adsorption of aniline and toluidines on montmorillonite: Implications for the disposal of shale oil production wastes

    SciTech Connect

    Essington, M.E.; Bowen, J.M.; Wills, R.A.; Hart, B.K.

    1992-01-01

    Bentonite clay liners are commonly employed to mitigate the movement of contaminants from waste disposal sites. Solid and liquid waste materials that arise from the production of shale oil contain a vast array of organic compounds. Common among these compounds are the aromatic amines. in order to assess the ability of clay liner material to restrict organic compound mobility, the adsorption of aniline and o-, m-, and p-toluidine on Ca[sup 2+] - and K[sup +]-saturated Wyoming bentonite was investigated. Adsorption experiments were performed under conditions of varied pH, ionic strength, and dominate electrolyte cation and anion. organic adsorption on Ca[sup 2+] - and K[sup +]-saturated montmorillonite is pH dependent. For any given organic compound, maximum adsorption increases with decreasing ionic strength. organic compound adsorption is inhibited in the presence of sulfate and is greater in the Ca[sup 2+] systems than in the K[sup +] systems at any given ionic strength. High salt content and K[sup +] collapse the bentonite layers and limit access to and compete for adsorption sites. The K[sup +] ion is also more difficult to displace than Ca[sup 2+] from interlayer positions. Fourier transform infrared spectroscopic data show that the aniline compounds are adsorbed on bentonite through the hydrogen bonding of an amine hydrogen to a surface silica oxygen. Sulfate reduces amine adsorption by removing positively charged anilinium species from solution to form negatively charge sulfate complexes. Although adsorption of the substituted amines on bentonite is observed, aniline and toluidine adsorption is minimal in saline systems and not detected in alkaline systems. Thus, in shale oil process waste disposal sites, the mobility of the anilines through bentonite liners will not be mitigated by sorption processes, as spent oil shale leachates are both highly alkaline and saline.

  17. Molecular Simulation Models of Carbon Dioxide Intercalation in Hydrated Sodium Montmorillonite

    SciTech Connect

    Myshakin, Evgeniy; Saidi, Wissam; Romanov, Vyacheslav; Cygan, Randall; Jordan, Kenneth; Guthrie, George

    2016-11-22

    In this study, classical molecular dynamics simulations and density functional theory (DFT)-based molecular dynamics are used to elucidate the process of CO2 intercalation into hydrated Na-montmorillonite at P-T conditions relevant to geological formations suitable for CO2 storage. Of particular interest are the structural and transport properties of interlayer species after CO2 intercalation. The conducted simulations allowed the research team to quantify expansion/contraction of smectite as a function of CO2 and H2O compositions. The resulting swelling curves can be used to gauge the amount of stored CO2, compare it to the experiment, and estimate changes in geomechanical properties of the storage formation. The obtained results showed that the infrared signal of the asymmetric stretch vibration of CO2 molecule is extremely sensitive to the solvent environment. The extent of the frequency shift relative to the gas-phase value can be used to probe hydration level in the interlayer with intercalated CO2. Interaction of supercritical CO2 with brine in deep geological formations promotes an increase of hydrophobicity of clay surfaces. As a result of wettability alteration, estimated diffusion constants of CO2 and H2O increase with the increased CO2 load; this can contribute to faster migration of CO2 throughout the formation.

  18. Efficiency of aluminum-pillared montmorillonite on the removal of cesium and copper from aqueous solutions.

    PubMed

    Karamanis, D; Assimakopoulos, P A

    2007-05-01

    Aluminum-pillared-layered montmorillonites (PILMs) were tested for their potential application in the removal of copper or cesium from aqueous solutions. By varying the initial conditions, several PILMs were prepared and characterized by means of X-ray fluorescence (XRF), proton induced gamma-ray emission (PIGE), X-ray diffraction (XRD) and sorption isotherms. Uptake of metals was studied by means of XRF spectrometry for copper sorption or gamma-ray spectrometry for cesium, using 137Cs as radiotracer. The sorption kinetics and capacity of PILMs were determined in relation to the effects of factors such as the initial metal concentration, initial pH of the solution and the presence of competitive cations. Kinetic studies showed that an equilibrium time of few minutes was needed for the adsorption of metal ions on PILMs. A pseudo-first-order equation was used to describe the sorption process for either copper or cesium. The most effective pH range for the removal of copper and cesium was found to be 4.0-6.0 and 3.0-8.0, respectively. Cesium sorption isotherms were best represented by a two-site Langmuir model while copper isotherms followed the Freundlich or the two-site Langmuir model. Cesium sorption experiments with inorganic or organic competitive cations as blocking agents revealed that the high selective sites of PILMs for cesium sorption (1-2% of total) are surface and edge sites in addition to interlayer exchange sites. In copper sorption, the two sites were determined as interlayer sites of PILMs after restoring their cation exchange capacity and sites associated with the pillar oxides.

