Sample records for surface water nutrient

  1. Nutrient Loss in Runoff from Turf: Effect on Surface Water Quality

    USDA-ARS?s Scientific Manuscript database

    Excess nutrients in surface waters may result in enhanced algal blooms and plant growth that can lead to eutrophication and a decline in water quality. The applicatin of fertilizer to golf courses may be a source of nutrients to surface waters. Runoff studies were conducted to measure applied nitrog...

  2. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    NASA Astrophysics Data System (ADS)

    Yu, Liang; Rozemeijer, Joachim; van Breukelen, Boris M.; Ouboter, Maarten; van der Vlugt, Corné; Broers, Hans Peter

    2018-01-01

    The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN), total phosphorus (TP), NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban-agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs) in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of organic matter in subsurface sediments coupled to sulfate reduction and possibly methanogenesis. The large loads of nutrient-rich groundwater seepage into the deepest polders indirectly affect surface water quality in the surrounding area, because excess water from the deep polders is pumped out and used to supply water to the surrounding infiltrating polders in dry periods. The study shows the importance of the connection between groundwater and surface water nutrient chemistry in the greater Amsterdam area. We expect that taking account of groundwater-surface water interaction is also important in other subsiding and urbanising deltas around the world, where water is managed intensively in order to enable agricultural productivity and achieve water-sustainable cities.

  3. Investigation of Carbon, Nutrients, and Groundwater Inputs in Coastal Florida Using Colored Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Arellano, A. R.; Coble, P. G.; Conmy, R. N.; Marine Spectrochemistry Group

    2010-12-01

    Very few studies of the exchange of water between aquifers and the ocean have been conducted along the Florida coast. Progression of residential and agricultural development in coastal areas is leading to increased nutrients from fertilizers and wastewaters to groundwater. A portion of these nutrients ultimately is released to coastal surface waters. Groundwater mining has increased salt water intrusions in coastal aquifers which may further enhance nutrient fluxes to coastal surface waters. Nutrient concentration in coastal groundwater is sometimes higher than those in river water, counterbalancing for the lower mass flux of groundwater relative to surface waters. Nutrient and carbon inputs through groundwater in certain areas may play an important role in cycling and primary productivity in the coastal ocean. King’s Bay is a spring-fed watershed and manatee sanctuary located on the West Florida Shelf. Over the past 25 years, springs supplying groundwater to King’s Bay have shown a three-fold increase in nitrate concentration and increased invasion of nuisance algae. It has been challenging to track sources of both nutrients and other water quality parameters because there are multiple water supplies to King’s Bay. The goal of this project is to improve the estimate of water, nutrients, and carbon from groundwater discharge into the coastal zone. This paper will present preliminary results of high resolution fluorescence spectroscopy analyses of the various source water types in the King's Bay watershed, including deep and shallow aquifers, wells, springs, and surface water sources. Samples were obtained from various sites--5 springs, 27 wells, 12 surface, and 9 lakes and rivers-- within the King’s Bay area during one dry season. Lakes and rivers had the highest fluorescence intensities and showed similar composition, with the most red-shifted emission maxima. Second highest concentration was seen in some of the wells which had wide range in both composition and intensities. King’s Bay surface sites appear to be a mixture of surface water and spring water based on both composition and concentration. Springs samples were all similar in composition, with concentrations in middle range found in well samples. These results will be discussed in reference to determination of source of water, carbon, and nutrients to the springs.

  4. Estimation of Shallow Groundwater Discharge and Nutrient Load into a River

    Treesearch

    Ying Ouyang

    2012-01-01

    Pollution of rivers with excess nutrients due to groundwater discharge, storm water runoff, surface loading,and atmospheric deposition is an increasing environmental concern worldwide. While the storm water runoff and surface loading of nutrients into many rivers have been explored in great detailed, the groundwater discharge of nutrients into the rivers has not yet...

  5. Comparison of Two Spectrophotometric Techniques for Nutrients Analyses in Water Samples

    NASA Astrophysics Data System (ADS)

    Bartošová, Alica; Michalíková, Anna; Sirotiak, Maroš; Soldán, Maroš

    2013-01-01

    The aim of this contribution is to compare two common techniques for determining the concentrations of nitrate, nitrite, ammonium and phosphates in surface water and groundwater. Excess of these nutrients in water can directly affect human health (e.g. methemoglobinaemia) or indirectly through the products of secondary pollution - eutrophication (e.g. cyanotoxins, emanation of hydrogen sulphide, mercaptanes, methane...). Negative impact of nutrients excess in surface water often causes the destruction of water ecosystems, and therefore, common substances of these elements must be monitored and managed. For these experiments two spectrophotometric techniques - ultraviolet spectrophotometry and nutrient photometry were used. These techniques are commonly used for quick and simple analyses of nutrients in waste water. There are calibration curves for each nutrient and for determination of their concentration.

  6. Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review.

    PubMed

    Liu, Junzhuo; Wu, Yonghong; Wu, Chenxi; Muylaert, Koenraad; Vyverman, Wim; Yu, Han-Qing; Muñoz, Raúl; Rittmann, Bruce

    2017-10-01

    Innovative and cost-effective technologies for advanced nutrient removal from surface water are urgently needed for improving water quality. Conventional biotechnologies, such as ecological floating beds, or constructed wetlands, are not effective in removing nutrients present at low-concentration. However, microalgae-bacteria consortium is promising for advanced nutrient removal from wastewater. Suspended algal-bacterial systems can easily wash out unless the hydraulic retention time is long, attached microalgae-bacteria consortium is more realistic. This critical review summarizes the fundamentals and status of attached microalgae-bacteria consortium for advanced nutrient removal from surface water. Key advantages are the various nutrient removal pathways, reduction of nutrients to very low concentration, and diversified photobioreactor configurations. Challenges include poor identification of functional species, poor control of the community composition, and long start-up times. Future research should focus on the selection and engineering of robust microbial species, mathematical modelling of the composition and functionality of the consortium, and novel photobioreactor configurations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Surface-water nutrient conditions and sources in the United States Pacific Northwest

    USGS Publications Warehouse

    Wise, D.R.; Johnson, H.M.

    2011-01-01

    The SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was used to perform an assessment of surface-water nutrient conditions and to identify important nutrient sources in watersheds of the Pacific Northwest region of the United States (U.S.) for the year 2002. Our models included variables representing nutrient sources as well as landscape characteristics that affect nutrient delivery to streams. Annual nutrient yields were higher in watersheds on the wetter, west side of the Cascade Range compared to watersheds on the drier, east side. High nutrient enrichment (relative to the U.S. Environmental Protection Agency's recommended nutrient criteria) was estimated in watersheds throughout the region. Forest land was generally the largest source of total nitrogen stream load and geologic material was generally the largest source of total phosphorus stream load generated within the 12,039 modeled watersheds. These results reflected the prevalence of these two natural sources and the low input from other nutrient sources across the region. However, the combined input from agriculture, point sources, and developed land, rather than natural nutrient sources, was responsible for most of the nutrient load discharged from many of the largest watersheds. Our results provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to environmental managers in future water-quality planning efforts.

  8. Spatial and Temporal Scales of Surface Water-Groundwater Interactions

    NASA Astrophysics Data System (ADS)

    Boano, F.

