Cool, Geneviève; Lebel, Alexandre; Sadiq, Rehan; Rodriguez, Manuel J
2014-08-15
Dissolved organic carbon (DOC) is a recognized indicator of natural organic matter (NOM) in surface waters. The aim of this paper is twofold: to evaluate the impact of geophysical characteristics, climate and ecological zones on DOC concentrations in surface waters and, to develop a statistical model to estimate the regional variability of these concentrations. In this study, multilevel statistical analysis was used to achieve three specific objectives: (1) evaluate the influence of climate and geophysical characteristics on DOC concentrations in surface waters; (2) compare the influence of geophysical characteristics and ecological zones on DOC concentrations in surface waters; and (3) develop a model to estimate the most accurate DOC concentrations in surface waters. The case study involved 115 catchments from surface waters in the Province of Quebec, Canada. Results showed that mean temperatures recorded 60 days prior to sampling, total precipitation 10 days prior to sampling and percentages of wetlands, coniferous forests and mixed forests have a significant positive influence on DOC concentrations in surface waters. The catchment mean slope had a significant negative influence on DOC concentrations in surface waters. Water type (lake or river) and deciduous forest variables were not significant. The ecological zones had a significant influence on DOC concentrations. However, geophysical characteristics (wetlands, forests and slope) estimated DOC concentrations more accurately. A model describing the variability of DOC concentrations was developed and can be used, in future research, for estimating DBPs in drinking water as well evaluating the impact of climate change on the quality of surface waters and drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Wen-Jun; Lu, Hua-Zheng; Zhang, Yi-Ping; Sha, Li-Qing; Schaefer, Douglas Allen; Song, Qing-Hai; Deng, Yun; Deng, Xiao-Bao
2016-10-01
To better understand the effect of dissolved organic carbon (DOC) transported by hydrological processes (rainfall, throughfall, litter leachate, and surface soil water; 0-20 cm) on soil respiration in tropical rainforests, we detected the DOC flux in rainfall, throughfall, litter leachate, and surface soil water (0-20 cm), compared the seasonality of δ13CDOC in each hydrological process, and δ13C in leaves, litter, and surface soil, and analysed the throughfall, litter leachate, and surface soil water (0-20 cm) effect on soil respiration in a tropical rainforest in Xishuangbanna, south-west China. Results showed that the surface soil intercepted 94.4 ± 1.2 % of the annual litter leachate DOC flux and is a sink for DOC. The throughfall and litter leachate DOC fluxes amounted to 6.81 and 7.23 % of the net ecosystem exchange respectively, indicating that the DOC flux through hydrological processes is an important component of the carbon budget, and may be an important link between hydrological processes and soil respiration in a tropical rainforest. Even the variability in soil respiration is more dependent on the hydrologically transported water than DOC flux insignificantly, soil temperature, and soil-water content (at 0-20 cm). The difference in δ13C between the soil, soil water (at 0-20 cm), throughfall, and litter leachate indicated that DOC is transformed in the surface soil and decreased the sensitivity indices of soil respiration of DOC flux to water flux, which suggests that soil respiration is more sensitive to the DOC flux in hydrological processes, especially the soil-water DOC flux, than to soil temperature or soil moisture.
NASA Astrophysics Data System (ADS)
Lee-Cullin, J. A.; Zarnetske, J. P.; Wiewiora, E.; Ruhala, S.; Hampton, T. B.
2016-12-01
Dissolved organic carbon (DOC) is a critical component to biogeochemical cycling and water quality in surface waters. As DOC moves through stream networks, from headwaters to higher order streams, the sediment-water interface (SWI), where streams and groundwater readily interact, exerts a strong influence on DOC concentrations and compositional characteristics (i.e., molecular properties). Few studies examine SWI patterns at larger spatial scales, instead focusing primarily on site-level studies because sampling in the SWI is methodologically time and labor intensive. It is presently unknown how land use and landcover influence the fate of DOC in the SWI and therefore the function of the SWI on catchment-scale DOC conditions. Here, we performed a catchment-scale, high spatial-resolution SWI sampling campaign to test how landscape pattern DOC signatures are propagated into the stream and groundwater, and to assess the fate of these signatures when DOC travels through the SWI. We sampled across 39 sites composed of first-, second-, and third-order locations in a lowland, third-order catchment composed of diverse landscape units and properties, including wetland, upland forest, and agriculture. At each of these locations, surface water, groundwater, and SWI water were collected, including six discrete depths across the SWI. The major land use and landcover properties were also determined for each of these locations. We developed two simple generalized linear models to identify the landscape properties with greatest explanatory power for DOC conditions - one for stream water and one for groundwater. The correlation between landscape properties and surface water DOC characteristics was stronger than between landscape properties and groundwater DOC characteristics. To test if the DOC properties from surface and groundwater were preserved or removed by the SWI, the resulting best-fit models for each water source were used to predict the DOC conditions across the SWI. The models were unable to predict SWI DOC conditions, indicating that the landscape signature present in both the surface water and groundwater is removed by processes occurring in the SWI. Overall, this suggests that the SWI functions as and effective zone for processing the landscape-derived DOC signatures.
NASA Astrophysics Data System (ADS)
Lee-Cullin, J. A.; Zarnetske, J. P.; Wiewiora, E.; Ruhala, S.; Hampton, T. B.
2017-12-01
Dissolved organic carbon (DOC) is a critical component to biogeochemical cycling and water quality in surface waters. As DOC moves through stream networks, from headwaters to higher order streams, the sediment-water interface (SWI), where streams and groundwater readily interact, exerts a strong influence on DOC concentrations and compositional characteristics (i.e., molecular properties). Few studies examine SWI patterns at larger spatial scales, instead focusing primarily on site-level studies because sampling in the SWI is methodologically time and labor intensive. It is presently unknown how land use and landcover influence the fate of DOC in the SWI and therefore the function of the SWI on catchment-scale DOC conditions. Here, we performed a catchment-scale, high spatial-resolution SWI sampling campaign to test how landscape pattern DOC signatures are propagated into the stream and groundwater, and to assess the fate of these signatures when DOC travels through the SWI. We sampled across 39 sites composed of first-, second-, and third-order locations in a lowland, third-order catchment composed of diverse landscape units and properties, including wetland, upland forest, and agriculture. At each of these locations, surface water, groundwater, and SWI water were collected, including six discrete depths across the SWI. The major land use and landcover properties were also determined for each of these locations. We developed two simple generalized linear models to identify the landscape properties with greatest explanatory power for DOC conditions - one for stream water and one for groundwater. The correlation between landscape properties and surface water DOC characteristics was stronger than between landscape properties and groundwater DOC characteristics. To test if the DOC properties from surface and groundwater were preserved or removed by the SWI, the resulting best-fit models for each water source were used to predict the DOC conditions across the SWI. The models were unable to predict SWI DOC conditions, indicating that the landscape signature present in both the surface water and groundwater is removed by processes occurring in the SWI. Overall, this suggests that the SWI functions as and effective zone for processing the landscape-derived DOC signatures.
Tanaka, Kazuki; Takesue, Nobuyuki; Nishioka, Jun; Kondo, Yoshiko; Ooki, Atsushi; Kuma, Kenshi; Hirawake, Toru; Yamashita, Youhei
2016-01-01
The spatial distribution of dissolved organic carbon (DOC) concentrations and the optical properties of dissolved organic matter (DOM) determined by ultraviolet-visible absorbance and fluorescence spectroscopy were measured in surface waters of the southern Chukchi Sea, western Arctic Ocean, during the early summer of 2013. Neither the DOC concentration nor the optical parameters of the DOM correlated with salinity. Principal component analysis using the DOM optical parameters clearly separated the DOM sources. A significant linear relationship was evident between the DOC and the principal component score for specific water masses, indicating that a high DOC level was related to a terrigenous source, whereas a low DOC level was related to a marine source. Relationships between the DOC and the principal component scores of the surface waters of the southern Chukchi Sea implied that the major factor controlling the distribution of DOC concentrations was the mixing of plural water masses rather than local production and degradation. PMID:27658444
Green, Nelson W.; Perdue, E. Michael; Aiken, George R.; Butler, Kenna D.; Chen, Hongmei; Dittmar, Thorsten; Niggemann, Jutta; Stubbins, Aron
2014-01-01
Dissolved organic matter (DOM) was isolated from large volumes of deep (674 m) and surface (21 m) ocean water via reverse osmosis/electrodialysis (RO/ED) and two solid-phase extraction (SPE) methods (XAD-8/4 and PPL) at the Natural Energy Laboratory of Hawaii Authority (NELHA). By applying the three methods to common water samples, the efficiencies of XAD, PPL and RO/ED DOM isolation were compared. XAD recovered 42% of dissolved organic carbon (DOC) from deep water (25% with XAD-8; 17% with XAD-4) and 30% from surface water (16% with XAD-8; 14% with XAD-4). PPL recovered 61 ± 3% of DOC from deep water and 61% from surface water. RO/ED recovered 82 ± 3% of DOC from deep water, 14 ± 3% of which was recovered in a sodium hydroxide rinse, and 75 ± 5% of DOC from surface water, with 12 ± 2% in the sodium hydroxide rinse. The highest recoveries of all were achieved by the sequential isolation of DOC, first with PPL and then via RO/ED. This combined technique recovered 98% of DOC from a deep water sample and 101% of DOC from a surface water sample. In total, 1.9, 10.3 and 1.6 g-C of DOC were collected via XAD, PPL and RO/ED, respectively. Rates of DOC recovery using the XAD, PPL and RO/ED methods were 10, 33 and 10 mg-C h− 1, respectively. Based upon C/N ratios, XAD isolates were heavily C-enriched compared with water column DOM, whereas RO/ED and PPL ➔ RO/ED isolate C/N values were most representative of the original DOM. All techniques are suitable for the isolation of large amounts of DOM with purities suitable for most advanced analytical techniques. Coupling PPL and RO/ED techniques may provide substantial progress in the search for a method to quantitatively isolate oceanic DOC, bringing the entirety of the DOM pool within the marine chemist's analytical window.
Royer, Isabelle; Angers, Denis A; Chantigny, Martin H; Simard, Régis R; Cluis, Daniel
2007-01-01
Dissolved organic carbon (DOC) export from soils can play a significant role in soil C cycling and in nutrient and pollutant transport. However, information about DOC losses from agricultural soils as influenced by management practices is scarce. We compared the effects of mineral fertilizer (MF) and liquid hog manure (LHM) applications on the concentration and molecular size of DOC released in runoff and tile-drain water under corn (Zea mays L.) and forage cropping systems. Runoff and tile-drain water samples were collected during a 2-mo period (October to December 1998) and DOC concentration was measured. Characterization of DOC was performed by tangential ultrafiltration with nominal cut-offs at 3 and 100 kDa. Mean concentration of DOC in runoff water (12.7 mg DOC L(-1)) was higher than in tile-drain water (6.5 mg DOC L(-1)). Incorporation of corn residues increased the DOC concentration by 6- to 17-fold in surface runoff, but this effect was short-lived. In runoff water, the relative size of the DOC molecules increased when corn residues and LHM were applied probably due to partial microbial breakdown of these organic materials and to a faster decomposition or preferential adsorption of the small molecules. The DOC concentration in tile-drain water was slightly higher under forage (7.5 mg DOC L(-1)) than under corn (5.4 mg DOC L(-1)) even though the application rates of LHM were higher in corn plots. We suggest that preferential flow facilitated the migration of DOC to tile drains in forage plots. In conclusion, incorporation of corn residues and LHM increased the concentration of DOC and the relative size of the molecules in surface runoff water, whereas DOC in tile-drain water was mostly influenced by the cropping system with relatively more DOC and larger molecules under forage than corn.
Organic Matter in Rivers: The Crossroads between Climate and Water Quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davisson, M L
2001-04-27
All surface waters in the world contain dissolved organic matter and its concentration depends on climate and vegetation. Dissolved organic carbon (DOC) is ten times higher in wetlands and swamps than in surface water of arctic, alpine, or arid climate. Climates of high ecosystem productivity (i.e., tropics) typically have soils with low organic carbon storage, but drain high dissolved organic loads to rivers. Regions with lower productivity (e.g. grasslands) typically have high soil carbon storage while adjacent rivers have high DOC contents. Most DOC in a free-flowing river is derived from leaching vegetation and soil organic matter, whereas in dammedmore » rivers algae may comprise a significant portion. Water chemistry and oxygen-18 abundance of river water, along with radiocarbon and carbon-13 isotope abundance measurements of DOC were used to distinguish water and water quality sources in the Missouri River watershed. Drinking water for the City of St. Louis incorporates these different sources, and its water quality depends mostly on whether runoff is derived from the upper or the lower watershed, with the lower watershed contributing water with the highest DOC. During drinking water chlorination, DOC forms carcinogenic by-products in proportion to the amount of DOC present. This has recently led the USEPA to propose federal regulation standards. Restoration of natural riparian habitat such as wetlands will likely increase DOC concentrations in river water.« less
NASA Astrophysics Data System (ADS)
Pissarello, Anna; Lechtenfeld, Oliver; Miltner, Anja; Kästner, Matthias
2017-04-01
In the last decades, decreases in soil organic matter (SOM) content and increases of dissolved organic carbon (DOC) concentrations in surface water bodies have been recorded in the northern hemisphere. These have severe consequences for soil fertility and for drinking water purification, respectively. We hypothesize that microbially degraded SOM is a potential source of the additional DOC in the surface water. Recently, rain events have become more extreme, resulting in longer droughts and more intense rain events. These changes in the precipitation regime may increase the input of DOC into surface waters, which occurs mainly directly after heavy rain events. Therefore, our interest was to evaluate the role of variations of the water regime on the mobilization of the DOC from soil organic matter to soil solution. Flow-through column experiments were conducted under extreme precipitation scenarios (from continuously wet to pronounced drying and rewetting) in the laboratory in order to test how fluctuation in the water content influences DOC concentration and composition in the leachates. In our experiment we analyzed both soil respiration and DOM mobilization and found that the increased DOM mobilization after heavy rain events was also an effect of increased microbial activity after the drought stress was relieved. Furthermore, we considered that an important contribution to DOC formation and export may come from microbial processing of microbial biomass residues, residing within the particulate organic matter (POM) fraction. Therefore our aim was to link the necromass contribution to the exported DOC by characterizing DOC leachates of the soil columns at the molecular level and comparing them to fractions of bacterial DOC and POC obtained from an Escherichia coli pure culture, by using ultra-high-resolution methods such as Electrospray Ionization and Matrix assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS and MALDI-FTICR-MS, respectively). The results help to relate the origin of organic matter to typical chemical composition patterns and to allow quantification of the relative contributions of plant and microbe-derived material to NOM and how they are affected by the different water regimes. The results of this experiment consent to link SOM degradation and DOC mobilization and to understand the role of water regime variations for these processes.
NASA Astrophysics Data System (ADS)
Bristol, E. M.; Dabrowski, J. S.; Jimmie, J. A.; Peter, D. L.; Holmes, R. M.; Mann, P. J.; Natali, S.; Schade, J. D.
2017-12-01
The Yukon-Kuskokwim Delta in southwest, Alaska is characterized by discontinuous permafrost, which is vulnerable to thaw induced by climate change. Recent fires in the delta have caused dramatic changes in the landscape, likely changing carbon dynamics, and potentially altering dissolved organic carbon (DOC) composition and DOC concentrations in aquatic ecosystems. These changes, in turn, likely affect microbial respiration and hydrologic C export from watersheds in the delta. In this study, we investigated how landscape position and fire history drive changes in DOC composition and reactivity in aquatic ecosystems. We surveyed soil pore waters, ponds, fens, and streams at varying landscape positions in burned and unburned landscapes. We also conducted a laboratory experiment to compare the role of photooxidation, photodegradation, and microbial respiration in altering DOC composition and concentration. Surface waters in burned regions were higher in temperature and inorganic nitrogen concentrations. Higher conductivity in burned areas suggests that fire is deepening the water table, causing water to flow through a more mineral soil horizon. While DOC concentrations did not vary significantly by landscape position or fire history, optical properties of DOC suggest that DOC molecular weight is lower in burned regions and decreases along flow paths. Similarly, our incubation experiment indicated that changes in DOC composition are driven by exposure to light more than bacterial respiration, and that photochemical reactivity declines along flow paths. Percent DOC loss was greatest in waters exposed to both light and bacterial, and percent DOC loss from burned watershed waters was correlated with optical properties. Based on our findings, we predict that the combination of increased surface water temperatures, increased inorganic nitrogen concentrations, and lower molecular weight DOC will increase bacterial respiration of DOC in watersheds burned by wildfire. Further research is needed to better understand the changing hydrology in burned tundra, and the relationship between photooxidation and biological mineralization of DOC.
Sunlight Controls Water Column Processing of Carbon in Arctic Freshwaters
NASA Astrophysics Data System (ADS)
Cory, R. M.; Ward, C. P.; Crump, B. C.; Kling, G. W.
2014-12-01
Carbon (C) in thawing permafrost soils may have global impacts on climate change, yet controls on its processing and fate are poorly understood. The dominant fate of dissolved organic C (DOC) released from soils to inland waters is either complete oxidation to CO2 or partial oxidation and river export to oceans. Both processes are most often attributed to bacterial respiration, but we recently showed that photochemical oxidation exceeds rates of respiration and accounts for 70-95% of total DOC processed in the water column of arctic lakes and rivers. While the overall dominance of photochemical processing in streams and lakes remained, the fate of DOC varied consistently by water type. In small streams DOC was mainly mineralized by sunlight to CO2, while in lakes the main fate of DOC was partial photo-oxidation. Large rivers were intermediate between these end members, and photo-mineralization to CO2 was about equal to or less than partial photo-oxidation. We suggest this pattern is a result of light-exposure history, where DOC leached from soils into headwater streams has little prior light exposure and is labile to complete photo-oxidation, but as light exposure increases moving downstream and into lakes with longer residence times the DOC photo-lability declines. Thus as easily photo-mineralized moieties are removed, DOC fate shifts toward partial photo-oxidation and downstream export in rivers and lakes. At the basin scale, photochemical processing of DOC is about one third of the total CO2 released from surface waters, and is thus an important, newly measured component of the Arctic C budget. We also suggest that these photochemical transformations of DOC will occur in any shallow surface water, and could be important for better understanding inland water carbon cycling.
Awad, John; van Leeuwen, John; Liffner, Joel; Chow, Christopher; Drikas, Mary
2016-02-01
The treatability of NOM present in runoff and subsurface waters from discrete zero-order catchments (ZOCs) with three land management practices (Australian native vegetation, pine plantation, grasslands) on varying soil textures of a closed drinking water reservoir-catchment was investigated. Subsurface water samples were collected by lysimeters and shallow piezometers and surface waters by installation of barriers that diverted waters to collection devices. For small sample volumes collected, a 'micro' jar testing procedure was developed to assess the treatability of organics by enhanced coagulation using alum, under standardised conditions. DOM present in water samples was quantified by measurement of DOC and UV absorbance (at 254 nm) and characterized using these and F-EEM. The mean alum dose rate (mg alum per mg DOC removed or Al/DOC) was found to be lower for DOM from sandy soil ZOCs (21.1 ± 11.0 Al/DOC) than from clayey soil ZOCs (38.6 ± 27.7 Al/DOC). ZOCs with Pinus radiata had prominent litter layers (6.3 ± 2.6 cm), and despite differences in soil textures showed similarity in DOM character in subsurface waters, and in alum dose rates (22.2 ± 5.5 Al/DOC). For sandy soil ZOCs, the lowest alum dose rates (16.5 ± 10.6 Al/DOC) were for waters from native vegetation catchment while, for clayey soil ZOCs, waters from pine vegetation had the lowest alum dose rates (23.0 ± 5.0 Al/DOC). Where ZOCs have a prominent O horizon, soil minerals had no apparent influence on the treatability of DOM. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cross-regional prediction of long-term trajectory of stream water DOC response to climate change
H. Laudon; J.M. Buttle; S.K. Carey; J.J. McDonnell; K.J. McGuire; J. Seibert; J. Shanley; C. Soulsby; D. Tetzlaff
2012-01-01
There is no scientific consensus about how dissolved organic carbon (DOC) in surface waters is regulated. Here we combine recent literature data from 49 catchments with detailed stream and catchment process information from nine well established research catchments at mid- to high latitudes to examine the question of how climate controls stream water DOC. We show for...
Peacock, Mike; Evans, Chris D; Fenner, Nathalie; Freeman, Chris; Gough, Rachel; Jones, Timothy G; Lebron, Inma
2014-05-01
Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R(2) = 0.91), and 230 nm for the other three sample sets (respective R(2) values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250-350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C.
Hladik, M.L.; Smalling, K.L.; Kuivila, K.M.
2008-01-01
A method was developed for the analysis of over 60 pesticides and degradates in water by HLB solid-phase extraction and gas-chromatography/mass spectrometry. Method recoveries and detection limits were determined using two surface waters with different dissolved organic carbon (DOC) concentrations. In the lower DOC water, recoveries and detection limits were 80%-108% and 1-12 ng/L, respectively. In the higher DOC water, the detection limits were slightly higher (1-15 ng/L). Additionally, surface water samples from four sites were analyzed and 14 pesticides were detected with concentrations ranging from 4 to 1,200 ng/L. ?? 2008 Springer Science+Business Media, LLC.
Del Rosario, Katie L; Humphrey, Charles P; Mitra, Siddhartha; O'Driscoll, Michael A
2014-01-01
On-site wastewater treatment systems (OWS) are a potentially significant non-point source of nutrients to groundwater and surface waters, and are extensively used in coastal North Carolina. The goal of this study was to determine the treatment efficiency of four OWS in reducing total dissolved nitrogen (TDN) and dissolved organic carbon (DOC) concentrations before discharge to groundwater and/or adjacent surface water. Piezometers were installed for groundwater sample collection and nutrient analysis at four separate residences that use OWS. Septic tank effluent, groundwater, and surface water samples (from an adjacent stream) were collected four times during 2012 for TDN and DOC analysis and pH, temperature, electrical conductivity, and dissolved oxygen measurements. Treatment efficiencies from the tank to the groundwater beneath the drainfields ranged from 33 to 95% for TDN and 45 to 82% for DOC, although dilution accounted for most of the concentration reductions. There was a significant positive correlation between nitrate concentration and separation distance from trench bottom to water table and a significant negative correlation between DOC concentration and separation distance. The TDN and DOC transport (>15 m) from two OWS with groundwater saturated drainfield trenches was significant.
Löfgren, Stefan; Gustafsson, Jon Petter; Bringmark, Lage
2010-12-01
Numerous studies report increased concentrations of dissolved organic carbon (DOC) during the last two decades in boreal lakes and streams in Europe and North America. Recently, a hypothesis was presented on how various spatial and temporal factors affect the DOC dynamics. It was concluded that declining sulphur deposition and thereby increased DOC solubility, is the most important driver for the long-term DOC concentration trends in surface waters. If this recovery hypothesis is correct, the DOC levels should increase both in the soil solution as well as in the surrounding surface waters as soil pH rises and the ionic strength declines due to the reduced input of SO(4)(2-) ions. In this project a geochemical model was set up to calculate the net humic charge and DOC solubility trends in soils during the period 1996-2007 at two integrated monitoring sites in southern Sweden, showing clear signs of acidification recovery. The Stockholm Humic Model was used to investigate whether the observed DOC solubility is related to the humic charge and to examine how pH and ionic strength influence it. Soil water data from recharge and discharge areas, covering both podzols and riparian soils, were used. The model exercise showed that the increased net charge following the pH increase was in many cases counteracted by a decreased ionic strength, which acted to decrease the net charge and hence the DOC solubility. Thus, the recovery from acidification does not necessarily have to generate increasing DOC trends in soil solution. Depending on changes in pH, ionic strength and soil Al pools, the trends might be positive, negative or indifferent. Due to the high hydraulic connectivity with the streams, the explanations to the DOC trends in surface waters should be searched for in discharge areas and peat lands. Copyright © 2010 Elsevier B.V. All rights reserved.
Response Characteristics of Dissolved Organic Carbon Flushing in a Subarctic Alpine Catchment
NASA Astrophysics Data System (ADS)
Carey, S. K.
2002-12-01
Dissolved organic carbon (DOC) is an important part of ecosystem-scale carbon balances and in the transport of contaminants as it interacts with other dissolved substances including trace metals. It also can be used as a surrogate hydrological tracer in permafrost regions as near-surface waters are often DOC enriched due to the presence of thick organic soils. In a small subarctic alpine catchment within the Wolf Creek Research Basin, Yukon, Canada, DOC was studied in the summer of 2001 and spring of 2002 to determine the role frost (both permanent and seasonal), snowmelt and summer storms on DOC flushing. Peak DOC concentrations occurred during the snowmelt period, approximately one week prior to peak discharge. However, peak discharge took place several weeks after snow on south facing exposures had melted. Within the hillslopes, DOC concentrations were three to five times greater in wells underlain with permafrost compared with seasonal frost. Groundwater DOC concentrations declined during snowmelt, yet remained at levels above the streamflow. After peaking, streamflow DOC concentrations declined exponentially suggesting a simple flushing mechanism, however there did not appear to be a relation between DOC and topographic position. Following melt, permafrost underlain slopes had near-surface water tables and retained elevated levels of DOC, whereas slopes without permafrost had rapidly declining water tables at upslope locations with low DOC concentrations at all positions except near-stream riparian zones. The influence of summer rainstorms on DOC was monitored on three occasions. In each case DOC peaked on the ascending limb of the runoff hydrograph and declined exponentially on the receding limb and hysteretic behavior occurred between discharge and DOC during all events. Patterns of DOC within the hillslopes and streams suggest that runoff from permafrost-underlain slopes control DOC flushing within the stream during both snowmelt and summer periods. This flushing mechanism conforms with conceptual models of runoff generation in discontinuous permafrost catchments whereby water tables within permafrost-underlain slopes rise into porous organic-layers, whereupon DOC is leached into the water and rapidly conveyed to the stream.
Tang, R; Clark, J M; Bond, T; Graham, N; Hughes, D; Freeman, C
2013-02-01
Catchments draining peat soils provide the majority of drinking water in the UK. Over the past decades, concentrations of dissolved organic carbon (DOC) have increased in surface waters. Residual DOC can cause harmful carcinogenic disinfection by-products to form during water treatment processes. Increased frequency and severity of droughts combined with and increased temperatures expected as the climate changes, have potentials to change water quality. We used a novel approach to investigate links between climate change, DOC release and subsequent effects on drinking water treatment. We designed a climate manipulation experiment to simulate projected climate changes and monitored releases from peat soil and litter, then simulated coagulation used in water treatment. We showed that the 'drought' simulation was the dominant factor altering DOC release and affected the ability to remove DOC. Our results imply that future short-term drought events could have a greater impact than increased temperature on DOC treatability. Copyright © 2012 Elsevier Ltd. All rights reserved.
Land management impacts on dairy-derived dissolved organic carbon in ground water
Chomycia, J.C.; Hernes, P.J.; Harter, T.; Bergamaschi, B.A.
2008-01-01
Dairy operations have the potential to elevate dissolved organic carbon (DOC) levels in ground water, where it may interact with organic and inorganic contaminants, fuel denitrification, and may present problems for drinking water treatment. Total and percent bioavailable DOC and total and carbon-specific trihalomethane (THM) formation potential (TTHMFP and STHMFP, respectively) were determined for shallow ground water samples from beneath a dairy farm in the San Joaquin Valley, California. Sixteen wells influenced by specific land management areas were sampled over 3 yr. Measured DOC concentrations were significantly elevated over the background as measured at an upgradient monitoring well, ranging from 13 to 55 mg L-1 in wells downgradient from wastewater ponds, 8 to 30 mg L-1 in corral wells, 5 to 12 mg L-1 in tile drains, and 4 to 15 mg L-1 in wells associated with manured fields. These DOC concentrations were at the upper range or greatly exceeded concentrations in most surface water bodies used as drinking water sources in California. DOC concentrations in individual wells varied by up to a factor of two over the duration of this study, indicating a dynamic system of sources and degradation. DOC bioavailability over 21 d ranged from 3 to 10%, comparable to surface water systems and demonstrating the potential for dairy-derived DOC to influence dissolved oxygen concentrations (nearly all wells were hypoxic to anoxic) and denitrification. TTHMFP measurements across all management units ranged from 141 to 1731 ??g L-1, well in excess of the maximum contaminant level of 80 ??g L-1 established by the Environmental Protection Agency. STHMFP measurements demonstrated over twofold variation (???4 to ???8 mmol total THM/mol DOC) across the management areas, indicating the dependence of reactivity on DOC composition. The results indicate that land management strongly controls the quantity and quality of DOC to reach shallow ground water and hence should be considered when managing ground water resources and in any efforts to mitigate contamination of ground water with carbon-based contaminants, such as pesticides and pharmaceuticals. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Inverse coupling of DOC and nitrate export from soils and streams
NASA Astrophysics Data System (ADS)
Goodale, Christine
2013-04-01
Over the last two decades, nitrate concentrations in surface waters have decreased across the Northeastern United States and parts of northern Europe. Many hypotheses have been proposed to explain this decrease, but the cause remains unclear. One control may be associated with increasing abundance of dissolved organic carbon (DOC), which in turn may be a result of soil recovery from acidification. Compared across catchments, surface water NO3- decreases sharply with increasing DOC concentration. Here, we used measurements of soil and solution nitrate, DOC, and their isotopic composition (13C-DOC, 15N- and 18O-NO3) to test several related hypotheses that changing acidification affects the release of DOC and bio-available DOC (bDOC) from soil, and that variation in stocks of soil C and release of bDOC partly control NO3- export from forested catchments in New York State, USA. We examined whether DOC and NO3- are both driven by soil C processes that produce inverse coupling at the scale of soil cores as well as across catchments, through comparison of soil and surface water chemistry across nine catchments selected from long-term monitoring networks in the Catskill and Adirondack Mountains. In addition, we conducted a series of soil core leaching experiments to examine the role of acidification and recovery in driving the net production of DOC and NO3- from soils. Over 8 months, soil cores were leached biweekly with simulated rainfall solutions of varying pH (3.6 to 7.0) from additions of H2SO4, CaCO3 and NaOH. These experiments did not yield a pH-induced change in DOC quantity, but did show a change in DOC quality, in that acidified cores released more bio-available DOC with less depleted 13C-DOC than cores with experimentally increased pH. All cores leached substantial amounts of nitrate. Together, these lab- and field comparisons are being used to identify the role of soil production and consumption processes in driving cross-watershed differences in DOC and NO3- loss, or whether other factors (e.g., riparian, in-stream or hydrologic processes) likely explain this relationship.
NASA Astrophysics Data System (ADS)
Meng, Feifei; Dai, Minhan; Cao, Zhimian; Wu, Kai; Zhao, Xiaozheng; Li, Xiaolin; Chen, Junhui; Gan, Jianping
2017-12-01
We examined the distribution and seasonality of dissolved organic carbon (DOC) based on a large data set collected from the northern South China Sea (NSCS) shelf under complex circulation schemes influenced by river plume, coastal upwelling, and downwelling. The highest surface values of ˜117 μmol L-1 were observed nearshore in summer suggesting high DOC supplies from the river inputs, whereas the lowest surface values of ˜62 μmol L-1 were on the outer shelf in winter due to entrainment of DOC-poor subsurface water under strengthened vertical mixing. While the summer coastal upwelling brought lower DOC from offshore depth to the nearshore surface, the winter coastal downwelling delivered higher surface DOC to the midshelf deep waters from the inner shelf fueled by the China Coastal Current (CCC) transporting relatively high DOC from the East China Sea to the NSCS. The intensified winter downwelling generated a cross-shelf DOC transport of 3.1 × 1012 g C over a large shelf area, which induced a significant depression of the NSCS DOC inventory in winter relative to in autumn. In addition to the variable physical controls, net biological production of DOC was semiquantified in both the river plume (2.8 ± 3.0 μmol L-1) and coastal upwelling (3.1 ± 1.3 μmol L-1) in summer. We demonstrated that the NSCS shelf had various origins of DOC including riverine inputs, inter-shelf transport and in situ production. Via cross-shelf transport, the accumulated DOC would be exported to and stored in the deep ocean, suggesting that continental shelves are a potentially effective carbon sink.
Drivers of inverse DOC-nitrate loss patterns in forest soils and streams
NASA Astrophysics Data System (ADS)
Goodale, C. L.
2013-12-01
Nitrate loss from forested catchments varies greatly across sites and over time, with few reliable correlates. One of the few recurring patterns, however, is the negative nonlinear relationship that occurs regularly between surface water nitrate and dissolved organic carbon (DOC) concentrations: that is, nitrate declines sharply as DOC concentrations increase, and high nitrate levels occur only at low DOC concentrations. Several hypotheses have been proposed to explain this pattern, but its cause has remained speculative. It is likely to be driven by C- or N-limitation of biological processes such as assimilation or denitrification, but the identity of which biological process or the main landscape position of their activity are not known. We examined whether DOC and nitrate are both driven by soil C content, at scales of both soil blocks and across catchments, by measuring soil, soil extract, and surface water chemistry across nine catchments selected from long-term monitoring networks in the Catskill and Adirondack Mountains. We measured soil C and N status and solution nitrate, DOC, bioavailable DOC (bDOC), and isotopic composition (13C-DOC, 15N- and 18O-NO3) to examine whether variation in stocks of soil C partly controls DOC and nitrate loss from forested catchments in New York State. These measurements showed that surface soil C and C:N ratio together determine soil production of DOC and nitrate, reflecting assimilative demand for N by heterotrophic microbes. Yet, they also show that these processes do not produce the inverse DOC-NO3 curve observed at the catchment scale. Rather, catchment-scale DOC-nitrate patterns are more likely to be governed by the balance between excess nitrate production and its bDOC-mediated loss to denitrification.
Ying Ouyang
2012-01-01
Understanding the dynamics of naturally occurring dissolved organic carbon (DOC) in a river is central to estimating surface water quality, aquatic carbon cycling, and global climate change. Currently, determination of the DOC in surface water is primarily accomplished by manually collecting samples for laboratory analysis, which requires at least 24 h. In other words...
Degradation potentials of dissolved organic carbon (DOC) from thawed permafrost peat
Panneer Selvam, Balathandayuthabani; Lapierre, Jean-François; Guillemette, Francois; Voigt, Carolina; Lamprecht, Richard E.; Biasi, Christina; Christensen, Torben R.; Martikainen, Pertti J.; Berggren, Martin
2017-01-01
Global warming can substantially affect the export of dissolved organic carbon (DOC) from peat-permafrost to aquatic systems. The direct degradability of such peat-derived DOC, however, is poorly constrained because previous permafrost thaw studies have mainly addressed mineral soil catchments or DOC pools that have already been processed in surface waters. We incubated peat cores from a palsa mire to compare an active layer and an experimentally thawed permafrost layer with regard to DOC composition and degradation potentials of pore water DOC. Our results show that DOC from the thawed permafrost layer had high initial degradation potentials compared with DOC from the active layer. In fact, the DOC that showed the highest bio- and photo-degradability, respectively, originated in the thawed permafrost layer. Our study sheds new light on the DOC composition of peat-permafrost directly upon thaw and suggests that past estimates of carbon-dioxide emissions from thawed peat permafrost may be biased as they have overlooked the initial mineralization potential of the exported DOC. PMID:28378792
NASA Astrophysics Data System (ADS)
Strock, K.; Saros, J. E.
2017-12-01
Interannual climate variability is expected to increase over the next century, but the extent to which hydroclimatic variability influences biogeochemical processes is unclear. To determine the effects of extreme weather on surface water chemistry, a 30-year record of surface water geochemistry for 84 lakes in the northeastern U.S. was combined with landscape data and watershed-specific weather data. With these data, responses in sulfate and dissolved organic carbon (DOC) concentrations were characterized during extreme wet and extreme dry conditions. Episodic acidification during drought and episodic brownification (increased DOC) during wet years were detected broadly across the northeastern U.S. Episodic chemical response was linearly related to wetland coverage in lake watersheds only during extreme wet years. The results of a redundancy analysis suggest that topographic features also need to be considered and that the interplay between wetlands and their degree of connectivity to surface waters could be driving episodic acidification in this region. A subset of lakes located in Acadia National Park, Maine U.S.A. were studied to better understand the implications of regional increases of DOC in lakes. Water transparency declined across six study sites since 1995 as DOC increased. As clarity declined, some lakes experienced reduced epilimnion thickness. The degree to which transparency changed across the lakes was dependent on DOC concentration, with a larger decline in transparency occurring in clear water lakes than brown water lakes. The results presented here help to clarify the variability observed in long-term recovery from acidification and regional increases in DOC. Specifically, an increased frequency of extreme wet years may be contributing to a recent acceleration in the recovery of lake ecosystems from acidification; however, increased frequency of wet years may also lead to reduced water clarity and altered physical lake habitat. Clarifying the response of DOC, a pivotal regulator of aquatic ecosystems, to extreme weather events across gradients of landscape position and atmospheric deposition, is increasingly important for policy and management decisions as the frequency of extreme events continues to increase in this region.
Modelling impacts of temperature, and acidifying and eutrophying deposition on DOC trends
NASA Astrophysics Data System (ADS)
Sawicka, Kasia; Rowe, Ed; Evans, Chris; Monteith, Don; Vanguelova, Elena; Wade, Andrew; Clark, Joanna
2017-04-01
Surface water dissolved organic carbon (DOC) concentrations in large parts of the northern hemisphere have risen over the past three decades, raising concern about enhanced contributions of carbon to the atmosphere and seas and oceans. The effect of declining acid deposition has been identified as a key control on DOC trends in soil and surface waters, since pH and ionic strength affect sorption and desorption of DOC. However, since DOC is derived mainly from recently-fixed carbon, and organic matter decomposition rates are considered sensitive to temperature, uncertainty persists regarding the extent to the relative importance of different drivers that affect these upward trends. We ran the dynamic model MADOC (Model of Acidity and Soil Organic Carbon) for a range of UK soils (podzols, gleysols and peatland), for which the time-series were available, to consider the likely relative importance of decreased deposition of sulphate and chloride, accumulation of reactive N, and higher temperatures, on DOC production in different soils. Modelled patterns of DOC change generally agreed favourably with measurements collated over 10-20 years, but differed markedly between sites. While the acidifying effect of sulphur deposition appeared to be the predominant control on the observed soil water DOC trends in all the soils considered other than a blanket peat, the model suggested that over the long term, the effects of nitrogen deposition on N-limited soils may have been sufficient to elevate the DOC recovery trajectory significantly. The second most influential cause of rising DOC in the model simulations was N deposition in ecosystems that are N-limited and respond with stimulated plant growth. Although non-marine chloride deposition made some contribution to acidification and recovery, it was not amongst the main drivers of DOC change. Warming had almost no effect on modelled historic DOC trends, but may prove to be a significant driver of DOC in future via its influence on nutrient availability and productivity. This suggests that current and future DOC concentrations could also exceed preindustrial levels due to the increased productivity of N enriched ecosystems, having important implications for drinking water catchment management and the setting and pursuit of appropriate restoration targets.
Water-soluble elements in snow and ice on Mt. Yulong.
Niu, Hewen; Kang, Shichang; Shi, Xiaofei; He, Yuanqing; Lu, Xixi; Shi, Xiaoyi; Paudyal, Rukumesh; Du, Jiankuo; Wang, Shijin; Du, Jun; Chen, Jizu
2017-01-01
Melting of high-elevation glaciers can be accelerated by the deposition of light-absorbing aerosols (e.g., organic carbon, mineral dust), resulting in significant reductions of the surface albedo on glaciers. Organic carbon deposited in glaciers is of great significance to global carbon cycles, snow photochemistry, and air-snow exchange processes. In this work, various snow and ice samples were collected at high elevation sites (4300-4850masl) from Mt. Yulong on the southeastern Tibetan Plateau in 2015. These samples were analyzed for water-soluble organic carbon (DOC), total nitrogen (TN), and water-soluble inorganic ions (WSIs) to elucidate the chemical species and compositions of the glaciers in the Mt. Yulong region. Generally, glacial meltwater had the lowest DOC content (0.39mgL -1 ), while fresh snow had the highest (2.03mgL -1 ) among various types of snow and ice samples. There were obvious spatial and temporal trends of DOC and WSIs in glaciers. The DOC and TN concentrations decreased in the order of fresh snow, snow meltwater, snowpit, and surface snow, resulting from the photolysis of DOC and snow's quick-melt effects. The surface snow had low DOC and TN depletion ratios in the melt season; specifically, the ratios were -0.79 and -0.19mgL -1 d -1 , respectively. In the winter season, the ratios of DOC and TN were remarkably higher, with values of -0.20mgL -1 d -1 and -0.08mgL -1 d -1 , respectively. A reduction of the DOC and TN content in glaciers was due to snow's quick melt and sublimation. Deposition of these light-absorbing impurities (LAPs) in glaciers might accelerate snowmelt and even glacial retreat. Copyright © 2016 Elsevier B.V. All rights reserved.
Sources, behaviors and degradation of dissolved organic matter in the East China Sea
NASA Astrophysics Data System (ADS)
Chen, Yan; Yang, Gui-Peng; Liu, Li; Zhang, Peng-Yan; Leng, Wei-Song
2016-03-01
Concentrations of dissolved organic carbon (DOC), dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and its major compound classes-total hydrolysable amino acids (THAA) were measured at 4 cross-shelf transects of the East China Sea in July 2011. Surface concentrations of DOC, DIN, DON and THAA at the nearshore stations were mostly in excess of those found at the offshore sites, indicating either substantial autochthonous production or allochthonous inputs from the Changjiang River. The vertical distributions of DOC, DON and THAA showed similar trends with higher values in the surface layer, whereas the elevated concentrations of DIN were observed in the bottom layer. Major constituents of THAA presented in the study area were glycine, serine, alanine, glutamic acid, aspartic acid and valine. The mole percentages of neutral amino acids increased from surface water to bottom water, whereas acidic and hydroxy amino acids decreased with the water depth. Concentrations of DOC and THAA were negatively correlated to the ΔDIN values (the difference between the real concentration and theoretical concentration), respectively, indicating the coupling relation between dissolved organic matter (DOM) remineralization and nutrient regeneration in the water column. The C/N ratios in the water column exhibited different characteristics with elevated values appearing in the surface and bottom layers. Box and whisker plots showed that both degradation index (DI) values and THAA yields displayed a decreasing trend from the surface layer to the bottom layer, implying increasing degradation with the water depth. Our data revealed that glycine and alanine increased in relative abundance with decreasing DI, while tyrosine, valine, phenylalanine and isoleucine increased with increasing DI.
Ward, Collin P; Nalven, Sarah G; Crump, Byron C; Kling, George W; Cory, Rose M
2017-10-03
In sunlit waters, photochemical alteration of dissolved organic carbon (DOC) impacts the microbial respiration of DOC to CO 2 . This coupled photochemical and biological degradation of DOC is especially critical for carbon budgets in the Arctic, where thawing permafrost soils increase opportunities for DOC oxidation to CO 2 in surface waters, thereby reinforcing global warming. Here we show how and why sunlight exposure impacts microbial respiration of DOC draining permafrost soils. Sunlight significantly increases or decreases microbial respiration of DOC depending on whether photo-alteration produces or removes molecules that native microbial communities used prior to light exposure. Using high-resolution chemical and microbial approaches, we show that rates of DOC processing by microbes are likely governed by a combination of the abundance and lability of DOC exported from land to water and produced by photochemical processes, and the capacity and timescale that microbial communities have to adapt to metabolize photo-altered DOC.The role of dissolved organic carbon (DOC) photo-alteration in the microbial respiration of DOC to CO 2 is unclear. Here, the authors show that the impact of this mechanism depends on whether photo-alteration of DOC produces or removes molecules used by native microbial communities prior to light exposure.
Sources, distributions and dynamics of dissolved organic matter in the Canada and Makarov Basins
Shen, Yuan; Benner, Ronald; Robbins, Lisa L.; Wynn, Jonathan
2016-01-01
A comprehensive survey of dissolved organic carbon (DOC) and chromophoric dissolved organic matter (CDOM) was conducted in the Canada and Makarov Basins and adjacent seas during 2010–2012 to investigate the dynamics of dissolved organic matter (DOM) in the Arctic Ocean. Sources and distributions of DOM in polar surface waters were very heterogeneous and closely linked to hydrological conditions. Canada Basin surface waters had relatively low DOC concentrations (69 ± 6 μmol L−1), CDOM absorption (a325: 0.32 ± 0.07 m−1) and CDOM-derived lignin phenols (3 ± 0.4 nmol L−1), and high spectral slope values (S275–295: 31.7 ± 2.3 μm−1), indicating minor terrigenous inputs and evidence of photochemical alteration in the Beaufort Gyre. By contrast, surface waters of the Makarov Basin had elevated DOC (108 ± 9 μmol L−1) and lignin phenol concentrations (15 ± 3 nmol L−1), high a325 values (1.36 ± 0.18 m−1), and low S275–295 values (22.8 ± 0.8 μm−1), indicating pronounced Siberian river inputs associated with the Transpolar Drift and minor photochemical alteration. Observations near the Mendeleev Plain suggested limited interactions of the Transpolar Drift with Canada Basin waters, a scenario favoring export of Arctic DOM to the North Atlantic. The influence of sea-ice melt on DOM was region-dependent, resulting in an increase (Beaufort Sea), a decrease (Bering-Chukchi Seas), and negligible change (deep basins) in surface DOC concentrations and a325 values. Halocline structures differed between basins, but the Canada Basin upper halocline and Makarov Basin halocline were comparable in their average DOC (65–70 μmol L−1) and lignin phenol concentrations (3–4 nmol L−1) and S275–295 values (22.9–23.7 μm−1). Deep-water DOC concentrations decreased by 6–8 μmol L−1 with increasing depth, water mass age, nutrient concentrations, and apparent oxygen utilization. Maximal estimates of DOC degradation rates (0.036–0.039 μmol L−1 yr−1) in the deep Arctic were lower than those in other ocean basins, possibly due to low water temperatures. DOC concentrations in bottom waters (>2500 m; 46 ± 2 μmol L−1) of the Canada and Makarov Basins were slightly lower than those reported for deep waters of the Eurasian Basin and Nordic Seas. Elevated a325 values (by 10–20%) were observed near the seafloor, indicating biological activity in Arctic basin sediments.
Lin, Yu-Shih; Koch, Boris P.; Feseker, Tomas; Ziervogel, Kai; Goldhammer, Tobias; Schmidt, Frauke; Witt, Matthias; Kellermann, Matthias Y.; Zabel, Matthias; Teske, Andreas; Hinrichs, Kai-Uwe
2017-01-01
Ocean margin sediments have been considered as important sources of dissolved organic carbon (DOC) to the deep ocean, yet the contribution from advective settings has just started to be acknowledged. Here we present evidence showing that near-surface heating of sediment in the Guaymas Basin, a young extensional depression, causes mass production and discharge of reactive dissolved organic matter (DOM). In the sediment heated up to ~100 °C, we found unexpectedly low DOC concentrations in the pore waters, reflecting the combined effect of thermal desorption and advective fluid flow. Heating experiments suggested DOC production to be a rapid, abiotic process with the DOC concentration increasing exponentially with temperature. The high proportions of total hydrolyzable amino acids and presence of chemical species affiliated with activated hydrocarbons, carbohydrates and peptides indicate high reactivity of the DOM. Model simulation suggests that at the local scale, near-surface heating of sediment creates short and massive DOC discharge events that elevate the bottom-water DOC concentration. Because of the heterogeneous distribution of high heat flow areas, the expulsion of reactive DOM is spotty at any given time. We conclude that hydrothermal heating of young rift sediments alter deep-ocean budgets of bioavailable DOM, creating organic-rich habitats for benthic life. PMID:28327661
Li, Angzhen; Zhao, Xu; Mao, Ran; Liu, Huijuan; Qu, Jiuhui
2014-04-30
In this study, the disinfection byproduct formation potential (DBPFP) of three surface waters with the dissolved organic carbon (DOC) content of 2.5, 5.2, and 7.9mg/L was investigated. The formation and distribution of trihalomethanes and haloacetic acids were evaluated. Samples collected from three surface waters in China were fractionated based on molecular weight and hydrophobicity. The raw water containing more hydrophobic (Ho) fraction exhibited higher formation potentials of haloacetic acid and trihalomethane. The DBPFP of the surface waters did not correlate with the DOC value. The values of DBPFP per DOC were correlated with the specific ultraviolet absorbance (SUVA) for Ho and Hi fractions. The obtained results suggested that SUVA cannot reveal the ability of reactive sites to form disinfection byproducts for waters with few aromatic structures. Combined with the analysis of FTIR and nuclear magnetic resonance spectra of the raw waters and the corresponding fractions, it was concluded that the Ho fraction with phenolic hydroxyl and conjugated double bonds was responsible for the production of trichloromethanes and trichloroacetic acids. The Hi fraction with amino and carboxyl groups had the potential to form dichloroacetic acids and chlorinated trihalomethanes. Copyright © 2014. Published by Elsevier B.V.
Acidity and origin of dissolved organic carbon in different vegetation zones
NASA Astrophysics Data System (ADS)
Hruška, Jakub; Oulehle, Filip; Myška, Oldřích; Chuman, Tomáš
2016-04-01
The acid/base character of aquatic dissolved organic carbon (DOC) has been studied intensively during recent decades with regard to the role of DOC in stream water acidity and the balance between natural acidity and anthropogenic acidification. Recently, DOC has been shown to play an important role in preindustrial surface waters. Studies focused on the acid/base properties of DOC have been carried out in mainly in Europe and North America and paint a conflicting picture. Some studies reported large differences in acid base properties, sometimes between quite similar and nearby localities, or between seasons at the same site. Other studies, however, found similar acid/base properties in waters from a variety of sites, sometimes far from each other as well as stable acid/base properties at the same site through different seasons or runoff events. Site density of DOC (amount of carboxylic groups per milligram of DOC) and SUVA was measured for streams (or small tundra ponds respectively) from the tundra in northern Alaska, boreal zone of Sweden, western Czech Republic (temperate region), and tropical Congo rain forest in central Africa. At least 10 samples from each region were taken from surface waters during the growing season. Titration of carboxylic groups after proton saturation on cation-exchange resin was used for site density determination. Despite very different climatic and vegetation properties and internal variation within a region, there was no statistically significant difference among regions for site density (it varied between 10.2-10.5 ueq/mg DOC) as well as for SUVA (tested by ANOVA). Results suggest that different vegetation and climate produced generally the same DOC in respect of acid/base character and SUVA. It also suggests that use of the one analytical technique was more important than differences between climatic zones itself.
In-Lake Processes Offset Increased Terrestrial Inputs of Dissolved Organic Carbon and Color to Lakes
Köhler, Stephan J.; Kothawala, Dolly; Futter, Martyn N.; Liungman, Olof; Tranvik, Lars
2013-01-01
Increased color in surface waters, or browning, can alter lake ecological function, lake thermal stratification and pose difficulties for drinking water treatment. Mechanisms suggested to cause browning include increased dissolved organic carbon (DOC) and iron concentrations, as well as a shift to more colored DOC. While browning of surface waters is widespread and well documented, little is known about why some lakes resist it. Here, we present a comprehensive study of Mälaren, the third largest lake in Sweden. In Mälaren, the vast majority of water and DOC enters a western lake basin, and after approximately 2.8 years, drains from an eastern basin. Despite 40 years of increased terrestrial inputs of colored substances to western lake basins, the eastern basin has resisted browning over this time period. Here we find the half-life of iron was far shorter (0.6 years) than colored organic matter (A420 ; 1.7 years) and DOC as a whole (6.1 years). We found changes in filtered iron concentrations relate strongly to the observed loss of color in the western basins. In addition, we observed a substantial shift from colored DOC of terrestrial origin, to less colored autochthonous sources, with a substantial decrease in aromaticity (-17%) across the lake. We suggest that rapid losses of iron and colored DOC caused the limited browning observed in eastern lake basins. Across a wider dataset of 69 Swedish lakes, we observed greatest browning in acidic lakes with shorter retention times (< 1.5 years). These findings suggest that water residence time, along with iron, pH and colored DOC may be of central importance when modeling and projecting changes in brownification on broader spatial scales. PMID:23976946
Kim, Yoon-Chang; Cramer, Jeffrey A; Booksh, Karl S
2011-10-21
A combination surface plasmon resonance (SPR) and conductivity sensor array was developed and implemented to demonstrate the ability to differentiate among changes in dissolved organic carbon (DOC) and salinity in coastal water. The array is capable of achieving sufficient spatial and temporal data density to better understand the cycling and fate of terrestrial DOC in coastal areas. DOC is the second largest source of bioreactive carbon in the environment and plays a key role in mediating microbial activity and generation of atmospheric CO(2). In the coastal areas, the salinity is also an important property in many applications, such as leak detection for landfill liners, saltwater intrusion to drinking water, marine environment monitoring, and seasonal climate prediction. Conductivity sensors are the industry standard for determining salinity in ocean systems. However, both conductivity and refractive index sensors, such as SPR spectroscopy based sensors, respond to salinity and DOC levels. To demonstrate the capability of the SPR sensor and a conductivity sensor to collect complimentary data useful in discrimination of salinity and DOC in coastal zone water, conductivity, SPR, and temperature data were collected during passage from the Juan de Fuca ridge area returning to the University of Washington docks.
Awad, John; van Leeuwen, John; Abate, Dawit; Pichler, Markus; Bestland, Erick; Chittleborough, David J; Fleming, Nigel; Cohen, Jonathan; Liffner, Joel; Drikas, Mary
2015-10-01
The influence of vegetation and soil texture on the concentration and character of dissolved organic matter (DOM) present in runoff from the surface and sub-surface of zero order catchments of the Myponga Reservoir-catchment (South Australia) was investigated to determine the impacts of catchment characteristics and land management practices on the quality of waters used for domestic supply. Catchments selected have distinct vegetative cover (grass, native vegetation or pine) and contrasting texture of the surface soil horizon (sand or clay loam/clay). Water samples were collected from three slope positions (upper, middle, and lower) at soil depths of ~30 cm and ~60 cm in addition to overland flows. Filtered (0.45 μm) water samples were analyzed for dissolved organic carbon (DOC) and UV-visible absorbance and by F-EEM and HPSEC with UV and fluorescence detection to characterize the DOM. Surface and sub-surface runoff from catchments with clay soils and native vegetation or grass had lower DOC concentrations and lower relative abundances of aromatic, humic-like and high molecular weight organics than runoff from sandy soils with these vegetative types. Sub-surface flows from two catchments with Pinus radiata had similar DOC concentrations and DOM character, regardless of marked variation in surface soil texture. Runoff from catchments under native vegetation and grass on clay soils resulted in lower DOC concentrations and hence would be expected to have lower coagulant demand in conventional treatment for potable water supply than runoff from corresponding sandy soil catchments. However, organics in runoff from clay catchments would be more difficult to remove by coagulation. Surface waters from the native vegetation and grass catchments were generally found to have higher relative abundance of organic compounds amenable to removal by coagulation compared with sub-surface waters. Biophysical and land management practices combine to have a marked influence on the quality of source water used for domestic supply. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shank, G. Christopher; Evans, Anne
2011-07-01
The distribution and photoreactivity of chromophoric dissolved organic matter (CDOM) in the northern Gulf of Mexico along the Louisiana coastal shelf were examined during three cruises in summer 2007, fall 2007, and summer 2008. The influence of the Mississippi River plume was clearly evident as CDOM levels (defined as a305) and dissolved organic carbon (DOC) concentrations were well-correlated with salinity during all cruises. Elevated CDOM and CDOM:DOC ratios of surface samples collected offshore of Atchafalaya Bay and the Breton-Chandeleur Sound complex indicated emanations of organic-rich waters from coastal wetlands are also an important source to nearshore shelf waters. Generally, CDOM and DOC levels were highest in surface waters and decreased with depth, but during summer 2007 and summer 2008, CDOM levels in near-bottom samples were occasionally higher than at mid-depths without concomitant increases in DOC. CDOM photobleaching was measured during 24 irradiations using a SunTest XLS+ solar simulator with photobleaching rate coefficients ( k305) ranging from 0.011 to 0.32 h -1. For fall 2007 and summer 2008, higher k305 values were generally observed in samples with higher initial CDOM levels. However, samples collected during summer 2007 did not exhibit a similar pattern nor were there differences in photobleaching rates between surface and bottom samples. Spectral slope coefficients ( S275-295 or S350-400) and DOC levels were largely unchanged after 24 h irradiations. Modeled CDOM photobleaching for northern Gulf of Mexico mid-shelf waters predicts that during the summer when solar irradiance is high and the water column becomes stratified, nearly 90% of the CDOM in the upper 1 m may be lost to photobleaching, with losses up to 20% possible even at 10 m depth.
Westerhoff, P.; Anning, D.
2000-01-01
Dissolved (DOC) and total (TOC) organic carbon concentrations and compositions were studied for several river systems in Arizona, USA. DOC composition was characterized by ultraviolet and visible absorption and fluorescence emission (excitation wavelength of 370 nm) spectra characteristics. Ephemeral sites had the highest DOC concentrations, and unregulated perennial sites had lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater-treatment plants (p < 0.05). Reservoir outflows and wastewater-treatment plant effluent were higher in DOC concentration (p < 0.05) and exhibited less variability in concentration than inflows to the reservoirs. Specific ultraviolet absorbance values at 254 nm were typically less than 2 m-1(milligram DOC per liter)-1 and lower than values found in most temperate-region rivers, but specific ultraviolet absorbance values increased during runoff events. Fluorescence measurements indicated that DOC in desert streams typically exhibit characteristics of autochthonous sources; however, DOC in unregulated upland rivers and desert streams experienced sudden shifts from autochthonous to allochthonous sources during runoff events. The urban water system (reservoir systems and wastewater-treatment plants) was found to affect temporal variability in DOC concentration and composition. (C) 2000 Elsevier Science B.V.Dissolved (DOC) and total (TOC) organic carbon concentrations and compositions were studied for several river systems in Arizona, USA. DOC composition was characterized by ultraviolet and visible absorption and fluorescence emission (excitation wavelength of 370 nm) spectra characteristics. Ephemeral sites had the highest DOC concentrations, and unregulated perennial sites had lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater-treatment plants (p<0.05). Reservoir outflows and wastewater-treatment plant effluent were higher in DOC concentration (p<0.05) and exhibited less variability in concentration than inflows to the reservoirs. Specific ultraviolet absorbance values at 254 nm were typically less than 2 m-1(milligram DOC per liter)-1 and lower than values found in most temperate-region rivers, but specific ultraviolet absorbance values increased during runoff events. Fluorescence measurements indicated that DOC in desert streams typically exhibit characteristics of autochthonous sources; however, DOC in unregulated upland rivers and desert streams experienced sudden shifts from autochthonous to allochthonous sources during runoff events. The urban water system (reservoir systems and wastewater-treatment plants) was found to affect temporal variability in DOC concentration and composition.The influence of urbanization, becoming increasingly common in arid regions, on dissolved organic carbon (DOC) concentrations in surface water resources was studied. DOC concentration and composition, seasonal watershed runoff events, streamflow variations, water management practices, and urban infrastructure in several Arizona watersheds were monitored. Ephemeral sites had the highest DOC levels, and unregulated perennial sites and lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater treatment plants. Reservoir outflows and wastewater treatment plant effluent had higher and less variable DOC concentrations than inflows to reservoirs. UV absorbance values, fluorescence measurements, and other indicators suggest that urban water systems (reservoirs and wastewater treatment plants) affect temporal variability in DOC concentration and composition.
Hanley, Kevin W.; Wollheim, Wilfred M.; Salisbury, Joseph; Huntington, Thomas G.; Aiken, George R.
2013-01-01
Understanding the processes controlling the transfer and chemical composition of dissolved organic carbon (DOC) in freshwater systems is crucial to understanding the carbon cycle and the effects of DOC on water quality. Previous studies have identified watershed-scale controls on bulk DOC flux and concentration among small basins but fewer studies have explored controls among large basins or simultaneously considered the chemical composition of DOC. Because the chemical character of DOC drives riverine biogeochemical processes such as metabolism and photodegradation, accounting for chemical character in watershed-scale studies will improve the way bulk DOC variability in rivers is interpreted. We analyzed DOC quantity and chemical character near the mouths of 17 large North American rivers, primarily between 2008 and 2010, and identified watershed characteristics that controlled variability. We quantified DOC chemical character using both specific ultraviolet absorbance at 254 nm (SUVA254) and XAD-resin fractionation. Mean DOC concentration ranged from 2.1 to 47 mg C L−1 and mean SUVA254 ranged from 1.3 to 4.7 L mg C−1 m−1. We found a significant positive correlation between basin wetland cover and both bulk DOC concentration (R2 = 0.78; p < 0.0001) and SUVA254 (R2 = 0.91; p < 0.0001), while other land use characteristics were not correlated. The strong wetland relationship with bulk DOC concentration is similar to that found by others in small headwater catchments. However, two watersheds with extremely long surface water residence times, the Colorado and St. Lawrence, diverged from this wetland relationship. These results suggest that the role of riverine processes in altering the terrestrial DOC signal at the annual scale was minimal except in river systems with long surface water residence times. However, synoptic DOC sampling of both quantity and character throughout river networks will be needed to more rigorously test this finding. The inclusion of DOC chemical character will be vital to achieving a more complete understanding of bulk DOC dynamics in large river systems.
Effect of DOC on evaporation from small Wisconsin lakes
NASA Astrophysics Data System (ADS)
Watras, C. J.; Morrison, K. A.; Rubsam, J. L.
2016-09-01
Evaporation (E) dominates the loss of water from many small lakes, and the balance between precipitation and evaporation (P-E) often governs water levels. In this study, evaporation rates were estimated for three small Wisconsin lakes over several years using 30-min data from floating evaporation pans (E-pans). Measured E was then compared to the output of mass transfer models driven by local conditions over daily time scales. The three lakes were chosen to span a range of dissolved organic carbon (DOC) concentrations (3-20 mg L-1), a solute that imparts a dark, tea-stain color which absorbs solar energy and limits light penetration. Since the lakes were otherwise similar, we hypothesized that a DOC-mediated increase in surface water temperature would translate directly to higher rates of evaporation thereby informing climate response models. Our results confirmed a DOC effect on surface water temperature, but that effect did not translate to enhanced evaporation. Instead the opposite was observed: evaporation rates decreased as DOC increased. Ancillary data and prior studies suggest two explanatory mechanisms: (1) disproportionately greater radiant energy outflux from high DOC lakes, and (2) the combined effect of wind speed (W) and the vapor pressure gradient (es - ez), whose product [W(es - ez)] was lowest on the high DOC lake, despite very low wind speeds (<1.5 m s-1) and steep forested uplands surrounding all three lakes. Agreement between measured (E-pan) and modeled evaporation rates was reasonably good, based on linear regression results (r2: 0.6-0.7; slope: 0.5-0.7, for the best model). Rankings based on E were similar whether determined by measured or modeled criteria (high DOC < low DOC). Across the 3 lakes and 4 years, E averaged ∼3 mm d-1 (C.V. 9%), but statistically significant differences between lakes resulted in substantial differences in cumulative E that were consistent from year to year. Daily water budgets for these lakes show that inputs were dominated by P and outputs by E; and our findings indicate that subtle changes in the variables that drive E can have measurable effects on water levels by shifting the balance between P and E.
Identifying dissolved organic carbon sources at a gaged headwater catchment using FDOM sensors
NASA Astrophysics Data System (ADS)
Malzone, J. M.; Shanley, J. B.
2014-12-01
The United States Geological Survey's (USGS) W-9 gage at the headwaters of Sleepers River, Vermont has been monitored for dissolved organic carbon (DOC) concentration for more than 20 years. However, the sources of this DOC during base flow and hydrologic events remain unclear. The major objectives of this research were to identify sources of DOC during storm events and to explain the observed DOC-streamflow counterclockwise hysteresis during hydrologic events. Two main hypotheses to explain hysteresis during hydrologic events were tested: (1) distant headwater wetlands are the major DOC source, which lags behind peak flow due to travel time; and (2) the entire watershed contributes to the DOC at the gage, but the response of DOC lags behind the period when groundwater contributes most to streamflow. Sources of DOC were tracked using fluorescent dissolved organic matter (FDOM) sensors in surface water and groundwater wells. Wells were installed at four depths, 0.3, 0.6, 0.9, and 1.2 m, at four sites: a peaty low-gradient riparian area near the headwaters; a mid-hillslope area on a long hillslope mid-watershed; a near-stream area on a long hillslope mid-watershed; and a low-gradient tributary confluence area just above the gage. During storm events, FDOM and hydraulic head were measured at the nested groundwater wells. Samples for DOC analysis were also taken to determine the relationship between FDOM and DOC. Results suggest that both distant sources and the greater watershed played a role in the transport of DOC to the W-9 gage. Distant peaty sources dominated during large storms and contributed the highest surface water FDOM measurements. The peak FDOM at the gage was therefore best described as a result of transport. However, export from these distant sources terminated rapidly and did not explain continued elevated FDOM at the gage. Groundwater across the watershed exhibited hysteresis analogous to that in the stream itself, with FDOM peaking as head receded. As groundwater is recharged, the water table intersects more carbon rich soil layers. Pre-event water is flushed out first before event water mobilizes DOC, causing the groundwater hysteresis. High FDOM groundwater discharging to the stream likely sustained elevated FDOM at the gage. The gage hysteresis, therefore, seems to be a result of both hypotheses tested.
NASA Astrophysics Data System (ADS)
Matsuoka, A.; Hooker, S. B.; Bricaud, A.; Gentili, B.; Babin, M.
2012-10-01
A series of papers have suggested that freshwater discharge, including a large amount of dissolved organic matter (DOM), has increased since the middle of the 20th century. In this study, a semi-analytical algorithm for estimating light absorption coefficients of the colored fraction of DOM (CDOM) was developed for Southern Beaufort Sea waters using remote sensing reflectance at six wavelengths in the visible spectral domain corresponding to MODIS ocean color sensor. This algorithm allows to separate colored detrital matter (CDM) into CDOM and non-algal particles (NAP) by determining NAP absorption using an empirical relationship between NAP absorption and particle backscattering coefficients. Evaluation using independent datasets, that were not used for developing the algorithm, showed that CDOM absorption can be estimated accurately to within an uncertainty of 35% and 50% for oceanic and turbid waters, respectively. In situ measurements showed that dissolved organic carbon (DOC) concentrations were tightly correlated with CDOM absorption (r2 = 0.97). By combining the CDOM absorption algorithm together with the DOC versus CDOM relationship, it is now possible to estimate DOC concentrations in the near-surface layer of the Southern Beaufort Sea using satellite ocean color data. DOC concentrations in the surface waters were estimated using MODIS ocean color data, and the estimates showed reasonable values compared to in situ measurements. We propose a routine and near real-time method for deriving DOC concentrations from space, which may open the way to an estimate of DOC budgets for Arctic coastal waters.
Spatial and seasonal variability of dissolved organic matter in the Cariaco Basin
NASA Astrophysics Data System (ADS)
Lorenzoni, Laura; Taylor, Gordon T.; Benitez-Nelson, Claudia; Hansell, Dennis A.; Montes, Enrique; Masserini, Robert; Fanning, Kent; Varela, Ramón; Astor, Yrene; GuzmáN, Laurencia; Muller-Karger, Frank E.
2013-06-01
organic carbon (DOC), nitrogen (DON), and phosphorus (DOP) were measured monthly at the CARIACO Time Series station (10°30'N, 64°40'W) in the southeastern Caribbean Sea between 2005 and 2012. Marked seasonal variability in DOC concentrations was observed, with lower values (~66 µM) in the upper water column (<75 m) during the upwelling season (December-April) due to the injection of cool, DOC-impoverished Subtropical Underwater from the Caribbean Sea. During the rainy season (May-November) waters were stratified and upper layer DOC concentrations increased to ~71 µM. Interannual variability in surface (1 m) concentrations of DOC was also observed in response to the variable strength in upwelling and stratification that the Cariaco Basin experienced. DON and DOP showed no such seasonality. At depths >350 m, DOC concentrations were 56 ± 4.7 µM, roughly 10 µM higher than those in the Caribbean Sea over the same depth range. DON and DOP showed similar vertical profiles to that of DOC, with higher concentrations (6.8 ± 1.2 µM N and 0.15 ±0.09 µM P) in the upper water column and invariant, lower concentrations at depth (4.8 ± 1.6 µM N and 0.10 ± 0.08 µM P). Wind-driven advection of surface DOC out of the Cariaco Basin was estimated to support a net export ~15 Gmol C yr-1 into the Caribbean Sea; this rate is comparable to the flux of settling particulate organic carbon to depths >275 m within the basin.
Brooks, P.D.; McKnight, Diane M.; Bencala, K.E.
1999-01-01
Dissolved organic carbon (DOC) from terrestrial sources forms the major component of the annual carbon budget in many headwater streams. In high-elevation catchments in the Rocky Mountains, DOC originates in the upper soil horizons and is flushed to the stream primarily during spring snowmelt. To identify controls on the size of the mobile soil DOC pool available to be transported during the annual melt event, we measured soil DOC production across a range of vegetation communities and soil types together with catchment DOC export in paired watersheds in Summit County, Colorado. Both surface water DOC concentrations and watershed DOC export were lower in areas where pyrite weathering resulted in lower soil pH. Similarly, the amount of DOC leached from organic soils was significantly smaller (p < 0.01) at sites having low soil pH. Scaling point source measurements of DOC production and leaching to the two basins and assuming only vegetated areas contribute to DOC production, we calculated that the amount of mobile DOC available to be leached to surface water during melt was 20.3 g C m−2 in the circumneutral basin and 17.8 g C m−2 in the catchment characterized by pyrite weathering. The significant (r2=0.91 and p < 0.05), linear relationship between over-winter CO2 flux and the amount of DOC leached from upper soil horizons during snowmelt suggests that the mechanism for the difference in production of mobile DOC was heterotrophic processing of soil carbon in snow-covered soil. Furthermore, this strong relationship between over-winter heterotrophic activity and the size of the mobile DOC pool present in a range of soil and vegetation types provides a likely mechanism for explaining the interannual variability of DOC export observed in high-elevation catchments.
NASA Astrophysics Data System (ADS)
Garayburu-Caruso, V. A.; Stegen, J.; Graham, E.
2017-12-01
Inputs of dissolved organic carbon (DOC) and nutrients from groundwater (GW) and surface water (SW) to the hyporheic zone strongly influence biogeochemical processes. Despite increased research efforts, we still lack a mechanistic understanding of the conditions driving elevated hyporheic metabolism. This work explores hyporheic carbon oxidation from a thermodynamic perspective by evaluating changes in metabolic rates within hyporheic zone sediments in response to changes on DOC concentration and thermodynamic profiles that are characteristic of GW and SW sources. We hypothesize that GW DOC is protected from microbial oxidation due to low concentration and that SW DOC is protected due low thermodynamic favorability. Further, we propose that GW-SW mixing can simultaneously overcome both limitations and stimulate carbon oxidation. Hyporheic sediments from the Hanford site in Richland, WA were exposed to ambient, 2-,5- and 10-fold concentrations of natural DOC from SW and GW sources, separately, and incubated at in-situ temperature. The two DOC sources supply contrasting thermodynamic profiles, with GW providing lower concentration but more thermodynamically favorable DOC and SW higher concentration, more recalcitrant DOC. Across DOC treatments we characterized time series of oxygen concentration, DOC concentration, and pH as well as endpoint measurements of DOC thermodynamics using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Our results suggest that hyporheic metabolism of distinct carbon pools (GW or SW) can be limited by concentration or thermodynamic favorability. Our work provides an experimental approach to contribute to mechanistic understanding of freshwater carbon oxidation, and a process-based foundation for the development of watershed-scale hydrobiogeochemical models.
NASA Astrophysics Data System (ADS)
Gilmore, A. M.
2015-12-01
This study describes a method based on simultaneous absorbance and fluorescence excitation-emission mapping for rapidly and accurately monitoring dissolved organic carbon concentration and disinfection by-product formation potential for surface water sourced drinking water treatment. The method enables real-time monitoring of the Dissolved Organic Carbon (DOC), absorbance at 254 nm (UVA), the Specific UV Absorbance (SUVA) as well as the Simulated Distribution System Trihalomethane (THM) Formation Potential (SDS-THMFP) for the source and treated water among other component parameters. The method primarily involves Parallel Factor Analysis (PARAFAC) decomposition of the high and lower molecular weight humic and fulvic organic component concentrations. The DOC calibration method involves calculating a single slope factor (with the intercept fixed at 0 mg/l) by linear regression for the UVA divided by the ratio of the high and low molecular weight component concentrations. This method thus corrects for the changes in the molecular weight component composition as a function of the source water composition and coagulation treatment effects. The SDS-THMFP calibration involves a multiple linear regression of the DOC, organic component ratio, chlorine residual, pH and alkalinity. Both the DOC and SDS-THMFP correlations over a period of 18 months exhibited adjusted correlation coefficients with r2 > 0.969. The parameters can be reported as a function of compliance rules associated with required % removals of DOC (as a function of alkalinity) and predicted maximum contaminant levels (MCL) of THMs. The single instrument method, which is compatible with continuous flow monitoring or grab sampling, provides a rapid (2-3 minute) and precise indicator of drinking water disinfectant treatability without the need for separate UV photometric and DOC meter measurements or independent THM determinations.
Designing a Dynamic Data Driven Application System for Estimating Real-Time Load of DOC in a River
NASA Astrophysics Data System (ADS)
Ouyang, Y.; None
2011-12-01
Understanding the dynamics of naturally occurring dissolved organic carbon (DOC) in a river is central to estimating surface water quality, aquatic carbon cycling, and climate change. Currently, determination of DOC in surface water is primarily accomplished by manually collecting samples for laboratory analysis, which requires at least 24 hours. In other words, no effort has been devoted to monitoring real-time variations of DOC in a river due to the lack of suitable and/or cost-effective wireless sensors. However, when considering human health, carbon footprints, and effects of urbanization, industry, and agriculture on water resource supply, timely DOC information may be critical. We have developed here a new paradigm, a dynamic data driven application system (DDDAS), for estimating the real-time load of DOC into a river. This DDDAS consisted of the following four components: (1) a Visual Basic (VB) program for downloading US Geological Survey real-time chlorophyll and discharge data; (2) a STELLA model for evaluating real-time DOC load based on the relationship between chlorophyll a, DOC, and river discharge; (3) a batch file for linking the VB program and STELLA model; and (4) a Microsoft Windows Scheduled Tasks wizard for executing the model and displaying output on a computer screen at selected times. Results show that the real-time load of DOC into the St. Johns River basin near Satsuma, Putnam County, Florida, USA varied over a range from -13,143 to 29,248 kg/h at the selected site in Florida, USA. The negative loads occurred because of the back flow in the estuarine reach of the river. The cumulative load of DOC in the river for the selected site at the end of the simulation (178 hours) was about 1.2 tons. Our results support the utility of the DDDAS developed in this study for estimating the real-time variations of DOC in river ecosystems.
NASA Astrophysics Data System (ADS)
Le Fouest, Vincent; Matsuoka, Atsushi; Manizza, Manfredi; Shernetsky, Mona; Tremblay, Bruno; Babin, Marcel
2018-03-01
Future climate warming of the Arctic could potentially enhance the load of terrigenous dissolved organic carbon (tDOC) of Arctic rivers due to increased carbon mobilization within watersheds. A greater flux of tDOC might impact the biogeochemical processes of the coastal Arctic Ocean (AO) and ultimately its capacity to absorb atmospheric CO2. In this study, we show that sea-surface tDOC concentrations simulated by a physical-biogeochemical coupled model in the Canadian Beaufort Sea for 2003-2011 compare favorably with estimates retrieved by satellite imagery. Our results suggest that, over spring-summer, tDOC of riverine origin contributes to 35 % of primary production and that an equivalent of ˜ 10 % of tDOC is exported westwards with the potential of fueling the biological production of the eastern Alaskan nearshore waters. The combination of model and satellite data provides promising results to extend this work to the entire AO so as to quantify, in conjunction with in situ data, the expected changes in tDOC fluxes and their potential impact on the AO biogeochemistry at basin scale.
Wang, N.; Mebane, C.A.; Kunz, J.L.; Ingersoll, C.G.; May, T.W.; Arnold, W.R.; Santore, R.C.; Augspurger, T.; Dwyer, F.J.; Barniiart, M.C.
2009-01-01
The influence of dissolved organic carbon (DOC) and water composition on the toxicity of copper to juvenile freshwater mussels (fatmucket, Lampsilis siliquoidea) were evaluated in natural and reconstituted waters. Acute 96-h copper toxicity tests were conducted at four nominal DOC concentrations (0, 2.5, 5, and 10 mg/L as carbon [C]) in dilutions of natural waters and in American Society for Testing and Materials (ASTM) reconstituted hard water. Toxicity tests also were conducted in ASTM soft, moderately hard, hard, and very hard reconstituted waters (nominal hardness 45-300 mg/L as CaCO3). Three natural surface waters (9.5-11 mg/L DOC) were diluted to obtain a series of DOC concentrations with diluted well water, and an extract of natural organic matter and commercial humic acid was mixed with ASTM hard water to prepare a series of DOC concentrations for toxicity testing. Median effective concentrations (EC50s) for dissolved copper varied >40-fold (9.9 to >396 ??g Cu/L) over all 21 treatments in various DOC waters. Within a particular type of DOC water, EC50s increased 5- to 12-fold across DOC concentrations of 0.3 to up to 11 mg C/L. However, EC50s increased by only a factor of 1.4 (21 30 ??g Cu/L) in the four ASTM waters with wide range of water hardness (52-300 mg CaCO 3/L). Predictions from the biotic ligand model (BLM) for copper explained nearly 90% of the variability in EC50s. Nearly 70% of BLM-normalized EC50s for fatmucket tested in natural waters were below the final acute value used to derive the U.S. Environmental Protection Agency acute water quality criterion for copper, indicating that the criterion might not be protective of fatmucket and perhaps other mussel species. ?? 2009 SETAC.
NASA Astrophysics Data System (ADS)
Chen, Yan; Yang, Gui-Peng; Wu, Guan-Wei; Gao, Xian-Chi; Xia, Qing-Yan
2013-01-01
A total of 19 sea-surface microlayer and corresponding subsurface samples collected from the Bohai Sea, China in April 2010 were analyzed for chlorophyll a, dissolved organic carbon (DOC) and its major compound classes including total dissolved carbohydrates (TDCHO, including monosaccharides, MCHO, and polysaccharides, PCHO) and total hydrolysable amino acids (THAA, including dissolved free, DFAA, and combined fraction, DCAA). The concentrations of DOC in the subsurface water ranged from 130.2 to 407.7 μM C, with an average of 225.9±75.4 μM C, while those in the surface microlayer varied between 140.1 and 330.9 μM C, with an average of 217.8±56.8 μM C. The concentrations of chlorophyll a, DOC, TDCHO and THAA in the microlayer were, respectively correlated with their subsurface water concentrations, implying that there was a strong exchange effect between the microlayer and subsurface water. The concentrations of DOC and TDCHO were negatively correlated with salinity, respectively, indicating that water mixing might play an important role in controlling the distribution of DOC and TDCHO in the water column. Major constituents of DCAA and DFAA present in the study area were glycine, alanine, glutamic acid, serine and histidine. Principal component analysis (PCA) was applied to examine the complex compositional differences that existed among the sampling sites. Our results showed that DFAA had higher mole percentages of glycine, valine and serine in the microlayer than in the subsurface water, while DCAA tended to have higher mole percentages of glutamic acid, aspartic acid, threonine, arginine, alanine, tyrosine, phenylalanine and leucine in the microlayer. The yields of TDCHO and THAA exhibited similar trends between the microlayer and subsurface water. Carbohydrate species displayed significant enrichment in the microlayer, whereas the DFAA and DCAA exhibited non-uniform enrichment in the microlayer.
Carbon and nitrogen biogeochemistry of a Prairie Pothole Wetland, Stutsman County, North Dakota, USA
Holloway, JoAnn M.; Goldhaber, Martin B.; Mills, Christopher T.
2011-01-01
The concentration and form of dissolved organic C (DOC) and N species (NH4+ and NO3-) were investigated as part of a larger hydrogeochemical study of the Cottonwood Lake Study Area within the Prairie Potholes region. Groundwater, pore water and surface wetland water data were used to help characterize the relationships between surface and groundwater with respect to nutrient dynamics. Photosynthesis and subsequent decomposition of vegetation in these hydrologically dynamic wetlands generates a large amount of dissolved C and N, although the subsurface till, derived in part from organic matter rich Pierre Shale, is a likely secondary source of nutrients in deeper groundwater. While surface water DOC concentrations ranged from 2.2 to 4.6 mM, groundwater values were 0.15 mM to 3.7 mM. Greater specific UV absorbance (SUVA254) in the wetland water column and in soil pore waters relative to groundwater indicate more reactive DOC in the surface to near-surface waters. Circumneutral wetlands had greater SUVA254, possibly because of variations in vegetation communities. The dominant inorganic nitrogen species was NH4+ in both wetland water and most ground water samples. The exceptions were 3 wells with NO3- ranging from 38 to 115 μM. Shallow groundwater wells (Well 28 and Well 13S) with greater connection to wetland surface water had greater NH4+ concentrations (1.1 mM and 120 μM) than other well samples (3–90 μM). Pore water nutrient chemistry was more similar to surface water than ground water. Nitrogen results suggest reducing conditions in both groundwater and surface water, possibly due to the microbial uptake of O2 by decaying vegetation in the wetland water column, labile organic C available in shallow groundwater, or the oxidation of pyrite associated with the subsurface.
Hillslope-Riparian-Streamflow Interactions in a Discontinuous Permafrost Alpine Environment
NASA Astrophysics Data System (ADS)
Carey, S. K.
2004-12-01
Hillslope-riparian-streamflow interactions are poorly characterized in mountainous discontinuous permafrost environments. Permafrost underlain soils have a distinct soil profile, characterized by thick near-surface organic horizons atop ice-rich mineral substrates, whereas slopes without permafrost have thinner or absent organic soils overlying well drained mineral horizons. Riparian areas occur at the base of both seasonally frozen and permafrost slopes, yet a stronger hydrologic and soil transition occurs at slope bases with only seasonal frost. In a subarctic alpine catchment within the Wolf Creek Research Basin, Yukon, Canada, experiments were conducted between 2001 and 2003 to evaluate linkages along the slope-riparian-stream continuum during melt and post-melt periods. Water table, hydraulic head, stable isotope (d2H, d18O) and simple geochemical (pH, SpC, DOC) data were collected along transects during melt and summer periods. In soils with only seasonal frost, there was a downward piezometric gradient in slopes and upward gradient in riparian areas during melt. In contrast, permafrost soils did not show a recharge/discharge gradient between the slope and riparian zone. DOC declined and SpC increased with depth at all sites during melt. DOC was lower in riparian zones and areas without organic soils. SpC declined in soils as dilute meltwater entered the soil, yet it was difficult to establish spatial relations due to differences in melt timing. The similarity in stable isotope composition among sites indicated that the slopes were well flushed with snowmelt water to depth. DOC in streamflow was greatest on the ascending freshet hydrograph, and declined rapidly following melt. Streamflow SpC declined dramatically in response to dilute meltwater inputs and a decline in stream pH indicates flowpaths through organic horizons. Following melt, DOC concentrations declined rapidly in both slopes and riparian areas. In summer, water tables lowered in seasonally frozen slopes, yet an upward hydraulic gradient and near-surface water table was maintained in the riparian area. In permafrost slopes, water tables fell into mineral soils, increasing SpC and reducing DOC. Riparian water tables remained high and DOC was greater than the seasonally frozen soils, yet riparian zone hydraulic gradient reversed suggesting a small recharge gradient. In permafrost soil, riparian zone DOC was an order of magnitude higher than seasonally frozen riparian zones, which had DOC concentrations similar to streamflow. The similarity in stable isotope ratios among sites throughout the summer indicated that soil waters were dominated by water supplied during melt period. Rainfall waters had little long-term effect on slope and riparian isotopic ratios. Mixing analysis of geochemical and isotopic parameters indicates that during melt, most water was supplied via near surface organic layers, whereas later in the year, subsurface pathways predominated. Permafrost slope-riparian zones have a different hydraulic and geochemical interaction than seasonally frozen ones, yet their respective contribution to streamflow during different times of the year remains unclear at this time.
NASA Astrophysics Data System (ADS)
Deirmendjian, Loris; Loustau, Denis; Augusto, Laurent; Lafont, Sébastien; Chipeaux, Christophe; Poirier, Dominique; Abril, Gwenaël
2018-02-01
We studied the export of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) from forested shallow groundwater to first-order streams, based on groundwater and surface water sampling and hydrological data. The selected watershed was particularly convenient for such study, with a very low slope, with pine forest growing on sandy permeable podzol and with hydrology occurring exclusively through drainage of shallow groundwater (no surface runoff). A forest plot was instrumented for continuous eddy covariance measurements of precipitation, evapotranspiration, and net ecosystem exchanges of sensible and latent heat fluxes as well as CO2 fluxes. Shallow groundwater was sampled with three piezometers located in different plots, and surface waters were sampled in six first-order streams; river discharge and drainage were modeled based on four gauging stations. On a monthly basis and on the plot scale, we found a good consistency between precipitation on the one hand and the sum of evapotranspiration, shallow groundwater storage and drainage on the other hand. DOC and DIC stocks in groundwater and exports to first-order streams varied drastically during the hydrological cycle, in relation with water table depth and amplitude. In the groundwater, DOC concentrations were maximal in winter when the water table reached the superficial organic-rich layer of the soil. In contrast, DIC (in majority excess CO2) in groundwater showed maximum concentrations at low water table during late summer, concomitant with heterotrophic conditions of the forest plot. Our data also suggest that a large part of the DOC mobilized at high water table was mineralized to DIC during the following months within the groundwater itself. In first-order streams, DOC and DIC followed an opposed seasonal trend similar to groundwater but with lower concentrations. On an annual basis, leaching of carbon to streams occurred as DIC and DOC in similar proportion, but DOC export occurred in majority during short periods of the highest water table, whereas DIC export was more constant throughout the year. Leaching of forest carbon to first-order streams represented a small portion (approximately 2 %) of the net land CO2 sink at the plot. In addition, approximately 75 % of the DIC exported from groundwater was not found in streams, as it returned very fast to the atmosphere through CO2 degassing.
NASA Astrophysics Data System (ADS)
Kelly, B.; Chelsky, A.; Bulygina, E.; Roberts, B. J.
2017-12-01
Remote sensing techniques have become valuable tools to researchers, providing the capability to measure and visualize important parameters without the need for time or resource intensive sampling trips. Relationships between dissolved organic carbon (DOC), colored dissolved organic matter (CDOM) and spectral data have been used to remotely sense DOC concentrations in riverine systems, however, this approach has not been applied to the northern Gulf of Mexico (GoM) and needs to be tested to determine how accurate these relationships are in riverine-dominated shelf systems. In April, July, and October 2017 we sampled surface water from 80+ sites over an area of 100,000 km2 along the Louisiana-Texas shelf in the northern GoM. DOC concentrations were measured on filtered water samples using a Shimadzu TOC-VCSH analyzer using standard techniques. Additionally, DOC concentrations were estimated from CDOM absorption coefficients of filtered water samples on a UV-Vis spectrophotometer using a modification of the methods of Fichot and Benner (2011). These values were regressed against Landsat visible band spectral data for those same locations to establish a relationship between the spectral data, CDOM absorption coefficients. This allowed us to spatially map CDOM absorption coefficients in the Gulf of Mexico using the Landsat spectral data in GIS. We then used a multiple linear regressions model to derive DOC concentrations from the CDOM absorption coefficients and applied those to our map. This study provides an evaluation of the viability of scaling up CDOM absorption coefficient and remote-sensing derived estimates of DOC concentrations to the scale of the LA-TX shelf ecosystem.
A polishing hybrid AER/UF membrane process for the treatment of a high DOC content surface water.
Humbert, H; Gallard, H; Croué, J-P
2012-03-15
The efficacy of a combined AER/UF (Anion Exchange Resin/Ultrafiltration) process for the polishing treatment of a high DOC (Dissolved Organic Carbon) content (>8 mgC/L) surface water was investigated at lab-scale using a strong base AER. Both resin dose and bead size had a significant impact on the kinetic removal of DOC for short contact times (i.e. <15 min). For resin doses higher than 700 mg/L and median bead sizes below 250 μm DOC removal remained constant after 30 min of contact time with very high removal rates (80%). Optimum AER treatment conditions were applied in combination with UF membrane filtration on water previously treated by coagulation-flocculation (i.e. 3 mgC/L). A more severe fouling was observed for each filtration run in the presence of AER. This fouling was shown to be mainly reversible and caused by the progressive attrition of the AER through the centrifugal pump leading to the production of resin particles below 50 μm in diameter. More important, the presence of AER significantly lowered the irreversible fouling (loss of permeability recorded after backwash) and reduced the DOC content of the clarified water to l.8 mgC/L (40% removal rate), concentration that remained almost constant throughout the experiment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Photochemical influences on the air-water exchange of mercury
NASA Astrophysics Data System (ADS)
Vette, Alan Frederic
The formation of dissolved gaseous mercury (DGM) in natural waters is an important component in the biogeochemical cycle of mercury (Hg). The predominate form of DGM in natural waters, gaseous elemental Hg (Hg0), may be transferred from the water to the atmosphere. Gas exchange may reduce the amount of Hg available for methyl-Hg formation, the most toxic form of Hg that bioaccumulates in the food chain. Determining the mechanisms and rates of DGM formation is essential in understanding the fate and cycling of Hg in aquatic ecosystems. Field and laboratory experiments were conducted to evaluate the effect of light on DGM formation in surface waters containing different levels of dissolved organic carbon (DOC). Water samples collected from the Tahqwamenon River and Whitefish Bay on Lake Superior were amended with divalent Hg (Hg2+) and irradiated under a variety of reaction conditions to determine rates of DGM formation. The water samples were also analyzed for various Hg species (total, filtered, easily reducible and dissolved gaseous Hg), DOC and light attenuation. Additional field studies were conducted on Lake Michigan to measure gaseous Hg in air and water. These data were used to develop a mechanistic model to estimate air-water exchange of gaseous Hg. This research found that photochemical formation of DGM was affected by penetration of UV A radiation (320-400 nm). Formation of DGM was enhanced at higher DOC concentrations, indicating DOC photosensitized the reduction of Hg2+ to Hg0. Wavelength studies determined that formation of DGM was significantly reduced in the absence of UV A. Field studies showed DGM concentrations were highest near the water surface and peaked at mid-day, indicating a photo-induced source of DGM. The conversion of reducible Hg2+ to Hg0 was suppressed in high DOC waters where UV A penetration was limited. The mechanistic model predicted similar DGM concentrations to the observed values and demonstrated that deposition and emission fluxes of gaseous Hg were similar in Lake Michigan. In addition, deposition and emission fluxes of gaseous Hg were similar to Hg loadings by precipitation. The formation and emission of DGM from surface waters represents a significant contribution to the Hg cycle in aquatic ecosystems.
Carbon speciation and surface tension of fog
Capel, P.D.; Gunde, R.; Zurcher, F.; Giger, W.
1990-01-01
The speciation of carbon (dissolved/particulate, organic/inorganic) and surface tension of a number of radiation fogs from the urban area of Zurich, Switzerland, were measured. The carbon species were dominated by "dissolved" organic carbon (DOC; i.e., the fraction that passes through a filter), which was typically present at levels of 40-200 mg/L. Less than 10% of the DOC was identified as specific individual organic compounds. Particulate organic carbon (POC) accounted for 26-41% of the mass of the particles, but usually less than 10% of the total organic carbon mass. Inorganic carbon species were relatively minor. The surface tensions of all the measured samples were less than pure water and were correlated with their DOC concentrations. The combination of high DOC and POC and low surface tension suggests a mechanism for the concentration of hydrophobic organic contaminants in the fog droplet, which have been observed by numerous investigators. ?? 1990 American Chemical Society.
NASA Astrophysics Data System (ADS)
Matsuoka, A.; Hooker, S. B.; Bricaud, A.; Gentili, B.; Babin, M.
2013-02-01
A series of papers have suggested that freshwater discharge, including a large amount of dissolved organic matter (DOM), has increased since the middle of the 20th century. In this study, a semi-analytical algorithm for estimating light absorption coefficients of the colored fraction of DOM (CDOM) was developed for southern Beaufort Sea waters using remote sensing reflectance at six wavelengths in the visible spectral domain corresponding to MODIS ocean color sensor. This algorithm allows the separation of colored detrital matter (CDM) into CDOM and non-algal particles (NAP) through the determination of NAP absorption using an empirical relationship between NAP absorption and particle backscattering coefficients. Evaluation using independent datasets, which were not used for developing the algorithm, showed that CDOM absorption can be estimated accurately to within an uncertainty of 35% and 50% for oceanic and coastal waters, respectively. A previous paper (Matsuoka et al., 2012) showed that dissolved organic carbon (DOC) concentrations were tightly correlated with CDOM absorption in our study area (r2 = 0.97). By combining the CDOM absorption algorithm together with the DOC versus CDOM relationship, it is now possible to estimate DOC concentrations in the near-surface layer of the southern Beaufort Sea using satellite ocean color data. DOC concentrations in the surface waters were estimated using MODIS ocean color data, and the estimates showed reasonable values compared to in situ measurements. We propose a routine and near real-time method for deriving DOC concentrations from space, which may open the way to an estimate of DOC budgets for Arctic coastal waters.
Origins and bioavailability of dissolved organic matter in groundwater
Shen, Yuan; Chapelle, Francis H.; Strom, Eric W.; Benner, Ronald
2015-01-01
Dissolved organic matter (DOM) in groundwater influences water quality and fuels microbial metabolism, but its origins, bioavailability and chemical composition are poorly understood. The origins and concentrations of dissolved organic carbon (DOC) and bioavailable DOM were monitored during a long-term (2-year) study of groundwater in a fractured-rock aquifer in the Carolina slate belt. Surface precipitation was significantly correlated with groundwater concentrations of DOC, bioavailable DOM and chromophoric DOM, indicating strong hydrological connections between surface and ground waters. The physicochemical and biological processes shaping the concentrations and compositions of DOM during its passage through the soil column to the saturated zone are conceptualized in the regional chromatography model. The model provides a framework for linking hydrology with the processes affecting the transformation, remineralization and microbial production of DOM during passage through the soil column. Lignin-derived phenols were relatively depleted in groundwater DOM indicating substantial removal in the unsaturated zone, and optical properties of chromophoric DOM indicated lower molecular weight DOM in groundwater relative to surface water. The prevalence of glycine, γ-aminobutyric acid, and d-enantiomers of amino acids indicated the DOM was highly diagenetically altered. Bioassay experiments were used to establish DOC-normalized yields of amino acids as molecular indicators of DOM bioavailability in groundwater. A relatively small fraction (8 ± 4 %) of DOC in groundwater was bioavailable. The relatively high yields of specific d-enantiomers of amino acids indicated a substantial fraction (15–34 %) of groundwater DOC was of bacterial origin.
Bacterial Abundance and Activity across Sites within Two Northern Wisconsin Sphagnum Bogs.
Fisher; Graham; Graham
1998-11-01
Abstract Bacterial abundance, temperature, pH, and dissolved organic carbon (DOC) concentration were compared across surface sites within and between two northern Wisconsin Sphagnum peatlands over the summer seasons in 1995 and 1996. Sites of interest were the Sphagnum mat surface, the water-filled moat (lagg) at the bog margin, and the bog lake littoral zone. Significant differences in both bacterial populations and water chemistry were observed between sites. pH was highest in the lake and lowest in the mat at both bogs; the opposite was true for DOC. Large populations of bacteria were present in surface interstitial water from the mat; abundance in this site was consistently higher than in the moat or lake. Bacterial abundance also increased across sites of increasing DOC concentration and declining pH. Bacterial activities (rates of [3H]leucine incorporation) and growth in dilution cultures (with grazers removed) were also assessed in lake, moat, and mat sites. Results using these measures generally supported the trends observed in abundance, although high rates of [3H]leucine incorporation were recorded in the moat at one of the bogs. Our results indicate that bacterial populations in Sphagnum peatlands are not adversely affected by acidity, and that DOC may be more important than pH in determining bacterial abundance in these environments.
NASA Astrophysics Data System (ADS)
Jin, Jin; Zimmerman, Andrew R.; Moore, Paul J.; Martin, Jonathan B.
2014-03-01
Spatiotemporal variations in dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), major ions concentrations and other geochemical parameters including stable carbon isotopes of DIC (δ13CDIC), were measured in surface water and deep and shallow well water samples of the Santa Fe River Sink-Rise eogenetic karst system, north Florida, USA. Three end-member water sources were identified: one DOC-rich/DIC-poor/δ13CDIC-depleted, one DOC-poor/DIC-rich/δ13CDIC-enriched, and one enriched in major ions. Given their spatiotemporal distributions, they were presumed to represent soil water, upper aquifer groundwater, and deep aquifer water sources, respectively. Using assumed ratios of Na+, Cl, and SO42- for each end-member, a mixing model calculated the contribution of each water source to each sample. Then, chemical effects of biogeochemical reactions were calculated as the difference between those predicted by the mixing model and measured species concentrations. In general, carbonate mineral dissolution occurred throughout the Sink-Rise system, surface waters were net autotrophic and the subsurface was in metabolic balance, i.e., no net DOC or DIC production or consumption. However, there was evidence for chemolithoautotrophy, perhaps by hydrogen oxidizing microbes, at some deep aquifer sites. Mineralization of this autochthonous natural dissolved organic matter (NDOM) led to localized carbonate dissolution as did surface water-derived NDOM supplied to shallow well sites during the highest flow periods. This study demonstrates linkages between hydrology, abiotic and microbial processes and carbon dynamics and has important implications for groundwater quality, karst morphologic evolution, and hydrogeologic projects such as aquifer storage and recovery in karst systems.
Ziervogel, Kai; McKay, Luke; Rhodes, Benjamin; Osburn, Christopher L; Dickson-Brown, Jennifer; Arnosti, Carol; Teske, Andreas
2012-01-01
The Deepwater Horizon oil spill triggered a complex cascade of microbial responses that reshaped the dynamics of heterotrophic carbon degradation and the turnover of dissolved organic carbon (DOC) in oil contaminated waters. Our results from 21-day laboratory incubations in rotating glass bottles (roller bottles) demonstrate that microbial dynamics and carbon flux in oil-contaminated surface water sampled near the spill site two weeks after the onset of the blowout were greatly affected by activities of microbes associated with macroscopic oil aggregates. Roller bottles with oil-amended water showed rapid formation of oil aggregates that were similar in size and appearance compared to oil aggregates observed in surface waters near the spill site. Oil aggregates that formed in roller bottles were densely colonized by heterotrophic bacteria, exhibiting high rates of enzymatic activity (lipase hydrolysis) indicative of oil degradation. Ambient waters surrounding aggregates also showed enhanced microbial activities not directly associated with primary oil-degradation (β-glucosidase; peptidase), as well as a twofold increase in DOC. Concurrent changes in fluorescence properties of colored dissolved organic matter (CDOM) suggest an increase in oil-derived, aromatic hydrocarbons in the DOC pool. Thus our data indicate that oil aggregates mediate, by two distinct mechanisms, the transfer of hydrocarbons to the deep sea: a microbially-derived flux of oil-derived DOC from sinking oil aggregates into the ambient water column, and rapid sedimentation of the oil aggregates themselves, serving as vehicles for oily particulate matter as well as oil aggregate-associated microbial communities.
Ziervogel, Kai; McKay, Luke; Rhodes, Benjamin; Osburn, Christopher L.; Dickson-Brown, Jennifer; Arnosti, Carol; Teske, Andreas
2012-01-01
The Deepwater Horizon oil spill triggered a complex cascade of microbial responses that reshaped the dynamics of heterotrophic carbon degradation and the turnover of dissolved organic carbon (DOC) in oil contaminated waters. Our results from 21-day laboratory incubations in rotating glass bottles (roller bottles) demonstrate that microbial dynamics and carbon flux in oil-contaminated surface water sampled near the spill site two weeks after the onset of the blowout were greatly affected by activities of microbes associated with macroscopic oil aggregates. Roller bottles with oil-amended water showed rapid formation of oil aggregates that were similar in size and appearance compared to oil aggregates observed in surface waters near the spill site. Oil aggregates that formed in roller bottles were densely colonized by heterotrophic bacteria, exhibiting high rates of enzymatic activity (lipase hydrolysis) indicative of oil degradation. Ambient waters surrounding aggregates also showed enhanced microbial activities not directly associated with primary oil-degradation (β-glucosidase; peptidase), as well as a twofold increase in DOC. Concurrent changes in fluorescence properties of colored dissolved organic matter (CDOM) suggest an increase in oil-derived, aromatic hydrocarbons in the DOC pool. Thus our data indicate that oil aggregates mediate, by two distinct mechanisms, the transfer of hydrocarbons to the deep sea: a microbially-derived flux of oil-derived DOC from sinking oil aggregates into the ambient water column, and rapid sedimentation of the oil aggregates themselves, serving as vehicles for oily particulate matter as well as oil aggregate-associated microbial communities. PMID:22509359
NASA Astrophysics Data System (ADS)
Avagyan, Armine; Runkle, Benjamin; Kutzbach, Lars
2013-04-01
An accurate quantification of dissolved organic carbon (DOC) is crucial for understanding changes in water resources under the influence of climate, land use and urbanization. However, the conventionally used methods do not allow high frequency in situ analyses in remote or hostile environments (e.g., industrial wastewater or during environmental high-flow events, such as snowmelt or floods). In particular, missing measurements during the snowmelt period in landscapes of the boreal region can lead to significant miscalculations in regional carbon budgets. Therefore, the aim of the study was to test the performance of a portable, submersible UV-Vis spectrophotometer (spectro::lyser, s::can Messtechnik GmbH, Austria) during the snowmelt period in a boreal mire-forest catchment, and to provide a conceptual understanding of the spatial and temporal dynamics of DOC concentrations during and after snowmelt. During 2011, water samples were collected from the near-pristine Ust-Pojeg mire complex in northwestern Russia (61° 56'N, 50° 13'E). Sampling started during the spring snowmelt period and continued until late fall. The mire presented a mosaic of different landscape units. The mire consisted of minerogeous (fen), ombrogenous (bog), and transitional forest-mire (lagg) zones. Water samples were taken from the surface across the mire (22 points at 50-m intervals). DOC concentrations were analyzed directly at the study site using a portable, submersible UV-Vis spectrophotometer, which uses high-resolution absorbance measurements over the wavelength range 200-742.5 nm at 2.5-nm intervals as a proxy for DOC content. Because the DOC composition of fluids varies by site, a local calibration replaced the default settings of the spectro::lyser (Global Calibration) to enhance the accuracy of the measurements. To evaluate the local calibration and correct for drift, the same samples (n = 157) were additionally analyzed using the wet persulfate oxidation method (O-I-Analytica, Aurora Model 1030, USA). Based on ordinary least squares regression, the local calibration showed good agreement between the results obtained from the high-resolution absorption measurements and the wet persulfate oxidation method (r2= 0.99, root-mean-square error = 1.7 mg L-1). The measurement campaign revealed spatial and temporal variability of DOC concentrations, and demonstrated that at the beginning of the snowmelt period, surface carbon was flushed away by meltwater, whereas deeper layers remained frozen. During this time, the surface DOC concentrations fluctuated within the range of 8-15 mg L-1 (April 07) across the entire mire complex. After April 18, the concentrations diverged between the sites; the DOC concentration reached 30 mg L-1in the surface water at the lagg zone but was 15 mg L-1 at the bog site (April 25). The DOC surface water concentration continued to increase during summer and fall, ranging from 19 to 74 mg L-1 across the mire, with an average of 45 ± 14 mg L-1. The study indicates that high-resolution spectroscopic measurements provide a simple, fast, robust and non-destructive method for measuring DOC contents, with a short duration (17-20 seconds) and portability of the sample analysis rendering this method particularly advantageous for in-situ measurements at remote field locations.