  19. A comparison of the corrosion behaviour and surface characteristics of vacuum-brazed and heat-treated Ti6Al4V alloy.

    PubMed

    Lee, T M; Chang, E; Yang, C Y

    1998-08-01

    The corrosion characteristics of the brazed Ti6Al4V specimens were analysed and compared with respect to the conventionally heat-treated specimens by an electrochemical corrosion test. The object of this research was to explore the potentiality of the brazed titanium for biomaterials. The characteristics of the 1300 degrees C heat-treated and the 970 degrees C brazed specimens, with passivation and sterilization treatment, were evaluated by measurement of corrosion potential, Ecorr, corrosion current densities, Icorr, polarization resistance of the reacted surface films, Rp, in a potentiodynamic test. The experimental results show that the corrosion rates of the heat-treated and the brazed samples are similar at Ecorr, and the value of Ecorr for the brazed sample is noble to the heat-treated samples. The passive current density of the brazed specimen is either lower or higher than the heat-treated specimen, depending on the polarization potential. By Auger electron spectroscopic and high-resolution X-ray photoelectron spectroscopic analysis on specimens from the potentiostatic test, the elements of copper and nickel in the brazing filler were not detected while less alumina was found in the reacted film of the brazed specimens when compared with the heat-treated specimens. The implication of the results is discussed.

  20. Effect of silica sand on activation energy for diffusion of sodium ions in montmorillonite and silica sand mixture.

    PubMed

    Liu, Jinhong; Yamada, Hiromichi; Kozaki, Tamotsu; Sato, Seichi; Ohashi, Hiroshi

    2003-03-01

    The effect of silica sand on the diffusion of sodium ions in mixtures of montmorillonite and silica sand was studied by measuring the apparent diffusion coefficients, activation energies for diffusion, and the basal spacing of the mixed samples. These diffusion experiments suggest that the apparent diffusion coefficients of sodium ions in the mixed samples were almost the same as those of pure montmorillonite samples having the same partial dry densities of montmorillonite. The activation energy dependence for diffusion of sodium ions on the partial dry density was different between the mixed samples and the pure montmorillonite samples. The activation energy increased by adding silica sand at the partial dry density of 1.0 Mg m(-3), and decreased by adding silica sand at the partial dry densities higher than 1.2 Mg m(-3). A change in the XRD profile was observed after adding silica sand at the partial dry density of 1.6 Mg m(-3). Here, a three-water-layer hydrate state of montmorillonite was found in the mixed sample whereas only a two-water-layer hydrate state was observed in the pure montmorillonite sample. These experimental results suggest that silica sand changed the montmorillonite microstructure in the mixed samples, which then altered the sodium-ion diffusion process.

  1. Effects of dextrose and lipopolysaccharide on the corrosion behavior of a Ti-6Al-4V alloy with a smooth surface or treated with double-acid-etching.

    PubMed

    Faverani, Leonardo P; Assunção, Wirley G; de Carvalho, Paulo Sérgio P; Yuan, Judy Chia-Chun; Sukotjo, Cortino; Mathew, Mathew T; Barao, Valentim A

    2014-01-01

    Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (p<0.05) for the Ti-6Al-4V alloy with surface treatment by double-acid-etching. The combination of dextrose and lipopolysaccharide was correlated with the Icorr (corrosion current density) and Ipass (p<0.05). The acid-treated groups showed a significant increase in Cdl values and reduced Rp values (p<0.05, t-test). According to the topography, there was an increase in surface roughness (R2 = 0.726, p<0.0001 for the smooth surface; R2 = 0.405, p = 0.036 for the double-acid-etching-treated surface). The microhardness of the smooth Ti-6Al-4V alloy decreased (p<0.05) and that of the treated Ti-6Al-4V alloy increased (p<0.0001). Atomic force microscopy showed changes in the microstructure of the Ti-6Al-4V alloy by increasing the surface thickness mainly in the group associated with dextrose and lipopolysaccharide. The combination of dextrose and lipopolysaccharide affected the corrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no

  2. The effect of CH4/H2 ratio on the surface properties of HDPE treated by CHx ion beam bombardment

    NASA Astrophysics Data System (ADS)

    Ding, Wanyu; Guo, Yuanyuan; Ju, Dongying; Sato, Susumu; Tsunoda, Teruo

    2016-06-01

    The surface of high density polyethylene (HDPE) substrate was bombarded by the CHx group ion beam, which was generated by the mixture of CH4/H2. Varying the CH4/H2 ratio, HDPE surfaces with different chemical bond structures and properties were obtained. Raman and XPS results show that sp2 and sp3 bond structures are formed at HDPE surface bombarded by CHx group ions. The sp3 bond fraction at bombarded HDPE surface depends on the H2 ratio in CH4/H2 mixture, because the H ion/atom/molecule can improve the growth of sp3 bond structure. For HDPE surface bombarded by CH4/H2 = 50/50, sp3 bond fraction reaches the maximum of 30.5%, the surface roughness decreases to 17.04 nm, and the static contact angle of polar H2O molecule increased to 140.2∘.

  3. Mixed-layer kaolinite-montmorillonite from the Yucatan Peninsula, Mexico

    USGS Publications Warehouse

    Schultz, L.G.; Shepard, A.O.; Blackmon, P.D.; Starkey, H.C.