    2016-12-01

    The interfaces between surface water and groundwater (i.e., river and lake sediments) represent hotspots for nutrient transformation in watersheds. This intense biochemical activity stems from the peculiar physicochemical properties of these interface areas. Here, the exchange of water and nutrients between surface and subsurface environments creates an ecotone region that can support the presence of different microbial species responsible for nutrient transformation. Previous studies have elucidated that water exchange between rivers and aquifers is organized in a complex system of nested flow cells. Each cell entails a range of residence timescales spanning multiple order of magnitudes, providing opportunities for different biochemical reactions to occur. Physically-bases models represent useful tools to deal with the wide range of spatial and temporal scales that characterize surface-subsurface water exchange. This contribution will present insights about how hydrodynamic processes control scale organization for surface water - groundwater interactions. The specific focus will be the influence of exchange processes on microbial activity and nutrient transformation, discussing how groundwater flow at watershed scale controls flow conditions and hence constrain microbial reactions at much smaller scales.

  9. Nutrients in ground water and surface water of the United States; an analysis of data through 1992

    USGS Publications Warehouse

    Mueller, D.K.; Hamilton, P.A.; Helsel, D.R.; Hitt, K.J.; Ruddy, B.C.

    1995-01-01

    Historical data on nutrient (nitrogen and phosphorus species) concentrations in ground-and surface-water samples were compiled from 20 study units of the National Water-Quality Assessment (NAWQA) Program and 5 supplemental study areas. The resultant national retrospective data sets contained analyses of about 12,000 Found-water and more than 22,000 surface-water samples. These data were interpreted on regional and national scales by relating the distributions of nutrient concentrations to ancillary data, such as land use, soil characteristics, and hydrogeology, provided by local study-unit personnel. The information provided in this report on environmental factors that affect nutrient concentrations in ground and surface water can be used to identify areas of the Nation where the vulnerability to nutrient contamination is greatest. Nitrate was the nutrient of greatest concern in the historical ground-water data. It is the only nutrient that is regulated by a national drinking-water standard. Nitrate concentrations were significantly different in ground water affected by various land uses. Concentrations in about 16 percent of the samples collected in agricultural areas exceeded the drinking-water standard. However, the standard was exceeded in only about 1 percent of samples collected from public-supply wells. A variety of ancillary factors had significant relations to nitrate concentrations in ground water beneath agricultural areas. Concentrations generally were highest within 100 feet of the land surface. They were also higher in areas where soil and geologic characteristics promoted rapid movement of water to the aquifer. Elevated concentrations commonly occurred in areas underlain by permeable materials, such as carbonate bedrock or unconsolidated sand and gravel, and where soils are generally well drained. In areas where water movement is impeded, denitrification might lead to low concentrations of nitrate in the ground water. Low concentrations were also related to interspersion of pasture and woodland with cropland in agricultural areas. Elevated nitrate concentrations in areas of more homogeneous cropland probably were a result of intensive nitrogen fertilizer application on large tracts of land. Certain regions of the United States seemed more vulnerable to nitrate contamination of ground water in agricultural areas. Regions of greater vulnerability included parts of the Northeast, Midwest, and West Coast. The well-drained soils, typical in these regions, have little capacity to hold water and nutrients; therefore, these soils receive some of the largest applications of fertilizer and irrigation in the Nation. The agricultural land is intensively cultivated for row crops, with little interspersion of pasture and woodland. Nutrient concentrations in surface water also were generally related to land use. Nitrate concentrations were highest in samples from sites downstream from agricultural or urban areas. However, concentrations were not as high as in ground water and rarely exceeded the drinking-water standard. Elevated concentrations of nitrate in surface water of the Northeastern United States might be related to large amounts of atmospheric deposition (acid rain). High concentrations in parts of the Midwest might be related to tile drainage of agricultural fields. Ammonia and phosphorus concentrations were highest downstream from urban areas. These concentrations generally were high enough to warrant concerns about toxicity to fish and accelerated eutrophication. Recent improvements in wastewater treatment have decreased ammonia concentrations downstream from some urban areas, but the result has been an increase in nitrate concentrations. Information on environmental factors that affect water quality is useful to identify drainage basins throughout the Nation with the greatest vulnerability for nutrient contamination and to delineate areas where ground-water or surface-water contamination is most likely to oc

  10. Surface-Water Nutrient Conditions and Sources in the United States Pacific Northwest1

    PubMed Central

    Wise, Daniel R; Johnson, Henry M

    2011-01-01

    Abstract The SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was used to perform an assessment of surface-water nutrient conditions and to identify important nutrient sources in watersheds of the Pacific Northwest region of the United States (U.S.) for the year 2002. Our models included variables representing nutrient sources as well as landscape characteristics that affect nutrient delivery to streams. Annual nutrient yields were higher in watersheds on the wetter, west side of the Cascade Range compared to watersheds on the drier, east side. High nutrient enrichment (relative to the U.S. Environmental Protection Agency's recommended nutrient criteria) was estimated in watersheds throughout the region. Forest land was generally the largest source of total nitrogen stream load and geologic material was generally the largest source of total phosphorus stream load generated within the 12,039 modeled watersheds. These results reflected the prevalence of these two natural sources and the low input from other nutrient sources across the region. However, the combined input from agriculture, point sources, and developed land, rather than natural nutrient sources, was responsible for most of the nutrient load discharged from many of the largest watersheds. Our results provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to environmental managers in future water-quality planning efforts. PMID:22457584

  11. Assessment of total nitrogen and total phosphorus in selected surface water of the National Park Service Northern Colorado Plateau Network, Colorado, Utah, and Wyoming, from 1972 through 2007

    USGS Publications Warehouse

    Brown, Juliane B.; Thoma, David P.

    2012-01-01

    Nutrients are a nationally recognized concern for water quality of streams, rivers, groundwater, and water bodies. Nutrient impairment is documented by the U.S. Environmental Protection Agency as a primary cause of degradation in lakes and reservoirs, and nutrients are related to organic enrichment and oxygen depletion, which is an important cause of degradation in streams. Recently (2011), an effort to develop State-based numeric nutrient criteria has resulted in renewed emphasis on nutrients in surface water throughout the Nation. In response to this renewed emphasis and to investigate nutrient water quality for Northern Colorado Plateau Network streams, the U.S. Geological Survey, in cooperation with the National Park Service, assessed total nitrogen and total phosphorus concentration data for 93 sites in or near 14 National Park units for the time period 1972 through 2007.

  12. Water quality assessment of the San Joaquin--Tulare basins, California; analysis of available data on nutrients and suspended sediment in surface water, 1972-1990

    USGS Publications Warehouse

    Kratzer, Charles R.; Shelton, Jennifer L.

    1998-01-01

    Nutrients and suspended sediment in surface water of the San Joaquin-Tulare basins in California were assessed using 1972-1990 data from the U.S. Geological Survey's National Water Information System and the U.S. Environmental Protection Agency's STOrage and RETrieval database. Loads of nutrients and suspended sediment were calculated at several sites and the contributions from point and nonpoint sources were estimated. Trends in nutrient and suspended-sediment concentrations were evaluated at several sites, especially at the basin outlet on the San Joaquin River. Comparisons of nutrient and suspended sediment concentrations were made among three environmental settings: the San Joaquin Valley--west side, the San Joaquin Valley--east side, and the Sierra Nevada.

  13. Water budgets, water quality, and analysis of nutrient loading of the Winter Park chain of lakes, central Florida, 1989-92

    USGS Publications Warehouse

    Phelps, G.G.; German, E.R.