Fujii, R.; Bergamaschi, B.A.; Ganju, N.K.; Fleck, J.A.; Burow-Fogg, K.R.; Schoellhamer, D.; Deverel, S.J.
2003-01-01
Water exported from the Sacramento-San Joaquin River Delta supplies drinking water to more than 22 million people in California. At certain times of the year, Delta waters contain relatively high concentrations of dissolved organic carbon (DOC) and bromide. During these times, chlorination of Delta water for drinking water disinfection will form disinfection byproducts, such as trihalomethanes (THMs), that can exceed the U.S. Environmental Protection Agency's maximum contaminant level for THMs of 80 mg/L. Important sources of DOC and THM precursors (types of DOC that form THMs when chlorinated) to the Delta include rivers, drainage water from peat islands, water from wetlands and areas with extensive riparian vegetation, and in-channel growth of algae and macrophytes. Due to proposed ecosystem restoration and creation of wetlands in the Delta, there is an urgent need for information on the relative loads of DOC and THM precursors produced from three different land uses: restored wetlands constructed for subsidence mitigation, tidal wetlands, and agricultural operations. We have been conducting research in the Delta to provide this information. A restored wetland and agricultural field located on Twitchell Island, and a tidal wetland on Browns Island have been monitored for flow, DOC, and THM precursors. Initial results indicate that the loads of DOC and THM precursors are similar for the restored wetland (surface water only) and the agricultural field. These land uses produce DOC loads of about 14 and 11 g C/m2/yr, respectively, and THM precursor loads of about 1.7 and 1.0 g THM/m2/yr, respectively. Estimates of DOC and THM precursor loads for the tidal wetland site on Browns Island and seepage associated with the restored wetland are being developed.
Fram, Miranda S.; Maurer, Douglas K.; Lico, Michael S.
2005-01-01
Increased pumpage from a basalt aquifer near Fallon, Nevada, has caused its water levels to decline and has induced changes in the quality of water pumped from the basalt. The aquifer is the sole source of water for municipal supply to the city of Fallon, the Naval Air Station Fallon, and the Fallon Paiute-Shoshone Tribe. These changes may be mitigated by storage of surface water in the basalt for subsequent use. Because chlorination of the surface water may be required for storage, the U.S. Geological Survey, in cooperation with the Fallon Paiute-Shoshone Tribe, made laboratory tests using laboratory carbon-organic-free water, surface-water, ground-water, and basaltic-rock samples to determine the potential for formation of disinfection by-products. Experiments with water samples only (no rock and no chlorine) indicated no change in dissolved-organic-carbon (DOC) concentrations over a 20-day reaction period; whereas, all experiments using rock, water, and no chlorine indicated an increase in DOC concentrations. The greatest increase in DOC concentrations for all three water samples occurred in experiments with the rock samples from outcrops on Rattlesnake Hill. Experiments with water only and chlorine yielded a total trihalomethane (THM) concentration of 97.4 ?g/L for the ground-water sample and 347 ?g/L for the surface-water sample. Experiments with mixtures of water, rocks, and chlorine indicated that reactions with the rock consumed chlorine and released significant amounts of organic carbon from the rock, increasing the DOC concentration in the water. The organic carbon in the rocks likely is associated with the secondary clay minerals that line vesicles and fractures in the rocks. THM concentrations were greatest, from 335 to 909 ?g/L, for surface water equilibrated with rock samples from Rattlesnake Hill. However, the concentration of chlorine required to produce these high THM concentrations ranged from 18 to 84 mg/L. The results of the experiments suggest that the amount of organic carbon released from the rocks during successive cycles of recharge, storage, and recovery of chlorinated surface water may be relatively small. The chlorine demand of the rocks is so large that all of the free chlorine in the entire volume of recharged water likely would be consumed by only a very small volume of the aquifer surrounding an injection well, or beneath an infiltration bed. The majority of the volume of the aquifer filled by the stored water likely would never come in contact with free chlorine, and the increases in concentration of DOC observed in these experiments likely would occur in a very small volume of the stored water. For this reason, increases in concentration of THMs for the entire volume of water stored also likely would be considerably less than those measured in these experiments. To test this hypothesis, additional laboratory experiments using varying levels of chlorination, varying lengths of reaction periods, and repeated cycles of chlorination would be useful. A field experiment made at a small scale in an isolated part of the basalt aquifer would aid in the design of an operational system.
Climate Variability, Dissolved Organic Carbon, UV Exposure, and Amphibian Decline
NASA Astrophysics Data System (ADS)
Brooks, P. D.; O'Reilly, C. M.; Diamond, S.; Corn, S.; Muths, E.; Tonnessen, K.; Campbell, D. H.
2001-12-01
Increasing levels of UV radiation represent a potential threat to aquatic organisms in a wide range of environments, yet controls on in situ variability on UV exposure are relatively unknown. The primary control on the penetration of UV radiation in surface water environments is the amount of photoreactive dissolved organic carbon (DOC). Consequently, biogeochemical processes that control the cycling of DOC also affect the exposure of aquatic organisms to UV radiation. Three years of monitoring UV extinction and DOC composition in Rocky Mountain, Glacier, Sequoia/ Kings Canyon, and Olympic National Parks demonstrate that the amount of fulvic acid DOC is much more important than the total DOC pool in controlling UV attenuation. This photoreactive component of DOC originates primarily in soil, and is subject both to biogeochemical controls (e.g. temperature, moisture, vegetation, soil type) on production, and hydrologic controls on transport to surface water and consequently UV exposure to aquatic organisms. Both of these controls are positively related to precipitation with greater production and transport associated with higher precipitation amounts. For example, an approximately 20 percent reduction in precipitation from 1999 to 2000 resulted in a 27% - 59% reduction in the amount of photoreactive DOC at three sites in Rocky Mountain National Park. These differences in the amount of hydrophobic DOC result in an increase in UV exposure in the aquatic environment by a factor of 2 or more. Implications of these findings for observed patterns of amphibian decline will be discussed.
Grebliunas, Brian D; Perry, William L
2016-01-01
Nutrient stoichiometry within a wetland is affected by the surrounding land use, and may play a significant role in the removal of nitrate (NO3-N). Tile-drained, agricultural watersheds experience high seasonal inputs of NO3-N, but low phosphorus (PO4-P) and dissolved organic carbon (DOC) loads relative to surface water dominated systems. This difference may present stoichiometric conditions that limit denitrification within receiving waterways. We investigated how C:N:P ratios affected denitrification rates of sediments from tile-drained mitigation wetlands incubated for: 0, 5, 10, and 20 days. We then tested whether denitrification rates of sediments from surface-water and tile-drained wetlands responded differently to C:N ratios of 2:1 versus 4:1. Ratios of C:N:P (P < 0.05) and incubation length (P < 0.05) had a significant effect on denitrification in tile-drained wetland sediments. Carbon limitation of denitrification became evident at elevated NO3-N concentrations (20 mg L(-1)). Denitrification measured from tile water and surface water wetland sediments increased significantly (P < 0.05) at the 2:1 and 4:1 C:N treatments. The results from both experiments suggest wetland sediments provide a limiting pool of labile DOC to maintain prolonged NO3-N removal. Also, DOC limitation became more evident at elevated NO3-N concentrations (20 mg L(-1)). Irrespective of NO3-N concentrations, P did not limit denitrification rates. In addition to wetting period, residence time, and maintenance of anaerobic conditions, the availability of labile DOC is playing an important limiting role in sediment denitrification within mitigation wetlands.
Farooq, S H; Chandrasekharam, D; Berner, Z; Norra, S; Stüben, D
2010-11-01
In the wake of the idea that surface derived dissolved organic carbon (DOC) plays an important role in the mobilization of arsenic (As) from sediments to groundwater and may provide a vital tool in understanding the mechanism of As contamination (mobilization/fixation) in Bengal delta; a study has been carried out. Agricultural fields that mainly cultivate rice (paddy fields) leave significantly large quantities of organic matter/organic carbon on the surface of Bengal delta which during monsoon starts decomposing and produces DOC. The DOC thus produced percolates down with rain water and mobilizes As from the sediments. Investigations on sediment samples collected from a paddy field clearly indicate that As coming on to the surface along with the irrigation water accumulates itself in the top few meters of sediment profile. The column experiments carried out on a 9 m deep sediment profile demonstrates that DOC has a strong potential to mobilize As from the paddy fields and the water recharging the aquifer through such agricultural fields contain As well above the WHO limit thus contaminating the shallow groundwater. Experiment also demonstrates that decay of organic matter induces reducing condition in the sediments. Progressively increasing reducing conditions not only prevent the adsorption of As on mineral surfaces but also cause mobilization of previously sorbed arsenic. There seems to be a cyclic pattern where As from deeper levels comes to the surface with irrigational water, accumulates itself in the sediments, and ultimately moves down to the shallow groundwater. The extensive and continual exploitation of intermediate/deep groundwater accelerates this cyclic process and helps in the movement of shallow contaminated groundwater to the deeper levels. Copyright © 2010 Elsevier Ltd. All rights reserved.
Oxygen consumption and labile dissolved organic carbon uptake by benthic biofilms
NASA Astrophysics Data System (ADS)
de Falco, Natalie; Boano, Fulvio; Arnon, Shai
2015-04-01
Biogeochemical activity in streams is often magnified at interfaces, such as in the case of biofilm growth near the surface of the stream sediments. The objective of this study was to evaluate the relative importance of surficial biofilms versus the biofilm in the hyporheic zone to the processes of biodegradation of a labile dissolved organic carbon (DOC) and to oxygen consumption. Experiments were conducted in a recirculating flume, equipped with a drainage system that enables the control on losing and gaining fluxes. A surficial biofilm was developed over a sandy streambed with dune-shaped bed forms, by providing labile DOC (sodium benzoate) and nitrate. Homogeneously distributed biofilm was obtained by the same feeding strategy but with mixing the sediments manually on a daily basis. After the biofilm growth period, transformation of the labile DOC under different overlying velocities and losing or gaining fluxes was studied after spiking with sodium benzoate and by monitoring the decrease in DOC concentration in the bulk water over time using an online UV/Vis spectrophotometer. In addition, oxygen profiles across the water-streambed interface were measured at different locations along the bed form using oxygen microelectrodes. Preliminary results showed that the rate of labile DOC degradation increased exponentially with increasing overlying water velocity, regardless of the type of biofilm. Gaining and losing conditions did not play a critical role in the DOC degradation regardless of the type of biofilm, because the labile DOC was quickly utilized close to the surface. Under losing conditions, complete depletion of oxygen was observed within the top 5 millimeters, regardless of the biofilm type. In contrast, oxygen profiles under gaining condition showed an incomplete consumption of oxygen followed by an increase in the concentration of oxygen deeper in the sediments due to the upward flow of oxygenated groundwater. The results suggest that the transformation of labile DOC occurs in the upper millimeters of the streambed, and the size and shape of the hyporheic flow paths are less important for aerobic activity. In addition, the effect of overlying water velocity on labile DOC transformation was shown to be more influential than losing and gaining fluxes.
NASA Astrophysics Data System (ADS)
de Wit, Heleen A.; Monteith, Don T.; Stoddard, John L.
2016-04-01
Concentrations of DOC in boreal surface waters have increased to levels that create challenges for water treatment plants, and that potentially impact lake habitat through increased anoxia and thermal mixing, and productivity. Aquatic transport of DOC from land to oceans is likely to increase, even if runoff patterns would remain stable. Reduced acid deposition appears to be a dominant driver behind the increase in DOC concentrations, through increasing organic matter solubility. We hypothesize that the higher solubility of organic matter makes DOC more susceptible to climate change. Here, we present trends in DOC from circa 500 lakes and streams in subarctic, boreal and temperate headwater catchments in Europe (UK, Fennoscandia, Czech Republic, Slovakia) and North America (Northeastern US, Ontario, Atlantic Canada) from 1990 until 2012; an extension of the trend analysis presented in Monteith et al. (2007). The water chemical data stem from national monitoring networks, assembled by the ICP Waters network. Sampling frequencies vary from 1 to 52 samples per year. Climate data were obtained from Climate Research Unit in the UK. Trends were calculated using the Mann-Kendall test and the Sen-slope estimator. We test 1) if DOC responds to changes in the rate of decline in acid deposition, and 2) if trends in temperature and precipitation affect trends and variability in DOC. Positive trends dominate: the median (±2.5% quartile) of the absolute and relative DOC trends is +0.06 (+0.36 to -0.02) mg C L-1 yr-1 and +1.4 (+4.7 to -0.9) % yr-1, respectively. Overall, the trends do not level off when comparing 1990-2004, and 1998-2012, except in the UK and Atlantic Canada. These two regions are strongly impacted by seasalt deposition but may also experience stronger warming than elsewhere. The response of DOC to changes in SO4 (expressed as trend ratios) is stronger in 1998-2012 than in 1990-2004. We will explore whether this changing relates to increasing dominance of drivers, such as temperature or precipitation, and will present multivariate models of DOC trends in relation to climate and deposition. References Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Hogasen T, Wilander A, Skjelkvale BL, Jeffries DS, Vuorenmaa J, Keller B, Kopacek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450(7169): 537-540
NASA Astrophysics Data System (ADS)
Maurice, P. A.; Cabaniss, S. E.; Drummond, J.
2001-12-01
This study investigated the spatiotemporal variability in dissolved organic carbon concentration (DOC), natural organic matter (NOM) weight average molecular weight (Mw), and absorptivity at 280 nm (e280, an estimator of aromaticity) at McDonalds Branch, a first-order stream that is a fen wetland. When ground-water discharge to the stream was predominant, the DOC, the Mw, and the e280 were all relatively low. When soil porewater was more important, not only was the DOC higher, but also the Mw and e280. Hence, the contribution of soil pore water relative to ground water controlled not only the concentration but also the average physicochemical characteristics of the NOM. Results from this small watershed study provide insight into climatic effects on surface-water NOM characteristics in a small freshwater fen. Low-flow periods resulted in lower Mw, more aliphatic NOM derived primarily from ground-water discharge to the stream whereas higher flow periods resulted in a higher Mw(by 150-500 Da), more aromatic downstream surface-water NOM pool. Hence, during future summer drought periods, as suggested by climate-change models for much of North America, surface-water NOM likely will be lower molecular weight, more aliphatic, and more hydrophilic with lesser metal binding and HOC uptake abilities, along with decreased ability to attenuate UV radiation.
The effect of surface-groundwater interaction on dissolved organic carbon transformation
NASA Astrophysics Data System (ADS)
De Falco, Natalie; Boano, Fulvio; Arnon, Shai
2014-05-01
The preservation and improvement of water quality in streams is a challenging task, limited by our partial understanding of the coupling between biogeochemical and hydrological processes occurring in stream ecosystems. High potential for biogeochemical activity is found in the hyporheic zone, the saturated sediments where surface water and ground water mixes and degradation activities occur. The aim of the study was to quantifythe effect of losing and gaining flow conditions on the degradation of dissolved organic carbon (DOC). Experiments were conducted in a recirculating flume that is equipped with a drainage system that enables the control on losing and gaining fluxes. The degradation of DOC under losing and gaining conditions was studied by spiking the water with benzoic acid and monitoring the decrease in DOC concentration in the bulk water over time using an online UV/Vis spectrophotometer. In addition, the spatial and temporal change in oxygen concentrations within the benthic biofilm was measured using a Clark-type oxygen microelectrode. Preliminary results showed that DOC degradation rate was faster under higher overlying water velocity, due to enhanced delivery of DOC to the biofilm. Under both gaining and losing conditions, the DOC degradation was slower than under neutral condition, probably as a consequence of the reduction of the hyporheic exchange zone. Series of oxygen profiles under losing conditions showed a complete depletion of oxygen within the first 3 millimeters of sediment. In contrast, oxygen profiles under gaining condition showed a incomplete consumption of oxygen (usually within 1 mm), followed by an increase in the concentration of oxygen deeper in the sediments due to the upward flow of oxygenated groundwater. The results suggest that the size of the active aerobic region within the hyporheic zone is changing dynamically with the flow conditions. The effect of flow conditions on redox zonation in the hyporheic zone is expected to affect a myriad of important reactions and ecological processes and should be incorporated on future models.
NASA Astrophysics Data System (ADS)
Fritz, M.; Tanski, G.; Goncalves-Araujo, R.; Heim, B.; Koch, B.; Lantuit, H.
2016-12-01
Organic carbon and nutrients are increasingly mobilized from permafrost coasts due to accelerated coastal erosion in response to Arctic warming. The nearshore zone plays a crucial role in Arctic biogeochemical cycling, as here the released material is destined to be (1) mineralized into greenhouse gases, (2) incorporated into marine primary production, (3) buried in nearshore sediments or (4) transported offshore. We present dissolved organic matter (DOM) quantities in surface water in the nearshore zone of the southern Beaufort Sea from three consecutive summer seasons under different meteorological conditions. Colored and fluorescent dissolved organic matter (cDOM, fDOM) properties are used to differentiate the terrestrial from the marine DOM component. Dissolved organic carbon (DOC) concentrations in the nearshore zone of the southern Beaufort Sea vary between about 1.5 and 5 mg C L-1. In low salinity conditions between 8 and 15, high DOC concentrations of 3.5 to 5 mg C L-1prevail. Storm events can lead to strongly decreased DOC concentration and increasing salinity (14 to 28) in surface water, probably due to upwelling. In windy and wavy conditions throughout the season, the water column is well-mixed and DOC-poor because saline waters are transported from the offshore to the nearshore. We recognized a significant negative correlation between DOC and salinity, independent from varying meteorological conditions. This suggests conservative mixing between DOC derived from permafrost coasts and marine primary production. Stable stratification in the nearshore zone and calm weather conditions will increase the influence of terrestrial-derived DOM and the potential turnover time for biogeochemical cycling in coastal ecosystems. The strength of the terrestrial influence can be estimated by salinity and stable water isotope measures as they directly correlate with DOC concentrations; the lower the salinity the stronger the terrestrial influence. We conclude that the terrestrial footprint of coastal erosion on DOM concentrations in the nearshore zone is significant and may increase with future climate warming. Meteorological conditions play a major role for the strength of the terrestrial DOM signal, which can vary on short timescales.
NASA Astrophysics Data System (ADS)
Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus
2015-04-01
Diurnal fluctuations in stream-flow are commonly explained as being triggered by the daily evapotranspiration cycle in the riparian zone, leading to stream flow minima in the afternoon. While this trigger effect must necessarily be constrained by the extent of the growing season of vegetation, we here show evidence of daily stream flow maxima in the afternoon in a small headwater stream during the dormant season. We hypothesize that the afternoon maxima in stream flow are induced by viscosity changes of riparian water that is caused by diurnal temperature variations of the near surface groundwater in the riparian zone. The patterns were observed in the Weierbach headwater catchment in Luxembourg. The catchment is covering an area of 0.45 km2, is entirely covered by forest and is dominated by a schistous substratum. DOC concentration at the outlet of the catchment was measured with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH) with a high frequency of 15 minutes over several months. Discharge was measured with an ISCO 4120 Flow Logger. During the growing season, stream flow shows a frequently observed diurnal pattern with discharge minima in the afternoon. During the dormant season, a long dry period with daily air temperature amplitudes of around 10 ° C occurred in March and April 2014, with discharge maxima in the afternoon. The daily air temperature amplitude led to diurnal variations in the water temperature of the upper 10 cm of the riparian zone. Higher riparian water temperatures cause a decrease in water viscosity and according to the Hagen-Poiseuille equation, the volumetric flow rate is inversely proportional to viscosity. Based on the Hagen-Poiseuille equation and the viscosity changes of water, we calculated higher flow rates of near surface groundwater through the riparian zone into the stream in the afternoon which explains the stream flow maxima in the afternoon. With the start of the growing season, the viscosity induced diurnal effect is overlain by the stronger influence of evapotranspiration. Diurnal DOC fluctuations show daily maxima in the afternoon. While daily variations in DOC concentrations are often explained by faster in-stream biogeochemical processes during daylight, we here propose that the viscosity effect in the riparian zone could explain the afternoon peaks in DOC concentrations. Our records show that daily water temperature variations and therefore viscosity changes only occur in the near surface parts of the riparian zone, where the DOC concentrations are higher than in deeper parts of the riparian zone. We calculated, that the viscosity induced higher flow rates from the near surface parts of the riparian zone can explain the DOC concentration maxima in the afternoon. As the viscosity effect does not disappear during the growing season but is just smaller than the evapotranspiration effect, the DOC concentration pattern is not changing between the dormant and growing seasons. The different controls of diurnal fluctuations of stream-flow and water quality concentrations need to be carefully considered in order to better understand the different patterns in catchment hydrology.
Removal of terrestrial DOC in aquatic ecosystems of a temperate river network
Wollheim, W.M.; Stewart, R. J.; Aiken, George R.; Butler, Kenna D.; Morse, Nathaniel B.; Salisbury, J.
2015-01-01
Surface waters play a potentially important role in the global carbon balance. Dissolved organic carbon (DOC) fluxes are a major transfer of terrestrial carbon to river systems, and the fate of DOC in aquatic systems is poorly constrained. We used a unique combination of spatially distributed sampling of three DOC fractions throughout a river network and modeling to quantify the net removal of terrestrial DOC during a summer base flow period. We found that aquatic reactivity of terrestrial DOC leading to net loss is low, closer to conservative chloride than to reactive nitrogen. Net removal occurred mainly from the hydrophobic organic acid fraction, while hydrophilic and transphilic acids showed no net change, indicating that partitioning of bulk DOC into different fractions is critical for understanding terrestrial DOC removal. These findings suggest that river systems may have only a modest ability to alter the amounts of terrestrial DOC delivered to coastal zones.
Zanacic, Enisa; Stavrinides, John; McMartin, Dena W
2016-11-01
Potable water treatment in small communities is challenging due to a complexity of factors starting with generally poor raw water sources, a smaller tax and consumption base that limit capital and operating funds, and culminating in what is typically a less sophisticated and robust water treatment plant for production and delivery of safe, high quality potable water. The design and optimization of modular ozone-assisted biological filtration systems can address some of these challenges. In surface water treatment, the removal of organic matter (e.g., dissolved organic carbon - DOC), inorganic nutrients and other exposure-related contaminants (e.g., turbidity and dissolved solids) from the raw water source is essential. Thus, a combination of chemical and biological oxidation processes can produce an effective and efficient water treatment plant design that is also affordable and robust. To that end, the ozone-assisted biological filtration water treatment plants in two communities were evaluated to determine the efficacy of oxidation and contaminant removal processes. The results of testing for in-field system performance indicate that plant performance is particularly negatively impacted by high alkalinity, high organics loading, and turbidity. Both bicarbonate and carbonate alkalinity were observed to impede ozone contact and interaction with DOC, resulting in lower than anticipated DOC oxidation efficiency and bioavailability. The ozone dosage at both water treatment plants must be calculated on a more routine basis to better reflect both the raw water DOC concentration and presence of alkalinities to ensure maximized organics oxidation and minimization of trihalomethanes production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Storck, Florian R; Schmidt, Carsten K; Wülser, Richard; Brauch, Heinz-Jürgen
2012-01-01
Drinking water is often produced from surface water by riverbank filtration (RBF) or artificial groundwater recharge (AGR). In this study, an AGR system was exemplarily investigated and results were compared with those of RBF systems, in which the effects of redox milieu, temperature and surface water discharge on the cleaning efficiency were evaluated. Besides bulk parameters such as DOC (dissolved organic carbon), organic trace pollutants including iodinated X-ray contrast media, personal care products, complexing agents, and pharmaceuticals were investigated. At all studied sites, levels of TOC (total organic carbon), DOC, AOX (adsorbable organic halides), SAC (spectral absorption coefficient at 254 nm), and turbidity were reduced significantly. DOC removal was stimulated at higher groundwater temperatures during AGR. Several substances were generally easily removable during both AGR and RBF, regardless of the site, season, discharge or redox regime. For some more refractory substances, however, removal efficiency turned out to be significantly influenced by redox conditions.
NASA Astrophysics Data System (ADS)
Lauerwald, Ronny; Regnier, Pierre; Camino-Serrano, Marta; Guenet, Bertrand; Guimberteau, Matthieu; Ducharne, Agnès; Polcher, Jan; Ciais, Philippe
2017-10-01
Lateral transfer of carbon (C) from terrestrial ecosystems into the inland water network is an important component of the global C cycle, which sustains a large aquatic CO2 evasion flux fuelled by the decomposition of allochthonous C inputs. Globally, estimates of the total C exports through the terrestrial-aquatic interface range from 1.5 to 2.7 Pg C yr-1 (Cole et al., 2007; Battin et al., 2009; Tranvik et al., 2009), i.e. of the order of 2-5 % of the terrestrial NPP. Earth system models (ESMs) of the climate system ignore these lateral transfers of C, and thus likely overestimate the terrestrial C sink. In this study, we present the implementation of fluvial transport of dissolved organic carbon (DOC) and CO2 into ORCHIDEE (Organising Carbon and Hydrology in Dynamic Ecosystems), the land surface scheme of the Institut Pierre-Simon Laplace ESM. This new model branch, called ORCHILEAK, represents DOC production from canopy and soils, DOC and CO2 leaching from soils to streams, DOC decomposition, and CO2 evasion to the atmosphere during its lateral transport in rivers, as well as exchange with the soil carbon and litter stocks on floodplains and in swamps. We parameterized and validated ORCHILEAK for the Amazon basin, the world's largest river system with regard to discharge and one of the most productive ecosystems in the world. With ORCHILEAK, we are able to reproduce observed terrestrial and aquatic fluxes of DOC and CO2 in the Amazon basin, both in terms of mean values and seasonality. In addition, we are able to resolve the spatio-temporal variability in C fluxes along the canopy-soil-water continuum at high resolution (1°, daily) and to quantify the different terrestrial contributions to the aquatic C fluxes. We simulate that more than two-thirds of the Amazon's fluvial DOC export are contributed by the decomposition of submerged litter. Throughfall DOC fluxes from canopy to ground are about as high as the total DOC inputs to inland waters. The latter, however, are mainly sustained by litter decomposition. Decomposition of DOC and submerged plant litter contributes slightly more than half of the CO2 evasion from the water surface, while the remainder is contributed by soil respiration. Total CO2 evasion from the water surface equals about 5 % of the terrestrial NPP. Our results highlight that ORCHILEAK is well suited to simulate carbon transfers along the terrestrial-aquatic continuum of tropical forests. It also opens the perspective that provided parameterization, calibration and validation is performed for other biomes, the new model branch could improve the quantification of the global terrestrial C sink and help better constrain carbon cycle-climate feedbacks in future projections.
Hydraulic and biochemical gradients limit wetland mercury supply to an Adirondack stream
Bradley, Paul M.; Burns, Douglas A.; Harvey, Judson; Journey, Celeste A.; Brigham, Mark E.; Murray, Karen
2016-01-01
Net fluxes (change between upstream and downstream margins) for water, methylmercury (MeHg), total mercury (THg), dissolved organic carbon (DOC), and chloride (Cl) were assessed twice in an Adirondack stream reach (Sixmile Brook, USA), to test the hypothesized importance of wetland-stream hydraulic and chemical gradients as fundamental controls on fluvial mercury (Hg) supply. The 500 m study reach represented less than 4% of total upstream basin area. During a snowmelt high-flow event in May 2009 surface water, DOC, and chloride fluxes increased by 7.1±1.3%, 8.0±1.3%, and 9.0±1.3%, respectively, within the reach, demonstrating that the adjacent wetlands are important sources of water and solutes to the stream. However, shallow groundwater Hg concentrations lower than in the surface water limited groundwater-surface water Hg exchange and no significant changes in Hg (filtered MeHg and THg) fluxes were observed within the reach despite the favorable hydraulic gradient. In August 2009, the lack of significant wetland-stream hydraulic gradient resulted in no net flux of water or solutes (MeHg, THg, DOC, or Cl) within the reach. The results are consistent with the wetland-Hg-source hypothesis and indicate that hydraulic and chemical gradient (direction and magnitude) interactions are fundamental controls on the supply of wetland Hg to the stream.
Dissolved Organic Matter (DOM) Export from Watersheds to Coastal Oceans
NASA Astrophysics Data System (ADS)
Chen, R. F.; Gardner, G. B.; Peri, F.
2016-02-01
Dissolved organic matter (DOM) from terrestrial plants and soils is transported by surface waters and groundwaters to coastal ocean waters. Along the way, photochemical and biological degradation can remove DOM, and in situ processes such as phytoplankton leaching and sediment sources can add to the DOM in the river water. Wetlands, especially coastal wetlands can add significant amounts of DOM that is carried by rivers and is exported through estuaries to coastal systems. We will present observational data from a variety of coastal systems (San Francisco Bay, Boston Harbor, Chesapeake Bay, Hudson River, the Mississippi River, and a small salt marsh in the Gulf of Mexico). High resolution measurements of chromophoric dissolved organic matter (CDOM) can be correlated with dissolved organic carbon (DOC) so can be used to estimate DOC in specific systems and seasons. Gradients in CDOM/DOC combined with water fluxes can be used to estimate DOC fluxes from a variety of coastal watersheds to coastal systems. Influences of land use, system size, residence time, DOM quality, and photochemical and biological degradation will be discussed. The significance of coastal wetlands in the land-to-ocean export of DOC will be emphasized.
Netcher, Andrea C; Duranceau, Steven J
2016-03-01
In surface water treatment, ultrafiltration (UF) membranes are widely used because of their ability to supply safe drinking water. Although UF membranes produce high-quality water, their efficiency is limited by fouling. Improving UF filtrate productivity is economically desirable and has been attempted by incorporating sustainable biofiltration processes as pretreatment to UF with varying success. The availability of models that can be applied to describe the effectiveness of biofiltration on membrane mass transfer are lacking. In this work, UF water productivity was empirically modeled as a function of biofilter feed water quality using either a quadratic or Gaussian relationship. UF membrane mass transfer variability was found to be governed by the dimensionless mass ratio between the alkalinity (ALK) and dissolved organic carbon (DOC). UF membrane productivity was optimized when the biofilter feed water ALK to DOC ratio fell between 10 and 14. Copyright © 2015 Elsevier Ltd. All rights reserved.
Impact of managed moorland burning on DOC concentrations in soil solutions and stream waters
NASA Astrophysics Data System (ADS)
Palmer, Sheila; Wearing, Catherine; Johnson, Kerrylyn; Holden, Joseph; Brown, Lee
2013-04-01
In the UK uplands, prescribed burning of moorland vegetation is a common practice to maintain suitable habitats for game birds. Many of these landscapes are in catchments covered by significant deposits of blanket peat (typically one metre or more in depth). There is growing interest in the effect of land management on the stability of these peatland carbon stores, and their contribution to dissolved and particulate organic carbon in surface waters (DOC and POC, respectively) and subsequent effects on stream biogeochemistry and ecology. Yet there are surprisingly few published catchment-scale studies on the effect of moorland burning on DOC and POC. As part of the EMBER project, stream chemistry data were collected approximately monthly in ten upland blanket peat catchments in the UK, five of which acted as controls and were not subject to burning. The other five catchments were subject to a history of prescribed burning, typically in small patches (300-900 m2) in rotations of 8-25 years. Soil solution DOC was also monitored at four depths at two intensively studied sites (one regularly burned and one control). At the two intensive sites, soil solution DOC was considerably higher at the burned site, particularly in surface solutions where concentrations in excess of 100 mg/L were recorded on several occasions (median 37 mg/L over 18 months). The high soil solution DOC concentrations at the burned site occurred in the most recently burned plots (less than 2 years prior to start of sampling) and the lowest DOC concentrations were observed in plots burned 15-25 years previously. On average, median stream DOC and POC concentrations were approximately 43% and 35% higher respectively in burned catchments relative to control catchments. All streams exhibited peak DOC in late summer/early autumn with higher peak DOC concentrations in burned catchments (20-66 mg/L) compared to control catchments (18-54 mg/L). During winter months, DOC concentrations were low in control catchments (typically less than 15 mg/L) but were highly variable in burned catchments (9-40 mg/L), implying some instability of peat carbon stores and/or fluctuation in source. The results offer strong evidence for an impact of burning on the delivery of DOC to streams, possibly through increased surface run-off from bare or partially vegetated patches.
Ritson, Jonathan P; Bell, Michael; Graham, Nigel J D; Templeton, Michael R; Brazier, Richard E; Verhoef, Anne; Freeman, Chris; Clark, Joanna M
2014-12-15
Uncertainty regarding changes in dissolved organic carbon (DOC) quantity and quality has created interest in managing peatlands for their ecosystem services such as drinking water provision. The evidence base for such interventions is, however, sometimes contradictory. We performed a laboratory climate manipulation using a factorial design on two dominant peatland vegetation types (Calluna vulgaris and Sphagnum Spp.) and a peat soil collected from a drinking water catchment in Exmoor National Park, UK. Temperature and rainfall were set to represent baseline and future conditions under the UKCP09 2080s high emissions scenario for July and August. DOC leachate then underwent standard water treatment of coagulation/flocculation before chlorination. C. vulgaris leached more DOC than Sphagnum Spp. (7.17 versus 3.00 mg g(-1)) with higher specific ultraviolet (SUVA) values and a greater sensitivity to climate, leaching more DOC under simulated future conditions. The peat soil leached less DOC (0.37 mg g(-1)) than the vegetation and was less sensitive to climate. Differences in coagulation removal efficiency between the DOC sources appears to be driven by relative solubilisation of protein-like DOC, observed through the fluorescence peak C/T. Post-coagulation only differences between vegetation types were detected for the regulated disinfection by-products (DBPs), suggesting climate change influence at this scale can be removed via coagulation. Our results suggest current biodiversity restoration programmes to encourage Sphagnum Spp. will result in lower DOC concentrations and SUVA values, particularly with warmer and drier summers. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ray, R.; Michaud, E.; Vantrepotte, V.; Aller, R. C.; Morvan, S.; Thouzeau, G.
2016-12-01
We studied the mangrove dominated Sinnamary estuarine system in French Guiana during the dry and wet seasons in 2015 to examine the sources, transport and fate of surface water DOC, POC and DIC along the salinity gradient and the effect of tidal fluctuations on carbon dynamics. Elemental ratios, stable isotopes and optical properties (absorption) were applied as proxies to delineate the sources and molecular structure of the organic carbon. Results showed that during the wet season there were significant net inputs of POC and DOC along the salinity gradient from mangroves and enhanced surface runoff. Time series performed during the dry season at a station in channel water adjacent to mangroves revealed mangrove-derived export and exchanges of DOC and POC during the ebb and marine algae import during the flood. DOC was the dominant form of carbon in both seasons with DOC:POC ratios typically between 13 and 40. Both δ13DOC and CDOM descriptors (e.g., S275-295 and a*412) confirmed mangrove litter leaching to be the primary contributor of high molecular weight dissolved organic matter in the wet season which was replaced by marine phytoplanktonic OC during transport offshore in the dry season. CDOM aromaticity is lower in the dry season as mangrove inputs decrease. POC showed similar trends as DOC, with maximum contributions of terrestrial litter in the river and mixing zone, and in situ production dominant in the marine zone. The entire estuary is heterotrophic, exhibiting high pCO2 (837-5575µatm) and oxygen undersaturation (59-86%) in both seasons, and substantial CO2 emission fluxes (278-3671mmol m-2 d-1). Intense local remineralization and laterally transported CO2 originating from mangrove benthic respiration could account for the water column pCO2 enrichment during low tide and night time. Keywords: Organic carbon, stable isotopes, CDOM, pCO2, mangrove, French Guiana
NASA Astrophysics Data System (ADS)
Oulehle, Filip; Jones, Timothy; Burden, Annette; Evans, Chris
2013-04-01
Dissolved organic carbon (DOC) is an important component of the global carbon (C) cycle and has profound impacts on water chemistry and metabolism in lakes and rivers. Reported increases of DOC concentration in surface waters across Europe and Northern America have been attributed to several drivers; from changing climate and land-use to eutrophication and declining acid deposition. The last of these suggests that acidic deposition suppressed the solubility of DOC, and that this historic suppression is now being reversed by reducing emissions of acidifying pollutants. We studied a set of four parallel acidification and alkalization experiments in organic rich soils which, after three years of manipulation, have shown clear soil solution DOC responses to acidity change. We tested whether these DOC concentration changes were related to changes in the acid/base properties of DOC. Based on laboratory determination of DOC site density (S.D. = amount of carboxylic groups per milligram DOC) and charge density (C.D. = organic acid anion concentration per milligram DOC) we found that the change in DOC soil-solution partitioning was tightly related to the change in degree of dissociation (α = C.D./S.D. ratio) of organic acids (R2=0.74, p<0.01). Carbon turnover in soil organic matter (SOM), determined by soil respiration and β-D-glucosidase enzyme activity measurements, also appears to have some impact on DOC leaching, via constraints on the actual supply of available DOC from SOM; when the turnover rate of C in SOM is low, the effect of α on DOC leaching is reduced. Thus, differences in the magnitude of DOC changes seen across different environments might be explained by interactions between physicochemical restrictions of DOC soil-solution partitioning, and SOM carbon turnover effects on DOC supply.
NASA Astrophysics Data System (ADS)
Qiong, Liu; Pan, Delu; Huang, Haiqing; Lu, Jianxin; Zhu, Qiankun
2011-11-01
A cruise was conducted in the East China Sea (ECS) in autumn 2010 to collect Dissolved Organic Carbon (DOC) and Colored Dissolved Organic Matter (CDOM) samples. The distribution of DOC mainly controlled by the hydrography since the relationship between DOC and salinity was significant in both East China Sea. The biological activity had a significant influence on the concentration of DOC with a close correlation between DOC and Chl a. The absorption coefficient of CDOM (a355) decreased with the salinity increasing in the shelf of East China Sea (R2=0.9045). CDOM and DOC were significantly correlated in ECS where DOC distribution was dominated largely by the Changjiang diluted water. Based on the relationship of CDOM and DOC, we estimated the DOC concentration of the surface in ECS from satellite-derived CDOM images. Some deviations induced by the biological effect and related marine DOC accumulations were discussed.
Fabbri, Debora; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide
2015-09-01
The direct and indirect photodegradation of six cephalosporins was predicted using a photochemical model, on the basis of literature values of photochemical reactivity. Environmental photodegradation would be important in surface water bodies with depth ⩽ 2-3m, and/or in deeper waters with low values of the dissolved organic carbon (DOC ⩽ 1 mg C L(-1)). The half-life times would range from a few days to a couple of weeks in summertime. In deeper and higher-DOC waters and/or in different seasons, hydrolysis could prevail over photodegradation. The direct photolysis of cephalosporins is environmentally concerning because it is known to produce toxic intermediates. It would be a major pathway for cefazolin, an important one for amoxicillin and cefotaxime and, at pH<6.5, for cefapirin as well. In contrast, direct photolysis would be negligible for cefradine and cefalexin. The DOC values would influence the fraction of photodegradation accounted for by direct photolysis in shallow water, to a different extent depending on the role of sensitisation by the triplet states of chromophoric dissolved organic matter. Copyright © 2015 Elsevier Ltd. All rights reserved.
Awad, John; van Leeuwen, John; Chow, Christopher W K; Smernik, Ronald J; Anderson, Sharolyn J; Cox, Jim W
2017-01-01
Dissolved organic matter (DOM) in surface waters used for drinking purposes can vary markedly in character depending on its source within catchments and the timing and intensity of rainfall events. Here we report the findings of a study on the character and concentration of DOM in waters collected during different seasons from Myponga River and Reservoir, South Australia. The character of DOM was assessed in terms of its treatability by enhanced coagulation and potential for disinfection by-product i.e. trihalomethane (THM) formation. During the wet seasons (winter and spring), water samples from the river had higher DOC concentrations (X¯: 21 mg/L) and DOM of higher average molecular weight (AMW: 1526 Da) than waters collected during the dry seasons (summer and autumn: DOC: 13 mg/L; AMW: 1385 Da). Even though these features led to an increase in the percentage removal of organics by coagulation with alum (64% for wet compared with 53% for dry season samples) and a lower alum dose rate (10 versus 15 mg alum/mg DOC removal), there was a higher THM formation potential (THMFP) from wet season waters (treated waters: 217 μg/L vs 172 μg/L). For reservoir waters, samples collected during the wet seasons had an average DOC concentration (X¯: 15 mg/L), percentage removal of organics by alum (54%), alum dose rates (13 mg/mg DOC) and THMFP (treated waters: 207 μg/L) that were similar to samples collected during the dry seasons (mean DOC: 15 mg/L; removal of organics: 52%; alum dose rate: 13 mg/mg DOC; THMFP: 212 μg/L for treated waters). These results show that DOM present in river waters and treatability by alum are highly impacted by seasonal environmental variations. However these in reservoir waters exhibit less seasonal variability. Storage of large volumes of water in the reservoir enables mixing of influent waters and stabilization of water quality. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
The topographic wetness index as a predictor for hot spots of DOC export from catchments
NASA Astrophysics Data System (ADS)
Musolff, Andreas; Oosterwoud, Marieke; Tittel, Jörg; Selle, Benny; Fleckenstein, Jan H.
2015-04-01
Dissolved organic carbon (DOC) concentrations in the discharge of many catchments in Europe and North America are rising. This increase is of concern for the drinking water supply from reservoirs since high DOC concentrations cause additional costs in water treatment and potentially the formation of harmful disinfection by-products. A prerequisite for understanding this increase is the knowledge on the spatial distribution of dominant soil DOC sources within catchments and on mobilization as well as transfer processes to the surface water. A number of studies identified wetland soils as the dominant source with fast mobilization and short transit times to the receiving surface water. However, most studies have either focussed on smaller, hillslope and single catchment or on larger scale multi-catchment assessments. Moreover, information on the distribution of soil types in catchments is not always readily available. This study brings together both types of assessment in a data-driven top-down approach: (i) a detailed survey on DOC concentration and loads over the course of one year within two paired data-rich catchments discharging into a large drinking water reservoir in central Germany and (ii) a database of hydrochemistry and physio-geographic characteristics of 113 catchments draining into 58 reservoirs across Germany over the course of 16 years. The objective is to define hot spots of DOC export within the catchments for both types of assessments (i, ii) and to test the suitability of the topographic wetness index (TWI) as a proxy for well-connected wetland soils at various spatial scales. In the sub-catchments of assessment (i) the spatial variability of concentrations and loads was much smaller than expected. None of the studied sub-catchments was a predominant producer of the total DOC loads exported from the catchments. We found the mean concentrations and loads to be positively correlated with the share of groundwater-dominated soils in the sub-catchments. These soils are distributed in riparian wetlands along all streams within the catchments. As a readily available proxy for wetland soils percentiles of the probability distribution of the TWI in the sub-catchments were found to be good predictors for mean DOC concentrations in catchment outlet as well as for loads. In the larger dataset across Germany (ii) we also found a surprisingly good correlation between the TWI within the catchments and mean DOC concentrations. Thus we can show that, despite the wide range of topographies, land use types, geological setups and climatic conditions within this dataset the dominant source zones of DOC export is well captured by the TWI as a proxy for the share of wetland soils and DOC source zones within the catchments.
Li, Shiyu; Yang, Changliang; Peng, Changhui; Li, Haixia; Liu, Bin; Chen, Chuan; Chen, Bingyu; Bai, Jinyue; Lin, Chen
2018-06-15
The adsorption/desorption of arsenic (As) at the sediment-water interface in lakes is the key to understanding whether As can enter the ecosystem and participate in material circulation. In this study, the concentrations of As(III), total arsenic [As(T)], sulfide, iron (Fe), and dissolved organic carbon (DOC) in overlying water were observed after the initial sulfate (SO 4 2- ) concentrations were increased by four gradients in the presence and absence of microbial systems. The results indicate that increased SO 4 2- concentrations in overlying water triggered As desorption from sediments. Approximately 10% of the desorbed As was desorbed directly as arsenite or arsenate by competitive adsorption sites on the iron salt surface; 21% was due to the reduction of iron (hydr)oxides; and 69% was due to microbial activity, as compared with a system with no microbial activity. The intensity of microbial activity was controlled by the SO 4 2- and DOC concentrations in the overlying water. In anaerobic systems, which had SO 4 2- and DOC concentrations higher than 47 and 7 mg/L, respectively, microbial activity was promoted by SO 4 2- and DOC; As(III) was desorbed under these indoor simulation conditions. When either the SO 4 2- or DOC concentration was lower than its respective threshold of 47 or 7 mg/L, or when either of these indices was below its concentration limit, it was difficult for microorganisms to use SO 4 2- and DOC to enhance their own activities. Therefore, conditions were insufficient for As desorption. The migration of As in lake sediments was dominated by microbial activity, which was co-limited by SO 4 2- and DOC. The concentrations of SO 4 2- and DOC in the overlying water are thus important for the prevention and control of As pollution in lakes. We recommend controlling SO 4 2- and DOC concentrations as a method for controlling As inner-source pollution in lake water. Copyright © 2018 Elsevier Inc. All rights reserved.
Olefeldt, David; Roulet, Nigel T
2014-10-01
Permafrost thaw in peatlands has the potential to alter catchment export of dissolved organic carbon (DOC) and thus influence downstream aquatic C cycling. Subarctic peatlands are often mosaics of different peatland types, where permafrost conditions regulate the hydrological setting of each type. We show that hydrological setting is key to observed differences in magnitude, timing, and chemical composition of DOC export between permafrost and nonpermafrost peatland types, and that these differences influence the export of DOC of larger catchments even when peatlands are minor catchment components. In many aspects, DOC export from a studied peatland permafrost plateau was similar to that of a forested upland catchment. Similarities included low annual export (2-3 g C m(-2) ) dominated by the snow melt period (~70%), and how substantial DOC export following storms required wet antecedent conditions. Conversely, nonpermafrost fens had higher DOC export (7 g C m(-2) ), resulting from sustained hydrological connectivity during summer. Chemical composition of catchment DOC export arose from the mixing of highly aromatic DOC from organic soils from permafrost plateau soil water and upland forest surface horizons with nonaromatic DOC from mineral soil groundwater, but was further modulated by fens. Increasing aromaticity from fen inflow to outlet was substantial and depended on both water residence time and water temperature. The role of fens as catchment biogeochemical hotspots was further emphasized by their capacity for sulfate retention. As a result of fen characteristics, a 4% fen cover in a mixed catchment was responsible for 34% higher DOC export, 50% higher DOC concentrations and ~10% higher DOC aromaticity at the catchment outlet during summer compared to a nonpeatland upland catchment. Expansion of fens due to thaw thus has potential to influence landscape C cycling by increasing fen capacity to act as biogeochemical hotspots, amplifying aquatic C cycling, and increasing catchment DOC export. © 2014 John Wiley & Sons Ltd.
Dornblaser, Mark M.; Striegl, Robert G.
2015-01-01
Hydrologic exports of dissolved inorganic and organic carbon (DIC, DOC) reflect permafrost conditions in arctic and subarctic river basins. DIC yields in particular, increase with decreased permafrost extent. We investigated the influence of permafrost extent on DIC and DOC yield in a tributary of the Yukon River, where the upper watershed has continuous permafrost and the lower watershed has discontinuous permafrost. Our results indicate that DIC versus DOC predominance switches with interannual changes in water availability and flow routing in intermediate-size watersheds having mixed permafrost coverage. Large water yield and small concentrations from mountainous headwaters and small water yield and high concentrations from lowlands produced similar upstream and downstream carbon yields. However, DOC export exceeded DIC export during high-flow 2011 while DIC predominated during low-flow 2010. The majority of exported carbon derived from near-surface organic sources when landscapes were wet or frozen and from mineralized subsurface sources when infiltration increased.
Surface microlayer enrichment of polycyclic aromatic hydrocarbons in lower Chesapeake Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, K.; Dickhut, R.M.
1995-12-31
Surface microlayer samples were collected with a rotating cylinder sampler in the York River and Elizabeth River tributaries of lower Chesapeake Bay every other month from May 1994 to June, 1995. Spatial and temporal variabilities were also investigated over an annual cycle as well as shorter periods (i.e. days). All the samples were analyzed for 17 polycyclic aromatic hydrocarbons, total suspended particulate matter (TSP), particular organic carbon (POC), total nitrogen(TN) and dissolved organic carbon (DOC), and selected samples for chlorophyll. TSP in the surface microlayer was 10 to 100 times higher than that in the related bulk water. Particle associatedmore » PAH concentrations were 20--50 times those in bulk surface water, whereas PAH concentrations in freely dissolved phase of the surface microlayer were 5--60 times higher than dissolved concentrations in the bulk water. Particulate PAH concentrations increase with TSP in the surface microlayer and dissolved PAH concentrations increase with DOC. Overall, surface microlayer characteristics were found to be significantly affected by hydrological and meteorological parameters.« less
NASA Astrophysics Data System (ADS)
Para, J.; Charrière, B.; Matsuoka, A.; Miller, W. L.; Rontani, J. F.; Sempéré, R.
2013-04-01
Surface waters from the Beaufort Sea in the Arctic Ocean were evaluated for dissolved organic carbon (DOC), and optical characteristics including UV (ultraviolet) radiation and PAR (photosynthetically active radiation) diffuse attenuation (Kd), and chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) as part of the MALINA field campaign (30 July to 27 August). Spectral absorption coefficients (aCDOM (350 nm) (m-1)) were significantly correlated to both diffuse attenuation coefficients (Kd) in the UV-A and UV-B and to DOC concentrations. This indicates CDOM as the dominant attenuator of both UV and PAR solar radiation and suggests its use as an optical proxy for DOC concentrations in this region. While the Mackenzie input is the main driver of CDOM dynamics in low salinity waters, locally, primary production can create significant increases in CDOM. Extrapolating CDOM to DOC relationships, we estimate that ∼16% of the DOC in the Mackenzie River does not absorb radiation at 350 nm. The discharges of DOC and its chromophoric subset (CDOM) by the Mackenzie River during the MALINA cruise are estimated as ∼0.22 TgC and 0.18 TgC, respectively. Three dissolved fluorescent components (C1-C3) were identified by fluorescence excitation/emission matrix spectroscopy (EEMS) and parallel factor (PARAFAC) analysis. Our results showed an aquatic dissolved organic matter (DOM) component (C1), probably produced in the numerous lakes of the watershed, that co-dominated with a terrestrial humic-like component (C2) in the Mackenzie Delta Sector. This aquatic DOM could partially explain the high CDOM spectral slopes observed in the Beaufort Sea.
NASA Astrophysics Data System (ADS)
Qassim, Suzane; Dixon, Simon; Rowson, James; Worrall, Fred; Evans, Martin
2013-04-01
Polluted by past atmospheric deposition, eroded and burnt, the Bleaklow plateau (Peak district National Park, UK) has long been degraded. Peatlands are important carbon reservoirs and can act as sources or sinks of carbon. Dissolved organic carbon (DOC) is carbon lost from peatlands via the fluvial pathway and as the major component of water colour it is costly to remove during water treatment processes. The Bleaklow Summit peatlands, were subjected to a large wildfire in 2003 devegetating 5.5km2. This fire prompted stakeholders to initiate a large-scale programme of restoration of the plateau. This study considered restoration techniques across four sites: all four sites were seeded with lawn grass, limed and fertilised; to raise the pH and allow establishment of vegetation. In addition to these interventions, one site also had a mulch of Calluna vulgaris applied to the surface to allow soil stabilisation and promote vegetation establishment and another site had biodegradable geojute textile mesh installed, to stabilize the steep gully surfaces. Another site had a gully block installed, to reduce peat desiccation and erosion. This study will compare the four restored sites to two types of comparators: bare soil sites where no restoration was undertaken and a naturally vegetated site unaffected by the 2003 wildfire. Each site had six replicate dipwells, installed in two groups of three. The depth to the water table was monitored and soil water samples collected for analysis, monthly for 5 years, from Nov 2006 - Jan 2012. No significant difference in DOC concentration was found between control and treated sites. There was, however, a significant difference in DOC composition between sites and over the 5 year period of monitoring. UV-vis absorbance of the samples is used to quantify the fulvic to humic components of DOC. The vegetated control was not significantly different to the bare sites; however the vegetated control had a significantly greater humic fraction of than the seeded, limed and fertilised only site, as well as the seeded, limed, C. vulgaris mulched site. This is possibly related to vegetation and litter layer establishment. A suite of water quality data (conductivity, pH and cation data) are now being analysed in combination with DOC to increase understanding of the relationship between bare site re-vegetation and DOC compositional change.
Scholz, C; Jones, T G; West, M; Ehbair, A M S; Dunn, C; Freeman, C
2016-09-01
The objective of this study was to monitor a newly constructed wetland (CW) in north Wales, UK, to assess whether it contributes to an improvement in water quality (nutrient removal) of a nearby drinking water reservoir. Inflow and outflow of the Free Water Surface (FWS) CW were monitored on a weekly basis and over a period of 6 months. Physicochemical parameters including pH, conductivity and dissolved oxygen (DO) were measured, as well as nutrients and dissolved organic and inorganic carbon (DOC, DIC) concentration. The CW was seen to contribute to water quality improvement; results show that nutrient removal took place within weeks after construction. It was found that 72 % of initial nitrate (N03 (-)), 53 % of initial phosphate (PO4 (3-)) and 35 % of initial biological oxygen demand (BOD) were removed, calculated as a total over the whole sampling period. From our study, it can be concluded that while inorganic nutrients do decline in CWs, the DOC outputs increases. This may suggest that CWs represent a source for DOC. To assess the carbon in- and output a C budget was calculated.
NASA Astrophysics Data System (ADS)
Ritson, Jonathan; Graham, Nigel; Templeton, Michael; Freeman, Christopher; Clark, Joanna
2015-04-01
Organic rich peat soils are a major store of carbon worldwide. Their existence is predicated on high year-round water tables which create an anoxic environment, thus limiting decay, and also to the recalcitrance of plant litter (dead plant material) commonly found in peatland areas. Climate change threatens the stability of peat soils by altering the biogeochemical cycles which control plant decay, lowering water tables so that oxic degradation can occur and by changing habitat niches such that less recalcitrant species can thrive in peatlands. One of the major fluxes of carbon from peatlands is through dissolved organic carbon (DOC) in surface waters. As peatland areas in the UK are often used as source waters for drinking water supply this presents a problem to water utilities as DOC must be effectively removed to limit colour, odour and the formation of potentially carcinogenic by-products on disinfection. Changes in catchment vegetation may occur due to climate change, nutrient deposition and changing bioclimatic envelopes. How different peatland vegetation contribute to DOC flux and how this may change in the future is therefore of interest. A six week laboratory simulation was performed on typical peatland litter (Sphagnum spp., Calluna vulgaris, Molinea caerulea, Juncus effusus) and a peat soil collected from Exmoor National Park, UK. The simulation monitored DOC flux from the decaying litter/soil and considered the impact of different drought severities using the 50th, 25th, 10th and 5th percentiles of the mean July/August monthly rainfall for Exmoor. On rewetting following the drought, all sources produced significantly different amounts of DOC (Tukey HSD p<0.05) in the order Molinia>Juncus>Calluna>Sphagnum>peat. The source also had a significant (ANOVA p<0.001) effect on coagulation removal efficiency, a typical method of removing DOC during drinking water treatment, with Juncus DOC proving the easiest to remove whilst Sphagnum DOC was the most difficult. Sphagnum DOC had the lowest ratio of humic-like to protein-like fluorescence, which is indicative of DOC which is poorly removed by coagulation. An interactive effect was noted between DOC source and the drought treatment which was explored further using a one-way ANOVA with a Holm-Šidák correction. This suggested peat will produce significantly more DOC when affected by drought (p=0.010), possibly explained by increased oxygenation engaging the 'enzymatic latch' mechanism. A similar analysis was performed on the interaction between drought and DOC source for the specific UV absorbance at 254nm (SUVA) value (a measure of aromaticity). This suggested that Molinea caerulea produces DOC of significantly (p=0.001) higher aromaticity following periods of drought. Comparisons between drought and DOC source factors suggest the source in more important than climatic conditions of decay which is consistent with our previously published findings. These results have implications for marginal peatlands which may be at risk from increased water table drawdown in the future as climate changes and where Molinea caerulea, typically a fen species, is encroaching on bog communities.
NASA Astrophysics Data System (ADS)
Xiao, D. A.; Xu, H.
2012-04-01
Samples of soil waters and epi-karst springs in four vegetation types were collected at Maolan nature reserve in Libo county, which including protogenetic arbors, secondary arbor-shrub, shrubs and shrub-grass, to analyze their hydro-geochemical properties and the variations of nutrient elements, and further to illustrate the intrinsic correlations of vegetation, soil, environment changes and their geochemical information. The conclusions have been concluded as follows: (1) The pH of soil waters in the study area varies between 5.32 and 7.93, with a mean value of 6.78, and the conductivity changes between 31.82 and 353.65 μS/cm, with a mean value of 126.19 μS/cm. Both descend as the vegetation degrades. The hydro-chemistry of soil waters are Ca- HCO3-, and their ions mainly consist of Ca2+, Mg2+, HCO3-, SO42-. Ca2+, Mg2+, HCO3-are very sensitive to vegetations degradation. Ion contents are high in rain seasons and low in dry ones. (2) The pH of surface karst springs in the study area vary between 6.7 and 8.42, with a mean value of 7.65, and the conductivity between 125.6 and 452 μS/cm, with a mean value of 288.09 μS/cm. The hydro-chemistry of surface karst springs are Ca- HCO3-. HCO3-and SO42-are the main anions while Ca2+and Mg2+as main cations. The chemical properties and geochemical process of surface springs are mainly controlled by the solubility equilibrium of carbonate rocks, thus not sensitive to vegetation degradations. (3) All the calcite saturation indices of soil waters in four vegetation types are below 0, while most indices of surface karst springs are above 0, demonstrating greater denudation of soil waters than surface karst springs. As soil waters flow to surface springs, the partial pressure of CO2decreases, the denudation of water lessens, and saturation index, Ca2+, HCO3-, consequently, pH and conductivity increase. (4) Inorganic nitrogen in soil waters exist mainly as N-NO3- and N-NH4+, accounting ~ 95% of the 3 Ns. As vegetation degrades, nitrate nitrogen, organic nitrogen and total nitrogen change in follow way, protogenetic arbors > secondary arbor-shrub, shrubs > shrub-grass, but the differences among all vegetation types are not prominent. Ammonia nitrogen, however, changes otherwise as follows: shrubs, shrub-grass > protogenetic arbors, secondary arbor-shrub. In surface springs, few inorganic nitrogen exists as NO2--N ( 2 μg/L on average ), and most exists as NO3-N ( 215 μg/L on average ), and NH4+-N is 185μg/L on average. In general, NH4+-N, NO3--N and TN formations in the four vegetation types are: protogenetic arbors > secondary arbor-shrub > shrubs > shrub-grass. (5) DOC content in soil waters vary between 1.88 and 10.37 mg/L, with an average 4.8 mg/L. DOC content in surface karst springs changes between 0.39 and 9.98 mg/L, with an average 2.25 mg/L. DOCs in soil waters are greater than those in surface karst springs in all four vegetation types, and have sharp differences ( P≤0.01 ). DOCs in soil waters and surface karst springs share a great relationship and a similar change tendency, which well illustrates a main source of surface springs from soil waters. In both of them, DOCs are larger in original vegetations than in degraded vegetations. This is because the soil-vegetation system is stable in an original ecology environment which free from outside disturbs. By contrast, a degraded system is unstable, weak at beating disturbs, and conserves less but loses more. Key words: soil waters, epi-karst springs, hydro-geochemical, vegetation, karst area, Maolan in Guizhou
Denning, A. Scott; Baron, Jill S.; Mast, M. Alisa; Arthur, Mary
1991-01-01
Intensive sampling of a stream draining an alpine-subalpine basin revealed that depressions in pH and acid neutralizing capacity (ANC) of surface water at the beginning of the spring snowmelt in 1987 and 1988 were not accompanied by increases in strong acid anions, and that surface waters did not become acidic (ANC<0). Samples of meltwater collected at the base of the snowpack in 1987 were acidic and exhibited distinct ‘pulses’ of nitrate and sulfate. Solutions collected with lysimeters in forest soils adjacent to the stream revealed high levels of dissolved organic carbon (DOC) and total Al. Peaks in concentration of DOC, Al, and nutrient species in the stream samples indicate a flush of soil solution into the surface water at the beginning of the melt. Infiltration of meltwater into soils and spatial heterogeneity in the timing of melting across the basin prevented stream and lake waters from becoming acidic.
Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean.
Romera-Castillo, Cristina; Pinto, Maria; Langer, Teresa M; Álvarez-Salgado, Xosé Antón; Herndl, Gerhard J
2018-04-12
Approximately 5.25 trillion plastic pieces are floating at the sea surface. The impact of plastic pollution on the lowest trophic levels of the food web, however, remains unknown. Here we show that plastics release dissolved organic carbon (DOC) into the ambient seawater stimulating the activity of heterotrophic microbes. Our estimates indicate that globally up to 23,600 metric tons of DOC are leaching from marine plastics annually. About 60% of it is available to microbial utilization in less than 5 days. If exposed to solar radiation, however, this DOC becomes less labile. Thus, plastic pollution of marine surface waters likely alters the composition and activity of the base of the marine food webs. It is predicted that plastic waste entering the ocean will increase by a factor of ten within the next decade, resulting in an increase in plastic-derived DOC that might have unaccounted consequences for marine microbes and for the ocean system.
Rakruam, Pharkphum; Wattanachira, Suraphong
2014-03-01
This research was aimed at investigating the reduction of DOM fractions and their trihalomethane formation potential (THMFP) by in-line coagulation with 0.1 μm ceramic membrane filtration. The combination of ceramic membrane filtration with a coagulation process is an alternative technology which can be applied to enhance conventional coagulation processes in the field of water treatment and drinking water production. The Ping River water (high turbidity water) was selected as the raw surface water because it is currently the main raw water source for water supply production in the urban and rural areas of Chiang Mai Province. From the investigation, the results showed that the highest percent reductions of DOC, UV-254, and THMFP (47.6%, 71.0%, and 67.4%, respectively) were achieved from in-line coagulation with ceramic membrane filtration at polyaluminum chloride dosage 40 mg/L. Resin adsorption techniques were employed to characterize the DOM in raw surface water and filtered water. The results showed that the use of a ceramic membrane with in-line coagulation was able to most efficiently reduce the hydrophobic fraction (HPOA) (68.5%), which was then followed by the hydrophilic fraction (HPIA) (49.3%). The greater mass DOC reduction of these two fractions provided the highest THMFP reductions (55.1% and 37.2%, respectively). Furthermore, the in-line coagulation with ceramic membrane filtration was able to reduce the hydrophobic (HPOB) fraction which is characterized by high reactivity toward THM formation. The percent reduction of mass DOC and THMFP of HPOB by in-line coagulation with ceramic membrane filtration was 45.9% and 48.0%, respectively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Organic Carbon Mobilisation Mechanisms: Evidence from Globally Distributed Stalagmite Records
NASA Astrophysics Data System (ADS)
Baldini, J. U. L.; Fairchild, I. J.; Wynn, P.; Bourdin, C.; Muller, W.; Hartland, A.; Perrette, Y.; Worrall, F.; Bartlett, R.
2017-12-01
Identifying the cause of widespread increases in surface water dissolved organic carbon (DOC) concentrations in recent years is the subject of a contentious debate. Although DOC trends may partially reflect climate change, in many catchments they may also result from increased soil carbon solubility associated with decreases in acid rain due to lower atmospheric sulphur emissions. However, the lack of long-term DOC records hampers constraining climate's role in modulating DOC trends versus that of recovery from acidification. Here we help clarify the causes of recent DOC increases by using a combination of laboratory soil experiments and new stalagmite geochemical data. Laboratory experiments with soils sampled from above several key caves simulate the effect of acidity, temperature, and soil microbial processes on DOC release. These experiments are used to inform records of DOC encoded within several stalagmites from currently acidified, previously acidified, and unacidified sites, and which collectively yield insights into the timing of DOC change in the past. These records of stalagmite DOC concentration and composition are discussed within the context of the ongoing debate regarding the mechanism responsible for DOC release.
NASA Astrophysics Data System (ADS)
Heppell, Catherine M.; Binley, Andrew; Trimmer, Mark; Darch, Tegan; Jones, Ashley; Malone, Ed; Collins, Adrian L.; Johnes, Penny J.; Freer, Jim E.; Lloyd, Charlotte E. M.
2017-09-01
The role that hydrology plays in governing the interactions between dissolved organic carbon (DOC) and nitrogen in rivers draining lowland, agricultural landscapes is currently poorly understood. In light of the potential changes to the production and delivery of DOC and nitrate to rivers arising from climate change and land use management, there is a pressing need to improve our understanding of hydrological controls on DOC and nitrate dynamics in such catchments. We measured DOC and nitrate concentrations in river water of six reaches of the lowland river Hampshire Avon (Wiltshire, southern UK) in order to quantify the relationship between BFI (BFI) and DOC : nitrate molar ratios across contrasting geologies (Chalk, Greensand, and clay). We found a significant positive relationship between nitrate and BFI (p < 0. 0001), and a significant negative relationship between DOC and BFI (p < 0. 0001), resulting in a non-linear negative correlation between DOC : nitrate molar ratio and BFI. In the Hampshire Avon, headwater reaches which are underlain by clay and characterized by a more flashy hydrological regime are associated with DOC : nitrate ratios > 5 throughout the year, whilst groundwater-dominated reaches underlain by Chalk, with a high BFI have DOC : nitrate ratios in surface waters that are an order of magnitude lower (< 0.5). Our analysis also reveals significant seasonal variations in DOC : nitrate transport and highlights critical periods of nitrate export (e.g. winter in sub-catchments underlain by Chalk and Greensand, and autumn in drained, clay sub-catchments) when DOC : nitrate molar ratios are low, suggesting low potential for in-stream uptake of inorganic forms of nitrogen. Consequently, our study emphasizes the tight relationship between DOC and nitrate availability in agricultural catchments, and further reveals that this relationship is controlled to a great extent by the hydrological setting.
NASA Technical Reports Server (NTRS)
Mannino, Antonio; Russ, Mary E.; Hooker, Stanford B.
2007-01-01
In coastal ocean waters, distributions of dissolved organic carbon (DOC) and chromophoric dissolved organic matter (CDOM) vary seasonally and interannually due to multiple source inputs and removal processes. We conducted several oceanographic cruises within the continental margin of the U.S. Middle Atlantic Bight (MAB) to collect field measurements in order to develop algorithms to retrieve CDOM and DOC from NASA's MODIS-Aqua and SeaWiFS satellite sensors. In order to develop empirical algorithms for CDOM and DOC, we correlated the CDOM absorption coefficient (a(sub cdom)) with in situ radiometry (remote sensing reflectance, Rrs, band ratios) and then correlated DOC to Rrs band ratios through the CDOM to DOC relationships. Our validation analyses demonstrate successful retrieval of DOC and CDOM from coastal ocean waters using the MODIS-Aqua and SeaWiFS satellite sensors with mean absolute percent differences from field measurements of < 9 %for DOC, 20% for a(sub cdom)(355)1,6 % for a(sub cdom)(443), and 12% for the CDOM spectral slope. To our knowledge, the algorithms presented here represent the first validated algorithms for satellite retrieval of a(sub cdom) DOC, and CDOM spectral slope in the coastal ocean. The satellite-derived DOC and a(sub cdom) products demonstrate the seasonal net ecosystem production of DOC and photooxidation of CDOM from spring to fall. With accurate satellite retrievals of CDOM and DOC, we will be able to apply satellite observations to investigate interannual and decadal-scale variability in surface CDOM and DOC within continental margins and monitor impacts of climate change and anthropogenic activities on coastal ecosystems.
NASA Astrophysics Data System (ADS)
Shank, G. C.; Liu, Q.; Patterson, L.; Kowalczuk, P.
2012-12-01
DOC, CDOM, and EEM PARAFAC analyses were used to examine DOM distribution along the Louisiana (LA) and Texas (TX) continental shelves in the northern Gulf of Mexico during cruises in May and August of the 2011 Mississippi basin flood year, and May, June, and August of the 2012 Mississippi basin drought year. For both 2011 and 2012, CDOM and DOC levels were well-correlated with salinity on the LA shelf. However, the mixing curves for each parameter were markedly different between 2011 and 2012 and CDOM:DOC ratios, indicative of terrestrial organic matter inputs, were much higher during 2011 than during 2012. EEM PARAFAC results confirmed a much higher terrestrial DOM signature in LA shelf waters for 2011, but also a higher terrestrial DOM signature for TX waters in 2012 as the drought in the western Gulf region subsided. CDOM:DOC ratios were anomalously high offshore of Atchafalaya Bay and the Breton-Chandeleur Sound complex indicating coastal wetlands augment the terrestrial DOM discharged through the Mississippi and Atchafalaya Rivers. At several sites along the LA and TX shelves during both 2011 and 2012, CDOM was higher near bottom than at mid-depth without concomitant DOC increases, possibly due to microbial processing of settling phytoplankton cells, sedimentary fluxes, and benthic algal activity which was especially prevalent along the TX shelf. Results from simulated solar radiation experiments indicate that shelf water CDOM readily photobleaches with losses of >50% likely in surface waters over the summer, while DOC photooxidation is at least an order of magnitude slower than CDOM photobleaching.;
NASA Astrophysics Data System (ADS)
Turner, Kate; Worrall, Fred
2010-05-01
Only 3% of the earths land surface is covered by peatland yet boreal and subarctic peatlands store approximately 15-30% of the World's soil carbon as peat (Limpens et al. 2008). In comparison British bogs store carbon equivalent to 20 years worth of national emissions. The loss of carbon from these areas in the form of dissolved organic carbon (DOC) is increasing and it is expected to have grown by up to 40% by 2018. Extensive drainage of UK peatlands has been associated with dehydration of the peat, an increase in water colour and a loss of carbon storage. It has been considered that the blocking of these drainage channels represents a means of peat restoration and a way of reducing DOC loss. This study aims to assess the effectiveness of this drain blocking at both an individual drain scale and at a larger catchment scale. Gibson et al. (2009) considered the effects of blocking at a solely individual drain scale finding that a 20% drop in DOC export was recorded post blocking however this decrease was due to a reduction in water yield rather than a reduction in DOC concentration with the concentration record showing no significant reduction. The effect of external parameters become more pronounced as the DOC record is examined at larger scales. The catchment is an open system and water chemistry will be influence by mixing with water from other sources. Also it is likely that at some point the drains will cut across slope leading to the flow of any highly coloured water down slope, bypassing the blockages, and entering the surface waters downstream. Degradation of DOC will occur naturally downstream due to the effects of light and microbial activity. There is, consequently, a need to examine the wider effects of drain blocking at a catchment scale to ensure that what is observed for one drain transfers to the whole catchment. A series of blocked and unblocked catchments were studied in Upper Teesdale, Northern England. Drain water samples were taken at least daily at nine localities. These sites were located such that individual drains could be monitored in the context of a larger catchment. Water table depth, flow and weather parameters were recorded along with the collection of runoff and soil water samples. A detailed sampling programme was undertaken in which a series of drains were studied in the 12 months prior to and post blocking. This approach has allowed the effects of blocking on the carbon budget, water balance and flow pathways to be considered. Results indicate that the blocking of zero order drainage channels leads to a decrease in DOC export on an individual drain scale. However, this is due to a reduction in water yield rather than concentration. Concentrations are seen to rise by a small yet statistically significant amount in blocked zero order streams. The effect at a larger scale is more complex. Annual export values in the unblocked control catchment show a rise from zero to first order streams indicating that water is being added to the system at this scale from external spatially variable sources. This pattern is also recognised in the blocked catchment. The DOC concentration record in blocked drains at this larger scale however indicated a reduction relative to the unblocked catchment. This reduction points to a change in flow pathways post blocking as highly coloured water re-navigates its way downstream. References: Gibson H, Worrall F, Burt TP, Adamson JK (2009) DOC budgets of drained peat catchments: implications for DOC production in peat soils, Hydrological Processes 23(13) 1901-1911 Limpens J (2008) Peatlands and the carbon cycle: from local processes to global implications- a synthesis, Biogeosciences 5 1475-1491
Measurement and importance of dissolved organic carbon. Chapter 13
Randall Kolka; Peter Weishampel; Mats Froberg
2008-01-01
The flux of dissolved organic carbon (DOC) from an ecosystem can be a significant component of carbon (C) budgets especially in watersheds containing wetlands. Although internal ecosystem cycling of DOC is generally greater than the fluxes to ground or surface waters, it is the transport out of the system that is a main research focus for carbon accounting. In...
Carbon Fluxes in Dissolved and Gaseous Forms for a Restored Peatland in British Columbia, Canada
NASA Astrophysics Data System (ADS)
D'Acunha, B.; Johnson, M. S.; Lee, S. C.; Christen, A.
2016-12-01
Peatlands are wetlands where gross primary production exceeds organic matter decomposition causing an accumulation of partially decomposed matter, also called peat. These ecosystems can accumulate more carbon than tropical rainforests. However, dissolved and gaseous fluxes of carbon (as dissolved organic carbon (DOC), CO2 and methane (CH4)) must also be considered to determine if these ecosystems are net sinks or sources of greenhouse gases (GHGs) to the atmosphere, which depends in part on the environmental conditions and the state of the ecosystem. We conducted research in Burns Bog, Delta, BC, Canada, a raised domed peat bog located in the Fraser River Delta and one of the largest raised peat bogs on the west coast of the Americas, but which has been heavily impacted by a range of human activities. Currently, ecological restoration efforts are underway by a large-scale ditch blocking program, with the aim to re-establish a high water table. This is approached in partnership with research on the ecosystem services that the bog provides, including its role in a regional GHG inventory. Here we present data on ecosystem-scale fluxes of CO2 and CH4 determined by eddy covariance (EC) on a floating tower platform, and complementary data on (i) evasion fluxes of CO2, CH4 and nitrous oxide (N2O) from the water surface to the atmosphere, and (ii) the flux and composition of dissolved organic carbon in water draining Burns Bog. Concentrations of dissolved CO2, CH4 and N2O were determined by headspace equilibration, and evasion rates from the water surface were quantified and are used to estimate the role of the hydrosphere in the ecosystem-scale measurements. Water samples collected from five saturated areas in the flux tower footprint were analyzed for DOC concentrations and composition. Results indicated that, even though the whole system is a net C sink, the water surface behaved as a source of CO2 and CH4, and a sink for N2O throughout the study period. Drainage waters were high in DOC (> 30 mg L-1). DOC export was found to offset about 20% of the apparent net C uptake determined by EC, indicating that the EC system overestimates carbon accumulation by not accounting for DOC drainage.
Adsorption with Biochar or Activated Carbon as Treatment Processes for Greywater Reuse
NASA Astrophysics Data System (ADS)
Thompson, K.; Cook, S. M.; Summers, R. S.
2017-12-01
Nearly 3 billion people experience water scarcity in their watershed for at least one month every year. Population growth, urbanization, and global climate change are increasing the severity of water scarcity in many areas. Decentralized reuse of greywater from showers, baths, and bathroom sinks could reduce residential water demand by 35% and urban water demand by 15%. Decentralized greywater reuse could be environmentally sustainable due to less energy for pumping than centralized systems. However, decentralized greywater reuse presents challenges from economies of scale. Biochar can serve as a low-cost, environmentally sustainable alternative to activated carbon (AC) in water treatment. Many studies have explored biochar as a sorbent for surface water or wastewater, but studies about biochar for greywater treatment are limited. The objectives of this study were (1) to compare the performance of biochar and AC for sorption of dissolved organic carbon (DOC) in greywater and (2) to determine whether AC or biochar can satisfy greywater treatment regulations alone or in combination with other processes. Jar tests with doses ranges of 0.25 to 4 g/L were used to compare sorbents for DOC removal after various pretreatments. All sorbents were ground to ≤45 µm particle diameter. Five biochars were screened to select the most effective greywater sorbent. These biochars covered a range of production temperatures, feedstocks, and lab- and full-scale production. Wood-based forced draft top lit updraft biochar (FD-TLUD) biochar was found to be the most effective for DOC removal from both real and synthetic greywater. Sorption with FD-TLUD biochar or AC can remove up to 70% or 80% of DOC from greywater, respectively. AC sorption of DOC was only 1-10% greater at each dose from a greywater sample with 11 mg/L DOC than from a greywater sample with 43 mg/L DOC. Coagulation with 30 mg/L alum removed 14% of greywater DOC, and biochar or AC sorption removed similar percentages of DOC from microfiltered or coagulated greywater. UVA254 removal correlated strongly with DOC removal for both AC and biochar (R2=0.89). These results indicate that biochar could be useful component in greywater treatment systems. Future work will focus on sorption after other chemical and biological pretreatments.
NASA Astrophysics Data System (ADS)
Pavlov, Alexey K.; Stedmon, Colin A.; Semushin, Andrey V.; Martma, Tõnu; Ivanov, Boris V.; Kowalczuk, Piotr; Granskog, Mats A.
2016-05-01
The White Sea is a semi-enclosed Arctic marginal sea receiving a significant loading of freshwater (225-231 km3 yr-1 equaling an annual runoff yield of 2.5 m) and dissolved organic matter (DOM) from river run-off. We report discharge weighed values of stable oxygen isotope ratios (δ18O) of -14.0‰ in Northern Dvina river for the period 10 May-12 October 2012. We found a significant linear relationship between salinity (S) and δ18O (δ18O=-17.66±0.58+0.52±0.02×S; R2=0.96, N=162), which indicates a dominant contribution of river water to the freshwater budget and little influence of sea ice formation or melt. No apparent brine additions from sea-ice formation is evident in the White Sea deep waters as seen from a joint analysis of temperature (T), S, δ18O and aCDOM(350) data, confirming previous suggestions about strong tidal induced vertical mixing in winter being the likely source of the deep waters. We investigated properties and distribution of colored dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in the White Sea basin and coastal areas in summer. We found contrasting DOM properties in the inflowing Barents Sea waters and White Sea waters influenced by terrestrial runoff. Values of absorption by CDOM at 350 nm (aCDOM(350)) and DOC (exceeding 10 m-1 and 550 μmol l-1, respectively) in surface waters of the White Sea basin are higher compared to other river-influenced coastal Arctic domains. Linear relationship between S and CDOM absorption, and S and DOC (DOC=959.21±52.99-25.80±1.79×S; R2=0.85; N=154) concentrations suggests conservative mixing of DOM in the White Sea. The strongest linear correlation between CDOM absorption and DOC was found in the ultraviolet (DOC=56.31±2.76+9.13±0.15×aCDOM(254); R2=0.99; N=155), which provides an easy and robust tool to trace DOC using CDOM absorption measurements as well as remote sensing algorithms. Deviations from this linear relationship in surface waters likely indicate contribution from different rivers along the coast of the White Sea. Characteristics of CDOM further indicate that there is limited removal or change in the DOM pool before it exits to the Barents Sea.
Mercury distribution in Douro estuary (Portugal).
Ramalhosa, E; Pereira, E; Vale, C; Válega, M; Monterroso, P; Duarte, A C
2005-11-01
Determinations of dissolved reactive and total dissolved mercury, particulate and sedimentary mercury, dissolved organic carbon (DOC), particulate organic carbon (POC) and suspended particulate matter (SPM) have been made in the estuary of river Douro, in northern Portugal. The estuary was stratified by salinity along most of its length, it had low concentrations of SPM, typically <20 mg dm(-3), and concentrations of DOC in the range <1.0-1.8 mg dm(-3). The surface waters had a maximum dissolved concentration of reactive mercury of about 10 ng dm(-3), whereas for the more saline bottom waters it was about 65 ng dm(-3). The surface waters had maximum concentrations of total suspended particulate mercury of approximately 7 microg g(-1) and the bottom waters were always <1 microg g(-1). Concentrations of mercury in sediments was low and in the range from 0.06 to 0.18 microg g(-1). The transport of mercury in surface waters was mainly associated with organic-rich particulate matter, while in bottom waters the dissolved phase transport of mercury is more important. Lower particulate organic matter, formation of chlorocomplexes in more saline waters and eventually the presence of colloids appear to explain the difference of mercury partitioning in Douro estuarine waters.
NASA Astrophysics Data System (ADS)
Russell, Fiona; Chiverrell, Richard; Boyle, John
2016-04-01
Monitoring programmes have shown increases in concentrations of dissolved organic matter (DOM) in the surface waters of northern and central Europe (Monteith et al. 2007), and negative impacts of the browning of river waters have been reported for fish populations (Jonsson et al. 2012; Ranaker et al. 2012) and for ecosystem services such as water treatment (Tuvendal and Elmqvist 2011). Still the exact causes of the recent browning remain uncertain, the main contenders being climate change (Evans et al. 2005) and reduced ionic strength in surface water resulting from declines in anthropogenic sulphur and sea salt deposition (Monteith et al. 2007). There is a need to better understand the pattern, drivers and trajectory of these increases in DOC and POC in both recent and longer-term (Holocene) contexts to improve the understanding of carbon cycling within lakes and their catchments. In Britain there are some ideal sites for testing whether these trends are preserved and developing methods for reconstructing organic fluxes from lake sedimentary archives. There is a suite of lakes distributed across the country, the UK Acid Waters Monitoring Network (UKAWMN) sites, which have been monitored monthly for dissolved organic carbon and other aqueous species since 1988. These 12 lakes have well studied recent and in some case whole Holocene sediment records. Here four of those lakes (Grannoch, Chon, Scoat Tarn and Cwm Mynach) are revisited, with sampling focused on the sediment-water interface and very recent sediments (approx.150 years). At Scoat Tarn (approx. 1000 years) and Llyn Mynach (11.5k years) longer records have been obtained to assess equivalent patterns through the Holocene. Analyses of the gravity cores have focused on measuring and characterising the organic content for comparison with recorded surface water DOC measurements (UKAWMN). Data from pyrolysis measurements (TGA/DSC) in an N atmosphere show that the mass loss between 330-415°C correlates well with observed trends in DOC of surface waters. Analysis of these cores and various calibration materials (e.g. peat) suggests plant tissue undergoes pyrolysis at lower temperatures, and though humic substances can be generated in the lake this thermal phase may be a proxy record for catchment derived DOC. NIR and FTIR spectrometry data further characterise this organic phase, identify spectral structures that also correlate with monitored DOC. Together the pyrolysis, NIR, FTIR and XRF geochemistry (e.g. Fe/Mn, Si/Al ratios) data show also information on lake productivity, biogenic silica and mass accumulation rates. To explore the longer timescale equivalent proxy records have been trialled at Llyn Cwm Mynach and show possible phases of elevated DOC fluxes from catchment soils during the Holocene. References Evans C.D., Monteith D.T. and Cooper D.M. 2005. Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environ. Pollut. 137: 55-71. Jonsson M., Ranaker L., Nilsson P.A. and Bronmark C. 2012. Prey-type-dependent foraging of young-of-the-year fish in turbid and humic environments. Ecol. Freshw. Fish 21: 461-468. Monteith D.T., Stoddard J.L., Evans C.D., de Wit H.A., Forsius M., Hogasen T., Wilander A., Skjelkvale B.L., Jeffries D.S., Vuorenmaa J., Keller B., Kopacek J. and Vesely J. 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450: 537-U539. Ranaker L., Jonsson M., Nilsson P.A. and Bronmark C. 2012. Effects of brown and turbid water on piscivore-prey fish interactions along a visibility gradient. Freshwater Biol. 57: 1761-1768. Tuvendal M. and Elmqvist T. 2011. Ecosystem Services Linking Social and Ecological Systems: River Brownification and the Response of Downstream Stakeholders. Ecol. Soc. 16
High dissolved organic carbon release by benthic cyanobacterial mats in a Caribbean reef ecosystem
NASA Astrophysics Data System (ADS)
Brocke, Hannah J.; Wenzhoefer, Frank; de Beer, Dirk; Mueller, Benjamin; van Duyl, Fleur C.; Nugues, Maggy M.
2015-03-01
Benthic cyanobacterial mats (BCMs) are increasing in abundance on coral reefs worldwide. However, their impacts on biogeochemical cycling in the surrounding water and sediment are virtually unknown. By measuring chemical fluxes in benthic chambers placed over sediment covered by BCMs and sediment with BCMs removed on coral reefs in Curaçao, Southern Caribbean, we found that sediment covered by BCMs released 1.4 and 3.5 mmol C m-2 h-1 of dissolved organic carbon (DOC) during day and night, respectively. Conversely, sediment with BCMs removed took up DOC, with day and night uptake rates of 0.9 and 0.6 mmol C m-2 h-1. DOC release by BCMs was higher than reported rates for benthic algae (turf and macroalgae) and was estimated to represent 79% of the total DOC released over a 24 h diel cycle at our study site. The high nocturnal release of DOC by BCMs is most likely the result of anaerobic metabolism and degradation processes, as shown by high respiration rates at the mat surface during nighttime. We conclude that BCMs are significant sources of DOC. Their increased abundance on coral reefs will lead to increased DOC release into the water column, which is likely to have negative implications for reef health.
High dissolved organic carbon release by benthic cyanobacterial mats in a Caribbean reef ecosystem.
Brocke, Hannah J; Wenzhoefer, Frank; de Beer, Dirk; Mueller, Benjamin; van Duyl, Fleur C; Nugues, Maggy M
2015-03-09
Benthic cyanobacterial mats (BCMs) are increasing in abundance on coral reefs worldwide. However, their impacts on biogeochemical cycling in the surrounding water and sediment are virtually unknown. By measuring chemical fluxes in benthic chambers placed over sediment covered by BCMs and sediment with BCMs removed on coral reefs in Curaçao, Southern Caribbean, we found that sediment covered by BCMs released 1.4 and 3.5 mmol C m(-2) h(-1) of dissolved organic carbon (DOC) during day and night, respectively. Conversely, sediment with BCMs removed took up DOC, with day and night uptake rates of 0.9 and 0.6 mmol C m(-2) h(-1). DOC release by BCMs was higher than reported rates for benthic algae (turf and macroalgae) and was estimated to represent 79% of the total DOC released over a 24 h diel cycle at our study site. The high nocturnal release of DOC by BCMs is most likely the result of anaerobic metabolism and degradation processes, as shown by high respiration rates at the mat surface during nighttime. We conclude that BCMs are significant sources of DOC. Their increased abundance on coral reefs will lead to increased DOC release into the water column, which is likely to have negative implications for reef health.
Stottlemyer, R.; Toczydlowski, D.
1999-01-01
We have studied weekly precipitation, snowpack, snowmelt, soil water and streamwater chemistry throughout winter for over a decade in a small (176 ha) northern Michigan watershed with high snowfall and vegetated by 60 to 80 year-old northern hardwoods. In this paper, we examine physical, chemical, and biological processes responsible for observed seasonal change in streamwater chemistry based upon intensive study during winter 1996-1997. The objective was to define the contributions made to winter and spring streamwater chemical concentration and flux by processes as snowmelt, over-winter forest floor and surface soil mineralization, immobilization, and exchange, and subsurface flowpath. The forest floor and soil were unfrozen beneath the snowpack which permitted most snowmelt to enter. Over-winter soil mineralization and other biological processes maintain shallow subsurface ion and dissolved organic carbon (DOC) reservoirs. Small, but steady, snowmelt throughout winter removed readily mobilized soil NO3- which resulted in high over-winter streamwater concentrations but little flux. Winter soil water levels and flowpaths were generally deep which increased soil water and streamwater base cation (C(B)), HCO3-, and Si concentrations. Spring snowmelt increased soil water levels and removal of ions and DOC from the biologically active forest floor and shallow soils. The snowpack solute content was a minor component in determining streamwater ion concentration or flux during and following peak snowmelt. Exchangeable ions, weakly adsorbed anions, and DOC in the forest floor and surface soils dominated the chemical concentration and flux in soil water and streamwater. Following peak snowmelt, soil microbial immobilization and rapidly increased plant uptake of limiting nutrients removed nearly all available nitrogen from soil water and streamwater. During the growing season high evapotranspiration increased subsurface flowpath depth which in turn removed weathering products, especially C(B), HCO3-, and Si, from deeper soils. Soil water was a major component in the hydrologic and chemical budgets.We have studied weekly precipitation, snowpack, snowmelt, soil water and streamwater chemistry throughout winter for over a decade in a small (176 ha) northern Michigan watershed with high snowfall and vegetated by 60 to 80 year-old northern hardwoods. In this paper, we examine physical, chemical, and biological processes responsible for observed seasonal change in streamwater chemistry based upon intensive study during winter 1996-1997. The objective was to define the contributions made to winter and spring streamwater chemical concentration and flux by processes as snowmelt, over-winter forest floor and surface soil mineralization, immobilization, and exchange, and subsurface flowpath. The forest floor and soils were unfrozen beneath the snowpack which permitted most snowmelt to enter. Over-winter soil mineralization and other biological processes maintain shallow subsurface ion and dissolved organic carbon (DOC) reservoirs. Small, but steady, snowmelt throughout winter removed readily mobilized soil NO3- which resulted in high over-winter streamwater concentrations but little flux. Winter soil water levels and flowpaths were generally deep which increased soil water and streamwater base cation (CB), HCO3-, and Si concentrations. Spring snowmelt increased soil water levels and removal of ions and DOC from the biologically active forest floor and shallow soils. The snowpack solute content was a minor component in determining streamwater ion concentration or flux during and following peak snowmelt. Exchangeable ions, weakly adsorbed anions, and DOC in the forest floor and surface soils dominated the chemical concentration and flux in soil water and streamwater. Following peak snowmelt, soil microbial immobilization and rapidly increased plant uptake of limiting nutrients removed nearly all available nitrogen from soil water and streamwater. D
Jeong, Sanghyun; Sathasivan, Arumugam; Kastl, George; Shim, Wang Geun; Vigneswaran, Saravanamuthu
2014-01-01
Coagulation removes colloidal matters and dissolved organic carbon (DOC) which can cause irreversible membrane fouling. However, how DOC is removed by coagulant is not well-known. Jar test was used to study the removal of hydrophobic and hydrophilic DOC fractions at various doses (0.5-8.0 mg-Fe(+3) L(-1)) of ferric chloride (FeCl3) and pH (5.0-9.0). Natural organic matter (NOM) in seawater and treated seawater were fractionated by liquid chromatography-organic carbon detector (LC-OCD). Compared to surface water, the removal of DOC in seawater by coagulation was remarkably different. Majority of DOC could be easily removed with very low coagulant dose (<5.0 mg-Fe(+3) L(-1)) and the removal efficiency did not vary with pH, but the DOC composition in treated water had significantly changed. Hydrophobic fraction (HB) was better removed at high pH while hydrophilic fraction (HF) was better removed at low pH. A modified model of Kastl et al. (2004) which assumed that the removal occurred by adsorption of un-dissociated compounds onto ferric hydroxide was formulated and successfully validated against the jar test data. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Miniotti, Eleonora; Said-Pullicino, Daniel; Bertora, Chiara; Pelissetti, Simone; Sacco, Dario; Grignani, Carlo; Lerda, Cristina; Romani, Marco; Celi, Luisella
2013-04-01
The alternation of oxidizing and reducing conditions in paddy soils results in considerable complexity in the biogeochemical cycling of elements and their interactions, influencing important soil processes. Water management practices may play an important role in controlling the loss of nutrients from rice paddies to surface and subsurface waters, as well as soil organic matter (SOM) stabilization and the emission of green-house gases (GHG) such as methane and nitrous oxide. The aim of this study was therefore to evaluate the interaction between changes in soil redox conditions and element cycling in temperate paddy soils as a function of different water management practices. The research was carried out within an experimental platform (1.2 ha) located at the Rice Research Center of Ente Nazionale Risi (Castello d'Agogna, PV, NW Italy) where three water management practices are being compared with two plots for each treatment. These included (i) rice cultivation under traditional submerged conditions (FLD); (ii) seeding under dry soil conditions and flooding delayed by about 40 days (DRY); (iii) seeding under dry soil conditions and rotational irrigation (IRR). Surface and subsurface (25, 50 and 75 cm) water samples were collected at regular intervals over the cropping season from V-notch weirs and porous ceramic suction cups installed in each plot, and subsequently analyzed for DOC, SUVA, Fe(II), ammonium and nitrate-N. Moreover, methane and nitrous oxide fluxes were measured in situ by the closed-chamber technique. DOC concentrations in soil solutions were generally higher in FLD and DRY treatments with respect to IRR throughout the cropping season. Higher DOC contents after field flooding in FLD and DRY treatments also corresponded with greater concentrations of reduced Fe, higher SUVA values, lower Eh values and higher pH values, suggesting that desorption of more aromatic, mineral-associated SOM could be responsible for the observed increase in DOC. These trends were not observed in the IRR treatment. The differences in DOC contents and in Eh trend between treatments could possibly explain the increasing trend in cumulative methane emissions in the order IRR<
NASA Astrophysics Data System (ADS)
Battin, Tom J.
1999-10-01
The objective of the present paper was to link reach-scale streambed reactive uptake of dissolved organic carbon (DOC) and dissolved oxygen (DO) to subsurface flow paths in an alpine stream (Oberer Seebach (OSB)). The topography adjacent to the stream channel largely determined flow paths, with shallow hillslope groundwater flowing beneath the stream and entering the alluvial groundwater at the opposite bank. As computed from hydrometric data, OSB consistently lost stream water to groundwater with fluxes out of the stream averaging 943 ± 47 and 664 ± 45 L m-2 h-1 at low (Q < 600 L s-1) and high (Q > 600 L s-1) flow, respectively. Hydrometric segregation of streambed fluxes and physicochemical mixing analysis indicated that stream water was the major input component to the streambed with average contributions of 70-80% to the hyporheic zone (i.e., the subsurface zone where shallow groundwater and stream water mix). Surface water was also the major source of DOC with 0.512 ± 0.043 mg C m-2 h-1 to the streambed. The DOC flux from shallow riparian groundwater was lower (0.309 ± 0.071 mg C m-2 h-1) and peaked in autumn with 1.011 mg C m-2 h-1. I computed the relative proportion of downstream discharge through the streambed as the ratio of the downstream length (Ssw) a stream water parcel travels before entering the streambed to the downstream length (Shyp) a streambed water parcel travels before returning to the stream water. The relative streambed DOC retention efficiency, calculated as (input-output)/input of interstitial DOC, correlated with the proportion (Ssw/Shyp) of downstream discharge (r2 = 0.76, p = 0.006). Also, did the streambed metabolism (calculated as DO uptake from mass balance) decrease with low subsurface downstream routing, whereas elevated downstream discharge through the streambed stimulated DO uptake (r2 = 0.69, p = 0.019)? Despite the very short DOC turnover times (˜0.05 days, calculated as mean standing stock/annual input) within the streambed, the latter constitutes a net sink of DOC (˜14 mg C m-2 h-1). Along with high standing stocks of sediment associated particulate organic carbon, these results suggest microbial biofilms as the major retention and storage site of DOC in an alpine stream where large hydrologic exchange controls DOC fluxes.
NASA Astrophysics Data System (ADS)
Moriizumi, Mihoko; Terajima, Tomomi
2010-05-01
The current intense discussion of the green house effect, that has been one of the main focuses on the carbon cycle in environmental systems of the earth, seems to be weakened the importance related to the effect of carbonic materials on substance movement in the aquatic environments; though it has just begun to be referred recently. Because dissolved organic carbon (DOC) in stream flows believes to play a main role of the carbon cycle in the fresh water environment, seasonal changes in DOC discharge were investigated in catchments with various scale and land use, especially in forested catchments which are one of the important sources of DOC. In order to understand the fundamental characteristics of the discharge of dissolved organic materials, stream flows, DOC, and fulvic acid like materials (FA) included in stream flows were measured in a coniferous forested head watershed. The watershed is located at the southeast edge of the Kanto mountain and is 40 km west of Tokyo with the elevation from 720 to 820 m and mean slope gradient of 38 degrees. Geology of the watershed is underlain by the sequence of mud and sand stones in Jurassic and the soil in the watershed is Cambisol (Inceptisols). The watershed composes of a dense cypress and cedar forest of 45 years old with poor understory vegetation. Observations were carried out for 6 rain storms of which the total precipitations ranged between 16.2 and 117.4 mm. The magnitude of the storms was classified into small, middle, and big events on the basis of the total precipitation of around 20, 40, and more than 70 mm. Stream flows were collected during the storm events by 1 hour interval and were passed through the 0.45 μm filters, and then the DOC concentrations in the flows were measured with a total organic carbon analyzer. The relative concentrations of fulvic acid (FA) in the flows were monitored with three dimensional excitations emission matrix fluorescence spectroscopy, because fulvic acid shows distinctive fluorescence peaks at around the excitation wave length of 340 nm and emission wave length of 440 nm. The timing of the peaks in DOC and FA occurred simultaneously or within 30 minutes prior to those in the stream flows. The relationship between DOC and stream flow showed linear correlations with various gradients in each event. However, the relationship between FA and stream flow showed the linear correlations only for the small and middle events and clockwise hysteresis relations occurred in the big storm events. The relationship between DOC and FA showed the linear correlations both for the extracted water of the shallow soil and for stream base flow composed mostly of groundwater discharge. However, the relationship in the storm flow closely distributed at that in the extracted water of the shallow soil. This thing reveals that DOC and FA were mainly flashed out from the shallow soil during the rain storm events. The quick rising and recession of the fulvic acid was likely provided by quick rain water discharge through the surface or near surface of the slope. However, the overland flow were rare in the watershed during the rain storms. This indicates that the rapid shallow subsurface flow, passed mainly through preferential flow pathways at the slope surface within the loose litter and root-permeated zone, was the main cause of the difference in discharge regimes between DOC and FA. The shallow subsurface flow may have flushed the FA in the near-surface of the soil, and then the relatively predominant discharge of DOC must have been caused during the big rain storm event.
Ye, Lin-Lin; Wu, Xiao-Dong; Kong, Fan-Xiang; Liu, Bo; Yan, De-Zhi
2015-03-01
Surface water samples of Yincungang and Chendonggang Rivers were collected from September 2012 to August 2013 in Lake Taihu. Water temperature, Chlorophyll a and bacterial abundance were analyzed, as well as dissolved organic carbon (DOC) concentrations, stable carbon isotope of DOC (Δ13C(DOC)), specific UV absorbance (SUVA254 ) and dissolved carbohydrates concentrations. Δ13C(DOC) ranged from -27.03% per thousand ± 0.30% per thousand to -23.38%per thousand ± 0.20% per thousand, indicating a terrestrial source. Both the autochthonous and allochthonous sources contributed to the carbohydrates pool in the tributaries. Significant differences in PCHO (polysaccharides) and MCHO (monosaccharides) concentrations were observed between spring-summer and autumn-winter (P < 0.01, n = 12; P < 0.01, n = 12), which might be caused by the variation in the sources and bioavailability of carbohydrates. PCHO contributed a major fraction to TCHO (total dissolved carbohydrates) in autumn and winter, which could be explained by the accumulation of undegradable PCHO limited by the low water temperature; MCHO contributed a major fraction to TCHO in spring and summer, which might be caused by the transformation from PCHO by microbes at high water temperature.
Nitin K. Singh; Wilmer M. Reyes; Emily S. Bernhardt; Ruchi Bhattacharya; Judy L. Meyer; Jennifer D. Knoepp; Ryan E. Emanuel
2016-01-01
In the past decade, significant increases in surface water dissolved organic carbon (DOC) have been reported for large aquatic ecosystems of the Northern Hemisphere and have been attributed variously to global warming, altered hydrologic conditions, and atmospheric deposition, among other factors. We analyzed a 25-yr DOC record (1988â2012) available for a...
Yan, Caixia; Yang, Yi; Zhou, Junliang; Liu, Min; Nie, Minghua; Shi, Hao; Gu, Lijun
2013-04-01
The occurrence and distribution of five groups of antibiotics were investigated in the surface water of Yangtze Estuary over four seasons. Of the 20 antibiotics, only sulfamerazine was not detected at all sampling sites, indicating widespread occurrence of antibiotic residues in the study area. Detection frequencies and concentrations of antibiotics were generally higher in January, indicating that low flow conditions and low temperature might enhance the persistence of antibiotics in water. Antibiotic levels varied with location, with the highest concentrations being observed around river discharge and sewage outfall. Furthermore, a positive correlation between total antibiotic and DOC concentrations revealed the significant role played by DOC. Risk assessment based on single compound exposure showed that sulfapyridine and sulfamethoxazole could cause medium risk to daphnid in the Yangtze Estuary. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nitrate loading and CH4 and N2O Flux from headwater streams
NASA Astrophysics Data System (ADS)
Sousa, C. H. R. D.; Hilker, T.; Hall, F. G.; Moura, Y. M.; McAdam, E.
2014-12-01
Freshwater ecosystems transport and process significant amounts of terrestrial carbon and can be considerable sources of CO2, CH4, and N2O. A great deal of uncertainty, however, remains in both global estimates and our understanding of drivers of freshwater greenhouse gas emissions. Furthermore, small headwater streams have received insufficient attention to date and may contribute disproportionately to global GHG flux. Our objective was to quantify GHG flux and assess the impact of changes in DOC and NO3 concentrations in surface and subsurface water on flux rates in three streams in the Lamprey River watershed in New Hampshire, USA, that contrast in surface water DOC:NO3. We measured DOC, NO3 and dissolved gas concentrations in surface waters of each stream monthly from May 2011 to April 2012. Empirical measurements of reaeration coefficients were used to convert dissolved gas concentrations to fluxes. We found higher GHG concentrations and fluxes in the two streams with high DOC concentrations, particularly gases produced by anaerobic metabolism (CH4, N2O from methanogenesis and denitrification, respectively). The stream with high DOC and high NO3 showed high N2O and low CH4 flux, while the high DOC, low NO3 stream showed high CH4 and low N2O flux. Our results are consistent with a model in which C inputs drive total GHG production, while NO3 input regulates the relative importance of CH4 and N2O by suppressing methanogenesis and stimulating denitrification. The magnitude of GHG fluxes suggests that streams in this region are likely to be small sources of CO2, but potentially important sources of CH4 and N2O. Since CH4 and N2O are many times more powerful than CO2 at trapping heat in the atmosphere, freshwater emissions of these gases have the potential to offset a significant proportion of the climate benefits of the terrestrial carbon sink, a possibility that has not been sufficiently incorporated into climate models.
Nitrate loading and CH4 and N2O Flux from headwater streams
NASA Astrophysics Data System (ADS)
Schade, J. D.; Bailio, J.; McDowell, W. H.