    1971-01-01

    Clay beds 1-2 m thick and interbedded with marine limestones probably of early Eocene age are composed of nearly pure mixed-layer kaolinite-montmorillonite. Particle size studies, electron micrographs, X-ray diffraction studies, chemical analyses, cation exchange experiments, DTA, and TGA indicate that clays from three different localities contain roughly equal proportions of randomly interlayered kaolinite and montmorillonite layers. The montmorillonite structural formulas average K0??2Na0??2Ca0??2Mg0??2(Al2??5Fe1??03+Mg0??5)(Al0??75Si7??25)O20+(OH)4-, with a deficiency of structural (OH) in either the montmorillonite or kaolinite layers. Nonexchangeable K+ indicates that a few layers are mica-like. Crystals are mostly round plates 1 10 to 1 20 ?? across. The feature most diagnostic of the mixed-layer character is an X-ray reflection near 8 A?? after heating at 300 ??C. The clays are inferred to have developed by weathering of volcanic ash and subsequent erosion and deposition in protected nearshore basins. ?? 1971.

  4. OXIDATION OF ALCOHOLS OVER FE3+/MONTMORILLONITE-K10 USING HYDROGEN PEROXIDE

    EPA Science Inventory

    Oxidation of various primary and secondary alcohols is studied in liquid phase at atmospheric pressure over Fe3+/montmorillonite-K10 catalyst prepared by ion-exchange method at a pH of 4 in an environmentally friendly protocol using hydrogen peroxide. The catalyst and the method ...

  5. Progress in demonstrating total homochiral selection in montmorillonite-catalyzed RNA synthesis.

    PubMed

    Joshi, Prakash C; Aldersley, Michael F; Ferris, James P

    2011-10-07

    The Na(+)-montmorillonite-catalyzed reactions of 5'-phosphorimidazolides of nucleosides generates RNA oligomers. The question arises as to how chiral selectivity was introduced into this biopolymer from a simple chemical system. We have demonstrated homochiral selection in quaternary reactions of a racemic mixture of D,L-ImpA and D,L-ImpU on Na(+)-montmorillonite. The dimer, trimer, tetramer and pentamer fractions were investigated for homochiral selection. The products were collected via ion exchange HPLC and their terminal 5'-phosphate was cleaved by alkaline phosphatase. These fractions were analyzed by reverse phase HPLC for the identification of homochiral and heterochiral isomers. Encouraged by favorable homochiral excesses of dimer (63.5 ± 0.8%) and trimer (74.3 ± 1.7%), the study was extended to the analysis of higher oligomers. The tetramer and pentamer of the quaternary reaction were separated into 26 and 22 isomers, respectively, on a reverse phase column. Their co-elution with those formed in the binary reactions of d-ImpA and D-ImpU on Na(+)-montmorillonite revealed 92.7 ± 2.0% and 97.2 ± 0.5% homochirality of the tetramer and pentamer, respectively. These results suggest that Na(+)-montmorillonite not only catalyzes the prebiotic synthesis of RNA but it also facilitates homochiral selection.

  6. Peptide chain elongation: A possible role of montmorillonite in prebiotic synthesis of protein precursors

    NASA Astrophysics Data System (ADS)

    Bujdák, Juraj; Faybíková, Katarína; Eder, Artur; Yongyai, Yongyos; Rode, Bernd M.

    1995-10-01

    Several studies have proven the ability of montmorillonite to catalyse amino acid condensation under assumed prebiotic conditions, simulating wetting-drying cycles. In this work, the oligomerization of short peptides gly2, gly3, gly4 and ala2 on Ca-and Cu-montmorillonite in drying-wetting cycles at 80 °C was studied. The catalytic effect of montmorillonite was found to be much higher than in the case of glycine oligomerization. From gly2 after 3 weeks, 10% oligomers (up to gly6, with gly3 as main products) are formed. Gly3 and gly4 give higher oligomers even after 1 cycle. Ala2 produces both ala3 and ala4, whereas ala does not produce any oligomers under these conditions. Heteroologomerization was observed: ala-gly-gly is formed from ala and gly2. Much higher yields are obtained using Ca-montmorillonite, because copper (II) oxidizes organic molecules. The influence of the reaction mechanism on the preferential oligomerization of oligopeptides is discussed.

  7. Calcium montmorillonite clay reduces urinary biomarkers of fumonisin B1 exposure in rats and humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Fumonisin B1 (FB1) is often a co-contaminant with aflatoxin (AF) in grains and may enhance AF’s carcinogenicity by acting as a cancer promoter. An oral dose of calcium montmorillonite clay (i.e. NovaSil, NS) was able to reduce aflatoxin exposure in a Ghanaian population at risk. In vitro...

  8. Development of biodegradable foamlike materials based on casein and sodium montmorillonite clay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodegradable foamlike materials based on a naturally occurring polymer (casein protein) and sodium montmorillonite clay (Na+-MMT) were produced through a simple freeze-drying process. By utilizing DL-glyceraldehyde (GC) as a chemical cross-linking agent, the structural integrity of these new aeroge...

  9. Adsorption of the harmful hormone ethinyl estradiol inside hydrophobic cavities of CTA(+) intercalated montmorillonite.