    1995-01-01

    The Winter Park chain of lakes (Lakes Maitland, Virginia, Osceola, and Mizell) has a combined area of about 900 acres, an immediate drainage area of about 3,100 acres, and mean depths ranging from 11 to 15 feet. The lakes are an important recreational resource for the surrounding communities, but there is concern about the possible effects of stormwater runoff and seepage of nutrient-enriched ground water on the quality of water in the lakes. The lakes receive water from several sources: rainfall on lake surfaces, inflow from other surface-water bodies, stormflow that enters the lakes through storm drains or by direct runoff from land adjacent to the lakes and ground-water seepage. Water leaves the lakes by evaporation, surface outflow, and ground-water outflow. Of the three, only surface outflow can be measured directly. Rainfall, surface inflow and outflow, and lake-stage data were collected from October 1, 1989, to September 30, 1992. Stormflow, evaporation and ground-water inflow and outflow were estimated for the 3 years of the study. Ground-water outflow was calculated by evaluating the rate of lake-stage decline during dry periods. Estimated ground-water outflow was compared to downward leakage rates estimated by ground-water flow models. Lateral ground-water inflow from surficial sediments was calculated as the residual of the flow budget. Flow budgets were calculated for the 3 years of the study. In water year 1992 (a year with about average rainfall), inflow consisted of rainfall, 48 inches; stormflow, 15 inches; surface inflow, 67 inches; and ground water, 40 inches. The calculated outflows were evaporation, 47 inches; surface outflow, 90 inches; and ground water, 33 inches. Water-quality data also were used to calculate nutrient budgets for the lakes. Bimonthly water samples were collected from the lakes and at surface inflow and outflow sites, and were analyzed for physical characteristics, dissolved oxygen, pH, specific conductance, major ions, the nutrients nitrogen and phosphorus, and chlorophyll (collected at lake sites only). Specific conductance ranged from about 190 to 230 microsiemens per centimeter at 25 degrees Celsius in Lakes Maitland, Virginia and Osceola and from about 226 to 260 microsiemens per centimeter at 25 degrees Celsius in Lake Mizell. The median concentrations of total ammonia-plus-organic nitrogen in all the lakes ranged from 0.79 to 0.99 milligrams per liter. Median total phosphorus concentrations ranged from less than 0.02 to 0.20 milligrams per liter. Stormwater samples were collected for 17 storms at one storm-drain site and 16 storms at another storm-drain site on Lake Osceola. Median total nitrogen concentrations at the sites were 2.23 and 3.06 milligrams per liter and median total phosphorus concentrations were 0.34 and 0.40 milligrams per liter. The water quality in the Winter Park lakes generally is fair to good, based on a trophic-state index used by the Florida Department of Environmental Protection for assessing the tropic state of Florida lakes. This index was determined from median total nitrogen, total phosphorus, and chlorophyll-a concentrations, and median Secchi-disk transparency for all lakes for the period September 1989 to June 1992. Based on a one-time sampling of 20 sites around the lakes, surficial ground-water quality is highly variable. Nutrient concentrations were highly variable and could not be correlated to the proximity of septic tanks. Fertilizer probably is the primary source of nutrients in the surficial ground water. Nutrient budgets were calculated for the lakes for the 3 years of the study. The most variable source of nutrient loading to the lakes is stormwater. Nutrient-loading modeling indicates that reduction of nutrients in stormflow probably would improve lake-water quality. However, even with complete removal of nitrogen and phosphorus from stormwater, the lakes might still be mesotrophic with respect to both nutrients during periods of below ave

  14. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, D.H.

    1984-08-30

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water. 1 fig.

  15. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, David H.

    1986-01-01

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water.

  16. Hydrology, nutrient concentrations, and nutrient yields in nearshore areas of four lakes in northern Wisconsin, 1999-2001

    USGS Publications Warehouse

    Graczyk, David J.; Hunt, Randall J.; Greb, Steven R.; Buchwald, Cheryl A.; Krohelski, James T.

    2003-01-01

    The effects of shoreline development on water quality and nutrient yields in nearshore areas of four lakes in northern Wisconsin were investigated from October 1999 through September 2001. The study measured surface runoff and ground-water flows from paired developed (sites containing lawn, rooftops, sidewalks, and driveways) and undeveloped (mature and immature woods) catchments adjacent to four lakes in northern Wisconsin. Water samples from surface runoff and ground water were collected and analyzed for nutrients. Coupled with water volumes, loads and subsequent yields of selected constituents were computed for developed and undeveloped catchments. The median runoff from lawn surfaces ranged from 0.0019 to 0.059 inch over the catchment area. Median surface runoff estimates from the wooded catchments were an order of magnitude less than those from the lawn catchments. The increased water volumes from the lawn catchments resulted in greater nutrient loads and subsequent annual nutrient yields from the developed sites. Soil temperature and soil moisture were measured at two sites with mixed lawn and wooded areas. At both of these sites, the area covered with a lawn commonly was warmer than the wooded area. No consistent differences in soil moisture were found. A ground-water model was constructed to simulate the local flow systems at two of the paired catchments. Model simulations showed that much of the ground water delivered to the lake originated from distant areas that did not contribute runoff directly to the lake. Surface runoff and ground-water nutrient concentrations from the lawn and wooded catchments did not have apparent patterns. Some of the median concentrations from lawns were significantly different (at the 0.05 significance level) from those at wooded catchments. Water wells and piezometers were sampled for chemical analyses three times during the study period. Variability in the shallow ground-water chemistry over time in the lawn samples was larger than samples from the wooded areas and upgradient wells. Median nutrient yields in surface runoff from lawns always were greater than those from the wooded catchments. Runoff volumes were the most important factor in determining whether lawns or wooded catchments contribute more nutrients to the lake. The ground-water system had appreciable nutrient concentrations, and are likely an important pathway for nutrient transport to the lake. The nitrate plus nitrite nitrogen and total phosphorus yields to the ground-water system from a lawn catchment were approximately 3 to 4 times greater than those from the wooded catchment. There was no difference in the yields of dissolved inorganic phosphorus to the ground-water system from the lawn and wooded catchments. Study results demonstrate that choosing the appropriate landscape position for locating lawns in sloped areas (specifically, slopes that do not terminate at the lake or areas with intervening flat or buffer zones between lawn and lake) can help reduce the adverse effect of lawns on the shallow ground water and, ultimately, the lake. Additional information would be needed to extrapolate these results to a large drainage area of a lake.

  17. Water quality impacts from on-site waste disposal systems to coastal areas through groundwater discharge

    NASA Astrophysics Data System (ADS)

    Harris, P. J.

    1995-12-01

    This report summarizes research studies linking on-site waste disposal systems (OSDS) to pathogen and nutrient concentrations in groundwater with the potential to impact coastal embayments. Few studies connect OSDS to coastal water quality. Most studies examined pathogen and nutrient impacts to groundwater and omitted estimations of contaminants discharged to surface water. The majority of studies focused on nitrogen, with little information on pathogens and even less on phosphorus. Nitrogen discharged from OSDS poses the greatest threat to water quality. Vertical distance of septic tank infiltration system from the water table, septic system design, and siting remain the key components in minimizing potential impacts from OSDS for control of both pathogens and nutrients. The most comprehensive information connecting nutrient contributions from OSDS to surface water quality was the study conducted on Buttermilk Bay in Massachusetts where 74% of nitrogen to the bay was attributed to onsite disposal systems. In conclusion, further studies on the viability and transport of pathogens and nutrients through the groundwater aquifer and across the groundwater/surface-water interface are needed. Additional research on the importance of septic system design on the availability of contaminants to groundwater as well as the minimum distance between the septic system and water table necessary to protect groundwater are also indicated.