2015-12-01
Freshwater ecosystems transport and process significant amounts of terrestrial carbon and can be considerable sources of CO2, CH4, and N2O. A great deal of uncertainty, however, remains in both global estimates and our understanding of drivers of freshwater greenhouse gas emissions. Furthermore, small headwater streams have received insufficient attention to date and may contribute disproportionately to global GHG flux. Our objective was to quantify GHG flux and assess the impact of changes in DOC and NO3 concentrations in surface and subsurface water on flux rates in three streams in the Lamprey River watershed in New Hampshire, USA, that contrast in surface water DOC:NO3. We measured DOC, NO3 and dissolved gas concentrations in surface waters of each stream monthly from May 2011 to April 2012. Empirical measurements of reaeration coefficients were used to convert dissolved gas concentrations to fluxes. We found higher GHG concentrations and fluxes in the two streams with high DOC concentrations, particularly gases produced by anaerobic metabolism (CH4, N2O from methanogenesis and denitrification, respectively). The stream with high DOC and high NO3 showed high N2O and low CH4 flux, while the high DOC, low NO3 stream showed high CH4 and low N2O flux. Our results are consistent with a model in which C inputs drive total GHG production, while NO3 input regulates the relative importance of CH4 and N2O by suppressing methanogenesis and stimulating denitrification. The magnitude of GHG fluxes suggests that streams in this region are likely to be small sources of CO2, but potentially important sources of CH4 and N2O. Since CH4 and N2O are many times more powerful than CO2 at trapping heat in the atmosphere, freshwater emissions of these gases have the potential to offset a significant proportion of the climate benefits of the terrestrial carbon sink, a possibility that has not been sufficiently incorporated into climate models.
Anthropogenic Impacts on Biological Carbon Sequestration in the Coastal Waters
NASA Astrophysics Data System (ADS)
Jiao, N.
2016-02-01
The well-known biological mechanism for carbon sequestration in the ocean is the biological pump (BP) which is driven by primary production initially in the surface water and then dependent on particulate organic carbon sinking process in the water column. In contrast microbial carbon pump (MCP) depends on microbial transformation of dissolved organic carbon (DOC) to refractory DOC (RDOC).Although the BP and the MCP are distinct mechanisms, they are intertwined. Both mechanisms should be considered regarding maximum sequestration of carbon in the ocean. Recent studies have showed that excess nutrients could facilitate the uptake of DOC and enhance both bacterial production and respiration. Bacterial growth efficiency increases with increasing nitrogen concentration to certain levels and then decreases thereafter, while the remaining DOC in the water usually decreases with increasing nitrogen concentration, suggesting that excess nitrogen could simulate uptake of DOC in the environment and thus have negative impacts on the ocean DOC storage.This is somehow against the case of the BP which is known to increase with increasing availability of nutrients. Another responsible factor is the nature of algal products. If it is labile, the organic carbon cannot be preserved in the environment.On top of that, labile organic carbon has priming effects for river discharged semi-labile DOC for bacterial respiration.That is, labile organic matter will become the incubator for bacteria. While bacteria respire DOC into CO2, they consume oxygen, and finally result in hypoxia. Under anoxic condition, anaerobic bacteria successively work on the rest of the organic carbon and produce harmful gasses such as methane and H2S. Such story did have happened during geological events in the history of the earth. The above processes not only result in ecological disasters but also reduce the capacity of carbon sequestration in the ocean. To achieve maximum carbon sinks, both BP and MCP should be considered in management, especially in the coastal waters where eutrophication and hypoxia are severe. Currently, farm over-fertilization is found world widely to be responsible for coastal water eutrophication. Therefore nutrients input must be under control for optimum outputs of the sum of BP and MCP towards sustainable coastal ecosystems.
NASA Astrophysics Data System (ADS)
Jaszczyński, Jacek; Sapek, Andrzej
2010-05-01
Key words: peatlands, drained areas, surface water, nutrients and DOC in water The object of this study was fundamental mineral component concentration (N-NO3, N-NH4, PO4, K, Na, Ca, Mg, Cl, Fe) and dissolved organic carbon concentration (DOC) in surface water in artificial canal running across drained fen area. Also pH, electrical conductivity and abssorbance A280 in water samples were measured. The investigations were localized on the area of drained and agricultural used Kuwasy Mire, which are situated in the middle basin of Biebrza River, in North-East Poland. Currently on the object there is superiority of peat-moorsh soils with moorsh layers to 25 cm of depth. The bog depth is determined from 60 to 140 cm. The most of area is occupied by soils with 110-120 cm organic layer which are intensive agricultural used. Mean annual ground water table amounted 55 cm. On the distance of 8 km (about 1100-1200 ha catchment area) fen space is crossed by Kuwaski Canal collecting water from draining network above describing peatland. Surface water samples were collected every month in three constant point of canal: at entrance on peatland (upper point) in the middle part (middle point) and in border part of peatland (lower point). The study was carried out in 2001-2009. The aim of this study was to determine enriching of surface water in individual mineral and organic components during flowing across peatland area. Mean concentration in whole research period for all investigated components was higher together with flowing of water in canal across fen area. The higest increments of mean concentration between upper a lower point of canal was connected with phosphorous and amonia. The concentrations of these compounds were adequately 4,8 i 2,6 times higher in lower part of canal. Mean concentrations of remaining compounds were 2-14% higher in water in lower point in comparision to upper point of canal. In course of interflow through peatland pH of water was decreasing but electrical conductivity and abssorbance A280 were increasing. When we take into consideration annual quantity of water flowing by canal only on biological level (0,5 m3/s) the increments load of PO4 in this distance amounted 3,6; N-NH4 - 4,6; N-NO3 - 3,0; DOC - 9,5 t.year-1. At mean interflow 3 m3/s the load of describing components was increasing to 21, 27, 20 i 57 t.year-1 in research part of canal.
Kendall, K.A.; Shanley, J.B.; McDonnell, Jeffery J.
1999-01-01
To test the transmissivity feedback hypothesis of runoff generation, surface and subsurface waters were monitored and sampled during the 1996 snowmelt at various topographic positions in a 41 ha forested headwater catchment at Sleepers River, Vermont. Two conditions that promote transmissivity feedback existed in the catchment during the melt period. First, saturated hydraulic conductivity increased toward land surface, from a geometric mean of 3.6 mm h-1 in glacial till to 25.6 mm h-1 in deep soil to 54.0 mm h-1 in shallow soil. Second, groundwater levels rose to within 0.3 m of land surface at all riparian sites and most hillslope sites at peak melt. The importance of transmissivity feedback to streamflow generation was tested at the catchment scale by examination of physical and chemical patterns of groundwater in near-stream (discharge) and hillslope (recharge/lateral flow) zones, and within a geomorphic hollow (convergent flow). The presence of transmissivity feedback was supported by the abrupt increase in streamflow as the water table rose into the surficial, transmissive zone; a flattening of the groundwater level vs. streamflow curve occurred at most sites. This relation had a clockwise hysteresis (higher groundwater level for given discharge on rising limb than at same discharge on falling limb) at riparian sites, suggesting that the riparian zone was the dominant source area during the rising limb of the melt hydrograph. Hysteresis was counterclockwise at hillslope sites, suggesting that hillslope drainage controlled the snowmelt recession. End member mixing analysis using Ca, Mg, Na, dissolved organic carbon (DOC), and Si showed that stream chemistry could be explained as a two-component mixture of groundwater high in base cations and an O-horizon/overland flow water high in DOC. The dominance of shallow flow paths during events was indicated by the high positive correlation of DOC with streamflow (r2 = 0.82). Despite the occurrence of transmissivity feedback, hillslope till and soil water were ruled out as end members primarily because their distinctive high-Si composition had little or no effect on streamwater composition. Till water from the geomorphic hollow had a chemistry very close to streamwater base flow, and may represent the base flow end member better than the more concentrated riparian groundwater. During snowmelt, streamwater composition shifted as this base flow was diluted - not by shallow groundwater from the hillslope, but rather by a more surficial O-horizon/overland flow water.Surface and subsurface waters were analyzed to test the transmissivity feedback of runoff generation during the 1996 snowmelt in a catchment at Sleepers River, Vermont. The importance of transmissivity feedback to stream flow generation was tested by examination of physical and chemical patterns of groundwater in near-stream and hillslope zones within a geomorphic hollow. End member mixing analysis of Ca, Mg, Na, dissolved organic carbon (DOC), and Si showed that stream chemistry could be explained as a two-component mixture of groundwater high in base cations and an O-horizon/overland flow water high in DOC. The dominance of shallow water paths during the events was indicated by the high positive correlation of DOC with streamflow (r2 = 0.82).
Futter, M N; Löfgren, S; Köhler, S J; Lundin, L; Moldan, F; Bringmark, L
2011-12-01
Surface water concentrations of dissolved organic carbon ([DOC]) are changing throughout the northern hemisphere due to changes in climate, land use and acid deposition. However, the relative importance of these drivers is unclear. Here, we use the Integrated Catchments model for Carbon (INCA-C) to simulate long-term (1996-2008) streamwater [DOC] at the four Swedish integrated monitoring (IM) sites. These are unmanaged headwater catchments with old-growth forests and no major changes in land use. Daily, seasonal and long-term variations in streamwater [DOC] driven by runoff, seasonal temperature and atmospheric sulfate (SO₄(2-)) deposition were observed at all sites. Using INCA-C, it was possible to reproduce observed patterns of variability in streamwater [DOC] at the four IM sites. Runoff was found to be the main short-term control on [DOC]. Seasonal patterns in [DOC] were controlled primarily by soil temperature. Measured SO₄(2-) deposition explained some of the long-term [DOC] variability at all sites.
Vione, Davide; Caringella, Rosalinda; De Laurentiis, Elisa; Pazzi, Marco; Minero, Claudio
2013-10-01
The UV filter benzophenone-3 (BP3) has UV photolysis quantum yield ΦBP3=(3.1±0.3)·10(-5) and the following second-order reaction rate constants: with (•)OH, k(BP3,(•)OH)=(2.0±0.4)·10(10) M(-1) s(-1); with the triplet states of chromophoric dissolved organic matter ((3)CDOM*), K(BP3,(3)CDOM*)=(1.1±0.1)·10(9) M(-1) s(-1); with (1)O2, k(BP3,(1)O2)=(2.0±0.1)·10(5) M(-1) s(-1), and with CO3(-•), k(BP3,CO3(-•))<5·10(7) M(-1) s(-1). These data allow the modelling of BP3 photochemical transformation, which helps filling the knowledge gap about the environmental persistence of this compound. Under typical surface-water conditions, direct photolysis and reactions with (•)OH and (3)CDOM* would be the main processes of BP3 phototransformation. Reaction with (•)OH would prevail at low DOC, direct photolysis at intermediate DOC (around 5 mg C L(-1)), and reaction with (3)CDOM* at high DOC. If the reaction rate constant with CO3(-•) is near the upper limit of experimental measures (5·10(7) M(-1) s(-1)), the CO3(-•) degradation process could be somewhat important for DOC<1 mg C L(-1). The predicted half-life time of BP3 in surface waters under summertime conditions would be of some weeks, and it would increase with increasing depth and DOC. BP3 transformation intermediates were detected upon reaction with (•)OH. Two methylated derivatives were tentatively identified, and they were probably produced by reaction between BP3 and fragments arising from photodegradation. The other intermediates were benzoic acid (maximum concentration ~10% of initial BP3) and benzaldehyde (1%). Copyright © 2013 Elsevier B.V. All rights reserved.
Carbon and nitrogen stoichiometry across stream ecosystems
NASA Astrophysics Data System (ADS)
Wymore, A.; Kaushal, S.; McDowell, W. H.; Kortelainen, P.; Bernhardt, E. S.; Johnes, P.; Dodds, W. K.; Johnson, S.; Brookshire, J.; Spencer, R.; Rodriguez-Cardona, B.; Helton, A. M.; Barnes, R.; Argerich, A.; Haq, S.; Sullivan, P. L.; López-Lloreda, C.; Coble, A. A.; Daley, M.
2017-12-01
Anthropogenic activities are altering carbon and nitrogen concentrations in surface waters globally. The stoichiometry of carbon and nitrogen regulates important watershed biogeochemical cycles; however, controls on carbon and nitrogen ratios in aquatic environments are poorly understood. Here we use a multi-biome and global dataset (tropics to Arctic) of stream water chemistry to assess relationships between dissolved organic carbon (DOC) and nitrate, ammonium and dissolved organic nitrogen (DON), providing a new conceptual framework to consider interactions between DOC and the multiple forms of dissolved nitrogen. We found that across streams the total dissolved nitrogen (TDN) pool is comprised of very little ammonium and as DOC concentrations increase the TDN pool shifts from nitrate to DON dominated. This suggests that in high DOC systems, DON serves as the primary source of nitrogen. At the global scale, DOC and DON are positively correlated (r2 = 0.67) and the average C: N ratio of dissolved organic matter (molar ratio of DOC: DON) across our data set is approximately 31. At the biome and smaller regional scale the relationship between DOC and DON is highly variable (r2 = 0.07 - 0.56) with the strongest relationships found in streams draining the mixed temperate forests of the northeastern United States. DOC: DON relationships also display spatial and temporal variability including latitudinal and seasonal trends, and interactions with land-use. DOC: DON ratios correlated positively with gradients of energy versus nutrient limitation pointing to the ecological role (energy source versus nutrient source) that DON plays with stream ecosystems. Contrary to previous findings we found consistently weak relationships between DON and nitrate which may reflect DON's duality as an energy or nutrient source. Collectively these analyses demonstrate how gradients of DOC drive compositional changes in the TDN pool and reveal a high degree of variability in the C: N ratio (3-100) of stream water dissolved organic matter.
Simulating C fluxes along the terrestrial-aquatic continuum of the Amazon basin from 1861-2100
NASA Astrophysics Data System (ADS)
Lauerwald, R.; Regnier, P. A. G.; Ciais, P.
2017-12-01
To date, Earth System Models (ESM) ignore the lateral transfers of carbon (C) along the terrestrial-aquatic continuum down to the oceans and thus overestimate the terrestrial C storage. Here, we present the implementation of fluvial transport of dissolved organic carbon (DOC) and CO2 into ORCHIDEE, the land surface scheme of the Institut Pierre-Simon Laplace ESM. This new model branch, called ORCHILEAK, represents DOC production from canopy and soils, DOC and CO2 leaching from soils to streams, DOC decomposition and CO2 evasion to the atmosphere during its lateral transport in rivers, as well as exchange with the soil carbon and litter stocks in riparian wetlands. The model is calibrated and applied to the Amazon basin, including historical simulations starting from 1861 and future projections to the end of the 21st century. The model is found to reproduce well the observed dynamics in lateral DOC fluxes and CO2 evasion from the water surface. According to the simulations, half of the evading CO2 and 2/3 of the DOC transported in the rivers are produced within the water column or in flooded wetlands. We predict an increase in fluvial DOC exports to the coast and CO2 evasion to the atmosphere of about 1/4 over the 21st century (RCP 6.0). These long-term trends are mainly controlled by increasing atmospheric CO2 concentration and its fertilizing effect on terrestrial primary production in the model, while the effects of land-use change and increasing air temperature are minor. Interannual variations and seasonality of CO2 evasion and DOC transported by the river are however mainly controlled by hydrology. Over the simulation period, the actual land C sink represents less than half of the balance between terrestrial production and respiration in the Amazon basin, while the larger proportion is exported through the terrestrial-aquatic interface. These results highlight the importance of the terrestrial-aquatic continuum in the global C cycle.
NASA Astrophysics Data System (ADS)
van Stan, J. T.; Levia, D. F.; Inamdar, S. P.; Mitchell, M. J.; Mage, S. M.
2010-12-01
Dissolved organic carbon (DOC) inputs from canopy-derived hydrologic fluxes play a significant role in the terrestrial carbon budgets of forested ecosystems. However, no studies known to the authors have examined the variability of both DOC concentrations and quality for stemflow across time scales, nor has any study to date evaluated the effects of canopy structure on stemflow DOC characteristics. This investigation seeks to rectify this knowledge gap by examining the variability of stemflow DOC concentrations and quality across contrasting canopy morphologies and time scales (seasonal, storm and intrastorm). Bulk and intrastorm stemflow samples from a less dense, rough-barked, more plagiophile (Liriodendron tulipifera L. (tulip poplar)) and a denser, thin-barked, more erectophile (Fagus grandifolia Ehrh. (American beech)) canopy were collected and analyzed for DOC quality using metrics derived from UV-vis spectroscopy (E2:E3 ratio, SUVA254, select spectral slope (S), and spectral slope ratios (SR)). Our results suggest that stemflow DOC concentrations and quality change as crown architectural traits enhance or diminish hydrologic retention time within the canopy. The architecture of L. tulipifera canopies likely retards the flow of intercepted water, increasing chemical exchange with bark and foliar surfaces. UV-vis metrics indicated that this increased chemical exchange, particularly with bark surfaces, generally enhanced aromatic hydrocarbon content and increased molecular weight. Because leaf presence influenced DOC quality, stemflow DOC characteristics also varied seasonally in response to canopy condition. At the inter- and intrastorm scale, stemflow DOC concentration and quality varied with meteorological and antecedent canopy conditions. Since recent studies have linked stemflow production to preferential subsurface transport of dissolved chemistries, trends in DOC speciation and fluxes described in this study may impact soil environments within wooded ecosystems.
Nonlinear and threshold-dominated runoff generation controls DOC export in a small peat catchment
NASA Astrophysics Data System (ADS)
Birkel, C.; Broder, T.; Biester, H.
2017-03-01
We used a relatively simple two-layer, coupled hydrology-biogeochemistry model to simultaneously simulate streamflow and stream dissolved organic carbon (DOC) concentrations in a small lead and arsenic contaminated upland peat catchment in northwestern Germany. The model procedure was informed by an initial data mining analysis, in combination with regression relationships of discharge, DOC, and element export. We assessed the internal model DOC processing based on stream DOC hysteresis patterns and 3-hourly time step groundwater level and soil DOC data for two consecutive summer periods in 2013 and 2014. The parsimonious model (i.e., few calibrated parameters) showed the importance of nonlinear and rapid near-surface runoff generation mechanisms that caused around 60% of simulated DOC load. The total load was high even though these pathways were only activated during storm events on average 30% of the monitoring time—as also shown by the experimental data. Overall, the drier period 2013 resulted in increased nonlinearity but exported less DOC (115 kg C ha-1 yr-1 ± 11 kg C ha-1 yr-1) compared to the equivalent but wetter period in 2014 (189 kg C ha-1 yr-1 ± 38 kg C ha-1 yr-1). The exceedance of a critical water table threshold (-10 cm) triggered a rapid near-surface runoff response with associated higher DOC transport connecting all available DOC pools and subsequent dilution. We conclude that the combination of detailed experimental work with relatively simple, coupled hydrology-biogeochemistry models not only allowed the model to be internally constrained but also provided important insight into how DOC and tightly coupled pollutants or trace elements are mobilized.
NASA Astrophysics Data System (ADS)
Mari, X.; Guinot, B. P.; Thuoc, C. V.; Brune, J.; Lefebvre, J. P.; Raimbault, P.; Niggemann, J.; Dittmar, T.
2016-02-01
Black Carbon (BC) is an aerosol emitted during biomass burning and fossil fuel combustion. The atmospheric lifetime of Black Carbon (BC) ranges from a few days in rainy climates up to one month in dry regions, and on a global scale wet deposition of atmospheric BC accounts for about 80% of the BC input to the ocean. The rain-mediated input of BC to the ocean was studied in a coastal site located in a regional hotspot of atmospheric BC concentration, North Vietnam. We monitored changes in atmospheric and marine BC during a 24-h cycle impacted by a short and heavy rainfall event. During the rainfall event, atmospheric BC concentration decreased by a factor of 8 (i.e. from 5230 to 660 µg BC m-3). This cleaning of the air column was immediately followed by a significant increase (by a factor of 2 to 4) of particulate BC (PBC) and POC concentrations in the surface microlayer (SML) and at 1.5 m depth. In the SML, this event was also followed by a significant increase of DOC and dissolved BC (DBC) concentrations. Interestingly, the concentration of DOC decreased by >10% after the rainfall at 1.5 m depth, suggesting an adsorption of DOC onto sinking PBC. Concomitantly with the increase in particulate BC, nutrient concentrations increased by a factor of 2 in the SML, while no change was observed in the underlying water column. After the rainfall, the particle size spectra, measured along the water column with a LISST (Laser In-Situ Scattering and Transmissometry probe), changed in that the concentration of small particles (<5 µm) decreased and the concentration of large particles (>100 µm) increased. This alteration of the particle size spectra was restricted to a thin layer of about 20 cm thickness, probably corresponding to a BC-enriched layer adsorbing DOC and small particles, and stimulating aggregation during sinking from the surface to deeper water layers. The concentrations of POC, DOC, PBC, DBC and nutrients reached pre-rainfall levels 4 hours after the event.
Tracing organic carbon processes in a shallow coastal sandy aquifer
NASA Astrophysics Data System (ADS)
Meredith, K.; Andersen, M. S.; Baker, A.; O'Carrol, D. M.; Bryan, E.; Zainuddin, N. S.; Rutlidge, H.; McDonough, L.
2017-12-01
Coastal groundwater resources are likely to be impacted by climate change due to changes in recharge patterns, surface water flow and sea-level rise, which all have the potential to change how carbon is transported and stored within a catchment. Large quantities of carbon are currently stored within coastal wetland systems, so understanding carbon dynamics is important for climate change predictions into the future. Furthermore, dissolved organic carbon (DOC) can play a major role in weathering processes and deterioration of water quality, therefore understanding the sources, degradation pathways and its reactivity is important. Groundwater samples were collected from five nested sites (15 wells) from a shallow (0-20m) coastal sandy aquifer system located at Anna Bay, New South Wales, Australia. Surface water samples were also collected from the adjacent wetland. Waters were measured for major ion chemistry, carbon isotopes (δ13CDIC, δ13CDOC and 14CDIC) and tritium (3H). The dissolved organic matter (DOM) character was determined using optical spectroscopy and liquid chromatography. DOC was found to be elevated in the wetland (18 ppm) and had the lowest δ13CDOC value (-30.3 ‰). The shallow (3.5 m) groundwater located closest to but downgradient of the wetland (5 m) had similar characteristics to the wetland sample but contained significantly lower DOC concentrations (5 ppm) and were 1 ‰ more enriched in δ13CDOC values. This suggests that the aquifer is a sink for organic matter and the process fractionates the carbon isotopes. Higher resolution studies are underway to characterise and constrain timescales for the DOC transformation processes.
Dissolved organic carbon in the carbon cycle of the Indian Ocean
NASA Astrophysics Data System (ADS)
Hansell, Dennis A.
Dissolved organic carbon (DOC) is one of the least quantified and least understood bioreactive pools of carbon in the Indian Ocean. Data gaps are large, with much of the central Indian Ocean not yet sampled. Here model results depict the surface distribution of DOC, which is interpreted in terms of anticipated net DOC production (13-26 Tmol C a-1), advective transport, and export to the subsurface with overturning circulation. These interpretations are tested against DOC measurements made on sections in the Arabian Sea, across the Agulhas Current, in the central Indian Ocean, and into the Bay of Bengal. The seasonality of net DOC production and consumption is evaluated in the Arabian Sea, where data density is relatively rich. DOC stocks in the upper 150 m of the western Arabian Sea increased by >1.5 mol C m-2 during the NE monsoon and disappeared rapidly during the SW monsoon. Rapid DOC removal may result in part from aggregation of dust and biogenic particles along with stripping of trace metals and DOC, perhaps as transparent exopolymer particles, from the surrounding waters.
Ganju, N.K.; Bergamaschi, B.; Schoellhamer, D.H.
2003-01-01
Carbon and sediment fluxes from tidal wetlands are of increasing concern in the Sacramento-San Joaquin River Delta (Delta), because of drinking water issues and habitat restoration efforts. Certain forms of dissolved organic carbon (DOC) react with disinfecting chemicals used to treat drinking water, to form disinfection byproducts (DBPs), some of which are potential carcinogens. The contribution of DBP precursors by tidal wetlands is unknown. Sediment transport to and from tidal wetlands determines the potential for marsh accretion, thereby affecting habitat formation.Water, carbon, and sediment flux were measured in the main channel of Browns Island, a tidal wetland located at the confluence of Suisun Bay and the Delta. In-situ instrumentation were deployed between May 3 and May 21, 2002. Water flux was measured using acoustic Doppler current profilers and the index-velocity method. DOC concentrations were measured using calibrated ultraviolet absorbance and fluorescence instruments. Suspended-sediment concentrations were measured using a calibrated nephelometric turbidity sensor. Tidally averaged water flux through the channel was dependent on water surface elevations in Suisun Bay. Strong westerly winds resulted in higher water surface elevations in the area east of Browns Island, causing seaward flow, while subsiding winds reversed this effect. Peak ebb flow transported 36% more water than peak flood flow, indicating an ebb-dominant system. DOC concentrations were affected strongly by porewater drainage from the banks of the channel. Peak DOC concentrations were observed during slack after ebb, when the most porewater drained into the channel. Suspended-sediment concentrations were controlled by tidal currents that mobilized sediment from the channel bed, and stronger tides mobilized more sediment than the weaker tides. Sediment was transported mainly to the island during the 2-week monitoring period, though short periods of export occurred during the spring tide. Future deployments will characterize the seasonal variability of these fluxes.
Interlinkages between Carbon and Water Residence Times in Peat
NASA Astrophysics Data System (ADS)
Visser, A.; Wilson, R.; Sebestyen, S.; Griffiths, N.; Chanton, J.; Veale, N.; McFarlane, K. J.; Kolka, R. K.; Guilderson, T.
2016-12-01
Peatlands play an important role in the terrestrial carbon cycle. Understanding their response to climate change is crucial to predict their role as carbon sink or source of methane and carbon dioxide to the atmosphere. The hydrology of the peatland plays a crucial role, providing anoxic conditions for peat accumulation and advective transport of nutrients and dissolved organic carbon (DOC) to methanogens at depth. The interlinkages between the hydrology and carbon-cycling at the S1 bog at the Marcell Experimental Forest were investigated as part of the SPRUCE experiment, using a combination of isotopic techniques characterizing the carbon and water ages to assess the role of advective transport in the peat pore water. Tritium and tritiogenic helium concentrations constrain the age of the pore water to less than 10 years, although gas exchange with the atmosphere complicates direct use of 3H/3He dating methods. The pore water ages further constrain the interpretation of the peat, DOC and DIC ages. While carbon-14 values of solid peat decrease from 0‰ at the surface to -550‰ (corresponding to carbon-14 ages of 8 ka) at 2m depth, the DOC and DIC shift from +50‰ to -50‰ at depth. Knowing that the advective transport time of pore water is negligible on this time scale, the shift in carbon-14 of DOC must result from peat decomposition at depth, rather than in situ aging of DOC. Combined with the DOC concentration data, the carbon-cycling rates at the SPRUCE experiment are further constrained. The integrated application of isotopes in the carbon and water cycle emphasizes the importance of understanding peatland hydrology for understanding carbon-cycle dynamics. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675107
NASA Astrophysics Data System (ADS)
Para, J.; Charrière, B.; Matsuoka, A.; Miller, W. L.; Rontani, J. F.; Sempéré, R.
2012-11-01
Water masses from the Beaufort Sea in the Arctic Ocean were evaluated for dissolved organic carbon (DOC), and optical characteristics including UV and PAR diffuse attenuation (Kd), and chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) as part of the MALINA field campaign (30 July to 27 August). Even with relatively low mean daily solar radiation incident on the sea surface (0.12 ± 0.03, 8.46 ± 1.64 and 18.09 ± 4.20 kJ m-2 for UV-B (305 nm), UV-A (380 nm) and PAR, respectively), we report significant light penetration with 10% irradiance depths (Z10% (λ)) reaching 9.5 m for 340 nm (UV-A) radiation in the Eastern sector and 4.5 m in the Mackenzie River influenced area (Western sector). Spectral absorption coefficients (aCDOM (350 nm) (m-1)) were significantly correlated to both diffuse attenuation coefficients (Kd) in the UV-A and UV-B and to DOC concentrations. This indicates CDOM as the dominant attenuator of UV solar radiation and suggests its use as an optical proxy for DOC concentrations in this region. Extrapolating CDOM to DOC relationships, we estimate that ~ 16% of the DOC in the Mackenzie River does not absorb radiation at 350 nm. DOC and CDOM discharges by the Mackenzie River during the MALINA Cruise are estimated as ~ 0.22 TgC and 0.18 TgC, respectively. Three dissolved fluorescent components (C1-C3) were identified by fluorescence Excitation/Emission Matrix Spectroscopy (EEMS) and PARAFAC analysis. Our results showed an in-situ biological component (C1) that co-dominated with a terrestrial humic-like component (C2) in the Mackenzie Delta sector, whereas the protein-like (C3) component dominated in the saltiest waters of the North East sector.
Modelling the photochemical attenuation pathways of the fibrate drug gemfibrozil in surface waters.
Fabbri, Debora; Maurino, Valter; Minella, Marco; Minero, Claudio; Vione, Davide
2017-03-01
Gemfibrozil (GFZ) is a relatively persistent pollutant in surface-water environments and it is rather recalcitrant to biological degradation. The GFZ photochemical lifetimes are relatively short in shallow waters with low levels of dissolved organic carbon (DOC), but they can reach the month-year range in deep and high-DOC waters. The main reason is that GFZ undergoes negligible reaction with singlet oxygen or degradation sensitised by the triplet states of chromophoric dissolved organic matter, which are the usually prevalent photochemical pathways in deep and high-DOC sunlit waters. Nitrate and nitrite scarcely affect the overall GFZ lifetimes, but they can shift photodegradation from direct photolysis to the OH process. These two pathways are the main GFZ phototransformation routes, with the direct photolysis prevailing in shallow environments during summer. Under these conditions the GFZ photochemical lifetimes are also shorter and the environmental significance of photodegradation correspondingly higher. The direct photolysis of GFZ under UVB irradiation yielded several transformation intermediates deriving from oxidation or cleavage of the aliphatic lateral chain. A quinone derivative (2,5-dimethyl-1,4-benzoquinone), a likely oxidation product of the transformation intermediate 2,5-dimethylphenol, is expected to be the most acutely and chronically toxic compound arising from GFZ direct photolysis. Interestingly, literature evidence suggests that the same toxic intermediate would be formed upon OH reaction. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sodano, Marcella; Lerda, Cristina; Martin, Maria; Celi, Luisella; Said-Pullicino, Daniel
2016-04-01
The dissimilatory reduction of Fe oxides is the main organic C-consuming process in paddy soils under anoxic conditions. The contribution of Fe(III) reduction to anaerobic C mineralization depends on many factors, but most importantly on the bioavailability of labile organic matter and a reducible Fe pool as electron donors and acceptors, respectively. On the other hand, the strong affinity of these minerals for organic matter and their capability of protecting it against microbial decomposition is well known. Natural Fe oxides in these soils may therefore play a key role in determining the C source/sink functions of these agro-ecosystems. Apart from contributing to C stabilization, the interaction between Fe oxides and dissolved organic C (DOC) may influence the structure and reactivity of these natural oxides, and selectively influence the chemical properties of DOC. Indeed, Fe-DOC associations may not only reduce the availability of DOC, but may also limit the microbial reduction of Fe oxides under anoxic conditions. In fact, the accessibility of these minerals to microorganisms, extracellular enzymes, redox active shuttling compound or reducing agents may be impeded by the presence of sorbed organic matter. In soils that are regularly subjected to fluctuations in redox conditions the interaction between DOC and Fe oxides may not only involve organic coatings on mineral surfaces, but also Fe-DOC coprecipitates that form during the rapid oxidation of soil solutions containing important amounts of DOC and Fe(II). However, little is known on how these processes influence DOC retention, and the structure and subsequent reducibility of these Fe-DOC associations. We hypothesized that the nature and extent of the interaction between DOC and Fe oxides may influence the accessibility of the bioavailable Fe pool and consequently its reducibility. We tested this hypothesis by synthesizing a series of Fe-DOC systems with increasing C:Fe ratios prepared by either surface adsorption or coprecipitation, DOC was obtained by incubating a suspension of rice straw in water (straw-solution ratio of 1:30) under oxic conditions at 25° C for 30 days to simulate the decomposition of rice straw in the field. Increasing amounts of DOC were equilibrated (pH = 6) with a known mass of ferrihydrite (initial molar C:Fe ratios of 1, 5 and 10) to obtain surface coated Fe-DOC systems with increasing C loading. On the other hand, coprecipitates with similar initial C:Fe ratios were obtained by oxidation of a Fe(II) solution in the presence of increasing amounts of DOC at pH = 6. A natural Fe-DOC coprecipitate was also obtained by in situ sampling of a paddy soil solution from the topsoil during a cropping season, and subsequent oxidation in the laboratory. The surface and chemical properties of all substrates were subsequently evaluated and compared. We hereby present the first results of the influence of adsorption vs coprecipitation on the selective retention of DOC, structure and surface charge, as well as their susceptibility to chemical reduction with ascorbic acid.
Hung, Chia-Wei; Huang, Kuo-Hao; Shih, Yung-Yen; Lin, Yu-Shih; Chen, Hsin-Hung; Wang, Chau-Chang; Ho, Chuang-Yi; Hung, Chin-Chang; Burdige, David J.
2016-01-01
Hydrocarbon vents have recently been reported to contribute considerable amounts of dissolved organic carbon (DOC) to the oceans. Many such hydrocarbon vents widely exist in the northern South China Sea (NSCS). To investigate if these hydrocarbon vent sites release DOC, we used a real-time video multiple-corer to collect bottom seawater and surface sediments at vent sites. We analyzed concentrations of DOC in these samples and estimated DOC fluxes. Elevated DOC concentrations in the porewaters were found at some sites suggesting that DOC may come from these hydrocarbon vents. Benthic fluxes of DOC from these sediments were 28 to 1264 μmol m−2 d−1 (on average ~321 μmol m−2 d−1) which are several times higher than most DOC fluxes in coastal and continental margin sediments. The results demonstrate that the real-time video multiple-corer can precisely collect samples at vent sites. The estimated benthic DOC flux from the methane venting sites (8.6 × 106 mol y−1), is 24% of the DOC discharge from the Pearl River to the South China Sea, indicating that these sediments make an important contribution to the DOC in deep waters. PMID:27432631
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qichun; Zhang, Xuesong; Xu, Xingya
Riverine carbon cycling is an important, but insufficiently investigated component of the global carbon cycle. Analyses of environmental controls on riverine carbon cycling are critical for improved understanding of mechanisms regulating carbon processing and storage along the terrestrial-aquatic continuum. Here, we compile and analyze riverine dissolved organic carbon (DOC) concentration data from 1402 United States Geological Survey (USGS) gauge stations to examine the spatial variability and environmental controls of DOC concentrations in the United States (U.S.) surface waters. DOC concentrations exhibit high spatial variability, with an average of 6.42 ± 6.47 mg C/ L (Mean ± Standard Deviation). In general,more » high DOC concentrations occur in the Upper Mississippi River basin and the Southeastern U.S., while low concentrations are mainly distributed in the Western U.S. Single-factor analysis indicates that slope of drainage areas, wetlands, forests, percentage of first-order streams, and instream nutrients (such as nitrogen and phosphorus) pronouncedly influence DOC concentrations, but the explanatory power of each bivariate model is lower than 35%. Analyses based on the general multi-linear regression models suggest DOC concentrations are jointly impacted by multiple factors. Soil properties mainly show positive correlations with DOC concentrations; forest and shrub lands have positive correlations with DOC concentrations, but urban area and croplands demonstrate negative impacts; total instream phosphorus and dam density correlate positively with DOC concentrations. Notably, the relative importance of these environmental controls varies substantially across major U.S. water resource regions. In addition, DOC concentrations and environmental controls also show significant variability from small streams to large rivers, which may be caused by changing carbon sources and removal rates by river orders. In sum, our results reveal that general multi-linear regression analysis of twenty one terrestrial and aquatic environmental factors can partially explain (56%) the DOC concentration variation. In conclusion, this study highlights the complexity of the interactions among these environmental factors in determining DOC concentrations, thus calls for processes-based, non-linear methodologies to constrain uncertainties in riverine DOC cycling.« less
Freshwater DOM quantity and quality from a two-component model of UV absorbance
Carter, Heather T.; Tipping, Edward; Koprivnjak, Jean-Francois; Miller, Matthew P.; Cookson, Brenda; Hamilton-Taylor, John
2012-01-01
We present a model that considers UV-absorbing dissolved organic matter (DOM) to consist of two components (A and B), each with a distinct and constant spectrum. Component A absorbs UV light strongly, and is therefore presumed to possess aromatic chromophores and hydrophobic character, whereas B absorbs weakly and can be assumed hydrophilic. We parameterised the model with dissolved organic carbon concentrations [DOC] and corresponding UV spectra for c. 1700 filtered surface water samples from North America and the United Kingdom, by optimising extinction coefficients for A and B, together with a small constant concentration of non-absorbing DOM (0.80 mg DOC L-1). Good unbiased predictions of [DOC] from absorbance data at 270 and 350 nm were obtained (r2 = 0.98), the sum of squared residuals in [DOC] being reduced by 66% compared to a regression model fitted to absorbance at 270 nm alone. The parameterised model can use measured optical absorbance values at any pair of suitable wavelengths to calculate both [DOC] and the relative amounts of A and B in a water sample, i.e. measures of quantity and quality. Blind prediction of [DOC] was satisfactory for 9 of 11 independent data sets (181 of 213 individual samples).
Three-Dimensional Water and Carbon Cycle Modeling at High Spatial-Temporal Resolutions
NASA Astrophysics Data System (ADS)
Liao, C.; Zhuang, Q.
2017-12-01
Terrestrial ecosystems in cryosphere are very sensitive to the global climate change due to the presence of snow covers, mountain glaciers and permafrost, especially when the increase in near surface air temperature is almost twice as large as the global average. However, few studies have investigated the water and carbon cycle dynamics using process-based hydrological and biogeochemistry modeling approach. In this study, we used three-dimensional modeling approach at high spatial-temporal resolutions to investigate the water and carbon cycle dynamics for the Tanana Flats Basin in interior Alaska with emphases on dissolved organic carbon (DOC) dynamics. The results have shown that: (1) lateral flow plays an important role in water and carbon cycle, especially in dissolved organic carbon (DOC) dynamics. (2) approximately 2.0 × 104 kg C yr-1 DOC is exported to the hydrological networks and it compromises 1% and 0.01% of total annual gross primary production (GPP) and total organic carbon stored in soil, respectively. This study has established an operational and flexible framework to investigate and predict the water and carbon cycle dynamics under the changing climate.
Elder, J.F.; Rybicki, N.B.; Carter, V.; Weintraub, V.
2000-01-01
In five tributary streams (four inflowing and one outflowing) of 1600-ha Trout Lake in northern Wisconsin, USA, we examined factors that can affect the magnitude of stream flow and transport of dissolved organic and inorganic carbon (DOC and DIC) through the streams to the lake. One catchment, the Allequash Creek basin, was investigated in more detail to describe the dynamics of carbon flow and to identify potential carbon sources. Stream flows and carbon loads showed little or no relation to surface-water catchment area. They were more closely related to ground-water watershed area because ground-water discharge, from both local and regional sources, is a major contributor to the hydrologic budgets of these catchments. An important factor in determining carbon influx to the stream is the area of peatland in the catchment. Peatland porewaters contain DOC concentrations up to 40 mg l-1 and are a significant potential carbon source. Ground-water discharge and lateral flow through peat are the suspected mechanisms for transport of that carbon to the streams. Carbon and nitrogen isotopes suggested that the sources of DOC in Allequash Creek above Allequash Lake were wetland vegetation and peat and that the sources below Allequash Lake were filamentous algae and wild rice. Catchments with high proportions of peatland, including the Allequash Creek catchment, tended to have elevated DOC loads in outflowing stream water. Respiration and carbon mineralization in lakes within the system tend to produce low DOC and low DOC/DIC in lake outflows, especially at Trout Lake. In Allequash Lake, however, the shallow peat island and vegetation-filled west end were sources of DOC. Despite the vast carbon reservoir in the peatlands, carbon yields were very low in these catchments. Maximum yields were on the order of 2.5 g m-2 y-1 DOC and 5.5 g m-2 y-1 DIC. The small yields were attributable to low stream flows due to lack of significant overland runoff and very limited stream channel coverage of the total catchment area.
NASA Astrophysics Data System (ADS)
Laudon, Hjalmar; Tetzlaff, Doerthe; Seibert, Jan; Soulsby, Chris; Carey, Sean; Buttle, Jim; McDonnell, Jeff; McGuire, Kevin; Caissie, Daniel; Shanley, Jamie
2010-05-01
There has been an increasing interest in understanding the regulating mechanisms of surface water dissolved organic carbon (DOC) the last decade. A majority of this recent work has been based on individual well characterized research catchments or on regional synoptic datasets combined with readily available landscape and climatic variables. However, as the production and transport of DOC primarily is a function of hydro-climatic conditions a better description of catchment hydrological functioning across large geographic regions would be favorable for moving the mechanistic understanding forward. To do this we report from a first assessment of catchment DOC within the international inter-catchment comparison program North-Watch (http://www.abdn.ac.uk/northwatch/). North-Watch includes long-term research catchments ranging from northern temperate regions to the boreal and sub-arctic biomes with the aim to better understand the variable hydrological and biogeochemical responses in Northern catchments to climate change. The North-Watch catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the US (Sleepers River and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). The annual average DOC concentration in the nine catchments investigated were directly linked to hydro-climatic influences (e.g. temperature, water storage) and landscape configuration. In general, the DOC concentration followed a parabolic shape with temperature, where the highest concentrations were found in the boreal and near boreal sites and with the lowest concentrations in the temperate and sub-arctic catchments. The between catchment variability in DOC concentration could also be explained by catchment water storage and amount of wetlands in the catchment. Whereas there is a mechanistic link between long-term climatic conditions and the areal coverage of wetlands, the total catchment storage of water is more strongly linked to topography, parent material and soil depth. The result from this analysis will serve as a conceptual framework for understanding biogeochemical response to environmental change across northern catchments. The next step in this work will be to include more detailed comparisons of the role catchment hydrological functioning for explaining the patterns and dynamics of catchment DOC of these northern watersheds.
Dynamics, chemical properties and bioavailability of DOC in an early successional catchment
NASA Astrophysics Data System (ADS)
Risse-Buhl, U.; Hagedorn, F.; Dümig, A.; Gessner, M. O.; Schaaf, W.; Nii-Annang, S.; Gerull, L.; Mutz, M.
2013-07-01
The dynamics of dissolved organic carbon (DOC) have been intensively studied in mature ecosystems, but little is known about DOC dynamics and the significance of DOC as a substrate for microbial activity in early-successional catchments. We determined the concentration, chemical composition, source, radiocarbon age, and bioavailability of DOC along the hydrological flow path from soil solution to a downstream pond in a recently constructed catchment (Chicken Creek Catchment, Germany). Soil solution, upwelling ground water, stream water, subsurface water in an alluvial fan, and pond water all had high DOC concentrations (averages: 6.0-11.6 mg DOC L-1), despite small carbon stocks in both vegetation and soil of the catchment. Solid-state CPMAS 13C NMR of DOC in upwelling ground water revealed a higher proportion of aromatic compounds (32%) and a lower proportion of carbohydrates (33%) than in pond water (18% and 45%, respectively). The average 14C age of DOC in upwelling ground water was 2600 to 2900 yr, while organic matter of the Quaternary substrate of the catchment had a 14C age of 3000 to 16 000 yr. Both the 14C age data and 13C NMR spectra suggest that DOC partly derived from organic matter of the Quaternary substrate (about 40 to 90% of the C in the DOC), indicating that both recent and old C of the DOC can support microbial activity during early ecosystem succession. However, in a 70 day incubation experiment, only about 11% of the total DOC was found to be bioavailable. This proportion was irrespective of the water type. Origin of the microbial communities within the catchment (enriched from soil, stream sediment or pond water) also had only a marginal effect on overall DOC utilization.
Ledesma, José L J; Grabs, Thomas; Bishop, Kevin H; Schiff, Sherry L; Köhler, Stephan J
2015-08-01
Boreal regions store most of the global terrestrial carbon, which can be transferred as dissolved organic carbon (DOC) to inland waters with implications for both aquatic ecology and carbon budgets. Headwater riparian zones (RZ) are important sources of DOC, and often just a narrow 'dominant source layer' (DSL) within the riparian profile is responsible for most of the DOC export. Two important questions arise: how long boreal RZ could sustain lateral DOC fluxes as the sole source of exported carbon and how its hydromorphological variability influences this role. We estimate theoretical turnover times by comparing carbon pools and lateral exports in the DSL of 13 riparian profiles distributed over a 69 km(2) catchment in northern Sweden. The thickness of the DSL was 36 ± 18 (average ± SD) cm. Thus, only about one-third of the 1-m-deep riparian profile contributed 90% of the lateral DOC flux. The 13 RZ exported 8.7 ± 6.5 g C m(-2) year(-1) , covering the whole range of boreal stream DOC exports. The variation could be explained by local hydromorphological characteristics including RZ width (R(2) = 0.90). The estimated theoretical turnover times were hundreds to a few thousands of years, that is there is a potential long-lasting supply of DOC. Estimates of net ecosystem production in the RZ suggest that lateral fluxes, including both organic and inorganic C, could be maintained without drawing down the riparian pools. This was supported by measurements of stream DO(14) C that indicated modern carbon as the predominant fraction exported, including streams disturbed by ditching. The transfer of DOC into boreal inland waters from new and old carbon sources has a major influence on surface water quality and global carbon balances. This study highlights the importance of local variations in RZ hydromorphology and DSL extent for future DOC fluxes under a changing climate. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
DOC and DON Dynamics along the Bagmati Drainage Network in Kathmandu Valley
NASA Astrophysics Data System (ADS)
Bhatt, M. P.; McDowell, W. H.
2005-05-01
We studied organic matter dynamics and inorganic chemistry of the Bagmati River in Kathmandu valley, Nepal, to understand the influence of human and geochemical processes on chemical loads along the drainage system. Population density appears to be the most fundamental control on the chemistry of surface waters within the Bagmati drainage system. DOC concentration increases 10-fold with distance downstream (from 2.38 to 23.95 mg/L) and shows a strong relationship with human population density. The composition of river water (nutrients, Cl) suggests that sewage effluent to the river has a major effect on water quality. Concentrations were highest during summer, and lowest during the winter monsoon season. In contrast to DOC, DON concentration shows surprisingly little variation, and tends to decrease in concentration with distance downstream. Ammonium contributes almost all nitrogen in the total dissolved nitrogen fraction and the concentration of nitrate is negligible, probably due to rapid denitrification within the stream channel under relatively low-oxygen conditions. Decreases in sulfate along the stream channel may also be due to the reduction of sulfate to sulfide due to the heavy organic matter loading. Water quality is unacceptable for any use and the whole ecosystem is severely affected within the urban areas. Based on a comparison of downstream and upstream water quality, it appears that human activities along the Bagmati, principally inputs of human sewage, are largely responsible for the changes in surface water chemistry within Kathmandu valley.
Pokhrel, Lok R; Dubey, Brajesh; Scheuerman, Phillip R
2013-11-19
Key understanding of potential transformations that may occur on silver nanoparticle (AgNP) surface upon interaction with naturally ubiquitous organic ligands (e.g., -SH (thoil), humic acid, or -COO (carboxylate)) is limited. Herein we investigated how dissolved organic carbon (DOC), -SH (in cysteine, a well-known Ag(+) chelating agent), and -COO (in trolox, a well-known antioxidant) could alter the colloidal stability, dissolution rate, and toxicity of citrate-functionalized AgNPs (citrate-AgNPs) against a keystone crustacean Daphnia magna. Cysteine, DOC, or trolox amendment of citrate-AgNPs differentially modified particle size, surface properties (charge, plasmonic spectra), and ion release dynamics, thereby attenuating (with cysteine or trolox) or promoting (with DOC) AgNP toxicity. Except with DOC amendment, the combined toxicity of AgNPs and released Ag under cysteine or trolox amendment was lower than of AgNO3 alone. The results of this study show that citrate-AgNP toxicity can be associated with oxidative stress, ion release, and the organism biology. Our evidence suggests that specific organic ligands available in the receiving waters can differentially surface modify AgNPs and alter their environmental persistence (changing dissolution dynamics) and subsequently the toxicity; hence, we caveat to generalize that surface modified nanoparticles upon environmental release may not be toxic to receptor organisms.
Mangroves, a major source of dissolved organic carbon to the oceans
NASA Astrophysics Data System (ADS)
Dittmar, Thorsten; Hertkorn, Norbert; Kattner, Gerhard; Lara, RubéN. J.
2006-03-01
Organic matter, which is dissolved in low concentrations in the vast waters of the oceans, contains a total amount of carbon similar to atmospheric carbon dioxide. To understand global biogeochemical cycles, it is crucial to quantify the sources of marine dissolved organic carbon (DOC). We investigated the impact of mangroves, the dominant intertidal vegetation of the tropics, on marine DOC inventories. Stable carbon isotopes and proton nuclear magnetic resonance spectroscopy showed that mangroves are the main source of terrigenous DOC in the open ocean off northern Brazil. Sunlight efficiently destroyed aromatic molecules during transport offshore, removing about one third of mangrove-derived DOC. The remainder was refractory and may thus be distributed over the oceans. On a global scale, we estimate that mangroves account for >10% of the terrestrially derived, refractory DOC transported to the ocean, while they cover only <0.1% of the continents' surface.
Hydro-climatic forcing of dissolved organic carbon in two boreal lakes of Canada.
Diodato, Nazzareno; Higgins, Scott; Bellocchi, Gianni; Fiorillo, Francesco; Romano, Nunzio; Guadagno, Francesco M
2016-11-15
The boreal forest of the northern hemisphere represents one of the world's largest ecozones and contains nearly one third of the world's intact forests and terrestrially stored carbon. Long-term variations in temperature and precipitation have been implied in altering carbon cycling in forest soils, including increased fluxes to receiving waters. In this study, we use a simple hydrologic model and a 40-year dataset (1971-2010) of dissolved organic carbon (DOC) from two pristine boreal lakes (ELA, Canada) to examine the interactions between precipitation and landscape-scale controls of DOC production and export from forest catchments to surface waters. Our results indicate that a simplified hydrologically-based conceptual model can enable the long-term temporal patterns of DOC fluxes to be captured within boreal landscapes. Reconstructed DOC exports from forested catchments in the period 1901-2012 follow largely a sinusoidal pattern, with a period of about 37years and are tightly linked to multi-decadal patterns of precipitation. By combining our model with long-term precipitation estimates, we found no evidence of increasing DOC transport or in-lake concentrations through the 20th century. Copyright © 2016 Elsevier B.V. All rights reserved.
Golden, H.E.; Knightes, C.D.; Conrads, P.A.; Davis, G.M.; Feaster, T.D.; Journey, C.A.; Benedict, S.T.; Brigham, M.E.; Bradley, P.M.
2012-01-01
Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (HgT, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream HgT. We found that shallow subsurface flow is a potentially important transport mechanism of particulate HgT during periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate HgT in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved HgT concentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-HgT complexes from surface soils can also occur during this period, DOC-complexed HgT becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily HgT loadings, but shallow subsurface flow is important for HgT loads during high-flow events. Results suggest limited seasonal trends in HgT dynamics.
Golden, H.E.; Knightes, C.D.; Conrads, P.A.; Davis, G.M.; Feaster, T.D.; Journey, C.A.; Benedict, S.T.; Brigham, M.E.; Bradley, P.M.
2012-01-01
Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (Hg T, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream Hg T. We found that shallow subsurface flow is a potentially important transport mechanism of particulate Hg T during periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate Hg T in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved Hg T concentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-Hg T complexes from surface soils can also occur during this period, DOC-complexed Hg T becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily Hg T loadings, but shallow subsurface flow is important for Hg T loads during high-flow events. Results suggest limited seasonal trends in Hg T dynamics. Copyright 2012 by the American Geophysical Union.
Dynamics, chemical properties and bioavailability of DOC in an early successional catchment
NASA Astrophysics Data System (ADS)
Risse-Buhl, U.; Hagedorn, F.; Dümig, A.; Gessner, M. O.; Schaaf, W.; Nii-Annang, S.; Gerull, L.; Mutz, M.
2013-01-01
The dynamics of dissolved organic carbon (DOC) have been intensively studied in mature ecosystems, but little is known about DOC dynamics and the significance of DOC as a substrate for microbial activity in early-successional catchments. We determined the concentration, chemical composition, source, radiocarbon age, and bioavailability of DOC along the hydrological flow path from soil solution to a downstream pond in a recently constructed catchment (Chicken Creek Catchment, Germany). Soil solution, upwelling ground water, subsurface water in an alluvial fan, and pond water all had high DOC concentrations (averages of 6.0-11.6 mg DOC L-1), despite small carbon stocks in either vegetation or soil of the early-successional catchment. The mean 14C age of DOC in upwelling ground water was 2600 to 2800 yr. Solid-state CPMAS 13C NMR revealed a higher proportion of aromatic compounds (32%) and a lower proportion of carbohydrates (33%) in upwelling ground water than in pond water (18% and 45%, respectively). The 14C age and 13C NMR spectra suggest that DOC was partly mobilized from charred organic matter of the Quaternary substrate. In an experimental 70-days incubation experiment, 20% of the total DOC was found to be bioavailable, irrespective of the water type. Origin of microbial communities (enriched from soil, stream sediment or pond water) had only marginal effects on overall DOC utilization. Overall, these data suggest that the old DOC can support microbial activity during early ecosystem succession to some extent, although the largest fraction is recalcitrant DOC that is exported from the catchment once it has been mobilized.
Xi, Min; Lu, Xian-Guo; Li, Yue; Kong, Fan-Long
2007-01-01
Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solutions of watershed. Wetlands prove to be the most sensitive areas as an important DOC reserve between terrestrial and fluvial biogeosystems. This reported study was focused on the distribution characteristics and the controlling factors of DOC in soil-water solutions of annular wetland, i.e., a dishing wetland and a forest wetland together, in the Sanjiang Plain, Northeast China. The results indicate that DOC concentrations in soil-water solutions decreased and then increased with increasing soil depth in the annular wetland. In the upper soil layers of 0-10 cm and 10-20 cm, DOC concentrations in soil-water solutions linearly increased from edge to center of the annular wetland (R2 = 0.3122 and R2 = 0.443). The distribution variations were intimately linked to DOC production and utilization and DOC transport processes in annular wetland soil-water solutions. The concentrations of total organic carbon (TOC), total carbon (TC) and Fe(II), DOC mobility and continuous vertical and lateral flow affected the distribution variations of DOC in soil-water solutions. The correlation coefficients between DOC concentrations and TOC, TC and Fe(II) were 0.974, 0.813 and 0.753 respectively. These distribution characteristics suggested a systematic response of the distribution variations of DOC in annular wetland soil-water solutions to the geometry of closed depressions on a scale of small catchments. However, the DOC in soil pore water of the annular wetland may be the potential source of DOC to stream flow on watershed scale. These observations also implied the fragmentation of wetland landscape could bring the spatial-temporal variations of DOC distribution and exports, which would bring negative environmental impacts in watersheds of the Sanjiang Plain.
NASA Astrophysics Data System (ADS)
Camino-Serrano, Marta; Guenet, Bertrand; Luyssaert, Sebastiaan; Ciais, Philippe; Bastrikov, Vladislav; De Vos, Bruno; Gielen, Bert; Gleixner, Gerd; Jornet-Puig, Albert; Kaiser, Klaus; Kothawala, Dolly; Lauerwald, Ronny; Peñuelas, Josep; Schrumpf, Marion; Vicca, Sara; Vuichard, Nicolas; Walmsley, David; Janssens, Ivan A.
2018-03-01
Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global warming.
Dissolved Organic Carbon in the Yukon, Tanana and Porcupine Rivers, Alaska
NASA Astrophysics Data System (ADS)
Aiken, G. R.; Striegl, R. G.; Wickland, K. P.; Dornblaser, M. M.; Raymond, P. A.
2006-12-01
The spatial and temporal variability of dissolved organic carbon (DOC) in the Yukon River (YR) and two major tributaries, the Porcupine River (PR), a black water river draining a watershed almost entirely underlain by permafrost, and the Tanana River (TR), a glacial dominated river, are being studied to better define processes controlling DOC in these systems. Five-year seasonal averages indicate DOC concentrations follow the discharge hydrograph, with highest daily and seasonal flux occurring during spring in YR and PR and during summer-autumn in TR. Largest DOC concentrations and specific UV absorption (SUVA) values, a measure of aromatic carbon content of the DOC and an indicator of DOC source, occurred at all locations during spring snowmelt. Lowest DOC concentration and SUVA occurred during low-flow in winter due to greatly reduced contributions of soil organic matter and to relatively greater influences of ground water. While all sites had comparable DOC concentration during winter, DOC concentration was greatest at PR during spring and summer-autumn, whereas TR had the lowest average DOC and SUVA values. Within the YR, average DOC concentration and SUVA values in spring and summer-autumn increase downriver due to contributions from organic carbon rich tributaries, such as PR, that increase in number and significance as the river flows through Alaska. Most the DOC in each system was comprised of hydrophobic organic acids (HPOA) derived from terrestrial vegetation. During winter, the hydrophilic fraction, determined to be the most biodegradable, was a larger percentage of the DOC than during spring-autumn. During spring, HPOA concentration and SUVA increased significantly at all sites, suggesting that most DOC in spring is derived from terrestrial organic matter that was frozen on the land surface over winter. During spring-autumn, PR had the largest concentration of HPOA and TR had the least. Like DOC concentration, HPOA concentration and SUVA increased down river. 14C-DOC values correspond to radiocarbon ages of modern (PR), 282 (TR), and 328 (YR) yrs B.P, indicating the presence of some aged DOC in YR and TR. Comparison of the chemical character of DOC from sites along the YR suggests that most DOC is transported from its source to the Bering Sea with little within river chemical or biological alteration, a result supported by laboratory biodegradation experiments.
δ13C Analysis of Dissolved Organic Carbon in Eastern Canadian Coastal Waters
NASA Astrophysics Data System (ADS)
Gelinas, Y.; Barber, A.
2016-12-01
The application of carbon stable isotope analysis on dissolved organic carbon (δ13C-DOC) from natural seawater samples has been limited owing to the difficulty of such analysis, with order of magnitude differences between interfering ions and analyte concentrations. High temperature catalytic oxidation allows for the separation of interferences from the organic carbon by precipitation on quartz chips upstream from the oxidation catalyst. Unlike wet chemical oxidation, where salts inhibit the oxidation of organic matter to CO2 via side reactions between the salt anions and the persulfate oxidizing agent, high temperature combustion ensures complete organic matter oxidation in a stream of O2. Using a programmable chemical trap to switch carrier gasses from O2 to He, the OI 1030C combustion unit can be coupled to and IRMS, allowing for the analysis of low DOC content saline waters with relatively high throughput. The analytical limitations and large water volumes traditionally required for these types of analyses have prevented any large-scale δ13C-DOC studies. Here we present DOC concentrations and δ13C-DOC signatures for surface and bottom waters obtained along Canada's East Coast. Included in the study are samples from the Esquiman channel (between Newfoundland and Labrador), Lake Melville, the Saglek and Nachvak Fjords, the Hudson Strait and finally covering the salinity gradient across the Gulf of the St. Lawrence, the St. Lawrence Estuary and the Saguenay Fjord. Measured δ13C-DOC signatures ranged from predominantly marine values of -21.3 ± 0.6 ‰ (vs. VPDB) off the coast of Newfoundland to predominantly terrestrial signatures of -25.8 ± 0.1‰ in Lake Melville. Overall, proper blank subtraction using the isotope mass balance equation and four replicate injections are crucial for the collection of meaningful high quality δ13C-DOC signatures on natural abundance, seawater samples.
Fabbri, Debora; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide
2015-01-01
This work models the phototransformation kinetics in surface waters of five phenylurea herbicides (diuron, fenuron, isoproturon, metoxuron and chlortoluron), for which important photochemical parameters are available in the literature (direct photolysis quantum yields and reaction rate constants with ·OH, CO3(-·) and the triplet states of chromophoric dissolved organic matter, (3)CDOM*). Model calculations suggest that isoproturon and metoxuron would be the least photochemically persistent and diuron the most persistent compound. Reactions with ·OH and (3)CDOM* would be the main phototransformation pathways for all compounds in the majority of environmental conditions. Reaction with CO3(-) could be important in waters with low dissolved organic carbon (DOC), while direct photolysis would be negligible for fenuron, quite important for chlortoluron, and somewhat significant for the other compounds. The direct photolysis of metoxuron and diuron is known to increase toxicity, and such a photoreaction pathway would be enhanced at intermediate DOC values (1-4 mg C L(1)). The reaction between phenylureas and ·OH is known to produce toxic intermediates, differently from (3)CDOM*. Therefore, the shift of reactivity from ·OH to (3)CDOM* with increasing DOC could reduce the environmental impact of photochemical transformation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Klitzke, Sondra; Fastner, Jutta
2012-04-01
One possible consequence of increasing water temperatures due to global warming in middle Europe is the proliferation of cylindrospermopsin-producing species from warmer regions. This may lead to more frequent and increased cylindrospermopsin (CYN) concentrations in surface waters. Hence, efficient elimination of CYN is important where contaminated surface waters are used as a resource for drinking water production via sediment passage. Sediments are often characterized by a lack of oxygen and low temperature (i.e. approx. 10 °C). The presence of dissolved organic carbon (DOC) is not only known to enhance but also to retard contaminant degradation by influencing the extent of lag phases. So far CYN degradation has only been investigated under oxic conditions and at room temperature. Therefore, the aim of our experiments was to understand CYN degradation, focusing on the effects of i) anoxic conditions, ii) low temperature (i.e. 10 °C) in comparison to room temperature (23±4 °C) and iii) DOC on lag phases. We used two natural sandy sediments (virgin and preconditioned) and surface water to conduct closed-loop column experiments. Anoxic conditions either inhibited CYN degradation completely or retarded CYN breakdown in comparison to oxic conditions (T(1/2) (oxic)=2.4 days, T(1/2) (anoxic)=23.6 days). A decrease in temperature from 20 °C to 10 °C slowed down degradation rates by a factor of 10. The presence of DOC shortened lag phases in virgin sediments at room temperature but induced a lag phase in preconditioned sediments at 10 °C, indicating potential substrate competition. These results show that information on physico-chemical conditions in sediments is crucial to assess the risk of CYN breakthrough. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cao, F.; Tzortziou, M.; Hu, C.; Najjar, R.
2016-02-01
Tidal wetlands and estuaries are dynamic features of coastal ocean and play critical roles in the global carbon cycle. Exchanges of dissolved organic carbon (DOC) between tidal wetlands and adjacent estuaries have important implications for carbon sequestration in tidal wetlands as well as biogeochemical cycling of wetlands derived material in the coastal zones. Recent studies demonstrated that the absorption coefficients of chromophoric dissolved organic matter at λ= 275 and 295 nm, which can be derived from satellite ocean color observations, can be used to accurately retrieve dissolved organic carbon (DOC) in some coastal waters. Based on a synthesis of existing field observations collected covering wide spatial and temporal variability in the Mid-Atlantic Bight and the Gulf of Mexico, here we developed and validated new empirical models to estimate coastal DOC from remotely sensed bio-optical properties of the surface water. We focused on the interfaces between tidal wetland-estuary and estuary-shelf water domains. The DOC algorithms were applied to SeaWiFs and MODIS observations to generate long-term climatological DOC distributions from 1998 to 2014. Empirical orthogonal function analysis revealed strong seasonality and spatial gradients in the satellite retrieved DOC in the tidal wetlands and estuaries. Combined with field observations and biogeochemical models, satellite retrievals can be used to scale up carbon fluxes from individual marshes and sub-estuaries to the whole estuarine system, and improve understanding of biogeochemical exchanges between terrestrial and aquatic ecosystems.
Bianco, Angelica; Fabbri, Debora; Minella, Marco; Brigante, Marcello; Mailhot, Gilles; Maurino, Valter; Minero, Claudio; Vione, Davide
2015-04-01
Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is a widely used antimicrobial agent that undergoes fairly slow biodegradation. It is often found in surface waters in both the acidic (HTric) and basic (Tric(-)) forms (pKa ∼8), and it can undergo direct photodegradation to produce several intermediates including a dioxin congener (2,8-dichlorodibenzodioxin, hereafter 28DCDD). The latter is formed from Tric(-) and causes non-negligible environmental concern. Differently from current literature reports, in this paper we show that the direct photolysis would not be the only important transformation pathway of triclosan in surface waters. This is particularly true for HTric, which could undergo very significant reactions with (•)OH and, if the laser-derived quenching rate constants of this work are comparable to the actual reaction rate constants, with the triplet states of chromophoric dissolved organic matter ((3)CDOM*). Model calculations suggest that reaction with (3)CDOM* could be the main HTric phototransformation pathway in deep waters with high dissolved organic carbon (DOC), while reaction with (•)OH could prevail in low-DOC waters. In the case of Tric(-) the direct photolysis is much more important than for HTric, but triplet-sensitised transformation could produce 28DCDD + 27DCDD with higher yield compared to the direct photolysis, and it could play some role as dioxin source in deep waters with elevated DOC. Copyright © 2014 Elsevier Ltd. All rights reserved.
Seqestration of dissolved organic carbon in the deep sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel J. Repeta
2006-03-01
There are 600 GT of dissolved organic carbon (DOC) sequestered in seawater. The marine inventory of DOC is set by its concentration in the deep sea, which is nearly constant at 35+2µM C, irrespective of sample location or depth. Isotopic measurements show deep sea DOC to be depleted in radiocarbon, with an apparent radiocarbon age of between 4000ybp (Atlantic) and 6000ybp (Pacific). From the radiocarbon data, we can infer that deep sea DOC is inert and does not cycle on less than millennial time scales. However, high precision DOC measurements show deep sea concentrations are variable at the + 1-2µMmore » DOC level, suggesting a fraction of deep sea DOC, equivalent to 15-30Gt C, is cycling on short time scales, acting as a sink for new, atmospheric carbon. This project is designed to identify and quantify the biological and physical processes that sequester DOM in the deep sea by making compound specific radiocarbon measurements on sugars and proteins extracted from deep sea DOC. Our Hawaii surface seawater sample has a DIC Δ14C value of 72 + 7 ‰ and shows the influence of bomb radiocarbon on surface water DIC values. HMWDOC Δ14C is 10 ‰, significantly depleted in radiocarbon relative to DIC. Purification of HMWDOC by reverse phase HPLC yields seven neutral sugars with radiocarbon values of 47 – 67‰. Assuming the radiocarbon determinations of individual sugars in HMWDOC serve as replicates, then the average Δ14C for neutral sugars in HMWDOC is 57 + 6 ‰(1 SD, n=11), only slightly depleted in 14C relative to DIC. There has been a sharp decrease in radiocarbon values for DIC in the North Pacific Ocean over the past few decades. If neutral sugars cycle more slowly than DIC, we would expect them to have correspondingly higher radiocarbon values. Previous studies have modeled upper ocean DOC as a two component mixture of newly synthesized DOC with a radiocarbon value equal to DIC, and an old component with a radiocarbon value equal to deep sea DO14C. In order to measure the radiocarbon value of the old DOC component, we analyzed a molecularly uncharacterized carbon (MUC) fraction isolated from HMWDOC. Ten percent of HMWDOC is retained by the Biorex anion ion exchange resin, but eluted by NH4OH. This fraction has spectral characteristics nearly identical to deep sea HMWDOC (Fig. 2), and a Δ14C of–416‰. Our Δ14C value for MUC in surface water is within the range of values for HMWDOC isolated from 900-5200m at this site (-380 to –440‰), and significantly depleted relative to a sample of humic substances isolated at 10 m by adsorption onto XAD resin (-342‰; Druffel et al. (1992)). Separation of MUC from the more reactive, newly synthesized component of HMWDOC as represented by neutral sugars in surface seawater yields a MUC fraction with radiocarbon depletions similar to deep sea (> 1000-5720 m) DO14C (-501 to -536‰, Druffel et al., 1992). Our analyses therefore verify the existence of both a newly synthesized and old fraction of DOC in surface seawater with radiocarbon values equal to DIC and nearly equal to deep sea DOC. Neutral sugar concentrations decrease from 4-6 µM C or 13-21% of HMWDOC in surface samples, to 0.7µM C or 6% of HMWDOC at 600m. The carbohydrate fraction of HMWDOC can be introduced into the mesopelagic ocean through two fundamentally different mechanisms. A small fraction of the reactive carbohydrate synthesized in the euphotic zone may escape degradation and be mixed into the mesopelagic ocean by advection. These sugars will have a radiocarbon value equal to DIC at depth. Alternatively, sugars could be introduced from the dissolution of rapidly sinking large particles. Reactive DOC injected by sinking particles will have radiocarbon values similar to surface water DIC. To distinguish these two mechanisms, we compared radiocarbon values of DIC and neutral sugars in samples from 600m. DIC Δ14C and HMWDOC Δ14C values at 600m sample are –155 + 7 ‰ and –258‰ respectively, and are typical of values at this depth in the North Pacific Ocean. Neutral sugars at 600m have radiocarbon values between –108 and –133‰, and are enriched by up to 150 ‰ relative to HMWDOC. The average Δ14C value obtained by treating glucose, galactose, xylose and mannose as replicates is –123 + 10 ‰ (1SD, n=4), and is slightly enriched in radiocarbon relative to DIC. Our data suggest that some fraction of neutral sugars might be introduced by the dissolution of rapidly sinking particles. If we assume that neutral sugars at 600m are a simple mixture of new carbon with a Δ14C value equal to surface water DIΔ14C, and older carbon with a Δ14C value equal to DIΔ14C at depth, then 15% of the neutral sugars at 600m are introduced by large, rapidly sinking particles.« less
NASA Technical Reports Server (NTRS)
Vandemark, Doug; Salisbury, Joe; Hunt, Chris; McGillis, Wade R.
2004-01-01
We have recently developed the ability to rapidly assess Surface inherent optical properties (IOP), oxygen concentration and pCO2 in estuarine-plume systems using flow-through instrumentation. During the summer of 2004, several estuarine-plume systems were surveyed which include the Pleasant (ME), Penobscot (ME), Kennebec-Androscoggin (ME), Merrimack (NH-MA) and Hudson (NY). Continuous measurements of surface chlorophyll and colored dissolved organic carbon (CDOM) fluorescence, beam attenuation, temperature, salinity, oxygen and pC02 were taken at each system along a salinity gradient from fresh water to near oceanic endmembers. CTD and IOP profiles were also taken at predetermined surface salinity intervals. These were accompanied by discrete determinations of chlorophyll (HPLC and fluorometric), total suspended solids (TSS), dissolved organic carbon (DOC) and alkalinity. IOP data were calibrated using chlorophyll, DOC and TSS data to enable the retrieval of these constituents from IOP data. Considerable differences in the data sets were observed between systems. These ranged from the DOC-enriched, strongly heterotrophic Pleasant River System to the high-chlorophyll autotrophic Merrimack River System. Using pCO2 and oxygen saturation measurements as proxies for water column metabolism, distinct relationships were found between trophic status and inherent optical properties. The nature of these relationships varies between systems and is likely a function of watershed and estuarine attributes including carbon and nutrient loading, in-situ production and related autochthonous inputs of DOC and alkalinity. Our results suggest that IOP data may contain significant information about the trophic status of estuarine and plume systems.
NASA Astrophysics Data System (ADS)
Gonnelli, M.; Galletti, Y.; Marchetti, E.; Mercadante, L.; Retelletti Brogi, S.; Ribotti, A.; Sorgente, R.; Vestri, S.; Santinelli, C.
2016-11-01
Dissolved organic carbon (DOC), chromophoric and fluorescent dissolved organic matter (CDOM and FDOM, respectively) surface distribution was studied during the Serious Game exercise carried out in the Eastern Ligurian Sea, where an oil spill was localized by using satellite images and models. This paper reports the first DOC, CDOM and FDOM data for this area together with an evaluation of fluorescence as a fast and inexpensive tool for early oil spill detection in marine waters. The samples collected in the oil spill showed a fluorescence intensity markedly higher ( 5 fold) than all the other samples. The excitation-emission matrixes, coupled with parallel factor analysis (PARAFAC), allowed for the identification in the FDOM pool of a mixture of polycyclic aromatic hydrocarbons, humic-like and protein-like fluorophores.
CONTROL OF ORGANIC DRINKING WATER QUALITY BY PRECIPITATIVE PROCESSES
Plant and bench studies were conducted on a highly colored surface water using Alum and Polyvalent Aluminum Chloride (PAC1) coagulation to minimize THMPF. Optimum coagulation pH and dose were identified by season for Alum and PAC1 for color, DOC, THMPF and TOXFP removal. Aluminum...
NASA Astrophysics Data System (ADS)
Seiphoori, A.; Ortiz, C. P.; Jerolmack, D. J.
2017-12-01
Transport of asbestos through soil by groundwater is typically considered to be negligible. There are indications, however, that under some conditions of pore-water/soil chemistry asbestos may become mobile, implying that buried contaminants could migrate from a disposal site and surface elsewhere. Shape, size and surface charge may influence the physical and chemical interactions of colloids with the soil matrix, and asbestos consists of elongated particles with different size and unique surface charge properties. Although chemical factors such as pH and ionic strength of pore water may affect the transport properties, the presence of dissolved organic carbon (DOC) has been identified to remarkably enhance the mobility of colloids including asbestos. To date, there is no explanation for how the presence of DOC may facilitate the mobilization of asbestos in soil - mainly because the soil medium has been treated as a black box without the possibility of observing particles within the matrix. Here, we investigated the mobility of chrysotile asbestos particles ( 10 um long) in porous media by developing a flow cell with an optically-transparent porous medium composed of granules of a refractive-index matched material. This enabled us to observe and track the particles within the water-saturated porous medium using in situ microscopy. The aqueous suspension of asbestos fibers was passed through this artificial soil, while the physical and chemical interaction of asbestos particles with the medium and their pore-scale distribution were analyzed. We studied the effects of changing solution chemistry (e.g., ionic strength, pH, and DOC content) on transport, attachment and aggregation of chrysotile particles. Experiments revealed a novel mechanism where the DOC-associated nanoparticles attach to chrysotile fibers by an electrostatic attraction, which facilitates their mobilization through the porous medium while modulating aggregation among fibers. Although pH and ionic strength also influenced aggregation and the attachment rate of particles to the substrate, the effect of DOC was more pronounced. This work may lead to enhanced predictions for the fate and transport of asbestos (as well as other contaminants) in the environment, and has implications for the mobility of asbestos particles in the human body.
NASA Astrophysics Data System (ADS)
Yamashita, Youhei; McCallister, S. Leigh; Koch, Boris P.; Gonsior, Michael; Jaffé, Rudolf
2015-06-01
Annually, rivers and inland water systems deliver a significant amount of terrestrial organic matter (OM) to the adjacent coastal ocean in both particulate and dissolved forms; however, the metabolic and biogeochemical transformations of OM during its seaward transport remains one of the least understood components of the global carbon cycle. This transfer of terrestrial carbon to marine ecosystems is crucial in maintaining trophic dynamics in coastal areas and critical in global carbon cycling. Although coastal regions have been proposed as important sinks for exported terrestrial materials, most of the global carbon cycling data, have not included fjords in their budgets. Here we present distributional patterns on the quantity and quality of dissolved OM in Fiordland National Park, New Zealand. Specifically, we describe carbon dynamics under diverse environmental settings based on dissolved organic carbon (DOC) depth profiles, oxygen concentrations, optical properties (fluorescence) and stable carbon isotopes. We illustrate a distinct change in the character of DOC in deep waters compared to surface and mid-depth waters. Our results suggest that, both, microbial reworking of terrestrially derived plant detritus and subsequent desorption of DOC from its particulate counterpart (as verified in a desorption experiment) are the main sources of the humic-like enriched DOC in the deep basins of the studied fjords. While it has been suggested that short transit times and protection of OM by mineral sorption may ultimately result in significant terrestrial carbon burial and preservation in fjords, our data suggests the existence of an additional source of terrestrial OM in the form of DOC generated in deep, fjord water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, K.; Dickhut, R.M.
1995-12-31
Photodegradation kinetics of selected polycyclic aromatic hydrocarbons (PAHs) in the presence of various particle and dissolved phases were examined in surface microlayer (SM) and surface water under direct solar irradiance during different seasons. Halflives of PAHs during different seasons in the various media were determined. The results showed shorter halflives measured at the surface for PAHs in the SM media than in surface water. Submergence depth also significantly affected rate constants, and halflives for PAH compounds were 1.4 to 5 times shorter at the surface than at 14cm depth below the surface. In bulk SM media, the annual average halflivesmore » varied from 1.3 to 43 hours (midday) with different PAH compounds, and in filtered SM from 1.8 to 56.9 hours (midday). The effects of particles and DOC on the photodegradation of PAHs were also inspected. The results showed particulates and DOC both enhanced or decreased the photodegradation rate constants for selected PAHs. Overall, PAH photoreactivity is related to the compound`s maximum net atomic charge (MNAC) on the most reactive carbon center of a specific PAH molecule.« less
NASA Astrophysics Data System (ADS)
Doctor, D. H.; Sebestyen, S. D.; Aiken, G. R.; Shanley, J. B.; Kendall, C.; Boyer, E. W.
2006-12-01
Increased DOC flux in streams and rivers is commonly observed during high runoff regimes, however DOC concentrations alone do not provide information about multiple sources or pathways of DOC to streams. In an effort to gain this information, we measured DOC concentrations and stable carbon isotope composition (δ13C-DOC) on samples collected at high-frequency during events at Sleepers River Research Watershed in Vermont, USA. During snowmelt and storm events, peaks in stream DOC concentration (up to 10.5 mg/L) were coincident with peaks in flow. Stream water δ13C-DOC measurements ranged between -23.7‰ and - 28.9‰ and indicated changing sources of DOC during events; the highest δ13C-DOC values occurred consistently at the lowest flows, and the lowest δ13C-DOC values occurred with peaks in discharge. Water samples collected from shallow wells and stacked soil lysimeters showed the highest DOC concentrations in the most shallow (<0.5 m) lysimeter waters, and the lowest concentrations in the deeper (>1.5 m) well waters. Wells and lysimeters exhibited a range of δ13C-DOC values similar to those observed in the stream; however, samples collected from shallow horizons at nested wells and lysimeters consistently showed lower δ13C-DOC values than those from greater depths. Maple leaf litter collected from across the watershed provided an end-member of fresh organic material, with average δ13C composition of -31.3±0.7‰ (n=57), which is lower than the lowest measured DOC values in any of the stream, well, or lysimeter waters. A subset of stream waters were fractionated onto XAD4 and XAD8 resins; the hydrophobic acid fraction (XAD8) had consistently lower δ13C values than the transphilic acid fraction (XAD4), and both of these were lower than those of the bulk DOC. Samples with lower δ13C-DOC values also exhibited higher SUVA-254 values, i.e. greater aromaticity. Thus, lower δ13C-DOC values are interpreted as an indicator of relatively "fresh", more aromatic and more biologically labile material while higher δ13C-DOC values indicate relatively more degraded material. Since lower δ13C-DOC values were observed in the shallowest well and lysimeter waters and in stream water during periods of highest DOC flux, we surmise that fresh DOC is mobilized to the stream along relatively shallow flowpaths during high flows, and that a second source of more degraded DOC supplies background concentrations to the stream at lower flows.
Yang, Qichun; Zhang, Xuesong; Xu, Xingya; ...
2017-05-29
Riverine carbon cycling is an important, but insufficiently investigated component of the global carbon cycle. Analyses of environmental controls on riverine carbon cycling are critical for improved understanding of mechanisms regulating carbon processing and storage along the terrestrial-aquatic continuum. Here, we compile and analyze riverine dissolved organic carbon (DOC) concentration data from 1402 United States Geological Survey (USGS) gauge stations to examine the spatial variability and environmental controls of DOC concentrations in the United States (U.S.) surface waters. DOC concentrations exhibit high spatial variability, with an average of 6.42 ± 6.47 mg C/ L (Mean ± Standard Deviation). In general,more » high DOC concentrations occur in the Upper Mississippi River basin and the Southeastern U.S., while low concentrations are mainly distributed in the Western U.S. Single-factor analysis indicates that slope of drainage areas, wetlands, forests, percentage of first-order streams, and instream nutrients (such as nitrogen and phosphorus) pronouncedly influence DOC concentrations, but the explanatory power of each bivariate model is lower than 35%. Analyses based on the general multi-linear regression models suggest DOC concentrations are jointly impacted by multiple factors. Soil properties mainly show positive correlations with DOC concentrations; forest and shrub lands have positive correlations with DOC concentrations, but urban area and croplands demonstrate negative impacts; total instream phosphorus and dam density correlate positively with DOC concentrations. Notably, the relative importance of these environmental controls varies substantially across major U.S. water resource regions. In addition, DOC concentrations and environmental controls also show significant variability from small streams to large rivers, which may be caused by changing carbon sources and removal rates by river orders. In sum, our results reveal that general multi-linear regression analysis of twenty one terrestrial and aquatic environmental factors can partially explain (56%) the DOC concentration variation. In conclusion, this study highlights the complexity of the interactions among these environmental factors in determining DOC concentrations, thus calls for processes-based, non-linear methodologies to constrain uncertainties in riverine DOC cycling.« less
Quantifying nutrient sources in an upland catchment using multiple chemical and isotopic tracers
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Doctor, D. H.; Kendall, C.; Aiken, G. R.
2006-12-01
To explore processes that control the temporal variation of nutrients in surface waters, we measured multiple environmental tracers at the Sleepers River Research Watershed, an upland catchment in northeastern Vermont, USA. Using a set of high-frequency stream water samples, we quantified the variation of nutrients over a range of stream flow conditions with chemical and isotopic tracers of water, nitrate, and dissolved organic carbon (DOC). Stream water concentrations of nitrogen (predominantly in the forms of nitrate and dissolved organic nitrogen) and DOC reflected mixing of water contributed from distinct sources in the forested landscape. Water isotopic signatures and end-member mixing analysis revealed when solutes entered the stream from these sources and that the sources were linked to the stream by preferential shallow subsurface and overland flow paths. Results from the tracers indicated that freshly-leached, terrestrial organic matter was the overwhelming source of high DOC concentrations in stream water. In contrast, in this region where atmospheric nitrogen deposition is chronically elevated, the highest concentrations of stream nitrate were attributable to atmospheric sources that were transported via melting snow and rain fall. These findings are consistent with a conceptual model of the landscape in which coupled hydrological and biogeochemical processes interact to control stream solute variability over time.
Determination of an organic-acid analog of DOC for use in copper toxicity studies on salmonids
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacRae, R.K.; Meyer, J.S.; Hansen, J.A.
1995-12-31
Concentrations of dissolved copper in streams draining mine sites often exceed concentrations shown to cause acute and chronic mortality in salmonids. However, toxicity and impaired behaviors may be modified by dissolved organic carbon (DOC) and other inorganic components present in the site water. The effects of DOC on copper speciation, and thus bioavailability and toxicity, were determined by titrating stream waters with copper, using a cupric ion-specific electrode to detect free copper concentrations. Effects of various competing cations (e.g., Ca{sup +2}, Co{sup +2}) on copper-DOC binding were also evaluated. Titration results were evaluated using Scatchard and non-linear regression analyses tomore » quantify the strength and capacity of copper-DOC binding. Inorganic speciation was determined using the geochemical model MINEQL{sup +}. Results of these titrations indicated the presence of two or three distinct copper binding components in site water DOC. Three commercially available organic acids where then chosen to mimic the binding characteristics of natural DOC. This DOC-analog was used successfully in fish toxicity studies to evaluate the influence of DOC on copper bioavailability. Geochemical models were developed to predict copper speciation in both laboratory test waters and site waters, for any typical combination of water chemistry parameters (pH, alkalinity, [DOC], etc.). A combined interpretation of fish toxicity and modeling results indicate that some DOC-bound copper was bioavailable.« less
NASA Astrophysics Data System (ADS)
Holden, Joseph; Turner, Ed; Baird, Andy; Beadle, Jeannie; Billett, Mike; Brown, Lee; Chapman, Pippa; Dinsmore, Kerry; Dooling, Gemma; Grayson, Richard; Moody, Catherine; Gee, Clare
2017-04-01
We have previously shown that marine influence is an important factor controlling regional variability of pool water chemistry in blanket peatlands. Here we examine within-site controls on pool water chemistry. We surveyed natural and artificial (restoration sites) bog pools at blanket peatland sites in northern Scotland and Sweden. DOC, pH, conductivity, dissolved oxygen, temperature, cations, anions and absorbance spectra from 220-750nm were sampled. We sampled changes over time but also conducted intensive spatial surveys within individual pools and between pools on the same sampling days at individual study sites. Artificial pools had significantly greater DOC concentrations and different spectral absorbance characteristics when compared to natural pools at all sites studied. Within-pool variability in water chemistry tended to be small, even for very large pools ( 400 m2), except where pools had a layer of loose, mobile detritus on their beds. In these instances rapid changes took place between the overlying water column and the mobile sediment layer wherein dissolved oxygen concentrations dropped from values of around 12-10 mg/L to values less than 0.5 mg/L over just 2-3 cm of the depth profile. Such strong contrasts were not observed for pools which had a hard peat floor and which lacked a significant detritus layer. Strong diurnal turnover occurred within the pools on summer days, including within small, shallow pools (e.g. < 30 cm deep, 1 m2 area). For many pools on these summer days there was an evening spike in dissolved oxygen concentrations which originated at the surface and was then cycled downwards as the pool surface waters cooled. Slope location was a significant control on several pool water chemistry variables including pH and DOC concentration with accumulation (higher concentrations) in pools that were located further downslope in both natural and artificial pool systems. These processes have important implications for our interpretation of water chemistry and gas flux data from pool systems, how we design our sampling strategies and how we upscale results.
NASA Astrophysics Data System (ADS)
Aitkenhead-Peterson, J. A.
2016-12-01
Generally the quality of urban streams has been attributed to storm water runoff and sewage effluent discharge. Recent work in the upper Trinity Basin downstream from the Dallas/Fort Worth metropolis, TX concluded that sewage effluent only contributed between 1 and 35% of DOC dependent upon the population of the watershed. Change from native to urban land use increased DOC exports to between 938 - 1840 kg km-2 yr-1relative to the 517 kg km-2 yr-1 expected from native land use. Where this excess DOC might come from in an urban ecosystem was addressed in a separate study examining water extractable DOC (WEDOC) and DON (WEDON) in soils of single-family home lawns in Chicago, IL, Frederick, MD, Bryan/College Station, TX and Galveston, TX. These cities were exposed to different sources of sodium. Time of exposure to sodium was considered on the assumption that as new sub-divisions are built, new soil or turfgrass sod is introduced to the site. Exposure times were 0-5, 6-10, 11-20, 21-30 and > 30 yr. Length of exposure time of the soil to the urban environment was significant among the four cities examined for DOC (p < 0.001), DON (p < 0.001), sodium adsorption ratio (p < 0.006) but not for sodium (p = 0.08) or exchangeable sodium percent (ESP) (p = 0.09). In all cities WEDON increased with urban exposure time and in all cities except Galveston WEDOC increased with urban exposure time. Sodium, regardless of its source, explained 60% of the variance in WEDOC and 54% of the variance in WEDON across all cities (n = 136). To determine what other factors might be involved in increasing WEDOC and WEDON losses from suburban soils, backward stepwise regression models were used. Across the four cities, time of urban exposure, soil saturated hydraulic conductivity (Ksat), NO3-N, NH4-N, S, PO4-P, Na, Cu, Ca, Fe and Zn produced a significant model for WEDOC (Adjusted r2 = 0.85; p < 0.001) and Ksat, pH, NH4-N, PO4-P, S, Alkalinity and Cu produced a significant model for WEDON (adjusted r2 = 0.81; p < 0.0001). Models for estimating WEDOC and WEDON were also produced for the individual cities. While sodium may be a player in the increasing DOC and DON observed in urban surface waters, more research is needed to determine the mechanisms of WEDOC and WEDON release from urban soils.
Hansen, Angela M; Kraus, Tamara E C; Bachand, Sandra M; Horwath, William R; Bachand, Philip A M
2018-05-01
Constructed wetlands are used worldwide to improve water quality while also providing critical wetland habitat. However, wetlands have the potential to negatively impact drinking water quality by exporting dissolved organic carbon (DOC) that upon disinfection can form disinfection byproducts (DBPs) like trihalomethanes (THMs) and haloacetic acids (HAAs). We used a replicated field-scale study located on organic rich soils in California's Sacramento-San Joaquin Delta to test whether constructed flow-through wetlands which receive water high in DOC that is treated with either iron- or aluminum-based coagulants can improve water quality with respect to DBP formation. Coagulation alone removed DOC (66-77%) and THM (67-70%) precursors, and was even more effective at removing HAA precursors (77-90%). Passage of water through the wetlands increased DOC concentrations (1.5-7.5mgL -1 ), particularly during the warmer summer months, thereby reversing some of the benefits from coagulant addition. Despite this addition, water exiting the wetlands treated with coagulants had lower DOC and DBP precursor concentrations relative to untreated source water. Benefits of the coagulation-wetland systems were greatest during the winter months (approx. 50-70% reduction in DOC and DBP precursor concentrations) when inflow water DOC concentrations were higher and wetland DOC production was lower. Optical properties suggest DOC in this system is predominantly comprised of high molecular weight, aromatic compounds, likely derived from degraded peat soils. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Matsuoka, A.; Bricaud, A.; Benner, R.; Para, J.; Sempéré, R.; Prieur, L.; Bélanger, S.; Babin, M.
2012-03-01
Light absorption by colored dissolved organic matter (CDOM) [aCDOM(λ)] plays an important role in the heat budget of the Arctic Ocean, contributing to the recent decline in sea ice, as well as in biogeochemical processes. We investigated aCDOM(λ) in the Southern Beaufort Sea where a significant amount of CDOM is delivered by the Mackenzie River. In the surface layer, aCDOM(440) showed a strong and negative correlation with salinity, indicating strong river influence and conservative transport in the river plume. Below the mixed layer, a weak but positive correlation between aCDOM(440) and salinity was observed above the upper halocline, resulting from the effect of removal of CDOM due to brine rejection and lateral intrusion of Pacific summer waters into these layers. In contrast, the relationship was negative in the upper and the lower haloclines, suggesting these waters originated from Arctic coastal waters. DOC concentrations in the surface layer were strongly correlated with aCDOM(440) (r2 = 0.97), suggesting that this value can be estimated in this area, using aCDOM(440) that is retrieved using satellite ocean color data. Implications for estimation of DOC concentrations in surface waters using ocean color remote sensing are discussed.
Sánchez-Martín, J; Ghebremichael, K; Beltrán-Heredia, J
2010-08-01
The coagulant proteins from Moringa oleifera purified with single-step and two-step ion-exchange processes were used for the coagulation of surface water from Meuse river in The Netherlands. The performances of the two purified coagulants and the crude extract were assessed in terms of turbidity and DOC removal. The results indicated that the optimum dosage of the single-step purified coagulant was more than two times higher compared to the two-step purified coagulant in terms of turbidity removal. And the residual DOC in the two-step purified coagulant was lower than in single-step purified coagulant or crude extract. (c) 2010 Elsevier Ltd. All rights reserved.
Concentration and age of DOC transported from thawing permafrost soils into Arctic headwater streams
NASA Astrophysics Data System (ADS)
Romano, E. L.; Wickland, K.; Ebert, C.; Schuur, E.
2017-12-01
As Arctic permafrost stability decreases due to global climate change, hydrologic dynamics in catchments underlain by permafrost are expected to shift. The thickness of seasonally thawed surface soils is an important driver of the extent to which carbon (C) that was previously stored as frozen soil organic carbon (SOC) will be transported laterally as dissolved organic carbon (DOC). The concentration and radiocarbon (14C) age of newly thawed DOC that moves downslope through tundra soils and is delivered to headwater streams is an important indicator of changing C dynamics. Understanding the timing and quantity of C loss in this form is imperative for greenhouse gas emission and soil C stock estimates, as well as predicting the impact of permafrost thaw on aquatic ecosystems. In this study we examined the relationship between DOC concentrations, 14C-DOC, and active layer thickness (ALT) in thawing soils over time. Water samples were collected once in July 2016 and weekly in 2017 from late May to late August from wells within a long-term tundra soil warming experiment (n=36), located in a discontinuous permafrost zone in Interior Alaska. Preliminary data from 2016 shows average maximum ALT at wells within the warming treatment of 68.9 cm, while wells from control averaged 86.6 cm. 2016 water sample data from wells within the warming treatment showed higher mean DOC concentrations (103.1 ± 32.5 mg/L) and older 14C-DOC values (-28.7 ± 21.1 ‰) than samples from the control (44.5 ± 3.0 mg/L and 11.3 ± 8.6 ‰). To assess inter-annual changes in DOC delivery to local headwater streams, DOC concentration and 14C-DOC were also measured on water samples taken in late summer of 2007, 2008, and 2016 from streams within the watershed surrounding the experimental sites. Weekly sampling in 2017 allowed analysis of seasonal patterns of DOC concentration for that year. Values increased slightly over time at some stream sites (ranging from 4-33 mg/L in 2012 to 2-80 mg/L in 2016). Seasonal and inter-annual permafrost thaw appears to drive the release of previously stored old C in the form of DOC, which increases downslope mobility. In-situ terrestrial greenhouse gas emission estimates may therefore underestimate C losses, especially when precipitation is high or early in the season when spring snowmelt and shallow ALT promote lateral transport of DOC.
NASA Astrophysics Data System (ADS)
Hudson, E. D.; Ariya, P. A.
2006-12-01
Whole air, size-fractionated marine aerosols, and surface ocean water DOC were sampled together during June-July 2004 on the Nordic seas, in order to explore factors leading to the formation of volatile organic compounds (VOCs) at the sea surface and their transfer to the atmosphere. High site-to-site variability in 19 non-methane hydrocarbon concentrations suggests highly variable, local sources for these compounds. Acetone, C5 and C6 hydrocarbons, and dimethylsulfide were identified in the seawater samples using solid-phase microextraction/GC-MS. The aerosols were analysed by SEM-EDX and contained primarily inorganic material (sea salt, marine sulfates, and carbonates) and little organic matter. However, a culturable bacterium was isolated from the large (9.9 - 18 μ m) fraction at one site, and identified as Micrococcus luteus. We will discuss the implication of these results on potential exchange processes at the ocean-atmosphere interface and the impact of bioaerosols in transferring marine organic carbon to atmospheric organic carbon.
Hurricane Katrina Impact on Water Quality in the East Pearl River, Mississippi
NASA Astrophysics Data System (ADS)
Shiller, A. M.; Shim, M.; Guo, L.; Bianchi, T. S.; Smith, R. W.; Duan, S.
2010-12-01
Hurricanes and other intense storms have previously been reported to cause short term changes in surface water quality. We examined the water quality of the East Pearl River in southern Mississippi both before and after Hurricane Katrina caused extensive damage to the watershed in 2005. Our post-storm sampling began two months after the hurricane, and thus we missed any immediate short-term consequences. However, sampling over the following two years allowed us to examine whether damage to watershed resulted in significant longer term effects on water quality. Interpretation of the time series data is complicated by the natural seasonal and climatic variability of the system. Thus, we utilized property-property plots as well as empirical relationships to compare pre- and post-storm water quality. Based on the variability of our empirical relationships, we estimate that to within 20%, the hurricane-induced vegetative destruction within this river basin has not changed the concentrations of DOC, POC, SPM, pH, or dissolved Fe. Nor has the quality of the DOC, as inferred from lignin-phenol analysis and the Fe-DOC relationship, been significantly changed either. This may be partly due to the slow degradation of woody materials that occurs only over a period of a few years, even in the sub-tropical climate of this region. Also, transport of DOC material from the land, through the soils, and into the river is not always instantaneous because DOC may stay in soils for a long time. Our work can be examined in the context of other research focused on hurricane effects on different time scales. For instance, shorter term hurricane influences, such as immediate flooding, can cause concurrent, short-lived water quality changes. Likewise, if increased hurricane activity (as might result from climate change) results in permanent landscape or ecosystem changes, then significant long-term water quality changes might be expected.
NASA Astrophysics Data System (ADS)
Hoelemann, J. A.; Janout, M. A.; Koch, B.; Bauch, D.; Novikhin, A.; Heim, B.; Eulenburg, A.; Kassens, H.; Timokhov, L.
2016-02-01
The Siberian shelves are seasonally ice-covered and characterized by large freshwater runoff rates from some of the largest rivers on earth. These rivers also provide a considerable amount of dissolved organic carbon (DOC) to the Arctic Ocean. With an annual load of about 6 Tg DOC a-1 the Lena River contributes nearly 20 percent of the annual DOC discharge to the Arctic Ocean. We present a comprehensive dataset collected during multiple Laptev Sea expeditions carried out in spring, summer and fall (2010-15) in order to explore the processes controlling the dispersal and degradation of DOM during the river water's passage across the shelf. Our investigations are focused on CDOM (Colored Dissolved Organic Matter), which resembles the DOC concentration, interacts with solar radiation and forms a major fraction of the organic matter pool. Our results show an inverse correlation between salinity and CDOM, which emphasizes its terrigenous source. Further, the spectral slope of CDOM absorption indicates that photochemical bleaching is the main process that reduces the CDOM absorption ( 20%) in freshwater along its transport across the shelf. The distribution of the Lena river water is primarily controlled by winds in summer. During summers with easterly or southerly winds, the plume remains on the central and northern Laptev shelf, and is available for export into the Arctic Basin. The CDOM-rich river water increases the absorption of solar radiation and enhances warming of a shallow surface layer. This emphasizes the importance of CDOM for sea surface temperatures and lateral ice melt on the shelf and adjacent basin. DOC concentrations in freshwater vary seasonally and become larger with increasing discharge. Our data indicate that the CDOM concentrations are highest during the freshet when landfast ice is still present. Subsequent mixing with local sea ice meltwater lowers CDOM to values that are characteristic for the Lena freshwater during the rest of the year.
NASA Astrophysics Data System (ADS)
Hoelemann, Jens; Janout, Markus; Koch, Boris; Bauch, Dorothea; Hellmann, Sebastian; Eulenburg, Antje; Heim, Birgit; Kassens, Heidemarie; Timokhov, leonid
2016-04-01
The Siberian shelves are seasonally ice-covered and characterized by large freshwater runoff rates from some of the largest rivers on earth. These rivers also provide a considerable amount of dissolved organic carbon (DOC) to the Arctic Ocean. With an annual load of about 6 Tg DOC a-1 the Lena River contributes nearly 20 percent of the annual DOC discharge to the Arctic Ocean. We present a comprehensive dataset collected during multiple Laptev Sea expeditions carried out in spring, summer and fall (2010-15) in order to explore the processes controlling the dispersal and degradation of DOM during the river water's passage across the shelf. Our investigations are focused on CDOM (Colored Dissolved Organic Matter), which resembles the DOC concentration, interacts with solar radiation and forms a major fraction of the organic matter pool. Our results show an inverse correlation between salinity and CDOM, which emphasizes its terrigenous source. Further, the spectral slope of CDOM absorption indicates that photochemical bleaching is the main process that reduces the CDOM absorption (~ 20%) in freshwater along its transport across the shelf. The distribution of the Lena river water is primarily controlled by winds in summer. During summers with easterly or southerly winds, the plume remains on the central and northern Laptev shelf, and is available for export into the Arctic Basin. The CDOM-rich river water increases the absorption of solar radiation and enhances warming of a shallow surface layer. This emphasizes the importance of CDOM for sea surface temperatures and lateral ice melt on the shelf and adjacent basin. DOC concentrations in freshwater vary seasonally and become larger with increasing discharge. Our data indicate that the CDOM concentrations are highest during the freshet when landfast ice is still present. Subsequent mixing with local sea ice meltwater lowers CDOM to values that are characteristic for the Lena freshwater during the rest of the year.
Influence of natural dissolved organic carbon on the bioavailability of mercury to a freshwater alga
Gorski, P.R.; Armstrong, D.E.; Hurley, J.P.; Krabbenhoft, D.P.
2008-01-01
Bioavailability of mercury (Hg) to Selenastrum capricornutum was assessed in bioassays containing field-collected freshwater of varying dissolved organic carbon (DOC) concentrations. Bioconcentration factor (BCF) was measured using stable isotopes of methylmercury (MeHg) and inorganic Hg(II). BCFs for MeHg in low-DOC lake water were significantly larger than those in mixtures of lake water and high-DOC river water. The BCF for MeHg in rainwater (lowest DOC) was the largest of any treatment. Rainwater and lake water also had larger BCFs for Hg(II) than river water. Moreover, in freshwater collected from several US and Canadian field sites, BCFs for Hg(II) and MeHg were low when DOC concentrations were >5 mg L-1. These results suggest high concentrations of DOC inhibit bioavailability, while low concentrations may provide optimal conditions for algal uptake of Hg. However, variability of BCFs at low DOC indicates that DOC composition or other ligands may determine site-specific bioavailability of Hg.
NASA Astrophysics Data System (ADS)
Yager, D. B.; Burchell, A.; Johnson, R. H.; Kugel, M.; Aiken, G.; Dick, R.
2009-12-01
The need to reduce atmospheric CO2 levels has stimulated studies to understand and quantify carbon sinks and sources. Soils represent a potentially significant natural terrestrial carbon sequestration (NTS) reservoir. This project is part of a collaborative effort to characterize carbon (C) stability in temperate soils. To examine the potential for dissolved organic carbon (DOC) values as a qualitative indicator of C-stability, peak-flow (1500 ft3/s) and low-flow (200 ft3/s) samples from surface and ground waters were measured for DOC. DOC concentrations are generally low. Median peak-flow values from all sample sites (mg/L) were: streams (0.9); seeps (1.2); wells (0.45). Median low-flow values were: streams (0.7); seeps (0.75); wells (0.5). Median DOC values decrease between June and September 0.45 mg/L for seeps, and 0.2 mg/L for streams. Elevated DOC in some ground waters as compared to surface waters indicates increased contact time with soil organic matter. Elevated peak-flow DOC in areas with propylitically-altered bedrocks, composed of a secondary acid neutralizing assemblage of calcite-chlorite-epidote, reflects increased microbial and vegetation activity as compared to reduced organic matter accumulation in highly-altered terrain composed of an acid generating assemblage with abundant pyrite. Waters sampled in propylitically-altered bedrock terrain exhibit the lowest values during low-flow and suggest bedrock alteration type may influence DOC. Previous studies revealed undisturbed soils sampled have 2 to 6 times greater total organic soil carbon (TOSC) than global averages. Forest soils underlain by intermediate to mafic volcanic bedrock have the highest C (34.15 wt%), C: N (43) and arylsulfatase enzyme activity (ave. 278, high 461 µg p-nitrophenol/g/h). Unreclaimed mine sites have the lowest C (0 to 0.78 wt%), and arylsulfatase enzyme activity (0 to 41). Radiocarbon dates on charcoal collected from paleo-burn horizons illustrate Rocky Mountain soils may represent an old and if undisturbed, stable carbon pool (500 -5,440 ± 40 yrs B.P). Undisturbed and reclaimed soils derived from propylitic bedrocks also exhibit high TOSC (13.5 - 25.6 wt%), C: N (27), arylsulfatase (338). This is consistent with earlier studies in which propylitic bedrocks were identified as having a high acid-neutralizing capacity (ANC). Observations at natural reclamation sites suggest “bio-geo-mimicry” techniques that use ANC rock plus other soil amendments (biochar, nutrients, mycorrhizea, seeding) may aid reclamation measures and support carbon sequestration. The data demonstrate that volcanic-hosted watersheds may exhibit both high TOSC and low DOC. This is attributed to: host rock-weathering release of nutrients important for soil productivity, ANC, formation of secondary mineral carbonates; development of intermediate soil aggregates and adsorption-enhancing clays that stabilize C and N, environmental factors such as climate, moisture retention, and land use. Future work will explore the potential of DOC flux as a proxy for NTS potential.