    PubMed

    Burgos, A E; Ribeiro-Santos, Tatiana A; Lago, Rochel M

    Hydrophobic cavities produced by cetyltrimethylammonium cation (CTA(+)) exchanged and trapped in the interlayer space of montmorillonite were used to remove the harmful hormone contaminant ethinyl estradiol (EE2) from water. X-ray diffraction, thermogravimetry/derivative thermogravimetry, elemental analysis (carbon, hydrogen, nitrogen), Fourier transform infrared, scanning electron microscopy/energy dispersive spectroscopy, Brunauer-Emmett-Teller and contact angle analyses showed that the intercalation of 9, 16 and 34 wt% CTA(+) in the montmorillonite resulted in the d001 expansion from 1.37 to 1.58, 2.09 and 2.18 nm, respectively. EE2 adsorption experiments showed that the original clay montmorillonite does not remove EE2 from water whereas the intercalated composites showed high efficiency with adsorption capacities of 4.3, 8.8 and 7.3 mg g(-1) for M9CTA(+), M16CTA(+) and M34CTA(+), respectively. Moreover, experiments with montmorillonite simply impregnated with cetyltrimethylammonium bromide showed that the intercalation of CTA(+) to form the hydrophobic cavity is very important for the adsorption properties. Simple solvent extraction can be used to remove the adsorbed EE2 without significant loss of CTA(+), which allows the recovery and reuse of the adsorbent for at least five times.

  10. Influence of operating parameters on surface properties of RF glow discharge oxygen plasma treated TiO₂/PET film for biomedical application.

    PubMed

    Pandiyaraj, K Navaneetha; Deshmukh, R R; Mahendiran, R; Su, Pi-G; Yassitepe, Emre; Shah, Ismat; Perni, Stefano; Prokopovich, Polina; Nadagouda, Mallikarjuna N

    2014-03-01

    In this paper, a thin transparent titania (TiO2) film was coated on the surface of flexible poly(ethylene terephthalate) (PET) film using the sol-gel method. The surface properties of the obtained TiO2/PET film were further improved by RF glow discharge oxygen plasma as a function of exposure time and discharge power. The changes in hydrophilicity of TiO2/PET films were analyzed by contact angle measurements and surface energy. The influence of plasma on the surface of the TiO2/PET films was analyzed by atomic force microscopy (AFM) as well as the change in chemical state and composition that were investigated by X-ray photo electron spectroscopy (XPS). The cytotoxicity of the TiO2/PET films was analyzed using human osteoblast cells and the bacterial eradication behaviors of TiO2/PET films were also evaluated against Staphylococcus bacteria. It was found that the surface roughness and incorporation of oxygen containing polar functional groups of the plasma treated TiO2/PET films increased substantially as compared to the untreated one. Moreover the increased concentration of Ti(3+) on the surface of plasma treated TiO2/PET films was due to the transformation of chemical states (Ti(4+)→Ti(3+)). These morphological and chemical changes are responsible for enhanced hydrophilicity of the TiO2/PET films. Furthermore, the plasma treated TiO2/PET film exhibited no citotoxicity against osteoblast cells and antibacterial activity against Staphylococcus bacteria which can find application in manufacturing of biomedical devices.

  11. Comparison of the protection effectiveness of acrylic polyurethane coatings containing bark extracts on three heat-treated North American wood species: Surface degradation

    NASA Astrophysics Data System (ADS)

    Kocaefe, Duygu; Saha, Sudeshna

    2012-04-01

    High temperature heat-treatment of wood is a very valuable technique which improves many properties (biological durability, dimensional stability, thermal insulating characteristics) of natural wood. Also, it changes the natural color of wood to a very attractive dark brown color. Unfortunately, this color is not stable if left unprotected in external environment and turns to gray or white depending on the wood species. To overcome this problem, acrylic polyurethane coatings are applied on heat-treated wood to delay surface degradations (color change, loss of gloss, and chemical modifications) during aging. The acrylic polyurethane coatings which have high resistance against aging are further modified by adding bark extracts and/or lignin stabilizer to enhance their effectiveness in preventing the wood aging behavior. The aging characteristic of this coating is compared with acrylic polyurethane combined with commercially available organic UV stabilizers. In this study, their performance on three heat-treated North American wood species (jack pine, quaking aspen and white birch) are compared under accelerated aging conditions. Both the color change data and visual assessment indicate improvement in protective characteristic of acrylic polyurethane when bark extracts and lignin stabilizer are used in place of commercially available UV stabilizer. The results showed that although acrylic polyurethane with bark extracts and lignin stabilizer was more efficient compared to acrylic polyurethane with organic UV stabilizers in protecting heat-treated jack pine, it failed to protect heat-treated aspen and birch effectively after 672 h of accelerated aging. This degradation was not due to the coating adhesion loss or coating degradation during accelerated aging; rather, it was due to the significant degradation of heat-treated aspen and birch surface beneath this coating. The XPS results revealed formation of carbonyl photoproducts after aging on the coated surfaces and

  12. Nanoporous silver cathode surface treated by atomic layer deposition of CeO x for low-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Chean Neoh, Ke; Han, Gwon Deok; Kim, Manjin; Kim, Jun Woo; Jong Choi, Hyung; Park, Suk Won; Shim, Joon Hyung