  18. Model development for nutrient loading estimates from paddy rice fields in Korea.

    PubMed

    Jeon, Ji-Hong; Yoon, Chun G; Ham, Jong-Hwa; Jung, Kwang-Wook

    2004-01-01

    A field experiment was performed to evaluate water and nutrient balances in paddy rice culture operations during 2001-2002. The water balance analysis indicated that about half (50-60%) of the total outflow was lost by surface drainage, with the remainder occurring by evapotranspiration (490-530 mm). The surface drainage from paddy fields was mainly caused by rainfall and forced-drainage, and in particular, the runoff during early rice culture periods depends more on the forced-drainage due to fertilization practices. Most of the total phosphorus (T-P) inflow was supplied by fertilization at transplanting, while the total nitrogen (T-N) inflow was supplied by the three fertilizations, precipitation. and from the upper paddy field, which comprised 13-33% of the total inflow. Although most of the nutrient outflow was attributed to plant uptake. nutrient loss by surface drainage was substantial, comprising 20% for T-N and 10% for T-P. Water and nutrient balances indicate that reduction of surface drainage from paddy rice fields is imperative for nonpoint source pollution control. The simplified computer model, PADDIMOD, was developed to simulate water and nutrient (T-N and T-P) behavior in the paddy rice field. The model predicts daily ponded water depth, surface drainage, and nutrient concentrations. It was formulated with a few equations and simplified assumptions, but its application and a model fitness test indicated that the simulation results reasonably matched the observed data. It is a simple and convenient planning model that could be used to evaluate BMPs of paddy rice fields alone or in combination with other complex watershed models. Application of the PADDIMOD to other paddy rice fields with different agricultural environments might require further calibration and validation.

  19. NITRATE RELEASE BY SALT MARSH PLANTS: AN OVERLOOKED NUTRIENT FLUX MECHANISM

    EPA Science Inventory

    Salt marshes provide water purification as an important ecosystem service in part by storing, transforming and releasing nutrients. This service can be quantified by measuring nutrient fluxes between marshes and surface waters. Many processes drive these fluxes, including photosy...

  20. Nutrient transport through a Vegetative Filter Strip with subsurface drainage.

    PubMed

    Bhattarai, Rabin; Kalita, Prasanta Kumar; Patel, Mita Kanu

    2009-04-01

    The transport of nutrients and soil sediments in runoff has been recognized as a noteworthy environmental issue. Vegetative Filter Strips (VFS) have been used as one of the best management practices (BMPs) for retaining nutrients and sediments from surface runoff, thus preventing the pollutants from reaching receiving waters. However, the effectiveness of a VFS when combined with a subsurface drainage system has not been investigated previously. This study was undertaken to monitor the retention and transport of nutrients within a VFS that had a subsurface drainage system installed at a depth of 1.2 m below the soil surface. Nutrient concentrations of NO(3)-N (Nitrate Nitrogen), PO(-)(4) (Orthophosphorus), and TP (Total Phosphorus) were measured in surface water samples (entering and leaving the VFS), and subsurface outflow. Soil samples were collected and analyzed for plant available Phosphorus (Bray P1) and NO(3)-N concentrations. Results showed that PO(-)(4), NO(3)-N, and TP concentrations decreased in surface flow through the VFS. Many surface outflow water samples from the VFS showed concentration reductions of as much as 75% for PO(-)(4) and 70% for TP. For subsurface outflow water samples through the drainage system, concentrations of PO(-)(4) and TP decreased but NO(3)-N concentrations increased in comparison to concentrations in surface inflow samples. Soil samples that were collected from various depths in the VFS showed a minimal buildup of nutrients in the top soil profile but indicated a gradual buildup of nutrients at the depth of the subsurface drain. Results demonstrate that although a VFS can be very effective in reducing runoff and nutrients from surface flow, the presence of a subsurface drain underneath the VFS may not be environmentally beneficial. Such a combination may increase NO(3)-N transport from the VFS, thus invalidating the purpose of the BMP.

  1. Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre.

    PubMed

    Johnson, Kenneth S; Riser, Stephen C; Karl, David M

    2010-06-24

    Concentrations of dissolved inorganic carbon (DIC) decrease in the surface mixed layers during spring and summer in most of the oligotrophic ocean. Mass balance calculations require that the missing DIC is converted into particulate carbon by photosynthesis. This DIC uptake represents one of the largest components of net community production in the world ocean. However, mixed-layer waters in these regions of the ocean typically contain negligible concentrations of plant nutrients such as nitrate and phosphate. Combined nutrient supply mechanisms including nitrogen fixation, diffusive transport and vertical entrainment are believed to be insufficient to supply the required nutrients for photosynthesis. The basin-scale potential for episodic nutrient transport by eddy events is unresolved. As a result, it is not understood how biologically mediated DIC uptake can be supported in the absence of nutrients. Here we report on high-resolution measurements of nitrate (NO(3)(-)) and oxygen (O(2)) concentration made over 21 months using a profiling float deployed near the Hawaii Ocean Time-series station in the North Pacific subtropical gyre. Our measurements demonstrate that as O(2) was produced and DIC was consumed over two annual cycles, a corresponding seasonal deficit in dissolved NO(3)(-) appeared in water at depths from 100 to 250 m. The deep-water deficit in NO(3)(-) was in near-stoichiometric balance with the fixed nitrogen exported to depth. Thus, when the water column from the surface to 250 m is considered as a whole, there is near equivalence between nutrient supply and demand. Short-lived transport events (<10 days) that connect deep stocks of nitrate to nutrient-poor surface waters were clearly present in 12 of the 127 vertical profiles.

  2. Application of the SPARROW model to assess surface-water nutrient conditions and sources in the United States Pacific Northwest

    USGS Publications Warehouse

    Wise, Daniel R.; Johnson, Henry M.

    2013-01-01

    The watershed model SPARROW (Spatially Referenced Regressions on Watershed attributes) was used to estimate mean annual surface-water nutrient conditions (total nitrogen and total phosphorus) and to identify important nutrient sources in catchments of the Pacific Northwest region of the United States for 2002. Model-estimated nutrient yields were generally higher in catchments on the wetter, western side of the Cascade Range than in catchments on the drier, eastern side. The largest source of locally generated total nitrogen stream load in most catchments was runoff from forestland, whereas the largest source of locally generated total phosphorus stream load in most catchments was either geologic material or livestock manure (primarily from grazing livestock). However, the highest total nitrogen and total phosphorus yields were predicted in the relatively small number of catchments where urban sources were the largest contributor to local stream load. Two examples are presented that show how SPARROW results can be applied to large rivers—the relative contribution of different nutrient sources to the total nitrogen load in the Willamette River and the total phosphorus load in the Snake River. The results from this study provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to researchers and water-quality managers performing local nutrient assessments.

  3. Tropical organic soils ecosystems in relation to regional water resources in southeast Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armentano, T. V.