Linking soil DOC production rates and transport processes from landscapes to sub-basin scales
NASA Astrophysics Data System (ADS)
Tian, Y. Q.; Yu, Q.; Li, J.; Ye, C.
2014-12-01
Recent research rejects the traditional perspective that dissolved organic carbon (DOC) component in global carbon cycle are simply trivial, and in fact evidence demonstrates that lakes likely mediate carbon dynamics on a global scale. Riverine and estuarine carbon fluxes play a critical role in transporting and recycling carbon and nutrients, not only within watersheds but in their receiving waters. However, the underlying mechanisms that drive carbon fluxes, from land to rivers, lake and oceans, remain poorly understood. This presentation will report a research result of the scale-dependent DOC production rate in coastal watersheds and DOC transport processes in estuarine regions. We conducted a series of controlled experiments and field measurements for examining biogeochemical, biological, and geospatial variables that regulate downstream processing on global-relevant carbon fluxes. Results showed that increased temperatures and raised soil moistures accelerate decomposition rates of organic matter with significant variations between vegetation types. The measurements at meso-scale ecosystem demonstrated a good correlation to bulk concentration of DOC monitored in receiving waters at the outlets of sub-basins (R2 > 0.65). These field and experimental measurements improved the model of daily carbon exports through below-ground processes as a function of the organic matter content of surface soils, forest litter supply, and temperature. The study demonstrated a potential improvement in modeling the co-variance of CDOM and DOC with the unique terrestrial sources. This improvement indicated a significant promise for monitoring riverine and estuarine carbon flux from satellite images. The technical innovations include deployments of 1) mini-ecosystem (mesocosms) with soil as replicate controlled experiments for DOC production and leaching rates, and 2) aquatic mesocosms for co-variances of DOC and CDOM endmembers, and an instrumented incubation experiment for determining degradation rates.
NASA Astrophysics Data System (ADS)
van Verseveld, W. J.; Lajtha, K.; McDonnell, J. J.
2007-12-01
DOC is an important water quality constituent because it is an important food source for stream biota, it plays a significant role in metal toxicity and transport, and protects aquatic organisms by absorbing visible and UV light. However, sources of stream DOC and changes in DOC quality at storm and seasonal scales remain poorly understood. We characterized DOC concentrations and SUVA (as an indicator of aromaticity) at the plot, hillslope and catchment scale during and between five storm events over the period Fall 2004 until Spring 2005, in WS10, H.J. Andrews, Oregon, USA. This study site has hillslopes that issue directly into the stream. This enabled us to compare a trenched hillslope response to the stream response without the influence of a riparian zone. The main result of this study was that SUVA in addition to DOC was needed to fingerprint sources of DOC. Stream water and lateral subsurface flow showed a clockwise DOC and SUVA hysteresis pattern. Both organic horizon water and transient groundwater were characterized by high DOC concentrations and SUVA values, while DOC concentrations and SUVA values in soil water decreased with depth in the soil profile. This indicates transient groundwater was an important contributor to high DOC concentrations and SUVA values during storm events. During the falling limb of the hydrograph deep soil water and seepage groundwater based on SUVA values contributed significantly to lateral subsurface flow and stream water. Preliminary results showed that fluorescence of stream water and lateral subsurface flow continuously measured with a fluorometer was significantly related to UV-absorbance during a December storm event. Finally, SUVA of lateral subsurface flow was lower than SUVA of stream water at the seasonal scale, indicating a difference in mixing of water sources at the hillslope and catchment scale. Overall, our results show that SUVA and fluorescence are useful tracers for fingerprinting DOC sources.
NASA Astrophysics Data System (ADS)
Dittmar, T.; Cooper, W. T.; Koch, B. P.; Kattner, G.
2006-05-01
Organic matter, which is dissolved in low concentrations in the vast waters of the oceans, contains a total amount of carbon similar to atmospheric carbon dioxide. To understand global biogeochemical cycles it is crucial to quantify the sources of marine dissolved organic carbon (DOC). We investigated the impact of mangroves, the dominant intertidal vegetation of the tropics, on marine DOC inventories. Stable carbon- isotopes, ultrahigh-resolution mass spectrometry (FTICRMS), lignin-derived phenols and proton nuclear magnetic resonance spectroscopy showed that mangroves are the main source of terrigenous DOC on the shelf off Northern Brazil. Sunlight efficiently destroyed aromatic molecules during transport offshore, removing about one third of mangrove-derived DOC. The remainder was refractory and may thus be distributed over the oceans. On a global scale, we estimate that mangroves account for more than 10 percent of the terrestrially- derived, refractory DOC transported to the ocean, while they cover less than 0.1 percent of the continents' surface.
Modeling nonlinear responses of DOC transport in boreal catchments in Sweden
NASA Astrophysics Data System (ADS)
Kasurinen, Ville; Alfredsen, Knut; Ojala, Anne; Pumpanen, Jukka; Weyhenmeyer, Gesa A.; Futter, Martyn N.; Laudon, Hjalmar; Berninger, Frank
2016-07-01
Stream water dissolved organic carbon (DOC) concentrations display high spatial and temporal variation in boreal catchments. Understanding and predicting these patterns is a challenge with great implications for water quality projections and carbon balance estimates. Although several biogeochemical models have been used to estimate stream water DOC dynamics, model biases common during both rain and snow melt-driven events. The parsimonious DOC-model, K-DOC, with 10 calibrated parameters, uses a nonlinear discharge and catchment water storage relationship including soil temperature dependencies of DOC release and consumption. K-DOC was used to estimate the stream water DOC concentrations over 5 years for eighteen nested boreal catchments having total area of 68 km2 (varying from 0.04 to 67.9 km2). The model successfully simulated DOC concentrations during base flow conditions, as well as, hydrological events in catchments dominated by organic and mineral soils reaching NSEs from 0.46 to 0.76. Our semimechanistic model was parsimonious enough to have all parameters estimated using statistical methods. We did not find any clear differences between forest and mire-dominated catchments that could be explained by soil type or tree species composition. However, parameters controlling slow release and consumption of DOC from soil water behaved differently for small headwater catchments (less than 2 km2) than for those that integrate larger areas of different ecosystem types (10-68 km2). Our results emphasize that it is important to account for nonlinear dependencies of both, soil temperature, and catchment water storage, when simulating DOC dynamics of boreal catchments.
NASA Astrophysics Data System (ADS)
Shen, Yuan; Benner, Ronald; Kaiser, Karl; Fichot, Cédric G.; Whitledge, Terry E.
2018-02-01
Rapid environmental changes in the Arctic Ocean affect plankton productivity and the bioavailability of dissolved organic matter (DOM) that supports microbial food webs. We report concentrations of dissolved organic carbon (DOC) and yields of amino acids (indicators of labile DOM) in surface waters across major Arctic margins. Concentrations of DOC and bioavailability of DOM showed large pan-Arctic variability that corresponded to varying hydrological conditions and ecosystem productivity, respectively. Widespread hot spots of labile DOM were observed over productive inflow shelves (Chukchi and Barents Seas), in contrast to oligotrophic interior margins (Kara, Laptev, East Siberian, and Beaufort Seas). Amino acid yields in outflow gateways (Canadian Archipelago and Baffin Bay) indicated the prevalence of semilabile DOM in sea ice covered regions and sporadic production of labile DOM in ice-free waters. Comparing these observations with surface circulation patterns indicated varying shelf subsidies of bioavailable DOM to Arctic deep basins.
NASA Astrophysics Data System (ADS)
Kiikkilä, O.; Nieminen, T.; Starr, M.; Ukonmaanaho, L.
2012-04-01
Boreal peatlands form an important terrestrial carbon reserve and are a major source of dissolved organic matter (DOM) to surface waters, particularly when disturbed through forestry practices such as draining or timber harvesting. Heavy metals show a strong affinity to organic matter and so, along with DOM, heavy metals can be mobilized and transported from the soil to surface waters and sediments where they may become toxic to aquatic organisms and pass up the food chain. The complexation of heavy metals with DOM can be expected to be related and determined by the chemical characteristics of DOM and oxidation/reducing conditions in the peat. We extracted interstitial water from peat samples and determined the concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and Al, Cu, Zn and Fe in various fractions of DOM isolated by adsorption properties (XAD-8 fractionation) and molecular-weight (ultrafiltration). The peat samples were taken from 0-30 and 30-50 cm depth in drained peatland catchments two years after whole-tree or stem-only clear-cut harvesting (Scots pine or Norway spruce) had been carried out. The samples from the upper layer had been subject to alternating saturation/aeration conditions while the deeper layer had been continuously under the water table. The fractionation of DOC and DON according to both adsorption properties and molecular-weight fractions clearly differed between the upper and lower peat layers. While the hydrophobic acid fraction contained proportionally more DOC and DON than the hydrophilic acid fraction in the upper peat layer the results were vice versa in the lower peat layer. High-molecular-weight compounds (> 100 kDa) were proportionally more abundant in the upper and low-molecular-weight compounds (< 1 kDa) in the lower peat layer. These differences are assumed to reflect differences in the aerobic/ anaerobic conditions and degree of decomposition between the two layers. The concentrations of Zn, Al, Fe and DON correlated positively with DOC concentrations whereas the concentration Cu did not correlate with DOC concentrations. Heavy metal concentrations in different molecular-weight fractions indicated that Al, Cu, Zn and Fe were mostly associated with high-molecular-weight compounds and only a small fraction existed as free metal ions in solution. There were no clear differences in the chemical characteristics of DOC or DON or heavy metal concentrations between the two harvesting treatments.
Trinh, Ha Thu; Duong, Hanh Thi; Ta, Thao Thi; Van Cao, Hoang; Strobel, Bjarne W; Le, Giang Truong
2017-08-01
Desorption of pesticides (fenobucarb, endosulfan, and dichlorodiphenyltrichloroethane (DDT)) from soil to aqueous solution with the simultaneous presence of dissolved organic carbon (DOC), sodium dodecyl sulfate (SDS), and sodium oxalate (Oxa) was investigated in batch test by applying a full factorial design and the Box-Behnken response surface methodology (RSM). Five concentration levels of DOC (8 to 92 mg L -1 ), SDS (0 to 6.4 critical micelle concentration (CMC)), and Oxa (0 to 0.15 M) were used for the experiments with a rice field topsoil. The results of RSM analysis and analysis of variance (ANOVA) have shown that the experimental data could be well described by quadratic regression equations with determination coefficients (R 2 ) of 0.990, 0.976, and 0.984 for desorption of fenobucarb, endosulfan, and DDT, respectively. The individual effects and interaction of DOC, SDS, and Oxa were evaluated through quadratic regression equations. When the aqueous solution includes 50 mg L -1 DOC, 3.75 CMC SDS, and 0.1 M Oxa, the maximum desorption concentrations of fenobucarb, endosulfan, and DDT were 96, 80, and 75 μg L -1 , respectively. The lowest concentration of SDS, DOC, and Oxa caused the minimum desorption. This point at conditions of concern for flooding water is high content of organic compounds causing potentially high contamination by desorption, and the remarkably lower desorption at organic matter-free conditions. The suspended organic matter is one of the common characteristics of flooding and irrigation water in rice fields, and surfactants from pollution increase the problem with desorption of legacy pesticides in the rice fields.
NASA Astrophysics Data System (ADS)
Mouser, P. J.; Kekacs, D.
2014-12-01
One of the risks associated with the use of hydraulic fracturing technologies for energy development is the potential release of hydraulic fracturing-related fluids into surface waters or shallow aquifers. Many of the organic additives used in hydraulic fracturing fluids are individually biodegradable, but little is know on how they will attenuate within a complex organic fluid in the natural environment. We developed a synthetic hydraulic fracturing fluid based on disclosed recipes used by Marcellus shale operators to evaluate the biodegradation potential of organic additives across a concentration (25 to 200 mg/L DOC) and salinity gradient (0 to 60 g/L) similar to Marcellus shale injected fluids. In aerobic aqueous solutions, microorganisms removed 91% of bulk DOC from low SFF solutions and 57% DOC in solutions having field-used SFF concentrations within 7 days. Under high SFF concentrations, salinity in excess of 20 g/L inhibited organic compound biodegradation for several weeks, after which time the majority (57% to 75%) of DOC remained in solution. After SFF amendment, the initially biodiverse lake or sludge microbial communities were quickly dominated (>79%) by Pseudomonas spp. Approximately 20% of added carbon was converted to biomass while the remainder was respired to CO2 or other metabolites. Two alcohols, isopropanol and octanol, together accounted for 2-4% of the initial DOC, with both compounds decreasing to below detection limits within 7 days. Alcohol degradation was associated with an increase in acetone at mg/L concentrations. These data help to constrain the biodegradation potential of organic additives in hydraulic fracturing fluids and guide our understanding of the microbial communities that may contribute to attenuation in surface waters.
Bodrato, Marco; Vione, Davide
2014-04-01
The APEX software predicts the photochemical transformation kinetics of xenobiotics in surface waters as a function of: photoreactivity parameters (direct photolysis quantum yield and second-order reaction rate constants with transient species, namely ˙OH, CO₃(-)˙, (1)O₂ and the triplet states of chromophoric dissolved organic matter, (3)CDOM*), water chemistry (nitrate, nitrite, bicarbonate, carbonate, bromide and dissolved organic carbon, DOC), and water depth (more specifically, the optical path length of sunlight in water). It applies to well-mixed surface water layers, including the epilimnion of stratified lakes, and the output data are average values over the considered water column. Based on intermediate formation yields from the parent compound via the different photochemical pathways, the software can also predict intermediate formation kinetics and overall yield. APEX is based on a photochemical model that has been validated against available field data of pollutant phototransformation, with good agreement between model predictions and field results. The APEX software makes allowance for different levels of knowledge of a photochemical system. For instance, the absorption spectrum of surface water can be used if known, or otherwise it can be modelled from the values of DOC. Also the direct photolysis quantum yield can be entered as a detailed wavelength trend, as a single value (constant or average), or it can be defined as a variable if unknown. APEX is based on the free software Octave. Additional applications are provided within APEX to assess the σ-level uncertainty of the results and the seasonal trend of photochemical processes.
NASA Astrophysics Data System (ADS)
Rüggen, Norman; Kutzbach, Lars; Kopelke, Susanne; Pfeiffer, Eva-Maria
2013-04-01
Peatlands play a major role in the global cycles of water and carbon. Budgeting carbon fluxes of temperate man-managed peatlands is limited by few available data. The main carbon compounds exported from such sites are CO2, CH4 and laterally exported C compounds (dissolved organic carbon (DOC) and gases). Without reliable estimates of laterally exported carbon from managed peatlands, overall carbon balances of such geoecosystems remain obscure. The Himmelmoor peatland in Schleswig-Holstein is subject to horticultural peat extraction in transition towards managed restoration. One-third of 130 ha of peatland area are already subject to managed restoration, the remaining part is still intensively used as a peat extraction site. Surface water discharge rates are measured by a water head sensor in combination with a rectangular-shaped weir. An October-November data set (54 days period, 2012) shows a distinct base-flow and precipitation-dependent discharge peaks, which were up to five times higher than the base-flow. The observations indicate a poor water storing capacity of the intensively used areas. During this first observation period, almost 65,000 tons of peatland-DOC-bearing water have been discharged into the adjacent river system. DOC concentrations in the discharge water have been measured every 6-12 days with a Total Carbon Analyzer TOC-L (Shimadzu, Japan). Additionally, a field spectrophotometer (spectro::lyser,s-can, Austria) has been employed, for measuring quasi-continuous concentrations of DOC. During the 54 day period, approximately 1.75 g DOC m-2 (or about 1750 kg DOC km-2) has been laterally exported from the peatland. Average DOC concentration was 35.1 ± 4 g l-1. These values range in the same order of magnitude that have been published from managed UK peatlands (Armstrong et al., 2010; Wilson et al., 2011). Preliminary data evaluation of the in-situ field spectrophotometer show that DOC concentrations of discharge water varied up to 1.5 mg L-1 in less than six hours and up to about 3 mg L-1 in 36 hours. The described recently established hydrological measurements are planned to be continued for the next ten years in combination with continuous eddy covariance measurements of land-atmosphere fluxes of Water, CO2 and CH4. This long-term monitoring of lateral and vertical exchange fluxes will serve as a basis for evaluating the success of the peatland restoration with respect to biogeochemical cycling and greenhouse gas budgets. Literature Armstrong, A., Holden, J., Kay, P., Francis, B., Foulger, M., Gledhill, S., McDonald, A., Walker, A., 2010. The impact of peatland drain-blocking on dissolved organic carbon loss and discolouration of water; results from a national survey. Journal of Hydrology 381, 112-120. Wilson, L., Wilson, J., Holden, J., Johnstone, I., Armstrong, A., Morris, M., 2011. Ditch blocking, water chemistry and organic carbon flux: Evidence that blanket bog restoration reduces erosion and fluvial carbon loss. Science of the Total Environment 409, 2010-2018.
Venkatesan, Arjun K; Gan, Wenhui; Ashani, Harsh; Herckes, Pierre; Westerhoff, Paul
2018-04-15
Phosphorus (P) is an important and often limiting element in terrestrial and aquatic ecosystem. A lack of understanding of its distribution and structures in the environment limits the design of effective P mitigation and recovery approaches. Here we developed a robust method employing size exclusion chromatography (SEC) coupled to an ICP-MS to determine the molecular weight (MW) distribution of P in environmental samples. The most abundant fraction of P varied widely in different environmental samples: (i) orthophosphate was the dominant fraction (93-100%) in one lake, two aerosols and DOC isolate samples, (ii) species of 400-600 Da range were abundant (74-100%) in two surface waters, and (iii) species of 150-350 Da range were abundant in wastewater effluents. SEC-DOC of the aqueous samples using a similar SEC column showed overlapping peaks for the 400-600 Da species in two surface waters, and for >20 kDa species in the effluents, suggesting that these fractions are likely associated with organic matter. The MW resolution and performance of SEC-ICP-MS agreed well with the time integrated results obtained using conventional ultrafiltration method. Results show that SEC in combination with ICP-MS and DOC has the potential to be a powerful and easy-to-use method in identifying unknown fractions of P in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
DelCastillo, Carlos E.; Miller, Richard L.
2007-01-01
We investigated the use of ocean color remote sensing to measure transport of dissolved organic carbon (DOC) by the Mississippi River to the Gulf of Mexico. From 2000 to 2005 we recorded surface measurements of DOC, colored dissolved organic matter (CDOM), salinity, and water-leaving radiances during five cruises to the Mississippi River Plume. These measurements were used to develop empirical relationships to derive CDOM, DOC, and salinity from monthly composites of SeaWiFS imagery collected from 1998 through 2005. We used river flow data and a two-end-member mixing model to derive DOC concentrations in the river end-member, river flow, and DOC transport using remote sensing data. We compared our remote sensing estimates of river flow and DOC transport with data collected by the United States Geological Survey (USGS) from 1998 through 2005. Our remote sensing estimates of river flow and DOC transport correlated well (r2 0.70) with the USGS data. Our remote sensing estimates and USGS field data showed low variability in DOC concentrations in the river end-member (7-11%), and high seasonal variability in river flow (50%). Therefore, changes in river flow control the variability in DOC transport, indicating that the remote sensing estimate of river flow is the most critical element of our DOC transport measurement. We concluded that it is possible to use this method to estimate DOC transport by other large rivers if there are data on the relationship between CDOM, DOC, and salinity in the river plume.
NASA Astrophysics Data System (ADS)
Harvey, R. W.; Metge, D. W.; Mohanram, A.; Gao, X.; Chorover, J.
2010-12-01
Susceptibilities for in-situ re-entrainment of attached 0.2 and 1.0 μm (diameter) microspheres and groundwater bacteria (Pseudomonas stuzeri and uncultured, native bacteria) were assessed during transport studies involving an organically contaminated, sandy aquifer in Cape Cod, MA. Aquifer sediments between pairs of injection and sampling wells were initially loaded with fluorescently labeled, carboxylated microspheres and bacteria that had been stained with the DNA-specific fluorochrome 4',6-diamidino-2-phenylindole. In response to subsequent hydrodynamic perturbations and injections of deionized water (ionic strength reduction), anionic surfactants (77 μM linear alkylbenzene sulfonates, LAS) and non-ionic surfactant (76 μM polyoxyethylene sorbitan monooleate, Tween 80), differing patterns of re-entrainment were evident for the two colloids. Injections of anionic surfactant and deionized water were the most efficient in causing detachment of the highly hydrophilic and negatively charged microspheres, but largely ineffective in causing re-entrainment of bacteria. In contrast, the nonionic surfactant was highly effective in re-entraining bacteria, but not microspheres. The hydrophobicities and zeta potentials of the indigenous bacteria were highly sensitive to modest concentration changes (0.6 to 1.3 mg L-1) in groundwater dissolved organic carbon (DOC), whereas the microspheres were largely unaffected. The most hydrophilic and negatively charged bacterial community was isolated from groundwater having the lowest DOC. FTIR spectra indicated that the community from the lowest DOC groundwater also had the highest average density of surface carboxyl groups. This indicates that DOC may have a biological effect on native bacteria resulting in changes to surface structures or changes in the makeup of the bacterial community.
Distributions of nutrients, dissolved organic carbon and carbohydrates in the western Arctic Ocean
NASA Astrophysics Data System (ADS)
Wang, Deli; Henrichs, Susan M.; Guo, Laodong
2006-09-01
Seawater samples were collected from stations along a transect across the shelf-basin interface in the western Arctic Ocean during September 2002, and analyzed for nutrients, dissolved organic carbon (DOC), and total dissolved carbohydrate (TDCHO) constituents, including monosaccharides (MCHO) and polysaccharides (PCHO). Nutrients (nitrate, ammonium, phosphate and dissolved silica) were depleted at the surface, especially nitrate. Their concentrations increased with increasing depth, with maxima centered at ˜125 m depth within the halocline layer, then decreased with increasing depth below the maxima. Both ammonium and phosphate concentrations were elevated in shelf bottom waters, indicating a possible nutrient source from sediments, and in a plume that extended into the upper halocline waters offshore. Concentrations of DOC ranged from 45 to 85 μM and had an inverse correlation with salinity, indicating that mixing is a control on DOC concentrations. Concentrations of TDCHO ranged from 2.5 to 19 μM-C, comprising 13-20% of the bulk DOC. Higher DOC concentrations were found in the upper water column over the shelf along with higher TDCHO concentrations. Within the TDCHO pool, the concentrations of MCHO ranged from 0.4 to 8.6 μM-C, comprising 20-50% of TDCHO, while PCHO concentrations ranged from 0.5 to 13.6 μM-C, comprising 50-80% of the TDCHO. The MCHO/TDCHO ratio was low in the upper 25 m of the water column, followed by a high MCHO/TDCHO ratio between 25 and 100 m, and a low MCHO/TDCHO ratio again below 100 m. The high MCHO/TDCHO ratio within the halocline layer likely resulted from particle decomposition and associated release of MCHO, whereas the low MCHO/TDCHO (or high PCHO/TDCHO) ratio below the halocline layer could have resulted from slow decomposition and additional particulate CHO sources.
A 5 Year Study of Carbon Fluxes from a Restored English Blanket Bog
NASA Astrophysics Data System (ADS)
Worrall, F.; Dixon, S.; Evans, M.
2014-12-01
This study aimed to measure the effects of ecological restoration on blanket peat water table depths, DOC concentrations and CO2 fluxes. In April 2003 the Bleaklow Plateau, an extensive area of deep blanket peat in the Peak District National Park, northern England, was devegetated by a wildfire. As a result the area was selected for large scale restoration. In this study we considered a 5-year study of four restored sites in comparison to both an unrestored, bare peat control and to vegetated control that did not require restoration. Results suggested that sites with revegetation alongside slope stabilisation had the highest rates of photosynthesis and were the largest net (daylight hours) sinks of CO2. Bare sites were the largest net sources of CO2 and had the deepest water table depths. Sites with gully wall stabilisation were between 5-8 times more likely to be net CO2 sinks than the bare sites. Revegetation without gully flow blocking using plastic dams did not have a large effect on water table depths in and around the gullies investigated whereas a blocked gully had water table depths comparable to a naturally revegetating gully. A ten centimetre lowering in water table depth decreased the probability of observing a net CO2 sink, on a given site, by up to 30%. With respect to DOC the study showed that the average soil porewater DOC concentration on the restored sites rose significantly over the 5 year study representing a 34% increase relative to the vegetated control and an 11% increase relative to the unrestored, bare control. Soil pore water concentrations were not significantly different from surface runoff DOC concentrations and therefore restoration as conducted by this study would have contributed to water quality deterioration in the catchment. The most important conclusion of this research was that restoration interventions were apparently effective at increasing the likelihood of net CO2 sink behaviour and raising water tables on degraded, climatically marginal blanket bog. However, had water table restoration been conducted alongside revegetation then a significant decline in DOC concentrations could have also been realised.
A systematic examination of the relationships between CDOM and DOC in inland waters in China
NASA Astrophysics Data System (ADS)
Song, Kaishan; Zhao, Ying; Wen, Zhidan; Fang, Chong; Shang, Yingxin
2017-10-01
Chromophoric dissolved organic matter (CDOM) plays a vital role in the biogeochemical cycle in aquatic ecosystems. The relationship between CDOM and dissolved organic carbon (DOC) has been investigated, and this significant relationship lays the foundation for the estimation of DOC using remotely sensed imagery data. The current study examined samples from freshwater lakes, saline lakes, rivers and streams, urban water bodies, and ice-covered lakes in China for tracking the variation of the relationships between DOC and CDOM. The regression model slopes for DOC vs. aCDOM (275) ranged from extremely low 0.33 (highly saline lakes) to 1.03 (urban waters) and 3.01 (river waters). The low values were observed in saline lake waters and waters from semi-arid or arid regions, where strong photobleaching is expected due to less cloud cover, longer water residence time, and daylight hours. In contrast, high values were found in waters developed in wetlands or forest in Northeast China, where more organic matter was transported from catchment to waters. The study also demonstrated that closer relationships between CDOM and DOC were revealed when aCDOM (275) were sorted by the ratio of aCDOM(250)/aCDOM (365), which is a measure for the CDOM absorption with respect to its composition, and the determination of coefficient of the regression models ranged from 0.79 to 0.98 for different groups of waters. Our results indicate the relationships between CDOM and DOC are variable for different inland waters; thus, models for DOC estimation through linking with CDOM absorption need to be tailored according to water types.
Monitoring Carbon Fluxes from Shallow Surface Soils in the Critical Zone
NASA Astrophysics Data System (ADS)
Stielstra, C. M.; Brooks, P. D.; Chorover, J.
2011-12-01
The critical zone (CZ) is the earth's porous near-surface layer, characterized by the integrated processes that occur between the bedrock and the atmospheric boundary layer. Within this area water, atmosphere, ecosystems, and soils interact on a geomorphic and geologic template. We hypothesize that CZ systems organize and evolve in response to open system fluxes of energy and mass, including meteoric inputs of radiation, water, and carbon, which can be quantified at point to watershed scales. The goal of this study is to link above-ground and below-ground carbon processes by quantifying carbon pools and fluxes from near surface soils. Soil CO2 efflux and dissolved organic carbon (DOC) are monitored over a two year period across bedrock type and vegetation type at two seasonally snow covered subalpine catchments in Arizona and New Mexico. We measure the amount of DOC present in surface soils, and install ion exchange resins at the A/B soil horizon interface to capture DOC leachate mobilized during snowmelt and summer rainfall. Throughout the summer rain and spring snowmelt seasons we monitor soil respiration of CO2. Preliminary results show that rates of gaseous carbon flux are significantly higher (p<0.05) from soils with schist bedrock (2.5 ± 0.2 gC/m2/d )than from granite bedrock (1.3 ± 0.1 gC/m2/d), and higher from healthy mixed conifer forests (1.9 ± 0.3 gC/m2/d) than from mixed conifer forests impacted by spruce budworm (1.4 ± 0.1 gC/m2/d). DOC leached from soil samples does not vary significantly with bedrock type; however, spruce budworm impacted forests have significantly higher levels of leachable DOC in surface soils (22.8 ± 4.5 gC/m2) than are found in the soils of healthy forests (10.0 ± 1.5 gC/m2) or subalpine meadows (9.1 ± 0.5 gC/m2). The results of this study will allow us to evaluate the variability of carbon fluxes with vegetation and soil type within a shallow soil carbon pool and help constrain the contributions of soil organic carbon to net carbon balance in CZO catchments with seasonal precipitation regimes.
NASA Astrophysics Data System (ADS)
Frank, S.; Tiemeyer, B.; Gelbrecht, J.; Freibauer, A.
2014-04-01
Anthropogenic drainage of peatlands releases additional greenhouse gases to the atmosphere, and dissolved carbon (C) and nutrients to downstream ecosystems. Rewetting drained peatlands offers a possibility to reduce nitrogen (N) and C losses. In this study, we investigate the impact of drainage and rewetting on the cycling of dissolved C and N as well as on dissolved gases, over a period of 1 year and a period of 4 months. We chose four sites within one Atlantic bog complex: a near-natural site, two drained grasslands with different mean groundwater levels and a former peat cutting area rewetted 10 years ago. Our results clearly indicate that long-term drainage has increased the concentrations of dissolved organic carbon (DOC), ammonium, nitrate and dissolved organic nitrogen (DON) compared to the near-natural site. DON and ammonium contributed the most to the total dissolved nitrogen. Nitrate concentrations below the mean groundwater table were negligible. The concentrations of DOC and N species increased with drainage depth. In the deeply-drained grassland, with a mean annual water table of 45 cm below surface, DOC concentrations were twice as high as in the partially rewetted grassland with a mean annual water table of 28 cm below surface. The deeply drained grassland had some of the highest-ever observed DOC concentrations of 195.8 ± 77.3 mg L-1 with maximum values of >400 mg L-1. In general, dissolved organic matter (DOM) at the drained sites was enriched in aromatic moieties and showed a higher degradation status (lower DOC to DON ratio) compared to the near-natural site. At the drained sites, the C to N ratios of the uppermost peat layer were the same as of DOM in the peat profile. This suggests that the uppermost degraded peat layer is the main source of DOM. Nearly constant DOM quality through the profile furthermore indicated that DOM moving downwards through the drained sites remained largely biogeochemically unchanged. Unlike DOM concentration, DOM quality and dissolved N species distribution were similar in the two grasslands and thus unaffected by the drainage depth. Methane production during the winter months at the drained sites was limited to the subsoil, which was quasi-permanently water saturated. The recovery of the water table in the winter months led to the production of nitrous oxide around mean water table depth at the drained sites. The rewetted and the near-natural site had comparable DOM quantity and quality (DOC to DON ratio and aromaticity). 10 years after rewetting quasi-pristine biogeochemical conditions have been re-established under continuously water logged conditions in the former peat cut area. Only the elevated dissolved methane and ammonium concentrations reflected the former disturbance by drainage and peat extraction. Rewetting via polder technique seems to be an appropriate way to revitalize peatlands on longer timescales and to improve the water quality of downstream water bodies.
Watson, Kalinda; Farré, Maria José; Birt, James; McGree, James; Knight, Nicole
2015-02-01
This study examines a matrix of synthetic water samples designed to include conditions that favour brominated disinfection by-product (Br-DBP) formation, in order to provide predictive models suitable for high Br-DBP forming waters such as salinity-impacted waters. Br-DBPs are known to be more toxic than their chlorinated analogues, in general, and their formation may be favoured by routine water treatment practices such as coagulation/flocculation under specific conditions; therefore, circumstances surrounding their formation must be understood. The chosen factors were bromide concentration, mineral alkalinity, bromide to dissolved organic carbon (Br/DOC) ratio and Suwannee River natural organic matter concentration. The relationships between these parameters and DBP formation were evaluated by response surface modelling of data generated using a face-centred central composite experimental design. Predictive models for ten brominated and/or chlorinated DBPs are presented, as well as models for total trihalomethanes (tTHMs) and total dihaloacetonitriles (tDHANs), and bromide substitution factors for the THMs and DHANs classes. The relationships described revealed that increasing alkalinity and increasing Br/DOC ratio were associated with increasing bromination of THMs and DHANs, suggesting that DOC lowering treatment methods that do not also remove bromide such as enhanced coagulation may create optimal conditions for Br-DBP formation in waters in which bromide is present.
Diel fluctuations of viscosity-driven riparian inflow affect streamflow DOC concentration
NASA Astrophysics Data System (ADS)
Schwab, Michael P.; Klaus, Julian; Pfister, Laurent; Weiler, Markus
2018-04-01
Diel fluctuations of stream water DOC concentrations are generally explained by a complex interplay of different instream processes. We measured the light absorption spectrum of water and DOC concentrations in situ and with high frequency by means of a UV-Vis spectrometer during 18 months at the outlet of a forested headwater catchment in Luxembourg (0.45 km2). We generally observed diel DOC fluctuations with a maximum in the afternoon during days that were not affected by rainfall-runoff events. We identified an increased inflow of terrestrial DOC to the stream in the afternoon, causing the DOC maxima in the stream. The terrestrial origin of the DOC was derived from the SUVA-254 (specific UV absorbance at 254 nm) index, which is a good indicator for the aromaticity of DOC. In the studied catchment, the most likely process that can explain the diel DOC input variations towards the stream is the so-called viscosity effect. The water temperature in the upper parts of the saturated riparian zone is increasing during the day, leading to a lower viscosity and therefore a higher hydraulic conductivity. Consequently, more water from areas that are rich in terrestrial DOC passes through the saturated riparian zone and contributes to streamflow in the afternoon. We believe that not only diel instream processes, but also viscosity-driven diel fluctuations of terrestrial DOC input should be considered to explain diel DOC patterns in streams.
Linking pulses of atmospheric deposition to DOC release in an upland peat-covered catchment
NASA Astrophysics Data System (ADS)
Worrall, F.; Burt, T. P.; Adamson, J. K.
2008-12-01
Changes in atmospheric deposition have been proposed as one possible explanation of the widespread increase in DOC concentration observed in many Northern Hemisphere catchments. This study uses detailed, long-term, monthly monitoring records of pH, conductivity SO4, and DOC in precipitation, soil water, and runoff chemistry from an upland peat-covered catchment in northern England. By deriving impulse transfer functions this study explores whether changes in deposition lead to significant changes in the occurrence of each component in the soil and runoff water; especially significant changes in DOC. The study shows that (1) impulses in the deposition of acidity have no significant effect upon pH or DOC in soil water or runoff. (2) DOC in soil water and runoff is responsive to impulses in SO4 and conductivity, but only when those impulses are changes in soil water chemistry and not when they are in atmospheric deposition. (3) The effects of changes in SO4 and/or conductivity can easily be overemphasized if memory effects are not accounted for, and their effect is limited to only 1 or 2 months after a severe drought. This study can support the view that changes in ionic strength can result in changes in DOC concentration in soil water or runoff, but the system studied is unresponsive to changes in atmospheric deposition. Impulses in soil water SO4 do not lead to increases in DOC concentrations, and so this mechanism does not provide an explanation for DOC increases.
Wickland, K.P.; Neff, J.C.; Aiken, G.R.
2007-01-01
The fate of terrestrially-derived dissolved organic carbon (DOC) is important to carbon (C) cycling in both terrestrial and aquatic environments, and recent evidence suggests that climate warming is influencing DOC dynamics in northern ecosystems. To understand what determines the fate of terrestrial DOC, it is essential to quantify the chemical nature and potential biodegradability of this DOC. We examined DOC chemical characteristics and biodegradability collected from soil pore waters and dominant vegetation species in four boreal black spruce forest sites in Alaska spanning a range of hydrologic regimes and permafrost extents (Well Drained, Moderately Well Drained, Poorly Drained, and Thermokarst Wetlands). DOC chemistry was characterized using fractionation, UV-Vis absorbance, and fluorescence measurements. Potential biodegradability was assessed by incubating the samples and measuring CO2 production over 1 month. Soil pore water DOC from all sites was dominated by hydrophobic acids and was highly aromatic, whereas the chemical composition of vegetation leachate DOC varied significantly with species. There was no seasonal variability in soil pore water DOC chemical characteristics or biodegradability; however, DOC collected from the Poorly Drained site was significantly less biodegradable than DOC from the other three sites (6% loss vs. 13-15% loss). The biodegradability of vegetation-derived DOC ranged from 10 to 90% loss, and was strongly correlated with hydrophilic DOC content. Vegetation such as Sphagnum moss and feathermosses yielded DOC that was quickly metabolized and respired. In contrast, the DOC leached from vegetation such as black spruce was moderately recalcitrant. Changes in DOC chemical characteristics that occurred during microbial metabolism of DOC were quantified using fractionation and fluorescence. The chemical characteristics and biodegradability of DOC in soil pore waters were most similar to the moderately recalcitrant vegetation leachates, and to the microbially altered DOC from all vegetation leachates. ?? 2007 Springer Science+Business Media, LLC.
Influence of intermittent stream connectivity on water quality and salmonid survivorship.
NASA Astrophysics Data System (ADS)
Hildebrand, J.; Woelfle-Erskine, C. A.; Larsen, L.
2014-12-01
Anthropogenic stress and climate change are causing an increasing number of California streams to become intermittent and are driving earlier and more severe summertime drying. The extent to which emerging water conservation alternatives impact flows or habitat quality (e.g. temperature, DO) for salmonids remains poorly understood. Here, we investigate the proximal drivers of salmonid mortality over a range of connectivity conditions during summertime intermittency in Salmon Creek watershed, Sonoma County, CA. Through extensive sampling in paired subwatersheds over a period of two years, we tested the hypothesis that accumulation of readily bioavailable DOC in poorly flushed pools drives DO decline associated with loss of salmonids. We then traced the origin and flow pathways of DOC throughout the watershed using Parallel Factor Analysis (PARAFAC). We obtained samples for DOC and stable isotope analyses at monthly intervals from 20 piezometers and surface water in the study reaches and from private wells and springs distributed throughout the watersheds. We also obtained in situ DO, conductivity and pH readings within stream study reaches. We determined DOC quality by SUVA (specific UV absorbance) and fluorescence index. We calculated stream metabolism rates using the single station method. In pools instrumented with DO sensors, we compared changing DOC quality during the summer months to changes in DO concentrations and stream metabolism. Our results show that the duration of complete disconnection of pools during the summer months and stream metabolic rates are positively correlated with salmonid mortality. Furthermore, our results indicate that salmonid mortality is greatest in disconnected pools with low DOC fluorescence indices and high SUVA values, indicative of terrestrially derived DOC and little or no groundwater inflow. Conversely low salmonid mortality was found in disconnected pools with high fluorescence index and low SUVA, indicative of microbially derived DOC. These pools showed clear signs of hyporheic inflow during summertime drying despite complete surficial disconnection. PARAFAC analysis pinpointed groundwater sources of hyporheic flow in the watershed, suggesting that targeted aquifer recharge may contribute to salmonid recovery by augmenting flow in summer refugia.
NASA Astrophysics Data System (ADS)
Osburn, C. L.; Joshi, I.; Lebrasse, M. C.; Oviedo-Vargas, D.; Bianchi, T. S.; Bohnenstiehl, D. R.; D'Sa, E. J.; He, R.; Ko, D.; Arellano, A.; Ward, N. D.
2017-12-01
The contribution of blue carbon from tidal wetlands to the coastal ocean in the form of dissolved organic carbon (DOC) represents a terrestrial-aquatic linkage of increasing importance. DOC flux results will be presented from local (tidal creek) and regional (bays) scale studies in which various combinations of field observations, ocean-color satellite observations, and the outputs of high-resolution hydrodynamic models were used to estimate DOC export. The first project was located in Bald Head Creek, a tributary to the Cape Fear River estuary in eastern North Carolina (NC). DOC fluxes were computed using a bathymetric data collected via unmanned surface vehicle (USV) and a numerical hydrodynamic model (SCHISM) based on the relationships between colored dissolved organic matter (CDOM) absorption, DOC concentration, and salinity taken from field observations. Model predictions estimated an annual net export of DOC at 54 g C m-2 yr-1 from the tidal creek to the adjacent estuary. Carbon stable isotope (δ13C) values were used to estimate the contribution of wetland carbon to this export. In the second project, DOC fluxes from the Apalachicola Bay, FL, Barataria Bay, LA, were based on the development of algorithms between DOC and CDOM absorption derived from the VIIRS ocean color sensor. The Navy Coastal Ocean Model (NCOM) was used to compute salt flux estimates from each bay to the Louisiana-Texas shelf. The relationship between salinity and CDOM was used to estimate net annual DOC exports of 8.35 x 106 g C m-2 y-1 (Apalachicola Bay) and 7.14 x 106 g C m-2 yr-1 (Barataria Bay). These values approximate 13% and 9% of the annual loads of DOC from the Mississippi River to the Gulf of Mexico, respectively. CDOM and lignin were used in a mixing model to estimate wetland-derived DOC were 2% for Apalachicola Bay and 13% for Barataria Bay, the latter having one of the highest rates of relative sea level rise in North America. Results from our project demonstrated the utility of CDOM, amenable to high resolution observations from multiple platforms, as a basis for constraining the heterogeneity of DOC exports from tidal wetlands to estuaries and coastal waters using numerical models at local and regional scales.
Carbon isotopes in peat, DOC, CO2, and CH4 in a Holocene peatland on Dartmoor, southwest England
NASA Astrophysics Data System (ADS)
Charman, Dan J.; Aravena, Ramon; Bryant, Charlotte L.; Harkness, Doug D.
1999-06-01
Carbon gases with younger 14C ages than those of the surrounding peat have been reported from continental boreal peatlands, a fact which suggests that significant movement of CO2, CH4, or DOC (dissolved organic carbon) and export of C via subsurface processes are not accounted for in most estimates of contributions to the C cycle. This paper tests the hypothesis that similar processes can occur in oceanic ombrotrophic mires where water and gas movement is theoretically minimal. Measurements of 14C and δ13C in CO2, CH4, and DOC, and of tritium, are reported from depths to 250 cm at Tor Royal, a raised mire in southwest England. Radiocarbon ages of gases are 1460 to 500 yr younger than those of peat from the same depths, and CO2 is consistently younger than CH4. DOC is 1260 to 830 yr younger than the peat, and significant amounts of tritium were found at all depths. Gas ages are mostly intermediate between the age of the peat and that of the DOC, which suggests that C is principally transported as DOC. However, some gases are younger than their associated DOC, which implies that movement of dissolved gases may also take place. δ13C values in gases suggest that CO2 reduction is the major pathway for CH4 production. Transport of C in deep peats is likely to be a significant component in the overall C budget of ombrotrophic oceanic peatlands, and C export via discharge to ground or surface waters may be an important mechanism for gaseous C emissions.
Schelker, J.; Burns, Douglas A.; Weiler, M.; Laudon, H.
2011-01-01
The mobilization of mercury and dissolved organic carbon (DOC) during snowmelt often accounts for a major fraction of the annual loads. We studied the role of hydrological connectivity of riparian wetlands and upland/wetland transition zones to surface waters on the mobilization of Hg and DOC in Fishing Brook, a headwater of the Adirondack Mountains, New York. Stream water total mercury (THg) concentrations varied strongly (mean = 2.25 ?? 0.5 ng L -1), and the two snowmelt seasons contributed 40% (2007) and 48% (2008) of the annual load. Methyl mercury (MeHg) concentrations ranged up to 0.26 ng L-1, and showed an inverse log relationship with discharge. TOPMODEL-simulated saturated area corresponded well with wetland areas, and the application of a flow algorithm based elevation-above-creek approach suggests that most wetlands become well connected during high flow. The dynamics of simulated saturated area and soil storage deficit were able to explain a large part of the variation of THg concentrations (r2 = 0.53 to 0.72). In contrast, the simulations were not able to explain DOC variations and DOC and THg concentrations were not correlated. These results indicate that all three constituents, THg, MeHg, and DOC, follow different patterns at the outlet: (1) the mobilization of THg is primarily controlled by the saturation state of the catchment, (2) the dilution of MeHg suggests flushing from a supply limited pool, and (3) DOC dynamics follow a pattern different from THg dynamics, which likely results from differing gain and/or loss processes for THg and/or DOC within the Fishing Brook catchment. Copyright 2011 by the American Geophysical Union.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charman, D.J.; Aravena, R.; Bryant, C.L.
1999-06-01
Carbon gases with younger {sup 14}C ages than those of the surrounding peat have been reported from continental boreal peatlands, a fact which suggests that significant movement of CO{sub 2}, CH{sub 4}, or DOC (dissolved organic carbon) and export of C via subsurface processes are not accounted for in most estimates of contributions to the C cycle. This paper tests the hypothesis that similar processes can occur in oceanic ombrotrophic mires where water and gas movement is theoretically minimal. Measurements of {sup 14}C and {delta}{sup 13}C in CO{sub 2}, CH{sub 4}, and DOC, and of tritium, are reported from depthsmore » to 250 cm at Tor Royal, a raised mire in southwest England. Radiocarbon ages of gases are 1,460 to 500 yr younger than those of peat from the same depths, and CO{sub 2} is consistently younger than CH{sub 4}. DOC is 1,260 to 830 yr younger than the peat, and significant amounts of tritium were found at all depths. Gas ages are mostly intermediate between the age of the peat and that of the DOC, which suggests that C is principally transported as DOC. However, some gases are younger than their associated DOC, which implies that movement of dissolved gases may also take place. {delta}{sup 13}C values in gases suggest that CO{sub 2} reduction is the major pathway for CH{sub 4} production. Transport of C in deep peats is likely to be a significant component in the overall C budget of ombrotrophic oceanic peatlands, and C export via discharge to ground or surface waters may be an important mechanism for gaseous C emissions.« less
DISSOLVED ORGANIC CARBON TRENDS RESULTING FROM CHANGES IN ATMOSPHERIC DEPOSITION CHEMISTRY
Several hypotheses have been proposed to explain recent, widespread increases in concentrations of dissolved organic carbon (DOC) in the surface waters of glaciated landscapes across eastern North America and northern and central Europe. Some invoke anthropogenic forcing through ...
NASA Astrophysics Data System (ADS)
Behnke, M. I.; Mann, P. J.; Schade, J. D.; Spawn, S.; Zimov, N.
2015-12-01
Permafrost soils in northern high latitudes store large quantities of organic carbon that have remained frozen for thousands of years. As global temperatures increase, permafrost deposits have begun to thaw, releasing previously stored ancient carbon to streams and rivers in the form of dissolved organic carbon (DOC). Newly mobilized DOC is then subjected to processing by photooxidation and microbial metabolism. Permafrost-derived DOC is highly bioavailable directly upon release relative to modern DOC derived from plants and surface active layer soils. Our objectives were to assess the interaction of photodegradation and microbial processing, and to quantify any light priming effect on the microbial consumption of both ancient and modern sourced DOC pools. We exposed sterilized mixtures of ancient and modern DOC to ambient sunlight for six days, and then inoculated mixtures (0, 1, 10, 25, 50 & 100% ancient DOC) with microbes from both modern and ancient water sources. After inoculation, samples were incubated in the dark for five days. We measured biological oxygen demand, changes in absorbance, and DOC concentrations to quantify microbial consumption of DOC and identify shifts in DOC composition and biolability. We found evidence of photobleaching during irradiation (decreasing S275-295, increasing slope ratio, and decreasing SUVA254). Once inoculated, mixtures with more ancient DOC showed initially increased microbial respiration compared to mixtures with primarily modern DOC. During the first 24 hours, the light-exposed mixture with 50% ancient DOC showed 47.6% more oxygen consumption than did the dark 50% mixture, while the purely modern DOC showed 11.5% greater oxygen consumption after light exposure. After 5 days, the modern light priming was comparable to the 50% mixture (31.2% compared to 20.5%, respectively). Our results indicate that natural photoexposure of both modern and newly released DOC increases microbial processing rates over non photo-exposed DOC.
Tan, Qiu-Xia; Zhu, Boi; Hua, Ke-Ke
2013-08-01
The water-level fluctuation zone of the Three Gorges Reservoir (TGR) exposes in spring and summer, then, green plants especially herbaceous plants grow vigorously. In the late of September, water-level fluctuation zone of TGR goes to inundation. Meanwhile, annually accumulated biomass of plant will be submerged for decaying, resulting in organism decomposition and release a large amount of dissolved organic carbon (DOC). This may lead to negative impacts on water environment of TGR. The typical herbaceous plants from water-level fluctuation zone were collected and inundated in the laboratory for dynamic measurements of DOC concentration of overlying water. According to the determination, the DOC release rates and fluxes have been calculated. Results showed that the release process of DOC variation fitted in a parabolic curve. The peak DOC concentrations emerge averagely in the 15th day of inundation, indicating that DOC released quickly with organism decay of herbaceous plant. The release process of DOC could be described by the logarithm equation. There are significant differences between the concentration of DOC (the maximum DOC concentration is 486.88 mg x L(-1) +/- 35.97 mg x L(-1) for Centaurea picris, the minimum is 4.18 mg x L(-1) +/- 1.07 mg x L(-1) for Echinochloacrus galli) and the release amount of DOC (the maximum is 50.54 mg x g(-1) for Centaurea picris, the minimum is 6.51 mg x g(-1) for Polygonum hydropiper) due to different characteristics of plants, especially, the values of C/N of herbaceous plants. The cumulative DOC release quantities during the whole inundation period were significantly correlated with plants' C/N values in linear equations.
Aiken, George R.; Spencer, Robert G.M.; Striegl, Robert G.; Schuster, Paul F.; Raymond, Peter A.
2014-01-01
Responses of near-surface permafrost and glacial ice to climate change are of particular significance for understanding long-term effects on global carbon cycling and carbon export by high-latitude northern rivers. Here we report Δ14C-dissolved organic carbon (DOC) values and dissolved organic matter optical data for the Yukon River, 15 tributaries of the Yukon River, glacial meltwater, and groundwater and soil water end-member sources draining to the Yukon River, with the goal of assessing mobilization of aged DOC within the watershed. Ancient DOC was associated with glacial meltwater and groundwater sources. In contrast, DOC from watersheds dominated by peat soils and underlain by permafrost was typically enriched in Δ14C indicating that degradation of ancient carbon stores is currently not occurring at large enough scales to quantitatively influence bulk DOC exports from those landscapes. On an annual basis, DOC exported was predominantly modern during the spring period throughout the Yukon River basin and became older through summer-fall and winter periods, suggesting that contributions of older DOC from soils, glacial meltwaters, and groundwater are significant during these months. Our data indicate that rapidly receding glaciers and increasing groundwater inputs will likely result in greater contributions of older DOC in the Yukon River and its tributaries in coming decades.
Tan, J; Allard, S; Gruchlik, Y; McDonald, S; Joll, C A; Heitz, A
2016-01-15
The impact of elevated bromide concentrations (399 to 750 μg/L) on the formation of halogenated disinfection by-products (DBPs), namely trihalomethanes, haloacetic acids, haloacetonitriles, and adsorbable organic halogen (AOX), in two drinking water systems was investigated. Bromine was the main halogen incorporated into all of the DBP classes and into organic carbon, even though chlorine was present in large excess to maintain a disinfectant residual. Due to the higher reactivity of bromine compared to chlorine, brominated DBPs were rapidly formed, followed by a slower increase in chlorinated DBPs. Higher bromine substitution and incorporation factors for individual DBP classes were observed for the chlorinated water from the groundwater source (lower concentration of dissolved organic carbon (DOC)), which contained a higher concentration of bromide, than for the surface water source (higher DOC). The molar distribution of adsorbable organic bromine to chlorine (AOBr/AOCl) for AOX in the groundwater distribution system was 1.5:1 and almost 1:1 for the surface water system. The measured (regulated) DBPs only accounted for 16 to 33% of the total organic halogen, demonstrating that AOX measurements are essential to provide a full understanding of the formation of halogenated DBPs in drinking waters. In addition, the study demonstrated that a significant proportion (up to 94%) of the bromide in source waters can be converted AOBr. An evaluation of AOBr and AOCl through a second groundwater treatment plant that uses conventional treatment processes for DOC removal produced 70% of AOX as AOBr, with 69% of the initial source water bromide converted to AOBr. Exposure to organobromine compounds is suspected to result in greater adverse health consequences than their chlorinated analogues. Therefore, this study highlights the need for improved methods to selectively reduce the bromide content in source waters. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Birkel, Christian; Broder, Tanja; Biester, Harald
2017-04-01
Peat soils act as important carbon sinks, but they also release large amounts of dissolved organic carbon (DOC) to the aquatic system. The DOC export is strongly tied to the export of soluble heavy metals. The accumulation of potentially toxic substances due to anthropogenic activities, and their natural export from peat soils to the aquatic system is an important health and environmental issue. However, limited knowledge exists as to how much of these substances are mobilized, how they are mobilized in terms of flow pathways and under which hydrometeorological conditions. In this study, we report from a combined experimental and modelling effort to provide greater process understanding from a small, lead (Pb) and arsenic (As) contaminated upland peat catchment in northwestern Germany. We developed a minimally parameterized, but process-based, coupled hydrology-biogeochemistry model applied to simulate detailed hydrometric and biogeochemical data. The model was based on an initial data mining analysis, in combination with regression relationships of discharge, DOC and element export. We assessed the internal model DOC-processing based on stream-DOC hysteresis patterns and 3-hourly time step groundwater level and soil DOC data (not used for calibration as an independent model test) for two consecutive summer periods in 2013 and 2014. We found that Pb and As mobilization can be efficiently predicted from DOC transport alone, but Pb showed a significant non-linear relationship with DOC, while As was linearly related to DOC. The relatively parsimonious model (nine calibrated parameters in total) showed the importance of non-linear and rapid near-surface runoff-generation mechanisms that caused around 60% of simulated DOC load. The total load was high even though these pathways were only activated during storm events on average 30% of the monitoring time - as also shown by the experimental data. Overall, the drier period 2013 resulted in increased nonlinearity, but exported less DOC (115 kg C ha-1 yr-1 ± 11 kg C ha-1 yr-1) compared to the equivalent but wetter period in 2014 (189 kg C ha-1 yr-1 ± 38 kg C ha-1 yr-1). The exceedance of a critical water table threshold (-10 cm) triggered a rapid near-surface runoff response with associated higher DOC transport connecting all available DOC pools, and with subsequent dilution. We conclude that the combination of detailed experimental work with relatively simple, coupled hydrology-biogeochemistry models allowed not only the model to be internally constrained, but also provided important insight into how DOC and tightly coupled heavy metals are mobilized.
Improved automation of dissolved organic carbon sampling for organic-rich surface waters.
Grayson, Richard P; Holden, Joseph
2016-02-01
In-situ UV-Vis spectrophotometers offer the potential for improved estimates of dissolved organic carbon (DOC) fluxes for organic-rich systems such as peatlands because they are able to sample and log DOC proxies automatically through time at low cost. In turn, this could enable improved total carbon budget estimates for peatlands. The ability of such instruments to accurately measure DOC depends on a number of factors, not least of which is how absorbance measurements relate to DOC and the environmental conditions. Here we test the ability of a S::can Spectro::lyser™ for measuring DOC in peatland streams with routinely high DOC concentrations. Through analysis of the spectral response data collected by the instrument we have been able to accurately measure DOC up to 66 mg L(-1), which is more than double the original upper calibration limit for this particular instrument. A linear regression modelling approach resulted in an accuracy >95%. The greatest accuracy was achieved when absorbance values for several different wavelengths were used at the same time in the model. However, an accuracy >90% was achieved using absorbance values for a single wavelength to predict DOC concentration. Our calculations indicated that, for organic-rich systems, in-situ measurement with a scanning spectrophotometer can improve fluvial DOC flux estimates by 6 to 8% compared with traditional sampling methods. Thus, our techniques pave the way for improved long-term carbon budget calculations from organic-rich systems such as peatlands. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Graeber, Daniel; Poulsen, Jane R.; Rasmussen, Jes J.; Kronvang, Brian; Zak, Dominik; Kamjunke, Norbert
2016-04-01
In the recent years it has become clear that the largest part of the terrestrial dissolved organic carbon (DOC) pool is removed on the way from the land to the ocean. Yet it is still unclear, where in the freshwater systems terrestrial DOC is actually taken up, and for streams DOC uptake was assumed to happen mostly at the stream bottom (benthic zone). However, a recent monitoring study implies that water column but not benthic bacteria are strongly affected by the amount and composition of DOM entering streams from the terrestrial zone. We conducted an experiment to compare the reaction of the bacterial production and heterotrophic uptake in the water column and the benthic zone to a standardized source of terrestrial DOC (leaf leachate from Beech litter). In detail, we sampled gravel and water from eight streams with a gradient in stream size and land use. For each stream four different treatments were incubated at 16°C for three days and each stream: filtered stream water with gravel stones (representing benthic zone bacteria) or unfiltered stream water (representing water column bacteria), both either with (n = 5) or, without (n = 3) leaf leachate. We found that the bacterial uptake of leaf litter DOC was higher for the benthic zone likely due to the higher bacterial production compared to the water column. In contrast, the bacterial production per amount of leaf leachate DOC taken up was significantly higher for the bacteria in the water column than for those in the benthic zone. This clearly indicates a higher growth efficiency with the leaf leachate DOC for the bacteria in the water column than in the benthic zone. We found a high variability for the growth efficiency in the water column, which was best explained by a negative correlation of the DOC demand with stream width (R² = 0.86, linear correlation of log-transformed data). This was not the case for the benthic zone bacteria (R² = 0.02). This implies that water column bacteria in very small streams are more dependent on terrestrial DOC sources for their growth than those in larger streams. Based on this experiment and literature data we hypothesize that: I) The response of the bacterial production to terrestrial DOC in the water column is stronger than for the benthic zone and is decreasing with increasing stream size, likely due to the increase of autochthonous DOC production within the stream. II) Independent of stream size there is only a small reaction to terrestrial DOC for the bacterial production in the benthic zone, either due to internal DOC production or a stronger dependency on particulate organic carbon. We propose that this terrestrial DOC dependency concept is generally applicable, however, its potential underlying mechanisms and concept predictions need to be tested further for other stream and river ecosystems.
Effects of climate change on surface-water photochemistry: a review.
De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide
2014-10-01
Information concerning the link between surface-water photochemistry and climate is presently very scarce as only a few studies have been dedicated to the subject. On the basis of the limited knowledge that is currently available, the present inferences can be made as follows: (1) Warming can cause enhanced leaching of ionic solutes from the catchments to surface waters, including cations and more biologically labile anions such as sulphate. Preferential sulphate biodegradation followed by removal as organic sulphides in sediment could increase alkalinity, favouring the generation of the carbonate radical, CO3 (·-). However, this phenomenon would be easily offset by fluctuations of the dissolved organic carbon (DOC), which is strongly anticorrelated with CO3 (·-). Therefore, obtaining insight into DOC evolution is a key issue in understanding the link between photochemistry and climate. (2) Climate change could exacerbate water scarcity in the dry season in some regions. Fluctuations in the water column could deeply alter photochemistry that is usually favoured in shallower waters. However, the way water is lost would strongly affect the prevailing photoinduced processes. Water outflow without important changes in solute concentration would mostly favour reactions induced by the hydroxyl and carbonate radicals (·OH and CO3 (·-)). In contrast, evaporative concentration would enhance reactions mediated by singlet oxygen ((1)O2) and by the triplet states of chromophoric dissolved organic matter ((3)CDOM*). (3) In a warmer climate, the summer stratification period of lakes would last longer, thereby enhancing photochemical reactions in the epilimnion but at the same time keeping the hypolimnion water in the dark for longer periods.
NASA Astrophysics Data System (ADS)
Lange, Markus; Gleixner, Gerd
2016-04-01
Plant diversity has been demonstrated as a crucial factor for soil organic carbon (SOC) storage. The horizontal SOC formation in turn is strongly impacted by the relative small but consistent flow of dissolved organic carbon (DOC) in soils. In this process, pore water leaches plant material and already stored SOC while simultaneously these leachates are transported downwards. However, there is a big uncertainty about the drivers of DOC flux; in particular about the importance of biological processes. We investigated the impact of plant diversity and other biotic drivers on DOC concentrations and total DOC fluxes (concentration × sampled water amount). In addition, we considered abiotic factors such as weather and soil conditions to assess the relative importance of biotic and abiotic drivers and how their importance changes over time. We used a comprehensive data set, gathered in the frame of the long-term biodiversity experiment "The Jena Experiment". Permanent monitoring started directly after establishment of the field site in 2002 and is still running. This enabled us to trace the impact of plant communities with their increasing establishment over the time on DOC concentration. We found the amount of sampled pore water best explained by rainfall, while it was not related to plant associated variables. Directly after establishing the experimental site, DOC concentrations were highest and then decreasing with time. In the first period of the experiment plant diversity had no or even a slightly negative impact on DOC concentrations. The direction of the plant diversity effect on DOC concentrations changed over time; namely in later phases we observed highest DOC concentrations on plots with high plant diversity. Moreover, DOC concentrations were negatively affected by increased amounts of sampled pore water indicating a dilution effect. Even though this impact was highly significant; its effect size was even less pronounced at later time points. In summary, inter annual differences of total DOC fluxes reflect patterns of sampled soil water, indicating the major driver of total DOC flux is driven by rainfall. In contrast, intra annually the DOC flux reflects the patterns of the DOC concentrations with a strengthening positive impact of plant diversity among time. Our results show that variations of the total DOC fluxes are more affected by the pore water flux than by the differences in DOC concentrations as the magnitude of the pore water flux exceeds the magnitude of concentrations by a factor of 20. This indicates that abiotic conditions set the frame in which biotic properties can drive the DOC flux. However, the biotic drivers are getting more important over time and might outperform the dominating role of the abiotic conditions on the longer term.
Schroeder, Roy A.
2003-01-01
During the early 1990s, the U.S. Geological Survey (USGS) investigated water-quality changes that occur in treated municipal wastewater (recycled water) at a small research basin constructed in the Montebello Forebay of the Central Ground-Water Basin in south-central Los Angeles County. The instrumented research basin is located on a 1/2-acre site at the upgradient end of the San Gabriel River Coastal Spreading Grounds where recharge has been augmented using recycled water since 1961. The facility was used to measure attenuation in selected constituents as recycled water delivered to the basin percolates downward and moves laterally beneath the basin. Attenuation in aqueous concentration was found to range from 20 to 60 percent for total dissolved nitrogen and was about one-third for dissolved organic carbon (DOC). Isotopic data confirmed permanent loss of nitrogen by denitrification. Detailed investigations showed that there were no large differences in the loss of various components of the DOC at the structural or compound level, although surfactants and their metabolites were abundant and did persist in the subsurface. The DOC of wastewater origin was found to have a lower trihalomethane (THM) formation potential upon chlorination than does organic matter of natural origin from most surface-water sources. The organization of this report into 12 topical chapters, and the report's relation to additional USGS publications from this study, is noted in a preface.
Rostad, Colleen E.; Schmitt, Christopher J.; Schumacher, John G.; Leiker, Thomas J.
2011-01-01
Surface water samples were collected in 2006 from a lead mine-mill complex in Missouri to investigate possible organic compounds coming from the milling process. Water samples contained relatively high concentrations of dissolved organic carbon (DOC; greater than 20 mg/l) for surface waters but were colorless, implying a lack of naturally occurring aquatic humic or fulvic acids. Samples were extracted by three different types of solid-phase extraction and analyzed by electrospray ionization/mass spectrometry. Because large amounts of xanthate complexation reagents are used in the milling process, techniques were developed to extract and analyze for sodium isopropyl xanthate and sodium ethyl xanthate. Although these xanthate reagents were not found, trace amounts of the degradates, isopropyl xanthyl thiosulfonate and isopropyl xanthyl sulfonate, were found in most locations sampled, including the tailings pond downstream. Dioctyl sulfosuccinate, a surfactant and process filtering aid, was found at concentrations estimated at 350 μg/l at one mill outlet, but not downstream. Release of these organic compounds downstream from lead-zinc mine and milling areas has not previously been reported. A majority of the DOC remains unidentified.
Xian, Qingsong; Li, Penghui; Liu, Chen; Cui, Junfang; Guan, Zhuo; Tang, Xiangyu
2018-05-01
Being crucial for predicting the impact of source inputs on a watershed in rainfall events, an understanding of the dynamics and characteristics of dissolved organic matter (DOM) export from the soil under particular land use types, particularly those associated with underground flows is still largely lacking. A field study was carried out using a 1500m 2 slope farmland plot in the hilly area of Sichuan Basin, Southwest China. The discharge of surface runoff and fracture flow was recorded and samples were collected in four representative rainfall events. For DOM characterization, concentration of dissolved organic carbon (DOC) and absorbance/excitation-emission matrix (EEM) fluorescence were analyzed. Soil water potential was also determined using tensiometers for understanding the runoff generation mechanisms. The DOC values for both surface and fracture flow showed significant responses to rainfall, with hydrological path being the primary factor in determining DOM dynamics. EEM-PARAFAC analyses indicated that the soil DOM mainly consisted of two terrestrial humic-like components with peaks located at Ex/Em 270(380)/480nm (C1) and 250(320)/410nm (C2), respectively. Concentrations of these components also responded strongly to rainfall, fluctuating in good agreement with the corresponding DOCs. Although there was no change in the presence of the components themselves, their relative distributions varied during precipitation, with the C1/C2 ratio increasing with the proportion of soil pre-event water. As the dynamic changes of soil DOM characteristics can be successfully captured using spectroscopic techniques, they may serve as a tracer for understanding hydrological paths based on their potential correlations with water source differences during rains. Copyright © 2017 Elsevier B.V. All rights reserved.
The role of groundwater chemistry in the transport of bacteria to water-supply wells
Harvey, R.W.; Metge, D.W.
1999-01-01
Static mini-columns and in situ injection and recovery tests were used to assess the effects of modest changes in groundwater chemistry upon the pH-dependence of bacterial attachment, a primary determinant of bacterial mobility in drinking water aquifers. In uncontaminated groundwater (<1 mg l-1 dissolved organic carbon, DOC), bacterial attachment to aquifer grain surfaces declined steadily from 93 to 20% in response to an increase in pH from 5.8 to 7.8. However, bacterial attachment in modestly-contaminated groundwater (4 mg l-1 DOC) was relatively insensitive to pH change from pH 3.5 to pH 8, as was bacterial attachment in uncontaminated groundwater amended with only ~3 mg l-1 of purified humic acid. Destruction by UV-oxidation of the DOC in contaminated groundwater partially restored the pH-dependence of bacterial attachment. Results from static column tests and from a small-scale (3.6 m) natural-gradient injection and recovery study suggest that low concentrations of surfactants can also substantively alter the attraction of groundwater bacteria for grain surfaces and, therefore can alter the transport of bacteria to water-supply wells. This phenomenon was pH-sensitive and dependent upon the nature of the surfactant. At pH 7.6, 200 mg l-1 of the non-ionic surfactant, Imbentin, caused a doubling of fractional bacterial attachment in aquifer-sediment columns, but had little effect under slightly acidic conditions (e.g. at pH 5.8). In contrast, 1 mg l-1 of linear alkylbenzene sulphonate (LAS) surfactant, a common sewage-derived contaminant, decreased the fractional bacterial attachment by more than 30% at pH 5.8, but had little effect at pH 7.3.Static mini-columns and in situ injection and recovery tests were used to assess the effects of modest changes in groundwater chemistry upon the pH-dependence of bacterial attachment, a primary determinant of bacterial mobility in drinking water aquifers. In uncontaminated groundwater (<1 mg l-1 dissolved organic carbon, DOC), bacterial attachment to aquifer grain surfaces declined steadily from 93 to 20% in response to an increase in pH from 5.8 to 7.8. However, bacterial attachment in modestly-contaminated groundwater (4 mg l-1 DOC) was relatively insensitive to pH change from pH 3.5 to pH 8, as was bacterial attachment in uncontaminated groundwater amended with only approx. 3 mg l-1 of purified humic acid. Destruction of UV-oxidation of the DOC in contaminated groundwater partially restored the pH-dependence of bacterial attachment. Results from the static column tests and from a small-scale (3.6 m) natural-gradient injection and recovery study suggest that low concentrations of surfactants can also substantively alter the attraction of groundwater bacteria for grain surfaces and, therefore can alter the transport of bacteria to water-supply wells. This phenomenon was pH-sensitive and dependent upon the nature of the surfactant. At pH 7.6, 200 mg l-1 of the non-ionic surfactant, Imbentin, caused a doubling of fractional bacterial attachment in aquifer-sediment columns, but had little effect under slightly acidic conditions (e.g. at pH 5.8). In contrast, 1 mg l-1 of linear alkylbenzene sulphonate (LAS) surfactant, a common sewage-derived contaminant, decreased the fractional bacterial attachment by more than 30% at pH 5.8, but had little effect at pH 7.3.
Avetta, Paola; Marchetti, Giulia; Minella, Marco; Pazzi, Marco; De Laurentiis, Elisa; Maurino, Valter; Minero, Claudio; Vione, Davide
2014-12-01
Dimethomorph (DMM) is a widely used fungicide that shows low toxicity for birds and mammals but can be quite toxic to aquatic organisms. The persistence of DMM in surface waters is thus of high importance, and this work modelled its water half-life time due to photochemical processes. Depending on environmental conditions (e.g. water chemistry, depth, season), DMM lifetime could vary from a few days to a few months. For lifetimes of a few weeks or shorter, photochemistry would be an important pathway for DMM attenuation in surface waters. Such conditions could be reached in summer, in shallow water bodies with low dissolved organic carbon (DOC) and high nitrate and/or nitrite. The main pathways accounting for DMM photodegradation in environmental waters would be the reactions with OH and with the triplet states of chromophoric dissolved organic matter, (3)CDOM* (under the hypothesis that (3)CDOM* reactivity is well described by the triplet state of anthraquinone-2-sulphonate), while direct photolysis would be less important. The OH pathway would be favoured in low-DOC waters, while the opposite conditions would favour (3)CDOM*. It was possible to detect and identify some intermediates formed upon reaction between DMM and (3)CDOM*, namely N-formylmorpholine, 4-chloroacetophenone and 4-chlorobenzoic acid. The transformation of DMM into the detected compounds would not increase the acute toxicity of the fungicide towards mammals, and the acute effects for freshwater organisms could be decreased significantly. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hanisch, J.; Connon, R.; Templeton, M.; Quinton, W. L.; Olefeldt, D.; Moore, T. R.; Roulet, N. T.; Sonnentag, O.
2014-12-01
Our current understanding of peatland energy, water and carbon (C) cycles implies that northern peatlands are vulnerable to projected climate change, and that the perturbation of these cycles might cause a strong positive or negative net feedback to the climate system. About one third of Canada's northern peatlands contain contain perennialy frozen ground (permafrost). Boreal forest-peatland ecosystems in the discontinuous permafrost zone (50-90% of frozen ground) are especially vulnerable to rising temperatures as permafrost is ice-rich, relatively warm and thin, and thus susceptible to complete disappearance causing ground surface subsidence and a decline in forest cover in response to water-logging. Several recent studies have substantially improved our understanding of northern peatland's role in the climate system by quantifying their net ecosystem C balance which includes atmospheric and aqueous C fluxes generally dominated by the export of dissolved organic C (DOC). We characterize seasonal and diurnal variations in DOC export from five catchments (0.02-0.05 km2) at Scotty Creek, a 152 km2-watershed under the influence of rapidly degrading and disappearing discontinuous permafrost near Fort Simpson, Northwest Territories, Canada. The five catchments are characterized by different fractions of forested peat plateaus with permafrost (38-73%) and permafrost-free collapse bogs (27-62%). Dissolved organic carbon concentrations at Scotty Creek appear to be higher in catchments where the percentage of peat plateaus is higher compared to bogs, independent of catchment size. Average DOC concentration for catchments with a lower percentage of peat plateaus is lower (~43 mg/l) than for those with a higher percentage of plateaus (~60 mg/l). These preliminary results suggest that lateral C losses from this rapidly changing landscape are at least partly controlled by the peat plateau-bog ratio. Over the year, DOC export from the five catchments is limited to around a week due to the relatively dry conditions at Scotty Creek over the hot summer months: only one of the catchments produces continuous measurable surface runoff. However, as indicated through water level recordings, additional unaccounted DOC export may occur through diffuse subsurface flow.
Assessing contribution of DOC from sediments to a drinking-water reservoir using optical profiling
Downing, Bryan D.; Bergamaschi, Brian A.; Evans, David G.; Boss, Emmanuel
2008-01-01
Understanding the sources of dissolved organic carbon (DOC) in drinking-water reservoirs is an important management issue because DOC may form disinfection by-products, interfere with disinfection, or increase treatment costs. DOC may be derived from a host of sources-algal production of DOC in the reservoir, marginal production of DOC from mucks and vascular plants at the margins, and sediments in the reservoir. The purpose of this study was to assess if release of DOC from reservoir sediments containing ferric chloride coagulant was a significant source of DOC to the reservoir. We examined the source-specific contributions of DOC using a profiling system to measure the in situ distribution of optical properties of absorption and fluorescence at various locations in the reservoir. Vertical optical profiles were coupled with discrete water samples measured in the laboratory for DOC concentration and optical properties: absorption spectra and excitation emission matrix spectra (EEMs). Modeling the in situ optical data permitted estimation of the bulk DOC profile in the reservoir as well as separation into source-specific contributions. Analysis of the source-specific profiles and their associated optical characteristics indicated that the sedimentary source of DOC to the reservoir is significant and that this DOC is labile in the reservoir. We conclude that optical profiling is a useful technique for understanding complex biogeochemical processes in a reservoir.
Chen, Meilian; Jung, Jinyoung; Lee, Yun Kyung; Hur, Jin
2018-05-23
Polar regions play unique roles in global overturning circulation, carbon cycling, and climate change. In this study, seawater dissolved organic matter (DOM) was characterized for the Chukchi Sea in the Arctic Ocean in the summer season. The seawater generally contains high concentrations of dissolved organic carbon (DOC, up to 92 μM C) and tyrosine-like fluorescence (up to 0.21 RU), and it was enriched with heteroatomic molecular formula with nitrogen-containing and sulfur-containing formulas counting 2246 (~41% of total identified molecular formula) and 1838 (~34%), respectively. Significant correlations were observed between salinity and the absorption coefficient at 254 nm, between chlorophyll-a and DOC as well as the tyrosine-like component, C 270/302 (C ex/em maxima), and between biological index and two protein-like components, C 275/338 and C 305/344 . A comparison between surface waters and close-to-seafloor deep waters suggested a trend of the accumulation of low molecular weight (LMW) fraction (~54-74%, nominal average molecular weight M n < ~350 Da) in the surface waters. Another interesting finding from spatial data was an obvious horizontal off-shelf spreading of nutrients and humic-like fluorescence. This study sheds novel insights of DOM characteristics and dynamics in the highly productive polar sea. Copyright © 2018 Elsevier B.V. All rights reserved.
Mercury dynamics in a coastal plain watershed: insights from multiple models and empirical data
Interactions among atmospherically deposited mercury, abundant wetlands, and surface waters with elevated acidity and dissolved organic carbon (DOC) often lead to widespread mercury-related fish consumption advisories in the Coastal Plain of the southeastern United States (US). H...
Partitioning of fluorotelomer alcohols to octanol and different sources of dissolved organic carbon.
Carmosini, Nadia; Lee, Linda S
2008-09-01
Interest in the environmental fate of fluorotelomer alcohols (FTOHs) has spurred efforts to understand their equilibrium partitioning behavior. Experimentally determined partition coefficients for FTOHs between soil/water and air/water have been reported, but direct measurements of partition coefficients for dissolved organic carbon (DOC)/water (K(doc)) and octanol/ water(K(ow)) have been lacking. Here we measured the partitioning of 8:2 and 6:2 FTOH between one or more types of DOC and water using enhanced solubility or dialysis bag techniques, and also quantified K(ow) values for 4:2 to 8:2 FTOH using a batch equilibration method. The range in measured log K(doc) values for 8:2 FTOH using the enhanced solubility technique with DOC derived from two soils, two biosolids, and three reference humic acids is 2.00-3.97 with the lowest values obtained for the biosolids and an average across all other DOC sources (biosolid DOC excluded) of 3.54 +/- 0.29. For 6:2 FTOH and Aldrich humic acid, a log K(doc) value of 1.96 +/- 0.45 was measured using the dialysis technique. These average values are approximately 1 to 2 log units lower than previously indirectly estimated K(doc) values. Overall, the affinity for DOC tends to be slightly lower than that for particulate soil organic carbon. Measured log K(ow) values for 4:2 (3.30 +/- 0.04), 6:2 (4.54 +/- 0.01), and 8:2 FTOH (5.58 +/- 0.06) were in good agreement with previously reported estimates. Using relationships between experimentally measured partition coefficients and C-atom chain length, we estimated K(doc) and K(ow) values for shorter and longer chain FTOHs, respectively, that we were unable to measure experimentally.
Maizel, Andrew C; Remucal, Christina K
2017-08-16
Excited triplet states of dissolved organic matter ( 3 DOM) are quantified directly with the species-specific probes trans,trans-hexadienoic acid (HDA) and 2,4,6-trimethylphenol (TMP), and indirectly with the singlet oxygen ( 1 O 2 ) probe furfuryl alcohol (FFA). Although previous work suggests that these probe compounds may be sensitive to solution conditions, including dissolved organic carbon concentration ([DOC]) and pH, and may quantify different 3 DOM subpopulations, the probes have not been systematically compared. Therefore, we quantify the apparent photoreactivity of diverse environmental waters using HDA, TMP, and FFA. By conducting experiments under ambient [DOC] and pH, with standardized [DOC] and pH, and with solid phase extraction isolates, we demonstrate that much of the apparent dissimilarity in photochemical measurements is attributable to solution conditions, rather than intrinsic differences in 3 DOM production. In general, apparent quantum yields (Φ 1 O 2 ≥ Φ 3 DOM,TMP ≫ Φ 3 DOM,HDA ) and pseudo-steady state concentrations ([ 1 O 2 ] ss > [ 3 DOM] ss,TMP > [ 3 DOM] ss,HDA ) show consistent relationships in all waters under standardized conditions. However, intrinsic differences in 3 DOM photoreactivity are apparent between DOM from diverse sources, as seen in the higher Φ 1 O 2 and lower Φ 3 DOM,TMP of wastewater effluents compared with oligotrophic lakes. Additionally, while conflicting trends in photoreactivity are observed under ambient conditions, all probes observe quantum yields increasing from surface wetlands to terrestrially influenced waters to oligotrophic lakes under standardized conditions. This work elucidates how probe selection and solution conditions influence the apparent photoreactivity of environmental waters and confirms that 3 DOM or 1 O 2 probes cannot be used interchangeably in waters that vary in [DOC], pH, or DOM source.
Formation of trihalomethanes of dissolved organic matter fractions in reservoir and canal waters.
Musikavong, Charongpun; Srimuang, Kanjanee; Tachapattaworakul Suksaroj, Thunwadee; Suksaroj, Chaisri
2016-07-28
The formation of trihalomethanes (THMs) of hydrophobic organic fraction (HPO), transphilic organic fraction (TPI), and hydrophilic organic fraction (HPI) of reservoir and canal waters from the U-Tapao River Basin, Songkhla, Thailand was investigated. Water samples were collected three times from two reservoirs, upstream, midstream, and downstream of the U-Tapao canal. The HPO was the major dissolved organic matter (DOM) fraction in reservoir and canal waters. On average, the HPO accounted for 53 and 45% of the DOM in reservoir and canal waters, respectively. The TPI of 19 and 23% in reservoir and canal waters were determined, respectively. The HPI of 29% of the reservoir water and HPI of 32% of the canal water were detected. For the reservoir water, the highest trihalomethane formation potential (THMFP)/dissolved organic carbon (DOC) was determined for the HPI, followed by the TPI and HPO, respectively. The average values of the THMFP/DOC of the HPI, TPI, and HPO of the reservoir water were 78, 52, and 49 µg THMs/mg C, respectively. The highest THMFP/DOC of the canal water was detected for the HPI, followed by HPO and TPI, respectively. Average values of the THMFP/DOC of HPI of water at upstream and midstream locations of 58 µg THMs/mg C and downstream location of 113 µg THMs/mg C were determined. Average values of THMFP/DOC of HPO of water at upstream and midstream and downstream locations were 48 and 93 µg THMs/mg C, respectively. For the lowest THMFP/DOC fraction, the average values of THMFP/DOC of TPI of water at upstream and midstream and downstream locations were 35 and 73 µg THMs/mg C, respectively.
Piatek, K.B.; Mitchell, M.J.; Silva, S.R.; Kendall, C.
2005-01-01
To determine whether NO3- concentration pulses in surface water in early spring snowmelt discharge are due to atmospheric NO 3-, we analyzed stream ??15N-NO 3- and ??18O-NO3- values between February and June of 2001 and 2002 and compared them to those of throughfall, bulk precipitation, snow, and groundwater. Stream total Al, DOC and Si concentrations were used to indicate preferential water flow through the forest floor, mineral soil, and ground water. The study was conducted in a 135-ha subcatchment of the Arbutus Watershed in the Huntington Wildlife Forest in the Adirondack Region of New York State, U.S.A. Stream discharge in 2001 increased from 0.6 before to 32.4 mm day-1 during snowmelt, and element concentrations increased from 33 to 71 ??mol L-1 for NO3-, 3 to 9 ??mol L-1 for total Al, and 330 to 570 ??mol L-1 for DOC. Discharge in 2002 was variable, with a maximum of 30 mm day-1 during snowmelt. The highest NO3-, Al, and DOC concentrations were 52, 10, and 630 ??mol L -1, respectively, and dissolved Si decreased from 148 ??mol L -1 before to 96 ??mol L-1 during snowmelt. Values of ??15N and ??18O of NO3- in stream water were similar in both years. Stream water, atmospherically- derived solutions, and groundwaters had overlapping ??15N- NO3- values. In stream and ground water, ??18O-NO3- values ranged from +5.9 to +12.9??? and were significantly lower than the +58.3 to +78.7??? values in atmospheric solutions. Values of ??18O-NO3- indicating nitrification, increase in Al and DOC, and decrease in dissolved Si concentrations indicating water flow through the soil suggested a dilution of groundwater NO3- by increasing contributions of forest floor and mineral soil NO3- during snowmelt. ?? Springer 2005.
Heat as a tracer to estimate dissolved organic carbon flux from a restored wetland
Burow, K.R.; Constantz, J.; Fujii, R.
2005-01-01
Heat was used as a natural tracer to characterize shallow ground water flow beneath a complex wetland system. Hydrogeologic data were combined with measured vertical temperature profiles to constrain a series of two-dimensional, transient simulations of ground water flow and heat transport using the model code SUTRA (Voss 1990). The measured seasonal temperature signal reached depths of 2.7 m beneath the pond. Hydraulic conductivity was varied in each of the layers in the model in a systematic manual calibration of the two-dimensional model to obtain the best fit to the measured temperature and hydraulic head. Results of a series of representative best-fit simulations represent a range in hydraulic conductivity values that had the best agreement between simulated and observed temperatures and that resulted in simulated pond seepage values within 1 order of magnitude of pond seepage estimated from the water budget. Resulting estimates of ground water discharge to an adjacent agricultural drainage ditch were used to estimate potential dissolved organic carbon (DOC) loads resulting from the restored wetland. Estimated DOC loads ranged from 45 to 1340 g C/(m2 year), which is higher than estimated DOC loads from surface water. In spite of the complexity in characterizing ground water flow in peat soils, using heat as a tracer provided a constrained estimate of subsurface flow from the pond to the agricultural drainage ditch. Copyright ?? 2005 National Ground Water Association.
NASA Astrophysics Data System (ADS)
Berggren, Martin; Klaus, Marcus; Panneer Selvam, Balathandayuthabani; Ström, Lena; Laudon, Hjalmar; Jansson, Mats; Karlsson, Jan
2018-01-01
Dissolved organic carbon (DOC) may be removed, transformed, or added during water transit through lakes, resulting in changes in DOC composition and pigmentation (color). However, the process-based understanding of these changes is incomplete, especially for headwater lakes. We hypothesized that because heterotrophic bacteria preferentially consume noncolored DOC, while photochemical processing removes colored fractions, the overall changes in DOC color upon water passage through a lake depend on the relative importance of these two processes, accordingly. To test this hypothesis we combined laboratory experiments with field studies in nine boreal lakes, assessing both the relative importance of different DOC decay processes (biological or photochemical) and the loss of color during water transit time (WTT) through the lakes. We found that influence from photo-decay dominated changes in DOC quality in the epilimnia of relatively clear headwater lakes, resulting in systematic and selective net losses of colored DOC. However, in highly pigmented brown-water lakes (absorbance at 420 nm > 7 m-1) biological processes dominated, and there was no systematic relationship between color loss and WTT. Moreover, in situ data and dark experiments supported our hypothesis on the selective microbial removal of nonpigmented DOC, mainly of low molecular weight, leading to persistent water color in these highly colored lakes. Our study shows that brown headwater lakes may not conform to the commonly reported pattern of the selective removal of colored constituents in freshwaters, as DOC can show a sustained degree of pigmentation upon transit through these lakes.
Relationship Between Landscape Character, UV Exposure, and Amphibian Decline
NASA Astrophysics Data System (ADS)
O'Reilly, C. M.; Brooks, P. D.; Corn, P. S.; Muths, E.; Campbell, D. H.; Diamond, S.; Tonnessen, K.
2001-12-01
Widespread reports of amphibian declines have been considered a warning of large-scale environmental degradation, yet the reasons for these declines remain unclear. This study suggests that exposure to ultraviolet radiation may act as an environmental stressor that affects population breeding success or susceptibility to disease. Ultraviolet radiation is attenuated by dissolved and particulate compounds in water, which may be of either terrestrial or aquatic origin. UV attenuation by dissolved organic carbon (DOC) is primarily due to compounds in the fulvic acid fraction, which originate in soil environments. These terrestrially-derived fulvic acids are transported to during hydrologic flushing events such as snowmelt and episodic precipitation and play an important role in controlling UV exposure in surface waters. As part of a previously published project, amphibian surveys were conducted at seventeen sites in Rocky Mountain National Park both during, and subsequent to, a three-year drought (1988 - 1990). During this period, ten sites lost one amphibian species, while only one site gained a previously unreported species. One possible explanation for these localized species losses is increased exposure to UV radiation, mediated by reduced terrestrial DOC inputs during dry periods. Several subsequent years of water chemistry data showed that the sites with documented species losses were characterized by a range of DOC concentrations, but tended to have a greater proportion of terrestrial DOC than sites that did not undergo species loss. This suggests that terrestrial inputs exert a strong control on DOC concentrations that may influence species success. We used physical environmental factors to develop a classification scheme for these sites. There are many physical factors that can influence terrestrial DOC inputs, including landscape position, geomorphology, soil type, and watershed vegetation. In addition, we considered the possible effects on internal aquatic inputs, such as nutrient status, food web composition, and aquatic vegetation. Finally, we examined other sites in Rocky Mountain National Park to determine their susceptibility to species loss.
Rochelle-Newall, E; Hulot, F D; Janeau, J L; Merroune, A
2014-01-01
Chromophoric dissolved organic matter (CDOM) fluorescence or absorption is often proposed as a rapid alternative to chemical methods for the estimation of bulk dissolved organic carbon (DOC) concentration in natural waters. However, the robustness of this method across a wide range of systems remains to be shown. We measured CDOM fluorescence and DOC concentration in four tropical freshwater and coastal environments (estuary and coastal, tropical shallow lakes, water from the freshwater lens of two small islands, and soil leachates). We found that although this method can provide an estimation of DOC concentration in sites with low variability in DOC and CDOM sources in systems where the variability of DOC and CDOM sources are high, this method should not be used as it will lead to errors in the estimation of the bulk DOC concentration.
Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le
2014-01-01
A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by −10 cm and −20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs254 nm, SUVA254 nm, Abs400 nm, and SUVA400 nm) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation. PMID:25369065
Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le
2014-01-01
A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm), SUVA(254 nm), Abs(400 nm), and SUVA(400 nm)) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.
Dissolved organic carbon and its potential predictors in eutrophic lakes.
Toming, Kaire; Kutser, Tiit; Tuvikene, Lea; Viik, Malle; Nõges, Tiina
2016-10-01
Understanding of the true role of lakes in the global carbon cycle requires reliable estimates of dissolved organic carbon (DOC) and there is a strong need to develop remote sensing methods for mapping lake carbon content at larger regional and global scales. Part of DOC is optically inactive. Therefore, lake DOC content cannot be mapped directly. The objectives of the current study were to estimate the relationships of DOC and other water and environmental variables in order to find the best proxy for remote sensing mapping of lake DOC. The Boosted Regression Trees approach was used to clarify in which relative proportions different water and environmental variables determine DOC. In a studied large and shallow eutrophic lake the concentrations of DOC and coloured dissolved organic matter (CDOM) were rather high while the seasonal and interannual variability of DOC concentrations was small. The relationships between DOC and other water and environmental variables varied seasonally and interannually and it was challenging to find proxies for describing seasonal cycle of DOC. Chlorophyll a (Chl a), total suspended matter and Secchi depth were correlated with DOC and therefore are possible proxies for remote sensing of seasonal changes of DOC in ice free period, while for long term interannual changes transparency-related variables are relevant as DOC proxies. CDOM did not appear to be a good predictor of the seasonality of DOC concentration in Lake Võrtsjärv since the CDOM-DOC coupling varied seasonally. However, combining the data from Võrtsjärv with the published data from six other eutrophic lakes in the world showed that CDOM was the most powerful predictor of DOC and can be used in remote sensing of DOC concentrations in eutrophic lakes. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, L. Santschi, P.H.
2000-02-01
Average {sup 14}C ages of dissolved organic carbon (DOC) in the ocean are 3--6,000 years, and are influenced by old DOC from continental margins. However, sources of DOC from terrestrial, autochthonous, and sedimentary organic carbon seem to be too young to be responsible for the old DOC observed in the ocean. Since colloidal organic carbon (COC, i.e., high molecular weight DOC), which is chemically very similar to that of bulk DOC, can be effectively isolated from seawater using cross-flow ultrafiltration, it can hold clues to sources and pathways of DOC turnover in the ocean. Radiocarbon measurements on COC in themore » water column and benthic nepheloid layer (BNL) from two continental margin areas (the Middle Atlantic Bight and the Gulf of Mexico) and controlled laboratory experiments were carried out to study sources of old DOC in the ocean margin areas. Vertical distributions of suspended particulate matter (SPM), particulate organic carbon (POC), nitrogen (PON), and DOC in the water column and bottom waters near the sediment-water interface all demonstrate a well developed benthic nepheloid layer in both ocean margin areas. COC from the BNL was much older than COC from the overlying water column. These results, together with strong concentration gradients of SPM, POC, PON, and DOC, suggest a sedimentary source for organic carbon species and possibly for old COC as well in BNL waters. This is confirmed by the results from controlled laboratory experiments. The heterogeneity of {Delta}{sup 14}C signatures in bulk SOC thus points to a preferential release of old organic components from sediment resuspension, which can be the transport mechanism of the old benthic COC observed in ocean margin areas. Old COC from continental margin nepheloid layers may thus be a potential source of old DOC to the deep ocean.« less
NASA Astrophysics Data System (ADS)
Olefeldt, D.; Turetsky, M. R.; Devito, K. J.; Blodau, C.
2012-12-01
In May 2011 a wildfire broke out north of Utikuma Lake in central Alberta, Canada, which eventually burned an area of ~880 km2. Wildfire alters soil properties, potentially altering the chemical composition of terrestrial DOC that reaches downstream aquatic environments. In order to study the potential effects of wildfire on lake carbon cycling, we sampled and incubated DOC from soil samples (n=52), wells (n=35) and lakes (n=32) from within and outside the recent fire perimeter. We incubated the DOC samples under both dark and UV conditions to assess both bio- and photolability, and followed DOC composition throughout the incubations by measuring DOC absorbing and fluorescing properties. A strong effect of wildfire was found among DOC samples leached from surface peatland and upland soils - with fire yielding increased DOC aromaticity associated with decreased biodegradability but also increased photolability. Parallel factor analysis of fluorescence matrices revealed distinct regions that were associated with DOC leached from charred soils, potentially linked to their lower biodegradability. Dark and UV conditions gave rise to very different trajectories of changes to DOC composition throughout incubations, with preferential losses of non-aromatic DOC under dark conditions and aromatic DOC under UV conditions. The DOC composition index that was found to best predict both DOC bio- and photolability was specific UV absorbance, which is also a very simple and quick index to measure. For lakes, we found that the primary influences on DOC composition and bio-/photolability was linked to lake size and hydrogeological setting (whether located on a lacustrine clay plain or in a moraine/outwash region) that controls groundwater influence and the hydrological connectivity to adjacent peatlands. Further analysis of well and lake water incubations will be used to detect whether wildfire can be detected to have a subtle secondary effect on DOC composition and lability or if the potential for cascading effects on lake C cycling due to altered soil DOC sources remain unrealized in the study region.
NASA Astrophysics Data System (ADS)
Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.
2016-10-01
Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.
Brooks, Emma; Freeman, Christopher; Gough, Rachel; Holliman, Peter J
2015-12-15
Rising dissolved organic carbon (DOC) concentrations in many upland UK catchments represents a challenge for drinking water companies, in particular due to the role of DOC as a precursor in the formation of trihalomethanes (THMs). Whereas traditionally, the response of drinking water companies has been focussed on treatment processes, increasingly, efforts have been made to better understanding the role of land use and catchment processes in affecting drinking water quality. In this study, water quality, including DOC and THM formation potential (THMFP) was assessed between the water source and finished drinking water at an upland and a lowland catchment. Surprisingly, the lowland catchment showed much higher reservoir DOC concentrations apparently due to the influence of a fen within the catchment from where a major reservoir inflow stream originated. Seasonal variations in water quality were observed, driving changes in THMFP. However, the reservoirs in both catchments appeared to dampen these temporal fluctuations. Treatment process applied in the 2 catchments were adapted to reservoir water quality with much higher DOC and THMFP removal rates observed at the lowland water treatment works where coagulation-flocculation was applied. However, selectivity during this DOC removal stage also appeared to increase the proportion of brominated THMs produced. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Runkel, R. L.; Jones, P. M.; Elliott, S. M.; Woodruff, L. G.
2017-12-01
Mining sulfide-bearing copper (Cu), nickel (Ni), and platinum-group-elements (PGE) deposits in the Duluth Complex of northeast Minnesota could have detrimental effects on surrounding water resources and associated ecosystems. A study was conducted to 1) assess copper, nickel, and other metal concentrations in surface water, bedrock, streambed sediments, and soils in watersheds where the basal part of the Duluth Complex is exposed or near the land surface; and 2) determine if these concentrations, and metal-bearing deposits, are currently influencing regional water quality in areas of potential base-metal mining. One of the watersheds that was assessed was the Filson Creek watershed, where shallow Cu-Ni-PGE deposits are present. Field water-quality, streambed sediments, soils, bedrock, and streamflow data set were collected in Filson Creek and it's watershed in 2014 and 2015. Surface-water samples were analyzed for 12 trace metals (dissolved and total concentrations), 14 inorganic constituents (dissolved concentrations), alkalinity, 18 O /16O and 2H/1H isotopes, and total and dissolved organic carbon. Background total Cu and Ni concentrations in the creek in 2014 and 2015 ranged from 1.2 to 10.8 micrograms per liter (µg/L), and 1.7 to 8.4 µg/L, respectively. The concentrations of copper, nickel, and other trace metals in surface waters and streambed sediments reflects the geochemistry of underlying rock types and glacially transported unconsolidated material, establishing baseline conditions prior to any mining. Dissolved and total organic carbon (DOC and TOC) concentrations in surface waters are very high compared to most surface waters in Minnesota, ranging from 21.3 to 43.2 milligrams per liter (mg/L), and 22.4 and 53.5 mg/L. Synoptic water-quality and flow data from a tracer test conducted over a stream segment of Filson Creek above a shallow Cu-Ni-PGE deposit (Spruce Road Deposit) was used with the 2014-15 water-quality and synthetic flow data to calibrate the reactive transport model. Results from transport modeling suggest that the high DOC content exert control on copper and other trace metal transport.
Dissolved Organic Carbon in the North Atlantic Meridional Overturning Circulation.
Fontela, Marcos; García-Ibáñez, Maribel I; Hansell, Dennis A; Mercier, Herlé; Pérez, Fiz F
2016-05-31
The quantitative role of the Atlantic Meridional Overturning Circulation (AMOC) in dissolved organic carbon (DOC) export is evaluated by combining DOC measurements with observed water mass transports. In the eastern subpolar North Atlantic, both upper and lower limbs of the AMOC transport high-DOC waters. Deep water formation that connects the two limbs of the AMOC results in a high downward export of non-refractory DOC (197 Tg-C·yr(-1)). Subsequent remineralization in the lower limb of the AMOC, between subpolar and subtropical latitudes, consumes 72% of the DOC exported by the whole Atlantic Ocean. The contribution of DOC to the carbon sequestration in the North Atlantic Ocean (62 Tg-C·yr(-1)) is considerable and represents almost a third of the atmospheric CO2 uptake in the region.
Dissolved Organic Carbon in the North Atlantic Meridional Overturning Circulation
Fontela, Marcos; García-Ibáñez, Maribel I.; Hansell, Dennis A.; Mercier, Herlé; Pérez, Fiz F.
2016-01-01
The quantitative role of the Atlantic Meridional Overturning Circulation (AMOC) in dissolved organic carbon (DOC) export is evaluated by combining DOC measurements with observed water mass transports. In the eastern subpolar North Atlantic, both upper and lower limbs of the AMOC transport high-DOC waters. Deep water formation that connects the two limbs of the AMOC results in a high downward export of non-refractory DOC (197 Tg-C·yr−1). Subsequent remineralization in the lower limb of the AMOC, between subpolar and subtropical latitudes, consumes 72% of the DOC exported by the whole Atlantic Ocean. The contribution of DOC to the carbon sequestration in the North Atlantic Ocean (62 Tg-C·yr−1) is considerable and represents almost a third of the atmospheric CO2 uptake in the region. PMID:27240625
NASA Astrophysics Data System (ADS)
Norman, Louiza; Thomas, David N.; Stedmon, Colin A.; Granskog, Mats A.; Papadimitriou, Stathys; Krapp, Rupert H.; Meiners, Klaus M.; Lannuzel, Delphine; van der Merwe, Pier; Dieckmann, Gerhard S.
2011-05-01
An investigation of coloured dissolved organic matter (CDOM) and its relationships to physical and biogeochemical parameters in Antarctic sea ice and oceanic water have indicated that ice melt may both alter the spectral characteristics of CDOM in Antarctic surface waters and serve as a likely source of fresh autochthonous CDOM and labile DOC. Samples were collected from melted bulk sea ice, sea ice brines, surface gap layer waters, and seawater during three expeditions: one during the spring to summer and two during the winter to spring transition period. Variability in both physical (temperature and salinity) and biogeochemical parameters (dissolved and particulate organic carbon and nitrogen, as well as chlorophyll a) was observed during and between studies, but CDOM absorption coefficients measured at 375 nm (a 375) did not differ significantly. Distinct peaked absorption spectra were consistently observed for bulk ice, brine, and gap water, but were absent in the seawater samples. Correlation with the measured physical and biogeochemical parameters could not resolve the source of these peaks, but the shoulders and peaks observed between 260 and 280 nm and between 320 to 330 nm respectively, particularly in the samples taken from high light-exposed gap layer environment, suggest a possible link to aromatic and mycosporine-like amino acids. Sea ice CDOM susceptibility to photo-bleaching was demonstrated in an in situ 120 hour exposure, during which we observed a loss in CDOM absorption of 53% at 280 nm, 58% at 330 nm, and 30% at 375 nm. No overall coincidental loss of DOC or DON was measured during the experimental period. A relationship between the spectral slope (S) and carbon-specific absorption (a *375) indicated that the characteristics of CDOM can be described by the mixing of two broad end-members; and aged material, present in brine and seawater samples characterised by high S values and low a *375; and a fresh material, due to elevated in situ production, present in the bulk ice samples characterised by low S and high a *375. The DOC data reported here have been used to estimate that approximately 8 Tg C yr -1 (˜11% of annual sea ice algae primary production) may be exported to the surface ocean during seasonal sea ice melt in the form of DOC.
Mercury and Dissolved Organic Matter Dynamics During Snowmelt in the Upper Provo River, Utah, USA
NASA Astrophysics Data System (ADS)
Packer, B. N.; Carling, G. T.; Nelson, S.; Aanderud, Z.; Shepherd Barkdull, N.; Gabor, R. S.
2017-12-01
Mercury (Hg) is deposited to mountains by atmospheric deposition and mobilized during snowmelt runoff, leading to Hg contamination in otherwise pristine watersheds. Mercury is typically transported with dissolved organic matter (DOM) from soils to streams and lakes. This study focused on Hg and DOM dynamics in the snowmelt-dominated upper Provo River watershed, northern Utah, USA. We sampled Hg, dissolved organic carbon (DOC) concentrations, and DOM fluorescence in river water, snowpack, and ephemeral streams over four years from 2014-2017 to investigate Hg transport mechanisms. During the snowmelt season (April through June), Hg concentrations typically increased from 1 to 8 ng/L showing a strong positive correlation with DOC. The dissolved Hg fraction was dominant in the river, averaging 75% of total Hg concentrations, suggesting that DOC is more important for transport than suspended particulate matter. Ephemeral channels, which represent shallow flow paths with strong interactions with soils, had the highest Hg (>10 ng/L) and DOC (>10 mg/L) concentrations, suggesting a soil water source of Hg and organic matter. Fluorescence spectroscopy results showed important changes in DOM type and quality during the snowmelt season and the soil water flow paths are activated. Changes in DOM characteristics during snowmelt improve the understanding of Hg dynamics with organic matter and elucidate transport pathways from the soil surface, ephemeral channels and groundwater to the Provo River. This study has implications for understanding Hg sources and transport mechanisms in mountain watersheds.