    2016-05-01

    We evaluated the performance of solid oxide fuel cells (SOFCs) with a 50 nm thin silver (Ag) cathode surface treated with cerium oxide (CeO x ) by atomic layer deposition (ALD). The performances of bare and ALD-treated Ag cathodes were evaluated on gadolinia-doped ceria (GDC) electrolyte supporting cells with a platinum (Pt) anode over 300 °C-450 °C. Our work confirms that ALD CeO x treatment enhances cathodic performance and thermal stability of the Ag cathode. The performance difference between cells using a Ag cathode optimally treated with an ALD CeO x surface and a reference Pt cathode is about 50% at 450 °C in terms of fuel cell power output in our experiment. The bare Ag cathode completely agglomerated into islands during fuel cell operation at 450 °C, while the ALD CeO x treatment effectively protects the porosity of the cathode. We also discuss the long-term stability of ALD CeO x -treated Ag cathodes related to the microstructure of the layers.

  13. Nanoporous silver cathode surface treated by atomic layer deposition of CeO(x) for low-temperature solid oxide fuel cells.

    PubMed

    Neoh, Ke Chean; Han, Gwon Deok; Kim, Manjin; Kim, Jun Woo; Choi, Hyung Jong; Park, Suk Won; Shim, Joon Hyung

    2016-05-06

    We evaluated the performance of solid oxide fuel cells (SOFCs) with a 50 nm thin silver (Ag) cathode surface treated with cerium oxide (CeO(x)) by atomic layer deposition (ALD). The performances of bare and ALD-treated Ag cathodes were evaluated on gadolinia-doped ceria (GDC) electrolyte supporting cells with a platinum (Pt) anode over 300 °C-450 °C. Our work confirms that ALD CeO(x) treatment enhances cathodic performance and thermal stability of the Ag cathode. The performance difference between cells using a Ag cathode optimally treated with an ALD CeO(x) surface and a reference Pt cathode is about 50% at 450 °C in terms of fuel cell power output in our experiment. The bare Ag cathode completely agglomerated into islands during fuel cell operation at 450 °C, while the ALD CeO(x) treatment effectively protects the porosity of the cathode. We also discuss the long-term stability of ALD CeO(x)-treated Ag cathodes related to the microstructure of the layers.

  14. Effect of silanized-chitosan on flammability, mechanical, water absorption and biodegradability properties of pseudo-stem banana fiber and montmorillonite filled waste polypropylene biocomposite

    NASA Astrophysics Data System (ADS)

    Prasetyo, W. E.; Prihandoko, A.; Pujiasih, S.; Widianto, A.; Rahmawati, N.; Saputra, O. A.; Handayani, D. S.

    2017-02-01

    Growing consciousness for an eco-friendly environment has revived the interest to develop composite fibers from biobased products. In this study, flammability, mechanical, water absorption and biodegradability properties of chitosan filled biocomposite waste polypropylene (wPP) reinforced with pseudo-stem banana fiber (PBF) and montmorillonite (MMt) biocomposites has been conducted investigate. It was successfully processed in solution method. Chitosan was chemically treated with glycidyloxypropyltrimethoxysilane (GPTMS) to improve interfacial adhesion between chitosan and wPP. The chitosan treated with GPTMS content in the biocomposites were varied from 0 to 7% (dry wt. basis). Flammability, tensile strength and water absorption index of biocomposites were measured according to ASTM D635, ASTM D638, and ASTM D570 respectively. To study the nature of its biodegradability, the biocomposites were technically buried in garbage dump land. The results show that the addition of treated chitosan 3-GPTMS has improved thermal properties such as Time to Ignition (TTi), Burning Rate (BR), and Heat release (HR) of treated biocomposites compared with neat PP and untreated biocomposite with treated chitosan. The treated biocomposites exhibit higher tensile strength and Young’s modulus, but lower elongation at break compared with neat PP and untreated biocomposites with treated chitosan. The biocomposites show a reduction in the rate of water uptake with higher loading of CH.

  15. Montmorillonite-supported Ag/TiO(2) nanoparticles: an efficient visible-light bacteria photodegradation material.

    PubMed

    Wu, Tong-Shun; Wang, Kai-Xue; Li, Guo-Dong; Sun, Shi-Yang; Sun, Jian; Chen, Jie-Sheng

    2010-02-01

    Montmorillonite (MMT)-supported Ag/TiO(2) composite (Ag/TiO(2)/MMT) has been prepared through a one-step, low-temperature solvothermal technique. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) reveal that the Ag particles coated with TiO(2) nanoparticles are well-dispersed on the surface of MMT in the composite. As a support for the Ag/TiO(2) composite, the MMT prevents the loss of the catalyst during recycling test. This Ag/TiO(2)/MMT composite exhibits high photocatalytic activity and good recycling performance in the degradation of E. coli under visible light. The high visible-light photocatalytic activity of the Ag/TiO(2)/MMT composite is ascribed to the increase in surface active centers and the localized surface plasmon effect of the Ag nanoparticles. The Ag/TiO(2)/MMT materials with excellent stability, recyclability, and bactericidal activities are promising photocatalysts for application in decontamination.