    1982-01-01

    Tropical organic soils have functioned as natural sinks for carbon, nitrogen, slfur and other nutrients for the past 4000 years or more. Topographic evolution in peat swamp forests towards greater oligotrophy has concentrated storage of the limited nutrient stock in surface soils and biota. Tropical peat systems thus share common ecosystem characteristics with northern peat bogs and certain tropical oligotrophic forests. Organic matter accumulation and high cation-exchange-capacity limit nutrient exports from undisturbed organic soils, although nutrient retention declines with increasing eutrophy and wetland productivity. Peat swamps are subject to irreversible degradation if severely altered because disturbance of vegetation, surface peatsmore » and detritus can disrupt nuttrient cycles and reduce forest recovery capacity. Drainage also greatly increases exports of nitrogen, phosphorus and other nutrients and leads to downstream eutrophication and water quality degradation. Regional planning for clean water supplies must recognize the benefits provided by natural peatlands in balancing water supplies and regulating water chemistry.« less

  4. Characterization of biomass residues and their amendment effects on water sorption and nutrient leaching in sandy soil.

    PubMed

    Wang, Letian; Tong, Zhaohui; Liu, Guodong; Li, Yuncong

    2014-07-01

    In this study, we evaluated the efficiency of two types of biomass residues (fermentation residues from a bioethanol process, FB; brown mill residues from a papermaking process, BM) as amendments for a sandy soil. The characteristics of these residues including specific surface areas, morphologies and nutrient sorption capacity were measured. The effects of biorefinery residues on water and nutrient retention were investigated in terms of different particle sizes and loadings. The results indicated that bio-based wastes FB and BM were able to significantly improve water and nutrient retention of sandy soil. The residues with larger surface areas had better water and nutrient retention capability. Specifically, in the addition of 10% loading, FB and BM was able to improve water retention by approximately 150% and 300%, while reduce 99% of ammonium and phosphate concentration in the leachate compare to the soil control, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Maximizing the accuracy of field-derived numeric nutrient criteria in water quality regulations.

    PubMed

    McLaughlin, Douglas B

    2014-01-01

    High levels of the nutrients nitrogen and phosphorus can cause unhealthy biological or ecological conditions in surface waters and prevent the attainment of their designated uses. Regulatory agencies are developing numeric criteria for these nutrients in an effort to ensure that the surface waters in their jurisdictions remain healthy and productive, and that water quality standards are met. These criteria are often derived using field measurements that relate nutrient concentrations and other water quality conditions to expected biological responses such as undesirable growth or changes in aquatic plant and animal communities. Ideally, these numeric criteria can be used to accurately "diagnose" ecosystem health and guide management decisions. However, the degree to which numeric nutrient criteria are useful for decision making depends on how accurately they reflect the status or risk of nutrient-related biological impairments. Numeric criteria that have little predictive value are not likely to be useful for managing nutrient concerns. This paper presents information on the role of numeric nutrient criteria as biological health indicators, and the potential benefits of sufficiently accurate criteria for nutrient management. In addition, it describes approaches being proposed or adopted in states such as Florida and Maine to improve the accuracy of numeric criteria and criteria-based decisions. This includes a preference for developing site-specific criteria in cases where sufficient data are available, and the use of nutrient concentration and biological response criteria together in a framework to support designated use attainment decisions. Together with systematic planning during criteria development, the accuracy of field-derived numeric nutrient criteria can be assessed and maximized as a part of an overall effort to manage nutrient water quality concerns. © 2013 SETAC.

  6. Evaluation of nitrogen and phosphorus transport with runoff from fairway turf managed with hollow tine core cultivation and verticutting

    USDA-ARS?s Scientific Manuscript database

    Enrichment of surface waters with excess nutrients is associated with increased algal blooms, euthrophication and hypoxic zones, as reported in the northern Gulf of Mexico. A source of nutrients to surface waters results from fertilizer runoff. Management strategies used to maintain turf on golf cou...

  7. NAWQA, National Water-Quality Assessment Program; Allegheny-Monongahela River Basin

    USGS Publications Warehouse

    McAuley, Steven D.; Brown, Juliane B.; Sams, James I.

    1997-01-01

    Surface-water and ground-water quality and aquatic life can be significantly affected by the following principal issues identified in the Allegheny-Monongahela River Basin:Contaminants common to surface and under-ground coal mine discharge such as acidity, iron, aluminum, manganese, and sulfate.Volatile organic compounds (VOC’s), pesti-cides, and nutrients from increased urbanization.Runoff and loading of nutrients and pesticides to streams from nonpoint and point sources such as agricultural land uses.Radon in ground water.

  8. The impact of changing climate on surface and ground water quality in southeast of Ireland

    NASA Astrophysics Data System (ADS)

    Tribak, Kamal

    2015-04-01

    In the current changing climate globally, Ireland have been experiencing a yearly recurrent extreme heavy rainfall events in the last decade, with damaging visible effects socially, economically and on the environment. Ireland intensive agriculture production is a major treat to the aquatic environment, Nitrogen and phosphorus losses to the water courses are major causes to eutrophication. The European Water Frame Directive (WFD 2000/60/EC) and Nitrates Directive (91/676/EEC) sets a number of measures to better protect and improve water status. Five years of high temporal resolution river water quality data measurement from two contrasting catchment in the southeast of Ireland were correlated with rain fall and nutrients losses to the ground and surface water, additional to the integrated Southeast River District Basin ground and surface water quality to establish spatiotemporal connection to the agriculture activities, the first well-drained soil catchment had high coefficient correlation with rain fall with higher losses to groundwater, on the other hand higher nutrients losses to surface water were higher with less influence from groundwater recharge of N and P transfer, the poorly clay base soil contributed to higher increased losses to surface water during excessive rain fall. Agriculture activities, hydrology, geology and human interaction can interact according to their site specific setting and the effects will fluctuate dependent on the conditions influencing the impact on water quality, there is a requirement to better distinguish those effects together and identify areas and land uses control and nutrients management to improve the water quality, stakeholders co-operation along with effective polices, long term monitoring, nutrients pathways management and better understanding of the environmental factors interaction on national, regional and catchment scale to enable planning policies and enforcement measures to be more focused on areas of high risk than others.

  9. Estimated nitrogen and phosphorus inputs to the Fish Creek watershed, Teton County, Wyoming, 2009–15

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Sando, Roy; MacDonald, Michael J.; Girard, Carlin E.

    2016-12-15

    Nutrients, such as nitrogen and phosphorus, are essential for plant and animal growth and nourishment, but the overabundance of bioavailable nitrogen and phosphorus in water can cause adverse health and ecological effects. It is generally accepted that increased primary production of surface-water bodies because of high inputs of nutrients is now the most important polluting effect in surface water in the developed world.