Exploring the potential of DOC fluorescence as proxy for groundwater contamination by pesticides
NASA Astrophysics Data System (ADS)
Farlin, Julien; Gallé, Tom; Bayerle, Michael; Pittois, Denis; Huck, viola
2017-04-01
Of the different water quality surrogates the fluorescence of dissolved organic content (FDOC) appears particularly promising due to its sensitivity and specificity. A complete spectrum of FDOC can be obtained using bench top instruments scanning a spectral space going from short wavelength UV to visible blue, yielding a so-called an excitation-emission matrix (EEM). The raw EEM can be either used directly for correlation analysis with the variable of interest, or first decomposed into underlying elements corresponding to different groups of organic compounds displaying similar properties using multiway techniques such as Parallel factor analysis (PARAFAC). Fluorescence spectroscopy has up to now only rarely been applied specifically to groundwater environments. The objective of the project was to explore systematically the possibilities offered by FDOC and PARAFAC for the assessment of groundwater contamination by pesticides, taking into account the transit time from the pesticide source to the groundwater outlet. Three sites corresponding to different transit times were sampled: -one spring regularly contaminated by surface water from a nearby stream (sub-daily to daily response to fast-flow generating storm events) -one spring displaying a weekly to monthly response to interflow -sampling along a flowline consisting of a series of springs and an observation well situated upgradient with mean transit times difference of several years Preliminary results show that a three component PARAFAC model is sufficient to decompose the raw EEMs, which is less than the seven or eight component models often encountered in surface water studies. For the first site, one component in the protein-like region 275(excitation)/310 (emission) nm measured in the stream samples was filtrered completely by the aquifer and did not appear in the spring samples. The other two components followed roughly the trend of the DOC and pesticide breakthrough. For the second site, soil sampling of the agricultural plots and DOC extraction also allowed to characterise the spectral signature of the pollution source. A humic-like component (250/450 nm) was correlated with the breakthrough of recent soil water and pesticide concentration. Lastly, the fluorescence intensity of the different components for the third sampling site showed a decrease proportional to the decrease in DOC concentration between the observation well and the springs caused either by dilution, degradation or both. This lack of change in the spectral pattern along a flow line seems to indicate that labile soil DOC fractions have already been degraded by the time water reaches the observation well.
NASA Astrophysics Data System (ADS)
Song, K.; Li, L.; Zang, S.; Zhao, Y.
2012-12-01
Spatial and seasonal variations of dissolved organic carbon (DOC) and inorganic carbon (DIC) in 34 waters across the semi-humid/arid Songnen Plain, China were examined with 320 samples collected in 2011-2012. Large variations in both the concentration and quality of DOC are revealed, ranging from 0.47 mgL-1 to 720 mgL-1, which is mainly caused by the hydro-climatic condition in the plain. Large variations of DOC and DIC concentrations are observed between open (mean ± sd: 5.6 ± 2.4 mgL-1, 57.4 ± 34.7 mgL-1) and closed lakes (43.3 ± 7.9 mgL-1, 172.9 ± 113.3 mgL-1). Temporally, higher DOC and DIC concentrations are measured for ice-underlying water in winter than ice-free seasons. Colored dissolved organic matter (CDOM) and DOC concentrations are higher after high discharge events with terrigenous sources of CDOM/DOC dominated, while autochthonous sources also contributed to CDOM/DOC concentrations during algal bloom seasons. An interesting result of this study is that the non-outflow conditions for various water catchments had condensed effects on the dissolved carbon, resulting in close relationships between salinity and dissolved carbon parameters, e.g. salinity vs DOC (R2 = 0.83, p < 0.001), DIC (R2 = 0.96, p < 0.0001) using data set collected in 2011. Independent data set collected in May 2012 also confirmed this finding, yielding high correlation for salinity vs DOC (R2 = 0.79, p < 0.001), salinity vs DIC (R2 = 0.91, p < 0.0001), highlighting the potential of quantifying DOC/DIC from salinity measurements for thousand of waters dispersed in the semi-arid Songnen Plain. Indices based on CDOM absorption spectra, e.g. E250:365, DOC specific CDOM absorption (SUVA254) and spectral slope ratio (Sr, S275-295/S350-400), were applied to characterize DOM components and sources. Our results indicate high molecular weight CDOM fractions are more abundant in open waters than closed waters.
Changes in metal mobility associated with bark beetle-induced tree mortality.
Mikkelson, Kristin M; Bearup, Lindsay A; Navarre-Sitchler, Alexis K; McCray, John E; Sharp, Jonathan O
2014-05-01
Recent large-scale beetle infestations have caused extensive mortality to conifer forests resulting in alterations to dissolved organic carbon (DOC) cycling, which in turn can impact metal mobility through complexation. This study analyzed soil-water samples beneath impacted trees in concert with laboratory flow-through soil column experiments to explore possible impacts of the bark beetle infestation on metal release and transport. The columns mimicked field conditions by introducing pine needle leachate and artificial rainwater through duplicate homogenized soil columns and measuring effluent metal (focusing on Al, Cu, and Zn) and DOC concentrations. All three metals were consistently found in higher concentrations in the effluent of columns receiving pine needle leachate. In both the field and laboratory, aluminum mobility was largely correlated with the hydrophobic fraction of the DOC, while copper had the largest correlation with total DOC concentrations. Geochemical speciation modeling supported the presence of DOC-metal complexes in column experiments. Copper soil water concentrations in field samples supported laboratory column results, as they were almost twice as high under grey phase trees than under red phase trees further signifying the importance of needle drop. Pine needle leachate contained high concentrations of Zn (0.1 mg l(-1)), which led to high effluent zinc concentrations and sorption of zinc to the soil matrix representing a future potential source for release. In support, field soil-water samples underneath beetle-impacted trees where the needles had recently fallen contained approximately 50% more zinc as samples from under beetle-impacted trees that still held their needles. The high concentrations of carbon in the pine needle leachate also led to increased sorption in the soil matrix creating the potential for subsequent carbon release. While unclear if manifested in adjacent surface waters, these results demonstrate an increased potential for Zn, Cu, and Al mobility, along with increased deposition of metals and carbon beneath beetle-impacted trees.
Transformations and Fates of Terrigenous Dissolved Organic Matter in River-influenced Ocean Margins
NASA Astrophysics Data System (ADS)
Fichot, Cedric G.
Rivers contribute about 0.25 Pg of terrigenous dissolved organic carbon (tDOC) to the ocean each year. The fate and transformations of this material have important ramifications for the metabolic state of the ocean, air-sea CO2 exchange, and the global carbon cycle. Stable isotopic compositions and terrestrial biomarkers suggest tDOC must be efficiently mineralized in ocean margins. Nonetheless, the extent of tDOC mineralization in these environments remains unknown, as no quantitative estimate is available. The complex interplay of biogeochemical and physical processes in these systems compounded by the limited practicality of chemical proxies (organic biomarkers, isotopic compositions) make the quantification of tDOC mineralization in these dynamic systems particularly challenging. In this dissertation, new optical proxies were developed (Chapters 1 and 2) and facilitated the first quantitative assessment of tDOC mineralization in a dynamic river-influenced ocean margin (Chapter 3) and the monitoring of continental runoff distributions in the coastal ocean using remote sensing (Chapter 4). The optical properties of chromophoric dissolved organic matter (CDOM) were used as optical proxies for dissolved organic carbon concentration ([DOC]) and %tDOC. In both proxies, the CDOM spectral slope coefficient ( S275-295) was exploited for its informative properties on the chemical nature and composition of dissolved organic matter. In the first proxy, a strong relationship between S275-295 and the ratio of CDOM absorption to [DOC] facilitated accurate retrieval (+/- 4%) of [DOC] from CDOM. In the second proxy, the existence of a strong relationship between S275-295 and the DOC-normalized lignin yield facilitated the estimation of the %tDOC from S 275-295. Using the proxies, the tDOC concentration can be retrieved solely from CDOM absorption coefficients (lambda = 275-295 nm) in river-influenced ocean margins. The practicality of optical proxies facilitated the calculation of tDOC mineralization rates on the Louisiana shelf. Seasonal tDOC mass balances for the shelf revealed that between 26% (winter) and 71% (summer) of the mixed layer tDOC is mineralized during its residence on the shelf. Independent approaches further indicated biomineralization accounts for 60% of the tDOC mineralization whereas photomineralization contributes only 8%. The remaining 32% was attributed to the coupled photo-biomineralization. On an annual basis, our results indicated ˜40% of the tDOC discharged by the Mississippi and Atchafalaya rivers to the Louisiana shelf (˜1 Tg tDOC) is mineralized within 2 to 3 months. This extensive mineralization on the shelf is direct evidence ocean margins act as efficient filters of tDOC between the land and ocean. Finally, the amenability of S275-295 to ocean color remote sensing was demonstrated, and facilitates the real-time, synoptic monitoring of tDOC and freshwater runoff in coastal waters. Implementation of this approach provided the first pan-Arctic distributions of tDOC and continental runoff in surface polar waters, and will help understand the manifestations of climate change in this remote region.
NASA Astrophysics Data System (ADS)
Tunaley, Claire; Tetzlaff, Doerthe; Soulsby, Chris
2017-04-01
Knowledge of hydrological sources, flow paths, and their connectivity is fundamental to understanding stream flow generation and surface water quality in peatlands. Stable isotopes are proven tools for tracking the sources and flow paths of runoff. However, relativity few studies have used isotopes in peat-dominated catchments. Here, we combined 13 months (June 2014 - July 2015) of daily isotope measurements in stream water with daily DOC and 15 minute FDOM (fluorescent component of dissolved organic matter) data, at three nested scales in NE Scotland, to identify the hydrological processes occurring in riparian peatlands. We investigated how runoff generation processes in a small, riparian peatland dominated headwater catchment (0.65 km2) propagate to larger scales (3.2 km2 and 31 km2) with decreasing percentage of riparian peatland coverage. Isotope damping was most pronounced in the 0.65 km2 catchment due to high water storage in the organic soils which encouraged tracer mixing and resulted in attenuated runoff peaks. At the largest scale, stream flow and water isotope dynamics showed a more flashy response. Particularly insightful in this study was calculating the deviation of the isotopes from the local meteoric water line, the lc-excess. The lc-excess revealed evaporative fractionation in the peatland dominated catchment, particularly during summer low flows. This implied high hydrological connectivity in the form of constant seepage from the peatlands sustaining high baseflows at the headwater scale. This constant connectivity resulted in high DOC concentrations at the peatland site during baseflow ( 5 mg l-1). In contrast, at the larger scales, DOC was minimal during low flows ( 2 mg l-1) due to increased groundwater influence and the disconnection between DOC sources and the stream. Insights into event dynamics through the analysis of DOC hysteresis loops showed slight dilution on the rising limb, the strong influence of dry antecedent conditions and a quick recovery between events at the riparian peatland site. Again, these dynamics were driven by the tight coupling and high connectivity of the landscape to the stream. At larger scales, the disconnection between the landscape units increased and the variable connectivity controlled runoff generation and DOC dynamics. The results presented here suggest that the hydrological processes occurring in riparian peatlands in headwater catchments are less evident at larger scales which may have implications for the larger scale impact of peatland restoration projects.
[Estimation of DOC concentrations using CDOM absorption coefficients: a case study in Taihu Lake].
Jiang, Guang-Jia; Ma, Rong-Hua; Duan, Hong-Tao
2012-07-01
Dissolved organic carbon (DOC) is the largest organic carbon stock in water ecosystems, which plays an important role in the carbon cycle in water. Chromophoric dissolved organic matter (CDOM), an important water color variation, is the colored fraction of DOC and its absorption controls the instruction of light under water. The available linkage between DOC concentration and CDOM absorptions enables the determination of DOC accumulations using remote sensing reflectance or radiance in lake waters. The present study explored the multi-liner relationship between CDOM absorptions [a(g) (250) and a(g) (365)] and DOC concentrations in Taihu Lake, based on the available data in 4 cruises (201005, 201101, 201103, 201105) (totally 183 sampling sites). Meanwhile, the results were validated with the data of the experiment carried out from August 29 to September 2, 2011 in Taihu Lake (n = 27). Furthermore, a universal pattern of modeling from remote sensing was built for lake waters. The results demonstrated that this method provided more satisfying estimation of DOC concentrations in Taihu Lake. Except the data obtained in January 2011, the fitted results of which were not conductive to the winter dataset (201101) in Taihu Lake, due to the diverse sources and sinks of DOC and CDOM, the multi-liner relationship was robust for the data collected in the other three cruises (R2 = 0.64, RMSE = 14.31%, n = 164), which was validated using the 201108 sampling dataset (R2 = 0.67, RMSE = 10.58%, n = 27). In addition, the form of the statistic model is universal, to some extent, for other water areas, however, there is difference in the modeling coefficients. Further research should be focused on the parameterization using local data from different lakes, which provides effective methodology for the estimation of DOC concentrations in lakes and other water regions.
Size and XAD fractionations of trihalomethane precursors from soils.
Chow, Alex T; Guo, Fengmao; Gao, Suduan; Breuer, Richard S
2006-03-01
Soil organic matter is an important source of allochthonous dissolved organic matter inputs to the Sacramento-San Joaquin Delta waterways, which is a drinking water source for 22 million people in California, USA. Knowledge of trihalomethane (THM) formation potential of soil-derived organic carbon is important for developing effective strategies for organic carbon removal in drinking water treatment. In this study, soil organic carbon was extracted with electrolytes (deionized H2O and Na- or Ca-based electrolytes) of electrical conductivity bracketing those found in Delta leaching and runoff conditions. The extracts were physically and chemically separated into different fractions: colloidal organic carbon (0.45-0.1 microm), fine colloidal organic carbon (0.1-0.025 microm), and dissolved organic carbon (DOC) (<0.025 microm); hydrophobic acid (HPOA), transphilic acid, and hydrophilic acid. Two representative Delta soils, Rindge Muck (a peat soil) and Scribner Clay Loam (a mineral soil) were examined. Results showed that less than 2% of soil organic carbon was electrolyte-extractable and heterogeneous organic fractions with distinct THM reactivity existed. Regardless of soil and electrolytes, DOC and HPOA fractions were dominant in terms of total concentration and THMFP. The amounts of extractable organic carbon and THMFP were dependent on the cation and to a lesser extent on electrical conductivity of electrolytes. Along with our previous study on temperature and moisture effects on DOC production, we propose a conceptual model to describe the impacts of agricultural practices on DOC production in the Delta. DOC is mainly produced in the surface peat soils during the summer and is immobilized by accumulated salt in the soils. DOC is leached from soils to drainage ditches and finally to the Delta channels during winter salt leaching practices.
Harvey, R.W.; Metge, D.W.; Mohanram, A.; Gao, X.; Chorover, J.
2011-01-01
Injection-and-recovery studies involving a contaminated, sandy aquifer (Cape Cod, Massachusetts) were conducted to assess the relative susceptibility for in situ re-entrainment of attached groundwater bacteria (Pseudomonas stuzeri ML2, and uncultured, native bacteria) and carboxylate-modified microspheres (0.2 and 1.0 μm diameters). Different patterns of re-entrainment were evident for the two colloids in response to subsequent injections of groundwater (hydrodynamic perturbation), deionized water (ionic strength alteration), 77 μM linear alkylbenzene sulfonates (LAS, anionic surfactant), and 76 μM Tween 80 (polyoxyethylene sorbitan monooleate, a very hydrophobic nonionic surfactant). An injection of deionized water was more effective in causing detachment of micrsopheres than were either of the surfactants, consistent with the more electrostatic nature of microsphere’s attachment, their extreme hydrophilicity (hydrophilicity index, HI, of 0.99), and negative charge (zeta potentials, ζ, of −44 to −49 mv). In contrast, Tween 80 was considerably more effective in re-entraining the more-hydrophobic native bacteria. Both the hydrophilicities and zeta potentials of the native bacteria were highly sensitive to and linearly correlated with levels of groundwater dissolved organic carbon (DOC), which varied modestly from 0.6 to 1.3 mg L−1. The most hydrophilic (0.52 HI) and negatively charged (ζ −38.1 mv) indigenous bacteria were associated with the lowest DOC. FTIR spectra indicated the latter community had the highest average density of surface carboxyl groups. In contrast, differences in groundwater (DOC) had no measurable effect on hydrophilicity of the bacteria-sized microspheres and only a minor effect on their ζ. These findings suggest that microspheres may not be very good surrogates for bacteria in field-scale transport studies and that adaptive (biological) changes in bacterial surface characteristics may need to be considered where there is longer-term exposure to contaminant DOC.
Inorganic carbon speciation and fluxes in the Congo River
NASA Astrophysics Data System (ADS)
Wang, Zhaohui Aleck; Bienvenu, Dinga Jean; Mann, Paul J.; Hoering, Katherine A.; Poulsen, John R.; Spencer, Robert G. M.; Holmes, Robert M.
2013-02-01
Seasonal variations in inorganic carbon chemistry and associated fluxes from the Congo River were investigated at Brazzaville-Kinshasa. Small seasonal variation in dissolved inorganic carbon (DIC) was found in contrast with discharge-correlated changes in pH, total alkalinity (TA), carbonate species, and dissolved organic carbon (DOC). DIC was almost always greater than TA due to the importance of CO2*, the sum of dissolved CO2 and carbonic acid, as a result of low pH. Organic acids in DOC contributed 11-61% of TA and had a strong titration effect on water pH and carbonate speciation. The CO2* and bicarbonate fluxes accounted for ~57% and 43% of the DIC flux, respectively. Congo River surface water released CO2 at a rate of ~109 mol m-2 yr-1. The basin-wide DIC yield was ~8.84 × 104 mol km-2 yr-1. The discharge normalized DIC flux to the ocean amounted to 3.11 × 1011 mol yr-1. The DOC titration effect on the inorganic carbon system may also be important on a global scale for regulating carbon fluxes in rivers.
Altitude controls carbon dioxide in boreal lakes
NASA Astrophysics Data System (ADS)
Bhattacharya, Atreyee
2012-09-01
Organic matter present in lakes, derived either from land-based sources—such as plants, soil, and sediments—or from in situ processes—such as degrading detritus in the water—could be important in the global carbon cycle, and possibly a significant source of the atmospheric carbon dioxide (CO2) budget. The partial pressure of CO2 in surface waters (pCO2) drives the escape of CO2 to the atmosphere. Hence, scientists have long suspected that the relationship between pCO2 and the dissolved organic matter (DOC) in lake waters refects the relative contribution of the environment and in situ processes to the high-latitude carbon budget. Combining measurements of DOC and pCO2 from nearly 200 lakes across Quebec, Canada, with an additional 13 lake-based studies from temperate regions across the northern hemisphere, Lapierre and del Giorgio suggest that on a regional scale the A variety of lakes dominate the boreal landscape of Quebec, Canada. elevation of lakes is one of the strongest controls on the relationship between DOC and pCO2 in boreal lakes.
Ma, Xiaoliang; Liu, Guimin; Wu, Xiaodong; Smoak, Joseph M; Ye, Linlin; Xu, Haiyan; Zhao, Lin; Ding, Yongjian
2018-07-15
The Qinghai-Tibetan plateau (QTP) stores a large amount of soil organic carbon and is the headwater region for several large rivers in Asia. Therefore, it is important to understand the influence of environmental factors on river water quality and the dissolved organic carbon (DOC) export in this region. We examined the water physico-chemical characteristics, DOC concentrations and export rates of 7 rivers under typical land cover types in the Three Rivers Headwater Region during August 2016. The results showed that the highest DOC concentrations were recorded in the rivers within the catchment of alpine wet meadow and meadow. These same rivers had the lowest total suspended solids (TSS) concentrations. The rivers within steppe and desert had the lowest DOC concentrations and highest TSS concentrations. The discharge rates and catchment areas were negatively correlated with DOC concentrations. The SUVA 254 values were significantly negatively correlated with DOC concentrations. The results suggest that the vegetation degradation, which may represent permafrost degradation, can lead to a decrease in DOC concentration, but increasing DOC export and soil erosion. In addition, some of the exported DOC will rapidly decompose in the river, and therefore affect the regional carbon cycle, as well as the water quality in the source water of many large Asian rivers. Copyright © 2018 Elsevier B.V. All rights reserved.
Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter
NASA Technical Reports Server (NTRS)
Mannino, Antonio; Harvey, H. Rodger
2003-01-01
Black carbon (BC) in ultrafiltered high-molecular-weight DOM (UDOM) was measured in surface waters of Delaware Bay, Chesapeake Bay and the adjacent Atlantic Ocean (USA) to ascertain the importance of riverine and estuarine DOM as a source of BC to the ocean. BC comprised 5-72% of UDOM-C (27+/-l7%) and on average 8.9+/-6.5% of dissolved organic carbon (DOC) with higher values in the turbid region of the Delaware Estuary and lower yields in the river and coastal ocean. The spatial and seasonal distributions of BC along the salinity gradient of Delaware Bay suggest that the higher levels of BC in surface water UDOM originated from localized sources, possibly from atmospheric deposition or released from resuspended sediments. Black carbon comprised 4 to 7% of the DOC in the coastal Atlantic Ocean, revealing that river-estuary systems are important exporters of colloidal BC to the ocean. The annual flux of BC from Delaware Bay UDOM to the Atlantic Ocean was estimated at 2.4x10(exp 10) g BC yr(exp -1). The global river flux of BC through DOM to the ocean could be on the order of 5.5x1O(exp 12)g BC yr (exp -1). These results support the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition.
Uetake, Jun; Yoshimura, Yoshitaka; Nagatsuka, Naoko; Kanda, Hiroshi
2012-11-01
Psychrophilic yeasts have been isolated from supra- and subglacial ice at many sites worldwide. To understand the ecology of psychrophilic yeasts on glaciers, we focused on their adaptation to wide range of nutrient concentrations and their distribution with altitude on the Gulkana Glacier in Alaska. We found various culturable psychrophilic yeasts on the ice surfaces of the glacier, and 11 species were isolated with incubation at 4 °C in four different dilutions of agar medium. Some of our isolated species (Rhodotorula psychrophenolica, Rhodotorula aff. psychrophenolica, Rhodotorula glacialis, and Basidiomycota sp. 1) can grow on the low dissolved organic matter (DOC) concentrations medium (7.6 mg L(-1)) which is close to the typical level of supraglacial melt water, suggesting that these species can inhabit in any supraglacial meltwater. Otherwise, most of other species were isolated only from higher DOC concentration medium (183 mg L(-1) -18.3 g L(-1)), suggesting that these are inhabitant around the cryoconite, because DOC concentrations in melted surface-ice contained cryoconite is much higher than in melted water. Similarity of altitudinal distribution between culturable yeast and algal biomass suggests that the ecological role played by the cold-adapted yeasts is as organic matter decomposers and nutrient cyclers in glacier ecosystem. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Xu, Junzeng; Yang, Shihong; Peng, Shizhang; Wei, Qi; Gao, Xiaoli
2013-01-01
Influence of nonflooding controlled irrigation (NFI) on solubility and leaching risk of soil organic carbon (SOC) were investigated. Compared with flooding irrigation (FI) paddies, soil water extractable organic carbon (WEOC) and dissolved organic carbon (DOC) in NFI paddies increased in surface soil but decreased in deep soil. The DOC leaching loss in NFI field was 63.3 kg C ha⁻¹, reduced by 46.4% than in the FI fields. It indicated that multi-wet-dry cycles in NFI paddies enhanced the decomposition of SOC in surface soils, and less carbon moved downward to deep soils due to less percolation. That also led to lower SOC in surface soils in NFI paddies than in FI paddies, which implied that more carbon was released into the atmosphere from the surface soil in NFI paddies. Change of solubility of SOC in NFI paddies might lead to potential change in soil fertility and sustainability, greenhouse gas emission, and bioavailability of trace metals or organic pollutants.
Chen, Meilian; Jaffé, Rudolf
2014-09-15
Dissolved organic carbon (DOC) measurements and optical properties were applied to assess the photo- and bio-reactivity of dissolved organic matter (DOM) from different sources, including biomass leaching, soil leaching and surface waters in a subtropical wetland ecosystem. Samples were exposed to light and/or dark incubated through controlled laboratory experiments. Changes in DOC, ultraviolet (UV-Vis) visible absorbance, and excitation-emission matrix (EEM) fluorescence combined with parallel factor analysis (PARAFAC) were performed to assess sample degradation. Degradation experiments showed that while significant amounts of DOC were consumed during bio-incubation for biomass leachates, a higher degree of bio-recalcitrance for soil leachate and particularly surface waters was displayed. Photo- and bio-humification transformations were suggested for sawgrass, mangrove, and seagrass leachates, as compared to substantial photo-degradation and very little to almost no change after bio-incubation for the other samples. During photo-degradation in most cases the EEM-PARAFAC components displayed photo-decay as compared to a few cases which featured photo-production. In contrast during bio-incubation most EEM-PARAFAC components proved to be mostly bio-refractory although some increases and decreases in abundance were also observed. Furthermore, the sequential photo- followed by bio-degradation showed, with some exceptions, a "priming effect" of light exposure on the bio-degradation of DOM, and the combination of these two processes resulted in a DOM composition more similar to that of the natural surface water for the different sub-environments. In addition, for leachate samples there was a general enrichment of one of the EEM-PARAFAC humic-like component (Ex/Em: <260(305)/416 nm) during photo-degradation and an enrichment of a microbial humc-like component (Ex/Em: <260(325)/406 nm and of a tryptophan-like component (Ex/Em: 300/342 nm) during the bio-degradation process. This study exemplifies the effectiveness of optical property and EEM-PARAFAC in the assessment of DOM reactivity and highlights the importance of the coupling of photo- and bio-degradation processes in DOM degradation. Copyright © 2014 Elsevier Ltd. All rights reserved.
In‐stream sorption of fulvic acid in an acidic stream: A stream‐scale transport experiment
McKnight, Diane M.; Hornberger, George M.; Bencala, Kenneth E.; Boyer, Elizabeth W.
2002-01-01
The variation of concentration and composition of dissolved organic carbon (DOC) in stream waters cannot be explained solely on the basis of soil processes in contributing subcatchments. To investigate in‐stream processes that control DOC, we injected DOC‐enriched water into a reach of the Snake River (Summit County, Colorado) that has abundant iron oxyhydroxides coating the streambed. The injected water was obtained from the Suwannee River (Georgia), which is highly enriched in fulvic acid. The fulvic acid from this water is the standard reference for aquatic fulvic acid for the International Humic Substances Society and has been well characterized. During the experimental injection, significant removal of sorbable fulvic acid occurred within the first 141 m of stream reach. We coinjected a conservative tracer (lithium chloride) and analyzed the results with the one‐dimensional transport with inflow and storage (OTIS) stream solute transport model to quantify the physical transport mechanisms. The downstream transport of fulvic acid as indicated by absorbance was then simulated using OTIS with a first‐order kinetic sorption rate constant applied to the sorbable fulvic acid. The “sorbable” fraction of injected fulvic acid was irreversibly sorbed by streambed sediments at rates (kinetic rate constants) of the order of 10−4–10−3 s−1. In the injected Suwannee River water, sorbable and nonsorbable fulvic acid had distinct chemical characteristics identified in 13C‐NMR spectra. The 13C‐NMR spectra indicate that during the experiment, the sorbable “signal” of greater aromaticity and carboxyl content decreased downstream; that is, these components were preferentially removed. This study illustrates that interactions between the water and the reactive surfaces will modify significantly the concentration and composition of DOC observed in streams with abundant chemically reactive surfaces on the streambed and in the hyporheic zone.
NASA Astrophysics Data System (ADS)
Chow, A. T.; Wong, P.; O'Geen, A. T.; Dahlgren, R. A.
2009-12-01
Foliar litter is an important terrestrial source of dissolved organic matter (DOM) in surface water. DOM is a public health concern since it is a precursor of carcinogenic disinfection byproducts (DBPs) during drinking water treatment. Chemical characterization of in-situ water samples for their impact on water treatment may be misleading because DOM characteristics can be altered from their original composition during downstream transport to water treatment plants. In this study, we collected leachate from four fresh litters and decomposed duffs from four dominant vegetation components of California oak woodlands: blue oak (Quercus douglassi), live oak (Quercus wislizenii), foothill pine (Pinus sabiniana), and annual grasses to evaluate their DOM degradability and the reactivity of altered DOM towards DBP formation. Samples were filtered through a sterilized membrane (0.2 micron) and exposed to natural sunlight and Escherichia coli K-12 independently for 14 days. Generally speaking, leachate from decomposed duff was relatively resistant towards biodegradation compared to that from fresh litter, but the former was more susceptible to photo-transformation. Photo-bleaching caused a 30% decrease in ultra-violet absorbance at 254 nm (UVA) but no significant changes in dissolved organic carbon (DOC) concentration. This apparent loss of aromatic carbon in DOM, in terms of specific UVA, did not result in a decrease of specific trihalomethane (THM) formation potential, although aromatic carbon is considered as a major reactive site for THM formation. In addition, there were significant increases (p < 0.05) of chloral hydrate after the 14-day exposure, suggesting that the photolytic products could be a precursor of chloral hydrate. In contrast, samples inoculated with E. coli did not show a significant effect on the DOC concentration, UVA or DBP formation, although the colony counts indicated a 2-log cell growth during the 14-day incubation. Results suggest photolysis is a major biogeochemical process altering terrestrial DOC in surface water.
NASA Astrophysics Data System (ADS)
Liu, Yangyang; Shen, Fang; Li, Xiuzhen
2014-11-01
Light absorption properties of colored dissolved organic matter (CDOM) in adjacent waters of the Changjiang Estuary were investigated during the summer of 2013. CDOM absorption showed a substantial portion of the total absorption and clearly dominant among most investigation stations. It generally decreased from the northwest to the southeast, which controlled by physical mixing of fresh water and seawater as was indicated by a conservative behaviour of CDOM. CDOM absorption sharply increased during phytoplankton blooms. Similarly, dissolved organic carbon (DOC) also peaked during blooms period. However, DOC exhibited a more complex behavior relative to a simple conservative mixing, possibly attributed to multiple origins of DOC. CDOM absorption and DOC co-varied to some degree, implying a potential way of DOC estimation from CDOM absorption. However, more detailed information such as CDOM and DOC composition and more validation data were required to obtain a stable CDOM - DOC pattern. Lastly, empirical algorithms with limited data were developed to retrieve CDOM absorption. Further validation of the algorithms were needed when they were to be commonly applied.
Response of DOC in acid-sensitive Maine lakes to decreasing sulfur deposition (1993 - 2009)
In response to the Clean Air Act Amendments of 1990, sulfur deposition has decreased across the northeastern United States. As a result, sulfate concentrations in lakes and streams have also decreased and many surface waters have become less acidic. Over the same time period, th...
Lawrence, Gregory B.; Dukett, James E; Houck, Nathan; Snyder, Phillip; Capone, Susan B.
2013-01-01
Increasing pH and decreasing Al in surface waters recovering from acidification have been accompanied by increasing concentrations of dissolved organic carbon (DOC) and associated organic acids that partially offset pH increases and complicate assessments of recovery from acidification. To better understand the processes of recovery, monthly chemistry from 42 lakes in the Adirondack region, NY, collected from 1994 to 2011, were used to (1) evaluate long-term changes in DOC and associated strongly acidic organic acids and (2) use the base-cation surplus (BCS) as a chemical index to assess the effects of increasing DOC concentrations on the Al chemistry of these lakes. Over the study period, the BCS increased (p < 0.01) and concentrations of toxic inorganic monomeric Al (IMAl) decreased (p < 0.01). The decreases in IMAl were greater than expected from the increases in the BCS. Higher DOC concentrations that increased organic complexation of Al resulted in a decrease in the IMAl fraction of total monomeric Al from 57% in 1994 to 23% in 2011. Increasing DOC concentrations have accelerated recovery in terms of decreasing toxic Al beyond that directly accomplished by reducing atmospheric deposition of strong mineral acids.
Lawrence, Gregory B; Dukett, James E; Houck, Nathan; Snyder, Phil; Capone, Sue
2013-07-02
Increasing pH and decreasing Al in surface waters recovering from acidification have been accompanied by increasing concentrations of dissolved organic carbon (DOC) and associated organic acids that partially offset pH increases and complicate assessments of recovery from acidification. To better understand the processes of recovery, monthly chemistry from 42 lakes in the Adirondack region, NY, collected from 1994 to 2011, were used to (1) evaluate long-term changes in DOC and associated strongly acidic organic acids and (2) use the base-cation surplus (BCS) as a chemical index to assess the effects of increasing DOC concentrations on the Al chemistry of these lakes. Over the study period, the BCS increased (p < 0.01) and concentrations of toxic inorganic monomeric Al (IMAl) decreased (p < 0.01). The decreases in IMAl were greater than expected from the increases in the BCS. Higher DOC concentrations that increased organic complexation of Al resulted in a decrease in the IMAl fraction of total monomeric Al from 57% in 1994 to 23% in 2011. Increasing DOC concentrations have accelerated recovery in terms of decreasing toxic Al beyond that directly accomplished by reducing atmospheric deposition of strong mineral acids.
NASA Astrophysics Data System (ADS)
Regier, Peter; Briceño, Henry; Jaffé, Rudolf
2016-12-01
Urban and agricultural development of the South Florida peninsula has disrupted historic freshwater flow in the Everglades, a hydrologically connected ecosystem stretching from central Florida to the Gulf of Mexico, USA. Current system-scale restoration efforts aim to restore natural hydrologic regimes to reestablish pre-drainage ecosystem functioning through increased water availability, quality and timing. Aquatic transport of carbon in this ecosystem, primarily as dissolved organic carbon (DOC), plays a critical role in biogeochemical cycling and food-web dynamics, and will be affected both by water management policies and climate change. To better understand DOC dynamics in South Florida estuaries and how hydrology, climate and water management may affect them, 14 years of monthly data collected in the Shark River estuary were used to examine DOC flux dynamics in a broader environmental context. Multivariate statistical methods were applied to long-term datasets for hydrology, water quality and climate to untangle the interconnected environmental drivers that control DOC export at monthly and annual scales. DOC fluxes were determined to be primarily controlled by hydrology but also by seasonality and long-term climate patterns and episodic weather events. A four-component model (salinity, rainfall, inflow, Atlantic Multidecadal Oscillation) capable of predicting DOC fluxes (R2 = 0.84, p < 0.0001, n = 155) was established and applied to potential climate change scenarios for the Everglades to assess DOC flux response to climate and restoration variables. The majority of scenario runs indicated that DOC export from the Everglades is expected to decrease due to future changes in rainfall, water management and salinity.
NASA Astrophysics Data System (ADS)
Kaiser, K.; Benner, R.; Amon, R. M. W.
2017-01-01
Dissolved lignin phenols, chromophoric dissolved organic matter (CDOM) absorption, and fluorescence were analyzed along cross-slope mooring locations in the Barents, Laptev, and East Siberian Seas to gain a better understanding of terrigenous dissolved organic carbon (tDOC) dynamics in Arctic shelf seas and the Arctic Ocean. A gradient of river water and tDOC was observed along the continental shelf eastward into the East Siberian Sea. Correlations of carbon-normalized yields of lignin-derived phenols supplied by Siberian rivers with river water fractions and known water residence times yielded in situ decay constants of 0.18-0.58 yr-1. Calculations showed ˜50% of annual tDOC discharged by Siberian rivers was mineralized in estuaries and on Eurasian shelves per year indicating extensive removal of tDOC. Bioassay experiments and in situ decay constants indicated a reactivity continuum for tDOC. CDOM parameters and acid/aldehyde ratios of vanillyl (V) and syringyl (S) lignin phenols showed biomineralization was the dominant mechanism for the removal of tDOC. Characteristic ratios of p-hydroxy (P), S, and V phenols (P/V, S/V) also identified shelf regions in the Kara Sea and regions along the Western Laptev Sea shelf where formation of Low Salinity Halocline Waters (LSHW) and Lower Halocline Water (LHW) occurred. The efficient removal of tDOC demonstrates the importance of Eurasian margins as sinks of tDOC derived from the large Siberian Rivers and confirms tDOC mineralization has a major impact on nutrients budgets, air-sea CO2 exchange, and acidification in the Siberian Shelf Seas.
NASA Astrophysics Data System (ADS)
Kaiser, Karl; Amon, Rainer; Benner, Ronald
2017-04-01
Dissolved lignin phenols, chromophoric dissolved organic matter (CDOM) absorption, and fluorescence were analyzed along cross-slope mooring locations in the Barents, Laptev, and East Siberian Seas to gain a better understanding of terrigenous dissolved organic carbon (tDOC) dynamics in Arctic shelf seas and the Arctic Ocean. A gradient of river water and tDOC was observed along the continental shelf eastward into the East Siberian Sea. Correlations of carbon-normalized yields of lignin-derived phenols supplied by Siberian rivers with river water fractions and known water residence times yielded in situ decay constants of 0.18-0.58 per year. Calculations showed about 50% of annual tDOC discharged by Siberian rivers was mineralized in estuaries and on the Eurasian shelves per year indicating extensive removal of tDOC. Bioassay experiments and in situ decay constants indicated a reactivity continuum for tDOC. CDOM parameters and acid/aldehyde ratios of vanillyl (V) and syringyl (S) lignin phenols showed biomineralization was the dominant mechanism for the removal of tDOC. Characteristic ratios of p-hydroxy (P), S, and V phenols (P/V, S/V) also identified shelf regions in the Kara Sea and regions along the Western Laptev Sea shelf where formation of Low Salinity Halocline Waters (LSHW) and Lower Halocline Water (LHW) occurred. The efficient removal of tDOC demonstrates the importance of Eurasian margins as sinks of tDOC derived from the large Siberian Rivers and confirms tDOC mineralization has a major impact on nutrients budgets, air-sea CO2 exchange, and acidification in the Siberian Shelf Seas.
The Relationship Between DOC Partition Coefficient and Mineral Soil C:N Ratio
NASA Astrophysics Data System (ADS)
Aitkenhead-Peterson, J. A.; McDowell, W. H.
2001-12-01
Since our recent publication showing that soil C:N predicts DOC flux at local and global scales, an effort has been made to understand mechanisms controlling the relationship between the two variables. We have approached this at multiple scales, using soil batch experiments, soil column experiments, and long-term field manipulations. We present here the results from our batch adsorption experiment. Mineral soils from tropical (wet and moist) and temperate (coniferous and hardwood) forests were used to assess DOC adsorption by the initial mass isotherm approach. We found that the DOC partition co-efficient (m) which represents a soil's tendency to adsorb DOC is strongly and inversely related to mineral soil C:N ratio (R2 = 0.99 n = 10 p < 0.001). The intercept of the mass isotherm, or the desorption term, was positively related to mineral soil C:N ratio (R2 = 0.80 n = 10 p < 0.01), but we found that desorption of DOC was more closely correlated with equilibrium DOC concentration (R2 = 0.97 n = 10 p < 0.001) than with mineral soil C:N. The mass isotherm approach is also useful in calculating the reactive soil pool (RSP), the fraction of the soil pool of organic carbon that may be lost to leaching. The RSP was not significantly related to mineral soil C:N, but tropical soils tended to have a larger RSP than temperate soils. Although some of the tropical soils came from areas where the natural forest had been cleared, used for plantations and then abandoned, the relationship between DOC adsorption and mineral soil C:N was not compromised. Watershed soil C:N ratio is an excellent predictor of DOC export because soil C:N is related to physiochemical adsorption processes in mineral soils and biotic production of DOC in organic soil horizons. It appears that soil C:N is a relatively robust predictor of soil solution DOC concentration and surface water DOC export for ecosystems undergoing environmental stress.
High-mountain lakes as a hotspot of dissolved organic matter production in a changing climate
NASA Astrophysics Data System (ADS)
Abood, P. H.; Williams, M. W.; McKnight, D. M.; Hood, E. H.
2004-12-01
Changes in climate may adversely affect mountain environments before downstream ecosystems are affected. Steep topography, thin soils with limited extent, sparse vegetation, short growing seasons, and climatic extremes (heavy snowfalls, cold temperatures, high winds), all contribute to the sensitivity of high mountain environments to perturbations. Here we evaluate the role of oligatrophic high-elevation lakes as "hot spots" of aquatic production that may respond to changes in temperature, precipitation amount, and pollution deposition faster and more directly than co-located terrestrial ecosystems. Our research was conducted in the Rocky Mountains, USA. Water samples were collected for dissolved organic carbon (DOC), other solutes, and water isotopes over the course of the runoff season along a longitudinal transect of North Boulder Creek in the Colorado Front Range from the continental divide and alpine areas to downstream forested systems. Sources of DOC were evaluated using chemical fractionation with XAD-8 resins and fluorescence spectroscopy. There was net DOC production in the two alpine lakes but not for the forested subalpine lake. Oxygen-18 values showed that water residence times in lakes increased dramatically in late summer compared to snowmelt. Chemical fractionation of DOC showed there was a increase in the non-humic acid content across the summer of 2003 at all elevations, with alpine waters showing greater increases than subalpine waters. The fluorescence properties of DOC and water isotopes suggested that DOC in aquatic systems was primarily derived from terrestrial precursor material during snowmelt. However, fluorescence properties of DOC in high-elevation lakes on the recession limb of the hydrograph suggest DOC derived from algal and microbial biomass in the lakes was a more important source of DOC in late summer and fall. Alpine lakes produced 14 times more DOC on unit area basis compared to the surrounding terrestrial ecosystems. We hypothesize that much of the authochthonous production is a result of algal growth in alpine lakes caused by the increases in nitrogen deposition from wetfall.
NASA Astrophysics Data System (ADS)
Song, K. S.; Zang, S. Y.; Zhao, Y.; Li, L.; Du, J.; Zhang, N. N.; Wang, X. D.; Shao, T. T.; Guan, Y.; Liu, L.
2013-10-01
Spatiotemporal variations of dissolved organic carbon (DOC) and inorganic carbon (DIC) in 26 waters across the semi-humid/semi-arid Songnen Plain, China, were examined with data collected during 2008-2011. Fresh (n = 14) and brackish (n = 12) waters were grouped according to electrical conductivity (threshold = 1000 μS cm-1) Significant differences in the average DOC and DIC concentrations were observed between the fresh (5.63 mg L-1, 37.39 mg L-1) and the brackish waters (15.33 mg L-1, 142.93 mg L-1). Colored dissolved organic matter (CDOM) and DOC concentrations were mainly controlled by climatic-hydrologic conditions. The investigation indicated that the outflow conditions in the semi-arid region had condensed effects on the dissolved carbon, resulting in close relationships between salinity vs. DOC (R2 = 0.66), and salinity vs. DIC (R2 = 0.94). An independent data set collected in May 2012 also confirmed this finding (DOC: R2 = 0.79, DIC: R2 = 0.91), highlighting the potential of quantifying DOC and DIC via salinity measurements for waters dispersed in the plain. Indices based on the CDOM absorption spectra (e.g., the DOC-specific CDOM absorption (SUVA254), absorption ratio a250 : a365 (E250 : E365) and the spectral slope ratio (Sr, S275-295/S350-400) were applied to characterize CDOM composition and quality. Our results indicate that high molecular weight CDOM fractions are more abundant in the fresh waters than the brackish waters.
NASA Astrophysics Data System (ADS)
Song, K. S.; Zang, S. Y.; Zhao, Y.; Du, J.; Li, L.; Zhang, N. N.; Wang, X. D.; Shao, T. T.; Guan, Y.; Liu, L.
2013-05-01
Spatiotemporal variations of dissolved organic carbon (DOC), inorganic carbon (DIC) in 26 waters across the semi-humid/semi-arid Songnen Plain, China were examined with data collected during 2008-2011. Fresh (n = 14) and brackish (n = 12) waters were grouped according to electrical conductivity (threshold = 1000 μS cm-1). Significant differences in the mean DOC/DIC concentrations were observed between fresh (5.63 mg L-1, 37.39 mg L-1) and brackish waters (15.33 mg L-1, 142.93 mg L-1). Colored dissolved organic matter (CDOM) and DOC concentrations were mainly controlled by climatic-hydrologic conditions. The observation indicated that the outflow conditions in the semi-endorheic region had condensed effects on the dissolved carbon, resulting in close relationships between salinity vs. DOC (R2 = 0.66), and vs. DIC (R2 = 0.94). Independent data set collected in May 2012 also confirmed this finding (DOC: R2 = 0.79), (DIC: R2 = 0.91), highlighting the potential of quantifying DOC/DIC via salinity measurements for waters dispersed in the plain. Indices based on CDOM absorption spectra, e.g. DOC specific CDOM absorption (SUVA254), absorption ratio a250 : a365 (E250:365) and spectral slope ratio (Sr, S275-295/S350-400), were applied to characterize DOM composition and quality. Our results indicate high molecular weight CDOM fractions are more abundant in fresh waters than brackish waters.
Parry, L E; Chapman, P J; Palmer, S M; Wallage, Z E; Wynne, H; Holden, J
2015-09-15
Peatlands are important sources of fluvial carbon. Previous research has shown that riverine dissolved organic carbon (DOC) concentrations are largely controlled by soil type. However, there has been little work to establish the controls of riverine DOC within blanket peatlands that have not undergone major disturbance from drainage or burning. A total of 119 peatland catchments were sampled for riverine DOC and water colour across three drainage basins during six repeated sampling campaigns. The topographic characteristics of each catchment were determined from digital elevation models. The dominant vegetation cover was mapped using 0.5m resolution colour infrared aerial images, with ground-truthed validation revealing 82% accuracy. Forward and backward stepwise regression modelling showed that mean slope was a strong (and negative) determinant of DOC and water colour in blanket peatland river waters. There was a weak role for plant functional type in determining DOC and water colour. At the basin scale, there were major differences between the models depending on the basin. The dominance of topographic predictors of DOC found in our study, combined with a weaker role of vegetation type, paves the way for developing improved planning tools for water companies operating in peatland catchments. Using topographic data and aerial imagery it will be possible to predict which tributaries will typically yield lower DOC concentrations and which are therefore more suitable and cost-effective as raw water intakes. Copyright © 2015 Elsevier B.V. All rights reserved.
Rìos-Montes, Karina A; Casas-Zapata, Juan C; Briones-Gallardo, Roberto; Peñuela, Gustavo
2017-04-03
The most efficient system of horizontal subsurface flow constructed wetlands (HSSFCW) for removing dissolved organic carbon (DOC) in the presence of chlorothalonil pesticide (CLT) present in synthetic domestic wastewater was determined using the macrophyte Phragmites australis. Two concentrations of CLT (85 and 385 μg L -1 ) and one concentration of glucose (20 mg L -1 ) were evaluated in four pilot scale horizontal surface flow constructed wetlands coupled with two sizes of silica gravel, igneous gravel, fine chalky gravel (3.18-6.35 mm), coarse gravel (12.70-25.40 mm) and two water surface heights (20 and 40 cm). For a month, wetlands were acclimated with domestic wastewater. Some groups of bacteria were also identified in the biofilm attached to the gravel. In each treatment periodic samplings were conducted in the influent and effluent. Chlorothalonil was quantified by gas chromatography (GC-ECD m), DOC by an organic carbon analyzer and bacterial groups using conventional microbiology in accordance with Standard Methods. The largest removals of DOC (85.82%-85.31%) were found when using fine gravel (3.18-6.35 mm) and the lower layer of water (20 cm). The bacterial groups quantified in the biofilm were total heterotrophic, revivable heterotrophic, Pseudomonas and total coliforms. The results of this study indicate that fine grain gravel (3.18-6.35 mm) and both water levels (20 to 40 cm) can be used in the removal of organic matter and for the treatment of agricultural effluents contaminated with organo-chloride pesticides like CLT in HSSFCW.
NASA Astrophysics Data System (ADS)
Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus
2015-04-01
Over the past decades, stream sampling protocols for environmental tracers were often limited by logistical and technological constraints. Long-term sampling programs would typically rely on weekly sampling campaigns, while high-frequency sampling would remain restricted to a few days or hours at best. We stipulate that the currently predominant sampling protocols are too coarse to capture and understand the full amplitude of rainfall-runoff processes and its relation to water quality fluctuations. Weekly sampling protocols are not suited to get insights into the hydrological system during high flow conditions. Likewise, high frequency measurements of a few isolated events do not allow grasping inter-event variability in contributions and processes. Our working hypothesis is based on the potential of a new generation of field-deployable instruments for measuring environmental tracers at high temporal frequencies over an extended period. With this new generation of instruments we expect to gain new insights into rainfall-runoff dynamics, both at intra- and inter-event scales. Here, we present the results of one year of DOC and nitrate measurements with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH). The instrument measures the absorption spectrum from 220 to 720 nm in situ and at high frequencies and derives DOC and nitrate concentrations. The measurements were carried out at 15 minutes intervals in the Weierbach catchment (0.47 km2) in Luxemburg. This fully forested catchment is characterized by cambisol soils and fractured schist as underlying bedrock. The time series of DOC and nitrate give insights into the high frequency dynamics of stream water. Peaks in DOC concentrations are closely linked to discharge peaks that occur during or right after a rainfall event. Those first discharge peaks can be linked to fast near surface runoff processes and are responsible for a remarkable amount of DOC export. A special characterisation of the Weierbach catchment are the delayed second peaks a few days after the rainfall event. Nitrate concentrations are following this second peak. We assume that this delayed response is going back to subsurface or upper groundwater flows, with nitrate enriched water. On an inter-event scale during low flow / base flow conditions, we observe interesting diurnal patterns of both DOC and nitrate concentrations. Overall, the long-term high-frequency measurements of DOC and nitrate provide us the opportunity to separate different rainfall-runoff processes and link the amount of DOC and nitrate export to them to quantify the overall relevance of the different processes.
Overview of a simple model describing variation of dissolved organic carbon in an upland catchment
Boyer, Elizabeth W.; Hornberger, George M.; Bencala, Kenneth E.; McKnight, Diane M.
1996-01-01
Hydrological mechanisms controlling the variation of dissolved organic carbon (DOC) were investigated in the Deer Creek catchment located near Montezuma, CO. Patterns of DOC in streamflow suggested that increased flows through the upper soil horizon during snowmelt are responsible for flushing this DOC-enriched interstitial water to the streams. We examined possible hydrological mechanisms to explain the observed variability of DOC in Deer Creek by first simulating the hydrological response of the catchment using TOPMODEL and then routing the predicted flows through a simple model that accounted for temporal changes in DOC. Conceptually the DOC model can be taken to represent a terrestrial (soil) reservoir in which DOC builds up during low flow periods and is flushed out when infiltrating meltwaters cause the water table to rise into this “reservoir”. Concentrations of DOC measured in the upper soil and in streamflow were compared to model simulations. The simulated DOC response provides a reasonable reproduction of the observed dynamics of DOC in the stream at Deer Creek.
Köhler, Stephan J; Lavonen, Elin; Keucken, Alexander; Schmitt-Kopplin, Philippe; Spanjer, Tom; Persson, Kenneth
2016-02-01
Rising organic matter concentrations in surface waters in many Nordic countries require current drinking water treatment processes to be adapted. Accordingly, the use of a novel nanofiltration (NF) membrane was studied during a nine month period in pilot scale at a large drinking water treatment plant in Stockholm, Sweden. A chemically resistant hollow-fibre NF membrane was fed with full scale process water from a rapid sand filter after aluminum sulfate coagulation. The combined coagulation and NF process removed more than 90% of the incoming lake water dissolved organic carbon (DOC) (8.7 mg C L(-1)), and 96% of the absorbance at 254 nm (A254) (0.28 cm(-1) incoming absorbance). Including granulated active carbon GAC) filter, the complete pilot plant treatment process we observed decreases in DOC concentration (8.7-0.5 mg C L(-1)), SUVA (3.1-1.7 mg(-1) L m(-1)), and the average nominal molecular mass (670-440 Da). Meanwhile, water hardness was practically unaffected (<20% reduction). Humic substances (HS) and biopolymers were almost completely eliminated (6510-140 and 260 to 10 μg C L(-1) respectively) and low molecular weight (LMW) neutrals decreased substantially (880-190 μg C L(-1)). Differential excitation emission matrices (EEMs), which illustrate the removal of fluorescing organic matter (FDOM) over a range of excitation and emission wavelengths, demonstrate that coagulation removed 35 ± 2% of protein-like material and 65 ± 2% of longer emission wavelength, humic-like FDOM. The subsequent NF treatment was somewhat less selective but still preferentially targeted humic-like FDOM (83 ± 1%) to a larger extent than protein-like material (66 ± 3%). The high selectivity of organic matter during coagulation compared to NF separation was confirmed from analyses with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), and liquid chromatography with organic carbon detection (LC-OCD), as coagulation exclusively targeted oxidized organic matter components while NF removed both chemically reduced and oxidized components. DOC removal and change in DOC character in the GAC filters showed marked differences with slower saturation and more pronounced shifts in DOC character using NF as pre-treatment. Fluorescence derived parameters showed a similar decrease over time of GAC performance for the first 150 days but also indicated ongoing change of DOM character in the post NF GAC filtrate over time even after LC-OCD indicated steady state with respect to outgoing carbon. During our trial iron concentrations were low (<30 ppb) and thus A254 could be directly related to the concentration of HS (R(2) = 0.9). The fluorescence derived freshness index (β:α) proved to be an excellent variable for estimating the fraction of HS present in all samples. Given the recommended limit of 4 mg L(-1) for chemical oxygen demand (COD) for Swedish drinking water, coagulation will need to be supplemented with one or more treatment steps irrespective whether climate change will lead to drier or wetter conditions in order to maintain sufficient DOC removal with the current increasing concentrations in raw waters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Representation of Dissolved Organic Carbon in the JULES Dynamic Global Vegetation Model
NASA Astrophysics Data System (ADS)
Nakhavali, Mahdi; Friedlingstein, Pierre; Guenet, Bertrand; Ciais, Philip
2017-04-01
Current global models of the carbon cycle consider only vertical gas exchanges between terrestrial or oceanic reservoirs and the atmosphere, hence not considering lateral transport of carbon from the continent to the oceans. This also means that such models implicitly consider that all the CO2 which is not respired to the atmosphere is stored on land, hence overestimating the land sink of carbon. Moving toward a boundless carbon cycle that is integrating the whole continuum from land to ocean to atmosphere is needed in order to better understand Earth's carbon cycle and to make more reliable projection of its future. Here we present an original representation of Dissolved Organic Carbon (DOC) processes in the Joint UK Land Environment Simulator (JULES). The standard version of JULES represent energy, water and carbon cycles and exchanges with the atmosphere, but only account for water run-off, not including export of carbon from terrestrial ecosystems to the aquatic environments. The aim of the project is to include in JULES a representation of DOC production in terrestrial soils, due to incomplete decomposition of organic matter, its decomposition to the atmosphere, and its export to the river network by leaching. In new developed version of JULES (JULES-DOCM), DOC pools, based on their decomposition rate, are classified into labile and recalcitrant within 3 meters of soil. Based on turnover rate, DOC coming from plant material pools and microbial biomass is directed to labile pool, while DOC from humus is directed to recalcitrant pool. Both of these pools have free (dissolved) and locked (adsorbed) form where just the free pool is subjected to decomposition and leaching. DOC production and decomposition are controlled by rate modifiers (moisture, temperature, vegetation fraction and decomposition rate) at each soil layer. Decomposed DOC is released to the atmosphere following a fixed carbon use efficiency. Leaching accounts for both surface (runoff) and subsurface (groundwater) components and is parameterized as Top soil leaching (from top 20cm) and Bottom soil leaching (down to 3 meters) depending on DOC concentration and runoff leaving that layer. The model parameters are calibrated against specific sites (Brasschaat, Hainich and Carlow) for which observations of DOC concentration and leaching are available. Tuning is performed optimizing parameters such as DOC labile and recalcitrant resident time, DOC vertical distribution and CUE. Once this calibration has been performed at the site level, the model is used for global simulations with the major historical forcing (climate, atmospheric CO2 and land-use changes) in order to estimate the changes of DOC export and their attribution to anthropogenic activities.
NASA Astrophysics Data System (ADS)
Pickard, Amy E.; Heal, Kate V.; McLeod, Andrew R.; Dinsmore, Kerry J.
2017-04-01
Aquatic systems draining peatland catchments receive a high loading of dissolved organic carbon (DOC) from the surrounding terrestrial environment. Whilst photo-processing is known to be an important process in the transformation of aquatic DOC, the drivers of temporal variability in this pathway are less well understood. In this study, 8 h laboratory irradiation experiments were conducted on water samples collected from two contrasting peatland aquatic systems in Scotland: a peatland stream and a reservoir in a catchment with high percentage peat cover. Samples were collected monthly at both sites from May 2014 to May 2015 and from the stream system during two rainfall events. DOC concentrations, absorbance properties and fluorescence characteristics were measured to investigate characteristics of the photochemically labile fraction of DOC. CO2 and CO produced by irradiation were also measured to determine gaseous photoproduction and intrinsic sample photoreactivity. Significant variation was seen in the photoreactivity of DOC between the two systems, with total irradiation-induced changes typically 2 orders of magnitude greater at the high-DOC stream site. This is attributed to longer water residence times in the reservoir rendering a higher proportion of the DOC recalcitrant to photo-processing. During the experimental irradiation, 7 % of DOC in the stream water samples was photochemically reactive and direct conversion to CO2 accounted for 46 % of the measured DOC loss. Rainfall events were identified as important in replenishing photoreactive material in the stream, with lignin phenol data indicating mobilisation of fresh DOC derived from woody vegetation in the upper catchment. This study shows that peatland catchments produce significant volumes of aromatic DOC and that photoreactivity of this DOC is greatest in headwater streams; however, an improved understanding of water residence times and DOC input-output along the source to sea aquatic pathway is required to determine the fate of peatland carbon.
Jorien E. Vonk,; Tank, Suzanne E.; Paul J. Mann,; Robert G.M. Spencer,; Treat, Claire C.; Striegl, Robert G.; Benjamin W. Abbott,; Wickland, Kimberly P.
2015-01-01
As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the degradability of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism, yet knowledge of the mechanistic controls on DOC biodegradability is currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences commonly used in the literature. We also synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-arctic trends in BDOC.An increasing extent of permafrost across the landscape resulted in higher DOC losses in both soil and aquatic systems. We hypothesize that the unique composition of (yedoma) permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively short flow path lengths and transport times, contributed to a higher overall terrestrial and freshwater DOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January–December) decrease in BDOC in large streams and rivers, but saw no apparent change in smaller streams or soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later in the summer, as well as decreasing hydrologic connectivity between soils and surface water as the thaw season progresses. Our results suggest that future climate warming-induced shifts of continuous permafrost into discontinuous permafrost regions could affect the degradation potential of thaw-released DOC, the amount of BDOC, as well as its variability throughout the Arctic summer. We lastly recommend a standardized BDOC protocol to facilitate the comparison of future work and improve our knowledge of processing and transport of DOC in a changing Arctic.
NASA Astrophysics Data System (ADS)
Vonk, J. E.; Tank, S. E.; Mann, P. J.; Spencer, R. G. M.; Treat, C. C.; Striegl, R. G.; Abbott, B. W.; Wickland, K. P.
2015-12-01
As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the degradability of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism, yet knowledge of the mechanistic controls on DOC biodegradability is currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences commonly used in the literature. We also synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-arctic trends in BDOC. An increasing extent of permafrost across the landscape resulted in higher DOC losses in both soil and aquatic systems. We hypothesize that the unique composition of (yedoma) permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively short flow path lengths and transport times, contributed to a higher overall terrestrial and freshwater DOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January-December) decrease in BDOC in large streams and rivers, but saw no apparent change in smaller streams or soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later in the summer, as well as decreasing hydrologic connectivity between soils and surface water as the thaw season progresses. Our results suggest that future climate warming-induced shifts of continuous permafrost into discontinuous permafrost regions could affect the degradation potential of thaw-released DOC, the amount of BDOC, as well as its variability throughout the Arctic summer. We lastly recommend a standardized BDOC protocol to facilitate the comparison of future work and improve our knowledge of processing and transport of DOC in a changing Arctic.
Mindl, Birgit; Hofer, Julia; Kellermann, Claudia; Stichler, Willibald; Teichmann, Günter; Psenner, Roland; Danielopol, Dan L; Neudorfer, Wolfgang; Griebler, Christian
2015-01-01
Infiltration of surface water constitutes an important pillar in artificial groundwater recharge. However, insufficient transformation of organic carbon and nutrients, as well as clogging of sediments often cause major problems. The attenuation efficiency of dissolved organic carbon (DOC), nutrients and pathogens versus the risk of bioclogging for intermittent recharge were studied in an infiltration basin covered with different kinds of macrovegetation. The quality and concentration of organic carbon, major nutrients, as well as bacterial biomass, activity and diversity in the surface water, the porewater, and the sediment matrix were monitored over one recharge period. Additionally, the numbers of viral particles and Escherichia coli were assessed. Our study showed a fast establishment of high microbial activity. DOC and nutrients have sustainably been reduced within 1.2 m of sediment passage. Numbers of E. coli, which were high in the topmost centimetres of sediment porewater, dropped below the detection limit. Reed cover was found to be advantageous over bushes and trees, since it supported higher microbial activities along with a good infiltration and purification performance. Short-term infiltration periods of several days followed by a break of similar time were found suitable for providing high recharge rates, and good water purification without the risk of bioclogging.
Zhang, Zhongguo; Liu, Dan; Qian, Yu; Wu, Yue; He, Peiran; Liang, Shuang; Fu, Xiaozheng; Li, Jiding; Ye, Changqing
2017-06-01
A submerged internal circulating membrane coagulation reactor (MCR) was used to treat surface water to produce drinking water. Polyaluminum chloride (PACl) was used as coagulant, and a hydrophilic polyvinylidene fluoride (PVDF) submerged hollow fiber microfiltration membrane was employed. The influences of trans-membrane pressure (TMP), zeta potential (ZP) of the suspended particles in raw water, and KMnO 4 dosing on water flux and the removal of turbidity and organic matter were systematically investigated. Continuous bench-scale experiments showed that the permeate quality of the MCR satisfied the requirement for a centralized water supply, according to the Standards for Drinking Water Quality of China (GB 5749-2006), as evaluated by turbidity (<1 NTU) and total organic carbon (TOC) (<5mg/L) measurements. Besides water flux, the removal of turbidity, TOC and dissolved organic carbon (DOC) in the raw water also increased with increasing TMP in the range of 0.01-0.05MPa. High ZP induced by PACl, such as 5-9mV, led to an increase in the number of fine and total particles in the MCR, and consequently caused serious membrane fouling and high permeate turbidity. However, the removal of TOC and DOC increased with increasing ZP. A slightly positive ZP, such as 1-2mV, corresponding to charge neutralization coagulation, was favorable for membrane fouling control. Moreover, dosing with KMnO 4 could further improve the removal of turbidity and DOC, thereby mitigating membrane fouling. The results are helpful for the application of the MCR in producing drinking water and also beneficial to the research and application of other coagulation and membrane separation hybrid processes. Copyright © 2016. Published by Elsevier B.V.
Characterisation of DOC and its relation to the deep terrestrial biosphere
NASA Astrophysics Data System (ADS)
Vieth, Andrea; Vetter, Alexandra; Sachse, Anke; Horsfield, Brian
2010-05-01
The deep subsurface is populated by a large number of microorganisms playing a pivotal role in the carbon cycling. The question arises as to the origin of the potential carbon sources that support deep microbial communities and their possible interactions within the deep subsurface. As the carbon sources need to be dissolved in formation fluids to become available to microorganisms, the dissolved organic carbon (DOC) needs further characterisation as regards concentration, structural as well as molecular composition and origin. The Malm carbonates in the Molasse basin of southern Germany are of large economic potential as they are targets for both hydrocarbon and geothermal exploration (ANDREWS et al., 1987). Five locations that differ in their depth of the Malm aquifer between 220 m and 3445 m below surface have been selected for fluid sampling. The concentration and the isotopic composition of the DOC have been determined. To get a better insight into the structural composition of the DOC, we also applied size exclusion chromatography and quantified the amount of low molecular weight organic acids (LMWOA) by ion chromatography. With increasing depth of the aquifer the formation fluids show increasing salinity as chloride concentrations increase from 2 to 300 mg/l and also the composition of the DOC changes. Water samples from greater depth (>3000 m) showed that the DOC mainly consists of LMWOA (max. 83 %) and low percentages of neutral compounds (alcohols, aldehyde, ketones, amino acids) as well as "building blocks". Building blocks have been described to be the oxidation intermediates from humic substances to LMWOA. With decreasing depth of the aquifer, the DOC of the fluid becomes increasingly dominated by neutral compounds and the percentage of building blocks increases to around 27%. The fluid sample from 220 m depth still contains a small amount of humic substances. The DOC of formation fluids in some terrestrial sediments may originate from organic-rich layers like coals and source rocks which may provide carbon sources for the deep biosphere by leaching water soluble organic compounds. We investigated the potential of a series of Eocene-Pleistocene coals, mudstones and sandstones from New Zealand with different maturities (Ro between 0.29 and 0.39) and total organic carbon content (TOC) regarding their potential to release such compounds. The water extraction of these New Zealand coals using Soxhlet apparatus resulted in yields of LMWOA that may feed the local deep terrestrial biosphere over geological periods of time (VIETH et al., 2008). However, the DOC of the water extracts mainly consisted of humic substances. To investigate the effect of thermal maturity of the organic matter as well as the effect of the organic matter type on the extraction yields, we examined additional coal samples (Ro between 0.29 and 0.80) and source rock samples from low to medium maturity (Ro between 0.3 to 1.1). Within our presentation we would like to show the compositional diversity and variability of dissolved organic compounds in natural formation fluids as well as in water extracts from a series of very different lithologies and discuss their effects on the carbon cycling in the deep terrestrial subsurface. References: Andrews, J. N., Youngman, M. J., Goldbrunner, J. E., and Darling, W. G., 1987. The geochemistry of formation waters in the Molasse Basin of Upper Austria. Environmental Geology 10, 43-57. Vieth, A., Mangelsdorf, K., Sykes, R., and Horsfield, B., 2008. Water extraction of coals - potential to estimate low molecular weight organic acids as carbon feedstock for the deep terrestrial biosphere? Organic Geochemistry 39, 985-991.
Tracing river runoff and DOC over the East Siberian Shelf using in situ CDOM measurements
NASA Astrophysics Data System (ADS)
Pugach, Svetlana; Semiletov, Igor; Pipko, Irina
2010-05-01
The Great Siberian Rivers integrate meteorological and hydrological changes in their watersheds and play a significant role in the physical and biogeochemical regime of the Arctic Ocean through transport of fresh water (FW) and carbon into the sea. Since 1994, the Laboratory of Arctic Research POI in cooperation with the IARC UAF investigate the fresh water and carbon fluxes in the Siberian Arctic land-shelf system with the special emphasize in the East Siberian Arctic shelf (ESAS) which represents the widest and shallowest continental shelf in the World Ocean, yet it is still poorly explored. The East Siberian Sea is influenced by water exchange from the eastern Laptev Sea (where local shelf waters are diluted mostly by Lena River discharge) and by inflow of Pacific waters from the Chukchi Sea. This region is characterized by the highest rate of coastal erosion and significant volume of the riverine discharge and exhibits the largest gradients in all oceanographic parameters observed for the entire Arctic Ocean. Here we demonstrate a connection among Chromophoric (or Colored) Dissolved Organic Matter (CDOM) which represents the colored fraction of Dissolved Organic Carbon (DOC), salinity, and pCO2. Our data have documented strong linear correlations between salinity and CDOM in the near shore zone strongly influenced by riverine runoff. Correlation coefficient between CDOM and salinity in surface waters was equal to -0.94, -0.94 and -0.95 for surface water stations in September of 2003, 2004, and 2005, respectively. Combined analysis of CDOM and DOC data demonstrated a high degree of correlation between these parameters (r=0.96). Such close connection between these characteristics of waters in this region makes it possible to restore the distribution of DOC according to our original CDOM data of the profiling systems, such as CTD-Seabird equipped by WETStar CDOM fluorimeter. It is shown that the CDOM can be used as a conservative tracer to follow the transport and fate of FW across the Arctic shelf through a combination of remote sensing and field observations. This work accomplished under auspice of the Russian Academy of Sciences, NOAA, US National Science Foundation, and Russian Foundation for Basic Research. Future work will be targeted towards a key, unresolved issue of climate change in the Arctic which can be cast as a scientific question that is fundamentally cross-disciplinary and synthetic: How does the Arctic hydrological and carbon cycle respond to global change?
Mitchell, M.J.; Piatek, K.B.; Christopher, S.; Mayer, B.; Kendall, C.; McHale, P.
2006-01-01
Understanding the effects of climate change including precipitation patterns has important implications for evaluating the biogeochemical responses of watersheds. We focused on four storms in late summer and early fall that occurred after an exceptionally dry period in 2002. We analyzed not only the influence of these storms on episodic chemistry and the role of different water sources in affecting surface water chemistry, but also the relative contributions of these storms to annual biogeochemical mass balances. The study site was a well studied 135-ha watershed in the Adirondack Park of New York State (USA). Our analyses integrated measurements on hydrology, solute chemistry and the isotopic composition of NO 3- (??15N and ??18O) and SO 42- (??34S and ??18O) to evaluate how these storms affected surface water chemistry. Precipitation amounts varied among the storms (Storm 1: Sept. 14-18, 18.5 mm; Storm 2: Sept. 21-24, 33 mm; Storm 3: Sept. 27-29, 42.9 mm; Storm 4: Oct. 16-21, 67.6 mm). Among the four storms, there was an increase in water yields from 2 to 14%. These water yields were much less than in studies of storms in previous years at this same watershed when antecedent moisture conditions were higher. In the current study, early storms resulted in relatively small changes in water chemistry. With progressive storms the changes in water chemistry became more marked with particularly major changes in Cb (sum of base cations), Si, NO 3- , and SO 42- , DOC and pH. Analyses of the relationships between Si, DOC, discharge and water table height clearly indicated that there was a decrease in ground water contributions (i.e., lower Si concentrations and higher DOC concentrations) as the watershed wetness increased with storm succession. The marked changes in chemistry were also reflected in changes in the isotopic composition of SO 42- and NO 3- . There was a strong inverse relationship between SO 42- concentrations and ??34S values suggesting the importance of S biogeochemical redox processes in contributing to SO 42- export. The isotopic composition of NO 3- in stream water indicated that this N had been microbially processed. Linkages between SO 42- and DOC concentrations suggest that wetlands were major sources of these solutes to drainage waters while the chemical and isotopic response of NO 3- suggested that upland sources were more important. Although these late summer and fall storms did not play a major role in the overall annual mass balances of solutes for this watershed, these events had distinctive chemistry including depressed pH and therefore have important consequences to watershed processes such as episodic acidification, and the linkage of these processes to climate change. ?? Springer 2006.
Organic carbon fluxes in stemflow, throughfall and rainfall in an olive orchard
NASA Astrophysics Data System (ADS)
Lombardo, L.; Vanwalleghem, T.; Gomez, J. A.
2012-04-01
The importance of rainfall distribution under the vegetation canopy for nutrient cycling of forest ecosystems has been widely studied (e.g. Kolkai et al., 1999, Bath et al., 2011). It has been demonstrated how throughfall and stemflow reach the soil as chemically-enriched water, by incorporating soluble organic and inorganic particles deriving from plant exudates and from atmospheric depositions (dryfall and wetfall) present on the surfaces of the plant (leaves, bark, fruits). Dissolved (DOC) and particulate (POC) organic carbon inputs from stem- and canopy-derived hydrologic fluxes are small but important components of the natural carbon cycle. DOC has also the capability to form complexes that control the transport and solubility of heavy metals in surface and ground waters, being composed for the most part (75-90%) of fulvic, humic or tanninic compounds, and for the resting part of molecules like carbohydrates, hydrocarbons, waxes, fatty acids, amino and hydroxy acids. However, very little data is available for agricultural tree crops, especially olive trees. In this sense, the objective of this work is to investigate the concentration and fluxes of organic carbon in rainfall, throughfall, and stemflow in a mature olive orchard located in Cordoba, in Southern Spain and to relate them to rainfall characteristics and tree physiology. The measurements started in October 2011. Four high density polyethylene bottles with 18-cm-diameter polyethylene funnels for throughfall collection were placed beneath the canopy of each of the three selected olive trees; four more collectors were placed in open spaces in the same orchard for rainfall sampling. Stemflow was collected through PVC spiral tubes wrapped around the trunks and leading into collection bins. The throughflow sampling points were chosen randomly. Total and dissolved organic carbon concentrations in unfiltered (TOC) and filtered (0.45 µm membrane filter, DOC) collected waters were measured using a TOC analyzer with a high temperature combustion system and infrared detection of the evolved CO2. The difference in concentration between TOC and DOC defined the POC concentration. Leaf area density (LAD) and leaf area index (LAI) of olive trees were calculated using the LAI-2000 plant canopy analyzer (PCA) (Li-Cor). Stemflow and throughfall resulted both influenced by the characteristics of precipitations (amount, time of the year), canopy volume and leaf characteristics, with stemflow showing, in average, higher DOC and POC concentration values compare to throughfall. Throughfall resulted between 4 and 17 times more concentrated DOC than rainfall, but highlighted a high site-specific variability related to the canopy architecture.
NASA Astrophysics Data System (ADS)
Bellmore, Rebecca A.; Harrison, John A.; Needoba, Joseph A.; Brooks, Erin S.; Kent Keller, C.
2015-10-01
Agricultural practices have altered watershed-scale dissolved organic matter (DOM) dynamics, including in-stream concentration, biodegradability, and total catchment export. However, mechanisms responsible for these changes are not clear, and field-scale processes are rarely directly linked to the magnitude and quality of DOM that is transported to surface water. In a small (12 ha) agricultural catchment in eastern Washington State, we tested the hypothesis that hydrologic connectivity in a catchment is the dominant control over the concentration and quality of DOM exported to surface water via artificial subsurface drainage. Concentrations of dissolved organic carbon (DOC) and humic-like components of DOM decreased while the Fluorescence Index and Freshness Index increased with depth through the soil profile. In drain discharge, these characteristics were significantly correlated with drain flow across seasons and years, with drain DOM resembling deep sources during low-flow and shallow sources during high flow, suggesting that DOM from shallow sources bypasses removal processes when hydrologic connectivity in the catchment is greatest. Assuming changes in streamflow projected for the Palouse River (which contains the study catchment) under the A1B climate scenario (rapid growth, dependence on fossil fuel, and renewable energy sources) apply to the study catchment, we project greater interannual variability in annual DOC export in the future, with significant increases in the driest years. This study highlights the variability in DOM inputs from agricultural soil to surface water on daily to interannual time scales, pointing to the need for a more nuanced understanding of agricultural impacts on DOM dynamics in surface water.
Understanding DOC Mobilization Dynamics Through High Frequency Measurements in a Headwater Catchment
NASA Astrophysics Data System (ADS)
Werner, B.; Musolff, A.; Lechtenfeld, O.; de Rooij, G. H.; Fleckenstein, J. H.
2017-12-01
Increasing dissolved organic carbon (DOC) exports from headwater catchments impact the quality of downstream waters and pose challenges to water supply. The importance of riparian zones for DOC export from catchments in humid, temperate climates has generally been acknowledged, but the hydrological controls and biogeochemical factors that govern mobilization of DOC from riparian zones remain elusive. By analyzing high-frequency time series of UV-VIS based water quality we therefore aim at a better understanding on temporal dynamics of DOC mobilization and exports. In a first step a one year high frequency (15 minutes) data set from a headwater catchment in the Harz Mountains (Germany) was systematically analyzed for event-based patterns in DOC concentrations. Here, a simplistic linear model was generated to explain DOC concentration level and variability in the stream. Furthermore, spectral (e.g. slopes and SUVA254) and molecular (FT-ICR-MS) characterization of DOC was used to fingerprint in-stream DOC during events. Continuous DOC concentrations were best predicted (R², NSE = 0.53) by instantaneous discharge (Q) and antecede wetness conditions of the last 30 days (AWC30 = Precip.30/PET30) as well as mean air temperature (Tmean30) and mean discharge (Qmean30) of the preceding 30 days. Analyses of 36 events revealed seasonal trends for the slope, intercept and R² of linear log(DOC)-log(Q) regressions that can be best explained by the mean air temperature of the preceding 15 days. Continuously available optical DOC quality parameters SUVA254 and spectral slope (275 nm - 295 nm) systematically changed with shifts in discharge and in DOC concentration. This is underlined by selected FT-ICR-MS measurements indicating higher DOC aromaticity and oxygen content at high flow conditions. The change of DOC quality parameters during events indicate a shift in the activated source zones: DOC with a different quality was mobilized during high flow conditions when higher groundwater levels connected formerly disconnected DOC source zones to the stream. We conclude that the high concentration variability of DOC can be explained by a few controlling variables only. These variables can be linked to event-based DOC source activation and more seasonal controls of DOC production.
Carbon fluxes in an acid rain impacted boreal headwater catchment
NASA Astrophysics Data System (ADS)
Marx, Anne; Hintze, Simone; Jankovec, Jakub; Sanda, Martin; Dusek, Jaromir; Vogel, Tomas; van Geldern, Robert; Barth, Johannes A. C.
2016-04-01
Terrestrial carbon export via inland aquatic systems is a key process in the budget of the global carbon cycle. This includes loss of carbon to the atmosphere via gas evasion from rivers or reservoirs as well as carbon fixation in freshwater sediments. Headwater streams are the first endmembers of the transition of carbon between soils, groundwater and surface waters and the atmosphere. In order to quantify these processes the experimental catchment Uhlirska (1.78 km2) located in the northern Czech Republic was studied. Dissolved inorganic, dissolved organic and particulate organic carbon (DIC, DOC, POC) concentrations and isotopes were analyzed in ground-, soil -and stream waters between 2014 and 2015. In addition, carbon dioxide degassing was quantified via a stable isotope modelling approach. Results show a discharge-weighted total carbon export of 31.99 g C m-2 yr-1 of which CO2 degassing accounts 79 %. Carbon isotope ratios (δ13C) of DIC, DOC, and POC (in ‰ VPDB) ranged from -26.6 to -12.4 ‰ from -29.4 to -22.7 ‰ and from -30.6 to -26.6 ‰ respectively. The mean values for DIC are -21.8 ±3.8 ‰ -23.6 ±0.9 ‰ and -19.5 ±3.0 ‰ for soil, shallow ground and surface water compartments. For DOC, these compartments have mean values of -27.1 ±0.3 ‰ -27.0 ±0.8 ‰ and -27.4 ±0.7 ‰Ṁean POC value of shallow groundwaters and surface waters are -28.8 ±0.8 ‰ and -29.3 ±0.5 ‰ respectively. These isotope ranges indicate little turnover of organic material and predominant silicate weathering. The degassing of CO2 caused an enrichment of the δ13C-DIC values of up to 6.8 ‰ between a catchment gauge and the catchment outlet over a distance of 866 m. In addition, the Uhlirska catchment has only negligible natural sources of sulphate, yet SO42- accounts for 21 % of major stream water ions. This is most likely a remainder from acid rain impacts in the area.
NASA Astrophysics Data System (ADS)
Noacco, V.; Howden, N. J. K.; Wagener, T.; Worrall, F.; Burt, T. P.
2015-12-01
This study investigates drivers of changing dissolved organic carbon (DOC) export in the UK's River Thames basin between 1884 and 2014. Specifically, we consider how the impacts of land-use change and population growth drive increases in DOC concentrations and fluxes at the basin outlet. Such key factors for the long-term increase in riverine DOC in temperate, mineral-soil catchments are still widely debated. First, we estimate soil organic carbon (SOC) stocks in the Thames basin for the period. Second, we convert SOC losses due to land-use change into DOC loss to surface waters through runoff. Finally, we combine this input of DOC with an export coefficient model that considers catchment drivers for DOC release to the river. SOC stocks for each year are calculated from a large database of typical SOC levels for land-uses present in the Thames basin and are combined with literature values of transition times for SOC to adjust to a new level following land-use change. We also account for climate change effects on SOC stock due to temperature increases, which reduces SOC stocks as soil organic matter turnover rates increase. Our work shows that the major driver for DOC increase to the river Thames was the rise in the catchment population, where the increase in urban area was used as a proxy. This highlights the role of sewage effluent in contributing to the rise of fluvial DOC, even though wastewater treatments were in place since the early 1990s. Land-use change had significant but short-term impacts in the increase in DOC, mainly due to massive conversion of permanent grassland into arable land during World War II.
Isotopic Tracers for Delineating Non-Point Source Pollutants in Surface Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davisson, M L
2001-03-01
This study tested whether isotope measurements of surface water and dissolved constituents in surface water could be used as tracers of non-point source pollution. Oxygen-18 was used as a water tracer, while carbon-14, carbon-13, and deuterium were tested as tracers of DOC. Carbon-14 and carbon-13 were also used as tracers of dissolved inorganic carbon, and chlorine-36 and uranium isotopes were tested as tracers of other dissolved salts. In addition, large databases of water quality measurements were assembled for the Missouri River at St. Louis and the Sacramento-San Joaquin Delta in California to enhance interpretive results of the isotope measurements. Muchmore » of the water quality data has been under-interpreted and provides a valuable resource to investigative research, for which this report exploits and integrates with the isotope measurements.« less
Weiske, Arndt; Schaller, Jörg; Hegewald, Tilo; Machill, Susanne; Werner, Ingo; Dudel, E Gert
2013-12-01
Metal and metalloid mobilization processes within seepage water are of major concern in a range of water reservoir systems. The mobilization process of arsenic and heavy metals within a dam and sediments of a drinking water reservoir was investigated. Principle component analysis (PCA) on time series data of seepage water showed a clear positive correlation of arsenic with iron and DOC (dissolved organic carbon), and a negative correlation with nitrate due to respiratory processes. A relationship of reductive metal and metalloid mobilization with respiration of old carbon was shown. The system is influenced by sediment layers as well as a recent DOC input from degraded ombrotrophic peatbogs in the catchment area. The isotopic composition ((12)C, (13)C and (14)C) of DOC is altered along the path from basin to seepage water, but no significant changes in structural parameters (LC-OCD-OND, FT-IR) could be seen. DIC (dissolved inorganic carbon) in seepage water partly originates from respiratory processes, and a higher relationship of it with sediment carbon than with the DOC inventory of infiltrating water was found. This study revealed the interaction of respiratory processes with metal and metalloid mobilization in sediment water flows. In contrast to the presumption that emerging DOC via respiratory processes mainly controls arsenic and metal mobilization it could be shown that the presence of aged carbon compounds is essential. The findings emphasize the importance of aged organic carbon for DOC, DIC, arsenic and metal turnover.
Relative importance of multiple factors on terrestrial loading of DOC to Arctic river networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kicklighter, David W.; Hayes, Daniel J; Mcclelland, James W
2014-01-01
Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to controlling carbon fluxes between the land surface and the atmosphere. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that the pan-arctic watershed has contributed, on average, 32 Tg C/yr of DOC to the Arctic Ocean over the 20th century with most coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate ofmore » terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of increases in air temperatures and precipitation. These increases have been partially compensated by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both compensated and enhanced concurrent effects on hydrology to influence terrestrial DOC loading. Future increases in riverine DOC concentrations and export may occur from warming-induced increases in terrestrial DOC production associated with enhanced microbial metabolism and the exposure of additional organic matter from permafrost degradation along with decreases in water yield associated with warming-induced increases in evapotranspiration. Improvements in simulating terrestrial DOC loading to pan-arctic rivers in the future will require better information on the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.« less
The biogeochemistry of carbon across a gradient of streams and rivers within the Congo Basin
NASA Astrophysics Data System (ADS)
Mann, P. J.; Spencer, R. G. M.; Dinga, B. J.; Poulsen, J. R.; Hernes, P. J.; Fiske, G.; Salter, M. E.; Wang, Z. A.; Hoering, K. A.; Six, J.; Holmes, R. M.
2014-04-01
Dissolved organic carbon (DOC) and inorganic carbon (DIC, pCO2), lignin biomarkers, and theoptical properties of dissolved organic matter (DOM) were measured in a gradient of streams and rivers within the Congo Basin, with the aim of examining how vegetation cover and hydrology influences the composition and concentration of fluvial carbon (C). Three sampling campaigns (February 2010, November 2010, and August 2011) spanning 56 sites are compared by subbasin watershed land cover type (savannah, tropical forest, and swamp) and hydrologic regime (high, intermediate, and low). Land cover properties predominately controlled the amount and quality of DOC, chromophoric DOM (CDOM) and lignin phenol concentrations (∑8) exported in streams and rivers throughout the Congo Basin. Higher DIC concentrations and changing DOM composition (lower molecular weight, less aromatic C) during periods of low hydrologic flow indicated shifting rapid overland supply pathways in wet conditions to deeper groundwater inputs during drier periods. Lower DOC concentrations in forest and swamp subbasins were apparent with increasing catchment area, indicating enhanced DOC loss with extended water residence time. Surface water pCO2 in savannah and tropical forest catchments ranged between 2,600 and 11,922 µatm, with swamp regions exhibiting extremely high pCO2 (10,598-15,802 µatm), highlighting their potential as significant pathways for water-air efflux. Our data suggest that the quantity and quality of DOM exported to streams and rivers are largely driven by terrestrial ecosystem structure and that anthropogenic land use or climate change may impact fluvial C composition and reactivity, with ramifications for regional C budgets and future climate scenarios.
Wang, Huijiao; Zhan, Juhong; Yao, Weikun; Wang, Bin; Deng, Shubo; Huang, Jun; Yu, Gang; Wang, Yujue
2018-03-01
Pharmaceutical abatement in a groundwater (GW), surface water (SW), and secondary effluent (SE) by conventional ozonation, the conventional peroxone (O 3 /H 2 O 2 ), and the electro-peroxone (E-peroxone) processes was compared in batch tests. SE had significantly more fast-reacting dissolved organic matter (DOM) moieties than GW and SW. Therefore, O 3 decomposed much faster in SE than in GW and SW. At specific ozone doses of 0.5-1.5 mg O 3 /mg dissolved organic carbon (DOC), the application of O 3 /H 2 O 2 and E-peroxone process (by adding external H 2 O 2 stocks or in-situ generating H 2 O 2 from cathodic O 2 reduction during ozonation) similarly enhanced the OH yield from O 3 decomposition by ∼5-12% and 5-7% in GW and SW, respectively, compared to conventional ozonation. In contrast, due to the slower reaction kinetics of O 3 with H 2 O 2 than O 3 with fast-reacting DOM moieties, the addition or electro-generation of H 2 O 2 hardly increased the OH yield (<4% increases) in SE. Corresponding to the changes in the OH yields, the abatement efficiencies of ozone-resistant pharmaceuticals (ibuprofen and clofibric acid) increased evidently in GW (up to ∼14-18% at a specific ozone dose of 1.5 mg O 3 /mg DOC), moderately in SW (up to 6-10% at 0.5 mg O 3 /mg DOC), and negligibly in SE during the O 3 /H 2 O 2 and E-peroxone treatment compared to conventional ozonation. These results indicate that similar to the conventional O 3 /H 2 O 2 process, the E-peroxone process can more pronouncedly enhance O 3 transformation to OH, and thus increase the abatement efficiency of ozone-resistant pharmaceuticals in water matrices exerting relatively high ozone stability (e.g., groundwater and surface water with low DOM contents). Therefore, by installing electrodes in existing ozone reactors, the E-peroxone process may provide a convenient way to enhance pharmaceutical abatement in drinking water applications, where groundwater and surface water with low DOM contents are used as the source waters. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Removal of DON in micro-polluted raw water by coagulation and adsorption using activated carbon].
Liu, Bing; Yu, Guo-Zhong; Gu, Li; Zhao, Cheng-Mei; Li, Qing-Fei; Zhai, Hui-Min
2013-04-01
Dissolved organic nitrogen as a precursor of new type nitrogenous disinfection by-products in drinking water attracted gradually the attention of scholars all over the world. In order to explore the mechanism of DON removal in micro-polluted raw water by coagulation and adsorption, water quality parameters, such as DON, DOC, NH4(+) -N, UV254, pH and dissolved oxygen, were determined in raw water and the molecular weight distribution of the DON and DOC was investigated. The variations in DON, DOC and UV254 in the coagulation and adsorption tests were investigated, and the changes of DON in raw water were characterized using three-dimensional fluorescence spectroscopy. The results showed that DON, DOC and UV254 were 1.28 mg x L(-1), 8.56 mg x L(-1), 0.16 cm(-1), and DOC/DON and SUVA were 6.69 mg x mg(-1), 1.87 m(-1) x (mg x L(-1))(-1) in raw water, respectively. The molecular weight distribution of the DON in raw water showed a bimodal distribution. The small molecular weight (< 6 000) fractions accounted for a high proportion of 68% and the large (> 20 000) fractions accounted for about 22%. The removal of DON, DOC and UV254 was about 20%, 26% and 70%, respectively, in the coagulation test and the dosage of coagulant was 10 mg x L(-1). The removal of DON, DOC and UV254 was about 60%, 35% and 100%, respectively, in the adsorption test and the dosage of activated carbon was 1.0 g. In the combination of coagulation and adsorption, the removal of DON and DOC reached approximately 82% and 64%, respectively. 3DEEM revealed that the variation of DON in the coagulation and adsorption tests depended intimately on tryptophan protein-like substances, aromatic protein-like substances and fulvic acid-like substances.
This research will aim to quantify the effects of fractionation between DOC, HFO, HAO, free copper and the behavior of resultant free DOC in the water column on the toxicological effects of copper. Fractionation between DOC, free metals and iron (Fe) and aluminum (Al) hydro...
Dissolved Organic Carbon in Marginal, Damaged Peatlands: Using 14C to Understand DOC Losses
NASA Astrophysics Data System (ADS)
Luscombe, D.; Grand-Clement, E.; Garnett, M.; Anderson, K.; Gatis, N.; Benaud, P.; Brazier, R.
2013-12-01
Peatlands are widely represented throughout the world and act as an important store of carbon, as well as providing society with a range of other ecosystem services, such as drinking water or the support of rare habitats. However, the combination of historical management practices, and the predicted impact of climate change means that they are now largely under threat. In the shallow peatlands of Exmoor National Park (South West UK), peat cutting and intensive drainage in the 19th and 20th century for agricultural reclamation have changed the hydrological behaviour of the peat. This damage has dried out the upper layers, causing oxidation, erosion and vegetation change. In addition, their location on the southernmost limit of peatlands geographical extent in northern Europe makes them particularly vulnerable to the predicted changes in rainfall and temperature. Recent modelling work has shown that such marginal peatlands may disappear as early as 2050. Restoration programs are currently in place, aiming to restore the hydrological functioning of the peat. However, current dissolved organic carbon (DOC) losses from damaged peatlands are especially of concern, because of the contribution of the aquatic pathways in the C flux, and because of the impact on water quality. DOC has been shown to originate from the drainage of highly-aged organic matter. In stream waters, DOC from low flow tends to contain a larger component of older C compared to that of high flow. Both the impact of extensive drainage on where DOC is originating from and the effect of peatland restoration on this process remain poorly understood. We used 14C dating of DOC from streams and pore water, as well as from damaged peat, in order to gain a better understanding of the process and origin of DOC loss in drained shallow peatlands. This will further help us understand the potential for peatland restoration. Work was carried out in a small intensively monitored catchment in Exmoor. Samples were taken in an area of shallow peat (ca. 20-30 cm depth) drained by a medium size ditch (50 x 50 cm). Samples of DOC from stream water were taken at low and high flow during 3 separate rain events in Winter- Spring 2013 using automatic pump samplers. Samples of DOC in pore water were taken 2 m away from the ditch at 5 and 15 cm depth on two occasions. Finally, matching bulk peat samples were collected at 5 and 15 cm depth. Intensive monitoring data also provides information on water table depth and level in streams. A neighbouring pristine peat area was used as a control, and DOC pore water and bulk peat soil samples were taken at 5, 15 and 45 cm depth on two occasions. Preliminary results show that DOC lost in streams at high flow contains a greater contribution of bomb-14C compared to that at low flow (107 and 101 % modern respectively). Stream water DOC at low flow had a 14C concentration lower than that in pore water at both 5 and 15 cm depth (105 and 102% modern, respectively), suggesting that low flow stream water DOC is predominantly older than that found in pore water at depth.
Low biodegradability of dissolved organic matter and trace metals from subarctic waters.
Oleinikova, Olga V; Shirokova, Liudmila S; Drozdova, Olga Y; Lapitskiy, Sergey A; Pokrovsky, Oleg S
2018-03-15
The heterotrophic mineralization of dissolved organic matter (DOM) controls the CO 2 flux from the inland waters to the atmosphere, especially in the boreal waters, although the mechanisms of this process and the fate of trace metals associated with DOM remain poorly understood. We studied the interaction of culturable aquatic (Pseudomonas saponiphila) and soil (Pseudomonas aureofaciens) Gammaproteobacteria with seven different organic substrates collected in subarctic settings. These included peat leachate, pine crown throughfall, fen, humic lake, stream, river, and oligotrophic lake with variable dissolved organic carbon (DOC) concentrations (from 4 to 60mgL -1 ). The highest removal of DOC over 4days of reaction was observed in the presence of P. aureofaciens (33±5%, 43±3% and 53±7% of the initial amount in fen water, humic lake and stream, respectively). P. saponiphila degraded only 5% of DOC in fen water but did not affect all other substrates. Trace elements (TE) were essentially controlled by short-term (0-1h) adsorption on the surface of cells. Regardless of the nature of organic substrate and the identity of bacteria, the degree of adsorption ranged from 20 to 60% for iron (Fe 3+ ), 15 to 55% for aluminum (Al), 10 to 60% for manganese (Mn), 10 to 70% for nickel (Ni), 20 to 70% for copper (Cu), 10 to 60% for yttrium (Y), 30 to 80% for rare earth elements (REE), and 15 to 50% for uranium (U VI ). Rapid adsorption of organic and organo-mineral colloids on bacterial cell surfaces is novel and potentially important process, which deserves special investigation. The long-term removal of dissolved Fe and Al was generally consistent with solution supersaturation degree with respect to Fe and Al hydroxides, calculated by visual Minteq model. Overall, the biomass-normalized biodegradability of various allochthonous substrates by culturable bacteria is much lower than that of boreal DOM by natural microbial consortia. Copyright © 2017 Elsevier B.V. All rights reserved.
Aps and Tep Chemical Characterization: Link Between The Dom and Pom Pools
NASA Astrophysics Data System (ADS)
Gogou, A.; Repeta, D. J.
The ocean inventory of dissolved organic carbon (DOC) is approximately 750 GT, comprising one of the Earth's largest carbon reservoirs on Earth. Despite its potential significance, the mechanisms that lead to DOM production and to spatial and temporal variations of DOM concentration in the world ocean are poorly understood. Chemical characterization studies show that up to 50% of HMW DOM is a structurally well-defined class of acylated polysaccharides (APS), which exhibits novel molecular-level characteris tics. Although APS synthesis occurs in the euphotic zone, a large fraction of the marine inventory of APS (appr. 10-30 GT C), resides in the deep ocean, and is approximately equal in mass to the total marine inventory of particulate organic carbon. While radiocarbon dating of deep sea DOC yields very old apparent ages (4000-6000 ybp), radiocarbon measurements made by our group on individual APS sugars shows that APS in the deep ocean has a radiocarbon value of +56 per mil, equivalent to surface water POC and DIC. This is the first clear evidence for the presence of "young" DOC in the deep ocean. One mechanism that could be important for the rapid removal of APS from surface seawater is physical removal by macroaggregates. To investigate the significance of this mechanism, we studied the chemical composition of surface-active POM (TEP) produced naturally on surface waters and in laboratory experiments, after bubbling of HMW DOM isolated from algal cultures. 1H-NMR spectral properties and molecular-level distribution of neutral sugars in natural and artificially produced TEP closely resembled those observed for cultured and oceanic HMW DOM, while they are significantly different from those of suspended particulate matter in the ocean (Gogou and Repeta, 2000). The results of these experiments provide evidence that POM with similar chemical characteristics to HMW DOM can be produced from algal-derived DOM in the surface ocean.
NASA Astrophysics Data System (ADS)
Regier, P.; Briceno, H.; Jaffe, R.
2016-02-01
Urban and agricultural development of the South Florida peninsula has disrupted freshwater flow in the Everglades, a hydrologically connected ecosystem stretching from central Florida to the Gulf of Mexico. Current system-scale restoration efforts aim to restore natural hydrologic regimes to reestablish pre-drainage ecosystem functioning through increased water availability, quality and timing. However, it is uncertain how hydrologic restoration combined with climate change will affect the downstream section of the system, including the mangrove estuaries of Everglades National Park. Aquatic transport of carbon, primarily as dissolved organic carbon (DOC), plays a critical role in biogeochemical cycling and food-web dynamics, and will be affected both by water management policies and climate change. To better understand DOC dynamics in these estuaries and how hydrology, climate and water management may affect them, 14 years of monthly data collected in the Shark River estuary were used to build a DOC flux model. Multi-variate methods were applied to long-term data-sets for hydrology, water quality and climate to untangle the interconnected environmental drivers that control DOC export at intra and inter-annual scales. DOC fluxes were determined to be primarily controlled by hydrology but also by seasonality and long-term climate patterns. Next, a 4-component model (salinity, inflow, rainfall, Atlantic Multidecadal Oscillation) capable of predicting DOC fluxes (R2=0.78, p<0.0001, n=161) was established. Finally, potential climate change scenarios for the Everglades were applied to this model to assess DOC flux variations in response to climate and restoration variables. Although global predictions anticipate that DOC export will generally increase in the future, the majority of scenario runs indicated that DOC export from the Everglades is expected to decrease due to changes in rainfall, evapotranspiration, inflows and sea-level rise.
Enhanced DOC removal using anion and cation ion exchange resins.
Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L
2016-01-01
Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. Published by Elsevier Ltd.
Transformation of Upland Water and Carbon Dynamics by Thawing Permafrost in the Alaskan Interior
NASA Astrophysics Data System (ADS)
Ewing, S. A.; Paces, J. B.; O'Donnell, J. A.; Kanevskiy, M. Z.; Shur, Y.; Jorgenson, M. T.; Harden, J.; Aiken, G. R.; Striegl, R.
2009-05-01
Large arctic rivers can provide an integrated signal of regional permafrost thaw and associated carbon dynamics. A long-term (30-y) decrease in dissolved organic carbon (DOC) and increase in dissolved inorganic carbon in the Yukon River Basin (YRB) suggest increased flow through mineral soils as a result of permafrost thaw. We used U series isotopes to test for the influence of thaw on soil and surface waters in small upland catchments at two sites within the YRB. In natural waters, 234U/238U activity ratios exceed 1.00 (secular equilibrium) as a function of water-rock contact time. Previous work has shown that in major YRB rivers, seasonally and spatially variable 234U/238U ratios could indicate both groundwater inputs and permafrost thaw, with ratios ranging from 1.1 to 2.6. We show that 234U/238U ratios in soil and surface water from these small catchments span the range of values observed in the major rivers, and indicate greater influence of older water where the mineral soil and underlying sediment facilitate drainage and permafrost degradation. Analysis of deep, ice-rich loess permafrost cores (2-10 m) reveals that thaw of Pleistocene ice can release high concentrations of DOC (>1000 ppm) and ammonium in thaw waters. The age and chemical composition of these waters allows for improved prediction of downstream carbon dynamics upon thaw. Field observation of hillslope soil sequences indicates that both topography and mineral substrate influence the effects of thaw on water and carbon dynamics in small catchments.
NASA Astrophysics Data System (ADS)
Inamdar, S.; Mitchell, M.; McDonnell, J.; McGlynn, B.; Shanley, J.
2001-05-01
The significance of variable source areas (VSAs) in storm runoff generation and as loci for mixing of event and pre-event waters has long been recognized. Recent research suggests that VSAs may also play an important role in regulating the export of C and N solutes from catchments. We hypothesize that the spatial distribution of VSAs in the catchment and their connectedness with the stream network is a first order control on the temporal dynamics and expression of water and solutes from the catchment. We examined two contrasting scenarios of VSA distribution: (1) VSAs located lower in the catchment and well connected to the stream network, versus, (2) discrete VSAs located in the upper portions of the catchment and disconnected from the stream network. We evaluated the potential impact of these scenarios on: (a) the timing and peak of event water contributions, and (b) the timing and peak of solute signatures. We hypothesized that if VSAs are well connected to the stream network (Scenario 1), then event water contributions would be distinct and would predominate early on during the rising limb of the hydrograph of stream discharge. In contrast, if VSAs are isolated and disconnected (Scenario 2), then event water contributions would be damped and delayed and possibly continue to be observed through hydrograph recession. We believe solutes such as dissolved organic carbon (DOC), which are primarily flushed from near surface soil horizons, will follow an event water trajectory. We tested these hypotheses for a 135 ha forested headwater catchment in the Adirondack Mountains of New York. Detailed storm runoff and solute data for the catchment are available since 1994. A two-component separation model using base cations (Na, Mg, Ca, and K) was used to partition stormflow discharge into pre-event and event components. Event water contributions were small on the rising limb of the hydrograph, reached their maximum just after the discharge peak, and continued through the recession limb, hours after cessation of rainfall. DOC concentrations followed a temporal pattern very similar to the event water contributions, with a peak at or just after peak discharge. In contrast, the timing of the nitrate peak appeared to vary seasonally, indicating availability of nitrate in the soil profile as a controlling mechanism. Nitrate peaks appeared to match DOC and event water peaks for spring events, but occurred much earlier on the rising limb of the discharge hydrograph during fall events. Results from this study appear to confirm our hypothesis for scenario 2, where the disconnected nature of VSAs is displayed by the delayed expression of event water and DOC. These results also confirm our hypothesis that the spatial distribution of VSAs will have a greater impact on the temporal expression of solutes that are available in near surface soil horizons, as opposed to solutes whose availability in the near surface soil varies with seasons. These hypotheses are also being evaluated for a forested subcatchment of the Sleepers River watershed in Vermont.
The role of iron and reactive oxygen species in the production of CO2 in arctic soil waters
NASA Astrophysics Data System (ADS)
Trusiak, Adrianna; Treibergs, Lija A.; Kling, George W.; Cory, Rose M.
2018-03-01
Hydroxyl radical (radOH) is a highly reactive oxidant of dissolved organic carbon (DOC) in the environment. radOH production in the dark was observed through iron and DOC mediated Fenton reactions in natural environments. Specifically, when dissolved oxygen (O2) was added to low oxygen and anoxic soil waters in arctic Alaska, radOH was produced in proportion to the concentrations of reduced iron (Fe(II)) and DOC. Here we demonstrate that Fe(II) was the main electron donor to O2 to produce radOH. In addition to quantifying radOH production, hydrogen peroxide (H2O2) was detected in soil waters as a likely intermediate in radOH production from oxidation of Fe(II). For the first time in natural systems we detected carbon dioxide (CO2) production from radOH oxidation of DOC. More than half of the arctic soil waters tested showed production of CO2 under conditions conducive for production of radOH. Findings from this study strongly suggest that DOC is the main sink for radOH, and that radOH can oxidize DOC to yield CO2. Thus, this iron-mediated, dark chemical oxidation of DOC may be an important component of the arctic carbon cycle.
Hall, B.D.; Aiken, G.R.; Krabbenhoft, D.P.; Marvin-DiPasquale, M.; Swarzenski, C.M.
2008-01-01
It is widely recognized that wetlands, especially those rich in organic matter and receiving appreciable atmospheric mercury (Hg) inputs, are important sites of methylmercury (MeHg) production. Extensive wetlands in the southeastern United States have many ecosystem attributes ideal for promoting high MeHg production rates; however, relatively few mercury cycling studies have been conducted in these environments. We conducted a landscape scale study examining Hg cycling in coastal Louisiana (USA) including four field trips conducted between August 2003 and May 2005. Sites were chosen to represent different ecosystem types, including: a large shallow eutrophic estuarine lake (Lake Pontchartrain), three rivers draining into the lake, a cypress-tupelo dominated freshwater swamp, and six emergent marshes ranging from a freshwater marsh dominated by Panicum hemitomon to a Spartina alterniflora dominated salt marsh close to the Gulf of Mexico. We measured MeHg and total Hg (THg) concentrations, and ancillary chemical characteristics, in whole and filtered surface water, and filtered porewater. Overall, MeHg concentrations were greatest in surface water of freshwater wetlands and lowest in the profundal (non-vegetated) regions of the lake and river mainstems. Concentrations of THg and MeHg in filtered surface water were positively correlated with the highly reactive, aromatic (hydrophobic organic acid) fraction of dissolved organic carbon (DOC). These results suggest that DOC plays an important role in promoting the mobility, transport and bioavailability of inorganic Hg in these environments. Further, elevated porewater concentrations in marine and brackish wetlands suggest coastal wetlands along the Gulf Coast are key sites for MeHg production and may be a principal source of MeHg to foodwebs in the Gulf of Mexico. Examining the relationships among MeHg, THg, and DOC across these multiple landscape types is a first step in evaluating possible links between key zones for Hg(II)-methylation and the bioaccumulation of mercury in the biota inhabiting the Gulf of Mexico region. ?? 2007 Elsevier Ltd. All rights reserved.