  16. Gene expression of human osteoblasts cells on chemically treated surfaces of Ti-6Al-4V-ELI.

    PubMed

    Oliveira, D P; Palmieri, A; Carinci, F; Bolfarini, C

    2015-06-01

    Surface modifications of titanium alloys are useful methods to enhance the biological stability of intraosseous implants and to promote a well succeeded osseointegration in the early stages of implantation. This work aims to investigate the influence of chemically modified surfaces of Ti-6Al-4V-ELI (extra-low interstitial) on the gene expression of human osteoblastic (HOb) cells. The surface treatments by acid etching or acid etching plus alkaline treatment were carried out to modify the topography, effective area, contact angle and chemical composition of the samples. The surface morphology was investigated using: scanning electron microscopy (SEM) and confocal laser-scanning microscope (CLSM). Roughness measurements and effective surface area were obtained using the CLSM. Surface composition was analysed by energy dispersive X-ray spectroscopy (EDX) and by X-Ray Diffraction (XRD). The expression levels of some bone related genes (ALPL, COL1A1, COL3A1, SPP1, RUNX2, and SPARC) were analysed using real-time Reverse Transcription Polymerase Chain Reaction (real-time RT-PCR). The results showed that all the chemical modifications studied in this work influenced the surface morphology, wettability, roughness, effective area and gene expression of human osteoblasts. Acid phosphoric combined to alkaline treatment presented a more accelerated gene expression after 7days while the only phosphoric etching or chloride etching combined to alkaline treatment presented more effective responses after 15days.

  17. Variation of arsenic concentration on surfaces of in-service CCA-treated wood planks in a park and its influencing field factors.

    PubMed

    Tang, Ya; Gao, Wei; Wang, Xiuli; Ding, Shiming; An, Taicheng; Xiao, Weiyang; Wong, Ming H; Zhang, Chaosheng

    2015-01-01

    Wood preservatives can protect wood from dry rot, fungi, mould and insect damage, and chromated copper arsenate (CCA) has been used as an inorganic preservative for many years. However, wood treated with CCA has been restricted from residential uses in the EU from June 30, 2004, due to its potential toxicity. Such a regulation is not in place in China yet, and CCA-treated wood is widely used in public parks. A portable XRF analyser was used to investigate arsenic (As) concentration on surfaces of in-service CCA-treated wood planks in a popular park as well as the influencing field factors of age in-service, immersion and human footfall. With a total of 1207 readings, the observed As concentrations varied from below the detection limit (<10 mg/kg) to 15,746 mg/kg with a median of 1160 mg/kg. Strong variation of As concentrations were observed in different wood planks of the same age, on the surface of the same piece of wood, inside the same piece of wood, and different surfaces of walkway planks, hand rails and poles in the field. The oldest planks exhibited high As concentrations, which was related to its original treatment with high retention of CCA preservative. The effect of immersion in the field for about 4 months was insignificant for As concentration on the surfaces. However, a significant reduction of As was observed for immersion combined with human footfall (wiping by shoes). Human traffic in general caused slightly reduced and more evenly distributed As concentrations on the wood surfaces. The strong variation, slow aging and relatively weak immersion effects found in this study demonstrate that the in-service CCA-treated wood poses potential health risks to the park users, due to easy dermal contact especially when the wood is wet after rainfall. It is suggested that further comprehensive investigations and risk assessments of CCA-treated wood in residential areas in China are needed, and precautionary measures should be considered to reduce the

  18. End-point immobilization of heparin on plasma-treated surface of electrospun polycarbonate-urethane vascular graft.

    PubMed

    Qiu, Xuefeng; Lee, Benjamin Li-Ping; Ning, Xinghai; Murthy, Niren; Dong, Nianguo; Li, Song

    2017-03-15

    Small-diameter synthetic vascular grafts have high failure rate due to primarily surface thrombogenicity, and effective surface chemical modification is critical to maintain the patency of the grafts. In this study, we engineered a small-diameter, elastic synthetic vascular graft with off-the-shelf availability and anti-thrombogenic activity. Polycarbonate-urethane (PCU), was electrospun to produce nanofibrous grafts that closely mimicked a native blood vessel in terms of structural and mechanical strength. To overcome the difficulty of adding functional groups to PCU, we explored various surface modification methods, and determined that plasma treatment was the most effective method to modify the graft surface with functional amine groups, which were subsequently employed to conjugate heparin via end-point immobilization. In addition, we confirmed in vitro that the combination of plasma treatment and end-point immobilization of heparin exhibited the highest surface density and correspondingly the highest anti-thrombogenic activity of heparin molecules. Furthermore, from an in vivo study using a rat common carotid artery anastomosis model, we showed that plasma-heparin grafts had higher patency rate at 2weeks and 4weeks compared to plasma-control (untreated) grafts. More importantly, we observed a more complete endothelialization of the luminal surface with an aligned, well-organized monolayer of endothelial cells, as well as more extensive graft integration in terms of vascularization and cell infiltration from the surrounding tissue. This work demonstrates the feasibility of electrospinning PCU as synthetic elastic material to fabricate nanofibrous vascular grafts, as well as the potential to endow desired functionalization to the graft surface via plasma treatment for the conjugation of heparin or other bioactive molecules.

  19. Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces.