  10. Tile Drainage Management Influences on Surface-Water and Groundwater Quality following Liquid Manure Application.

    PubMed

    Frey, Steven K; Topp, Ed; Ball, Bonnie R; Edwards, Mark; Gottschall, Natalie; Sunohara, Mark; Zoski, Erin; Lapen, David R

    2013-01-01

    This study investigated the potential for controlled tile drainage (CD) to reduce bacteria and nutrient loading to surface water and groundwater from fall-season liquid manure application (LMA) on four macroporous clay loam plots, of which two had CD and two had free-draining (FD) tiles. Rhodamine WT (RWT) was mixed into the manure and monitored in the tile water and groundwater following LMA. Tile water and groundwater quality were influenced by drainage management. Following LMA on the FD plots, RWT, nutrients, and bacteria moved rapidly via tiles to surface water; at the CD plots, tiles did not flow until the first post-LMA rainfall, so the immediate risk of LMA-induced contamination of surface water was abated. During the 36-d monitoring period, flow-weighted average specific conductance, redox potential, and turbidity, as well as total Kjeldahl N (TKN), total P (TP), NH-N, reactive P, and RWT concentrations, were higher in the CD tile effluent; however, because of lower tile discharge from the CD plots, there was no significant ( ≤ 0.05) difference in surface water nutrient and RWT loading between the CD and FD plots when all tiles were flowing. The TKN, TP, and RWT concentrations in groundwater also tended to be higher at the CD plots. Bacteria behaved differently than nutrients and RWT, with no significant difference in total coliform, , fecal coliform, fecal streptococcus, and concentrations between the CD and FD tile effluent; however, for all but , hourly loading was higher from the FD plots. Results indicate that CD has potential for mitigating bacteria movement to surface water. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Wind-induced flow velocity effects on nutrient concentrations at Eastern Bay of Lake Taihu, China.

    PubMed

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Jianwei; Gao, Xiaomeng; Wang, Wencai; Acharya, Kumud

    2017-07-01

    Shallow lakes are highly sensitive to respond internal nutrient loading due to wind-induced flow velocity effects. Wind-induced flow velocity effects on nutrient suspension were investigated at a long narrow bay of large shallow Lake Taihu, the third largest freshwater lake in China. Wind-induced reverse/compensation flow and consistent flow field probabilities at vertical column of the water were measured. The probabilities between the wind field and the flow velocities provided a strong correlation at the surface (80.6%) and the bottom (65.1%) layers of water profile. Vertical flow velocity profile analysis provided the evidence of delay response time to wind field at the bottom layer of lake water. Strong wind field generated by the west (W) and west-north-west (WNW) winds produced displaced water movements in opposite directions to the prevailing flow field. An exponential correlation was observed between the current velocities of the surface and the bottom layers while considering wind speed as a control factor. A linear model was developed to correlate the wind field-induced flow velocity impacts on nutrient concentration at the surface and bottom layers. Results showed that dominant wind directions (ENE, E, and ESE) had a maximum nutrient resuspension contribution (nutrient resuspension potential) of 34.7 and 43.6% at the surface and the bottom profile layers, respectively. Total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) average concentrations were 6.38, 1.5, and 0.03 mg/L during our field experiment at Eastern Bay of Lake Taihu. Overall, wind-induced low-to-moderate hydrodynamic disturbances contributed more in nutrient resuspension at Eastern Bay of Lake Taihu. The present study can be used to understand the linkage between wind-induced flow velocities and nutrient concentrations for shallow lakes (with uniform morphology and deep margins) water quality management and to develop further models.

  12. Evaluation of agricultural best-management practices in the Conestoga River headwaters, Pennsylvania; effects of nutrient management on water quality in the Little Conestoga Creek headwaters, 1983-89

    USGS Publications Warehouse

    Koerkle, E.H.; Fishel, D.K.; Brown, M.J.; Kostelnik, K.M.

    1996-01-01

    Water quality in the headwaters of the Little Conestoga Creek, Lancaster County, Pa., was investigated from April 1986 through September 1989 to determine possible effects of agricultural nutrient management on water quality. Nutrient management, an agricultural Best-Management Practice, was promoted in the 5.8-square-mile watershed by the U.S. Department of Agriculture Rural Clean Water Program. Nonpoint-source- agricultural contamination was evident in surface water and ground water in the watershed; the greatest contamination was in areas underlain by carbonate rock and with intensive row-crop and animal production. Initial implementation of nutrient management covered about 30 percent of applicable land and was concentrated in the Nutrient-Management Subbasin. By 1989, nutrient management covered about 45 percent of the entire Small Watershed, about 85 percent of the Nutrient- Management Subbasin, and less than 10 percent of the Nonnutrient-Management Subbasin. The number of farms implementing nutrient management increased from 14 in 1986 to 25 by 1989. Nutrient applications to cropland in the Nutrient- Management Subbasin decreased by an average of 35 percent after implementation. Comparison of base- flow surface-water quality from before and after implementation suggests that nutrient management was effective in slowing or reversing increases in concentrations of dissolved nitrate plus nitrite in the Nutrient-Management Subbasin. Although not statistically significant, the Mann-Whitney step-trend coefficient for the Nutrient-Management Subbasin was 0.8 milligram per liter, whereas trend coefficients for the Nonnutrient-Management Subbasin and the Small Watershed were 0.4 and 1.4 milligrams per liter, respectively, for the period of study. Analysis of covariance comparison of concurrent concentrations from the two sub- basins showed a significant decrease in concen- trations from the Nutrient-Management Subbasin compared to the Nonnutrient-Management Subbasin. The small, positive effect of nutrient management on base-flow water quality should be interpreted with caution. Lack of statistical significance for most tests, short-term variation in climate and agricultural activities, unknown ground-water flow rates, and insufficient agricultural-activity data for farms outside of the Nutrient-Management Subbasin were potential problems. A regression model relating nutrient applications to concen- trations of dissolved nitrate plus nitrite showed no significant explanatory relation.

  13. Anoxic monimolimnia: Nutrients devious feeders or bombs ready to explode?

    NASA Astrophysics Data System (ADS)

    Gianni, Areti; Zacharias, Ierotheos

    2015-04-01

    Coastal regions are under strong human influence and its environmental impact is reflected into their water quality. Oligotrophic estuaries and coastal systems have changed in mesotrophic and/or eutrophic, shown an increase in toxic algal blooms, hypoxic/anoxic events, and massive mortalities of many aquatic and benthic organisms. In strongly stratified and productive water basins, bottom water dissolved oxygen is depleted due to the excessive organic matter decomposition in these depths. Distribution and recycling of nutrients in their water column is inextricably dependent on oxygenation and redox conditions. Bottom water anoxia accelerates PO43-, NH4+ and H2S recycling and accumulation from organic matter decomposition. The anoxic, H2S, PO43- and NH4+ rich bottom water constitutes a toxic layer, threatening the balance of the entire ecosystem. In permanently stratified water basins, storm events could result in stratification destruction and water column total mixing. The turnover brings large amounts of H2S to the surface resulting in low levels of oxygen and massive fish kills. PO43- and NH4+ are released to the interface and surface waters promoting algal blooms. Μore organic matter is produced fueling anoxia. The arising question is, whether the balance of an anoxic water ecosystem is under the threat of its hypolimnetic nutrient and sulfide load, only in the case of storm events and water column total mixing. In polymictic water basins it is clear that the accumulated, in the bottom layer, nutrients will supply surface waters, after the pycnocline overturn. Besides this mechanism of basins' water quality degradation is nowadays recognized as one of the biggest obstacles in eutrophic environments management and restoration efforts. The role of internal load, in permanently stratified water basins, is not so clear. In the present study the impact of storm events on water column stability and bottom water anoxia of meromictic coastal basins, is investigated. The importance of internal load is emerged, presenting the disturbance on the main nutrients, dissolved oxygen, hydrogen sulfide and chlorophyll distribution, caused by the total water column mixing. Additionally, the relationship between temporal nutrients variations in surface layers, of permanent anoxic coastal basins with a) changes on the physicochemical characteristics of their water column, b) changes on the bottom water phosphorus and nitrogen concentration and c) their effect on the basin's primary productivity, is sought. In order to achieve the objectives of this study, two different sets of Aitoliko basin's (western Greece) data were used. The first one includes measurements of physicochemical parameters, nutrients, chlorophyll and hydrogen sulfide, four days after a storm event and the consequent anoxic crisis in Aitoliko basin on 4th of December 2008. The second one contains respective data obtained from a biennial (May 2006-May 2008) basin's monitoring. The changes in the physical, chemical and biological characteristics, of Aitoliko basin water column, after its total mixing, highlighted the importance of the accumulated nutrients and sulfides in the bottom layer. In addition, turned out that bottom layer can supply with nutrients the surface waters, even during periods of high water column stratification. Small scale, subtle, changes in physicochemical and hydrological basin's characteristics promoted this supply, affecting both quantitative and qualitative the ecosystem's primary productivity and shifting its quality character.