Triska, F.J.; Duff, J.H.; Avanzino, R.J.
1993-01-01
The subsurface riparian zone was examined as an ecotone with two interfaces. Inland is a terrestrial boundary, where transport of water and dissolved solutes is toward the channel and controlled by watershed hydrology. Streamside is an aquatic boundary, where exchange of surface water and dissolved solutes is bi-directional and flux is strongly influenced by channel hydraulics. Streamside, bi-directional exchange of water was qualitatively defined using biologically conservative tracers in a third order stream. In several experiments, penetration of surface water extended 18 m inland. Travel time of water from the channel to bankside sediments was highly variable. Subsurface chemical gradients were indirectly related to the travel time. Sites with long travel times tended to be low in nitrate and DO (dissolved oxygen) but high in ammonium and DOC (dissolved organic carbon). Sites with short travel times tended to be high in nitrate and DO but low in ammonium and DOC. Ammonium concentration of interstitial water also was influenced by sorption-desorption processes that involved clay minerals in hyporheic sediments. Denitrification potential in subsurface sediments increased with distance from the channel, and was limited by nitrate at inland sites and by DO in the channel sediments. Conversely, nitrification potential decreased with distance from the channel, and was limited by DO at inland sites and by ammonium at channel locations. Advection of water and dissolved oxygen away from the channel resulted in an oxidized subsurface habitat equivalent to that previously defined as the hyporheic zone. The hyporheic zone is viewed as stream habitat because of its high proportion of surface water and the occurrence of channel organisms. Beyond the channel's hydrologic exchange zone, interstitial water is often chemically reduced. Interstitial water that has not previously entered the channel, groundwater, is viewed as a terrestrial component of the riparian ecotone. Thus, surface water habitats may extend under riparian vegetation, and terrestrial groundwater habitats may be found beneath the stream channel. ?? 1993 Kluwer Academic Publishers.
NASA Astrophysics Data System (ADS)
Avery, G. Brooks; Kieber, Robert J.; Willey, Joan D.; Shank, G. Christopher; Whitehead, Robert F.
2004-09-01
The hurricane flux of rain and river water dissolved organic carbon (DOC) to Long Bay located on the southeastern coast of the United States was determined for four hurricanes that made landfall in the Cape Fear region of North Carolina. Riverine flux of DOC following hurricanes Fran (1996) and Floyd (1999) represented one third and one half of the entire annual river flux of DOC to Long Bay, respectively. The majority of this DOC was recalcitrant and not available for biological consumption. The high flux of DOC from hurricane Floyd resulted from extremely high precipitation amounts (in excess of 50 cm) associated with the hurricane and subsequent flooding. High riverine DOC fluxes were observed following hurricane Fran but not hurricanes Bertha (1996) and Bonnie (1998). The westerly path of Fran deposited rain inland along the Cape Fear River watershed, causing high river flow conditions, while Bonnie and Bertha took an eastern path, resulting in a minimal effect to the Cape Fear River flow rates. The rainwater flux of total DOC to Long Bay from the four hurricanes was not as dramatic as that observed for riverine fluxes. However, unlike river water DOC that is refractory, rainwater DOC is highly labile. Rainwater from the four hurricanes in this study deposited 2-5 times the DOC deposited in an average storm. This represented a flux of 3-9% of the entire annual budget of bioavailable DOC to Long Bay being deposited over a 1 or 2 day period, likely spurring short-term secondary productivity following the hurricanes.
Grand-Clement, E; Luscombe, D J; Anderson, K; Gatis, N; Benaud, P; Brazier, R E
2014-09-15
Losses of dissolved organic carbon (DOC) from drained peatlands are of concern, due to the effects this has on the delivery of ecosystem services, and especially on the long-term store of carbon and the provision of drinking water. Most studies have looked at the effect of drainage in deep peat; comparatively, little is known about the behaviour of shallow, climatically marginal peatlands. This study examines water quality (DOC, Abs(400), pH, E4/E6 and C/C) during rainfall events from such environments in the south west UK, in order to both quantify DOC losses, and understand their potential for restoration. Water samples were taken over a 19 month period from a range of drains within two different experimental catchments in Exmoor National Park; data were analysed on an event basis. DOC concentrations ranging between 4 and 21 mg L(-1) are substantially lower than measurements in deep peat, but remain problematic for the water treatment process. Dryness plays a critical role in controlling DOC concentrations and water quality, as observed through spatial and seasonal differences. Long-term changes in depth to water table (30 days before the event) are likely to impact on DOC production, whereas discharge becomes the main control over DOC transport at the time scale of the rainfall/runoff event. The role of temperature during events is attributed to an increase in the diffusion of DOC, and therefore its transport. Humification ratios (E4/E6) consistently below 5 indicate a predominance of complex humic acids, but increased decomposition during warmer summer months leads to a comparatively higher losses of fulvic acids. This work represents a significant contribution to the scientific understanding of the behaviour and functioning of shallow damaged peatlands in climatically marginal locations. The findings also provide a sound baseline knowledge to support research into the effects of landscape restoration in the future. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Miller, Matthew P.
2012-01-01
Longitudinal patterns in dissolved organic carbon (DOC) loads and chemical quality were identified in the Colorado River from the headwaters in the Rocky Mountains to the United States-Mexico border from 1994 to 2011. Watershed- and reach-scale climate, land use, river discharge and hydrologic modification conditions that contribute to patterns in DOC were also identified. Principal components analysis (PCA) identified site-specific precipitation and reach-scale discharge as being correlated with sites in the upper basin, where there were increases in DOC load from the upstream to downstream direction. In the lower basin, where DOC load decreased from upstream to downstream, sites were correlated with site-specific temperature and reach-scale population, urban land use and hydrologic modification. In the reaches containing Lakes Powell and Mead, the two largest reservoirs in the United States, DOC quantity decreased, terrestrially derived aromatic DOC was degraded and/or autochthonous less aromatic DOC was produced. Taken together, these results suggest that longitudinal patterns in the relatively unregulated upper basin are influenced by watershed inputs of water and DOC, whereas DOC patterns in the lower basin are reflective of a balance between watershed contribution of water and DOC to the river and loss of water and DOC due to hydrologic modification and/or biogeochemical processes. These findings suggest that alteration of constituent fluxes in rivers that are highly regulated may overshadow watershed processes that would control fluxes in comparable unregulated rivers. Further, these results provide a foundation for detailed assessments of factors controlling the transport and chemical quality of DOC in the Colorado River.
Controls on stream water dissolved mercury in three mid-Appalachian forested headwater catchments
NASA Astrophysics Data System (ADS)
Riscassi, Ami L.; Scanlon, Todd M.
2011-12-01
Determining the controls on dissolved mercury (HgD) transport is necessary to improve estimations of export from unmonitored watersheds and to forecast responses to changes in deposition and other environmental forcings. Stream water HgD and dissolved organic carbon (DOC) were evaluated over a range of discharge conditions in three streams within Shenandoah National Park, VA. Watersheds are distinguished by stream water pH (ranging from neutral to acidic) and soil size fractioning (ranging from clays to sands). At all sites, discharge was a significant but poor predictor of HgD concentrations (r2 from 0.13-0.52). HgD was strongly coupled with DOC at all sites (r2 from 0.74-0.89). UV absorbance at 254 nm (UV254), a proxy for DOC quantity and quality, slightly improved the predictions of HgD. Mean DOC quality differed between streams, with less aromatic DOC mobilized from the more acidic watershed. The site with less aromatic DOC and sandy soils mobilized more Hg to the stream for the same quantity and quality of DOC, likely due to the reduced capacity of the larger-grained soils to retain Hg, leaving a greater fraction associated with the organic matter. A similar amount of 0.54 ng HgD/mg DOC is transported at all sites, suggesting the less aromatic DOC transports less Hg per unit DOC, offsetting the effects of soil type. This research demonstrates that soil composition and DOC quality influence HgDexport. We also provide evidence that soil organic carbon is a primary control on Hg-DOC ratios (0.12-1.4 ng mg-1) observed across the U.S. and Sweden.
Gao, Lei; Fan, Daidu; Li, Daoji; Cai, Jingong
2010-04-01
Twenty-eight surface water samples from rivers, muddy intertidal flats, sand shores, and bedrock coasts were collected along the Zhejiang coastline in southeast China. In addition, three samples from the Changjiang (Yangtze River) were collected for comparison. CDOM (chromophoric dissolved organic matter) absorption and fluorescence excitation-emission matrix (EEM) spectroscopy, as well as nutrients and DOC were measured in these samples. According to salinity, nutrient, and DOC constituents, the 28 Zhejiang samples were categorized into four groups, i.e. highly-polluted, river derived, muddy-flat derived, and saltwater dominated ones. Among the six parameters (two humic-like and two protein-like peak intensities in fluorescence EEM contours, absorption at 300 nm, and DOC concentration) for the Zhejiang samples, any two of them were positively correlated. The submarine groundwater discharge, rather than local rivers, might have provided most of the freshwater that interacted with the saltwater during the mixing process. The high protein-like EEM peaks in samples from muddy salt marshes and rivers were probably caused by terrestrial inputs, land-based pollution, and local biological activities in combination. Copyright 2009. Published by Elsevier Ltd.
Stackpoole, Sarah M.; Stets, Edward G.; Clow, David W.; Burns, Douglas A.; Aiken, George R.; Aulenbach, Brent T.; Creed, Irena F.; Hirsch, Robert M.; Laudon, Hjalmar; Pellerin, Brian; Striegl, Robert G.
2017-01-01
Recent studies have found insignificant or decreasing trends in time-series dissolved organic carbon (DOC) datasets, questioning the assumption that long-term DOC concentrations in surface waters are increasing in response to anthropogenic forcing, including climate change, land use, and atmospheric acid deposition. We used the weighted regressions on time, discharge, and season (WRTDS) model to estimate annual flow-normalized concentrations and fluxes to determine if changes in DOC quantity and quality signal anthropogenic forcing at 10 locations in the Mississippi River Basin. Despite increases in agriculture and urban development throughout the basin, net increases in DOC concentration and flux were significant at only 3 of 10 sites from 1997 to 2013 and ranged between −3.5% to +18% and −0.1 to 19%, respectively. Positive shifts in DOC quality, characterized by increasing specific ultraviolet absorbance at 254 nm, ranged between +8% and +45%, but only occurred at one of the sites with significant DOC quantity increases. Basinwide reductions in atmospheric sulfate deposition did not result in large increases in DOC either, likely because of the high buffering capacity of the soil. Hydroclimatic factors including annual discharge, precipitation, and temperature did not significantly change during the 17-year timespan of this study, which contrasts with results from previous studies showing significant increases in precipitation and discharge over a century time scale. Our study also contrasts with those from smaller catchments, which have shown stronger DOC responses to climate, land use, and acidic deposition. This temporal and spatial analysis indicated that there was a potential change in DOC sources in the Mississippi River Basin between 1997 and 2013. However, the overall magnitude of DOC trends was not large, and the pattern in quantity and quality increases for the 10 study sites was not consistent throughout the basin.
An, Dong; Gu, Bin; Sun, Sainan; Zhang, Han; Chen, Yanan; Zhu, Huifeng; Shi, Jian; Tong, Jun
2017-12-15
Molecular weight (MW) distributions in source and treated water in Shanghai, China were investigated to understand the relationship between trihalomethanes formation potential/N-nitrosodimethylamine formation potential (THMFP/NDMAFP) and dissolved organic carbon (DOC) for different MW ranges (<1K, 1-10K, 10-30K, >30KDa). The result of MW distributions in source water indicated a relationship between THMFP/NDMAFP and DOC such that DOC for <1K and 1-30KDa DOC were linearly related to THMFP and NDMAFP, respectively. In treated water, >30KDa THMFP was totally removed whereas <1KDa THMFP showed linear relationships with R 2 =0.88 and 0.83 after sand and granular activated carbon (GAC) filtration, respectively. DOC content for 1-10KDa tended to form NDMA according to the results for treated water between DOC and NDMAFP (R 2 =0.94 and 0.93 for sand and GAC filtration, respectively). The results may provide researchers with targeted treatment strategies to destroy, remove, or reduce the occurrence of THMs and NDMA precursors. The findings presented in this study will be of great value in future work for selecting suitable drinking water treatment processes to minimize the formation of disinfection by-products using chlorine or chloramine disinfection. Copyright © 2017 Elsevier B.V. All rights reserved.
Conaway, Christopher; Thomas, Randal B.; Saad, Nabil; Thordsen, James J.; Kharaka, Yousif K.
2015-01-01
This work examines the performance and limitations of a wet chemical oxidation carbon analyser interfaced with a cavity ring-down spectrometer (WCO-CRDS) in a continuous flow (CF) configuration for measuring δ13C of dissolved organic carbon (δ13C-DOC) in natural water samples. Low-chloride matrix (<5 g Cl/L) DOC solutions were analysed with as little as 2.5 mg C/L in a 9 mL aliquot with a precision of 0.5 ‰. In high-chloride matrix (10–100 g Cl/L) DOC solutions, bias towards lighter δ13C-DOC was observed because of incomplete oxidation despite using high-concentration oxidant, extended reaction time, or post-wet chemical oxidation gas-phase combustion. However, through a combination of dilution, chloride removal, and increasing the oxidant:sample ratio, high-salinity samples with sufficient DOC (>22.5 µg C/aliquot) may be analysed. The WCO-CRDS approach requires more total carbon (µg C/aliquot) than conventional CF-isotope ratio mass spectrometer, but is nonetheless applicable to a wide range of DOC concentration and water types, including brackish water, produced water, and basinal brines.
Colman, John A.; Massey, Andrew J.; Brandt, Sara L.
2011-09-16
Dilution of aluminum discharged to reservoirs in filter-backwash effluents at water-treatment facilities in Massachusetts was investigated by a field study and computer simulation. Determination of dilution is needed so that permits for discharge ensure compliance with water-quality standards for aquatic life. The U.S. Environmental Protection Agency chronic standard for aluminum, 87 micrograms per liter (μg/L), rather than the acute standard, 750 μg/L, was used in this investigation because the time scales of chronic exposure (days) more nearly match rates of change in reservoir concentrations than do the time scales of acute exposure (hours).Whereas dilution factors are routinely computed for effluents discharged to streams solely on the basis of flow of the effluent and flow of the receiving stream, dilution determination for effluents discharged to reservoirs is more complex because (1), compared to streams, additional water is available for dilution in reservoirs during low flows as a result of reservoir flushing and storage during higher flows, and (2) aluminum removal in reservoirs occurs by aluminum sedimentation during the residence time of water in the reservoir. Possible resuspension of settled aluminum was not considered in this investigation. An additional concern for setting discharge standards is the substantial concentration of aluminum that can be naturally present in ambient surface waters, usually in association with dissolved organic carbon (DOC), which can bind aluminum and keep it in solution.A method for dilution determination was developed using a mass-balance equation for aluminum and considering sources of aluminum from groundwater, surface water, and filter-backwash effluents and losses caused by sedimentation, water withdrawal, and spill discharge from the reservoir. The method was applied to 13 reservoirs. Data on aluminum and DOC concentrations in reservoirs and influent water were collected during the fall of 2009. Complete reservoir volume was determined to be available for mixing on the basis of vertical and horizontal aluminum-concentration profiling. Losses caused by settling of aluminum were assumed to be proportional to aluminum concentration and reservoir area. The constant of proportionality, as a function of DOC concentration, was established by simulations in each of five reservoirs that differed in DOC concentration.In addition to computing dilution factors, the project determined dilution factors that would be protective with the same statistical basis (frequency of exceedance of the chronic standard) as dilutions computed for streams at the 7-day-average 10-year-recurrence annual low flow (the 7Q10). Low-flow dilutions are used for permitting so that receiving waters are protected even at the worst-case flow levels. The low-flow dilution factors that give the same statistical protection are the lowest annual 7-day-average dilution factors with a recurrence of 10 years, termed 7DF10s. Determination of 7DF10 values for reservoirs required that long periods of record be simulated so that dilution statistics could be determined. Dilution statistics were simulated for 13 reservoirs from 1960 to 2004 using U.S. Geological Survey Firm-Yield Estimator software to model reservoir inputs and outputs and present-day values of filter-effluent discharge and aluminum concentration.Computed settling velocities ranged from 0 centimeters per day (cm/d) at DOC concentrations of 15.5 milligrams per liter (mg/L) to 21.5 cm/d at DOC concentrations of 2.7 mg/L. The 7DF10 values were a function of aluminum effluent discharged. At current (2009) effluent discharge rates, the 7DF10 values varied from 1.8 to 115 among the 13 reservoirs. In most cases, the present-day (2009) discharge resulted in receiving water concentrations that did not exceed the standard at the 7DF10. Exceptions were one reservoir with a very small area and three reservoirs with high concentrations of DOC. Maximum permissible discharges were determined for water-treatment plants by adjusting discharges upward in simulations until the 7DF10 resulted in reservoir concentrations that just met the standard. In terms of aluminum flux, these discharges ranged from 0 to 28 kilograms of aluminum per day.
Yin, Xiao-min; Lyu, Xian-guo; Liu, Xing-tu; Xue, Zhen-shan
2015-12-01
The present study was conducted to evaluate the influence of land use change on dissolved organic carbon (DOC) export in Naoli River watershed, Northeast China. Seasonal variation of DOC concentrations of the river water and its relationship with land use in the whole watershed and 100 m riparian zone at the annual average scale were analyzed using the method of field sampling, laboratory analysis, GIS and statistics analysis. The results showed that the concentrations of DOC under base flow conditions in spring and summer were significantly higher than that in fall in the study watershed. The seasonal trend of DOC concentrations in wetland-watersheds was similar to that in all the sub-watersheds, while significantly different from that in non-wetland watersheds. On the annual average scale, percentage of wetland in the whole watershed and paddy field in the 100 m riparian zone had positive relationship with the DOC concentration in the river water, while percentage of forest in the whole watershed had negative relationship with it (P < 0.05). It indicated that wetland in the sub-watershed played a significant role in the seasonal variation of DOC in river water of Naoli River watershed. Wetland in the watershed and paddy field in the 100 m riparian zone significantly promoted DOC export, while forest alleviated it. Land use change in the watershed in the past few decades dramatically changed the DOC balance of river water.
NASA Astrophysics Data System (ADS)
Winterdahl, M.; Laudon, H.; Köhler, S.; Seibert, J.; Bishop, K.
2009-04-01
Dissolved organic material (DOM) plays a key role in many natural surface waters. Despite the importance of DOC for the hydrochemistry in boreal headwaters there are few models that conceptualize the controls on short-term variability in stream DOC. A relatively simple model has been proposed where the vertical profile of DOC in the riparian soil solution, serves as an instantaneous "chemostat" setting the DOC of laterally flowing groundwater just before it enters the stream. This paper considers whether the addition of seasonality (in the form of soil temperature) and antecedent flows can improve the predictions of daily DOC concentrations. The model was developed and tested using field data from the Krycklan catchment on the Svartberget Research Station in northern Sweden where a transect of soil solution sampling sites equipped with suction lysimeters and wells for monitoring groundwater level have been installed and monitored for over a decade. The field data showed an exponential correlation between depth and DOC concentration in the soil solution. There was also an exponential correlation between stream discharge and groundwater table position. The expressions for these two correlations (exponential functions) have been combined into a simple riparian DOC model. To simulate effects of seasonality and/or antecedent flow, modules for soil temperature evolution and/or groundwater flow were added and tested. The model was calibrated and tested against 8 years of data from the Västrabäcken headwater catchment in the Krycklan area. To estimate the uncertainty in the model and the observed data a Hornberger-Spear-Young sensitivity analysis together with a GLUE uncertainty analysis was performed.
NASA Astrophysics Data System (ADS)
Raudina, Tatiana V.; Loiko, Sergey V.; Lim, Artyom G.; Krickov, Ivan V.; Shirokova, Liudmila S.; Istigechev, Georgy I.; Kuzmina, Daria M.; Kulizhsky, Sergey P.; Vorobyev, Sergey N.; Pokrovsky, Oleg S.
2017-07-01
Mobilization of dissolved organic carbon (DOC) and related trace elements (TEs) from the frozen peat to surface waters in the permafrost zone is expected to enhance under ongoing permafrost thaw and active layer thickness (ALT) deepening in high-latitude regions. The interstitial soil solutions are efficient tracers of ongoing bio-geochemical processes in the critical zone and can help to decipher the intensity of carbon and metals migration from the soil to the rivers and further to the ocean. To this end, we collected, across a 640 km latitudinal transect of the sporadic to continuous permafrost zone of western Siberia peatlands, soil porewaters from 30 cm depth using suction cups and we analyzed DOC, dissolved inorganic carbon (DIC), and 40 major elements and TEs in 0.45 µm filtered fraction of 80 soil porewaters. Despite an expected decrease in the intensity of DOC and TE mobilization from the soil and vegetation litter to the interstitial fluids with the increase in the permafrost coverage and a decrease in the annual temperature and ALT, the DOC and many major and trace elements did not exhibit any distinct decrease in concentration along the latitudinal transect from 62.2 to 67.4° N. The DOC demonstrated a maximum of concentration at 66° N, on the border of the discontinuous/continuous permafrost zone, whereas the DOC concentration in peat soil solutions from the continuous permafrost zone was equal to or higher than that in the sporadic/discontinuous permafrost zone. Moreover, a number of major (Ca, Mg) and trace (Al, Ti, Sr, Ga, rare earth elements (REEs), Zr, Hf, Th) elements exhibited an increasing, not decreasing, northward concentration trend. We hypothesize that the effects of temperature and thickness of the ALT are of secondary importance relative to the leaching capacity of peat, which is in turn controlled by the water saturation of the peat core. The water residence time in peat pores also plays a role in enriching the fluids in some elements: the DOC, V, Cu, Pb, REEs, and Th were a factor of 1.5 to 2.0 higher in mounds relative to hollows. As such, it is possible that the time of reaction between the peat and downward infiltrating waters essentially controls the degree of peat porewater enrichments in DOC and other solutes. A 2° northward shift in the position of the permafrost boundaries may bring about a factor of 1.3 ± 0.2 decrease in Ca, Mg, Sr, Al, Fe, Ti, Mn, Ni, Co, V, Zr, Hf, Th, and REE porewater concentration in continuous and discontinuous permafrost zones, and a possible decrease in DOC, specific ultraviolet absorbency (SUVA), Ca, Mg, Fe, and Sr will not exceed 20 % of their current values. The projected increase in ALT and vegetation density, northward migration of the permafrost boundary, or the change of hydrological regime is unlikely to modify chemical composition of peat porewater fluids larger than their natural variations within different micro-landscapes, i.e., within a factor of 2. The decrease in DOC and metal delivery to small rivers and lakes by peat soil leachate may also decrease the overall export of dissolved components from the continuous permafrost zone to the Arctic Ocean. This challenges the current paradigm on the increase in DOC export from the land to the ocean under climate warming in high latitudes.
NASA Astrophysics Data System (ADS)
Dia, A.; Gruau, G.; Davranche, M.; Vidy, A.; Henin, O.; Petitjean, P.; Le Coz-Bouhnik, M.
2003-04-01
This study is dedicated to the effects of organic matter on the hydrochemistry of Rare Earth Elements (REE) and the ability of using the Ce anomaly as a reliable proxy of redox conditions in surface waters when organic matter occurs. The data include a : i) two-year survey of SREE and Ce anomalies in organic-rich waters recovered from a catchment located in Brittany (western Europe) and (ii) experimental incubation of organic soils from this catchment set under controlled conditions, as well as, (iii) a REE speciation calculation in both the natural organic-rich waters from the wetlands and the experimental solutions. Field and experimental data appear to be extremely coherent, displaying good correlation between the SREE, the Dissolved Organic Carbon (DOC) contents and the redox state. The field data show a strong increase of the SREE and DOC concentrations in soil waters when the environment becomes more reducing. The onset of DOC and SREE contents is seen to be in phase with the increase of dissolved Fe and Mn. The role of Fe-, Mn-oxyhydroxides is confirmed by the experimental data as the maximum of DOC and SREE content is reached when Fe2+ reaches a maximum in the soil solution, suggesting that reductive dissolution of Fe, Mn-oxyhydroxides happens. Despite the strong redox changes and the known redox sensitive behaviour of Ce as compared to other REE, none Ce anomaly variation is observed during either, the experimental procedure, or the field survey through time. Speciation calculations were performed showing that in both such pH range and moderately oxidizing waters in DOC-rich waters, REE should have an organic speciation. Such an organic speciation prevents the formation of Ce(IV) and therefore the development of any Ce anomaly. However, since the studied waters are highly oxidizing (high nitrate contents), the nitrates impose the redox formation of Ce(IV) and a Ce anomaly should appear. Therefore, Ce(IV) is not formed in these waters either because (i) the reaction kinetic might be so slow that the anomaly has no time to ever happen in the field, or (ii) Ce(IV) might be linked to the organic colloidal fraction. Since the thermodynamic modelling does not help getting information, further experimental kinetics or ultrafiltration studies will be required to clarify these latter points. This has to be fixed to be able to use the Ce anomaly as a reliable proxy of redox conditions in organic-rich environment.
NASA Astrophysics Data System (ADS)
Natter, M.; Keevan, J.; Lee, M.; Keimowitz, A.; Savrda, C.; Son, A.; Okeke, B.; Wang, Y.
2011-12-01
The devastating explosion and subsequent sinking of the oil platform Deepwater Horizon at the British Petroleum Macondo-1 well in the Northern Gulf of Mexico on April 20, 2010, released approximately 4.9 million barrels of crude oil into the Gulf before the well was capped on July 15, 2010. Although most light compounds of oil may be easily degraded by natural microbes on the short term, saturated heavy oil (e.g., asphaltenes, resins, polycyclic aromatics, etc.) and those adsorbed by sediments could persist in the environment for decades. The long-term effects of high levels of persistent oil compounds on biogeochemical evolution and ecosystems of salt marshes remain unclear. This research investigates the spatial range and changes in levels of oil and their biogeochemical impacts. A total of ten marsh sampling sites that varied from pristine, non-effected marshes (e.g., Weeks Bay and Wolf Bay, Alabama) to heavily oiled wetlands (e.g., Bay Jimmy and Bayou Dulac, Louisiana) were utilized for this study. Sediment cores, bulk sediments, surface water samples, degraded oil, oiled dead marsh grass, and live marsh grass were collected from these sites in an attempt to study the source, distribution, and evolution of organic compounds and oil present in sediments and pore-waters. Geochemical analyses show alarmingly high organic carbon loads in pore-waters and sediments at heavily contaminated sites months after the influx of oil ceased. Very high levels (10-28%) of total organic carbon (TOC) within the heavily oiled sediments (down to 30 cm) are clearly distinguished from those found in pristine wetland sediments (generally < 5%). TOC levels are elevated in the deeper sediments while being depleated in the uppermost ones at certain locations. The TOC contents in uppermost sediments may be reduced by microbial degradation, water mixing, and the use of oil dispersants. Furthermore, dissolved organic carbon (DOC) levels of pore-waters extracted from oiled sediments, ranging up to hundreds of mg/kg, are on the order of one to two magnitudes higher than those at pristine and slightly contaminated sites. These DOC levels also interestingly increase with depth, possibly indicating saltwater-freshwater mixing near the sediment surface or freshwater recharge from rainfall. The spatial changes in DOC indicate that seawater and oil invaded along the deeper portion of the marsh sediments due to their higher density with respect to freshwater. TOC and DOC data clearly indicate that not all the spilled oil rose to the water surface and washed on-shore. Plumes of partially degraded oil could be spreading at various levels of the water column and feeding the underlying sediments. Geochemical biomarkers and stable isotopes (carbon and nitrogen) analyses of wetland plants, oiled sediments, and initial crude oils are underway to trace the sources of oil and the extent of oil degradation in impacted wetlands.
NASA Astrophysics Data System (ADS)
Steele, M.; Aitkenhead-Peterson, J. A.
2009-12-01
High nitrogen (N) and phosphorus (P) watershed loading rates increases the concentration and loads present in urban streams and rivers, resulting in eutrophication and degradation of surface water quality. Domestic pet animal feed may represent a significant proportion of nitrogen loading in urban watersheds, and because it is deposited directly on the watershed surface may have a large effect on N loads in urban surface waters (Baker et al. 2001). Animal manure has long been used to increase soil N and phosphorus concentrations for the purpose of growing agricultural crops; however, little is known about unintentional urban manuring resulting from a high density of domesticated pets. The purpose of this study is to determine if the presence of domesticated animals in high density urban developments results in increased concentrations of soil dissolved organic carbon (DOC), N, and P and the potential to contribute to loading of urban streams. Composite soil samples from the 0 to 5 cm and 5 to 10 cm soil depth were collected from apartment complexes in Bryan/College Station (BCS) and San Antonio, Texas during August, 2009. Apartment complexes were randomly located around the city and were chosen based on their rules regarding pet ownership. Four apartment complexes that allowed all domestic pets were compared to four that did not allow any domestic pets on the property. A 10:1 water extraction of field moist soil was conducted immediately after sampling. Soil water extracts were analyzed for DOC, total dissolved nitrogen (TDN), nitrate-N, ammonium-N, dissolved organic N, and orthophosphate-P. Results indicated significantly increased concentrations of DOC and N species at both depths in BCS apartments that allowed pets compared to those that did not; however, opposite trends were found in San Antonio. There is a trend for increased concentrations of orthophosphate-P at both locations. Baker, L.A., D. Hope, Y. Xu, et al. 2001. Nitrogen balance for the central Arizona-Phoenix (CAP) ecosystem. Ecosystems 4: 582-602.
Chang, Cecily C.Y.; Langston, J.; Riggs, M.; Campbell, D.H.; Silva, S.R.; Kendall, C.
1999-01-01
Recently, methods have been developed to analyze NO3- for δ15N and δ18O, improving our ability to identify NO3- sources and transformations. However, none of the existing methods are suited for waters with low NO3- concentrations (0.7-10 µM). We describe an improved method for collecting and recovering NO3- on exchange columns. To overcome the lengthy collection loading times imposed by the large sample volumes (7-70 L), the sample was prefiltered (0.45 µm) with a large surface area filter. Switching to AG2X anion resin and using a coarser mesh size (100-200) than previous methods also enhanced sample flow. Placement of a cation column in front of the anion column minimized clogging of the anion column by dissolved organic carbon (DOC) accumulation. This also served to minimize transfer of unwanted oxygen atoms from DOC to the 18O portion of the NO3- sample, thereby contaminating the sample and shifting δ18O. The cat-AG2X method is suited for on-site sample collection, making it possible to collect and recover NO3- from low ionic strength waters with modest DOC concentrations (80-800 µM), relieves the investigator of transporting large volumes of water back to the laboratory, and offers a means of sampling rain, snow, snowmelt, and stream samples from access-limited sites.
Michael D. SanClements; Ivan J. Fernandez; Robert H. Lee; Joshua A. Roberti; Mary Beth Adams; Garret A. Rue; Diane M. McKnight
2018-01-01
Over the last several decades dissolved organic carbon concentrations (DOC) in surface waters have increased throughout much of the northern hemisphere. Several hypotheses have been proposed regarding the drivers of this phenomenon including decreased sulfur (S) deposition working via an acidity- change mechanism. Using fluorescence spectroscopy and data from two long-...
Spatiotemporal variation of dissolved carbohydrates and amino acids in Jiaozhou Bay, China
NASA Astrophysics Data System (ADS)
Shi, Di; Yang, Guipeng; Sun, Yan; Wu, Guanwei
2017-03-01
Surface seawater samples were collected from Jiaozhou Bay, China, during six cruises (March-May 2010, September-November 2010) to study the distribution of dissolved organic matter including dissolved organic carbon (DOC), total dissolved carbohydrates, namely monosaccharides (MCHO) and polysaccharides (PCHO) and total hydrolysable amino acids. These included dissolved free amino acids (DFAA) and combined amino acids (DCAA). The goal was to investigate possible relationships between these dissolved organic compounds and environmental parameters. During spring, the concentrations of MCHO and PCHO were 9.6 (2.8-22.6) and 11.0 (2.9-42.5) μmol C/L, respectively. In autumn, MCHO and PCHO were 9.1 (2.6-27.0) and 10.8 (2.4-25.6) μmol C/L, respectively. The spring concentrations of DFAA and DCAA were 1.7 (1.1-4.1) and 7.6 (1.1-31.0) μmol C/L, respectively, while in autumn, DFAA and DCAA were 2.3 (1.1-8.0) and 3.3 (0.6-7.2) μmol C/L, respectively. Among these compounds, the concentrations of PCHO were the highest, accounting for nearly a quarter of the DOC, followed by MCHO, DCAA and DFAA. The concentrations of the organic compounds exhibited a decreasing trend from the coastal to the central regions of the bay. A negative correlation between concentrations of DOC and salinity in each cruise suggested that riverine inputs around the bay have an important impact on the distribution of DOC in the surface water. A significant positive correlation was found between DOC and total bacteria count in spring and autumn, suggesting bacteria play an important role in the marine carbon cycle.
Quantifying tropical peatland dissolved organic carbon (DOC) using UV-visible spectroscopy.
Cook, Sarah; Peacock, Mike; Evans, Chris D; Page, Susan E; Whelan, Mick J; Gauci, Vincent; Kho, Lip Khoon
2017-05-15
UV-visible spectroscopy has been shown to be a useful technique for determining dissolved organic carbon (DOC) concentrations. However, at present we are unaware of any studies in the literature that have investigated the suitability of this approach for tropical DOC water samples from any tropical peatlands, although some work has been performed in other tropical environments. We used water samples from two oil palm estates in Sarawak, Malaysia to: i) investigate the suitability of both single and two-wavelength proxies for tropical DOC determination; ii) develop a calibration dataset and set of parameters to calculate DOC concentrations indirectly; iii) provide tropical researchers with guidance on the best spectrophotometric approaches to use in future analyses of DOC. Both single and two-wavelength model approaches performed well with no one model significantly outperforming the other. The predictive ability of the models suggests that UV-visible spectroscopy is both a viable and low cost method for rapidly analyzing DOC in water samples immediately post-collection, which can be important when working at remote field sites with access to only basic laboratory facilities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Bowring, S.; Lauerwald, R.; Guenet, B.; Zhu, D.; Ciais, P.
2017-12-01
Most global climate models do not represent the unique permafrost soil environment and its respective processes. This significantly contributes to uncertainty in estimating their responses, and that of the planet at large, to warming. Here, the production, transport and atmospheric release of dissolved organic carbon (DOC) from high-latitude permafrost soils into inland waters and the ocean is explicitly represented for the first time in the land surface component (ORCHIDEE-MICT) of a CMIP6 global climate model (IPSL). This work merges two models that are able to mechanistically simulate complex processes for 1) snow, ice and soil phenomena in high latitude environments, and 2) DOC production and lateral transport through soils and the river network, respectively, at 0.5° to 2° resolution. The resulting model is subjected to a wide range of input forcing data, parameter testing and contentious feedback phenomena, including microbial heat generation as the active layer deepens. We present results for the present and future Pan-Arctic and Eurasia, with a focus on the Lena and Mackenzie River basins, and show that soil DOC concentrations, their riverine transport and atmospheric evasion are reasonably well represented as compared to observed stocks, fluxes and seasonality. We show that most basins exhibit large increases in DOC transport and riverine CO2 evasion across the suite of RCP scenarios to 2100. We also show that model output is strongly influenced by choice of input forcing data. The riverine component of what is known as the `boundless carbon cycle' is little-recognized in global climate modeling. Hydrological mobilization to the river network results either in sedimentary settling or atmospheric `evasion', presently amounting to 0.5-1.8 PgC yr-1. Our work aims at filling in these knowledge gaps, and the response of these DOC-related processes to thermal forcing. Potential feedbacks owing to such a response are of particular relevance, given the magnitude of the permafrost carbon pool.
NASA Astrophysics Data System (ADS)
Bernard-Jannin, Léonard; Binet, Stéphane; Gogo, Sébastien; Leroy, Fabien; Perdereau, Laurent; Laggoun-Défarge, Fatima
2017-04-01
Sphagnum-dominated peatlands represent a global major stock of carbon (C). Dissolved organic carbon (DOC) exports through runoff and leaching could reduce their potential C sink function and impact downstream water quality. DOC production in peatlands is strongly controlled by the hydrology, especially water table depth (WTD). Therefore, disturbances such as drainage can lead to increase DOC exports by lowering the WTD. Hydrological restoration (e.g. rewetting) can be undertaken to restore peatland functioning with an impact on DOC exports. The objective of this study is to assess the impact of drainage and rewetting on hydrological processes and their interactions with DOC dynamics in a Sphagnum dominated peatland. A hydrological model has been applied to a drained peatland (La Guette, France) which experienced a rewetting action on February 2014 and where WTD has been recorded in four piezometers at a 15 min time step since 2009. In addition, DOC concentrations in the peatland have been measured 6 times a year since 2014. The hydrological model is a WTD dependent reservoir model composed by two reservoirs representing the micro and macro porosity of the peatland (Binet et al., 2013). A DOC production module in both reservoirs was implemented based on temperature and WTD. The model was calibrated against WTD and DOC concentrations for each piezometer. The results show that the WTD in the study area is strongly affected by local meteorological conditions that could hide the effect of the rewetting action. The preliminary results evidenced that an additional source of water, identified as groundwater supply originating from the surrounding sandy layer aquifer, is necessary to maintain the water balance, especially during wet years (NS>0.8). Finally, the DOC module was able to describe DOC concentrations measured in the peatland and could be used to assess the impact of rewetting on DOC dynamics at different locations and to identify the factors of control of DOC exports at the peatland scale before and after the restoration. This simple conceptual model requires few data to operate. Its application on different sites with contrasted settings (hydrological and climatic conditions) could provide insight on the dominant hydrological processes and their impact on DOC dynamics in peatlands. Binet S., Gogo S., Laggoun-Défarge F., A water-table dependent reservoir model to investigate the effect of drought and vascular plant invasion on peatland hydrology, Journal of Hydrology, Volume 499, 30 August 2013, Pages 132-139, ISSN 0022-1694, http://dx.doi.org/10.1016/j.jhydrol.2013.06.035.
Bachand, Philip A.M.; Bachand, Sandra M.; Fleck, Jacob A.; Alpers, Charles N.; Stephenson, Mark; Windham-Myers, Lisamarie
2014-01-01
Concentration and mass balance analyses were used to quantify methylmercury (MeHg) loads from conventional (white) rice, wild rice, and fallowed fields in northern California's Yolo Bypass. These analyses were standardized against chloride to distinguish transport pathways and net ecosystem production (NEP). During summer, chloride loads were both exported with surface water and moved into the root zone at a 2:1 ratio. MeHg and dissolved organic carbon (DOC) behaved similarly with surface water and root zone exports at ~ 3:1 ratio. These trends reversed in winter with DOC, MeHg, and chloride moving from the root zone to surface waters at rates opposite and exceeding summertime root zone fluxes. These trends suggest that summer transpiration advectively moves constituents from surface water into the root zone, and winter diffusion, driven by concentration gradients, subsequently releases those constituents into surface waters. The results challenge a number of paradigms regarding MeHg. Specifically, biogeochemical conditions favoring microbial MeHg production do not necessarily translate to synchronous surface water exports; MeHg may be preserved in the soils allowing for release at a later time; and plants play a role in both biogeochemistry and transport. Our calculations show that NEP of MeHg occurred during both summer irrigation and winter flooding. Wild rice wet harvesting and winter flooding of white rice fields were specific practices that increased MeHg export, both presumably related to increased labile organic carbon and disturbance. Outflow management during these times could reduce MeHg exports. Standardizing MeHg outflow:inflow concentration ratios against natural tracers (e.g. chloride, EC) provides a simple tool to identify NEP periods. Summer MeHg exports averaged 0.2 to 1 μg m− 2 for the different agricultural wetland fields, depending upon flood duration. Average winter MeHg exports were estimated at 0.3 μg m− 2. These exports are within the range reported for other shallow aquatic systems.
Bachand, P A M; Bachand, S M; Fleck, J A; Alpers, C N; Stephenson, M; Windham-Myers, L
2014-02-15
Concentration and mass balance analyses were used to quantify methylmercury (MeHg) loads from conventional (white) rice, wild rice, and fallowed fields in northern California's Yolo Bypass. These analyses were standardized against chloride to distinguish transport pathways and net ecosystem production (NEP). During summer, chloride loads were both exported with surface water and moved into the root zone at a 2:1 ratio. MeHg and dissolved organic carbon (DOC) behaved similarly with surface water and root zone exports at ~3:1 ratio. These trends reversed in winter with DOC, MeHg, and chloride moving from the root zone to surface waters at rates opposite and exceeding summertime root zone fluxes. These trends suggest that summer transpiration advectively moves constituents from surface water into the root zone, and winter diffusion, driven by concentration gradients, subsequently releases those constituents into surface waters. The results challenge a number of paradigms regarding MeHg. Specifically, biogeochemical conditions favoring microbial MeHg production do not necessarily translate to synchronous surface water exports; MeHg may be preserved in the soils allowing for release at a later time; and plants play a role in both biogeochemistry and transport. Our calculations show that NEP of MeHg occurred during both summer irrigation and winter flooding. Wild rice wet harvesting and winter flooding of white rice fields were specific practices that increased MeHg export, both presumably related to increased labile organic carbon and disturbance. Outflow management during these times could reduce MeHg exports. Standardizing MeHg outflow:inflow concentration ratios against natural tracers (e.g. chloride, EC) provides a simple tool to identify NEP periods. Summer MeHg exports averaged 0.2 to 1 μg m(-2) for the different agricultural wetland fields, depending upon flood duration. Average winter MeHg exports were estimated at 0.3 μg m(-2). These exports are within the range reported for other shallow aquatic systems. Copyright © 2013 Elsevier B.V. All rights reserved.
Duarte, Rafael M; Wood, Chris M; Val, Adalberto L; Smith, D Scott
2018-06-11
Dissolved organic carbon (DOC) represents a heterogeneous group of naturally-occurring molecules in aquatic environments, and recent studies have evidenced that optically dark DOCs can exert some positive effects on ionoregulatory homeostasis of aquatic organisms in acidic waters. We investigated the effects of Luther Marsh DOC, a dark allochthonous DOC, on ion regulation and N-waste excretion of zebrafish acutely exposed to either neutral or low pH in ion-poor water. In the first experiment, simultaneous exposure to pH 4.0 and DOC greatly attenuated the stimulation of Na + diffusive losses (J out Na ), and prevented the blockade of Na + uptake (J in Na ) seen in zebrafish exposed to pH 4.0 alone, resulting in much smaller disturbances in Na + net losses (J net Na ). DOC also attenuated the stimulation of net Cl - losses (J net Cl ) and ammonia excretion (J net Amm ) during acidic challenge. In the second experiment, zebrafish acclimated to DOC displayed similar regulation of J in Na and J out Na , and, therefore, reduced J net Na at pH 4.0, effects which persisted even when DOC was no longer present. Protective effects of prior acclimation to DOC on J net Cl and J net Amm at pH 4.0 also occurred, but were less marked than those on Na + balance. Urea fluxes were unaffected by the experimental treatments. Overall, these effects were clearly beneficial to the ionoregulatory homeostasis of zebrafish at low pH, and were quite similar to those seen in a recent parallel study using darker DOC from the upper Rio Negro. This suggests that dark allochthonous DOCs share some chemical properties that render fish tolerant to ionoregulatory disturbances during acidic challenge.
The use of DOC fluorescence in the study of mercury photochemistry
NASA Astrophysics Data System (ADS)
Amyot, M.; Garcia, E.
2006-12-01
During the past decade, numerous field studies have explored the impact of photochemical processes on the oxidation state of Hg. In the upper zone of most aquatic systems as well as in snow packs, Hg(II) photochemical reduction predominates, whereas in contaminated systems, bacterial reduction may be more important. Recently, photo-assisted microbial reduction was also proposed as a significant mechanism in remote lakes. Many of these processes involve the generation of reactive species during the photodegradation of DOC. In this context, we compared diurnal variations in dissolved gaseous mercury (DGM, mainly formed of Hg(0)) concentration and in losses of DOC fluorescence (DOCF) in four boreal Canadian Shield lakes, in one beaver pond, and in filtered and unfiltered water from a wetland in Lake St. Pierre, a fluvial lake of the St. Lawrence River. These systems were chosen to represent a spectrum of DOC. We also determined the contribution of UVB, UVA and visible light on DGM photo-induced production in the four lakes. Our results showed a strong relationship between DGM concentrations and light intensity and between DGM production and losses in DOCF, in all study sites. We also observed higher rates of DGM formation and of DOCF bleaching in the presence of UV radiation. Under UVB light, production of DGM was higher in clear lakes than in the humic ones. Inversely, in the UVA range, DGM production tended to be higher in humic lakes. We suggest that DOCF bleaching can be used as a proxy for the rate of formation of reactive species that may alter the redox state of mercury in surface waters. We also have indications that DGM production is more important in clear than in humic waters.
NASA Astrophysics Data System (ADS)
Lapierre, J.-F.; del Giorgio, P. A.
2014-05-01
Despite the rapidly increasing volume of research on the biological and photochemical degradation of DOC in aquatic environments, little is known on the large-scale patterns in biologically and photo-chemically degradable DOC (Bd-DOC and Pd-DOC, respectively) in continental watersheds, and on the links that exist between these two key properties that greatly influence the flow of carbon from continents to oceans. Here we explore the patterns of Bd- and Pd-DOC across hundreds of boreal lakes, rivers and wetlands spanning a large range of system trophy and terrestrial influence, and compared the drivers of these two reactive pools of DOC at the landscape level. Using standardized incubations of natural waters, we found that the concentrations of Bd- and Pd-DOC co-varied across all systems studied but were nevertheless related to different pools of dissolved organic matter (DOM, identified by fluorescence analyses) in ambient waters. A combination of nutrients and protein-like DOM explained nearly half of the variation in Bd-DOC, whereas Pd-DOC was exclusively predicted by DOM optical properties, consistent with the photochemical degradability of specific fluorescent DOM (FDOM) pools that we experimentally determined. The concentrations of colored DOM (CDOM), a proxy of terrestrial influence, almost entirely accounted for the observed relationship between FDOM and the concentrations of both Bd- and Pd-DOC. The concentrations of CDOM and of the putative bio-labile fluorescence component shifted from complete decoupling in clear-water environments to strong coupling in browner streams and wetlands. This suggests a baseline autochthonous Bd-DOC pool fuelled by internal production that is gradually overwhelmed by land-derived Bd-DOC as terrestrial influence increases across landscape gradients. The importance of land as a major source of both biologically and photo-chemically degradable DOC for continental watersheds resulted in a partial coupling of those carbon pools in natural freshwaters, despite fundamental contrasts in terms of their composition and regulation.
High-resolution remote sensing of water quality in the San Francisco Bay-Delta Estuary
Fichot, Cédric G.; Downing, Bryan D.; Bergamaschi, Brian; Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Thompson, David R.; Gierach, Michelle M.
2015-01-01
The San Francisco Bay–Delta Estuary watershed is a major source of freshwater for California and a profoundly human-impacted environment. The water quality monitoring that is critical to the management of this important water resource and ecosystem relies primarily on a system of fixed water-quality monitoring stations, but the limited spatial coverage often hinders understanding. Here, we show how the latest technology in visible/near-infrared imaging spectroscopy can facilitate water quality monitoring in this highly dynamic and heterogeneous system by enabling simultaneous depictions of several water quality indicators at very high spatial resolution. The airborne portable remote imaging spectrometer (PRISM) was used to derive high-spatial-resolution (2.6 × 2.6 m) distributions of turbidity, and dissolved organic carbon (DOC) and chlorophyll-a concentrations in a wetland-influenced region of this estuary. A filter-passing methylmercury vs DOC relationship was also developed using in situ samples and enabled the high-spatial-resolution depiction of surface methylmercury concentrations in this area. The results illustrate how high-resolution imaging spectroscopy can inform management and policy development in important inland and estuarine water bodies by facilitating the detection of point- and nonpoint-source pollution, and by providing data to help assess the complex impacts of wetland restoration and climate change on water quality and ecosystem productivity.
NASA Astrophysics Data System (ADS)
Goodridge, B.
2017-12-01
Dissolved organic carbon (DOC) is the largest pool of reduced carbon in the oceans, with a reservoir equivalent to atmospheric CO2. In nearshore marine regions, DOC sources include primary production, terrestrial DOC delivered by river discharge, and/or terrestrial and marine DOC delivered via submarine groundwater discharge (SGD). While the importance of SGD to coastal carbon cycling has been implicated, the actual influence of this process on nearshore carbon dynamics and offshore export has not been explicitly identified. This study, conducted at a predominantly marine-influenced intertidal beach-nearshore ocean system along the Santa Barbara, California coastline, aimed to address this knowledge gap. I coupled dark, temperature-controlled laboratory incubations, radioisotopic (Rn-222) SGD estimates, and a DOC box model to identify the influence of pore water mixing with seawater on nearshore DOC reactivity, concentration dynamics, and offshore export. Even with a relatively low volumetric contribution, SGD pore water mixing altered nearshore DOC reactivity, and elevated the nearshore DOC concentration by 0.9 to 5.6 µmol L-1 over nearshore seawater residence times ranging from 1 to 6 days. These elevated DOC concentrations were equivalent to 1.2 to 7.5% of the mean offshore DOC concentration taken during the summer months in the Santa Barbara Channel, when the coastal water column is highly thermally stratified. Despite the challenge of assessing carbon dynamics in physically and biogeochemically complex nearshore marine regions, this study demonstrates the need for future investigations to assess and account for SGD as a non-trivial component of coastal marine carbon cycles.
NASA Astrophysics Data System (ADS)
Chappell, N. A.; Jones, T.; Young, P.; Krishnaswamy, J.
2015-12-01
There is increasing awareness that under-sampling may have resulted in the omission of important physicochemical information present in water quality signatures of surface waters - thereby affecting interpretation of biogeochemical processes. For dissolved organic carbon (DOC) and nitrogen this under-sampling can now be avoided using UV-visible spectroscopy measured in-situ and continuously at a fine-resolution e.g. 15 minutes ("real time"). Few methods are available to extract biogeochemical process information directly from such high-frequency data. Jones, Chappell & Tych (2014 Environ Sci Technol: 13289-97) developed one such method using optically-derived DOC data based upon a sophisticated time-series modelling tool. Within this presentation we extend the methodology to quantify the minimum sampling interval required to avoid distortion of model structures and parameters that describe fundamental biogeochemical processes. This shifting of parameters which results from under-sampling is called "aliasing". We demonstrate that storm dynamics at a variety of sites dominate over diurnal and seasonal changes and that these must be characterised by sampling that may be sub-hourly to avoid aliasing. This is considerably shorter than that used by other water quality studies examining aliasing (e.g. Kirchner 2005 Phys Rev: 069902). The modelling approach presented is being developed into a generic tool to calculate the minimum sampling for water quality monitoring in systems driven primarily by hydrology. This is illustrated with fine-resolution, optical data from watersheds in temperate Europe through to the humid tropics.
Production of Dissolved Organic Matter During Doliolid Feeding
NASA Astrophysics Data System (ADS)
Castellane, N. J.; Paffenhofer, G. A.; Stubbins, A.
2016-02-01
The biological carbon pump (BCP) draws carbon dioxide out of the atmosphere and buries it at the seafloor. The efficiency of the BCP is determined in part by the sinking rates of particulate organic carbon (POC) from ocean surface waters. Zooplankton can package POC into fecal pellets with higher sinking rates than their food source (e.g. phytoplankton), increasing the efficiency of the BCP. However, dissolved organic carbon (DOC) is also produced as zooplankton ingest and egest food, reducing the efficiency of BCP. The pelagic tunicate Dolioletta gegenbauri (doliolid) is a gelatinous zooplankton found at high concentrations in shelf waters, including our study site: the South Atlantic Bight. Doliolids are efficient grazers capable of stripping large quantities of phytoplankton from the water column. To determine the balance between pellet formation and DOC production during feeding, doliolids (6-7 mm gonozooids) were placed in natural seawater amended with a live phytoplankton food source and incubated on a plankton wheel. Dissolved organic matter (DOM) released directly to the water as well as the water soluble fraction of pellet organic matter were quantified and optically characterized. Colored dissolved organic matter (CDOM) absorbance and fluorescence spectra revealed that doliolid feeding produces DOM with optical properties that are commonly indicative of newly produced, highly biolabile DOM of microbial origin. Based upon these optical characteristics, doliolid-produced DOM is expected to be highly bio-labile in the environment and therefore rapidly degraded by surface ocean microbes shunting phytoplankton-derived organic carbon out of the BCP and back to dissolved inorganic carbon.
NASA Astrophysics Data System (ADS)
Serchan, S. P.; Wondzell, S. M.; Haggerty, R.; Pennington, R.; Feris, K. P.; Sanfilippo, A. R.; Reeder, W. J.; Tonina, D.
2016-12-01
Hyporheic zone biogeochemical processes can influence stream water chemistry. Some estimates show that 50-90% stream water CO2 is produced in the hyporheic zone through heterotrophic metabolism of organic matter, usually supplied from the stream as dissolved organic carbon (DOC). Preliminary results from our well network at the HJ Andrews WS1, indicate that dissolved inorganic carbon (DIC) is 1.5-2 times higher in the hyporheic zone than in stream water. Conversely, DOC (mg/L) is 1.5 times higher in stream water than in the hyporheic zone throughout the year. Overall, the hyporheic zone appears to be a net source of DIC. However, the increase in DIC along hyporheic flow paths is approximately 10-times greater than the loss of DOC, suggesting that metabolism of buried particulate organic carbon (POC) is a major source of organic carbon for microbial metabolism. However, we cannot completely rule out alternative sources of DIC, especially those originating in the overlying riparian soil, because hyporheic processes are difficult to isolate in well networks. To study hyporheic zone biogeochemical processes, particularly the transformation of organic carbon to inorganic carbon species, we designed and built six replicate 2-m long hyporheic mesocosms in which we are conducting DOC amendment experiments. We examine the role of DOC quality and quantity on hyporheic respiration by injecting labile (acetate) and refractory (fulvic acid) organic carbon and comparing rates of O2 consumption, DOC loss, and DIC gains against a control. We expect that stream source DOC is limiting in this small headwater stream, forcing hyporheic metabolism to rely on buried POC. However, the long burial time of POC suggests it is likely of low quality so that supplying labile DOC in stream water should shift hyporheic metabolism away from POC rather than increase the overall rate of metabolism. Future experiments will examine natural sources of DOC (stream periphyton, leaf, and soil humic horizon leachates), the breakdown of wood buried in the hyporheic zone, and the role of temperature and nutrients in controlling the rate at which buried POC is metabolized.
NASA Astrophysics Data System (ADS)
Tamburini, C.; Boutrif, M.; Garel, M.; Sempéré, R.; Repeta, D.; Charriere, B.; Nerini, D.; Panagiotopoulos, C.
2016-02-01
The contribution of the semi-labile dissolved organic carbon (DOC) to the global prokaryotic production has been assessed in very few previous studies. Some experiments show rapid utilization of semi-reactive DOC by prokaryotes, while other experiments show almost no utilization at all. However, all these studies did not take into account the role of hydrostatic pressure for the degradation of organic matter. In this study, we investigate (1) the degradation of "natural" high molecular weight DOM HMW-DOM (obtained after ultrafiltration) and (2) the uptake of labeled extracellular polymeric substances (3H-EPS) incubated with deep-sea water samples (2000 m-depth, NW Mediterranean Sea) under in situ pressure conditions (HP) and under atmospheric compression after decompression of the deep samples (ATM) during stratified and mixed water conditions (deep sea convection). Our results indicated that during HP incubations DOC exhibited the highest degradation rates (kHP DOC = 0.82 d-1) compared to the ATM conditions were no or few degradation was observed (kATM DOC= 0.007 d-1). An opposite trend was observed for the HP incubations from mixed deep water masses. HP incubation measurements displayed the lowest DOC degradation (kHP DOC=0.031 d-1) compared to the ATM conditions (kATM DOC=0.62 d-1). These results imply the presence of allochthonous prokaryotic cells in deep-sea samples after a winter water mass convection. Same trends were found using 3H-EPS uptake rates which were higher at HP than at ATM conditions during stratified period conditions whereas the opposite patterns were observed during deep-sea convection event. Moreover, we found than Euryarchaea were the main contributors to 3H-EPS assimilation at 2000m-depth, representing 58% of the total cells actively assimilating 3H-EPS. This study demonstrates that remineralization rates of semi-labile DOC in deep NW Med. Sea are controlled by the prokaryotic communities, which are influenced by the hydrological conditions of the water column.
NASA Astrophysics Data System (ADS)
Broder, T.; Biester, H.
2015-03-01
Bogs can store large amounts of lead (Pb) and arsenic (As) attributed to atmospheric deposition of anthropogenic emissions. Pb and As are exported along with dissolved organic carbon (DOC) in these organic-rich systems, but it is not yet clear which hydrological (pre-)conditions favor their export. This study combines one year continuous monitoring of precipitation, bog water level and pore water concentration changes with bog discharge, DOC, As and Pb stream concentrations and fluxes. Concentrations ranged from 5 to 30 mg L-1 for DOC, 0.2 to 1.9 μg L-1 for As and 1.3 to 12 μg L-1 for Pb with highest concentrations in late summer. As and Pb concentrations significantly correlated with DOC concentrations. Fluxes depended strongly on discharge, as 40% of As and 43% of Pb were exported by the upper 10% of discharge, pointing out the over-proportional contribution of heavy rain and high discharge events to annual As, Pb and DOC export. Exponential increase in element export from the bog is explained by connection of additional DOC, As and Pb pools in the acrotelm during water table rise, which is most pronounced after drought. Pb, As and DOC concentrations in pore water provide evidence of an increase of the soluble Pb pool as soon as the peat layer gets hydrologically connected, while DOC and As peak concentrations in runoff lag in comparison to Pb. Our data indicates a distinct bog-specific discharge threshold of 8 L s-1, which is thought to depend mainly on the bogs size and drainage conditions. Above this threshold element concentration do not further increase and discharge gets diluted. Combining pore water and discharge data shows that As and Pb exports are not only dependent on the amount of precipitation and discharge, but on the frequency and depth of water table fluctuations. Comparing the annual bog As and Pb export with element inventories indicates that As is much more mobilized than Pb, with annual fluxes accounting for 0.85 and 0.27‰ of total As and Pb inventory, respectively.
NASA Astrophysics Data System (ADS)
Broder, Tanja; Biester, Harald
2017-04-01
Peatlands and organic-rich riparian zones are known to export large amounts of dissolved organic carbon (DOC) to surface water. In organic-rich, acidic headwater streams main carriers for element export are dissolved organic matter (DOM) and organic-iron complexes. In this environment DOM might also act as major carrier for metals, which otherwise may have a low solubility. This study examines annual and short term event-based variations of major and trace elements in a headwater catchment. Patterns are used to trace hydrological pathways and element sources under different hydrologic preconditions. Furthermore, it elucidates the importance of DOC as carrier of different elements in a bog and a peaty riparian catchment. The study was conducted in a small headwater stream draining an ombrotrophic peatland with an adjacent forested area with peaty riparian soils in the Harz Mountains (Germany). Discharge sampling was conducted weekly at two sites from snowmelt to begin of snowfall and in high resolution during selected discharge events in 2013 and 2014. Element concentrations were measured by means of ICP-MS and ICP-OES. A PCA was performed for each site and for annual and event datasets. Results show that a large number of element concentrations strongly correlate with DOC concentrations at the bog site. Even elements like Ca and Mg, which are known to have a low affinity to DOC. Congruently, the first principal component integrates the DOC pattern (element loadings > 0.8: Ca, Fe, Mg, Mn, Zn, As, Sr, Cd, DOC) and explained about 35 % of total variance and even 50 % during rain events (loadings > 0.8: Al, Ca, Fe, Mg, Mn, Zn, Li, Co, As, Sr, Cd, Pb, DOC). The study cannot verify that all correlating elements bind to DOC. It is likely that also a common mobilization pattern in the upper peat layer by plant decomposition causes the same response to changes in hydrologic pathways. Additionally, a low mineral content and an enrichment of elements like Fe and Mn in the upper peat layers due to prevailing redox conditions might play a major role in a bog environment. At the peaty riparian zone only Ca, Fe, and Sr strongly correlated with DOC over the annual record. The PCA of the annual record display no clear DOC component here, but indicates that DOC is influenced by Component one (element loadings > 0.8: Ca, Mg, Zn, Co, Sr) and two (Al, V, La, Pb, U) suggesting different DOC sources in the peaty riparian zone. A large number of elements correlate with DOC during rain event sampling at the riparian zone. In contrast to the bog site the event-based riparian zone PCA distinguished a clear discharge related component with mineral, groundwater related elements (K, Rb, In, Cs, NO3- and SO42-). Pattern of the mineral and DOC components prove that during base flow discharge is generated in a shallow groundwater layer and successively increases upward to the organic-rich upper soil layer with increasing discharge. Contrarily, bog element pattern confirm a dominating surface-near discharge, due to high hydraulic conductivities.
Romaní, Anna M; Vázquez, Eusebi; Butturini, Andrea
2006-10-01
The evolution of dissolved organic carbon (DOC) molecular-weight fractions, DOC biodegradability (BDOC), DOC origin [fluorescence index (FI)], and enzyme activities between the stream waters (main and ephemeral channel) and ground waters (riparian and hillslope) were analyzed during the transition from drought to precipitation in a forested Mediterranean stream. After the first rains, DOC content in stream water reached its maximum value (10-18 mg L(-1)), being explained by the leaching of deciduous leaves accumulated on the stream bed during drought. During this period, the largest molecules (>10 kDa), were the most biodegradable, as indicated by high BDOC values measured during storm events and high enzymatic activities (especially for leucine-aminopeptidase). DOC >100 kDa was strongly immobilized (78%) at the stream-riparian interface, whereas the smallest molecules (<1 kDa) were highly mobile and accumulated in ground waters, indicating their greater recalcitrance. Differential enzymatic patterns between compartments showed a fast utilization of polysaccharides in the flowing water but a major protein utilization in the ground water. The results of the FI indicated a more terrestrial origin of the larger molecules in the flowing water, also suggesting that transformation of material occurs through the stream-riparian interface. Microbial immobilization and fast utilization of the most biodegradable fraction at the stream-riparian interface is suggested as a relevant DOC retention mechanism just after initial recharging of the ground water compartment. Large and rapid DOC inputs entering the intermittent river system during the transition from drought to precipitation provide available N and C sources for the heterotrophs. Heterotrophs efficiently utilize these resources that were in limited supply during the period of drought. Such changes in C cycling may highlight possible changes in organic matter dynamics under the prediction of extended drying periods in aquatic ecosystems.
NASA Astrophysics Data System (ADS)
Swett, M. P.; Amirbahman, A.; Boss, E.
2009-12-01
Wetland and estuarine sediments release significant amounts of dissolved organic carbon (DOC) due to high levels of microbial activity, particularly sulfate reduction. Changes in climate and hydrologic conditions have a potential to alter DOC release from these systems as well. This is a concern, as high levels of DOC can lead to mobilization of toxic metals and organics in natural waters. In addition, source waters high in DOC produce undesirable disinfection byproducts in water treatment. Various in situ methods, such as peepers and sediment core centrifugation, exist to quantify vertical benthic fluxes of DOC and other dissolved species from the sediment-water interface (SWI). These techniques, however, are intrusive and involve disturbance of the sediment environment. Eddy-correlation allows for real-time, non-intrusive, in situ flux measurement of important analytes, such as O2 and DOC. An Acoustic Doppler Velocimeter (ADV) is used to obtain three-dimensional fluid velocity measurements. The eddy-correlation technique employs the mathematical separation of fluid velocity into mean velocity and fluctuating velocity components, with the latter representing turbulent eddy velocity. DOC concentrations are measured using a colored dissolved organic matter (CDOM) fluorometer, and instantaneous vertical flux is determined from the correlated data. This study assesses DOC flux at three project sites: a beaver pond in the Lower Penobscot Watershed, Maine; a mudflat in Penobscot River, Maine; and a mudflat in Great Bay, New Hampshire. Eddy flux values are compared with results obtained using peepers and centrifugation, as well as vertical profiling.
NASA Astrophysics Data System (ADS)
Hotchkiss, E. R.; Ziegler, S. E.; Edwards, K. A.; Bowering, K.
2017-12-01
Water acts as a control on the cycling of organic carbon (OC). Forest productivity responses to climate change are linked to water availability while water residence time is a major control on OC loss in aquatic ecosystems. However, controls on the export of terrestrial OC to the aquatic environment remains poorly understood. Transport of dissolved OC (DOC) through soils both vertically to deeper soil horizons and into aquatic systems is a key flux of terrestrial OC, but the climate drivers controlling OC mobilized from soils is poorly understood. We installed zero-tension lysimeters across similar balsam fir forest sites within three regions that span a MAT gradient of 5.2˚C and MAP of 1050-1500 mm. Using soil water collected over all seasons for four years we tested whether a warmer and wetter climate promotes greater DOC fluxes in ecosystems experiencing relatively high precipitation. Variability within and between years was compared to that observed across climates to test the sensitivity of this flux to shorter relative to longer-term climate effects on this flux. The warmest and wettest southern site exhibited the greatest annual DOC flux (25 to 28 g C m-2 y-1) in contrast to the most northern site (8 to 10 g C m -2 y-1). This flux represented 10% of litterfall C inputs across sites and surpassed the DOC export from associated forested headwater streams (1 to 16 g C m-2 y-1) suggesting terrestrial to aquatic interface processing. Historical climate and increased soil C inputs explain the greater DOC flux in the southern region. Even in years with comparable annual precipitation among regions the DOC flux differed by climate region. Furthermore, neither quantity nor form of precipitation could explain inter-annual differences in DOC flux within each region. Region specific relationships between precipitation and soil water flux instead suggest historical climate effects may impact soil water transport efficiency thereby controlling the regional variation in the DOC flux. As these forests are exposed to a warmer and wetter climate, DOC transport from organic soils will likely increase. Although precipitation changes will impact this C flux, longer-term climate effects impacting soil inputs, composition and structure of these forests will play an important role in controlling DOC transport in a warmer and wetter future.
NASA Astrophysics Data System (ADS)
Broder, T.; Biester, H.
2015-08-01
Bogs can store large amounts of lead (Pb) and arsenic (As) from atmospheric deposition of anthropogenic emissions. Pb and As are exported along with dissolved organic carbon (DOC) from these organic-rich systems, but it is not yet clear which hydrological (pre)conditions favor their export. This study combines a 1-year monitoring of precipitation, bog water level and pore water concentration changes with bog discharge and DOC, iron, As and Pb stream concentrations. From these data, annual DOC, As, and Pb exports were calculated. Concentrations ranged from 5 to 30 mg L-1 for DOC, 0.2 to 1.9 μg L-1 for As, and 1.3 to 12 μg L-1 for Pb, with highest concentrations in late summer. As and Pb concentrations significantly correlated with DOC concentrations. Fluxes depended strongly on discharge, as 40 % of As and 43 % of Pb were exported during 10 % of the time with the highest discharge, pointing out the over-proportional contribution of short-time, high-discharge events to annual As, Pb and DOC export. Exponential increase in element export from the bog is explained by connection of additional DOC, As and Pb pools in the acrotelm during water table rise, which is most pronounced after drought. Pb, As and DOC concentrations in pore water provide evidence of an increase in the soluble Pb pool as soon as the peat layer becomes hydrologically connected, while DOC and As peak concentrations in runoff lag behind in comparison to Pb. Our data indicate a distinct bog-specific discharge threshold of 8 L s-1, which is thought to depend mainly on the bogs size and drainage conditions. Above this threshold, element concentrations do not further increase and discharge becomes diluted. Combining pore water and discharge data shows that As and Pb exports are dependent on not only the amount of precipitation and discharge but also on the frequency and depth of water table fluctuations. Comparing the annual bog As and Pb export with element inventories indicates that As is much more mobilized than Pb, with annual fluxes accounting for 0.85 and 0.27 ‰ of total As and Pb inventory, respectively.
Gaffney, Paul P J; Hancock, Mark H; Taggart, Mark A; Andersen, Roxane
2018-08-01
During the restoration of degraded bogs and other peatlands, both habitat and functional recovery can be closely linked with nutrient cycling, which is reflected in pore- and surface-water chemistry. Several peatland restoration studies have shown that the time required for recovery of target conditions is slow (>10 years); for heavily-impacted, drained and afforested peatlands of northern Scotland, recovery time is unknown. We monitored pore- and surface-water chemistry across a chronosequence of formerly drained, afforested bog restoration sites spanning 0-17 years, using a space-for-time substitution, and compared them with open blanket bog control sites. Our aims were to measure rate of recovery towards bog conditions and to identify the best suite of water chemistry variables to indicate recovery. Our results show progress in recovery towards bog conditions over a 0-17 year period post-restoration. Elements scavenged by trees (Mg, Na, S) completely recovered within that period. Many water chemistry variables were affected by the restoration process itself, but recovered within 11 years, except ammonium (NH 4 + ), Zn and dissolved organic carbon (DOC) which remained elevated (when compared to control bogs) 17 years post restoration. Other variables did not completely recover (water table depth (WTD), pH), exhibiting what we term "legacy" effects of drainage and afforestation. Excess N and a lowered WTD are likely to slow the recovery of bog vegetation including key bog plants such as Sphagnum mosses. Over 17 years, we measured near-complete recovery in the chemistry of surface-water and deep pore-water but limited progress in shallow pore-water. Our results suggest that at least >17 years are required for complete recovery of water chemistry to bog conditions. However, we expect that newer restoration methods including conifer harvesting (stem plus brash) and the blocking of plough furrows (to increase the WTD) are likely to accelerate the restoration process (albeit at greater cost); this should be evaluated in future studies. We conclude that monitoring pore- and surface-water chemistry is useful in terms of indicating recovery towards bog conditions and we recommend monitoring WTD, pH, conductivity, Ca, NH 4 + , phosphate (PO 4 3- ), K, DOC, Al and Zn as key variables. Copyright © 2018 Elsevier Ltd. All rights reserved.
Contrasting Impact of Floodwaters on Coastal Biogeochemistry in the Great Barrier Reef Ecosystem
NASA Astrophysics Data System (ADS)
Crosswell, J.; Carlin, G.; Steven, A. D.; Franklin, H.
2017-12-01
Delivery of terrestrial nutrients and organic material to Great Barrier Reef (GBR) ecosystem is dominated by episodic floods, and the biogeochemical impact of these events is expected to change under future climatic and man-made stressors. Here we compare the biogeochemical response of coastal waters to floods from two of the largest catchment in northeast Australia, the Fitzroy and Normanby River basins. The Fitzroy catchment is dominated by agriculture, principally grazing, whereas the Normanby is regarded as relatively pristine. High-resolution spatial surveys showed that flood plumes in both regions extended 30-100 km seaward and along the coast, reaching interior reefs and islands of the GBR. Floodwaters from both catchments were characterized by elevated nutrients and dissolved organic carbon (DOC), but the fate of flood-borne material in coastal waters showed significant differences between the two systems. In the Normanby, nutrients were rapidly removed near the estuary mouth and chlorophyll a was low throughout the adjacent Princess Charlotte Bay. Elevated DOC levels persisted in the Normanby flood plume, but high dissolved oxygen and low CO2 throughout a stratified water column suggested that the flood-borne organic matter was recalcitrant. By contrast, there was a clear source of DOC and nutrients in the hypoxic bottom waters of the Fitzroy flood plume, suggesting that the flood-borne particulate organic matter was highly labile. Decoupling of autotrophic surface waters from heterotrophic bottom waters in the Fitzroy plume supported a large phytoplankton bloom that extended >100 km and led to low pH and low light availability at nearby reefs. The contrasting impact of major floods in these two coastal systems appeared to be primarily driven by the quality of flood-borne organic matter, as well as differences in coastal morphology.
NASA Astrophysics Data System (ADS)
Carey, S. K.
2006-12-01
For discontinuous and continuous permafrost watersheds, the largest mass flux of dissolved organic carbon (DOC) occurs during the snowmelt period. During this time, available allochtonous organic carbon that has accumulated over the winter in frozen organic soils is rapidly flushed to the basin outlet. While this process has been observed now in many river systems of different size and location, there have been few inter-annual reports on the mass of DOC loss and the factors controlling its variability during freshet. Hydrological and DOC fluxes were recorded for the 2002, 2003 and 2006 snowmelt season with supplementary over-winter data for an 8 square kilometer sub-basin (Granger Basin) of the Wolf Creek Research Basin, Yukon Territory, Canada. Granger Basin is an alpine catchment above treeline underlain with discontinuous permafrost (approximately 70 %) and has widespread surface organic soils up to 0.4 m in thickness. Pre-melt snow water equivalent varied widely throughout the basin, yet was greatest in 2006, followed by 2002 and 2003. Ground temperatures were notably colder throughout the 2003 winter compared with 2006 and 2002. For all years, discharge began in mid-May, and was a continuous event in 2002 and 2006. In 2003 four distinct melt-periods were observed due to rising and falling temperatures. During freshet, stream DOC concentration increased rapidly from < 2 mg C/L to > 15 mg C/L on the first ascending limb of the hydrograph in each year. In 2003, DOC was largely flushed from the catchment several weeks prior to peak freshet. DOC concentration in wells and piezometers followed a similar pattern to streamflow DOC, with 2003 groundwater DOC concentrations less than 2002 and 2006. The total mass flux of DOC during freshet was 0.85, 0.45 and 1.01 g C/m2 for 2002, 2003 and 2006 respectively. Despite differences in pre-melt snow accumulation, the timing of melt and the volume of discharge, it appears that spring DOC export is largely controlled by over-winter ground temperatures. This has important implications for carbon mass balances as warming temperatures in the pan-arctic are largely occurring during the winter months.
NASA Astrophysics Data System (ADS)
Hartnett, H. E.; Palta, M. M.; Grimm, N. B.; Ruhi, A.; van Shaijik, M.
2016-12-01
Tempe Town Lake (TTL) is a hydrologically-regulated reservoir in Tempe, Arizona. The lake has high primary production and receives dissolved organic carbon (DOC) from rainfall, storm flow, and upstream river discharge. We applied an ARIMA time-series model to a three-year period for which we have high-frequency chemistry, meteorology, and streamflow data and analyzed external (rainfall, stream flow) and internal (dissolved O2) drivers of DOC content and composition. DOC composition was represented by fluorescence-based indices (fluorescence index, humification index, freshness) related to DOC source (microbially- vs. terrestrially-derived) and reactivity DOC. Patterns in DOC concentration and composition suggest carbon cycling in the lake responds to both meteorological events and to anthropogenic activity. The fluorescence-derived DOC composition is consistent with seasonally-distinct inputs of algal- and terrestrially-derived carbon. For example, Tempe Town Lake is supersaturated in O2 over 70% of the time, suggesting the system is autotrophic and primary productivity (i.e., O2 saturation state) was the strongest driver of DOC concentration. In contrast, external drivers (rainfall pattern, streamflow) were the strongest determinants of DOC composition. Biological processes (e.g., algal growth) generate carbon in the lake during spring and summer, and high Fluorescence Index and Freshness values at this time are indicative of algal-derived material; these parameters generally decrease with rain or flow suggesting algal-derived carbon is diluted by external water inputs. During dry periods, carbon builds up on the land surface and subsequent rainfall events deliver terrestrial carbon to the lake. Further evidence that rain and streamflow deliver land-derived material are increases in the Humification Index (an indicator of terrestrial material) following rain/flow events. Our results indicate that Tempe Town Lake generates autochthonous carbon and has the capacity to process allochthonous carbon from the urban environment. Ongoing work is comparing these results to other periods in the 10-year time series to test if the driver-DOC relationships are robust over longer time-scales and evaluating how changes in lake management and climate have altered DOC over time.
Temporal Patterns in Dissolved Organic Carbon Composition in an Urban Lake
NASA Astrophysics Data System (ADS)
Hartnett, H. E.; Palta, M. M.; Grimm, N. B.; Ruhi, A.; van Shaijik, M.
2017-12-01
Tempe Town Lake (TTL) is a hydrologically-regulated reservoir in Tempe, Arizona. The lake has high primary production and receives dissolved organic carbon (DOC) from rainfall, storm flow, and upstream river discharge. We applied an ARIMA time-series model to a three-year period for which we have high-frequency chemistry, meteorology, and streamflow data and analyzed external (rainfall, stream flow) and internal (dissolved O2) drivers of DOC content and composition. DOC composition was represented by fluorescence-based indices (fluorescence index, humification index, freshness) related to DOC source (microbially- vs. terrestrially-derived) and reactivity DOC. Patterns in DOC concentration and composition suggest carbon cycling in the lake responds to both meteorological events and to anthropogenic activity. The fluorescence-derived DOC composition is consistent with seasonally-distinct inputs of algal- and terrestrially-derived carbon. For example, Tempe Town Lake is supersaturated in O2 over 70% of the time, suggesting the system is autotrophic and primary productivity (i.e., O2 saturation state) was the strongest driver of DOC concentration. In contrast, external drivers (rainfall pattern, streamflow) were the strongest determinants of DOC composition. Biological processes (e.g., algal growth) generate carbon in the lake during spring and summer, and high Fluorescence Index and Freshness values at this time are indicative of algal-derived material; these parameters generally decrease with rain or flow suggesting algal-derived carbon is diluted by external water inputs. During dry periods, carbon builds up on the land surface and subsequent rainfall events deliver terrestrial carbon to the lake. Further evidence that rain and streamflow deliver land-derived material are increases in the Humification Index (an indicator of terrestrial material) following rain/flow events. Our results indicate that Tempe Town Lake generates autochthonous carbon and has the capacity to process allochthonous carbon from the urban environment. Ongoing work is comparing these results to other periods in the 10-year time series to test if the driver-DOC relationships are robust over longer time-scales and evaluating how changes in lake management and climate have altered DOC over time.
NASA Astrophysics Data System (ADS)
Schelker, J.; Grabs, T. J.; Bishop, K. H.; Laudon, H.
2012-12-01
Concentrations of dissolved organic carbon (DOC) in stream water show large variations as a response to disturbances such as forestry operations. We used a paired catchment experiment in northern Sweden which shows well quantified increases of DOC concentrations and C-exports as a result of forest harvesting. To identify the drivers of these increases, a physically-based process model (Riparian Flow Integration Model, RIM) was used to inversely simulate the DOC availability in the peat-rich riparian soils of the catchments. DOC availability in soils followed a seasonal signal paralleling the seasonality of soil-temperatures (min: February; max: August) during 2005-2011. Further, high-frequency event sampling of DOC during spring and summer seasons of 2007, 2008 and 2009, respectively, revealed that event size acted as a secondary control of DOC in streams: Spring snowmelt events (as well as one major event in 2009) showed clockwise hysteresis, whereas minor runoff episodes during summer (when DOC availability in soils was highest) were characterized by a counterclockwise behavior. The higher hydro-meteorological forcing consisting of increases of soil temperature and soil moisture after the forest removal governed additional increases in DOC availability in soils. The higher DOC concentrations observed in streams after forest harvesting can therefore be ascribed to i) the increased climatic forcing comprising higher water flows through riparian soils, ii) increased soil temperatures and soil moisture, respectively, favoring an increased production of DOC, and iii) additional variation by event size. Overall these results underline the large impact of forestry operations on stream water quality as well as DOC exports leaving managed boreal forests. Simulated and measured soil water TOC concentration profiles within the three Balsjö catchments (CC-4 = clear-cut with 67% harvest; NO-5 = 35% harvest; NR-7 = northern reference). The simulated curves represent the inversely modeled soil profiles using the average f-parameter calculated for August 2009 for each catchment. Measured values represent TOC concentrations of soil water sampled in mid August 2009. Sample numbers (soil depth in bracket) are given as: n (-0.2m) = 16; n (-0.6m) = 17; n (-0.9m) = 15. Horizontal whiskers indicate the standard deviation of measured values for each soil depth.
Volk, Christian; Kaplan, Louis A; Robinson, Jeff; Johnson, Bruce; Wood, Larry; Zhu, Hai Wei; LeChevallier, Mark
2005-06-01
Natural organic matter (NOM) in drinking water supplies can provide precursors for disinfectant byproducts, molecules that impact taste and odors, compounds that influence the efficacy of treatment, and other compounds that are a source of energy and carbon for the regrowth of microorganisms during distribution. NOM, measured as dissolved organic carbon (DOC), was monitored daily in the White River and the Indiana-American water treatment plant over 22 months. Other parameters were either measured daily (UV-absorbance, alkalinity, color, temperature) or continuously (turbidity, pH, and discharge) and used with stepwise linear regressions to predict DOC concentrations. The predictive models were validated with monthly samples of the river water and treatment plant effluent taken over a 2-year period after the daily monitoring had ended. Biodegradable DOC (BDOC) concentrations were measured in the river water and plant effluent twice monthly for 18 months. The BDOC measurements, along with measurements of humic and carbohydrate constituents within the DOC and BDOC pools, revealed that carbohydrates were the organic fraction with the highest percent removal during treatment, followed by BDOC, humic substances, and refractory DOC.
Effect of wildfires on physicochemical changes of watershed dissolved organic matter.
Revchuk, Alex D; Suffet, I H
2014-04-01
Physicochemical characterization of dissolved organic carbon (DOC) provides essential data to describe watershed characteristics after drastic changes caused by wildfires. Post-fire watershed behavior is important for water source selection, management, and drinking water treatment optimization. Using ash and other burned vegetation fragments, a leaching procedure was implemented to describe physicochemical changes to watershed DOC caused by wildfires. Samples were collected after the 2007 and 2009 wildfires near Santa Barbara, California. Substantial differences in size distribution (measured by ultrafiltration), polarity (measured by polarity rapid assessment method), and the origin of leached DOC (measured by fluorescence) were observed between burned and unburned sites. Recently burned ash had 10 times the DOC leaching potential, and was dominated by large size fragments, compared to weathered 2-year-old ash. Charged DOC fractions were found to positively correlate with DOC size, whereas hydrophobic and hydrophilic DOC fractions were not. Proteins were only observed in recently burned ash and were indicative of recent post-fire biological activity.
NASA Astrophysics Data System (ADS)
Salvadó, Joan A.; Tesi, Tommaso; Sundbom, Marcus; Karlsson, Emma; Kruså, Martin; Semiletov, Igor P.; Panova, Elena; Gustafsson, Örjan
2016-11-01
Fluvial discharge and coastal erosion of the permafrost-dominated East Siberian Arctic delivers large quantities of terrigenous organic carbon (Terr-OC) to marine waters. The composition and fate of the remobilized Terr-OC needs to be better constrained as it impacts the potential for a climate-carbon feedback. In the present study, the bulk isotope (δ13C and Δ14C) and macromolecular (lignin-derived phenols) composition of the cross-shelf exported organic carbon (OC) in different marine pools is evaluated. For this purpose, as part of the SWERUS-C3 expedition (July-September 2014), sediment organic carbon (SOC) as well as water column (from surface and near-bottom seawater) dissolved organic carbon (DOC) and particulate organic carbon (POC) samples were collected along the outer shelves of the Kara Sea, Laptev Sea and East Siberian Sea. The results show that the Lena River and the DOC may have a preferential role in the transport of Terr-OC to the outer shelf. DOC concentrations (740-3600 µg L-1) were 1 order of magnitude higher than POC (20-360 µg L-1), with higher concentrations towards the Lena River plume. The δ13C signatures in the three carbon pools varied from -23.9 ± 1.9 ‰ in the SOC, -26.1 ± 1.2 ‰ in the DOC and -27.1 ± 1.9 ‰ in the POC. The Δ14C values ranged between -395 ± 83 (SOC), -226 ± 92 (DOC) and -113 ± 122 ‰ (POC). These stable and radiocarbon isotopes were also different between the Laptev Sea and the East Siberian Sea. Both DOC and POC showed a depleted and younger trend off the Lena River plume. Further, the Pacific inflow and the sea-ice coverage, which works as a barrier preventing the input of "young" DOC and POC, seem to have a strong influence in these carbon pools, presenting older and more enriched δ13C signatures under the sea-ice extent. Lignin phenols exhibited higher OC-normalized concentrations in the SOC (0.10-2.34 mg g-1 OC) and DOC (0.08-2.40 mg g-1 OC) than in the POC (0.03-1.14 mg g-1 OC). The good relationship between lignin and Δ14C signatures in the DOC suggests that a significant fraction of the outer-shelf DOC comes from "young" Terr-OC. By contrast, the slightly negative correlation between lignin phenols and Δ14C signatures in POC, with higher lignin concentrations in older POC from near-bottom waters, may reflect the off-shelf transport of OC from remobilized permafrost in the nepheloid layer. Syringyl / vanillyl and cinnamyl / vannillyl phenol ratios presented distinct clustering between DOC, POC and SOC, implying that those pools may be carrying different Terr-OC of partially different origin. Moreover, 3,5-dihydroxybenzoic acid to vanillyl phenol ratios and p-coumaric acid to ferulic acid ratios, used as a diagenetic indicators, enhanced in POC and SOC, suggesting more degradation within these pools. Overall, the key contrast between enhanced lignin yields both in the youngest DOC and the oldest POC samples reflects a significant decoupling of terrestrial OC sources and pathways.
NASA Astrophysics Data System (ADS)
Zheng, Ying; Waldron, Susan; Flowers, Hugh
2015-04-01
Peatlands are an important terrestrial carbon reserve and a principal source of dissolved organic carbon (DOC) to the fluvial environment (Wallage et al. 2006). Recently it has been observed that DOC concentrations [DOC] in surface waters have increased in Europe and North America (Monteith et al. 2007). This has been attributed primarily to reduced acid deposition. However, land use change can also release C from peat soils. A significant land use change in Scotland is hosting windfarms. Whether windfarm construction causes such impacts has been a research focus, particularly considering fluvial losses, but usually assessing if there are changes in DOC concentration rather than composition. Our study area is a peaty catchment that hosts wind turbines, has peat restoration activities and forest felling and is drained by two streams. We are using UV-visible and fluorescence spectrophotometry to assess if there are differences between the two steams or temporal changes in DOC composition. We will present data from samples collected since February 2014. The parameters we are focusing on are SUVA254, E4/E6 and E2/E4 ratios as these are indicators of DOC aromaticity, humic acid (HA): fulvic acid (FA) ratio and the proportion of humic substances in DOC (Weishaar, 2003; Spencer et al. 2007; Graham et al. 2012). To assess these we have measured UV-visible absorbance spectra from 200 nm to 800 nm. Meanwhile sample fluorescence emission and excitation matrix (EEM) will be applied with the PARAFAC model to obtain more information about the variations in humic substances in this catchment. Our current analysis indicates spatial differences not only in DOC concentration but also in composition. For example, the mainstem draining the windfarm area had a smaller [DOC] but higher E4/E6 and lower E2/E4 ratio values than the tributary draining an area of felled forestry. This may be indicative of more HAs in the mainstem DOC. Seasonal variations have also been observed. Both streams had high [DOC] in summer and autumn compared to spring. While E2/E4 ratios were steady in both streams, a more variable E4/E6 ratio in the mainstem may suggest DOC composition changed more over time than in the tributary which had a relatively stable E4/E6 ratio. [DOC] fell in both streams during the summer drought period but a corresponding fall in SUVA254 in the mainstem but not the tributary is further evidence of differences in DOC composition between the two streams. Such spatial and temporal understanding is needed to understand if, and how, land use influences the composition of the DOC exported. References: Graham M. C. et al. 2012. Processes controlling manganese distributions and associations in organic-rich freshwater aquatic systems: The example of Loch Bradan, Scotland. Science of the Total Environment, 424, 239-250. Monteith D. et al. 2007. Dissolved organic carbon trends resulting from changes in atmospheric chemistry. Nature,450, 537-540. Spencer R.G.M, Bolton L. and Baker A. 2007. Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations.Water Research, 41 (13):2941-2950. Wallage Z.E., Holden, J. and McDonald, A.T. 2006. Drain blocking: An effective treatment for reducing dissolved organic carbon loss and water discolouration in a drained peatland. Science of the total environment, 367, 811-821. Weishaar J.L. et al. 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology 37(20): 4702-4708.
NASA Astrophysics Data System (ADS)
D'Sa, E. J.; Joshi, I.; Osburn, C. L.; Bianchi, T. S.; Ko, D. S.; Oviedo-Vargas, D.; Arellano, A.; Ward, N.
2016-12-01
Apalachicola Bay, a semi-enclosed estuary located in Florida's panhandle, is well known for its water quality and oyster yields. We present the use of combined field and ocean color satellite observations and the outputs of a high-resolution hydrodynamic model to study the influence of physical processes on the distribution and the transport of terrestrially derived CDOM and DOC to shelf waters during the spring and fall of 2015. Determination of DOC stocks were based on the development of a CDOM algorithm (R2 = 0.87, N = 9) for the VIIRS ocean color sensor, and the assessment of CDOM - DOC relationships (R2 = 0.88, N = 13 in March; R2 = 0.83, N = 24 in November) for the Apalachicola Bay. Satellite-derived CDOM and DOC maps together with model-based salinity distributions revealed their spatial extent, sources and transport to the shelf water. Furthermore, strong seasonal influence on DOM distribution in the bay was associated with inputs from Apalachicola and Carrabelle Rivers and the surrounding marshes. Estimates of DOC standing stocks in the bay obtained using ocean color data and high-resolution bathymetry showed relatively higher stocks in November ( 3.71 × 106 kg C, 560 km2) than in March ( 4.07 × 106 kg C, 560 km2) despite lower river discharge in dry season. Results of DOC flux estimates from the bay to coastal waters will also be presented.
NASA Astrophysics Data System (ADS)
Ritson, Jonathan P.; Brazier, Richard E.; Graham, Nigel J. D.; Freeman, Chris; Templeton, Michael R.; Clark, Joanna M.
2017-06-01
Drought conditions are expected to increase in frequency and severity as the climate changes, representing a threat to carbon sequestered in peat soils. Downstream water treatment works are also at risk of regulatory compliance failures and higher treatment costs due to the increase in riverine dissolved organic carbon (DOC) often observed after droughts. More frequent droughts may also shift dominant vegetation in peatlands from Sphagnum moss to more drought-tolerant species. This paper examines the impact of drought on the production and treatability of DOC from four vegetation litters (Calluna vulgaris, Juncus effusus, Molinia caerulea and Sphagnum spp.) and a peat soil. We found that mild droughts caused a 39.6 % increase in DOC production from peat and that peat DOC that had been exposed to oxygen was harder to remove by conventional water treatment processes (coagulation/flocculation). Drought had no effect on the amount of DOC production from vegetation litters; however large variation was observed between typical peatland species (Sphagnum and Calluna) and drought-tolerant grassland species (Juncus and Molinia), with the latter producing more DOC per unit weight. This would therefore suggest the increase in riverine DOC often observed post-drought is due entirely to soil microbial processes and DOC solubility rather than litter layer effects. Long-term shifts in species diversity may, therefore, be the most important impact of drought on litter layer DOC flux, whereas pulses related to drought may be observed in peat soils and are likely to become more common in the future. These results provide evidence in support of catchment management which increases the resilience of peat soils to drought, such as ditch blocking to raise water tables.
Chemical composition and cycling of dissolved organic matter in the Mid-Atlantic Bight
NASA Astrophysics Data System (ADS)
Aluwihare, Lihini I.; Repeta, Daniel J.; Chen, Robert F.
This study focuses on the chemical characterization of high molecular-weight dissolved organic matter (HMW DOM) isolated from the Middle Atlantic Bight in April 1994 and March 1996. Using proton nuclear magnetic resonance spectroscopy ( 1HNMR) and monosaccharide analysis we compared both spatial and temporal variations in the chemical structure of HMW DOM across this region. Our analyses support the presence of at least two compositionally distinct components to HMW DOM. The major component is acyl polysaccharide (APS), a biopolymer rich in carbohydrates, acetate and lipid, accounting for between 50% and 80% of the total high molecular-weight dissolved organic carbon (HMW DOC) in surface samples. APS is most abundant in fully marine, surface-water samples, and is a product of autochthonous production. Organic matter with spectral properties characteristic of humic substances is the second major component of HMW DOM. Humic substances are most abundant (up to 49% of the total carbon) in samples collected from estuaries, near the coast, and in deep water, suggesting both marine and perhaps terrestrial sources. Radiocarbon analyses of neutral monosaccharides released by the hydrolysis of APS have similar and modern (average 71‰) Δ 14C values. Radiocarbon data support our suggestion that these sugars occur as part of a common macromolecule, with an origin via recent biosynthesis. Preliminary radiocarbon data for total neutral monosaccharides isolated from APS at 300 and 750 m show this fraction to be substantially enriched relative to total HMW DOC and DOC. The relatively enriched radiocarbon values of APS at depth suggest APS is rapidly transported into the deep ocean.
NASA Astrophysics Data System (ADS)
Evans, C.; Monteith, D.; Jones, T.; Burden, A.; Peacock, M.; Gauci, V.; Page, S. E.; Moore, S.
2013-12-01
Dissolved organic carbon (DOC) represents a significant loss term within the carbon (C) balance of many terrestrial ecosystems, and a quantitatively important and reactive C input to many freshwater ecosystems. DOC concentrations have risen dramatically, over a period of decades, in rivers and lakes draining semi-natural catchments across large areas of Northern Europe and Northeast North America, with wide-ranging consequences for C cycling, aquatic ecosystem functioning and drinking water treatment. These increases have been variously attributed to climatic changes, including increased incidence of extreme events, as well as land-management factors and changes in atmospheric deposition. A growing body of evidence now indicates that the primary driver of rising DOC has been ecosystem recovery from the historic effects of acid deposition, and thus that observed increases - whilst sometimes economically problematic - may represent a return to pre-industrial baseline conditions. In light of the apparent dominance of acidity change as a driver of recent freshwater DOC increases, we consider whether or not other potential drivers of change, including climatic extremes and management-related disturbances, are likely to exert a significant influence on the transport of DOC from catchments to surface waters. We conclude that the alleviation of acidification pressures has now made catchments in regions formerly impacted by sulphur pollution much more susceptible to extreme events and disturbances. Drawing on monitoring and experimental case studies from the UK, we suggest that DOC export from organic soils may be shifting from ';solubility controlled' to ';supply controlled', and that climatic events leading to enhanced DOC production (e.g. high temperatures or drought-rewet cycles) and/or shallow lateral transport (e.g. high flow events) are now generating freshwater DOC peaks that are unprecedented in the monitoring record. We also examine the role of land-management as a control on DOC leaching, focusing on the influence of peatland drainage on sites ranging from the UK to Southeast Asia. Again, we conclude that anthropogenic modification of peat hydrology has contributed both to increases in baseline rates of DOC export, and to the enhanced susceptibility of these ecosystems to extreme events. An example is presented of the impact of an uncontrolled fire on DOC export from a drained peatland in Borneo. We develop a conceptual model of the integrated effect of multiple environmental drivers on DOC export from peats and organo-mineral soils, and consider how projected changes in these drivers might be expected to alter the supply and behaviour of freshwater DOC in future. References Evans CD, Jones TG, Burden A et al. (2012) Acidity controls on dissolved organic carbon mobility in organic soils. Global Change Biology 18, 3317-3331. Monteith DT, Stoddard JL, Evans CD et al. (2007). Rising freshwater dissolved organic carbon driven by changes in atmospheric deposition. Nature 450, 537-540. Moore S, Evans CD, Page SE et al. (2013). Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes, Nature 493, 660-664.
NASA Astrophysics Data System (ADS)
Harvey, R. W.; Metge, D. W.; LeBlanc, D. R.; Underwood, J. C.; Aiken, G.; McCobb, T. D.; Jasperse, J.
2015-12-01
Bank filtration has proven to be a sustainable, cost-effective method of removing cyanobacteria and their harmful toxins from surface water during filtration through bottom and aquifer sediments. The biologically active layer of sediments immediately beneath the sediment-water interface (colmation layer) is believed to be particularly important in this process. An in situ experiment was conducted that involved assessing the transport behaviors of bromide (conservative tracer), Synechococcus sp. IU625 (cyanobacterium, 2.6 ± 0.2 µm), AS-1 (tailed cyanophages, 110 nm long), MS2 (coliphages, 26 nm diameter), and carboxylate-modified microspheres (1.7 µm diameter) introduced to the colmation layer using a bag-and-barrel (Lee-type) seepage meter. The constituents were monitored as they advected through the colmation layer and underlying aquifer sediments at Ashumet Pond in Cape Cod, MA, a mesotrophic kettle pond that recharges a portion of a sole-source, drinking water aquifer. Because the pond DOC includes the various cyanotoxins produced during harmful algal bloom senescence, the DOC and aforementioned colloids were tracked concomitantly. The tracer test constituents were monitored as they advected across the pond water-groundwater interface and through the underlying aquifer sediments under natural-gradient conditions past push-points samplers placed at ~30-cm intervals along a 1.2-m-long, diagonally downward flow path. More than 99% of the microspheres, IU625, MS2, AS-1, and ~42% of the pond DOC were removed in the colmation layer (upper 25 cm of poorly sorted bottom sediments) at two test locations characterized by dissimilar seepage rates (1.7 vs. 0.26 m d-1). Retention profiles in recovered core material indicated that >82% of the attached IU625 were in the top 3 cm of bottom sediments. The colmation layer was also responsible for rapid changes in the character of the DOC and was more effective (by 3 orders of magnitude) at removing microspheres than was the underlying 30-cm-long segment of sediment. A follow-up study conducted the following year at the same location demonstrated that removal of the top 5 cm of sediment resulted in a six-fold decrease in the efficiency of the near-surface bottom sediments for filtering out Synechococcus, cyanophage, and well-characterized microspheres.
Physical and chemical differences between natural and artificial pools in blanket peatlands
NASA Astrophysics Data System (ADS)
Turner, Ed; Baird, Andy; Billett, Mike; Chapman, Pippa; Dinsmore, Kerry; Holden, Joseph
2014-05-01
Natural pools are common features of many northern peatlands. Numerous artificial pools are being created behind dams installed during drain-blocking, a common peatland restoration technique, significantly increasing the area of open water. Natural pools are known to be major sources of GHGs (e.g. Hamilton et al. 1994), but the reasons they are such 'hotspots' is poorly understood. We hypothesize that pools act as 'biochemical reactors' of particulate and dissolved organic carbon (POC and DOC) transported from surrounding peat that is processed into a range of products including CH4 and CO2. Therefore, understanding the processes operating in both natural and artificial pool systems is fundamental to elucidating this hypothesis. Water levels and temperature have been continuously monitored at six natural and six artificial pools within the 'Flow Country' blanket peatland in northern Scotland since May 2013. Bi-weekly sampling of waters from pools, peat matrix through-flow (via piezometers) and surface flow has been conducted for analysis of DOC, POC, DIC, CH4diss and CO2diss, together with GHG flux measurements from pool surfaces and adjacent peat. We show that, to date, pool water levels rapidly respond to rainfall, although artificial pools appear to respond with greater magnitude. For example, over the course of same rainfall event (20-23 June 2013), natural and artificial pool levels increased between 5.3 and 9.8 cm, and 12.5 and 22.6 cm respectively. Temperature measured at c. 5 cm from the base of each pool shows distinct diurnal fluctuations, which are of greater magnitude in all but one of the natural pools compared to the artificial pools: over the same period (20-23 July 2013), the maximum diurnal variation at the artificial pool site was 5.1 °C compared to 9.2 °C within the natural pools. Vegetation cover is generally higher in artificial pools and may have a moderating effect on variations in pool temperature. Results of pool-water DOC analysis from regular sampling at the study site and a wider regional survey indicate DOC concentrations are consistently higher in artificial pools. The implications of these preliminary results in relation to the carbon cycle and GHGs of blanket peatlands are briefly discussed. Hamilton, J. D., Kelly, C. A., Rudd, J. W. M., Hesslein, R. H. and Roulet, N. T. (1994) Flux to the atmosphere of CH4 and CO2 from wetland ponds on the Hudson Bay lowlands (HBLs). Journal of Geophysical Research 99, 1495-1510.
NASA Astrophysics Data System (ADS)
Batista, F.; Cutter, G. A.; Cutter, L. S.; Johannesson, K. H.
2001-12-01
Arsenic concentrations and speciation were measured in surface water samples collected from the Great Dismal Swamp in southeastern Virginia, USA using, selective hydride generation and atomic adsorption spectroscopy. Phosphate concentrations were also determined in these surface waters using the molybdate blue spectrophotometric method. Great Dismal Swamp waters are characterized as blackwaters, having high dissolved organic carbon (DOC) concentrations that range from 445 iM to 6304 iM, with a mean (n = 12) of 3282+/-2165 iM. pH ranged from 4.30 to 6.42, with a mean (n = 12) of 5.14+/-1.04. The inflow waters (Cypress and Pocosin Swamps) have higher pH's (mean of 6.32+/- 0.10 for n = 5) than waters from Lake Drummond and its immediate inflow and outflow ditches, where the mean pH (n = 7) is 4.30+/-0.04. Total arsenic concentrations in Great Dismal Swamp waters range from 2.18 nM up to 21.42 nM. Phosphate concentrations range from 0.18 iM to 1.42 iM, but are not correlated with arsenate concentrations (r 2 = 0.004). Arsenate typically predominates in oxic, surface waters. However, As(III) was detected at higher concentrations (1 - 17.72 nM, mean value of 8.00+/-5.80 nM for all samples, n = 10) in half of the samples from the lower part of the watershed (i.e., mainly in Lake Drummond and its outflow, the Feeder Ditch; mean of 12.89+/-2.89 nM, n = 5). No methylated species were detected in the selected samples analyzed for organoarsenical forms (monomethyl and dimethyl arsenicals) A strong correlation exists between dissolved As(III) concentrations and dissolved organic carbon concentrations (r2 = 0.88), and this correlation is significant at greater than the 99% confidence level. The high abundance of As(III) in comparison to both thermodynamic predictions, and other surface waters, suggests that either there is a strong anoxic source of this form, or that the high DOC concentrations stabilize it via complexation and slower rate of oxidation.
Wershaw, R. L.; Llaguno, E.C.; Leenheer, J.A.
1996-01-01
The adsorption of compost leachate DOC on alumina is used as a model for elucidation of the mechanism of formation of natural organic coatings on hydrous metal oxide surfaces in soils and sediments. Compost leachate DOC is composed mainly of organic acid molecules. The solid-state 13C NMR spectra of these organic acids indicate that they are very similar in composition to aquatic humic substances. Changes in the solid-state 13C NMR spectra of compost leachate DOC fractions adsorbed on alumina indicate that the DOC molecules are most likely adsorbed on metal oxide surfaces through a combination of polar and hydrophobic interaction mechanisms. This combination of polar and hydrophobic mechanism leads to the formation of bilayer coatings of the leachate molecules on the oxide surfaces.