    PubMed

    Felgueiras, Helena P; Aissa, Ines Ben; Evans, Margaret D M; Migonney, Véronique

    2015-11-01

    The research developed on functionalized model or prosthetic surfaces with bioactive polymers has raised the possibility to modulate and/or control the biological in vitro and in vivo responses to synthetic biomaterials. The mechanisms underlying the bioactivity exhibited by sulfonated groups on surfaces involves both selective adsorption and conformational changes of adsorbed proteins. Indeed, surfaces functionalized by grafting poly(sodium styrene sulfonate) [poly(NaSS)] modulate the cellular and bacterial response by inducing specific interactions with fibronectin (Fn). Once implanted, a biomaterial surface is exposed to a milieu of many proteins that compete for the surface which dictates the subsequent biological response. Once understood, this can be controlled by dictating exposure of active binding sites. In this in vitro study, we report the influence of binary mixtures of proteins [albumin (BSA), Fn and collagen type I (Col I)] adsorbed on poly(NaSS) grafted Ti6Al4V on the adhesion and differentiation of MC3T3-E1 osteoblast-like cells and the adhesion and proliferation of Staphylococcus aureus (S. aureus). Outcomes showed that poly(NaSS) stimulated cell spreading, attachment strength, differentiation and mineralization, whatever the nature of protein provided at the interface compared with ungrafted Ti6Al4V (control). While in competition, Fn and Col I were capable of prevailing over BSA. Fn played an important role in the early interactions of the cells with the surface, while Col I was responsible for increased alkaline phosphatase, calcium and phosphate productions associated with differentiation. Poly(NaSS) grafted surfaces decreased the adhesion of S. aureus and the presence of Fn on these chemically altered surfaces increased bacterial resistance ≈70% compared to the ungrafted Ti6Al4V. Overall, our study showed that poly(NaSS) grafted Ti6Al4V selectively adsorbed proteins (particularly Fn) promoting the adhesion and differentiation of osteoblast

  20. Preparation and characterization of high-specific-surface-area activated carbons from K2CO3-treated waste polyurethane.

    PubMed

    Hayashi, J; Yamamoto, N; Horikawa, T; Muroyama, K; Gomes, V G

    2005-01-15

    An activated carbon with high specific surface area was prepared from polyurethane foam by chemical activation with K2CO3 and the influences of carbonization temperature and impregnation ratio on the pore structure of the prepared activated carbon were investigated. It was found that the specific surface area of the activated carbon was at a maximum value (about 2800 m(2)/g) at a carbonization temperature of 1073 K and at an impregnation ratio of 1.0. It was concluded that the polyurethane foam structure was modified during impregnation by K2CO3, K2CO3 promoted charring during carbonization, and then the weight loss behavior was changed below 700 and above 1000 K, carbon in the char was consumed by K2CO3 reduction, and this led to the high specific surface area. The prepared activated carbon had a very sharp micropore size distribution, compared with the commercial activated carbon having high specific surface area. The amounts of three organic vapors (benzene, acetone, and octane) adsorbed on the prepared activated carbons was much larger than those on the traditional coconut shell AC and the same as those on the commercial activated carbon except for octane. We surmised that the high specific surface area was due to the modification of the carbonization behavior of polyurethane foam by K2CO3.

  1. Staphylococcus epidermidis adhesion to He, He/O(2) plasma treated PET films and aged materials: contributions of surface free energy and shear rate.

    PubMed

    Katsikogianni, M; Amanatides, E; Mataras, D; Missirlis, Y F

    2008-09-01

    Adhesion studies of bacteria (Staphylococcus epidermidis) to plasma modified PET films were conducted in order to determine the role of the surface free energy under static and dynamic conditions. In particular, we investigated the effect of the ageing time on the physicochemical surface properties of helium (He) and 20% of oxygen in helium (He/O(2)) plasma treated polyethylene terephthalate (PET) as well as on the bacterial adhesion. Treatment conditions especially known to result in ageing sensitive hydrophilicity (hydrophobic recovery) were intentionally chosen in an effort to obtain the widest possible range of surface energy specimens and also to avoid strong changes in the morphological properties of the surface. Both plasma treatments are shown to significantly reduce bacterial adhesion in comparison to the untreated PET. However, the ageing effect and the subsequent decrease in the surface free energy of the substratum surfaces with time - especially in the case of He treated samples - seem to favor bacterial adhesion and aggregation. The dispersion-polar and the Lifshitz-van der Waals (LW) acid-base (AB) thermodynamic approaches were applied to calculate the Gibbs free energy changes of adhesion (DeltaG(adh)) of S. epidermidis interacting with the substrates. There was a strong correlation between the thermodynamic predictions and the measured values of bacterial adhesion, when adhesion was performed under static conditions. By decoupling the (DeltaG(adh)) values into their components, we observed that polar/acid-base interactions dominated the interactions of bacteria with the substrates in aqueous media. However, under flow conditions, the increase in the shear rate restricted the predictability of the thermodynamic models.

  2. Microstructural, textural and hardness evolution of commercially pure Zr surface-treated by high current pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Chai, Linjiang; Chen, Baofeng; Wang, Shuyan; Zhang, Zhuo; Murty, Korukonda L.