  14. Estrogenicity and Nutrient Concentration of Surface Waters Surrounding a Large Confinement Dairy Operation Using Best Management Practices for Land Application of Animal Wastes

    USDA-ARS?s Scientific Manuscript database

    The impact of a confinement dairy operation (> 2,000 head) using best management practices for land application of animal wastes, on estrogenic activity (E-Screen), estrogens, and nutrients of associated surface waters and tile drain runoff were evaluated. Farm tile drain and creek samples were col...

  15. Representation of solid and nutrient concentrations in irrigation water from tailwater recovery systems by surface water grab samples

    USDA-ARS?s Scientific Manuscript database

    Tailwater recovery (TWR) systems are being implemented on agricultural landscapes to create an additional source of irrigation water. Existing studies have sampled TWR systems using grab samples; however, the applicability of solids and nutrient concentrations in these samples to water being irrigat...

  16. Hydrology and water quality of forested lands in eastern North Carolina

    Treesearch

    G.M. Chescheir; M.E. Lebo; D.M. Amatya; J. Hughes; J.W. Gilliam; R.W. Skaggs; R.B. Herrmann

    2003-01-01

    Nonpoint sources of nutrients (NPS) are a widespread source of surface water pollution throu&out the United States. Characterizing the sources of this NPS nutrient loading is challenging due to variation in land management practices, physioyaphic setting, site conditions such as soil type, and climatic variation. For nutrients, there is the added challenge of...

  17. Spatial Distribution of Nitrate in Mizoro-Ga a Pond with Floating at Bog

    NASA Astrophysics Data System (ADS)

    Shimamura, Tetsuya; Takemon, Yasuhiro; Osaka, Ken'ichi; Itoh, Masayuki; Ohte, Nobuhito

    Artificial nutrient loading has been linked to the decrease in plant diversity in peatlands, riparian areas, and swamps. Mizoro-ga-ike pond is one of the natural monuments of Japan and contains temperate floating mat and diverse plant community. The pond had experienced eutrophication by sewage and tap water. As the inflows of nutrient-rich water had been lessened, the amount of source area of the pond has decreased to 30%. We investigated factors that control water chemistry in and around the pond to assess the present situation of the pond. The pond has two mouths of inflows. One of the inflows includes leaked water from a tap water reserver. The other is the surface flow collected by a ditch. The result of water quality census indicates the pond has two sources of nutrient-rich water. One is the drainage from the surface water polluted by the road for automobile that flows into the northern coast of the pond, and the other is the tap water-contaminated water entering from the southern coast. Also the result of the census indicates that emergent plants such as reeds and wild rice modify the effect of nutrient-rich water by exploiting nutrients. Especially, it was suggested that the nursery effects of emergent grasslands that spread southern part of the pond protect the less robust plants, Nuphar subintegerrimum.

  18. Spatial Distribution of Nitrate in Mizoro-Ga a Pond with Floating Mat Bog

    NASA Astrophysics Data System (ADS)

    Shimamura, Tetsuya; Takemon, Yasuhiro; Osaka, Ken'ichi; Itoh, Masayuki; Ohte, Nobuhito

    Artificial nutrient loading has been linked to the decrease in plant diversity in peatlands, riparian areas, and swamps. Mizoro-ga-ike pond is one of the natural monuments of Japan and contains temperate floating mat and diverse plant community. The pond had experienced eutrophication by sewage and tap water. As the inflows of nutrient-rich water had been lessened, the amount of source area of the pond has decreased to 30%. We investigated factors that control water chemistry in and around the pond to assess the present situation of the pond. The pond has two mouths of inflows. One of the inflows includes leaked water from a tap water reserver. The other is the surface flow collected by a ditch. The result of water quality census indicates the pond has two sources of nutrient-rich water. One is the drainage from the surface water polluted by the road for automobile that flows into the northern coast of the pond, and the other is the tap water-contaminated water entering from the southern coast. Also the result of the census indicates that emergent plants such as reeds and wild rice modify the effect of nutrient-rich water by exploiting nutrients. Especially, it was suggested that the nursery effects of emergent grasslands that spread southern part of the pond protect the less robust plants, Nuphar subintegerrimum.

  19. Prairie and turf buffer strips for controlling runoff from paved surfaces.

    PubMed

    Steinke, K; Stier, J C; Kussow, W R; Thompson, A

    2007-01-01

    Eutrophication of surface waters due to nonpoint source pollution from urban environments has raised awareness of the need to decrease runoff from roads and other impervious surfaces. These concerns have led to precautionary P application restrictions on turf and requirements for vegetative buffer strips. The impacts of two plant communities and three impervious/pervious surface ratios were assessed on runoff water quality and quantity. A mixed forb/grass prairie and a Kentucky bluegrass (Poa pratensis L.) blend were seeded and runoff was monitored and analyzed for total volume, total P, soluble P, soluble organic P, bioavailable P, total suspended solids, and total organic suspended solids. Mean annual runoff volumes, all types of mean annual P nutrient losses, and sediment loads were not significantly affected by treatments because over 80% of runoff occurred during frozen soil conditions. Total P losses from prairie and turf were similar, averaging 1.96 and 2.12 kg ha(-1) yr(-1), respectively. Vegetation appeared to be a likely contributor of nutrients, particularly from prairie during winter dormancy. When runoff occurred during non-frozen soil conditions turf allowed significantly (P < or = 0.10) lower runoff volumes compared with prairie vegetation and the 1:2 and 1:4 impervious/pervious surface ratios had less runoff than the 1:1 ratio (P < or = 0.05). In climates where the majority of runoff occurs during frozen ground conditions, vegetative buffers strips alone are unlikely to dramatically reduce runoff and nutrient loading into surface waters. Regardless of vegetation type or size, natural nutrient biogeochemical cycling will cause nutrient loss in surface runoff waters, and these values may represent baseline thresholds below which values cannot be obtained.