The impact of dissolved organic carbon and bacterial respiration on pCO2 in experimental sea ice
NASA Astrophysics Data System (ADS)
Zhou, J.; Kotovitch, M.; Kaartokallio, H.; Moreau, S.; Tison, J.-L.; Kattner, G.; Dieckmann, G.; Thomas, D. N.; Delille, B.
2016-02-01
Previous observations have shown that the partial pressure of carbon dioxide (pCO2) in sea ice brines is generally higher in Arctic sea ice compared to those from the Antarctic sea ice, especially in winter and early spring. We hypothesized that these differences result from the higher dissolved organic carbon (DOC) content in Arctic seawater: Higher concentrations of DOC in seawater would be reflected in a greater DOC incorporation into sea ice, enhancing bacterial respiration, which in turn would increase the pCO2 in the ice. To verify this hypothesis, we performed an experiment using two series of mesocosms: one was filled with seawater (SW) and the other one with seawater with an addition of filtered humic-rich river water (SWR). The addition of river water increased the DOC concentration of the water from a median of 142 μmol Lwater-1 in SW to 249 μmol Lwater-1 in SWR. Sea ice was grown in these mesocosms under the same physical conditions over 19 days. Microalgae and protists were absent, and only bacterial activity has been detected. We measured the DOC concentration, bacterial respiration, total alkalinity and pCO2 in sea ice and the underlying seawater, and we calculated the changes in dissolved inorganic carbon (DIC) in both media. We found that bacterial respiration in ice was higher in SWR: median bacterial respiration was 25 nmol C Lice-1 h-1 compared to 10 nmol C Lice-1 h-1 in SW. pCO2 in ice was also higher in SWR with a median of 430 ppm compared to 356 ppm in SW. However, the differences in pCO2 were larger within the ice interiors than at the surfaces or the bottom layers of the ice, where exchanges at the air-ice and ice-water interfaces might have reduced the differences. In addition, we used a model to simulate the differences of pCO2 and DIC based on bacterial respiration. The model simulations support the experimental findings and further suggest that bacterial growth efficiency in the ice might approach 0.15 and 0.2. It is thus credible that the higher pCO2 in Arctic sea ice brines compared with those from the Antarctic sea ice were due to an elevated bacterial respiration, sustained by higher riverine DOC loads. These conclusions should hold for locations and time frames when bacterial activity is relatively dominant compared to algal activity, considering our experimental conditions.
Sakamoto, Tatsuya; Mori, Chie; Minami, Shogo; Takahashi, Hideya; Abe, Tsukasa; Ojima, Daisuke; Ogoshi, Maho; Sakamoto, Hirotaka
2011-10-24
It has long been held that cortisol, a glucocorticoid in many vertebrates, carries out both glucocorticoid and mineralocorticoid actions in teleost fish. However, 11-deoxycorticosterone (DOC) has been identified as a specific endogenous ligand for the teleostean mineralocorticoid receptor (MR). Furthermore, the expressions of MR mRNA are modest in the osmoregulatory organs, but considerably higher in the brain of most teleosts. These recent findings suggest that the mineralocorticoid system (DOC/MR) may carry out some behavioral functions in fish. To test this possibility, we examined the effects of cortisol and DOC administration in the amphibious behavior in mudskipper (Periophthalmus modestus) in vivo. It was found that mudskippers remained in the water for an increased period of time when they were immersed into 5 μM DOC or cortisol for 8h. Additionally, an exposure to 25 μM DOC for 4 to 8 h caused a decreased migratory frequency of mudskippers to the water, reflected a tendency to remain in the water. It was further observed that after 8 h of intracerebroventricular (ICV) injection with 0.3 pmol DOC or cortisol the staying period in the water increased in fish. The migratory frequency was decreased after ICV DOC injection which indicated that fishes stayed in the water. Concurrent ICV injections of cortisol with RU486 [a specific glucocorticoid-receptor (GR) antagonist] inhibited only the partial effects of cortisol. Together with no changes in the plasma DOC concentrations under terrestrial conditions, these results indicate the involvement of brain MRs as cortisol receptors in the preference for an aquatic habitat of mudskippers. Although the role of GR signaling cannot be excluded in the aquatic preference, our data further suggest that the MR may play an important role in the brain dependent behaviors of teleost fish. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Stoken, Olivia M.; Riscassi, Ami L.; Scanlon, Todd M.
2016-04-01
Streams and rivers are important pathways for the export of atmospherically deposited mercury (Hg) from watersheds. Dissolved Hg (HgD) is strongly associated with dissolved organic carbon (DOC) in stream water, but the ratio of HgD to DOC is highly variable between watersheds. In this study, the HgD:DOC ratios from 19 watersheds were evaluated with respect to Hg wet deposition and watershed soil organic carbon (SOC) content. On a subset of sites where data were available, DOC quality measured by specific ultra violet absorbance at 254 nm, was considered as an additional factor that may influence HgD:DOC . No significant relationship was found between Hg wet deposition and HgD:DOC, but SOC content (g m-2) was able to explain 81% of the variance in the HgD:DOC ratio (ng mg-1) following the form: HgD:DOC=17.8*SOC-0.41. The inclusion of DOC quality as a secondary predictor variable explained only an additional 1% of the variance. A mathematical framework to interpret the observed power-law relationship between HgD:DOC and SOC suggests Hg supply limitation for adsorption to soils with relatively large carbon pools. With SOC as a primary factor controlling the association of HgD with DOC, SOC data sets may be utilized to predict stream HgD:DOC ratios on a more geographically widespread basis. In watersheds where DOC data are available, estimates of HgD may be readily obtained. Future Hg emissions policies must consider soil-mediated processes that affect the transport of Hg and DOC from terrestrial watersheds to streams for accurate predictions of water quality impacts.
Porcal, Petr; Koprivnjak, Jean-François; Molot, Lewis A; Dillon, Peter J
2009-09-01
Dissolved organic matter, measured as dissolved organic carbon (DOC), is an important component of aquatic ecosystems and of the global carbon cycle. It is known that changes in DOC quality and quantity are likely to have ecological repercussions. This review has four goals: (1) to discuss potential mechanisms responsible for recent changes in aquatic DOC concentrations; (2) to provide a comprehensive overview of the interactions between DOC, nutrients, and trace metals in mainly boreal environments; (3) to explore the impact of climate change on DOC and the subsequent effects on nutrients and trace metals; and (4) to explore the potential impact of DOC cycling on climate change. We review recent research on the mechanisms responsible for recent changes in aquatic DOC concentrations, DOC interactions with trace metals, N, and P, and on the possible impacts of climate change on DOC in mainly boreal lakes. We then speculate on how climate change may affect DOC export and in-lake processing and how these changes might alter nutrient and metal export and processing. Furthermore, the potential impacts of changing DOC cycling patterns on climate change are examined. It has been noted that DOC concentrations in lake and stream waters have increased during the last 30 years across much of Europe and North America. The potential reasons for this increase include increasing atmospheric CO(2) concentration, climate warming, continued N deposition, decreased sulfate deposition, and hydrological changes due to increased precipitation, droughts, and land use changes. Any change in DOC concentrations and properties in lakes and streams will also impact the acid-base chemistry of these waters and, presumably, the biological, chemical, and photochemical reactions taking place. For example, the interaction of trace metals with DOC may be significantly altered by climate change as organically complexed metals such as Cu, Fe, and Al are released during photo-oxidation of DOC. The production and loss of DOC as CO(2) from boreal lakes may also be affected by changing climate. Climate change is unlikely to be uniform spatially with some regions becoming wetter while others become drier. As a result, rates of change in DOC export and concentrations will vary regionally and the changes may be non-linear. Climate change models predict that higher temperatures are likely to occur over most of the boreal forests in North America, Europe, and Asia over the next century. Climate change is also expected to affect the severity and frequency of storm and drought events. Two general climate scenarios emerge with which to examine possible DOC trends: warmer and wetter or warmer and drier. Increasing temperature and hydrological changes (specifically, runoff) are likely to lead to changes in the quality and quantity of DOC export from terrestrial sources to rivers and lakes as well as changes in DOC processing rates in lakes. This will alter the quality and concentrations of DOC and its constituents as well as its interactions with trace metals and the availability of nutrients. In addition, export rates of nutrients and metals will also change in response to changing runoff. Processing of DOC within lakes may impact climate depending on the extent to which DOC is mineralized to dissolved inorganic carbon (DIC) and evaded to the atmosphere or settles as particulate organic carbon (POC) to bottom sediments and thereby remaining in the lake. The partitioning of DOC between sediments and the atmosphere is a function of pH. Decreased DOC concentrations may also limit the burial of sulfate, as FeS, in lake sediments, thereby contributing acidity to the water by increasing the formation of H(2)S. Under a warmer and drier scenario, if lake water levels fall, previously stored organic sediments may be exposed to greater aeration which would lead to greater CO(2) evasion to the atmosphere. The interaction of trace metals with DOC may be significantly altered by climate change. Iron enhances the formation of POC during irradiation of lake water with UV light and therefore may be an important pathway for transfer of allochthonous DOC to the sediments. Therefore, changing Fe/DOC ratios could affect POC formation rates. If climate change results in altered DOC chemistry (e.g., fewer and/or weaker binding sites) more trace metals could be present in their toxic and bioavailable forms. The availability of nutrients may be significantly altered by climate change. Decreased DOC concentrations in lakes may result in increased Fe colloid formation and co-incident loss of adsorbable P from the water column. Climate change expressed as changes in runoff and temperature will likely result in changes in aquatic DOC quality and concentration with concomitant effects on trace metals and nutrients. Changes in the quality and concentration of DOC have implications for acid-base chemistry and for the speciation and bioavailability of certain trace metals and nutrients. Moreover, changes in DOC, metals, and nutrients are likely to drive changes in rates of C evasion and storage in lake sediments. The key controls on allochthonous DOC quality, quantity, and catchment export in response to climate change are still not fully understood. More detailed knowledge of these processes is required so that changes in DOC and its interactions with nutrients and trace metals can be better predicted based on changes caused by changing climate. More studies are needed concerning the effects of trace metals on DOC, the effects of changing DOC quality and quantity on trace metals and nutrients, and how runoff and temperature-related changes in DOC export affect metal and nutrient export to rivers and lakes.
NASA Astrophysics Data System (ADS)
Menberu, Meseret Walle; Marttila, Hannu; Tahvanainen, Teemu; Kotiaho, Janne S.; Hokkanen, Reijo; Kløve, Bjørn; Ronkanen, Anna-Kaisa
2017-10-01
Drainage is known to affect peatland natural hydrology and water quality, but peatland restoration is considered to ameliorate peatland degradation. Using a replicated BACIPS (Before-After-Control-Impact Paired Series) design, we investigated 24 peatlands, all drained for forestry and subsequently restored, and 19 pristine control boreal peatlands with high temporal and spatial resolution data on hydroclimate and pore water quality. In drained conditions, total nitrogen (Ntot), total phosphorus (Ptot), and dissolved organic carbon (DOC) in pore water were several-fold higher than observed at pristine control sites, highlighting the impacts of long-term drainage on pore water quality. In general, pore water DOC and Ntot decreased after restoration measures but still remained significantly higher than at pristine control sites, indicating long time lags in restoration effects. Different peatland classes and trophic levels (vegetation gradient) responded differently to restoration, primarily due to altered hydrology and varying acidity levels. Sites that were hydrologically overrestored (inundated) showed higher Ptot, Ntot, and DOC than well-restored or insufficiently restored sites, indicating the need to optimize natural-like hydrological regimes when restoring peatlands drained for forestry. Rich fens (median pH 6.2-6.6) showed lower pore water Ptot, Ntot, and DOC than intermediate and poor peats (pH 4.0-4.6) both before and after restoration. Nutrients and DOC in pore water increased in the first year postrestoration but decreased thereafter. The most important variables related to pore water quality were trophic level, peatland class, water table level, and soil and air temperature.
NASA Astrophysics Data System (ADS)
Krause, Stefan; Angermann, Lisa; Naden, Emma; Cassidy, Nigel; Blume, Theresa
2010-05-01
The mixing of groundwater and surface water in hyporheic zones often coincides with high redox reactivity and chemical transformation potential. Depending on redox conditions and reaction types, hyporheic mixing of groundwater and surface water can lead to either attenuation or enrichment of pollutants or nutrients with diametrical implications for stream and aquifer hydro-ecological conditions. This study investigates the reactive transport of nitrate and a chlorinated solvent (Trichloroethylene - TCE) at the aquifer-river interface of a UK lowland river. In this study, distributed temperature sensor networks and hydro-geophysical methods, which have been applied for identifying structural streambed heterogeneity and tracing aquifer river exchange, were combined with hydro-chemical analyses of hyporheic multi-component reactive transport. In stream Electric Resistivity Tomography has been applied to map the complex spatial distribution of highly conductive sandy and gravely sediments in contrast to semi-confining, low conductivity peat lenses. Reach scale (1km) spatial patterns and temporal dynamics of aquifer-river exchange have been identified by heat tracer experiments based on fibre-optic Distributed Temperature Sensing in combination with 2D thermocouple-arrays and small scale heat pulse injection methods for tracing shallow (25 cm) hyporheic flow paths. Spatial patterns of hyporheic redox conditions, dissolved oxygen and organic carbon (DOC) content as well as concentrations of major anions, TCE and its decay products have been observed in 48 nested multi-level piezometers and passive DET (Diffusive Equilibrium in Thin film) gel probes. Our results indicate that patterns of cold spots in streambed sediments can be attributed to fast groundwater up-welling in sandy and gravely sediments resulting in low hyporheic residence times. Contrasting conditions were found at warmer areas at the streambed surface where groundwater - surface water exchange was inhibited by the existence of peat or clay lenses within the streambed. These flow-inhibiting structures have been shown to cause semi-confined conditions in the up-welling groundwater, resulting in long residence times and increased redox-reactivity. Anoxic conditions and high DOC contents combined with long residence times underneath peat layers cause highly efficient denitrification rates, reducing nitrate concentrations from > 50mg/l to below the level of detection. In contrast, sandy and gravely areas of fast groundwater up-welling where characterized by only marginal changes in nitrate concentrations. Observation of the reactive transport of the chlorinated solvent groundwater plume into the river suggest that natural attenuation of TCE, which competes with nitrate for DOC as reductive agent, is limited to the semi-confined, anoxic, low nitrate - high DOC groundwater pockets underneath streambed peat lenses. The investigations supported the development of a conceptual model of aquifer - river exchange and hyporheic reactivity in lowland rivers including temperature traceable "hyporheic super-reactors" of great importance for river restoration, water quality and ecology status.
NASA Astrophysics Data System (ADS)
Krause, S.; Angermann, L.; Naden, E.; Cassidy, N. J.
2009-12-01
The mixing of groundwater and surface water in hyporheic zones often coincides high redox reactivity and chemical transformation potential. Depending on redox conditions and reaction types, hyporheic mixing of groundwater and surface water can lead to either attenuation or enrichment of pollutants or nutrients with diametrical implications for stream and aquifer hydro-ecology. This study investigates the reactive transport of nitrate and the chlorinated solvent Trichloroethylene (TCE) at the aquifer-river interface of a UK lowland river. The investigations are based on novel distributed sensor networks and hydro-geophysical methods for the identification of structural streambed heterogeneity and the tracing of aquifer river exchange combined with hydro-chemical analyses of hyporheic multi-component reactive transport. In stream Electric Resistivity Tomography and Ground Penetrating Radar have been applied to map the complex spatial distribution of highly conductive sandy and gravely sediments in contrast to semi-confining, low conductivity peat lenses. Reach scale (1km) spatial patterns and temporal dynamics of aquifer-river exchange have been identified by heat tracer experiments based on fibre-optic Distributed Temperature Sensing in combination with 2D thermocouple-arrays and small scale heat pulse injection methods for tracing shallow (25 cm) hyporheic flow paths. Spatial patterns of hyporheic redox conditions, dissolved oxygen and organic carbon (DOC) content as well as concentrations of major anions, TCE and its decay products have been observed in 48 nested multi-level piezometers and passive DET (Diffusive Equilibrium in Thin film) gel probes. Our results indicate that patterns of cold spots in streambed sediments can be attributed to fast groundwater up-welling in sandy and gravely sediments resulting in low hyporheic residence times. Contrasting conditions were found at warmer areas at the streambed surface where groundwater - surface water exchange was inhibited by the existence of peat or clay lenses within the streambed. These flow-inhibiting structures have been shown to cause semi-confined conditions in the up-welling groundwater, resulting in long residence times and increased redox-reactivity. Anoxic conditions and high DOC contents combined with long residence times underneath peat layers cause highly efficient denitrification rates, reducing nitrate concentrations from > 50mg/l to below the level of detection. In contrast, sandy and gravely areas of fast groundwater up-welling where characterized by only marginal changes in nitrate concentrations. Observation of the reactive transport of the chlorinated solvent groundwater plume into the river suggest that natural attenuation of TCE, which competes with nitrate for DOC as reductive agent, is limited to the semi-confined, anoxic, low nitrate - high DOC groundwater pockets underneath streambed peat lenses. The investigations supported the development of a conceptual model of aquifer - river exchange and hyporheic reactivity in lowland rivers including temperature traceable “hyporheic super-reactors” of great importance for river restoration, water quality and ecology status.
Gannon, John P; Bailey, Scott W.; McGuire, Kevin J.; Shanley, James B.
2015-01-01
We investigated potential source areas of dissolved organic carbon (DOC) in headwater streams by examining DOC concentrations in lysimeter, shallow well, and stream water samples from a reference catchment at the Hubbard Brook Experimental Forest. These observations were then compared to high-frequency temporal variations in fluorescent dissolved organic matter (FDOM) at the catchment outlet and the predicted spatial extent of shallow groundwater in soils throughout the catchment. While near-stream soils are generally considered a DOC source in forested catchments, DOC concentrations in near-stream groundwater were low (mean = 2.4 mg/L, standard error = 0.6 mg/L), less than hillslope groundwater farther from the channel (mean = 5.7 mg/L, standard error = 0.4 mg/L). Furthermore, water tables in near-stream soils did not rise into the carbon-rich upper B or O horizons even during events. In contrast, soils below bedrock outcrops near channel heads where lateral soil formation processes dominate had much higher DOC concentrations. Soils immediately downslope of bedrock areas had thick eluvial horizons indicative of leaching of organic materials, Fe, and Al and had similarly high DOC concentrations in groundwater (mean = 14.5 mg/L, standard error = 0.8 mg/L). Flow from bedrock outcrops partially covered by organic soil horizons produced the highest groundwater DOC concentrations (mean = 20.0 mg/L, standard error = 4.6 mg/L) measured in the catchment. Correspondingly, stream water in channel heads sourced in part by shallow soils and bedrock outcrops had the highest stream DOC concentrations measured in the catchment. Variation in FDOM concentrations at the catchment outlet followed water table fluctuations in shallow to bedrock soils near channel heads. We show that shallow hillslope soils receiving runoff from organic matter-covered bedrock outcrops may be a major source of DOC in headwater catchments in forested mountainous regions where catchments have exposed or shallow bedrock near channel heads.
NASA Astrophysics Data System (ADS)
Vermilyea, A.; Sanders, A.; Vazquez, E.
2017-12-01
The transformation of freshwater dissolved organic carbon (DOC) can have important implications for water quality, aquatic ecosystem health, and our climate. DOC is an important nutrient for heterotrophic microorganisms near the base of the aquatic food chain and the extent of conversion of DOC to CO2 is a critical piece of the global carbon cycle. Photochemical pathways have the potential to transform recalcitrant DOC into more labile forms that can then be converted to smaller DOC molecules and eventually be completely mineralized to CO2. This may lead to a DOC pool with different bioavailability depending on the structural composition of the original DOC pool and the mechanistic pathways undergone during transformation. This study aimed to measure the changes in DOC concentration and bioavailability due solely to photochemical processes in three watersheds of northern Vermont, USA that have varied land cover, land use (LCLU) attributes. Our hypothesis was that photochemical transformations will lead to (1) an overall loss of DOC due to mineralization to CO2 and (2) a relative increase in the bioavailable fraction of DOC. Additionally, the influence of LCLU and base flow versus storm flow on both mineralization rates and changes in DOC bioavailability was investigated. Irradiation of filtered samples in quartz vessels under sunlight led to small changes in DOC concentration over time, but significant changes in DOC bioavailability. In general, fluorescence excitation-emission matrices (EEMs) showed a shift from an initially more humic-like DOC pool, to a more protein-like (bioavailable) DOC pool. Specific UV index (SUVA) along with bioavailable DOC (BDOC) incubations were also used to characterize DOC and its bioavailability. There were only small differences in the DOC transformation that took place among sites, possibly due to only small differences in the initial bioavailability and fluorescent properties between water samples. Photochemical transformation appears to play an important role in the transformation of a more recalcitrant (humic) pool of DOC into a more bioavailable DOC pool that can then be utilized by aquatic heterotrophs and ultimately be converted to CO2.
This method provides procedures for the determination of total organic carbon (TOC), dissolved organic carbon (DOC), and UV absorption at 254 nm (UVA) in source waters and drinking waters. The DOC and UVA determinations are used in the calculation of the Specific UV Absorbance (S...
Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme draught.
Jirsa, Franz; Gruber, Martin; Stojanovic, Anja; Omondi, Steve Odour; Mader, Dieter; Körner, Wilfried; Schagerl, Michael
2013-10-01
The physico-chemical properties of water samples from the two athalassic endorheic lakes Bogoria and Nakuru in Kenya were analysed. Surface water samples were taken between July 2008 and October 2009 in weekly intervals from each lake. The following parameters were determined: pH, salinity, electric conductivity, dissolved organic carbon (DOC), the major cations (FAAS and ICP-OES) and the major anions (IC), as well as certain trace elements (ICP-OES). Samples of superficial sediments were taken in October 2009 and examined using Instrumental Neutron Activation Analysis (INAA) for their major and trace element content including rare earth elements (REE). Both lakes are highly alkaline with a dominance of Na > K > Si > Ca in cations and HCO 3 > CO 3 > Cl > F > SO 4 in anions. Both lakes also exhibited high concentrations of Mo, As and fluoride. Due to an extreme draught from March to October 2009, the water level of Lake Nakuru dropped significantly. This created drastic evapoconcentration, with the total salinity rising from about 20‰ up to 63‰. Most parameters (DOC, Na, K, Ca, F, Mo and As) increased with falling water levels. A clear change in the quality of DOC was observed, followed by an almost complete depletion of dissolved Fe from the water phase. In Lake Bogoria the evapoconcentration effects were less pronounced (total salinity changed from about 40‰ to 48‰). The distributions of REE in the superficial sediments of Lake Nakuru and Lake Bogoria are presented here for the first time. The results show a high abundance of the REE and a very distinct Eu depletion of Eu/Eu* = 0.33-0.45.
Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme draught
Jirsa, Franz; Gruber, Martin; Stojanovic, Anja; Omondi, Steve Odour; Mader, Dieter; Körner, Wilfried; Schagerl, Michael
2013-01-01
The physico-chemical properties of water samples from the two athalassic endorheic lakes Bogoria and Nakuru in Kenya were analysed. Surface water samples were taken between July 2008 and October 2009 in weekly intervals from each lake. The following parameters were determined: pH, salinity, electric conductivity, dissolved organic carbon (DOC), the major cations (FAAS and ICP-OES) and the major anions (IC), as well as certain trace elements (ICP-OES). Samples of superficial sediments were taken in October 2009 and examined using Instrumental Neutron Activation Analysis (INAA) for their major and trace element content including rare earth elements (REE). Both lakes are highly alkaline with a dominance of Na > K > Si > Ca in cations and HCO3 > CO3 > Cl > F > SO4 in anions. Both lakes also exhibited high concentrations of Mo, As and fluoride. Due to an extreme draught from March to October 2009, the water level of Lake Nakuru dropped significantly. This created drastic evapoconcentration, with the total salinity rising from about 20‰ up to 63‰. Most parameters (DOC, Na, K, Ca, F, Mo and As) increased with falling water levels. A clear change in the quality of DOC was observed, followed by an almost complete depletion of dissolved Fe from the water phase. In Lake Bogoria the evapoconcentration effects were less pronounced (total salinity changed from about 40‰ to 48‰). The distributions of REE in the superficial sediments of Lake Nakuru and Lake Bogoria are presented here for the first time. The results show a high abundance of the REE and a very distinct Eu depletion of Eu/Eu* = 0.33–0.45. PMID:25843965
NASA Astrophysics Data System (ADS)
Brink Bylund, J.; Bastviken, D.; Morth, C.; Laudon, H.; Giesler, R.; Buffam, I.
2007-12-01
Stable carbon isotope (δ13C) ratios are frequently used as a source tracer of e.g. organic matter (OM) produced in terrestrial versus aquatic environments. To our knowledge there has been no previous attempt to quantify the relative contribution of dissolved organic carbon (DOC) from various landscape compartments in catchments of different sizes. Here, we test to what extent δ13C values can be used also to quantify the relative contribution of DOC from wetlands/riparian zones along streams, and off stream forest habitats, respectively. We present data on spatial and temporal variability of DOC concentrations and δ13C-DOC values, during the year of 2005 in Krycklan catchment, a boreal stream network in northern Sweden. Ten stream sites, ranging from order 1 to 4, were monitored in sub catchments with different wetland coverage. Spatial variation of DOC concentration showed a weak but statistically significant relationship with wetland area, with higher concentration with increasing percent of wetland in the drainage area. During base flow the difference in δ13C-DOC values was significantly different between forest (-27.5‰) and wetland (-28.1‰). This spatial pattern disappears during spring peak flow when higher discharge flushing upper soil layer and the riparian zone on DOC in the catchments. A simple mixing model using DOC and δ13C-DOC showed that stream water DOC could be describe as a mixture of DOC coming from forest (deep) groundwater and wetland/riparian zone water. The result indicates that during spring peak flow almost all stream DOC (84-100%) is derived from wetlands and riparian zones. The wetland/riparian water dominates the stream DOC flux at all hydrological events, except for two sites, one forest dominated and one mixed catchment, where the forest groundwater dominated the DOC transport during base flow. Although the total wetland area in Krycklan catchment only represent 8.3%, it contributed, together with riparian zones, to as much as 83% of the yearly DOC transport. This study shows that there is a great potential in using stable carbon isotopes to quantify the relative contribution of DOC from various landscape compartments in catchments. Quantitative patterns are crucial for several reasons. It is for example necessary in predicting the response to global warming which will result in a changed hydrology and shifts in the relative area of the landscape compartments in boreal environments. KEY WORDS carbon isotopes; dissolved organic carbon; streams; boreal; landscape compartments; wetland; groundwater
Medina, A; Roldán, A; Azcón, R
2010-12-01
Arbuscular mycorrhizal (AM) fungi and a residue from dry olive cake (DOC) supplemented with rock phosphate (RP) and treated with either Aspergillus niger (DOC-A) or Phanerochaete chrysosporium (DOC-P), were assayed in a natural, semi-arid soil using Trifolium repens or Dorycnium pentaphyllum plants. The effects of the AM fungi and/or DOC-A were compared with P-fertilisation (P) over eleven successive harvests to evaluate the persistence of the effectiveness of the treatments. The biomass of dually-treated plants after four successive harvests was greater than that obtained for non-treated plants or those receiving the AM inoculum or DOC-A treatments after eleven yields. The AM inoculation was critical for obtaining plant growth benefit from the application of fermented DOC-A residue. The abilities of the treatments to prevent plant drought stress were also assayed. Drought-alleviating effects were evaluated in terms of plant growth, proline and total sugars concentration under alternative drought and re-watering conditions (8th and 9th harvests). The concentrations of both compounds in plant biomass increased under drought when DOC-A amendment and AM inoculation were employed together: they reinforced the plant drought-avoidance capabilities and anti-oxidative defence. Water stress was less compensated in P-fertilised than in DOC-A-treated plants. DOC-P increased D. pentaphyllum biomass, shoot P content, nodule number and AM colonisation, indicating the greater DOC-transforming ability of P. chrysosporium compared to A. niger. The lack of AM colonisation and nodulation in this soil was compensated by the application of DOC-P, particularly with AM inoculum. The management of natural resources (organic amendments and soil microorganisms) represents an important strategy that assured the growth, nutrition and plant establishment in arid, degraded soils, preventing the damage that arises from limited water and nutrient supply. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xue, Yuejun; Ge, Tiantian; Wang, Xuchen
2015-12-01
Radiocarbon (14C) measurement of dissolved organic carbon (DOC) is a very powerful tool to study the sources, transformation and cycling of carbon in the ocean. The technique, however, remains great challenges for complete and successful oxidation of sufficient DOC with low blanks for high precision carbon isotopic ratio analysis, largely due to the overwhelming proportion of salts and low DOC concentrations in the ocean. In this paper, we report an effective UV-Oxidation method for oxidizing DOC in natural waters for radiocarbon analysis by accelerator mass spectrometry (AMS). The UV-oxidation system and method show 95%±4% oxidation efficiency and high reproducibility for DOC in both river and seawater samples. The blanks associated with the method was also low (about 3 µg C) that is critical for 14C analysis. As a great advantage of the method, multiple water samples can be oxidized at the same time so it reduces the sample processing time substantially compared with other UV-oxidation method currently being used in other laboratories. We have used the system and method for 14C studies of DOC in rivers, estuaries, and oceanic environments and have received promise results.
Stelzer, Robert S.; Scott, J. Thad; Bartsch, Lynn
2015-01-01
The interface between ground water and surface water in streams is a hotspot for N processing. However, the role of buried organic C in N transformation at this interface is not well understood, and inferences have been based largely on descriptive studies. Our main objective was to determine how buried particulate organic C (POC) affected denitrification and NO3− retention in the sediments of an upwelling reach in a sand-plains stream in Wisconsin. We manipulated POC in mesocosms inserted in the sediments. Treatments included low and high quantities of conditioned red maple leaves (buried beneath combusted sand), ambient sediment (sand containing background levels of POC), and a control (combusted sand). We measured denitrification rates in sediments by acetylene-block assays in the laboratory and by changes in N2 concentrations in the field using membrane inlet mass spectrometry. We measured NO3−, NH4+, and dissolved organic N (DON) retention as changes in concentrations and fluxes along groundwater flow paths in the mesocosms. POC addition drove oxic ground water to severe hypoxia, led to large increases in dissolved organic C (DOC), and strongly increased denitrification rates and N (NO3− and total dissolved N) retention relative to the control. In situ denitrification accounted for 30 to 60% of NO3− retention. Our results suggest that buried POC stimulated denitrification and NO3− retention by producing DOC and by creating favorable redox conditions for denitrification.
Fan, Rangrang; Tong, Aiping; Li, Xiaoling; Gao, Xiang; Mei, Lan; Zhou, Liangxue; Zhang, Xiaoning; You, Chao; Guo, Gang
2015-01-01
Intraperitoneal chemotherapy was explored in clinical trials as a promising strategy to improve the therapeutic effects of chemotherapy. In this work, we developed a biodegradable and injectable drug-delivery system by coencapsulation of docetaxel (Doc) and LL37 peptide polymeric nanoparticles (Doc+LL37 NPs) in a thermosensitive hydrogel system for colorectal peritoneal carcinoma therapy. Firstly, polylactic acid (PLA)-Pluronic L35-PLA (PLA-L35-PLA) was explored to prepare the biodegradable Doc+LL37 NPs using a water-in-oil-in-water double-emulsion solvent-evaporation method. Then, biodegradable and injectable thermosensitive PLA-L64-PLA hydrogel with lower sol–gel transition temperature at around body temperature was also prepared. Transmission electron microscopy revealed that the Doc+LL37 NPs formed with the PLA-L35-PLA copolymer were spherical. Fourier-transform infrared spectra certified that Doc and LL37 were encapsulated successfully. X-ray diffraction diagrams indicated that Doc was encapsulated amorphously. Intraperitoneal administration of Doc+LL37 NPs–hydrogel significantly suppressed the growth of HCT116 peritoneal carcinomatosis in vivo and prolonged the survival of tumor-bearing mice. Our results suggested that Doc+LL37 NPs–hydrogel may have potential clinical applications. PMID:26664119
NASA Astrophysics Data System (ADS)
Van Grinsven, M. J.; Shannon, J.; Noh, N. J.; Kane, E. S.; Bolton, N. W.; Davis, J.; Wagenbrenner, J.; Sebestyen, S. D.; Kolka, R.; Pypker, T. G.
2017-12-01
The rapid and extensive expansion of emerald ash borer (EAB) is considered an important ecological and economic disturbance, and will likely affect critical ecosystem services associated with black ash wetlands. It is unknown how EAB-induced disturbance in wetlands dominated with black ash will impact stream water, dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) export dynamics. We hypothesized that loads of water, DOC and TDN exported from black ash wetlands would be elevated following an EAB-induced disturbance. Stream water, DOC and TDN loads exiting two black ash wetlands in headwater watersheds in Michigan were quantified over a four-year period, and were combined with wetland soil temperature and soil decomposition rate monitoring to better understand the biogeochemical implications of an EAB-induced disturbance. After a two-year baseline monitoring period, an EAB disturbance was simulated by felling (ash-cut) all black ash trees with diameters greater than 2.5-cm in one wetland. When compared to the unaltered control, stream water DOC and TDN concentrations exiting the ash-cut wetland were significantly larger by 39% and 38%, respectively during the post-treatment study period. The significantly elevated DOC and TDN concentrations were likely associated with the higher soil temperatures and increased rates of soil decomposition detected in the ash-cut site during the post-treatment period. No significant mean daily stream discharge differences were detected between treatments during the pre-treatment period, however the 0.46 mm d-1 mean daily stream discharge exiting the ash-cut wetland was significantly smaller than the 1.07 mm d-1 exiting the unaltered control during the post-treatment study period. The significantly smaller daily stream discharge in the ash-cut site likely contributed to the fact no significant differences between treatments for either mean daily DOC loads or TDN loads were detected during the post-treatment period, despite the detection of significantly higher DOC and TDN concentrations. Examination of seasonal stream water, DOC and TDN export dynamics revealed the relative magnitudes of EAB-induced impacts were not evenly distributed throughout the year, and these differences have distinct seasonal implications for downstream waterbodies.
Natural organic matters removal efficiency by coagulation
NASA Astrophysics Data System (ADS)
Sapingi, Mohd Sharizal Mohd; Pishal, Munirah; Murshed, Mohamad Fared
2017-10-01
The presence of Natural Organic Matter (NOM) in surface water results in unwanted characteristics in terms of color, odor, and taste. NOM content reaction with free chlorine in treated water lowers the water quality further. Chlorine is added for disinfection and produces undesirable disinfection by-products (DPBs). DBPs in drinking water are carcinogenic to consumers and may promote cancerous cell development in the human body. This study was performed to compare the coagulant efficiency of aluminum sulfate (Alum) and ferric chloride (FeCl3) on NOM removal (as in UV254 absorbance) and turbidity removal under three pH conditions (pH 6, pH 7, and sample actual pH). The three sampling points for these studies were Jalan Baru River, Kerian River, and Redac Pond. Additional sampling points, such as Lubuk Buntar and a tubewell located in the Civil Engineering School, were included to observe differences in characteristics. DOC, UV absorbance, and full wavelength were tested, after which samples treated with alum were also tested to further analyze the NOM content. Based on UV254 absorbance and DOC data, specific UV value was calculated to obtain vital synopsis of the characteristics of NOM content, as well as coagulation efficiency.
Managing peatland vegetation for drinking water treatment.
Ritson, Jonathan P; Bell, Michael; Brazier, Richard E; Grand-Clement, Emilie; Graham, Nigel J D; Freeman, Chris; Smith, David; Templeton, Michael R; Clark, Joanna M
2016-11-18
Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to 'end-of-pipe' solutions through management of ecosystem service provision.
Managing peatland vegetation for drinking water treatment
Ritson, Jonathan P.; Bell, Michael; Brazier, Richard E.; Grand-Clement, Emilie; Graham, Nigel J. D.; Freeman, Chris; Smith, David; Templeton, Michael R.; Clark, Joanna M.
2016-01-01
Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to ‘end-of-pipe’ solutions through management of ecosystem service provision. PMID:27857210
Acid-base properties of Baltic Sea dissolved organic matter
NASA Astrophysics Data System (ADS)
Hammer, Karoline; Schneider, Bernd; Kuliński, Karol; Schulz-Bull, Detlef E.
2017-09-01
Calculations related to the marine CO2 system that are based on alkalinity data may be strongly biased if the contributions of organic compounds are ignored. In coastal seas, concentrations of dissolved organic matter (DOM) are frequently high and alkalinity from inorganic compounds is low. In this study, based on measurements of total alkalinity, total CO2, and pH, we determined the organic alkalinity, Aorg, in water from the central Baltic Sea. The maximum Aorg measured in the surface mixed layer during the spring bloom was > 50 μmol/kg-SW but the Aorg decreased with depth and approached zero below the permanent halocline. This behavior could be attributed to the decreased pH of deeper water layers. The data were used to calculate the bulk dissociation constant, KDOM, for marine DOM and the fraction f of dissolved organic carbon (DOC) that acts as a carrier for acid-base functional groups. The p KDOM (7.27) agreed well with the value (7.34) previously estimated in a preliminary study of organic alkalinity in the Baltic Sea. The fraction of carbon atoms carrying acid-base groups was 17% and was somewhat higher than previously reported (12%). Spike experiments performed using artificial seawater and three different humic/fulvic substances tested whether the acid-base properties of these substances explain the results of our field study. Specifically, Aorg was determined at different concentrations (DOC) of the added humic/fulvic substances. The relationship between Aorg and the DOC concentrations indicated that humic/fulvic substances are more acidic (p KDOM < 6.5) than the bulk DOC natural occurring in the Baltic Sea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, M.H.; Cech, J.J. Jr.; Lagunas-Solar, M.C.
1998-04-01
The effect of dissolved organic carbon (DOC) on methylmercury (MeHg) uptake across the gills of Sacramento blackfish (Orthodon microlepidotus) was investigated using the Hg-203 radioisotope. The efficiency of fish gills in extracting MeHg from water was measured using a McKim-type fish respirometer that separated exposure water from expired water. Blackfish gill ventilation and oxygen consumption rates remained constant, while Me{sup 203}Hg uptake was decreased significantly in the presence of DOC. Mean Me{sup 203}Hg extraction efficiency, uptake rate constant, and blood to inspired water ratio decreased 78%, 73%, and 63%, respectively, with 2 mg C/L of DOC, and 85%, 82%, andmore » 70% with 5 mg C/L DOC, compared to the Me{sup 203}Hg reference treatment group. Because respiratory parameters remained unchanged, reductions in Me{sup 203}Hg uptake indicate strong interactions between DOC and Me{sup 203}Hg Methyl{sup 203}Hg levels in fish gills, kidney, and spleen from 2 and 5 mg C/L were significantly lower than those observed from the reference treatment group. These reductions in uptake (bioavailability) support the hypothesis that trans-gill transport of Me{sup 203}Hg is inhibited when it is complexed by DOC in the aqueous medium, decreasing Me{sup 203}Hg uptake and accumulation in fish organs.« less
Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, James; Decker, David; Patterson, Gary
2007-06-25
Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC)more » were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical reactions. The DIC carbon-14 corrected ages can be further constrained by measuring the carbon isotopes of DOC. Because the only source of organic carbon in aquifers is almost always greater than 40,000 years old, any organic carbon that may be added to the groundwater would contain no carbon-14. Thus, ground-water ages determined by carbon isotopes of DOC should be maximum ages that can be used to constrain DIC corrected ages.« less
Ozone regeneration of granular activated carbon for trihalomethane control.
He, Xuexiang; Elkouz, Mark; Inyang, Mandu; Dickenson, Eric; Wert, Eric C
2017-03-15
Spatial and temporal variations of trihalomethanes (THMs) in distribution systems have challenged water treatment facilities to comply with disinfection byproduct rules. In this study, granular activated carbon (GAC) and modified GAC (i.e., Ag-GAC and TiO 2 -GAC) were used to treat chlorinated tap water containing CHCl 3 (15-21μg/L), CHBrCl 2 (13-16μg/L), CHBr 2 Cl (13-14μg/L), and CHBr 3 (3μg/L). Following breakthrough of dissolved organic carbon (DOC), GAC were regenerated using conventional and novel methods. GAC regeneration efficiency was assessed by measuring adsorptive (DOC, UV absorbance at 254nm, and THMs) and physical (surface area and pore volume) properties. Thermal regeneration resulted in a brief period of additional DOC adsorption (bed volume, BV, ∼6000), while ozone regeneration was ineffective regardless of the GAC type. THM adsorption was restored by either method (e.g., BV for ≥80% breakthrough, CHBr 3 ∼44,000>CHBr 2 Cl ∼35,000>CHBrCl 2 ∼31,000>CHCl 3 ∼7000). Cellular and attached adenosine triphosphate measurements illustrated the antimicrobial effects of Ag-GAC, which may have allowed for the extended THM adsorption compared to the other GAC types. The results illustrate that ozone regeneration may be a viable in-situ alternative for the adsorption of THMs during localized treatment in drinking water distribution systems. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Burow, K. R.; Gamble, J. M.; Fujii, R.; Constantz, J.
2001-12-01
Water flowing through the Sacramento-San Joaquin River Delta supplies drinking water to more than 20 million people in California. Delta water contains elevated concentrations of dissolved organic carbon (DOC) from drainage through the delta peat soils, forming trihalomethanes when the water is chlorinated for drinking. Land subsidence caused by oxidation of the peat soils has led to increased pumping of drainage water from delta islands to maintain arable land. An agricultural field on Twitchell Island was flooded in 1997 to evaluate continuous flooding as a technique to mitigate subsidence. The effects of shallow flooding on DOC loads to the drain water must be determined to evaluate the feasibility of this technique. In this study, heat is used as a nonconservative tracer to determine shallow ground-water flux and calculate DOC loads to an adjacent drainage ditch. Temperature profiles and water levels were measured in 12 wells installed beneath the pond, in the pond, and in an adjacent drainage ditch from May 2000 to June 2001. The range in seasonal temperatures decreased with depth, but seasonal temperature variation was evident in wells screened as deep as 10 to 12 feet below land surface. A constant temperature of 17 degrees C was measured in wells 25 feet beneath the pond. Ground-water flux beneath the pond was quantified in a two-dimensional simulation of water and heat exchange using the SUTRA flow and transport model. The effective vertical hydraulic conductivity of the peat soils underlying the pond was estimated through model calibration. Calibrated hydraulic conductivity is higher (1E-5 m/sec) than estimates from slug tests (2E-6 m/sec). Modeled pond seepage is similar to that estimated from a water budget, although the total seepage determined from the water budget is within the range of error of the instrumentation. Overall, model results indicate that recharge from the pond flows along shallow flow paths and that travel times through the peat to the drainage ditch may be on the order of decades.
Ahmadi, Fardin; Sparham, Chris; Pawliszyn, Janusz
2017-11-01
In this paper problems associated with preparation of aqueous standard of highly hydrophobic compounds such as partial precipitation, being lost on the surfaces, low solubility in water and limited sample volume for accurate determination of their distribution coefficients are addressed. The following work presents two approaches that utilize blade thin film microextraction (TFME) to investigate partitioning of UV filters and biocides to humic acid (dissolved organic carbon) and sediment. A steady-state concentration of target analytes in water was generated using a flow-through aqueous standard generation (ASG) system. Dialysis membranes, a polytetrafluoroethylene permeation tube, and a frit porous (0.5 μm) coated by epoxy glue were basic elements used for preparation of the ASG system. In the currently presented study, negligible depletion TFME using hydrophilic-lipophilic balance (HLB) and octadecyl silica-based (C18) sorbents was employed towards the attainment of free concentration values of target analytes in the studied matrices. Thin film geometry provided a large volume of extraction phase, which improved the sensitivity of the method towards highly matrix-bound analytes. Extractions were performed in the equilibrium regime so as to prevent matrix effects and with aims to reach maximum method sensitivity for all analytes under study. Partitioning of analytes on dissolved organic carbon (DOC) was investigated in ASG to facilitate large sample volume conditions. Binding percentages and DOC distribution coefficients (Log K DOC ) ranged from 20 to 98% and 3.71-6.72, respectively. Furthermore, sediment-water partition coefficients (K d ), organic-carbon normalized partition coefficients (Log K OC ), and DOC distribution coefficients (Log K DOC ) were investigated in slurry sediment, and ranged from 33 to 2860, 3.31-5.24 and 4.52-5.75 Lkg -1 , respectively. The obtained results demonstrated that investigations utilizing ASG and TFME can yield reliable binding information for compounds with high log K OW values. This information is useful for study of fate, transport, and ecotoxicological effects of UV filters and biocides in aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impacts of extreme flooding on riverbank filtration water quality.
Ascott, M J; Lapworth, D J; Gooddy, D C; Sage, R C; Karapanos, I
2016-06-01
Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) <90% baseline, high dissolved oxygen (DO) >400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the suitability of a prospective riverbank filtration site. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Dissolved Organic Carbon along the Louisiana coast from MODIS and MERIS satellite data
NASA Astrophysics Data System (ADS)
Chaichi Tehrani, N.; D'Sa, E. J.
2012-12-01
Dissolved organic carbon (DOC) plays a critical role in the coastal and ocean carbon cycle. Hence, it is important to monitor and investigate its the distribution and fate in coastal waters. Since DOC cannot be measured directly through satellite remote sensors, chromophoric dissolved organic matter (CDOM) as an optically active fraction of DOC can be used as an alternative proxy to trace DOC concentrations. Here, satellite ocean color data from MODIS, MERIS, and field measurements of CDOM and DOC were used to develop and assess CDOM and DOC ocean color algorithms for coastal waters. To develop a CDOM retrieval algorithm, empirical relationships between CDOM absorption coefficient at 412 nm (aCDOM(412)) and reflectance ratios Rrs(488)/Rrs(555) for MODIS and Rrs(510)/Rrs(560) for MERIS were established. The performance of two CDOM empirical algorithms were evaluated for retrieval of (aCDOM(412)) from MODIS and MERIS in the northern Gulf of Mexico. Further, empirical algorithms were developed to estimate DOC concentration using the relationship between in situ aCDOM(412) and DOC, as well as using the newly developed CDOM empirical algorithms. Accordingly, our results revealed that DOC concentration was strongly correlated to aCDOM (412) for summer and spring-winter periods (r2 = 0.9 for both periods). Then, using the aCDOM(412)-Rrs and the aCDOM(412)-DOC relationships derived from field measurements, a relationship between DOC-Rrs was established for MODIS and MERIS data. The DOC empirical algorithms performed well as indicated by match-up comparisons between satellite estimates and field data (R2=0.52 and 0.58 for MODIS and MERIS for summer period, respectively). These algorithms were then used to examine DOC distribution along the Louisiana coast.
NASA Astrophysics Data System (ADS)
Kendall, K. A.; Shanley, J. B.; McDonnell, J. J.
1999-07-01
To test the transmissivity feedback hypothesis of runoff generation, surface and subsurface waters were monitored and sampled during the 1996 snowmelt at various topographic positions in a 41 ha forested headwater catchment at Sleepers River, Vermont. Two conditions that promote transmissivity feedback existed in the catchment during the melt period. First, saturated hydraulic conductivity increased toward land surface, from a geometric mean of 3.6 mm h -1 in glacial till to 25.6 mm h -1 in deep soil to 54.0 mm h -1 in shallow soil. Second, groundwater levels rose to within 0.3 m of land surface at all riparian sites and most hillslope sites at peak melt. The importance of transmissivity feedback to streamflow generation was tested at the catchment scale by examination of physical and chemical patterns of groundwater in near-stream (discharge) and hillslope (recharge/lateral flow) zones, and within a geomorphic hollow (convergent flow). The presence of transmissivity feedback was supported by the abrupt increase in streamflow as the water table rose into the surficial, transmissive zone; a flattening of the groundwater level vs. streamflow curve occurred at most sites. This relation had a clockwise hysteresis (higher groundwater level for given discharge on rising limb than at same discharge on falling limb) at riparian sites, suggesting that the riparian zone was the dominant source area during the rising limb of the melt hydrograph. Hysteresis was counterclockwise at hillslope sites, suggesting that hillslope drainage controlled the snowmelt recession. End member mixing analysis using Ca, Mg, Na, dissolved organic carbon (DOC), and Si showed that stream chemistry could be explained as a two-component mixture of groundwater high in base cations and an O-horizon/overland flow water high in DOC. The dominance of shallow flow paths during events was indicated by the high positive correlation of DOC with streamflow ( r2=0.82). Despite the occurrence of transmissivity feedback, hillslope till and soil water were ruled out as end members primarily because their distinctive high-Si composition had little or no effect on streamwater composition. Till water from the geomorphic hollow had a chemistry very close to streamwater base flow, and may represent the base flow end member better than the more concentrated riparian groundwater. During snowmelt, streamwater composition shifted as this base flow was diluted—not by shallow groundwater from the hillslope, but rather by a more surficial O-horizon/overland flow water.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-04
...-long earth embankment dam creating; (2) an upper reservoir with a surface area of 120 acres and an 6,000 acre-foot storage capacity; (3) a 80-foot-high, 2,800-foot-long earth embankment dam creating; (4... prior registration, using the eComment system at http://www.ferc.gov/docs-filing/ecomment.asp . You must...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-04
...-long earth embankment dam creating; (2) an upper reservoir with a surface area of 85 acres and an 5,000 acre-foot storage capacity; (3) a 60-foot-high, 7,300-foot-long earth embankment dam creating; (4) a... characters, without prior registration, using the eComment system at http://www.ferc.gov/docs-filing/ecomment...
Xia, Bin; Ma, Shao-Sai; Chen, Ju-Fa; Zhao, Jun; Chen, Bi-Juan; Wang, Fang
2010-06-01
Based on the analysis of dissolved organic carbon (DOC), particulate organic carbon (POC) and particulate nitrogen (PN) of the samples collected from stations in Enteromorpha prolifera outbreak area of the Western South Yellow Sea during the period August 9-13 of 2008, combining with the data of environmental hydrology, the horizontal distribution, source and influential factors of organic carbon and carbon fixed strength of phytoplankton were discussed. The results showed that the concentrations of DOC and POC ranged from 1.55 mg/L to 3.22 mg/L, 0.11 mg/L to 0.68 mg/L, with average values of 2.44 mg/L and 0.27 mg/L. The horizontal distributions of DOC and POC were similar in study area. The concentrations of DOC and POC in coastal area were higher than that in the outer sea and the concentrations of DOC and POC at surface water layer were higher than those at the bottom water layer. There were a positive correlation between POC and TSS, indicating that the concentrations and source of TSS were main factors for the POC. According to the univariate linear regression model between POC and PN, the concentrations of particulate inorganic nitrogen (PIN) were evaluated. Removing the content of PIN in the samples, the average POC/PON values in most coastal waters were less than 8, combining with the values of POC/chlorophyll a, suggesting that the marine primary production were the important source of POC in most coastal waters, and the presence of degraded organic matter which derived from degraded Enteromorph prolifera was in the latter period of green tide outbreak. The results of evaluated carbon fixed strength based on primary productivity showed that carbon fixed strength of phytoplankton in Enteromorpha prolifera outbreak area of the Western South Yellow Sea ranged from 167 mg/(m2 x d) to 2017 mg/(m2 x d), with the average of 730 mg/(m2 x d). The daily carbon fixed quantities of the study area were up to 2.95 x 10(4) t. Then the daily carbon fixed quantities of the Yellow Sea were 28.03 x 10(4) t.
Controls on Mixing-Dependent Denitrification in Hyporheic Zones
NASA Astrophysics Data System (ADS)
Hester, E. T.; Young, K. I.; Widdowson, M. A.
2013-12-01
Interaction of surface water and groundwater in hyporheic sediments of river systems is known to create unique biogeochemical conditions that can attenuate contaminants flowing downstream. Oxygen, carbon, and the contaminants themselves (e.g., excess nitrate) often advect together through the hyporheic zone from sources in surface water. However, the ability of the hyporheic zone to attenuate contaminants in upwelling groundwater plumes as they exit to rivers is less known. Such reactions may be more dependent on mixing of carbon and oxygen sources from surface water with contaminants from deeper groundwater. We simulated hyporheic flow cells and upwelling groundwater together with mixing-dependent denitrification of an upwelling nitrate plume in shallow riverbed sediments using MODFLOW and SEAM3D. For our first set of model scenarios, we set biogeochemical boundary conditions to be consistent with situations where only mixing-dependent denitrification occurred within the model domain. This occurred where dissolved organic carbon (DOC) advecting from surface water through hyporheic flow cells meets nitrate upwelling from deeper groundwater. This would be common where groundwater is affected by septic systems which contribute nitrate that upwells into streams that do not have significant nitrate sources from upstream. We conducted a sensitivity analysis that showed that mixing-dependent denitrification increased with parameters that increase mixing itself, such as the degree of heterogeneity of sediment hydraulic conductivity (K). Mixing-dependent denitrification also increased with certain biogeochemical boundary concentrations such as increasing DOC or decreasing dissolved oxygen (DO) advecting from surface water. For our second set of model scenarios, we set biogeochemical boundary conditions to be consistent with common situations where non-mixing-dependent denitrification also occurred within the model domain. For example, when nitrate concentrations are substantial in water advecting from surface water, non-mixing-dependent denitrification can occur within the hyporheic flow cells. This would be common where surface water and groundwater have high nitrate concentrations in agricultural areas. We conducted a sensitivity analysis for this set of model scenarios as well, to evaluate controls on the relative balance of mixing-dependent and non-mixing-dependent denitrification. We found that non-mixing-dependent denitrification often has higher potential to consume nitrate than mixing-dependent denitrification. This is because non-mixing-dependent denitrification is not confined to the relatively small mixing zone between upwelling groundwater and hyporheic flow cells, and hence often has longer residence times available for consumption of existing oxygen followed by consumption of nitrate. Nevertheless, the potential for hyporheic zones to attenuate upwelling nitrate plumes appears to be substantial, yet is variable depending on geomorphic, hydraulic, and biogeochemical conditions.
NASA Astrophysics Data System (ADS)
Laudon, H.; Berggren, M.; Agren, A.; Jansson, M.
2010-12-01
The conceptual understanding of the role of terrestrially derived dissolved organic carbon (DOC) in freshwaters has been changing rapidly. While it was once considered mainly a pool of recalcitrant compounds, DOC is now better known for its interactivity and ability to affect both the biogeochemistry and ecology of streams, rivers and lakes. Here we summarize the recent work from the multi-investigatory project conducted in the Krycklan Catchment Study in Sweden with an emphasis on the spatial and temporal variability of the character and bioavailability of DOC. In total, 15 streams and their adjacent soils have been investigated. The streams cover a forest-wetland gradient, spanning from 0% to 69% wetland coverage (hence with a 100% to 31% forest cover). Lower values of the ratio between absorbance measured at 254 nm and 365 nm (A254/A365), in both soil plots and streams, indicated that wetland-derived DOC has a higher average molecular weight than forest DOC. Higher SUVA254 (DOC specific ultraviolet absorption at 254 nm) in wetland runoff indicated more aromatic DOC from wetlands than forests. In accordance, low molecular weight non-aromatic compounds such as free organic acids (OA), amino acids (AA) and carbohydrates (CH) had higher quantities in the forested streams. We have shown that a variety of the OA, AA and CH compounds can be significantly assimilated by bacteria, meeting 15-100% of the bacterial carbon demand and explaining most of the observed variance in bacterial growth efficiency. We can now also show that in small homogenous catchments, the hydrological functioning provides a first order control on the temporal variability of stream water DOC and its quality. As a consequence, streams with heterogeneous catchments undergo a temporal switch in the DOC source. In a typical boreal catchment of 10-20% wetlands, DOC originates predominantly from wetland sources during low flow conditions whereas the major source of DOC originates from forested areas of the catchment during high flow resulting in dramatic shifts in the character and bioavailability of DOC during different flow conditions. By connecting knowledge about the sources and quality of DOC with detailed hydrological process understanding, an improved representation of stream water DOC regulation can be provided. This work also illustrates that the sensitivity of stream water DOC in the boreal landscape ultimately depends on how individual landscape elements are affected, the proportion of these landscape elements and how these changes are propagated downstream.
Walvoord, Michelle Ann; Striegl, Robert G.
2007-01-01
Arctic and subarctic watersheds are undergoing climate warming, permafrost thawing, and thermokarst formation resulting in quantitative shifts in surface water - groundwater interaction at the basin scale. Groundwater currently comprises almost one fourth of Yukon River water discharged to the Bering Sea and contributes 5-10% of the dissolved organic carbon (DOC) and nitrogen (DON) and 35-45% of the dissolved inorganic carbon (DIC) and nitrogen (DIN) loads. Long-term strearnflow records (>30 yrs) of the Yukon River basin indicate a general upward trend in groundwater contribution to streamflow of 0.7-0.9%/yr and no pervasive change in annual flow. We propose that the increases in groundwater contributions were caused predominately by climate warming and permafrost thawing that enhances infiltration and supports deeper flowpaths. The increased groundwater fraction may result in decreased DOC and DON and increased DIC and DIN export when annual flow remains unchanged.
Hyne, Ross V; Pablo, Fleur; Julli, Moreno; Markich, Scott J
2005-07-01
This study determined the influence of key water chemistry parameters (pH, alkalinity, dissolved organic carbon [DOC], and hardness) on the aqueous speciation of copper and zinc and its relationship to the acute toxicity of these metals to the cladoceran Ceriodaphnia cf dubia. Immobilization tests were performed for 48-h in synthetic or natural waters buffered at various pH values from 5.5 to 8.4 (other chemical parameters held constant). The toxicity of copper to C. cf dubia decreased fivefold with increasing pH, whereas the toxicity of zinc increased fivefold with increasing pH. The effect of DOC on copper and zinc toxicity to C. cf dubia was determined using natural fulvic acid in the synthetic water. Increasing DOC was found to decrease linearly the toxicity of copper, with the mean effect concentration of copper that immobilized 50% of the cladocerans (EC50) value 45 times higher at 10 mg/L, relative to 0.1 mg/L DOC at pH 6.5. In contrast, the addition of 10 mg/L DOC only resulted in a very small (1.3-fold) reduction in the toxicity of zinc to C. cf dubia. Copper toxicity to C. cf dubia generally did not vary as a function of hardness, whereas zinc toxicity was reduced by a factor of only two, with an increase in water hardness from 44 to 374 mg CaCO3/L. Increasing bicarbonate alkalinity of synthetic waters (30-125 mg/L as CaCO3) decreased the toxicity of copper up to fivefold, which mainly could be attributed to the formation of copper-carbonate complexes, in addition to a pH effect. The toxicity of copper added to a range of natural waters with varying DOC content, pH, and hardness was consistent with the toxicity predicted using the data obtained from the synthetic waters.
Xue, Chonghua; Wang, Qi; Chu, Wenhai; Templeton, Michael R
2014-12-01
This study examined the formation of disinfection by-products (DBPs), including nitrogenous DBPs, haloacetonitriles (HANs), and carbonaceous DBPs, trihalomethanes (THMs), upon chlorination of water samples collected from a conventional Chinese surface water treatment plant (i.e. applying coagulation, sedimentation, and filtration). Reductions in the average concentrations (and range, shown in brackets) of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) from 4.8 (3.0-7.3) μg/L and 0.52 (0.20-0.81) μg/L in 2010 to 2.4 (1.4-3.7) μg/L and 0.17 (0.11-0.31) μg/L in 2012, respectively, led to a decrease in HANs and THMs from 5.3 and 28.5 μg/L initially to 0.85 and 8.2 μg/L, as average concentrations, respectively. The bromide concentration in the source water also decreased from 2010 to 2012, but the bromine incorporation factor (BIF) for the THMs did not change significantly; however, for HAN the BIFs increased because the reduction in DON was higher than that of bromide. There was good linear relationship between DOC and THM concentrations, but not between DON and HANs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hurricane Katrina impact on water quality in the East Pearl River, Mississippi
NASA Astrophysics Data System (ADS)
Shiller, Alan M.; Shim, Moo-Joon; Guo, Laodong; Bianchi, Thomas S.; Smith, Richard W.; Duan, Shuiwang
2012-01-01
SummaryHurricanes and other intense storms have previously been reported to cause short-term changes in surface water quality. We examined the water quality of the East Pearl River in southern Mississippi both before and after Hurricane Katrina caused extensive damage to the watershed in 2005. Our post-storm sampling began two months after the hurricane, and thus we missed any immediate short-term consequences. However, sampling over the following two years allowed us to examine whether damage to the watershed resulted in significant longer-term effects on water quality. Interpretation of the time series data is complicated by the natural seasonal and climatic variability of the system. Thus, we utilized chemical property-property plots as well as semi-empirical relationships to compare pre- and post-storm water quality. Our analysis suggests that hurricane-induced vegetative destruction within this river basin has not substantially changed the concentrations of DOC, POC, SPM, pH, or dissolved Fe. However, lignin-phenol analysis of colloidal organic matter did show some significant changes in carbon-normalized concentration as well as in some degradation and source parameters. Nonetheless, even these changes were small and likely temporary. This lack of change may be partly due to the slow degradation of woody materials that occurs only over a period of a few years, even in the sub-tropical climate of this region. Also, transport of DOC material from the land, through the soils, and into the river is not always instantaneous because DOC may stay in soils for a long time. Our work can be examined in the context of other research focused on hurricane effects on different time scales. For instance, shorter term hurricane influences, such as immediate flooding, can cause concurrent, short-lived water quality changes. Likewise, if increased hurricane activity (as might result from climate change) results in permanent landscape or ecosystem changes, then significant long-term water quality changes might be expected.
Spatial and temporal distribution of singlet oxygen in Lake Superior.
Peterson, Britt M; McNally, Ann M; Cory, Rose M; Thoemke, John D; Cotner, James B; McNeill, Kristopher
2012-07-03
A multiyear field study was undertaken on Lake Superior to investigate singlet oxygen ((1)O(2)) photoproduction. Specifically, trends within the lake were examined, along with an assessment of whether correlations existed between chromophoric dissolved organic matter (CDOM) characteristics and (1)O(2) production rates and quantum yields. Quantum yield values were determined and used to estimate noontime surface (1)O(2) steady-state concentrations ([(1)O(2)](ss)). Samples were subdivided into three categories based on their absorbance properties (a300): riverine, river-impacted, or open lake sites. Using calculated surface [(1)O(2)](ss), photochemical half-lives under continuous summer sunlight were calculated for cimetidine, a pharmaceutical whose reaction with (1)O(2) has been established, to be on the order of hours, days, and a week for the riverine, river-impacted, and open lake waters, respectively. Of the CDOM properties investigated, it was found that dissolved organic carbon (DOC) and a300 were the best parameters for predicting production rates of [(1)O(2)](ss). For example, given the correlations found, one could predict [(1)O(2)](ss) within a factor of 4 using a300 alone. Changes in the quantum efficiency of (1)O(2) production upon dilution of river water samples with lake water samples demonstrated that the CDOM found in the open lake is not simply diluted riverine organic matter. The open lake pool was characterized by low absorption coefficient, low fluorescence, and low DOC, but more highly efficient (1)O(2) production and predominates the Lake Superior system spatially. This study establishes that parameters that reflect the quantity of CDOM (e.g., a300 and DOC) correlate with (1)O(2) production rates, while parameters that characterize the absorbance spectrum (e.g., spectral slope coefficient and E2:E3) correlate with (1)O(2) production quantum yields.
O'Driscoll, Connie; Ledesma, José L J; Coll, John; Murnane, John G; Nolan, Paul; Mockler, Eva M; Futter, Martyn N; Xiao, Liwen W
2018-07-15
Natural organic matter poses an increasing challenge to water managers because of its potential adverse impacts on water treatment and distribution, and subsequently human health. Projections were made of impacts of climate change on dissolved organic carbon (DOC) in the primarily agricultural Boyne catchment which is used as a potable water supply in Ireland. The results indicated that excluding a potential rise in extreme precipitation, future projected loads are not dissimilar to those observed under current conditions. This is because projected increases in DOC concentrations are offset by corresponding decreases in precipitation and hence river flow. However, the results presented assume no changes in land use and highlight the predicted increase in DOC loads from abstracted waters at water treatment plants. Copyright © 2018. Published by Elsevier B.V.
Stepanauskas, R.; Moran, M.A.; Bergamaschi, B.A.; Hollibaugh, J.T.
2005-01-01
We analyzed bioavailability, photoreactivity, fluorescence, and isotopic composition of dissolved organic carbon (DOC) collected at 13 stations in the Sacramento-San Joaquin River Delta during various seasons to estimate the persistence of DOC from diverse shallow water habitat sources. Prospective large-scale wetland restorations in the Delta may change the amount of DOC available to the food web as well as change the quality of Delta water exported for municipal use. Our study indicates that DOC contributed by Delta sources is relatively refractory and likely mostly the dissolved remnants of vascular plant material from degrading soils and tidal marshes rather than phytoplankton production. Therefore, the prospective conversion of agricultural land into submerged, phytoplankton-dominated habitats may reduce the undesired export of DOC from the Delta to municipal users. A median of 10% of Delta DOC was rapidly utilizable by bacterioplankton. A moderate dose of simulated solar radiation (286 W m-2 for 4 h) decreased the DOC bioavailability by an average of 40%, with a larger relative decrease in samples with higher initial DOC bioavailability. Potentially, a DOC-based microbial food web could support ???0.6 ?? 109 g C of protist production in the Delta annually, compared to ???17 ?? 109 g C phytoplankton primary production. Thus, DOC utilization via the microbial food web is unlikely to play an important role in the nutrition of Delta zooplankton and fish, and the possible decrease in DOC concentration due to wetland restoration is unlikely to have a direct effect on Delta fish productivity. ?? Springer 2005.
NASA Astrophysics Data System (ADS)
Oliver, Allison A.; Tank, Suzanne E.; Giesbrecht, Ian; Korver, Maartje C.; Floyd, William C.; Sanborn, Paul; Bulmer, Chuck; Lertzman, Ken P.
2017-08-01
The perhumid region of the coastal temperate rainforest (CTR) of Pacific North America is one of the wettest places on Earth and contains numerous small catchments that discharge freshwater and high concentrations of dissolved organic carbon (DOC) directly to the coastal ocean. However, empirical data on the flux and composition of DOC exported from these watersheds are scarce. We established monitoring stations at the outlets of seven catchments on Calvert and Hecate islands, British Columbia, which represent the rain-dominated hypermaritime region of the perhumid CTR. Over several years, we measured stream discharge, stream water DOC concentration, and stream water dissolved organic-matter (DOM) composition. Discharge and DOC concentrations were used to calculate DOC fluxes and yields, and DOM composition was characterized using absorbance and fluorescence spectroscopy with parallel factor analysis (PARAFAC). The areal estimate of annual DOC yield in water year 2015 was 33.3 Mg C km-2 yr-1, with individual watersheds ranging from an average of 24.1 to 37.7 Mg C km-2 yr-1. This represents some of the highest DOC yields to be measured at the coastal margin. We observed seasonality in the quantity and composition of exports, with the majority of DOC export occurring during the extended wet period (September-April). Stream flow from catchments reacted quickly to rain inputs, resulting in rapid export of relatively fresh, highly terrestrial-like DOM. DOC concentration and measures of DOM composition were related to stream discharge and stream temperature and correlated with watershed attributes, including the extent of lakes and wetlands, and the thickness of organic and mineral soil horizons. Our discovery of high DOC yields from these small catchments in the CTR is especially compelling as they deliver relatively fresh, highly terrestrial organic matter directly to the coastal ocean. Hypermaritime landscapes are common on the British Columbia coast, suggesting that this coastal margin may play an important role in the regional processing of carbon and in linking terrestrial carbon to marine ecosystems.
A study of dissolved organic carbon and nitrate export in Catskill Mountain watersheds
NASA Astrophysics Data System (ADS)
Son, K.; Moore, K. E.; Lin, L.; Schneiderman, E. M.; Band, L. E.
2016-12-01
Watersheds in the Catskill Mountain region of New York State have historically experienced soil and stream acidification due to deposition of acidic compounds created from atmospheric SO2 and NOx. Recent studies in this region, and elsewhere in North America and Europe, have shown increases in dissolved organic carbon (DOC) in streams and lakes. Watersheds in the Catskills are the major source of drinking water for New York City and other communities in the region. Due to use of chlorine for disinfection, there is potential for the increase in DOC to lead to increased levels of disinfection byproducts in treated drinking water. Therefore, developing an improved understanding of the sources, fate and transport mechanisms, and export patterns for nitrate and DOC is important for informing watershed and water supply management. In this study, we analyzed the relationships between watershed characteristics, nitrate, and DOC for 12 gauged streams in the Neversink River watershed. Watershed characteristics included topography (elevation, slope, topographic wetness index), vegetation (leaf area index, species composition), soil (soil hydraulic parameters, soil carbon, wetland soil), atmospheric deposition (SO2, NOx), and climate (precipitation, temperature). Our preliminary analysis showed that both watershed slope and baseflow ratio are negatively correlated with annual median DOC concentration. At Biscuit Brook in the Neversink watershed, annual precipitation explained about 25% of annual DOC median concentration. DOC concentration was highly correlated with storm runoff in spring, summer, and fall, but stream nitrate concentration was weakly correlated with storm runoff in most seasons except summer when it was highly correlated with baseflow. We also applied a process-based ecohydrologic model (Regional Hydrologic Ecologic System Simulation, RHESSys) to the Biscuit Brook watershed to explore sources of nitrate and DOC and their movement within the watershed. We expect that this study will increase our understanding of how, when, and where DOC and nitrate are stored and transported to streams, as well as give insights into the key controls on nitrate and DOC processes in Catskill Mountain watersheds.
Pierson-Wickmann, Anne-Catherine; Gruau, Gérard; Jardé, Emilie; Gaury, Nicolas; Brient, Luc; Lengronne, Marion; Crocq, André; Helle, Daniel; Lambert, Thibault
2011-04-01
A combined mass-balance and stable isotope approach was set up to identify and quantify dissolved organic carbon (DOC) sources in a DOC-rich (9mgL(-1)) eutrophic reservoir located in Western France and used for drinking water supply (so-called Rophemel reservoir). The mass-balance approach consisted in measuring the flux of allochthonous DOC on a daily basis, and in comparing it with the effective (measured) DOC concentration of the reservoir. The isotopic approach consisted, for its part, in measuring the carbon isotope ratios (δ(13)C values) of both allochthonous and autochthonous DOC sources, and comparing these values with the δ(13)C values of the reservoir DOC. Results from both approaches were consistent pointing out for a DOC of 100% allochthonous origin. In particular, the δ(13)C values of the DOC recovered in the reservoir (-28.5±0.2‰; n=22) during the algal bloom season (May-September) showed no trace of an autochthonous contribution (δ(13)C in algae=-30.1±0.3‰; n=2) being indistinguishable from the δ(13)C values of allochthonous DOC from inflowing rivers (-28.6±0.1‰; n=8). These results demonstrate that eutrophication is not responsible for the high DOC concentrations observed in the Rophemel reservoir and that limiting eutrophication of this reservoir will not reduce the potential formation of disinfection by-products during water treatment. The methodology developed in this study based on a complementary isotopic and mass-balance approach provides a powerful tool, suitable to identify and quantify DOC sources in eutrophic, DOC-contaminated reservoirs. Copyright © 2010 Elsevier Ltd. All rights reserved.
Copper speciation and binding by organic matter in copper-contaminated streamwater
Breault, R.F.; Colman, J.A.; Aiken, G.R.; McKnight, D.
1996-01-01
Fulvic acid binding sites (1.3-70 ??M) and EDTA (0.0017-0.18 ??M) accounted for organically bound Cu in seven stream samples measured by potentiometric titration. Cu was 84-99% organically bound in filtrates with 200 nM total Cu. Binding of Cu by EDTA was limited by competition from other trace metals. Water hardness was inversely related to properties of dissolved organic carbon (DOC) that enhance fulvic acid binding: DOC concentration, percentage of DOC that is fulvic acid, and binding sites per fulvic acid carbon. Dissolved trace metals, stabilized by organic binding, occurred at increased concentration in soft water as compared to hard water.
Elevated pCO2 enhances bacterioplankton removal of organic carbon
James, Anna K.; Passow, Uta; Brzezinski, Mark A.; Parsons, Rachel J.; Trapani, Jennifer N.; Carlson, Craig A.
2017-01-01
Factors that affect the removal of organic carbon by heterotrophic bacterioplankton can impact the rate and magnitude of organic carbon loss in the ocean through the conversion of a portion of consumed organic carbon to CO2. Through enhanced rates of consumption, surface bacterioplankton communities can also reduce the amount of dissolved organic carbon (DOC) available for export from the surface ocean. The present study investigated the direct effects of elevated pCO2 on bacterioplankton removal of several forms of DOC ranging from glucose to complex phytoplankton exudate and lysate, and naturally occurring DOC. Elevated pCO2 (1000–1500 ppm) enhanced both the rate and magnitude of organic carbon removal by bacterioplankton communities compared to low (pre-industrial and ambient) pCO2 (250 –~400 ppm). The increased removal was largely due to enhanced respiration, rather than enhanced production of bacterioplankton biomass. The results suggest that elevated pCO2 can increase DOC consumption and decrease bacterioplankton growth efficiency, ultimately decreasing the amount of DOC available for vertical export and increasing the production of CO2 in the surface ocean. PMID:28257422
Biodegradability of dissolved organic carbon in permafrost soils and waterways: a meta-analysis
NASA Astrophysics Data System (ADS)
Vonk, J. E.; Tank, S. E.; Mann, P. J.; Spencer, R. G. M.; Treat, C. C.; Striegl, R. G.; Abbott, B. W.; Wickland, K. P.
2015-06-01
As Arctic regions warm, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to thaw and decomposition. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the reactivity and subsequent fate of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism and its biodegradability will determine the extent and rate of carbon release from aquatic ecosystems to the atmosphere. Knowledge of the mechanistic controls on DOC biodegradability is however currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences used as common practice in the literature. We further synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-Arctic trends in BDOC. An increasing extent of permafrost across the landscape resulted in higher BDOC losses in both soil and aquatic systems. We hypothesize that the unique composition of permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively shorter flow path lengths and transport times, resulted in higher overall terrestrial and freshwater BDOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January-December) decrease in BDOC losses in large streams and rivers, but no apparent change in smaller streams and soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later in the summer, as well as decreasing hydrologic connectivity between soils and surface water as the seasons progress. Our results suggest that future, climate warming-induced shifts of continuous permafrost into discontinuous permafrost regions could affect the degradation potential of thaw-released DOC as well as its variability throughout the Arctic summer. We lastly present a recommended standardized BDOC protocol to facilitate the comparison of future work and improve our knowledge of processing and transport of DOC in a changing Arctic.
Influence of sea level rise on iron diagenesis in an east Florida subterranean estuary
Roy, M.; Martin, J.B.; Cherrier, J.; Cable, J.E.; Smith, C.G.
2010-01-01
Subterranean estuary occupies the transition zone between hypoxic fresh groundwater and oxic seawater, and between terrestrial and marine sediment deposits. Consequently, we hypothesize, in a subterranean estuary, biogeochemical reactions of Fe respond to submarine groundwater discharge (SGD) and sea level rise. Porewater and sediment samples were collected across a 30-m wide freshwater discharge zone of the Indian River Lagoon (Florida, USA) subterranean estuary, and at a site 250. m offshore. Porewater Fe concentrations range from 0.5 ??M at the shoreline and 250. m offshore to about 286 ??M at the freshwater-saltwater boundary. Sediment sulfur and porewater sulfide maxima occur in near-surface OC-rich black sediments of marine origin, and dissolved Fe maxima occur in underlying OC-poor orange sediments of terrestrial origin. Freshwater SGD flow rates decrease offshore from around 1 to 0.1. cm/day, while bioirrigation exchange deepens with distance from about 10. cm at the shoreline to about 40. cm at the freshwater-saltwater boundary. DOC concentrations increase from around 75 ??M at the shoreline to as much as 700 ??M at the freshwater-saltwater boundary as a result of labile marine carbon inputs from marine SGD. This labile DOC reduces Fe-oxides, which in conjunction with slow discharge of SGD at the boundary, allows dissolved Fe to accumulate. Upward advection of fresh SGD carries dissolved Fe from the Fe-oxide reduction zone to the sulfate reduction zone, where dissolved Fe precipitates as Fe-sulfides. Saturation models of Fe-sulfides indicate some fractions of these Fe-sulfides get dissolved near the sediment-water interface, where bioirrigation exchanges oxic surface water. The estimated dissolved Fe flux is approximately 0.84 ??M Fe/day per meter of shoreline to lagoon surface waters. Accelerated sea level rise predictions are thus likely to increase the Fe flux to surface waters and local primary productivity, particularly along coastlines where groundwater discharges through sediments. ?? 2010 Elsevier Ltd.
Differences in dissolved organic matter between reclaimed water source and drinking water source.
Hu, Hong-Ying; Du, Ye; Wu, Qian-Yuan; Zhao, Xin; Tang, Xin; Chen, Zhuo
2016-05-01
Dissolved organic matter (DOM) significantly affects the quality of reclaimed water and drinking water. Reclaimed water potable reuse is an effective way to augment drinking water source and de facto reuse exists worldwide. Hence, when reclaimed water source (namely secondary effluent) is blended with drinking water source, understanding the difference in DOM between drinking water source (dDOM) and reclaimed water source (rDOM) is essential. In this study, composition, transformation, and potential risk of dDOM from drinking water source and rDOM from secondary effluent were compared. Generally, the DOC concentration of rDOM and dissolved organic nitrogen (DON) content in reclaimed water source were higher but rDOM exhibited a lower aromaticity. Besides, rDOM comprises a higher proportion of hydrophilic fractions and more low-molecular weight compounds, which are difficult to be removed during coagulation. Although dDOM exhibited higher specific disinfection byproducts formation potential (SDBPFP), rDOM formed more total disinfection byproducts (DBPs) during chlorination including halomethanes (THMs) and haloacetic acids (HAAs) due to high DOC concentration. Likewise, in consideration of DOC basis, rDOM contained more absolute assimilable organic carbon (AOC) despite showing a lower specific AOC (normalized AOC per unit of DOC). Besides, rDOM exhibited higher biotoxicity including genotoxicity and endocrine disruption. Therefore, rDOM presents a greater potential risk than dDOM does. Reclaimed water source needs to be treated carefully when it is blended with drinking water source. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Guimond, J. A.; Seyfferth, A.; Michael, H. A.
2017-12-01
Salt marshes are biogeochemical hotspots where large quantities of carbon are processed and stored. High primary productivity and deposition of carbon-laden sediment enable salt marsh soils to accumulate and store organic carbon. Conversely, salt marshes can laterally export carbon from the marsh platform to the tidal channel and eventually the ocean via tidal pumping. However, carbon export studies largely focus on tidal channels, missing key physical and biogeochemical mechanisms driving the mobilization of dissolved organic carbon (DOC) within the marsh platform and limiting our understanding of and ability to predict coastal carbon dynamics. We hypothesize that iron redox dynamics mediate the mobilization/immobilization of DOC in the top 30 cm of salt marsh sediment near tidal channels. The mobilized DOC can then diffuse into the flooded surface water or be advected to tidal channels. To elucidate DOC dynamics driven by iron redox cycles, we measured porewater DOC, Fe(II), total iron, total sulfate, pH, redox potential, and electrical conductivity (EC) beside the creek, at the marsh levee, and in the marsh interior in a mid-latitude tidal salt marsh in Dover, Delaware. Samples were collected at multiple tide stages during a spring and neap tide at depths of 5-75cm. Samples were also collected from the tidal channel. Continuous Eh measurements were made using in-situ electrodes. A prior study shows that DOC and Fe(II) concentrations vary spatially across the marsh. Redox conditions near the creek are affected by tidal oscillations. High tides saturate the soil and decrease redox potential, whereas at low tide, oxygen enters the sediment and increases the Eh. This pattern is always seen in the top 7-10cm of sediment, with more constant low Eh at depth. However, during neap tides, this signal penetrates deeper. Thus, between the creek and marsh levee, hydrology mediates redox conditions. Based on porewater chemistry, if DOC mobilization can be linked to redox cycles, then hydrologic oscillations can be tied to DOC dynamics and predicted with hydrologic models. By elucidating the mechanisms driving the mobilization of DOC, we can begin to better understand, quantify, and forecast coastal carbon dynamics.
Coagulant recovery and reuse for drinking water treatment.
Keeley, James; Jarvis, Peter; Smith, Andrea D; Judd, Simon J
2016-01-01
Coagulant recovery and reuse from waterworks sludge has the potential to significantly reduce waste disposal and chemicals usage for water treatment. Drinking water regulations demand purification of recovered coagulant before they can be safely reused, due to the risk of disinfection by-product precursors being recovered from waterworks sludge alongside coagulant metals. While several full-scale separation technologies have proven effective for coagulant purification, none have matched virgin coagulant treatment performance. This study examines the individual and successive separation performance of several novel and existing ferric coagulant recovery purification technologies to attain virgin coagulant purity levels. The new suggested approach of alkali extraction of dissolved organic compounds (DOC) from waterworks sludge prior to acidic solubilisation of ferric coagulants provided the same 14:1 selectivity ratio (874 mg/L Fe vs. 61 mg/L DOC) to the more established size separation using ultrafiltration (1285 mg/L Fe vs. 91 mg/L DOC). Cation exchange Donnan membranes were also examined: while highly selective (2555 mg/L Fe vs. 29 mg/L DOC, 88:1 selectivity), the low pH of the recovered ferric solution impaired subsequent treatment performance. The application of powdered activated carbon (PAC) to ultrafiltration or alkali pre-treated sludge, dosed at 80 mg/mg DOC, reduced recovered ferric DOC contamination to <1 mg/L but in practice, this option would incur significant costs. The treatment performance of the purified recovered coagulants was compared to that of virgin reagent with reference to key water quality parameters. Several PAC-polished recovered coagulants provided the same or improved DOC and turbidity removal as virgin coagulant, as well as demonstrating the potential to reduce disinfection byproducts and regulated metals to levels comparable to that attained from virgin material. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kraus, Tamara E.C.; Anderson, Chauncey W.; Morgenstern, Karl; Downing, Bryan D.; Pellerin, Brian A.; Bergamaschi, Brian A.
2010-01-01
This study was conducted to determine the main sources of dissolved organic carbon (DOC) and disinfection byproduct (DBP) precursors to the McKenzie River, Oregon (USA). Water samples collected from the mainstem, tributaries, and reservoir outflows were analyzed for DOC concentration and DBP formation potentials (trihalomethanes [THMFPs] and haloacetic acids [HAAFPs]). In addition, optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) were measured to provide insight into DOM composition and assess whether optical properties are useful proxies for DOC and DBP precursor concentrations. Optical properties indicative of composition suggest that DOM in the McKenzie River mainstem was primarily allochthonous - derived from soils and plant material in the upstream watershed. Downstream tributaries had higher DOC concentrations than mainstem sites (1.6 ?? 0.4 vs. 0.7 ?? 0.3 mg L-1) but comprised <5% of mainstem flows and had minimal effect on overall DBP precursor loads. Water exiting two large upstream reservoirs also had higher DOC concentrations than the mainstem site upstream of the reservoirs, but optical data did not support in situ algal production as a source of the added DOC during the study. Results suggest that the first major rain event in the fall contributes DOM with high DBP precursor content. Although there was interference in the absorbance spectra in downstream tributary samples, fluorescence data were strongly correlated to DOC concentration (R 2 = 0.98), THMFP (R2 = 0.98), and HAAFP (R2 = 0.96). These results highlight the value of using optical measurements for identifying the concentration and sources of DBP precursors in watersheds, which will help drinking water utilities improve source water monitoring and management programs. Copyright ?? 2010 by the American Society of Agronomy.
Use of induced fluorescence measurements to assess aluminum-organic interactions in acidified lakes
NASA Technical Reports Server (NTRS)
Vodacek, A.; Philpot, W. D.
1985-01-01
The application of laser fluorosensing to the tracing of metals in acid lakes is proposed. The effects of the metals on the dissolving organic carbon (DOC) fluorescence is studied using laboratory mixed water samples and natural water samples from Hamilton and Big Moose Lakes in New York. The operation of the laser fluorosensing system employed in the experiment is described. The DOC fluorescence was quenched by Al, Cu, and Fe, and the relation between pH and the quenching rate is examined. The humic substances fluorescence spectra are analyzed to estimate the concentrations of DOC in water and the relative concentration of Al. The interference problems caused by chemical competition between metal ions and ligands, and changes in the background DOC fluorescence are discussed. It is noted that an airborne laser fluorescence is useful for detecting elevated concentrations of metals.
NASA Astrophysics Data System (ADS)
D'Sa, E. J.; Goes, J. I.; Gomes, H.; Mouw, C.
2013-12-01
The absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) are reported for the inner shelf, slope waters and outer shelf regions of the eastern Bering Sea during the summer of 2008, when a warm, thermally stratified surface mixed layer lay over a Cold Pool (< 2 °C) that occupied the entire middle shelf. CDOM absorption at 355 nm (ag355) and its spectral slope (S) in conjunction with excitation emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC) revealed large variability in the characteristics of CDOM in different regions of the Bering Sea. PARAFAC analysis aided in the identification of three humic-like (components 1, 2 and 5) and two protein-like (a tyrosine-like component 3, and a tryptophan-like component 4) components. In the extensive shelf region, average absorption coefficients at 355 nm (ag355 m-1) and DOC concentrations (μM) were highest in the inner shelf (0.342 ± 0.11 m-1, 92.67 ± 14.60 μM) and lower in the middle (0.226 ± 0.05 m-1, 78.38 ± 10.64 μM) and outer (0.176 ± 0.05 m-1, 80.73 ± 18.11 μM) shelves, respectively. Mean spectral slopes S were elevated in the middle shelf (24.38 ± 2.25 μm-1) especially in the surface waters (26.87 ± 2.39 μm-1) indicating high rates of photodegradation in the highly stratified surface mixed layer, which intensified northwards in the northern middle shelf likely contributing to greater light penetration and to phytoplankton blooms at deeper depths. The fluorescent humic-like components 1, 2, and 5 were most elevated in the inner shelf most likely from riverine inputs. Measurements at depth in slope waters (> 250 m) revealed low values of ag355 (0.155 ± 0.03 m-1) and S (15.45 ± 1.78 μm-1) indicative of microbial degradation of CDOM in deep waters. DOC concentrations, however were not significantly different suggesting CDOM sources and sinks to be uncoupled from DOC. Along the productive "green belt" in the outer shelf/slope region, absorption and fluorescence properties indicated the presence of fresh and degraded autochthonous DOM. Near the Unimak Pass region of the Aleutian Islands, low DOC and ag355 (mean 66.99 ± 7.94 μM; 0.182 ± 0.05 m-1) and a high S (mean 25.95 ± 1.58 μm-1) suggested substantial photobleaching of the Alaska Coastal Waters, but high intensities of humic-like and protein-like fluorescence suggested sources of fluorescent DOM from coastal runoff and glacier melt waters during the summer. Although our data show that the CDOM photochemical environment of the Bering Sea is complex, our current information on its optical properties will aid in better understanding of the biogeochemical role of CDOM in carbon budgets in relation to the annual sea ice and phytoplankton dynamics, and to improved algorithms of ocean color remote sensing for this region.
Stable and radiocarbon isotopic composition of dissolved organic matter in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Walker, B. D.; Druffel, E. R. M.; Kolasinski, J.; Roberts, B. J.; Xu, X.; Rosenheim, B. E.
2017-08-01
Dissolved organic carbon (DOC) is of primary importance to marine ecosystems and the global carbon cycle. Stable carbon (δ13C) and radiocarbon (Δ14C) isotopic measurements are powerful tools for evaluating DOC sources and cycling. However, the isotopic signature of DOC in the Gulf of Mexico (GOM) remains almost completely unknown. Here we present the first DOC Δ14C and δ13C depth profiles from the GOM. Our results suggest the Mississippi River exports large amounts of DOC with an anthropogenic "bomb" Δ14C signature. Riverine DOC is removed and recycled offshore, and some marine production of DOC is observed in the river plume. Offshore profiles show that DOC has higher Δ14C than its Caribbean feed waters, indicative of a modern deep DOC source in the GOM basin. Finally, high DOC with negative δ13C and Δ14C values were observed near the Macondo Wellhead, suggesting a transformation of Deepwater Horizon hydrocarbons into a persistent population of DOC.
Distribution of trace metals in anchialine caves of Adriatic Sea, Croatia
NASA Astrophysics Data System (ADS)
Cuculić, Vlado; Cukrov, Neven; Kwokal, Željko; Mlakar, Marina
2011-11-01
This study presents results of the first comprehensive research on ecotoxic trace metals (Cd, Pb, Cu and Zn) in aquatic anchialine ecosystems. Data show the influence of hydrological and geological characteristics on trace metals in highly stratified anchialine water columns. Distribution of Cd, Pb, Cu and Zn in two anchialine water bodies, Bjejajka Cave and Lenga Pit in the Mljet National park, Croatia were investigated seasonally from 2006 to 2010. Behaviour and concentrations of dissolved and total trace metals in stratified water columns and metal contents in sediment, carbonate rocks and soil of the anchialine environment were evaluated. Trace metals and dissolved organic carbon (DOC) concentrations in both anchialine water columns were significantly elevated compared to adjacent seawater. Zn and Cu concentrations were the highest in the Lenga Pit water column and sediment. Elevated concentrations of Zn, Pb and Cu in Bjejajka Cave were mainly terrigenous. Significantly elevated concentrations of cadmium (up to 0.3 μg L -1) were found in the water column of Bjejajka cave, almost two orders of magnitude higher compared to nearby surface seawater. Laboratory analysis revealed that bat guano was the major source of cadmium in Bjejajka Cave. Cadmium levels in Lenga Pit, which lacks accumulations of bat guano, were 20-fold lower. Moreover, low metal amounts in carbonate rocks in both caves, combined with mineral leaching experiments, revealed that carbonates play a minor role as a source of metals in both water columns. We observed two types of vertical distribution pattern of cadmium in the stratified anchialine Bjejajka Cave water column. At lower salinities, non-conservative behaviour was characterized by strong desorption and enrichment of dissolved phase while, at salinities above 20, Cd behaved conservatively and its dissolved concentration decreased. Conservative behaviour of Cu, Pb, Zn and DOC was observed throughout the water column. After heavy rains, Cd showed reduced concentration and uniform vertical distribution, suggesting a non-terrestrial origin. Under the same conditions, concentrations of total and dissolved Pb, Cu, Zn and DOC were significantly elevated. Variations of trace metal vertical distributions in anchialine water columns were caused by large inputs of fresh water (extraordinary rainy events), and were not influenced by seasonal changes.
Mercury in stream water at five Czech catchments across a Hg and S deposition gradient
Navrátil, Tomáš; Shanley, James B.; Rohovec, Jan; Oulehle, Filip; Krám, Pavel; Matoušková, Šárka; Tesař, Miroslav; Hojdová, Maria
2015-01-01
The Czech Republic was heavily industrialized in the second half of the 20th century but the associated emissions of Hg and S from coal burning were significantly reduced since the 1990s. We studied dissolved (filtered) stream water mercury (Hg) and dissolved organic carbon (DOC) concentrations at five catchments with contrasting Hg and S deposition histories in the Bohemian part of the Czech Republic. The median filtered Hg concentrations of stream water samples collected in hydrological years 2012 and 2013 from the five sites varied by an order of magnitude from 1.3 to 18.0 ng L− 1. The Hg concentrations at individual catchments were strongly correlated with DOC concentrations r from 0.64 to 0.93 and with discharge r from 0.48 to 0.75. Annual export fluxes of filtered Hg from individual catchments ranged from 0.11 to 13.3 μg m− 2 yr− 1 and were highest at sites with the highest DOC export fluxes. However, the amount of Hg exported per unit DOC varied widely; the mean Hg/DOC ratio in stream water at the individual sites ranged from 0.28 to 0.90 ng mg− 1. The highest stream Hg/DOC ratios occurred at sites Pluhův Bor and Jezeří which both are in the heavily polluted Black Triangle area. Stream Hg/DOC was inversely related to mineral and total soil pool Hg/C across the five sites. We explain this pattern by greater soil Hg retention due to inhibition of soil organic matter decomposition at the sites with low stream Hg/DOC and/or by precipitation of a metacinnabar (HgS) phase. Thus mobilization of Hg into streams from forest soils likely depends on combined effects of organic matter decomposition dynamics and HgS-like phase precipitation, which were both affected by Hg and S deposition histories.
NASA Astrophysics Data System (ADS)
Avagyan, A.; Runkle, B.; Kutzbach, L.
2011-12-01
It is well known that peatlands represent an important soil carbon reserve. Therefore, they are considered as hot-spots with respect to climate change. However, lack of information concerning the transport of dissolved organic matter within peatlands and its release into fluvial systems represents a major gap in our understanding of both local and global carbon cycles. In particular, the spring snowmelt period, as a major hydrological event in the annual water cycle of boreal regions, strongly influences the fluxes of carbon between terrestrial and fluvial systems. The aim of this study is to provide thorough quantitative analyses of dissolved organic carbon (DOC) concentrations and fluxes in a boreal mire-forest-river landscape during the snowmelt period. Water samples were collected in the Komi Republic, Russia, in spring 2011 along transects across the near-pristine Ust-Pojeg mire complex and the nearby river Pojeg into which it drains (61°56'N, 50°13'E). This peatland is in a transitional state from fen to bog and consists of minerogeous, ombrogenous, and transitional forest-mire (lagg) zones. Microtopographic features include hummocks, hollows, and lawns. High frequency absorption measurements were conducted directly at the study site with a portable UV-Vis spectrometer over a wavelength range of 200-742.5 nm at 2.5 nm intervals. These results were calibrated against values obtained from the catalytically-aided platinum 680°C combustion technique. The results showed that in the beginning of the snowmelt period only surface carbon is flushed away by melted snow water while deeper layers remain frozen. During this time, DOC concentrations fluctuated within the range of 10-14 mg L-1 across the whole mire complex. During the later stages of snowmelt, concentrations of DOC were different between lagg, fen and bog zones, which separated them into distinct hydrological and biogeochemical units within the mire complex. The highest concentration was observed at the lagg zone with 30 mg L-1, while the lowest concentration was found at the bog site 15 mg L-1. The river water DOC concentration reached about 25 mg L-1 and was thus significantly increased compared to summer values of about 4.7 mg L-1. Water from the mire complex with a high DOC concentration was discharged via an outflow creek, into the river Pojeg. During the first flush during the snowmelt, the DOC concentration was approximately 60 mg L-1 in the outflow creek; after 10 days it decreased to 30-34 mg L-1. Additionally, we found that the following metals were discharged from the mire complex into the river as demonstrated by their concentrations in the outflow water: iron (0.34 mg L-1); manganese (28 μg L-1); arsenic (0.42 μg L-1); and mercury (0.020 μg L-1). These findings imply that the snowmelt water fluxes redistribute major parts of the carbon stock between the site's terrestrial and fluvial systems and affect the transport of metals. These large peatland regions could therefore play a substantial role as a carbon source for the river-ocean matter transport system.
NASA Astrophysics Data System (ADS)
Couture, Raoul-Marie; de Wit, Heleen A.; Tominaga, Koji; Kiuru, Petri; Markelov, Igor
2015-11-01
Boreal lakes are impacted by climate change, reduced acid deposition, and changing loads of dissolved organic carbon (DOC) from catchments. We explored, using the process-based lake model MyLake, how changes in these pressures modulate ice phenology and the dissolved oxygen concentrations (DO) of a small boreal humic lake. The model was parametrized against year-round time series of water temperature and DO from a lake buoy. Observed trends in air temperature (+0.045°C yr-1) and DOC concentration (0.11 mg C L-1 yr-1, +1% annually) over the past 40 years were used as model forcings. A backcast of ice freezing and breakup dates revealed that ice breakup occurred on average 8 days earlier in 2014 than in 1974. The earlier ice breakup enhanced water column ventilation resulting in higher DO in the spring. Warmer water in late summer led to longer anoxic periods, as microbial DOC turnover increased. A long-term increase in DOC concentrations caused a decline in lake DO, leading to 15% more hypoxic days (<3 mg L-1) and 10% more anoxic days (<15 µg L-1) in 2014 than in 1974. We conclude that climate warming and increasing DOC loads are antagonistic with respect to their effect on DO availability. The model suggests that DOC is a stronger driver of DO consumption than temperature. The browning of lakes may thus cause reductions in the oxythermal habitat of fish and aquatic biota in boreal lakes.
Wallage, Zoe E; Holden, Joseph; McDonald, Adrian T
2006-08-31
Peatlands are an important terrestrial carbon store. However, heightened levels of degradation in response to environmental change have resulted in an increased loss of dissolved organic carbon (DOC) and an associated rise in the level of discolouration in catchment waters. A significant threat to peatland sustainability has been the installation of artificial drainage ditches. However, recent restoration schemes have pursued drain blocking as a possible strategy for reducing degradation, fluvial carbon loss and water discolouration. This paper investigates the effect of open cut drainage and the impact of drain blocking on DOC and colour dynamics in blanket peat soil-water solutions. Three treatments (intact peat, drained peat and drain-blocked peat) were monitored in an upland blanket peat catchment in the UK. DOC and colour values were significantly higher on the drained slopes compared with those of the intact peat, which in turn had greater DOC and colour values than the drain-blocked slopes. Consequently, drain blocking is shown to be a highly successful technique in reducing both the DOC concentration and level of discolouration in soil waters, even to values lower than those observed for the intact site, which suggests a process of store exhaustion and flushing may operate. The colour per carbon unit (C/C) ratio was significantly higher at the drain-blocked site than either the intact or the drained treatments, while the E4/E6 ratio (fulvic acid/humic acid) was significantly lower at the blocked site compared to the two other treatments. The high C/C and low E4/E6 ratios indicate that drain blocking also modifies the composition of DOC, such that darker-coloured humic substances become more dominant compared to the intact site. This implies disturbance to DOC production and/or transportation processes operating within the peat.
Physical Model Study of Cross Vanes and Ice
2009-08-01
spacing since, in the pre-scour state, experiments and the HEC - RAS hydraulic model (USACE 2002b) found that water surface ele- vation merged with the...docs/eng-manuals/em1110- 2-1612/toc.htm. USACE (2002b) HEC - RAS , Hydraulic Reference Manual. US Army Corps of Engineers Hydrologic Engineering Center...Currently little design guidance is available for constructing these structures on ice-affected rivers . This study used physical and numerical
Launch Preparation and Rocket Launching
1991-05-23
which do not exceed several hundred kilometers. In the USA MBR and heavy rocket carriers to distant distances are transported predominantly on air or...Balloon for transportation of MBR "Minuteman" (drawing): - balloon; 2 - rocket. DOC = 91032701 PAGE 34 Page 20. Thus, for the protection from the axial g...launching is suitable for rockets, launched from surface of the earth (water), or from silo (submarine in submerged state). The selection of
June 3, 2011 work plan for a pilot-scale treatability evaluation with a commercial wastewater treatment facility, Water Recovery Inc. (WRI) located in Jacksonville, Florida. Region ID: 04 DocID: 10749927, DocDate: 06-03-2011
Dynamics of Dissolved Organic Matter in Amazon Basin: Insights into Negro River Contribution
NASA Astrophysics Data System (ADS)
Moreira-Turcq, P.; Perez, M. P.; Benedetti, M.; Oliveira, M. A.; Lagane, C.; Seyler, P.; Oliveira, E.
2006-12-01
The study of global carbon cycle requires a precise knowledge of spatial and temporal distributions and exportation from continents to oceans. Organic carbon fluxes represent approximately half of the total carbon budget carried by rivers. Tropical rivers transport two third of the total organic carbon discharged into the world oceans but important gaps still exist in the knowledge of the tropical river carbon biochemistry. The Amazon River is responsible for 10% of the annual amount of organic carbon transported from rivers to oceans. The most important portion of total organic matter transported in the Amazon Basin is the dissolved fraction (between 80% and 95%). Amazonian annual flux of dissolved organic matter is directly related to hydrological variations. All rivers in the Amazon basin are characterized by monomodal hydrograms, with a low water period in october/november and a high water period in may/june. Temporal variations in Amazon dissolved organic carbon (3.0 to 9.1 mg l^{- 1}) are mainly controled by Negro River inputs. DOC and DON contributions from the Negro River can vary between 120 kgC s-1 and 520 kg C s-1, and between 5 kgN s--1 and 15 kgN s-1, during low and high water period, respectivelly. In the Negro River, during high water stages, while DOC concentrations are stable from the upstream stations to the downstream ones (about 11 mg l-1), discharge increases from 16000 to 46000 m3 s-1 and NOD can quintuple from upstream (0.071 mg l-1) to downstream (0.341 mg l-1). Then the nature of dissolved organic matter is variable (C/N ratio varied from 33 to 120 from upstream to downstream). During low water stages DOC concentrations are lower (mean DOC of 8.1 mg l-1) while DON is in the same range, discharge is about 10000 m3 s-1 at downstream stations of Negro River and the C/N ratio is lower and steadier along the River. Finaly, despite a low basin surface (12%) compared with the two other main Amazon tributaries, Solimões and Madeira Rivers, and a mean annual water input to Amazonas of 15%, the Negro River contributes with about 38% of the total organic dissolved carbon transported by the Amazon River.
Organic matter dynamics in a karstic watershed: Example from Santa Fe River, Florida, USA
NASA Astrophysics Data System (ADS)
Jin, J.; Khadka, M. B.; Martin, J. B.; Zimmerman, A. R.