    2016-12-01

    High current pulsed electron beam (HCPEB) treatments were performed for a commercially pure Zr sheet, with remarkable surface modifications demonstrated. After the HCPEB treatments, the prior equiaxed grains with a bimodal basal texture are replaced by ultra fine plates with dense nanotwins and an unusual fiber texture of < 11 2 bar 0 > normal to the sheet surface. Increased number of pulses leads to further refined microstructures and intensified textures, jointly resulting in continuous increase of hardness. Reasons for such modifications could mainly be attributed to ultra fast heating/cooling and strong variant selection due to presence of complex thermal and stress fields.

  3. Part I. Identifying anthropogenic markers in surface waters influenced by treated effluents: a tool in potable water reuse.

    PubMed

    Sirivedhin, Tanita; Gray, Kimberly A

    2005-03-01

    In potable water reuse, treated wastewater becomes part of the drinking water supply. An important question associated with this practice is whether or not the organic quality of the treated wastewater is chemically different from that of non-human impacted water. This question was addressed in a case study of indirect potable water reuse where the organic matrix of the South Platte River was analyzed upstream and downstream of the discharge of treated wastewater effluent using conventional water quality parameters combined with pyrolysis-GC/MS. Effluent-derived organic material (EfOM) was found to be more aliphatic and had higher organic nitrogen and halogen content compared to organic material derived from "natural" (non-anthropogenic) sources (NOM). Seasonal changes that resulted from the change in the contributions of aquatic and terrestrial sources were not observed in EfOM; but they were strongly observed in NOM under the control of natural processes. Using principal component and factor analyses, the pyrolysis fragments of phenol, alkyl-phenols, and acetic acid were identified as the seasonal indicators for the NOM set of samples. In contrast, benzaldehyde, benzonitrile, chlorobutanoic acid, furancarboxaldehyde, and methylfurancarboxaldehyde were identified as the indicators for wastewater inputs for the EfOM set of samples. Overall, the results from conventional water quality parameters and pyrolysis-GC/MS revealed that: (1) EfOM bears a chemical signature distinct from NOM and (2) under the conditions of this study, EfOM discharged to the South Platte River persisted and controlled organic quality at downstream points.

  4. Study on the Surface-Physicochemical-Property Changing of Bentonite by Adapting a New Soil Stabilizer

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Xiang, Wei; Lang, Linzhi; Cui, Deshan

    2015-04-01

    Surface-physicochemical-property of clays has been proved to have direct influence on its mechanic behavior. Specific surface area (SSA) is one of the most important factors for surface-physicochemical-property assessment. The smaller SSA tends higher strength (shear strength, unconfined compressive strength and tensile strength) under different water contents of soil. In this paper, a new soil stabilizer (Tung oil-based sulfonated) is developed and applied to improve the properties of Ca-bentonite. The differences of specific surface area, fractal dimension and micro geometric morphology between raw Ca-bentonite samples and modified ones are investigated based on the data acquired from water vapor, nitrogen adsorption experiments and SEM experiments. Results show that the SSA including external SSA and total SSA of treated samples decrease largely and apparently when compared to that of the raw samples. Furthermore, the higher volume ratio between soil stabilizer and water, the more decrease in SSA. Compared to the ones of raw Ca-bentonite, the external SSA and total SSA of the modified Ca-bentonite samples decrease by 48.5% and 25.2%, respectively, when the volume ratio was 1:50. This result implies that the connection of montmorillonite particles becomes more tightly after the treatment by the soil stabilizer. In addition, an obvious decreasing trend is found in fractal dimension by analysis of water vapor adsorption isotherms. This finding indicates that the pore surface tends to be smoother by the chemical action among particles bonds, more condensable in aggregates and shorter space between the interlayer of montmorillonite. SEM results display that the new soil stabilizer developed a quantity of lamellar aggregates but did not change the structure of montmorillonite. Based on all mentioned above, the results of fractal dimension analysis are verified. Consequently, this study shows that the new soil stabilizer (Tung oil-based sulfonated) has obvious effects

  5. Mechanical properties of nitrogen-rich surface layers on SS304 treated by plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Fernandes, B. B.; Mändl, S.; Oliveira, R. M.; Ueda, M.

    2014-08-01

    The formation of hard and wear resistant surface regions for austenitic stainless steel through different nitriding and nitrogen implantation processes at intermediate temperatures is an established technology. As the inserted nitrogen remains in solid solution, an expanded austenite phase is formed, accounting for these surface improvements. However, experiments on long-term behavior and exact wear processes within the expanded austenite layer are still missing. Here, the modified layers were produced using plasma immersion ion implantation with nitrogen gas and had a thickness of up to 4 μm, depending on the processing temperature. Thicker layers or those with higher surface nitrogen contents presented better wear resistance, according to detailed microscopic investigation on abrasion, plastic deformation, cracking and redeposition of material inside the wear tracks. At the same time, cyclic fatigue testing employing a nanoindenter equipped with a diamond ball was carried out at different absolute loads and relative unloadings. As the stress distribution between the modified layer and the substrate changes with increasing load, additional simulations were performed for obtaining these complex stress distributions. While high nitrogen concentration and/or thicker layers improve the wear resistance and hardness, these modifications simultaneously reduce the surface fatigue resistance.