2011-12-01
Organic matter (OM) dynamics in karstic watersheds can involve a range of interactions between organic and inorganic phases of carbon. These interactions include OM remineralization, which will changes its lability, increase dissolved inorganic carbon (DIC) concentrations, reduce pH, and enhance carbonate mineral dissolution. Dissolved organic carbon (DOC) concentrations are elevated in black-water rivers of northern Florida from both allochthonous and autochthonous sources and these rivers flow into and interact with the karstic Floridan Aquifer. One such river, the Santa Fe River, is split into upper confined and lower unconfined watersheds by the Cody Scarp, which represent the erosional edge of a regional confining unit. Water samples were collected from 8 sites across the entire Santa Fe River watershed (SFRW) during 9 sampling trips from December 2009 to May 2011 at flow conditions that ranged from 27 to 39 m3/s, with the highest flow about 45% higher than baseflow. At sites above the Cody Scarp, the river has elevated DOC concentrations, which decrease downstream, while dissolved inorganic carbon (DIC) and δ13C-DIC show opposite trends. At high flow, DOC concentrations progressively decrease downstream from dilution by low-DOC water discharging from the Floridan Aquifer. At low flow, the water chemistry varies little from upstream to downstream, largely because the composition of upstream water becomes similar to that of downstream water. DOC is inversely and linearly correlated with DIC and δ13C-DIC, but the slope of the correlations vary with discharge, with low flow having more negative slopes than high flow. The OM becomes more labile with distance downstream as assessed using two fluorescence indices, biological/autochthonous index (BIX) and humification index (HIX). This increase in lability suggests that DOC is produced in the river, and this production is reflected in a downstream increase in DOC flux regardless of dilution by the influx of low-DOC groundwater. Primary production was 5 to 25 times higher during high and low flow, respectively, in the lower than in the upper SFRW. No decrease in DOC with a concomitant increase in DIC was observed, however, suggesting observations of microbial consumption of OM is masked by primary production and gain of DIC-rich and DOC-poor groundwater. The upper SFRW has lower saturation index (SI; -2.9 and -0.7 for high and low flow, respectively) than the lower SFRW (0.0 and 0.3 for high and low flow, respectively). The downstream shift in SI reflects dissolution of the carbonate minerals and gain of water from the Floridan Aquifer that had equilibrated with carbonate minerals. OM dynamics in the SFRW are closely linked to the allochthonous OM derived from the upper SFRW, as well as primary production in the lower watershed. Both allochthonous and autochthonous OM can be important in abiotic processes such as carbonate mineral dissolution, but flow conditions mediate the magnitudes of the reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hershey, Ronald L.; Fereday, Wyall; Thomas, James M
Dissolved inorganic carbon (DIC) carbon-14 ( 14C) ages must be corrected for complex chemical and physical reactions and processes that change the amount of 14C in groundwater as it flows from recharge to downgradient areas. Because of these reactions, DIC 14C can produce unrealistically old ages and long groundwater travel times that may, or may not, agree with travel times estimated by other methods. Dissolved organic carbon (DOC) 14C ages are often younger than DIC 14C ages because there are few chemical reactions or physical processes that change the amount of DOC 14C in groundwater. However, there are several issuesmore » that create uncertainty in DOC 14C groundwater ages including limited knowledge of the initial (A 0) DOC 14C in groundwater recharge and potential changes in DOC composition as water moves through an aquifer. This study examines these issues by quantifying A 0 DOC 14C in recharge areas of southern Nevada groundwater flow systems and by evaluating changes in DOC composition as water flows from recharge areas to downgradient areas. The effect of these processes on DOC 14C groundwater ages is evaluated and DOC and DIC 14C ages are then compared along several southern Nevada groundwater flow paths. Twenty-seven groundwater samples were collected from springs and wells in southern Nevada in upgradient, midgradient, and downgradient locations. DOC 14C for upgradient samples ranged from 96 to 120 percent modern carbon (pmc) with an average of 106 pmc, verifying modern DOC 14C ages in recharge areas, which decreases uncertainty in DOC 14C A 0 values, groundwater ages, and travel times. The HPLC spectra of groundwater along a flow path in the Spring Mountains show the same general pattern indicating that the DOC compound composition does not change along this flow path. Although DOC concentration decreases from recharge-area to downgradient groundwater, the organic compounds are similar, indicating that DOC 14C is unaffected by other processes such as microbial degradation. A small amount of organic carbon was leached from crushed volcanic and carbonate aquifer outcrop rock in rock-leaching experiments. The leached DOC was high in 14C (75 pmc carbonate rocks, 91 pmc volcanic) suggesting that the leached DOC likely came from microbes in the rock samples. The small amount of DOC and high 14C indicates that the amount of old organic carbon in these rocks is low so there should be minimal impact on groundwater DOC 14C ages. Based on the results from this study, DOC 14C ages do not require additional corrections. Several correction models were applied to DIC 14C ages to correct for water-rock reactions along two carbonate and two volcanic flow paths and the corresponding travel times were compare to DOC 14C travel times. The DOC 14C travel times were hundreds to thousands of years shorter than uncorrected and corrected DIC 14C travel times except for the upper section of one carbonate flow path. DOC 14C travel times ranged from 400 to 5,400 years as compared to DIC 14C that ranged from modern to 20,900 years. The DIC 14C ages are greatly influenced by carbonate mineral and gas reactions and other processes such as matrix diffusion, isotope exchange, or adsorption, which are not always adequately accounted for in DIC 14C groundwater age correction models.« less
Metcalfe, David; Rockey, Chris; Jefferson, Bruce; Judd, Simon; Jarvis, Peter
2015-12-15
This investigation aimed to compare the disinfection by-product formation potentials (DBPFPs) of three UK surface waters (1 upland reservoir and 2 lowland rivers) with differing characteristics treated by (a) a full scale conventional process and (b) pilot scale processes using a novel suspended ion exchange (SIX) process and inline coagulation (ILCA) followed by ceramic membrane filtration (CMF). Liquid chromatography-organic carbon detection analysis highlighted clear differences between the organic fractions removed by coagulation and suspended ion exchange. Pretreatments which combined SIX and coagulation resulted in significant reductions in dissolved organic carbon (DOC), UV absorbance (UVA), trihalomethane and haloacetic acid formation potential (THMFP, HAAFP), in comparison with the SIX or coagulation process alone. Further experiments showed that in addition to greater overall DOC removal, the processes also reduced the concentration of brominated DBPs and selectively removed organic compounds with high DBPFP. The SIX/ILCA/CMF process resulted in additional removals of DOC, UVA, THMFP, HAAFP and brominated DBPs of 50, 62, 62, 62% and 47% respectively compared with conventional treatment. Copyright © 2015. Published by Elsevier Ltd.
Mercury Concentrations in Coastal Sediment from Younger Lagoon, Central California
NASA Astrophysics Data System (ADS)
Hohn, R. A.; Ganguli, P. M.; Swarzenski, P. W.; Richardson, C. M.; Merckling, J.; Johnson, C.; Flegal, A. R.
2013-12-01
Younger Lagoon Reserve, located in northern Monterey Bay, is one of the few relatively undisturbed wetlands that remain along the Central Coast of California. This lagoon system provides protected habitat for more than 100 bird species and for populations of fish, mammals, and invertebrates. Total mercury (HgT) concentrations in water within Younger Lagoon appear to vary with rainfall conditions and range from about 5-15 pM. These concentrations are similar to HgT in water from six nearby lagoon systems. However, Younger Lagoon contains elevated concentrations of dissolved organic carbon (~1 mM) and monomethylmercury (MMHg, ~1 pM) relative to our comparison lagoon sites (DOC < 0.5 mM and MMHg < 0.5 pM). We attribute Younger Lagoon's high DOC and MMHg to its restricted connection to the ocean and minor riverine contribution. Coastal lagoons in this region typically form at the mouth of streams. They behave as small estuaries during the wet season when surface water discharge keeps the mouth of the stream open to the ocean, and then transition into lagoons in the dry season when a sand berm develops and effectively cuts off surface water exchange. At Younger Lagoon, the sand berm remains intact throughout the year, breaching only during particularly high tides or intense rain events. Therefore, the lagoon's connection to nearshore seawater is primarily via surface water - groundwater interaction through the sand berm. Because Younger Lagoon is largely isolated from a surface water connection with the ocean, runoff from upgradient urban and agricultural land has an enhanced impact on water (and presumably sediment) quality. As a result, the lagoon is eutrophic and experiences annual algal blooms. Groundwater surveys suggest surface water, groundwater, and coastal seawater are hydraulically connected at Younger Lagoon, and mixing among these water masses appears to influence water geochemistry. To date, no chemical analyses have been conducted on sediment from Younger Lagoon. To address this data gap we collected sediment samples during a February 2013 field campaign. One set of sediment samples is from the bottom of the lagoon along a transect perpendicular to the shoreline and another set is from an approximately 1 m depth profile on the lagoon side of the sand berm (depth of the groundwater table at the time of collection). These samples are being analyzed for HgT, MMHg, and total organic carbon (TOC) and will provide a first glimpse into the distribution of mercury species and organic carbon in sediments from the Younger Lagoon Reserve. We will also collect and analyze sediment samples from another lagoon site with comparable watershed characteristics.
Effects of wildfire on source-water quality and aquatic ecosystems, Colorado Front Range
Writer, Jeffrey H.; McCleskey, R. Blaine; Murphy, Sheila F.; Stone, Mike; Collins, Adrian; Thoms, Martin C.
2012-01-01
Watershed erosion can dramatically increase after wildfire, but limited research has evaluated the corresponding influence on source-water quality. This study evaluated the effects of the Fourmile Canyon wildfire (Colorado Front Range, USA) on source-water quality and aquatic ecosystems using high- frequency sampling. Dissolved organic carbon (DOC) and nutrient loads in stream water were evaluated for a one-year period during different types of runoff events, including spring snowmelt, and both frontal and summer convective storms. DOC export from the burned watershed did not increase relative to the unburned watershed during spring snowmelt, but substantial increases in DOC export were observed during summer convective storms. Elevated nutrient export from the burned watershed was observed during spring snowmelt and summer convective storms, which increased the primary productivity of stream biofilms. Wildfire effects on source-water quality were shown to be substantial following high-intensity storms, with the potential to affect drinking-water treatment processes.
NASA Astrophysics Data System (ADS)
Prokushkin, Anatoly
2016-04-01
Wildfires transform boreal and subarctic forested landscapes leading to the changes in organic matter and inorganic nutrient turnover in terrestrial ecosystems. To get an insight to the fire effect on C fluxes and general hydrochemical characteristics of streams draining continuous permafrost terrains of Central Siberian Plateau (64o N 100o E), we have selected the chronosequence of basins (n = 17) which were severely affected by fires (>80% of basin area) in the time range from 1 to 116 years ago. Stream waters were sampled continuously during frost free seasons (May-September) of 2006-2015. Four streams have been equipped with water level, temperature and conductivity probes for continuous monitoring. The strongest negative effect of wildfires on dissolved organic carbon (DOC) concentrations in streams has occurred right after a fire event, and minimum mean annual concentrations of DOC appeared between 15 and 20 years elapsed after a fire. The most pronounced decrease in DOC concentrations during an annual cycle found in freshet period (May-June) and summer-fall storm events: differences of DOC concentrations among "intact" (>100 years after fire) and recent fire basins (<6 years) reached as much as 2-fold. Less differentiation among basins appears under lowflow conditions, as DOC-depleted solutes from deeper soil layers become dominating in stream flow. Following the post-fire forest recovery, the seasonal mean DOC concentrations in streams demonstrated linear growth at the rate of ca. 0.11 mgC/l/a and approached the initial values already after ca. 60 years after fire disturbance. An opposite trend (i.e. increasing load to streams after fire impact) was observed for dissolved inorganic carbon, major anions and cations. Sulfate was found to be a good tracer of fire affect as increased 200-fold in stream waters right after a fire and steady decreased at the rate [SO42-] = 3.65 x (year after fire)^-0.75 as terrestrial ecosystems were recovering after a fire. For study area, Na+ and Cl- in streams appear to be good indicators of permafrost degradation as they reflect talik formation and connection of a stream to underlying evaporitic deposits. While evidence of permafrost degradation is currently not apparent in the region, we expect increasing concentrations of Na+ and Cl- in streams of Central Siberian Plateau as permafrost degrades due to decreased fire return interval and warming temperatures. The generalized data of active layer thickness (ALT) within analyzed watersheds have demonstrated that fire-driven deepening of ALT results in increasing stream inorganic compounds concentrations. The inverse relationship found between DOC and ALT might be attributed to deeper infiltration of solutions, sorption of DOC on clay minerals, and an increasing rate of DOC microbiological mineralization to CO2 due to increased soil temperatures. Post-fire forest recovery and, particularly, the accumulation of organic mater in the moss-lichen layer and soil organic horizon on watersheds accounted for increasing mean DOC concentrations in the streams. In opposite, increased insulation of soils by organic matter accumulating on the soil surface leads to steadily decreasing ALT and constrains an infiltration of solutes to subsoil. As a result, inorganic solute loading to stream channels is tended to decrease during post-fire forest succession in permafrost affected terrains.
Liu, Chen; Wang, Honglan; Tang, Xiangyu; Guan, Zhuo; Reid, Brian J; Rajapaksha, Anushka Upamali; Ok, Yong Sik; Sun, Hui
2016-01-01
A hydrologically contained field study, to assess biochar (produced from mixed crop straws) influence upon soil hydraulic properties and dissolved organic carbon (DOC) leaching, was conducted on a loamy soil (entisol). The soil, noted for its low plant-available water and low soil organic matter, is the most important arable soil type in the upper reaches of the Yangtze River catchment, China. Pore size distribution characterization (by N2 adsorption, mercury intrusion, and water retention) showed that the biochar had a tri-modal pore size distribution. This included pores with diameters in the range of 0.1-10 μm that can retain plant-available water. Comparison of soil water retention curves between the control (0) and the biochar plots (16 t ha(-1) on dry weight basis) demonstrated biochar amendment to increase soil water holding capacity. However, significant increases in DOC concentration of soil pore water in both the plough layer and the undisturbed subsoil layer were observed in the biochar-amended plots. An increased loss of DOC relative to the control was observed upon rainfall events. Measurements of excitation-emission matrix (EEM) fluorescence indicated the DOC increment originated primarily from the organic carbon pool in the soil that became more soluble following biochar incorporation.
SanClements, Michael D; Fernandez, Ivan J; Lee, Robert H; Roberti, Joshua A; Adams, Mary Beth; Rue, Garret A; McKnight, Diane M
2018-03-06
Over the last several decades dissolved organic carbon concentrations (DOC) in surface waters have increased throughout much of the northern hemisphere. Several hypotheses have been proposed regarding the drivers of this phenomenon including decreased sulfur (S) deposition working via an acidity- change mechanism. Using fluorescence spectroscopy and data from two long-term (24+ years at completion of this study) whole watershed acidification experiments, that is, the Bear Brook Watershed in Maine (BBWM) and Fernow Experimental Forest in West Virginia (FEF) allowed us to control for factors other than the acidity-change mechanism (e.g., differing vegetation, shifting climate), resulting in the first study we are aware of where the acidity change mechanism could be experimentally isolated at the whole ecosystem and decadal scales as the driver of shifts in DOM dynamics. The multidecadal record of stream chemistry at BBWM demonstrates a significantly lower DOC concentration in the treated compared to the reference watershed. Additionally, at both BBWM and FEF we found significant and sustained differences in stream fluorescence index (FI) between the treated and reference watersheds, with the reference watersheds demonstrating a stronger terrestrial DOM signature. These data, coupled with evidence of pH shifts in upper soil horizons support the hypotheses that declines in S deposition are driving changes in the solubility of soil organic matter and increased flux of terrestrial DOC to water bodies.
NASA Astrophysics Data System (ADS)
Ågren, A.; Haei, M.; Öquist, M.; Buffam, I.; Ottosson-Löfvenius, M.; Kohler, S.; Bishop, K.; Blomkvist, P.; Laudon, H.
2011-12-01
Using 15 year stream records from two forested northern boreal catchments, coupled with soil frost experiments in the riparian zone, we demonstrate the complex inter-annual control on [DOC] and export during snowmelt. Stream [DOC] varied by a factor of 2 during those 15 years with no consistent trend. Based on our long-term analysis, we demonstrate, for the first time, that stream water [DOC] is strongly linked to the climatic conditions during the preceding winter, but that there is also a long-term memory effect in the catchment soils, related to the extent of the previous export from the catchment. Hydrology had a first order control on the inter-annual variation in concentrations, and the length of the winter was more important than the memory effect. By removing the effect of discharge on [DOC], using a conceptual hydrological model, we could detect processes that would otherwise have been overshadowed. A short and intense snowmelt gave higher [DOC] in the stream. During a prolonged snowmelt, one soil layer at the time might have been "flushed" from easily exported DOC, resulting in slightly lower stream [DOC] during such years. We found that longer and colder winters resulted in higher [DOC] during the subsequent snowmelt. A soil frost manipulation experiment in the riparian soils of the study catchment showed that the DOC concentrations in the soil water increased with the duration of the soil frost. A high antecedent DOC export during the preceding summer and autumn resulted in lower concentrations during the following spring, indicating a long-term "memory effect" of the catchment soils. In a nearby stream draining mire, we found a different response to hydrology but similar response to climate and memory effect. The inter-annual variation in snowmelt DOC exports was mostly controlled by the amount of runoff, but the variability in [DOC] also exerted a significant control on the exports, accounting for 15% of the variance in exports. We conclude that winter climatic conditions can play a substantial role in controlling stream [DOC] in ways not previously understood. These findings are especially important for northern latitude regions expected to be most affected by climate change. It's difficult to directly translate this to a future climate change prediction. If warmer winters with less insulating snow cover increase the soil frost, the results from the soil frost manipulation experiment then suggest increasing [DOC] in a future climate. At the same time the statistical analysis of the stream records suggest that a shorter and warmer winter would decrease the [DOC]. Our results do, however, highlight the role of winter climate for regulating DOC in areas with seasonally frozen soils which should be considered when resolving the sensitivity of stream [DOC] to global environmental change.
NASA Astrophysics Data System (ADS)
Shirokova, Liudmila; Vorobjeva, Taissia; Zabelina, Svetlana; Moreva, Olga; Klimov, Sergey; Shorina, Natalja; Chupakov, Artem; Pokrovsky, Oleg; Audry, Stephan; Viers, Jerome
2010-05-01
Lakes of boreal zone regulate the fate of dissolved carbon, nutrients and trace metals during their transport from the watershed to the ocean. Study of primary production - mineralization processes in the context of carbon biogeochemical cycle allows determination of the rate and mechanisms of phytoplankton biomass production and its degradation via aquatic heterotrophic bacteria. In particular, comparative study of vertical distribution of Dissolved Organic Carbon (DOC) in stratified and non-stratified lakes allows establishing the link between biological and chemical aspects of the carbon cycle which, in turns, determines an environmental stability and recovering potential of the entire ecosystem. In order to better understand the biogeochemical mechanisms that control dissolved organic and inorganic carbon migration in surface boreal waters, we studied in 2007-2009 two strongly stratified lakes (15-20 m deep) and two shallow lakes (2-4 m deep) in the Arkhangelsk region (NW Russia, White Sea basin). We conducted natural experiments of the lake water incubation for measurements of the intensity of production/mineralization processes and we determined vertical concentration of DOC during four basic hydrological seasons (winter and summer stratification, and spring and autumn lake overturn). Our seasonal studies of production/mineralization processes demonstrated high intensity of organic matter formation during summer period and significant retard of these processes during winter stagnation. During spring period, there is a strong increase of bacterial destruction of the allochtonous organic matter that is being delivered to the lake via terrigenous input. During autumn overturn, there is a decrease of the activity of phytoplankton, and the degradation of dead biomass by active bacterial community. Organic matter destruction processes are the most active in Svyatoe lake, whereas in the Beloe lake, the rate of organic matter production is significantly higher than its bacterial degradation, and in the Maselgskoe lake the aerobic mineralization plays insignificant role. Seasonally-stratified lake Svyatoe demonstrates systematic decrease of DOC concentration from the surface to the bottom horizon during summer and winter stagnation, whereas lake Maselgskoe exhibits an increase of DOC in the bottom horizons during winter stratification. During the autumn and spring overturn, we observe rather constant concentration of DOC due to well mixing of the water masses and low activity of the phytoplankton community. Results of the present work allow the evaluation of biotic and abitioc components of the biogeochemical cycle of carbon in small stratified and non-stratified lakes of the Arctic Ocean basin. They allow quantification of the direct link between the processes of primary production/heterotrophic bacteria mineralization and vertical profile of organic and inorganic carbon concentration.
NASA Astrophysics Data System (ADS)
Tremblay, J.-É.; Raimbault, P.; Garcia, N.; Lansard, B.; Babin, M.; Gagnon, J.
2014-09-01
The concentrations and elemental stoichiometry of particulate and dissolved pools of carbon (C), nitrogen (N), phosphorus (P) and silicon (Si) on the Canadian Beaufort Shelf during summer 2009 (MALINA program) were assessed and compared with those of surface waters provided by the Mackenzie river as well as by winter mixing and upwelling of upper halocline waters at the shelf break. Neritic surface waters showed a clear enrichment in dissolved and particulate organic carbon (DOC and POC, respectively), nitrate, total particulate nitrogen (TPN) and dissolved organic nitrogen (DON) originating from the river. Silicate as well as bulk DON and DOC declined in a near-conservative manner away from the delta's outlet, whereas nitrate dropped non-conservatively to very low background concentrations inside the brackish zone. By contrast, the excess of soluble reactive P (SRP) present in oceanic waters declined in a non-conservative manner toward the river outlet, where concentrations were very low and consistent with P shortage in the Mackenzie River. These opposite gradients imply that the admixture of Pacific-derived, SRP-rich water is necessary to allow phytoplankton to use river-derived nitrate and to a lesser extent DON. A coarse budget based on concurrent estimates of primary production shows that river N deliveries support a modest fraction of primary production when considering the entire shelf, due to the ability of phytoplankton to thrive in the subsurface chlorophyll maximum beneath the thin, nitrate-depleted river plume. Away from shallow coastal bays, local elevations in the concentration of primary production and dissolved organic constituents were consistent with upwelling at the shelf break. By contrast with shallow winter mixing, nutrient deliveries by North American rivers and upwelling relax surface communities from N limitation and permit a more extant utilization of the excess SRP entering through the Bering Strait. In this context, increased nitrogen supply by rivers and upwelling potentially alters the vertical distribution of the excess P exported into the North Atlantic.
NASA Astrophysics Data System (ADS)
Osburn, Christopher L.; Oviedo-Vargas, Diana; Barnett, Emily; Dierick, Diego; Oberbauer, Steven F.; Genereux, David P.
2018-03-01
A paired-watershed approach was used to compare the quality and fluxes of dissolved organic matter (DOM) during stormflow and baseflow in two lowland tropical rainforest streams located in northeastern Costa Rica. The Arboleda stream received regional groundwater (RGW) flow, whereas the Taconazo stream did not. DOM quality was assessed with absorbance and fluorescence and stable carbon isotope (δ13C-DOC) values. RGW DOM lacked detectable fluorescence and had specific ultraviolet absorption (SUVA254) and absorbance slope ratio (SR) values consistent with low aromaticity and low molecular weight material, respectively. We attributed these properties to microbial degradation and sorption of humic DOM to mineral surfaces during transport through bedrock. SUVA254 values were lower and SR values were higher in the Arboleda stream during baseflow compared to the Taconazo stream, presumably due to dilution by RGW. However, no significant difference in SUVA254 or SR occurred between the streams during stormflow. SUVA254 was negatively correlated to δ13C-DOC (r2 = 0.61, P < 0.001), demonstrating a strong linkage between stream DOM characteristics and the relative amounts of RGW flow and local watershed runoff containing soil and throughfall C sources. Mean DOC export from the Taconazo stream during the study period was 2.62 ± 0.39 g C m-2 year-1, consistent with other tropical streams, yet mean DOC export from the Arboleda stream was 13.79 ± 2.07 g C m-2 year-1, one of the highest exports reported and demonstrating a substantial impact of old RGW from outside the watershed boundary can have on surface water carbon cycling.
Climate change and dissolved organic carbon export to the Gulf of Maine
Huntington, Thomas G.; Balch, William M.; Aiken, George R.; Sheffield, Justin; Luo, Lifeng; Roesler, Collin S.; Camill, Philip
2016-01-01
Ongoing climate change is affecting the concentration, export (flux), and timing of dissolved organic carbon (DOC) exported to the Gulf of Maine (GoM) through changes in hydrologic regime. DOC export was calculated for water years 1950 through 2013 for 20 rivers and for water years 1930 through 2013 for 14 rivers draining to the GoM. DOC export was also estimated for the 21st century based on climate and hydrologic modeling in a previously published study. DOC export was calculated by using the regression model LOADEST to fit seasonally adjusted concentration discharge (C-Q) relations. Our results are an analysis of the sensitivity of DOC export to changes in hydrologic conditions over time since land cover and vegetation were held constant over time. Despite large interannual variability, all rivers had increasing DOC export during winter and these trends were significant (p < 0.05) in 10 out of 20 rivers for 1950 to 2013 and in 13 out of 14 rivers for 1930 to 2013. All rivers also had increasing annual export of DOC although fewer trends were statistically significant than for winter export. Projections for DOC export during the 21st century were variable depending on the climate model and greenhouse gas emission scenario that affected future river discharge through effects on precipitation and evapotranspiration. The most consistent result was a significant increase in DOC export in winter in all model-by-emission scenarios. DOC export was projected to decrease during the summer in all model-by-emission scenarios, with statistically significant decreases in half of the scenarios.
The use of carbon adsorbents for the removal of perfluoroalkyl acids from potable reuse systems.
Inyang, Mandu; Dickenson, Eric R V
2017-10-01
Bench- and pilot-scale sorption tests were used to probe the performance of several biochars at removing perfluoroalkyl acids (PFAA) from field waters, compared to granular activated carbon (GAC). Screening tests using organic matter-free water resulted in hardwood (HWC) (K d = 41 L g -1 ) and pinewood (PWC) (K d = 49 L g -1 ) biochars having the highest perfluorooctanoic acid (PFOA) removal performance that was comparable to bituminous coal GAC (K d = 41 L g -1 ). PWC and HWC had a stronger affinity for PFOA sorbed in Lake Mead surface water (K F = 11 mg (1-n) L n g -1 ) containing a lower (2 mg L -1 ) dissolved organic carbon (DOC) concentration than in a tertiary-filtered wastewater (K F = 8 mg (1-n) L n g -1 ) with DOC of 4.9 mg L -1 . A pilot-scale study was performed using three parallel adsorbers (GAC, anthracite, and HWC biochar) treating the same tertiary-filtered wastewater. Compared to HWC, and anthracite, GAC was the most effective in mitigating perfluoropentanoic acid (PFPnA), perfluorohexanoic acid (PHxA), PFOA, perfluorooctane sulfonic acid (PFOS), and DOC (45-67% removed at 4354 bed volumes) followed by HWC, and then anthracite. Based on bench- and pilot-scale results, shorter-chain PFAA [perfluorobutanoic acid (PFBA), PFPnA, or PFHxA] were more difficult to remove with both biochar and GAC than the longer-chain, PFOS and PFOA. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dissolved oxygen as an indicator of bioavailable dissolved organic carbon in groundwater.
Chapelle, Francis H; Bradley, Paul M; McMahon, Peter B; Kaiser, Karl; Benner, Ron
2012-01-01
Concentrations of dissolved oxygen (DO) plotted vs. dissolved organic carbon (DOC) in groundwater samples taken from a coastal plain aquifer of South Carolina (SC) showed a statistically significant hyperbolic relationship. In contrast, DO-DOC plots of groundwater samples taken from the eastern San Joaquin Valley of California (CA) showed a random scatter. It was hypothesized that differences in the bioavailability of naturally occurring DOC might contribute to these observations. This hypothesis was examined by comparing nine different biochemical indicators of DOC bioavailability in groundwater sampled from these two systems. Concentrations of DOC, total hydrolysable neutral sugars (THNS), total hydrolysable amino acids (THAA), mole% glycine of THAA, initial bacterial cell counts, bacterial growth rates, and carbon dioxide production/consumption were greater in SC samples relative to CA samples. In contrast, the mole% glucose of THNS and the aromaticity (SUVA(254)) of DOC was greater in CA samples. Each of these indicator parameters were observed to change with depth in the SC system in a manner consistent with active biodegradation. These results are uniformly consistent with the hypothesis that the bioavailability of DOC is greater in SC relative to CA groundwater samples. This, in turn, suggests that the presence/absence of a hyperbolic DO-DOC relationship may be a qualitative indicator of relative DOC bioavailability in groundwater systems. Ground Water © 2011, National Ground Water Association. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.
Towards a universal microbial inoculum for dissolved organic carbon degradation experiments
NASA Astrophysics Data System (ADS)
Pastor, Ada; Catalán, Núria; Gutiérrez, Carmen; Nagar, Nupur; Casas-Ruiz, Joan P.; Obrador, Biel; von Schiller, Daniel; Sabater, Sergi; Petrovic, Mira; Borrego, Carles M.; Marcé, Rafael
2017-04-01
Dissolved organic carbon (DOC) is the largest biologically available pool of organic carbon in aquatic ecosystems and its degradation along the land-to-ocean continuum has implications for carbon cycling from local to global scales. DOC biodegradability is usually assessed by incubating filtered water inoculated with native microbial assemblages in the laboratory. However, the use of a native inoculum from several freshwaters, without having a microbial-tailored design, hampers our ability to tease apart the relative contribution of the factors driving DOC degradation from the effects of local microbial communities. The use of a standard microbial inoculum would allow researchers to disentangle the drivers of DOC degradation from the metabolic capabilities of microbial communities operating in situ. With this purpose, we designed a bacterial inoculum to be used in experiments of DOC degradation in freshwater habitats. The inoculum is composed of six bacterial strains that easily grow under laboratory conditions, possess a versatile metabolism and are able to grow under both aerobic and anaerobic conditions. The mixed inoculum showed higher DOC degradation rates than those from their isolated bacterial components and the consumption of organic substrates was consistently replicated. Moreover, DOC degradation rates obtained using the designed inoculum were responsive across a wide range of natural water types differing in DOC concentration and composition. Overall, our results show the potential of the designed inoculum as a tool to discriminate between the effects of environmental drivers and intrinsic properties of DOC on degradation dynamics.
Seasonal and temporal patterns of NDMA formation potentials in surface waters.
Uzun, Habibullah; Kim, Daekyun; Karanfil, Tanju
2015-02-01
The seasonal and temporal patterns of N-nitrosodimethylamine (NDMA) formation potentials (FPs) were examined with water samples collected monthly for 21 month period in 12 surface waters. This long term study allowed monitoring the patterns of NDMA FPs under dynamic weather conditions (e.g., rainy and dry periods) covering several seasons. Anthropogenically impacted waters which were determined by high sucralose levels (>100 ng/L) had higher NDMA FPs than limited impacted sources (<100 ng/L). In most sources, NDMA FP showed more variability in spring months, while seasonal mean values remained relatively consistent. The study also showed that watershed characteristics played an important role in the seasonal and temporal patterns. In the two dam-controlled river systems (SW A and G), the NDMA FP levels at the downstream sampling locations were controlled by the NDMA levels in the dams independent of either the increases in discharge rates due to water releases from the dams prior to or during the heavy rain events or intermittent high NDMA FP levels observed at the upstream of dams. The large reservoirs and impoundments on rivers examined in this study appeared serving as an equalization basin for NDMA precursors. On the other hand, in a river without an upstream reservoir (SW E), the NDMA levels were influenced by the ratio of an upstream wastewater treatment plant (WWTP) effluent discharge to the river discharge rate. The impact of WWTP effluent decreased during the high river flow periods due to rain events. Linear regression with independent variables DOC, DON, and sucralose yielded poor correlations with NDMA FP (R(2) < 0.27). Multiple linear regression analysis using DOC and log [sucralose] yielded a better correlation with NDMA FP (R(2) = 0.53). Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Musolff, Andreas; Selle, Benny; Fleckenstein, Jan H.; Oosterwoud, Marieke R.; Tittel, Jörg
2016-04-01
The instream concentrations of dissolved organic carbon (DOC) are rising in many catchments of the northern hemisphere. Elevated concentrations of DOC, mainly in the form of colored humic components, increase efforts and costs of drinking water purification. In this study, we evaluated a long-term dataset of 110 catchments draining into German drinking water reservoirs in order to assess sources of DOC and drivers of a potential long-term change. The average DOC concentrations across the wide range of different catchments were found to be well explained by the catchment's topographic wetness index. Higher wetness indices were connected to higher average DOC concentrations, which implies that catchments with shallow topography and pronounced riparian wetlands mobilize more DOC. Overall, 37% of the investigated catchments showed a significant long-term increase in DOC concentrations, while 22% exhibited significant negative trends. Moreover, we found that increasing trends in DOC were positively correlated to trends in dissolved iron concentrations at pH≤6 due to remobilization of DOC previously sorbed to iron minerals. Both, increasing trends in DOC and dissolve iron were found to be connected to decreasing trends and low concentrations of nitrate (below ~6 mg/L). This was especially observed in forested catchments where atmospheric N-depositions were the major source for nitrate availability. In these catchments, we also found long-term increases of phosphate concentrations. Therefore, we argue that dissolved iron, DOC and phosphate were jointly released under iron-reducing conditions when nitrate as a competing electron acceptor was too low in concentrations to prevent the microbial iron reduction. In contrast, we could not explain the observed increasing trends in DOC, iron and phosphate concentrations by the long-term trends of pH, sulfate or precipitation. Altogether this study gives strong evidence that both, source and long-term increases in DOC are primarily controlled by riparian wetland soils within the catchments. Here, the achievement of a long-term reduction in nitrogen deposition may in turn lead to a more pronounced iron reduction and a subsequent release of DOC and other iron-bound substances such as phosphate.
Krop, H B; van Noort, P C; Govers, H A
2001-01-01
Literature on the equilibrium constant for distribution between dissolved organic carbon (DOC) (Kdoc) data of strongly hydrophobic organic contaminants were collected and critically analyzed. About 900 Kdoc entries for experimental values were retrieved and tabulated, including those factors that can influence them. In addition, quantitative structure-activity relationship (QSAR) prediction equations were retrieved and tabulated. Whether a partition or association process between the contaminant and DOC takes place could not be fully established, but indications toward an association process are strong in several cases. Equilibrium between a contaminant and DOC in solution was shown to be achieved within a minute. When the equilibrium shifts in time, this was caused by either a physical or chemical change of the DOC, affecting the lighter fractions most. Adsorption isotherms turned out to be linear in the contaminant concentration for the relevant DOC concentration up to 100 mg of C/L. Eighteen experimental methods have been developed for the determination of the pertinent distribution constant. Experimental Kdoc values revealed the expected high correlation with partition coefficients over n-octanol and water (Kow) for all experimental methods, except for the HPLC and apparent solubility (AS) method. Only fluorescence quenching (FQ) and solid-phase microextraction (SPME) methods could quantify fast equilibration. Only 21% of the experimental values had a 95% confidence interval, which was statistically significantly different from zero. Variation in Kdoc values was shown to be high, caused mainly by the large variation of DOC in water samples. Even DOC from one sample gave different equilibrium constants for different DOC fractions. Measured Kdoc values should, therefore, be regarded as average values. Kdoc was shown to increase on increasing molecular mass, indicating that the molecular mass distribution is a proper normalization function for the average Kdoc at the current state of knowledge. The weakly bound fraction could easily be desorbed when other adsorbing media, such as a SepPak column or living organism, are present. The amount that moves from the DOC to the other medium will depend, among other reasons, on the size of the labile DOC fraction and the equilibrium constant of the other medium. Variation of Kdoc with temperature turned out to be small, probably caused by a small enthalpy of transfer from water to DOC. Ionic strength turned out to be more important, leading to changes of a factor of 2-5. The direction of this effect depends on the type of ion. With respect to QSAR relationships between Kdoc and macroscopic or molecular descriptors, it was concluded that only a small number of equations are available in the literature, for apolar compounds only, and with poor statistics and predictive power. Therefore, a first requirement is the improvement of the availability and quality of experimental data. Along with this, theoretical (mechanistic) models for the relationship between DOC plus contaminant descriptors on the one side and Kdoc on the other should be further developed. Correlations between Kdoc and Kow and those between the soil-water partition constant (Koc) and Kow were significantly different only in the case of natural aquatic DOC, pointing at substantial differences between these two types of organic material and at a high correspondence for other types of commercial and natural DOC.
Modeling Source Water Threshold Exceedances with Extreme Value Theory
NASA Astrophysics Data System (ADS)
Rajagopalan, B.; Samson, C.; Summers, R. S.
2016-12-01
Variability in surface water quality, influenced by seasonal and long-term climate changes, can impact drinking water quality and treatment. In particular, temperature and precipitation can impact surface water quality directly or through their influence on streamflow and dilution capacity. Furthermore, they also impact land surface factors, such as soil moisture and vegetation, which can in turn affect surface water quality, in particular, levels of organic matter in surface waters which are of concern. All of these will be exacerbated by anthropogenic climate change. While some source water quality parameters, particularly Total Organic Carbon (TOC) and bromide concentrations, are not directly regulated for drinking water, these parameters are precursors to the formation of disinfection byproducts (DBPs), which are regulated in drinking water distribution systems. These DBPs form when a disinfectant, added to the water to protect public health against microbial pathogens, most commonly chlorine, reacts with dissolved organic matter (DOM), measured as TOC or dissolved organic carbon (DOC), and inorganic precursor materials, such as bromide. Therefore, understanding and modeling the extremes of TOC and Bromide concentrations is of critical interest for drinking water utilities. In this study we develop nonstationary extreme value analysis models for threshold exceedances of source water quality parameters, specifically TOC and bromide concentrations. In this, the threshold exceedances are modeled as Generalized Pareto Distribution (GPD) whose parameters vary as a function of climate and land surface variables - thus, enabling to capture the temporal nonstationarity. We apply these to model threshold exceedance of source water TOC and bromide concentrations at two locations with different climate and find very good performance.
Smith, Aisling M; Cave, Rachel R
2012-11-01
Coastal fresh water sources, which discharge to the sea are expected to be directly influenced by climate change (e.g. increased frequency of extreme weather events). Sea-level rise and changes in rainfall patterns, changes in demand for drinking water and contamination caused by population and land use change, will also have an impact. Coastal waters with submarine groundwater discharge are of particular interest as this fresh water source is very poorly quantified. Two adjacent bays which host shellfish aquaculture sites along the coast of Co. Galway in the west of Ireland have been studied to establish the influence of fresh water inputs on nutrients and dissolved organic carbon (DOC) in each bay. Neither bay has riverine input and both are underlain by the karst limestone of the Burren and are susceptible to submarine groundwater discharge. Water and suspended matter samples were collected half hourly over 13 h tidal cycles over several seasons. Water samples were analysed for nutrients and DOC, while suspended matter was analysed for organic/inorganic content. Temperature and salinity measurements were recorded during each tidal station by SBE 37 MicroCAT conductivity/temperature sensors. Long-term mooring data were used to track freshwater input for Kinvara and Aughinish Bays and compare it with rainfall data. Results show that Kinvara Bay is much more heavily influenced by fresh water input than Aughinish Bay, and this is a strong source of fixed nitrogen to Kinvara Bay. Only during flood events is there a significant input of inorganic nitrogen from fresh water to Aughinish Bay, such as in late November 2009. Fresh water input does not appear to be a significant source of dissolved inorganic phosphate (DIP) to either bay, but is a source of DOC to both bays. C:N ratios of DOC/DON show a clear distinction between marine and terrestrially derived dissolved organic material. Copyright © 2012. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Majumder, S.; Datta, S.; Nath, B.; Neidhardt, H.; Roman-Ross, G.; Berner, Z.; Hidalgo, M.; Chatterjee, D.; Sarkar, S.
2017-12-01
Large-scale groundwater abstraction was hypothesized to be one of the important factors controlling release and distribution of arsenic (As) in aquifers of Bengal Basin. In this study, we studied the groundwater/surface water geochemistry of two different geomorphic domains within the Chakdaha Block, West Bengal, to identify potential influences of groundwater withdrawal on the hydrochemical evolution of the aquifer. This has been done as a function of different water inputs (monsoon rain, irrigation and downward percolation from surface water impoundments) to the groundwater system and associated As mobilization. A low-land flood plain (with relatively more reducing aquifer) and a natural levee (less reducing aquifer) have been chosen for this purpose. The stable isotopic signatures of oxygen (δ18O) and hydrogen (δ2H) falls sub-parallel to the Global Meteoric Water Line (GMWL), with precipitation and subsequent evaporation seems to be the major controlling factor on the water isotopic composition. This shows a contribution of evaporation influenced water, derived from various surface water bodies, pointing at large-scale groundwater withdrawal helping drawdown of the evaporated surface water. In case of flood plain wells, the stable isotope composition and the Cl/Br molar ratio in local groundwater have revealed vertical recharge within the flood plain area to be the major recharge process, especially during the post-monsoon season. However, both evaporation and vertical mixing are visibly controlling the groundwater recharge in the natural levee area. A possible inflow of organic carbon to the aquifer during the monsoonal recharge process is noticeable, with an increase in dissolved organic carbon (DOC) concentration from 1.33 to 6.29 mg/L on passing from pre- to post-monsoon season. Concomitant increase in AsT, Fe(II) and HCO3- during the post monsoon season, being more pronounced in the flood plain samples, indicates a possible initial episode of reductive dissolution of As-rich Fe-oxihydroxides. The subsequent increase in As(III) (> 200%) proportions relative to the overall concentration of AsT (7%), may refer to anaerobic microbial degradation of DOC coupled with the reduction of As(V) to As(III) without triggering additional As release from the aquifer sediments.
Distribution and Bioconcentration of Polycyclic Aromatic Hydrocarbons in Surface Water and Fishes
Li, Haiyan; Ran, Yong
2012-01-01
To examine spatial distribution and bioconcentration of PAHs, water and fish samples were collected from Pearl River Delta in summer and spring, respectively. Particulate organic carbon, dissolved organic carbon, biodegradable DOC (BDOC), and chlorophyll a were measured. PAHs were dominated by 2- and 3-ring compounds in the water and SPM samples. Aqueous and solid-phase PAHs, respectively, showed significant correlations with total organic matter (TOC) in SPM or dissolved organic matter (DOC) in the water. The in-situ partitioning coefficients (logK oc, mL/g) for the samples were observed to be related to logK ow, implying that the hydrophobicity of PAHs is a critical factor in their distribution. It was also observed that BCF increased with the increasing K ow in the viscera of tilapia (logBCF = 0.507logK ow − 1.368, r = 0.883). However, most of the observed log BCF values in other different fish tissues at first increased with the increasing of log K ow, then reached a maximum value when logK ow is between 5 and 7, and then decreased when logK ow is higher than 7, indicating that the value of BCF may vary due to the diversity of fish species. PMID:23365526
NASA Astrophysics Data System (ADS)
Lee, Shin-Ah; Kim, Guebuem
2018-02-01
We monitored seasonal variations in dissolved organic carbon (DOC), the stable carbon isotope of DOC (δ13C-DOC), and fluorescent dissolved organic matter (FDOM) in water samples from a fixed station in the Nakdong River Estuary, Korea. Sampling was performed every hour during spring tide once a month from October 2014 to August 2015. The concentrations of DOC and humic-like FDOM showed significant negative correlations against salinity (r2 = 0.42-0.98, p < 0.0001), indicating that the river-originated DOM components were the major source and behave conservatively in the estuarine mixing zone. The extrapolated δ13C-DOC values (-27.5 to -24.5 ‰) in fresh water confirm that both components are mainly of terrestrial origin. The slopes of humic-like FDOM against salinity were 60-80 % higher in the summer and fall due to higher terrestrial production of humic-like FDOM. The slopes of protein-like FDOM against salinity, however, were 70-80 % higher in spring due to higher biological production in river water. Our results suggest that there are large seasonal changes in riverine fluxes of humic- and protein-like FDOM to the ocean.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Xie, H.
2015-08-01
Rates and apparent quantum yields of photomineralization (AQYDOC) and photomethanification (AQYCH4) of chromophoric dissolved organic matter (CDOM) in Saguenay River surface water were determined at three widely differing dissolved oxygen concentrations ([O2]) (suboxic, air-saturation, and oxygenated) using simulated-solar radiation. Photomineralization increased linearly with CDOM absorbance photobleaching for all three O2 treatments. Whereas the rate of photochemical dissolved organic carbon (DOC) loss increased with increasing [O2], the ratio of fractional DOC loss to fractional absorbance loss showed an inverse trend. CDOM photodegradation led to a nearly complete mineralization under suboxic conditions but to only a partial mineralization under oxic conditions. AQYDOC determined under oxygenated, suboxic, and air-saturated conditions increased, decreased, and remained largely constant with photobleaching, respectively; AQYDOC obtained under air-saturation with short-term irradiations could thus be applied to longer exposures. AQYDOC decreased successively from ultraviolet B (UVB) to ultraviolet A (UVA) to visible (VIS), which, alongside the solar irradiance spectrum, points to VIS and UVA being the primary drivers for photomineralization in the water column. The photomineralization rate in the Saguenay River was estimated to be 2.31 × 108 mol C yr-1, accounting for only 1 % of the annual DOC input into this system. Photoproduction of CH4 occurred under both suboxic and oxic conditions and increased with decreasing [O2], with the rate under suboxic conditions ~ 7-8 times that under oxic conditions. Photoproduction of CH4 under oxic conditions increased linearly with photomineralization and photobleaching. Under air-saturation, 0.00057 % of the photochemical DOC loss was diverted to CH4, giving a photochemical CH4 production rate of 4.36 × 10-6 mol m
NASA Astrophysics Data System (ADS)
Zhang, Y.; Xie, H.
2015-11-01
Rates and apparent quantum yields of photomineralization (AQYDOC) and photomethanification (AQYCH4) of chromophoric dissolved organic matter (CDOM) in Saguenay River surface water were determined at three widely differing dissolved oxygen concentrations ([O2]) (suboxic, air saturation, and oxygenated) using simulated-solar radiation. Photomineralization increased linearly with CDOM absorbance photobleaching for all three O2 treatments. Whereas the rate of photochemical dissolved organic carbon (DOC) loss increased with increasing [O2], the ratio of fractional DOC loss to fractional absorbance loss showed an inverse trend. CDOM photodegradation led to a higher degree of mineralization under suboxic conditions than under oxic conditions. AQYDOC determined under oxygenated, suboxic, and air-saturated conditions increased, decreased, and remained largely constant with photobleaching, respectively; AQYDOC obtained under air saturation with short-term irradiations could thus be applied to longer exposures. AQYDOC decreased successively from ultraviolet B (UVB) to ultraviolet A (UVA) to visible (VIS), which, alongside the solar irradiance spectrum, points to VIS and UVA being the primary drivers for photomineralization in the water column. The photomineralization rate in the Saguenay River was estimated to be 2.31 × 108 mol C yr-1, accounting for only 1 % of the annual DOC input into this system. Photoproduction of CH4 occurred under both suboxic and oxic conditions and increased with decreasing [O2], with the rate under suboxic conditions ~ 7-8 times that under oxic conditions. Photoproduction of CH4 under oxic conditions increased linearly with photomineralization and photobleaching. Under air saturation, 0.00057 % of the photochemical DOC loss was diverted to CH4, giving a photochemical CH4 production rate of 4.36 × 10-6 mol m-2 yr-1 in the Saguenay River and, by extrapolation, of (1.9-8.1) × 108 mol yr-1 in the global ocean. AQYCH4 changed little with photobleaching under air saturation but increased exponentially under suboxic conditions. Spectrally, AQYCH4 decreased sequentially from UVB to UVA to VIS, with UVB being more efficient under suboxic conditions than under oxic conditions. On a depth-integrated basis, VIS prevailed over UVB in controlling CH4 photoproduction under air saturation while the opposite held true under O2-deficiency. An addition of micromolar levels of dissolved dimethyl sulfide (DMS) substantially increased CH4 photoproduction, particularly under O2-deficiency; DMS at nanomolar ambient concentrations in surface oceans is, however, unlikely a significant CH4 precursor. Results from this study suggest that CDOM-based CH4 photoproduction only marginally contributes to the CH4 supersaturation in modern surface oceans and to both the modern and Archean atmospheric CH4 budgets, but that the photochemical term can be comparable to microbial CH4 oxidation in modern oxic oceans. Our results also suggest that anoxic microniches in particulate organic matter and phytoplankton cells containing elevated concentrations of precursors of the methyl radical such as DMS may provide potential hotspots for CH4 photoproduction.
Raeke, Julia; Lechtenfeld, Oliver J; Tittel, Jörg; Oosterwoud, Marieke R; Bornmann, Katrin; Reemtsma, Thorsten
2017-04-15
Drinking water reservoirs in the Northern Hemisphere are largely affected by the decadal-long increase in riverine dissolved organic carbon (DOC) concentrations. The removal of DOC in drinking water treatment is costly and predictions are needed to link DOC removal efficiency to its mobilization in catchments, both of which are determined by the molecular composition. To study the effect of hydrological events and land use on the molecular characteristics of dissolved organic matter (DOM), 36 samples from three different catchment areas in the German low mountain ranges, with DOC concentrations ranging from 3 to 32 mg L -1 , were examined. Additionally, nine pairs of samples from downstream drinking water reservoirs were analyzed before and after flocculation. The molecular composition and the age of DOM were analyzed using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and radiocarbon ( 14 C) analysis. At elevated discharge in a forested catchment comparatively younger, more oxygenated and unsaturated molecules of higher molecular weight were preferentially mobilized, likely linked to the reductive mobilization of iron. DOM with highly similar molecular characteristics (O/C ratio > 0.5, m/z > 500) could also be efficiently removed through flocculation in drinking water treatment. The proportion of DOM removed through flocculation ranged between 43% and 73% of DOC and was highest at elevated discharge. In catchment areas with a higher percentage of grassland and agriculture a higher proportion of DOM molecules containing sulfur and nitrogen was detected, which in turn could be less efficiently flocculated. Altogether, it was shown that DOM that is released during large hydrological events can be efficiently flocculated again, suggesting a reversal of similar chemical mechanisms in both processes. Since the occurrence of heavy rainfall events is predicted to increase in the future, event-driven mobilization of DOC may continue to challenge drinking water production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterizing Groundwater Sources of Organic Matter to Arctic Coastal Waters
NASA Astrophysics Data System (ADS)
Connolly, C. T.; Spencer, R. G.; Cardenas, M. B.; Bennett, P. C.; McNichol, A. P.; McClelland, J. W.
2016-12-01
The Arctic is projected to transition from a runoff-dominated system to a groundwater-dominated system as permafrost thaws due to climate change. This fundamental shift in hydrology is expected to increase groundwater flow to Arctic coastal waters, which may be a significant source of dissolved organic matter (DOM) to these waters—even under present conditions—that has been largely overlooked. Here we quantify and elucidate sources of groundwater DOM inputs to lagoons along the eastern Alaskan Beaufort Sea coast using an approach that combines concentration measurements and radiocarbon dating of groundwater, soil profiles, and soil leachable dissolved organic carbon (DOC). Samples were collected in late summer, when soil thaw depths (active layer) were near their maximum extent. As anticipated, the radiocarbon age of bulk soil organic matter increased with depth (modern - 6,100 yBP), while the amount of extractable DOC decreased with depth within the active layer. However, amounts of extractable DOC increased dramatically in thawed permafrost samples collected directly below the actively layer. Concentrations of DOM in groundwater (ranging from 902 to 5,118 μmolL-1 DOC) are one to two orders of magnitude higher than those measured in lagoons and nearby river water. In contrast, the 14C-DOC ages of groundwater (1,400 ± 718 s.d. yBP), lagoon water (1,750 yBP), and river water (1,610 yBP) are comparable. Together these results suggest that: (1) groundwater provides a highly concentrated input of old DOC to Arctic coastal waters; (2) groundwater DOM is likely sourced from organic matter spanning the entire soil profile; and (3) the DOM in rivers along the eastern Alaskan Beaufort Sea coast during late summer is strongly influenced by groundwater sources, but is much lower in concentration due to photo-mineralization and/or biological consumption. These results are key for assessing how changes in land-ocean export of organic matter as permafrost thaws will change into the future with clear ramifications for Arctic coastal environments.
48 CFR 1323.404-70 - DOC affirmative procurement program.
Code of Federal Regulations, 2011 CFR
2011-10-01
... COMMERCE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Use of Recovered Materials 1323.404-70 DOC affirmative procurement...
NASA Astrophysics Data System (ADS)
Materić, Dušan; Peacock, Mike; Kent, Matthew; Cook, Sarah; Gauci, Vincent; Röckmann, Thomas; Holzinger, Rupert
2017-04-01
Dissolved organic carbon (DOC) is an integral component of the global carbon cycle. DOC represents an important terrestrial carbon loss as it is broken down both biologically and photochemically, resulting in the release of carbon dioxide (CO2) to the atmosphere. The magnitude of this carbon loss can be affected by land management (e.g. drainage). Furthermore, DOC affects autotrophic and heterotrophic processes in aquatic ecosystems, and, when chlorinated during water treatment, can lead to the release of harmful trihalomethanes. Numerous methods have been used to characterise DOC. The most accessible of these use absorbance and fluorescence properties to make inferences about chemical composition, whilst high-performance size exclusion chromatography can be used to determine apparent molecular weight. XAD fractionation has been extensively used to separate out hydrophilic and hydrophobic components. Thermochemolysis or pyrolysis Gas Chromatography - Mass Spectrometry (GC-MS) give information on molecular properties of DOC, and 13C NMR spectroscopy can provide an insight into the degree of aromaticity. Proton Transfer Reaction - Mass Spectrometry (PTR-MS) is a sensitive, soft ionisation method suitable for qualitative and quantitative analysis of volatile and semi-volatile organic vapours. So far, PTR-MS has been used in various environmental applications such as real-time monitoring of volatile organic compounds (VOCs) emitted from natural and anthropogenic sources, chemical composition measurements of aerosols etc. However, as the method is not compatible with water, it has not been used for analysis of organic traces present in natural water samples. The aim of this work was to develop a method based on thermal desorption PTR-MS to analyse water samples in order to characterise chemical composition of dissolved organic carbon. We developed a clean low-pressure evaporation/sublimation system to remove water from samples and thermal desorption system to introduce the samples to the PTR-MS. With thermal desorption lasting just 5 min (at 200˚ C) we successfully detected more than 200 organic ions in the water samples yielding up to 800 ng/mL in total (which corresponds to 1.5% of total DOC present in the sample). Samples were from tropical peatlands in Borneo and Malaysia. Principle component analysis showed a clear separation of the samples when comparing intact and degraded peat swamp forest, and between an oil palm plantation and natural forest. This suggests that the degradation and conversion of tropical peatlands result in distinct changes to DOC composition, with possible implications for associated CO2 emissions. As the method is sensitive and reproducible it has wide potential application in the characterisation of water and of soils. It could provide important information on how land management, microbial activity, vegetation and water treatment control the chemical composition of DOC.
Effect of past peat cultivation practices on present dynamics of dissolved organic carbon.
Frank, S; Tiemeyer, B; Bechtold, M; Lücke, A; Bol, R
2017-01-01
Peatlands are a major source of dissolved organic carbon (DOC) for aquatic ecosystems. Naturally high DOC concentrations in peatlands may be increased further by drainage. For agricultural purposes, peat has frequently been mixed with sand, but the effect of this measure on the release and cycling of DOC has rarely been investigated. This study examined the effects of (i) mixing peat with sand and (ii) water table depth (WTD) on DOC concentrations at three grassland sites on shallow organic soils. The soil solution was sampled bi-weekly for two years with suction plates at 15, 30 and 60cm depth. Selected samples were analysed for dissolved organic nitrogen (DON), δ 13 C DOM and δ 15 N DOM . Average DOC concentrations were surprisingly high, ranging from 161 to 192mgl -1 . There was no significant impact of soil organic carbon (SOC) content or WTD on mean DOC concentrations. At all sites, DOC concentrations were highest at the boundary between the SOC-rich horizon and the mineral subsoil. In contrast to the mean concentrations, the temporal patterns of DOC concentrations, their drivers and the properties of dissolved organic matter (DOM) differed between peat-sand mixtures and peat. DOC concentrations responded to changes in environmental conditions, but only after a lag period of a few weeks. At the sites with a peat-sand mixture, temperature and therefore probably biological activity determined the DOC concentrations. At the peat site, the contribution of vegetation-derived DOM was higher. The highest concentrations occurred during long, cool periods of waterlogging, suggesting a stronger physicochemical-based DOC mobilisation. Overall, these results indicate that mixing peat with sand does not improve water quality and may result in DOC losses of around 200kg DOCha -1 a -1 . Copyright © 2016 Office national des forêts. Published by Elsevier B.V. All rights reserved.
Bergamaschi, B.A.; Fram, M.S.; Kendall, C.; Silva, S.R.; Aiken, G.R.; Fujii, R.
1999-01-01
The ??13C values of individual trihalomethanes (THM) formed on reaction of chlorine with dissolved organic carbon (DOC) leached from maize (corn, Zea maize L) and Scirpus acutus (an aquatic bulrush), and with DOC extracted from agricultural drainage waters were determined using purge and trap introduction into a gas chromatograph-combustion-isotope ratio monitoring mass spectrometer. We observed a 1-6.8??? difference between the ??13C values of THM produced from the maize and Scirpus leachates, similar to the isotopic difference between the whole plant materials. Both maize and Scirpus formed THM 12??? lower in 13C than whole plant material. We suggest that the low value of the THM relative to the whole plant material is evidence of distinct pools of THM-forming DOC, representing different biochemical types or chemical structures, and possessing different environmental reactivity Humic extracts of waters draining an agricultural field containing Scirpus peat soils and planted with maize formed THM with isotopic values intermediate between those of maize and Scirpus leachates, indicating maize may contribute significantly to the THM-forming DOC. The difference between the ??13C values of the whole isolate and that of the THM it yielded was 3 9???, however, suggesting diagenesis plays a role in determining the ??13C value of THM-forming DOC in the drainage waters, and precluding the direct use of isotopic mixing models to quantitatively attribute sources.The ??13C values of individual trihalomethanes (THM) formed on reaction of chlorine with dissolved organic carbon (DOC) leached from maize (corn; Zea maize L.) and Scirpus acutus (an aquatic bulrush), and with DOC extracted from agricultural drainage waters were determined using purge and trap introduction into a gas chromatograph-combustion-isotope ratio monitoring mass spectrometer. We observed a 16.8qq difference between the ??13C values of THM produced from the maize and Scirpus leachates, similar to the isotopic difference between the whole plant materials. Both maize and Scirpus formed THM 12qq lower in 13C than whole plant material. We suggest that the low value of the THM relative to the whole plant material is evidence of distinct pools of THM-forming DOC, representing different biochemical types or chemical structures, and possessing different environmental reactivity. Humic extracts of waters draining an agricultural field containing Scirpus peat soils and planted with maize formed THM with isotopic values intermediate between those of maize and Scirpus leachates, indicating maize may contribute significantly to the THM-forming DOC. The difference between the ??13C values of the whole isolate and that of the THM it yielded was 3.9qq, however, suggesting diagenesis plays a role in determining the ??13C value of THM-forming DOC in the drainage waters, and precluding the direct use of isotopic mixing models to quantitatively attribute sources.
NASA Astrophysics Data System (ADS)
Schwab, M. P.; Klaus, J.; Pfister, L.; Weiler, M.
2016-12-01
Over the past decades, stream sampling protocols for hydro-geochemical parameters were often limited by logistical and technological constraints. While long-term monitoring protocols were typically based on weekly sampling intervals, high frequency sampling was commonly limited to a few single events. In this contribution, we combined high frequency and long-term measurements to understand DOC and nitrate dynamics in a forest headwater for different runoff events and seasons. Our study area is the forested Weierbach catchment (0.47 km2) in Luxembourg, where the fractured schist bedrock is covered by cambisol soils. The runoff response is characterized by a double peak behaviour. The first peak occurs during or right after a rainfall event triggered by fast near surface runoff generation processes, while a second delayed peak lasts several days and is generated by subsurface flow. This second peak occurs only if a distinct storage threshold of the catchment is exceeded. Our observations were carried out with a field deployable UV-Vis spectrometer measuring DOC and nitrate concentrations in-situ at 15 min intervals for more than two years. In addition, a long-term validation was carried out with data obtained from the analysis of water collected with grab samples. The long-term, high-frequency measurements allowed us to calculate a complete and detailed balance of DOC and nitrate export over two years. Transport behaviour of the DOC and nitrate showed different dynamics between the first and second hydrograph peaks. DOC is mainly exported during the first peaks, while nitrate is mostly exported during the delayed second peaks. Biweekly end-member measurement of soil and groundwater over several years enables us to link the behaviour of DOC and nitrate export to various end-members in the catchment. Altogether, the long-term and high-frequency time series provides the opportunity to study DOC and nitrate export processes without having to just rely only on either a few single event measurements or coarse measurement protocols.
Watson, Kalinda; Farré, Maria José; Knight, Nicole
2015-01-01
The removal of both organic and inorganic disinfection by-product (DBP) precursors prior to disinfection is important in mitigating DBP formation, with halide removal being particularly important in salinity-impacted water sources. A matrix of waters of variable alkalinity, halide concentration and dissolved organic carbon (DOC) concentration were treated with enhanced coagulation (EC) followed by anion exchange (MIEX resin) or powdered activated carbon (PAC) and the subsequent disinfection by-product formation potentials (DBP-FPs) assessed and compared to DBP-FPs for untreated samples. Halide and DOC removal were also monitored for both treatment processes. Bromide and iodide adsorption by MIEX treatment ranged from 0 to 53% and 4-78%, respectively. As expected, EC and PAC treatments did not remove halides. DOC removal by EC/PAC was 70 ± 10%, while EC/MIEX enabled a DOC removal of 66 ± 12%. Despite the halide removals achieved by MIEX, increases in brominated disinfection by-product (Br-DBP) formation were observed relative to untreated samples, when favourable Br:DOC ratios were created by the treatment. However, the increases in formation were less than what was observed for the EC/PAC treated waters, which caused large increases in Br-DBP formation when high Br-DBP-forming water quality conditions occurred. The formation potential of fully chlorinated DBPs decreased after treatment in all cases.
Drought causes step-changes in catchment-scale carbon export from peatland catchments
NASA Astrophysics Data System (ADS)
Howden, Nicholas; Worrall, Fred; Burt, Tim
2015-04-01
Increases in fluvial DOC concentrations in world rivers, particularly those that drain areas of peatland, have been observed for some years, suggesting an increase in carbon loss from the terrestrial biosphere. But it has not been straightforward to identify what causes these increases due to a lack of long-term time series to characterise both observed DOC concentrations and potential drivers. The York Waterworks Company (York, UK) abstracted drinking water from the Yorkshire Ouse just upstream of the city from the late 1800s until 2002. During the period August 1945 to December 2002, records of monthly-average DOC concentrations were kept (using water colour as a surrogate). From January 2003 onwards, the Environment Agency of England and Wales (EA) continued the monitoring, thus providing a 68-year record of monthly-average DOC concentrations in the Yorkshire Ouse, which is the longest DOC time series ever reported for a catchment with significant peat cover. We use the Yorkshire Ouse DOC record to develop a new method that shows how changes in DOC concentration and river flow have influenced carbon fluxes in the Ouse for the latter half of the 20th century and show that the only major changes in DOC flux are caused by step-increases in concentration following severe drought. We then use this method to identify a similar effect in other DOC records for UK rivers. The results suggest that increases in DOC export are due more to discrete events than to the impact of continuous drivers (such as increasing temperatures or changing atmospheric deposition), and also show these increases not to be reversed for at least four decades.
Phetrak, Athit; Lohwacharin, Jenyuk; Sakai, Hiroshi; Murakami, Michio; Oguma, Kumiko; Takizawa, Satoshi
2014-06-01
Anion exchange resins (AERs) with different properties were evaluated for their ability to remove dissolved organic matter (DOM) and bromide, and to reduce disinfection by-product (DBP) formation potentials of water collected from a eutrophic surface water source in Japan. DOM and bromide were simultaneously removed by all selected AERs in batch adsorption experiments. A polyacrylic magnetic ion exchange resin (MIEX®) showed faster dissolved organic carbon (DOC) removal than other AERs because it had the smallest resin bead size. Aromatic DOM fractions with molecular weight larger than 1600 Da and fluorescent organic fractions of fulvic acid- and humic acid-like compounds were efficiently removed by all AERs. Polystyrene AERs were more effective in bromide removal than polyacrylic AERs. This result implied that the properties of AERs, i.e. material and resin size, influenced not only DOM removal but also bromide removal efficiency. MIEX® showed significant chlorinated DBP removal because it had the highest DOC removal within 30 min, whereas polystyrene AERs efficiently removed brominated DBPs, especially brominated trihalomethane species. The results suggested that, depending on source water DOM and bromide concentration, selecting a suitable AER is a key factor in effective control of chlorinated and brominated DBPs in drinking water. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Wan, Xiao-Hua; Huang, Zhi-Qun; He, Zong-Ming; Hu, Zhen-Hong; Yu, Zai-Peng; Wang, Min-Huang; Yang, Yu-Sheng; Fan, Shao-Hui
2014-01-01
Based on the comparison between reforested 19-year-old Mytilaria laosensis and Cunninghamia lanceolata plantations on cut-over land of C. lanceolata, effects of tree species transfer on soil dissolved organic matter were investigated. Cold water, hot water and 2 mol x L(-1) KCl solution were used to extract soil dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) from 0-5, 5-10 and 10-20 cm soil layers. In M. laosensis plantaion, the concentrations of soil DOC extracted by cold water, hot water and 2 mol L(-1) KCl solutions were significantly higher than that in C. lanceolata plantation. In the 0-5 and 5-10 cm layers, the concentrations of soil DON extracted by cold water and hot water in M. laosensis plantation were significantly higher than that in C. lanceolata plantation. The extracted efficiencies for DOC and DON were both in order of KCl solution > hot water > cold water. In the 0-5 cm layers, soil microbial biomass carbon (MBC) under M. laosensis was averagely 76.3% greater than under C. lanceolata. Correlation analysis showed that there were significant positive relationships between hot water extractable organic matter and soil MBC. Differences in the sizes of soil DOC and DON pools between the M. laosensis and C. lanceolata forests might be attributed to the quality and quantity of organic matter input. The transfer from C. lanceolata to M. laosensis could improve soil fertility in the plantation.
Dissolved black carbon in grassland streams: is there an effect of recent fire history?
Ding, Yan; Yamashita, Youhei; Dodds, Walter K; Jaffé, Rudolf
2013-03-01
While the existence of black carbon as part of dissolved organic matter (DOM) has been confirmed, quantitative determinations of dissolved black carbon (DBC) in freshwater ecosystem and information on factors controlling its concentration are scarce. In this study, stream surface water samples from a series of watersheds subject to different burn frequencies in Konza Prairie (Kansas, USA) were collected in order to determine if recent fire history has a noticeable effect on DBC concentration. The DBC levels detected ranged from 0.04 to 0.11 mg L(-1), accounting for ca. 3.32±0.51% of dissolved organic carbon (DOC). No correlation was found between DBC concentration and neither fire frequency nor time since last burn. We suggest that limited DBC flux is related to high burning efficiency, possibly greater export during periods of high discharge and/or the continuous export of DBC over long time scales. A linear correlation between DOC and DBC concentrations was observed, suggesting the export mechanisms determining DOC and DBC concentrations are likely coupled. The potential influence of fire history was less than the influence of other factors controlling the DOC and DBC dynamics in this ecosystem. Assuming similar conditions and processes apply in grasslands elsewhere, extrapolation to a global scale would suggest a global grasslands flux of DBC on the order of 0.14 Mt carbon year(-1). Copyright © 2012 Elsevier Ltd. All rights reserved.
Arce, R; Galán, B; Coz, A; Andrés, A; Viguri, J R
2010-05-15
The application of solvent-based paints by spraying in paint booths is extensively used in a wide range of industrial activities for the surface treatment of a vast array of products. The wastes generated as overspray represent an important environmental and managerial problem mainly due to the hazardous characteristics of the organic solvent, rendering it necessary to appropriately manage this waste. In this paper a solidification/stabilization (S/S) process based on accelerated carbonation was investigated as an immobilization pre-treatment prior to the disposal, via landfill, of an alkyd solvent-based paint waste coming from the automotive industry; the purpose of this S/S process was to immobilize the contaminants and reduce their release into the environment. Different formulations of paint waste with lime, lime-coal fly-ash and lime-Portland cement were carbonated to study the effect of the water/solid ratio and carbonation time on the characteristics of the final product. To assess the efficiency of the studied S/S process, metals, anions and dissolved organic carbon (DOC) were analyzed in the leachates obtained from a battery of compliance and characterization leaching tests. Regarding the carbonation of paint waste-lime formulations, a mathematical expression has been proposed to predict the results of the leachability of DOC from carbonated mixtures working at water/solid ratios from 0.2 to 0.6. However, lower DOC concentrations in leachates (400mg/kg DOC in L/S=10 batch leaching test) were obtained when carbonation of paint waste-lime-fly-ash mixtures was used at 10h carbonation and water to solid ratio of 0.2. The flammability characteristics, the total contents of contaminants and the contaminant release rate in compliance leaching tests provide evidence for a final product suitable for deposition in non-hazardous landfills. The characterization of this carbonated sample using a dynamic column leaching test shows a high stabilization of metals, partial immobilization of Cl(-), SO(4)(2-), F(-) and limited retention of DOC. However, the obtained results improve the previous findings obtained after the paint waste S/S using uncarbonated formulations and would be a useful pre-treatment technique of the alkyd paint waste prior to its disposal in a landfill. Copyright (c) 2009 Elsevier B.V. All rights reserved.
O'Donnell, Jonathan A.; Aiken, George R.; Kane, Evan S.; Jones, Jeremy B.
2010-01-01
Climate warming and permafrost degradation at high latitudes will likely impact watershed hydrology, and consequently, alter the concentration and character of dissolved organic carbon (DOC) in northern rivers. We examined seasonal variation of DOC chemistry in 16 streams of the Yukon River basin, Alaska. Our primary objective was to evaluate the relationship between source water (shallow versus deep groundwater flow paths) and DOC chemical composition. Using base cation chemistry and principal component analysis, we observed high contributions of deep groundwater to glacial and clearwater streams, whereas blackwater streams received larger contributions from shallow groundwater sources. DOC concentration and specific ultraviolet absorbance peaked during spring snowmelt in all streams, and were consistently higher in blackwater streams than in glacial and clearwater streams. The hydrophobic acid fraction of DOC dominated across all streams and seasons, comprising between 35% and 56% of total DOC. The hydrophilic acid fraction of DOC was more prominent in glacial (23% ± 3%) and clearwater streams (19% ± 1%) than in blackwater streams (16% ± 1%), and was enriched during winter base flow (29% ± 1%) relative to snowmelt and summer base flow. We observed that an increase in the contribution of deep groundwater to streamflow resulted in decreased DOC concentration, aromaticity, and DOC-to-dissolved organic nitrogen ratio, and an increase in the proportion of hydrophilic acids relative to hydrophobic acids. Our findings suggest that future permafrost degradation and higher contributions of groundwater to streamflow may result in a higher fraction of labile DOM in streams of the Yukon basin.
Dissolved organic carbon fluxes from soils in the Alaskan coastal temperate rainforest
NASA Astrophysics Data System (ADS)
D'Amore, D. V.; Edwards, R.; Hood, E. W.; Herendeen, P. A.; Valentine, D.
2011-12-01
Soil saturation and temperature are the primary factors that influence soil carbon cycling. Interactions between these factors vary by soil type, climate, and landscape position, causing uncertainty in predicting soil carbon flux from. The soils of the North American perhumid coastal temperate rainforest (NCTR) store massive amounts of carbon, yet there is no estimate of dissolved organic carbon (DOC) export from different soil types in the region. There are also no working models that describe the influence of soil saturation and temperature on the export of DOC from soils. To address this key information gap, we measured soil water table elevation, soil temperature, and soil and stream DOC concentrations to calculate DOC flux across a soil hydrologic gradient that included upland soils, forested wetland soils, and sloping bog soils in the NCTR of southeast Alaska. We found that increased soil temperature and frequent fluctuations of soil water tables promoted the export of large quantities of DOC from wetland soils and relatively high amounts of DOC from mineral soils. Average area-weighted DOC flux ranged from 7.7 to 33.0 g C m-2 y-1 across a gradient of hydropedologic soil types. The total area specific export of carbon as DOC for upland, forested wetland and sloping bog catchments was 77, 306, and 329 Kg C ha-1 y-1 respectively. The annual rate of carbon export from wetland soils in this region is among the highest reported in the literature. These findings highlight the importance of terrestrial-aquatic fluxes of DOC as a pathway for carbon loss in the NCTR.
Huang, Wei; McDowell, William H.; Zou, Xiaoming; Ruan, Honghua; Wang, Jiashe; Li, Liguang
2013-01-01
Stream water dissolved organic carbon (DOC) correlates positively with soil organic carbon (SOC) in many biomes. Does this relationship hold in a small geographic region when variations of temperature, precipitation and vegetation are driven by a significant altitudinal gradient? We examined the spatial connectivity between concentrations of DOC in headwater stream and contents of riparian SOC and water-soluble soil organic carbon (WSOC), riparian soil C:N ratio, and temperature in four vegetation types along an altitudinal gradient in the Wuyi Mountains, China. Our analyses showed that annual mean concentrations of headwater stream DOC were lower in alpine meadow (AM) than in subtropical evergreen broadleaf forest (EBF), coniferous forest (CF), and subalpine dwarf forest (SDF). Headwater stream DOC concentrations were negatively correlated with riparian SOC as well as WSOC contents, and were unrelated to riparian soil C:N ratio. Our findings suggest that DOC concentrations in headwater streams are affected by different factors at regional and local scales. The dilution effect of higher precipitation and adsorption of soil DOC to higher soil clay plus silt content at higher elevation may play an important role in causing lower DOC concentrations in AM stream of the Wuyi Mountains. Our results suggest that upscaling and downscaling of the drivers of DOC export from forested watersheds when exploring the response of carbon flux to climatic change or other drivers must done with caution. PMID:24265737
NASA Astrophysics Data System (ADS)
D'Sa, E. J.; Goes, J. I.; Gomes, H.; Mouw, C.
2014-06-01
The absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) are reported for the inner shelf, slope waters and outer shelf regions of the eastern Bering Sea during the summer of 2008, when a warm, thermally stratified surface mixed layer lay over a cold pool (< 2 °C) that occupied the entire middle shelf. CDOM absorption at 355 nm (ag355) and its spectral slope (S) in conjunction with excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC) revealed large variability in the characteristics of CDOM in different regions of the Bering Sea. PARAFAC analysis aided in the identification of three humic-like (components one, two and five) and two protein-like (a tyrosine-like component three, and a tryptophan-like component four) components. In the extensive shelf region, average absorption coefficients at 355 nm (ag355, m-1) and DOC concentrations (μM) were highest in the inner shelf (0.342 ± 0.11 m-1, 92.67 ± 14.60 μM) and lower in the middle (0.226 ± 0.05 m-1, 78.38 ± 10.64 μM) and outer (0.185 ± 0.05 m-1, 79.24 ± 18.01 μM) shelves, respectively. DOC concentrations, however were not significantly different, suggesting CDOM sources and sinks to be uncoupled from DOC. Mean spectral slopes S were elevated in the middle shelf (24.38 ± 2.25 μm-1) especially in the surface waters (26.87 ± 2.39 μm-1) indicating high rates of photodegradation in the highly stratified surface mixed layer, which intensified northwards in the northern middle shelf likely contributing to greater light penetration and to phytoplankton blooms at deeper depths. The fluorescent humic-like components one, two, and five were most elevated in the inner shelf most likely from riverine inputs. Along the productive "green belt" in the outer shelf/slope region, absorption and fluorescence properties indicated the presence of fresh and degraded autochthonous DOM. Near the Unimak Pass region of the Aleutian Islands, low DOC and ag355 (mean 66.99 ± 7.94 μM; 0.182 ± 0.05 m-1) and a high S (mean 25.95 ± 1.58 μm-1) suggested substantial photobleaching of the Alaska Coastal Water, but high intensities of humic-like and protein-like fluorescence suggested sources of fluorescent DOM from coastal runoff and glacier meltwaters during the summer. The spectral slope S vs. ag355 relationship revealed terrestrial and oceanic end members along with intermediate water masses that were modeled using nonlinear regression equations that could allow water mass differentiation based on CDOM optical properties. Spectral slope S was negatively correlated (r2 = 0.79) with apparent oxygen utilization (AOU) for waters extending from the middle shelf into the deep Bering Sea indicating increasing microbial alteration of CDOM with depth. Although our data show that the CDOM photochemical environment of the Bering Sea is complex, our current information on its optical properties will aid in better understanding of the biogeochemical role of CDOM in carbon budgets in relation to the annual sea ice and phytoplankton dynamics, and to improved algorithms of ocean color remote sensing for this region.
The effects of particles and dissolved materials on in situ algal pigment fluorescence sensors
NASA Astrophysics Data System (ADS)
Saraceno, J.; Bergamaschi, B. A.; Downing, B. D.
2013-12-01
Field deployable sensors that measure algal pigment fluorescence (APF), such as chlorophyll-a (excitation/emission ca. 470/685 nm), and phycocyanin (ca. 590/685 nm), have been used to estimate algal biomass and study food-web dynamics in coastal and oceanic waters for many years. There is also widespread use of these sensors in real time river-observing networks. However, freshwater systems often possess elevated levels of suspended solids and dissolved organic material that can interfere with optical measurements. Data collected under conditions that result in interferences may not be comparable across time and between sites unless the data are appropriately corrected. Using standard reference materials and a surrogate for algal fluorescence (Rhodamine WT), lab experiments were conducted on several commercially available sensors to quantify sensitivity to interferences over a range of naturally occurring surface water conditions (DOC : 0-30 mg/L and turbidity: 0- 1000 FNU ). Chlorophyll-a sensors exhibited a slight but significant positive bias (<1%) at DOC concentrations < 2 mg/L, and a negative, non-linear bias at DOC concentrations >2 mg/L, with signal quenching reaching a maximum of 15% at 30 mg/L DOC. All phycocyanin sensors displayed a positive non-linear bias with DOC concentration, reaching a maximum of 40% difference at 30 mg/L DOC. Both chlorophyll-a and phycocyanin sensors showed a positive linear relationship with suspended solids concentration (as indicated by turbidity).The effect of suspended solids on APF output can be explained by the detection of scattered excitation light (leaking through emission filters). Similar qualitative effects were observed for the sensors tested, though the magnitude of the effect varied among sensor type. This indicates that differences in sensor designs such as geometry, wavelength and signal post processing techniques is related to its sensitivity to interferences. Although sensors exhibited significant cross sensitivity to interferences, our results indicate that simple corrections can largely remove sensor bias. To remove bias due to optical interferences and generate high quality, repeatable APF data, knowledge of the optical properties of the matrix and/or coincident measures of the concentration of suspended solids and dissolved organics (through surrogates such as turbidity and colored dissolved organic matter (cDOM) fluorescence, respectively), are typically needed.
Murshed, Mohamad Fared; Aslam, Zeeshan; Lewis, Rosmala; Chow, Christopher; Wang, Dongsheng; Drikas, Mary; van Leeuwen, John
2014-10-01
The treatment of organics present in the lower reaches of a major river system (the Murray-Darling Basin, Australia) before (March-July 2010), during (December 2010-May 2011) and after (April-December 2012) a major flood period was investigated. The flood period (over 6months) occurred during an intense La Niña cycle, leading to rapid and high increases in river flows and organic loads in the river water. Dissolved organic carbon (DOC) increased (2-3 times) to high concentrations (up to 16mg/L) and was found to correlate with river flow rates. The treatability of organics was studied using conventional jar tests with alum and an enhanced coagulation model (mEnCo©). Predicted mean alum dose rates (per mg DOC) were higher before (9.1mg alum/mg DOC) and after (8.5mg alum/mg DOC) than during the flood event (8.0mg alum/mg DOC), indicating differences in the character of the organics in raw waters. To assess the character of natural organic matter present in raw and treated waters, high performance size exclusion chromatography with UV and fluorescence detectors were used. During the flood period, high molecular weight UV absorbing compounds (>2kDa) were mostly detected in waters collected, but were not evident in waters collected before and afterwards. The relative abundances of humic-like and protein-like compounds during and following the flood period were also investigated and found to be of a higher molecular weight during the flood period. The treatability of the organics was found to vary over the three climate conditions investigated. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus
2016-04-01
Over the past decades, stream sampling protocols for hydro-geochemical parameters were often limited by logistical and technological constraints. While long-term monitoring protocols were typically based on weekly sampling intervals, high frequency sampling was commonly limited to a few single events. In our study, we combined high frequency and long-term measurements to understand the DOC and nitrate behaviour and dynamics for different runoff events and seasons. Our study area is the forested Weierbach catchment (0.47 km2) in Luxembourg. The fractured schist bedrock is covered by cambisol soils. The runoff response of the catchment is characterized by a double peak behaviour. A first discharge peak occurs during or right after a rainfall event (triggered by fast near surface runoff generation processes), while a second delayed peak lasts several days (generated by subsurface flow/ shallow groundwater flow). Peaks in DOC concentrations are closely linked to the first discharge peak, whereas nitrate concentrations follow the second peak. Our observations were carried out with the field deployable instrument spectro::lyser (scan Messtechnik GmbH). This instrument relies on the principles of UV-Vis spectrometry and measures DOC and nitrate concentrations. The measurements were carried out at a high frequency of 15 minutes in situ in the Weierbach creek for more than two years. In addition, a long-term validation was carried out with data obtained from the analysis of water collected with automatic samplers. The long-term, high-frequency measurements allowed us to calculate a complete and detailed balance of DOC and nitrate export over two years. Transport behaviour of the DOC and nitrate showed different dynamics between the first and second hydrograph peaks. DOC is mainly exported during first peaks, while nitrate is mostly exported during the delayed second peaks. In combination with other measurements in the catchment, the long and detailed observations have enabled us to derive relationships between DOC and nitrate export and different catchment states: soil wetness and groundwater levels, precipitation and seasonality. Altogether, the long-term and high-frequency time series provides the opportunity to study DOC and nitrate export without having to just rely only on either a few single event measurements or coarse measurement protocols.
Organic carbon export from the Greenland Ice Sheet: sources, sinks and downstream fluxes
NASA Astrophysics Data System (ADS)
Wadham, J. L.; Lawson, E.; Tranter, M.; Stibal, M.; Telling, J.; Lis, G. P.; Nienow, P. W.; Anesio, A. M.; Butler, C. E.
2012-12-01
Runoff from small glacier systems has been shown to contain dissolved organic carbon (DOC) rich in low molecular weight (LMW), and hence more labile forms, designating glaciers as an important source of carbon for downstream heterotrophic activity. Here we assess glacier surfaces as potential sources of labile DOC to downstream ecosystems, presenting data from a wide range of glacier systems to determine sources and sinks of DOC in glacial and proglacial systems. We subsequently focus upon the Greenland Ice Sheet (GrIS) which is the largest source of glacial runoff at present (400 km3 yr-1), with predicted increases in future decades. We report high fluxes of particulate organic carbon (POC), DOC and LMW labile fractions from a large GrIS catchment during two contrasting melt seasons. POC dominates OC export, is sourced from the ice sheet bed and contains a significant bioreactive component (~10% carbohydrates). The LMW-DOC "labile" fraction derives almost entirely from microbial activity on the ice sheet surface, which is supported by data from glacier systems also presented here. Annual fluxes of DOC, POC and labile components were lower in 2010 than 2009, despite a ~2 fold increase in runoff fluxes in 2010, suggesting production-limited DOC/POC sources. Scaled to the entire ice sheet, combined DOC and POC fluxes are of a similar order of magnitude to other large Arctic river systems and may represent an important source of organic carbon to the North Atlantic, Greenland and Labrador Seas.
Acid-induced changes in DOC quality in an experimental whole-lake manipulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donahue, W.F.; Schindler, D.W.; Page, S.J.
1998-10-01
Fluorescence analyses of archived water samples were used to typify dissolved organic carbon (DOC) quality in experimentally acidified lakes and reference lakes at the Experimental Lakes Area, in northwestern Ontario. Carbon-specific DOC fluorescence (CSF) during peak acidification was 40--50% of that for a high-DOC reference lake and similar to a low-DOC reference lake. Reference lakes showed similar but smaller decreases in CSF during several years of prolonged drought in the late 1980s. During the 1990s, recovery from acidification resulted in increased CSF, whereas reference lakes remained unchanged during the same time period. In addition to causing decreased [DOC], acidification causesmore » changes in fluorescence-peak geometry that indicate a switch in DOC quality from allochthonous to autochthonous-like during acidification. The acid-induced change in DOC quality was likely due to increased chemical oxidation or precipitation of the UV-absorbent aromatic portions of allochthonous DOC molecules, leaving more UV-transparent aliphatic chains. The change in the nature of DOC following acidification and drought may have an important role in physical, biological, and chemical processes within these lakes. With recovery from acidification, DOC quality has also recovered.« less
Vulnerability of bank filtration systems to climate change.
Sprenger, C; Lorenzen, G; Hülshoff, I; Grützmacher, G; Ronghang, M; Pekdeger, A
2011-01-15
Bank filtration (BF) is a well established and proven natural water treatment technology, where surface water is infiltrated to an aquifer through river or lake banks. Improvement of water quality is achieved by a series of chemical, biological and physical processes during subsurface passage. This paper aims at identifying climate sensitive factors affecting bank filtration performance and assesses their relevance based on hypothetical 'drought' and 'flood' climate scenarios. The climate sensitive factors influencing water quantity and quality also have influence on substance removal parameters such as redox conditions and travel time. Droughts are found to promote anaerobic conditions during bank filtration passage, while flood events can drastically shorten travel time and cause breakthrough of pathogens, metals, suspended solids, DOC and organic micropollutants. The study revealed that only BF systems comprising an oxic to anoxic redox sequence ensure maximum removal efficiency. The storage capacity of the banks and availability of two source waters renders BF for drinking water supply less vulnerable than surface water or groundwater abstraction alone. Overall, BF is vulnerable to climate change although anthropogenic impacts are at least as important. Copyright © 2010 Elsevier B.V. All rights reserved.
Guo, Wei; Yang, Feng; Li, Yanping; Wang, Shengrui
2017-12-15
Dissolved organic carbon (DOC) can be used an alternative index of water quality instead of chemical oxygen demand (COD) to reflect the organic pollution in water. The monitoring data of water quality in a long-term (1990-2013) from Dianchi Lake confirmed the increase trend of COD concentration in the lake since 2007. The similarities and differences in the DOC components between the lake and its sources and the contribution from allochthonous and autochthonous DOC to the total DOC in this lake were determined to elucidate the reason of COD increase based on C/N atomic ratios, stable isotope abundance of carbon and nitrogen, UV-visible spectroscopy, three-dimensional excitation-emission matrix (3DEEM) fluorescence spectroscopy. The terrigenous organic matter showed humic-like fluorescence, and the autochthonous organic matter showed tryptophan-like components. Agricultural runoff (9.5%), leaf litter (7.5%) and urban runoff (13.2%) were the main sources of DOC in the lake. Sewage tail was a major source of organic materials, 3DEEM for the indicates that sewage tail DOC composition did not change markedly over the biodegradation period, indicating that sewage tail contains a high load of DOC that is resistant to further biodegradation and subsequently accumulates in the lake. The change of land use in the catchment and the increase of sewage tail load into the lake are the key factors for the increase in COD concentration in Dianchi Lake. Thus, the lake should be protected by controlling the pollution from the urban nonpoint sources and refractory composition in point sources. Copyright © 2017 Elsevier B.V. All rights reserved.
Yao, Weikun; Qu, Qiangyong; von Gunten, Urs; Chen, Chao; Yu, Gang; Wang, Yujue
2017-01-01
In this study methylisoborneol (MIB) and geosmin abatement in a surface water by conventional ozonation and the electro-peroxone (E-peroxone) process was compared. Batch tests with addition of ozone (O 3 ) stock solutions and semi-batch tests with continuous O 2 /O 3 gas sparging (simulating real ozone contactors) were conducted to investigate O 3 decomposition, •OH production, MIB and geosmin abatement, and bromate formation during the two processes. Results show that with specific ozone doses typically used in routine drinking water treatment (0.5-1.0 mg O 3 /mg dissolved organic carbon (DOC)), conventional ozonation could not adequately abate MIB and geosmin in a surface water. While increasing the specific ozone doses (1.0-2.5 mg O 3 /mg DOC) could enhance MIB and geosmin abatement by conventional ozonation, this approach resulted in significant bromate formation. By installing a carbon-based cathode to electrochemically produce H 2 O 2 from cathodic oxygen reduction, conventional ozonation can be conveniently upgraded to an E-peroxone process. The electro-generated H 2 O 2 considerably enhanced the kinetics and to a lesser extent the yields of hydroxyl radical (•OH) from O 3 decomposition. Consequently, during the E-peroxone process, abatement of MIB and geosmin occurred at much higher rates than during conventional ozonation. In addition, for a given specific ozone dose, the MIB and geosmin abatement efficiencies increased moderately in the E-peroxone (by ∼8-9% and ∼10-25% in the batch and semi-batch tests, respectively) with significantly lower bromate formation compared to conventional ozonation. These results suggest that the E-peroxone process may serve as an attractive backup of conventional ozonation processes during accidental spills or seasonal events such as algal blooms when high ozone doses are required to enhance MIB and geosmin abatement. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jones, T.; Chappell, N. A.
2013-12-01
Few watershed modeling studies have addressed DOC dynamics through storm hydrographs (notable exceptions include Boyer et al., 1997 Hydrol Process; Jutras et al., 2011 Ecol Model; Xu et al., 2012 Water Resour Res). In part this has been a consequence of an incomplete understanding of the biogeochemical processes leading to DOC export to streams (Neff & Asner, 2001, Ecosystems) & an insufficient frequency of DOC monitoring to capture sometimes complex time-varying relationships between DOC & storm hydrographs (Kirchner et al., 2004, Hydrol Process). We present the results of a new & ongoing UK study that integrates two components - 1/ New observations of DOC concentrations (& derived load) continuously monitored at 15 minute intervals through multiple seasons for replicated watersheds; & 2/ A dynamic modeling technique that is able to quantify storage-decay effects, plus hysteretic, nonlinear, lagged & non-stationary relationships between DOC & controlling variables (including rainfall, streamflow, temperature & specific biogeochemical variables e.g., pH, nitrate). DOC concentration is being monitored continuously using the latest generation of UV spectrophotometers (i.e. S::CAN spectro::lysers) with in situ calibrations to laboratory analyzed DOC. The controlling variables are recorded simultaneously at the same stream stations. The watersheds selected for study are among the most intensively studied basins in the UK uplands, namely the Plynlimon & Llyn Brianne experimental basins. All contain areas of organic soils, with three having improved grasslands & three conifer afforested. The dynamic response characteristics (DRCs) that describe detailed DOC behaviour through sequences of storms are simulated using the latest identification routines for continuous time transfer function (CT-TF) models within the Matlab-based CAPTAIN toolbox (some incorporating nonlinear components). To our knowledge this is the first application of CT-TFs to modelling DOC processes. Furthermore this allows a data-based mechanistic (DBM) modelling philosophy to be followed where no assumptions about processes are defined a priori (given that dominant processes are often not known before analysis) & where the information contained in the time-series is used to identify multiple structures of models that are statistically robust. Within the final stage of DBM, biogeochemical & hydrological processes are interpreted from those models that are observable from the available stream time-series. We show that this approach can simulate the key features of DOC dynamics within & between storms & that some of the resultant response characteristics change with varying DOC processes in different seasons. Through the use of MISO (multiple-input single-output) models we demonstrate the relative importance of different variables (e.g., rainfall, temperature) in controlling DOC responses. The contrasting behaviour of the six experimental catchments is also reflected in differing response characteristics. These characteristics are shown to contribute to understanding of basin-integrated DOC export processes & to the ecosystem service impacts of DOC & color on commercial water treatment within the surrounding water supply basins.
Rosenblum, James; Thurman, E Michael; Ferrer, Imma; Aiken, George; Linden, Karl G
2017-12-05
A long-term field study (405 days) of a hydraulically fractured well from the Niobrara Formation in the Denver-Julesburg Basin was completed. Characterization of organic chemicals used in hydraulic fracturing and their changes through time, from the preinjected fracturing fluid to the produced water, was conducted. The characterization consisted of a mass balance by dissolved organic carbon (DOC), volatile organic analysis by gas chromatography/mass spectrometry, and nonvolatile organic analysis by liquid chromatography/mass spectrometry. DOC decreased from 1500 mg/L in initial flowback to 200 mg/L in the final produced water. Only ∼11% of the injected DOC returned by the end of the study, with this 11% representing a maximum fraction returned since the formation itself contributes DOC. Furthermore, the majority of returning DOC was of the hydrophilic fraction (60-85%). Volatile organic compound analysis revealed substantial concentrations of individual BTEX compounds (0.1-11 mg/L) over the 405-day study. Nonvolatile organic compounds identified were polyethylene glycols (PEGs), polypropylene glycols (PPG), linear alkyl-ethoxylates, and triisopropanolamine (TIPA). The distribution of PEGs, PPGs, and TIPA and their ubiquitous presence in our samples and the literature illustrate their potential as organic tracers for treatment operations or in the event of an environmental spill.
Zhang, Yixiang; Liang, Xinqiang; Wang, Zhibo; Xu, Lixian
2015-01-01
High content of organic matter in the downstream of watersheds underscored the severity of non-point source (NPS) pollution. The major objectives of this study were to characterize and quantify dissolved organic matter (DOM) in watersheds affected by NPS pollution, and to apply self-organizing map (SOM) and parallel factor analysis (PARAFAC) to assess fluorescence properties as proxy indicators for NPS pollution and labor-intensive routine water quality indicators. Water from upstreams and downstreams was sampled to measure dissolved organic carbon (DOC) concentrations and excitation-emission matrix (EEM). Five fluorescence components were modeled with PARAFAC. The regression analysis between PARAFAC intensities (Fmax) and raw EEM measurements indicated that several raw fluorescence measurements at target excitation-emission wavelength region could provide similar DOM information to massive EEM measurements combined with PARAFAC. Regression analysis between DOC concentration and raw EEM measurements suggested that some regions in raw EEM could be used as surrogates for labor-intensive routine indicators. SOM can be used to visualize the occurrence of pollution. Relationship between DOC concentration and PARAFAC components analyzed with SOM suggested that PARAFAC component 2 might be the major part of bulk DOC and could be recognized as a proxy indicator to predict the DOC concentration. PMID:26526140
Rosenblum, James; Thurman, E. Michael; Ferrer, Imma; Aiken, George R.; Linden, Karl G.
2017-01-01
A long-term field study (405 days) of a hydraulically fractured well from the Niobrara Formation in the Denver-Julesburg Basin was completed. Characterization of organic chemicals used in hydraulic fracturing and their changes through time, from the preinjected fracturing fluid to the produced water, was conducted. The characterization consisted of a mass balance by dissolved organic carbon (DOC), volatile organic analysis by gas chromatography/mass spectrometry, and nonvolatile organic analysis by liquid chromatography/mass spectrometry. DOC decreased from 1500 mg/L in initial flowback to 200 mg/L in the final produced water. Only ∼11% of the injected DOC returned by the end of the study, with this 11% representing a maximum fraction returned since the formation itself contributes DOC. Furthermore, the majority of returning DOC was of the hydrophilic fraction (60–85%). Volatile organic compound analysis revealed substantial concentrations of individual BTEX compounds (0.1–11 mg/L) over the 405-day study. Nonvolatile organic compounds identified were polyethylene glycols (PEGs), polypropylene glycols (PPG), linear alkyl-ethoxylates, and triisopropanolamine (TIPA). The distribution of PEGs, PPGs, and TIPA and their ubiquitous presence in our samples and the literature illustrate their potential as organic tracers for treatment operations or in the event of an environmental spill.
Dissolved Organic Carbon: Nitrate Ratios as a Driver of Methane Fluxes in Stream Ecosystems
NASA Astrophysics Data System (ADS)
Sullivan, B. W.; Wymore, A.; Schade, J. D.; McDowell, W. H.
2016-12-01
Fluvial ecosystems are poorly understood components of the global methane (CH4) budget because the ecology of CH4 fluxes in streams has yet to be sufficiently elucidated. Both CH4 production and uptake via oxidation are microbially mediated processes, but it is unclear where in the fluvial environment are the sources and sinks of CH4 and what role terrestrial inputs of carbon (C) and nutrients have on the magnitude and direction of CH4 flux. To address these uncertainties, we measured CH4 fluxes in a laboratory incubation from two temperate headwater streams that differed in ambient dissolved organic carbon (DOC) and nitrate (NO3-) concentrations. We amended stream water and sediment microcosms from each site with labile DOC from senesced leaf litter to assess how DOC concentration and the DOC:NO3- ratio affect proximate controls on CH4 flux. Lastly, we manipulated sediment and water column ratios (0-100%) to estimate sources and fates of CH4 flux within the ecosystem. We measured CH4 fluxes for the first 120 minutes of the incubation to simulate short-term, in stream processes. Initially, streams were a source of methane, but switched to a sink within 120 minutes. Methane fluxes were statistically similar in both stream sediment and water, suggesting that microbial processing of CH4 has similar directionality and magnitude in each environment. Both CH4 oxidation and production were significantly correlated with the DOC: NO3- ratio over the course of the incubation. Early in the incubation, increasing DOC: NO3- increased CH4 flux, but late in the incubation, increasing DOC: NO3- increased CH4 oxidation. Together, our results challenge existing paradigms of CH4 flux in the fluvial environment and identify the DOC:NO3- ratio as a possible mechanism that can explain spatial and temporal CH4 flux patterns in streams.
NASA Astrophysics Data System (ADS)
Majumder, Santanu; Datta, Saugata; Nath, Bibhash; Neidhardt, Harald; Sarkar, Simita; Roman-Ross, Gabriela; Berner, Zsolt; Hidalgo, Manuela; Chatterjee, Debankur; Chatterjee, Debashis
2016-04-01
The present study examines the groundwater and surface water geochemistry of two different geomorphic domains within the Chakdaha block, West Bengal, in an attempt to decipher potential influences of groundwater abstraction on the hydrochemical evolution of the aquifer, the effect of different water inputs (monsoon rain, irrigation and downward percolation from surface water impoundments) to the groundwater system and concomitant As release. A low-land flood plain and a natural levee have been selected for this purpose. Although the stable isotopic signatures of oxygen (δ18O) and hydrogen (δ2H) are largely controlled by local precipitation, the isotopic composition falls sub-parallel to the Global Meteoric Water Line (GMWL). The Cl/Br molar ratio indicates vertical recharge into the wells within the flood plain area, especially during the post-monsoon season, while influences of both evaporation and vertical mixing are visible within the natural levee wells. Increase in mean DOC concentrations (from 1.33 to 6.29 mg/L), from pre- to post-monsoon season, indicates possible inflow of organic carbon to the aquifer during the monsoonal recharge. Concomitant increase in AsT, Fe(II) and HCO3- highlights a possible initial episode of reductive dissolution of As-rich Fe-oxyhydroxides. The subsequent sharp increase in the mean As(III) proportions (by 223%), particularly in the flood plain samples during the post-monsoon season, which is accompanied by a slight increase in mean AsT (7%) may refer to anaerobic microbial degradation of DOC coupled with the reduction of As(V) to As(III) without triggering additional As release from the aquifer sediments.
NASA Astrophysics Data System (ADS)
Chatterjee, Debashis
2017-04-01
The investigation examines the groundwater and surface water geochemistry of two different geomorphics in West Bengal. During investigation, several key factors are taken into account e.g. potential influences of groundwater abstraction on the hydrochemical evolution of the aquifer, the effect of different water inputs (monsoon rain, irrigation and downward percolation from surface water impoundments) to the groundwater system and accompanying As release. A natural levee and low-land flood plain have been chosen for said investigation. The results reveal that the stable isotopic signatures of oxygen (d18O) and hydrogen (d2H) are governed by local precipitation, the isotopic composition falls sub-parallel to the Global Meteoric Water Line (GMWL). The Cl/Br molar ratio indicates vertical recharge into the wells within the flood plain area, notably during the post-monsoon season, while influences of both evaporation and vertical mixing are visible within the natural levee wells. The important finding is the increasing mean DOC concentrations (from 1.33 to 6.29 mg/L), from pre- to post-monsoon season, which is indicative of possible inflow of organic carbon to the aquifer during the monsoonal recharge. This suggests the subsequent increase in AsT, Fe(II) and HCO3 highlighting a possible initial episode of reductive dissolution of As-rich Fe-oxyhydroxides. The abrupt increase in the mean As(III) proportions (by 223%), notably in the flood plain samples during the post-monsoon season. This is attended by a slight increase in mean AsT (7%). This may refer to anaerobic microbial degradation of DOC coupled with the reduction of As(V) to As(III) without resulting in additional As release from the aquifer sediments.
The Heterotrophic Bacterial Response During the Meso-scale Southern Ocean Iron Experiment (SOFeX)
NASA Astrophysics Data System (ADS)
Oliver, J. L.; Barber, R. T.; Ducklow, H. W.
2002-12-01
Previous meso-scale iron enrichments have demonstrated the stimulatory effect of iron on primary productivity and the accelerated flow of carbon into the surface ocean foodweb. In stratified waters, heterotrophic activity can work against carbon export by remineralizing POC and/or DOC back to CO2, effectively slowing the biological pump. To assess the response of heterotrophic activity to iron enrichment, we measured heterotrophic bacterial production and abundance during the Southern Ocean Iron Experiment (SOFeX). Heterotrophic bacterial processes primarily affect the latter of the two carbon export mechanisms, removal of DOC to the deep ocean. Heterotrophic bacterial production (BP), measured via tritiated thymidine (3H-TdR) and leucine (3H-Leu) incorporation, increased ~40% over the 18-d observation period in iron fertilized waters south of the Polar Front (South Patch). Also, South Patch BP was 61% higher than in the surrounding unfertilized waters. Abundance, measured by flow cytometry (FCM) and acridine orange direct counts (AODC), also increased in the South Patch from 3 to 5 x 108 cells liter-1, a 70% increase. Bacterial biomass increased from ~3.6 to 6.3 μg C liter-1, a clear indication that production rates exceeded removal rates (bactivory, viral lysis) over the course of 18 days. Biomass within the fertilized patch was 11% higher than in surrounding unfertilized waters reflecting a similar trend. This pattern is in contrast to SOIREE where no accumulation of biomass was observed. High DNA-containing (HDNA) cells detected by FCM also increased over time in iron fertilized waters from 20% to 46% relative to the total population suggesting an active subpopulation of cells that were growing faster than the removal rates. In iron fertilized waters north of the Polar Front (North Patch), BP and abundance were ~90% and 80% higher, respectively, than in unfertilized waters. Our results suggest an active bacterial population that responded to iron fertilization by utilizing newly produced DOC and/or iron and which grew at rates that exceeded removal rates. Differences in the microbial response between SOFeX and SOIREE are subtle, and may be related to differences in foodweb structure prior to and during the response to iron enrichment.
NASA Astrophysics Data System (ADS)
Chittleborough, D. J.; Churchman, J.
2005-05-01
The inevitable loss of P and DOC in runoff from pastures into water courses and water bodies poses a major environmental problem for industries such as dairy. We report a study of a novel approach to amending soils in dairy pastures. It is a test of the applicability to the field of the results of laboratory work that had shown that addition to soils of a water soluble polymer (Poly-DADMAC) - widely used as a coagulant in drinking water treatment - considerably enhanced the uptake by soils of anions, including phosphate. Its successful application in the field promises to provide a safe, easily-applied and relatively low-cost chemical as an soil amendment to restrain P and DOC in the soil against their loss downslope in runoff. Using a rainfall simulator to generate runoff, we show that most (on average >70%) of both the P and DOC that is lost from untreated pastures can be retained in the soil. It is only necessary to treat a buffer strip comprising 10% of the whole area in order to retain most of the P and DOC at a cost for polymer for one treatment of between 200 and 400/hectare of pasture. Whereas the effectiveness of the polymer treatment diminishes with time and was minimal after 85 days of treatment, the seasonality of rainfall in Southern Australia, where the research was conducted, means that most of the total year's losses of P and DOC can be restrained by one well-timed application in a normal year. Further application may be necessary in a wet year, but this aspect requires further research. When rainfall was exceptionally heavy, losses of P could not be contained by the treatment, although it remained effective in restraining DOC. The treatment did not enhance erosion and erosion losses could be decreased relative to untreated controls with low additions of polymer.