  20. Management of hydro-biogeochemical connectivity of geographically isolated wetlands to reduce the risk of eutrophication of Lake Winnipeg

    NASA Astrophysics Data System (ADS)

    Creed, Irena F.; Ameli, Ali

    2017-04-01

    Lake Winnipeg - a transboundary water resource that is the 10th largest freshwater lake in the world - was recently listed as the most threatened lake in the world due to eutrophication. Its watershed has experienced amongst the highest geographically isolated wetland (GIW) drainage rates in the world, leading to increased nutrient loads to remaining wetlands and downstream streams and lakes. GIWs are surrounded by uplands - and thus collect and store water from the surrounding landscape during snowmelt or storm events, and filter nutrients before slowly returning water to the water cycle. When drained, GIWs become connected to downstream flows and nutrients move unimpeded from and through them to downstream waters. Therefore, effective GIW management strategies can reduce nutrient loads to regional surface water bodies in the Lake Winnipeg watershed. But, how do we prioritize wetland protection and restoration efforts? We know that hydrologic connections to GIWs vary in length and timing, and hypothesize that long and slow hydrologic connections to a GIW have higher potential for P retention, while short and fast hydrologic connections to a GIW have lower potential for P retention along the flow path, leading to higher P concentrations within the GIW. We test these hypotheses in a watershed that drains into the North Saskatchewan River and ultimately to Lake Winnipeg. Using a novel model that quantifies the continuum of time and length variations of subsurface-surface hydrological connections to each GIW, we explore the relationship between length and time and time of hydrologic connection to a GIW and nutrients in the GIW. We found that GIWs are not always "isolated" islands - rather, they are connected to other surface waters in diverse ways. GIWs with no modeled surface or subsurface hydrological connections had the lowest nutrient concentrations and algal biomass. Recharge GIWs have lower concentrations of nutrients than discharge wetlands. Discharge GIWs with longer (slower) connections removed more nutrients along flow path to the wetland than discharge GIWs with shorter (faster) connections. Based on our findings, GIWs with long and slow hydrological connections have the highest potential for retaining phosphorus and therefore reducing eutrophication of downstream waters, and therefore should be prioritized in wetland protection and restoration strategies.

  1. Nutrients in the Nation's Waters--Too Much of a Good Thing?

    USGS Publications Warehouse

    Mueller, David K.; Helsel, Dennis R.

    1996-01-01

    Historical data on nutrients (nitrogen and phosphorus) from about 12,000 ground-water and more than 22,000 stream samples have been compiled and related to possible sources. This existing information was collected by many agencies for a variety of purposes. Therefore, though it can be used to determine where concentrations differ, the exact percentages should not be taken as those for the Nation as a whole. Major findings include: (1) nutrient concentrations in water generally are related to land use in the area overlying ground-water aquifers or upstream from surface-water locations, (2) regional differences are related to differences in soil-drainage properties and agricultural practices, (3) nitrate concentrations in about 12 percent of domestic-supply wells in agricultural areas exceeded the U.S. Environmental Protection Agency's drinking-water standard (10 mg/L), and (4) nitrate concentrations in surface water rarely exceed the drinking-water standard. This information has helped identify locations across the Nation where ground water and streams are most likely to be vulnerable to nutrient contamination. Programs to manage and protect water resources can therefore be targeted to the most critical areas, providing the greatest protection for the least cost.

  2. Water Masses and Nutrient Sources to the Gulf of Maine

    PubMed Central

    Townsend, David W.; Pettigrew, Neal R.; Thomas, Maura A.; Neary, Mark G.; McGillicuddy, Dennis J.; O’Donnell, James

    2016-01-01

    The Gulf of Maine, a semi-enclosed basin on the continental shelf of the northwest Atlantic Ocean, is fed by surface and deep water flows from outside the Gulf: Scotian Shelf Water from the Nova Scotian shelf that enters the Gulf at the surface, and Slope Water that enters at depth and along the bottom through the Northeast Channel. There are two types of Slope Water, Labrador Slope Water (LSW) and Warm Slope Water (WSW); it is these deep water masses that are the major source of dissolved inorganic nutrients to the Gulf. It has been known for some time that the volume inflow of Slope Waters of either type that enters the Gulf of Maine is variable, that it co-varies with the magnitude of inflowing Scotian Shelf Water, and that periods of greater inflows of Scotian Shelf Water have become more frequent in recent years, accompanied by reduced Slope Water inflows. We present here analyses of a ten-year record of data collected by moored sensors in Jordan Basin, in the interior Gulf of Maine, and in the Northeast Channel, along with recent and historical hydrographic and nutrient data, that help reveal the nature of Scotian Shelf Water and Slope Water inflows. Proportional inflows of nutrient-rich Slope Waters and nutrient-poor Scotian Shelf Waters alternate episodically with one another on time scales of months to several years, creating a variable nutrient field upon which the biological productivities of the Gulf of Maine and Georges Bank depend. Unlike decades past, the inflows of Slope Waters of either type do not appear to be correlated with the North Atlantic Oscillation, which had been shown earlier to influence the relative proportions of the two Slope Waters, WSW and LSW, that enter the Gulf. We suggest that of greater importance in recent years are more frequent, episodic influxes of colder, fresher, less dense, and low-nutrient Scotian Shelf Water into the Gulf of Maine, and concomitant reductions in the inflow of deep, nutrient-rich Slope Waters. We also discuss evidence of modified Gulf Stream ring water that penetrated to Jordan Basin in summer of 2013. PMID:27721519

  3. Water Masses and Nutrient Sources to the Gulf of Maine.

    PubMed

    Townsend, David W; Pettigrew, Neal R; Thomas, Maura A; Neary, Mark G; McGillicuddy, Dennis J; O'Donnell, James

    2015-01-01

    The Gulf of Maine, a semi-enclosed basin on the continental shelf of the northwest Atlantic Ocean, is fed by surface and deep water flows from outside the Gulf: Scotian Shelf Water from the Nova Scotian shelf that enters the Gulf at the surface, and Slope Water that enters at depth and along the bottom through the Northeast Channel. There are two types of Slope Water, Labrador Slope Water (LSW) and Warm Slope Water (WSW); it is these deep water masses that are the major source of dissolved inorganic nutrients to the Gulf. It has been known for some time that the volume inflow of Slope Waters of either type that enters the Gulf of Maine is variable, that it co-varies with the magnitude of inflowing Scotian Shelf Water, and that periods of greater inflows of Scotian Shelf Water have become more frequent in recent years, accompanied by reduced Slope Water inflows. We present here analyses of a ten-year record of data collected by moored sensors in Jordan Basin, in the interior Gulf of Maine, and in the Northeast Channel, along with recent and historical hydrographic and nutrient data, that help reveal the nature of Scotian Shelf Water and Slope Water inflows. Proportional inflows of nutrient-rich Slope Waters and nutrient-poor Scotian Shelf Waters alternate episodically with one another on time scales of months to several years, creating a variable nutrient field upon which the biological productivities of the Gulf of Maine and Georges Bank depend. Unlike decades past, the inflows of Slope Waters of either type do not appear to be correlated with the North Atlantic Oscillation, which had been shown earlier to influence the relative proportions of the two Slope Waters, WSW and LSW, that enter the Gulf. We suggest that of greater importance in recent years are more frequent, episodic influxes of colder, fresher, less dense, and low-nutrient Scotian Shelf Water into the Gulf of Maine, and concomitant reductions in the inflow of deep, nutrient-rich Slope Waters. We also discuss evidence of modified Gulf Stream ring water that penetrated to Jordan Basin in summer of 2013.

  4. Evaluation of Nutrient Balances as an Indicator for the Impact of Agriculture on Environment - A comparison of Case Studies from the U.S. and Poland

    USDA-ARS?s Scientific Manuscript database

    Efficient nutrient use is critical to ensure economically and environmentally sound food production while minimizing the impacts of nutrients on ground water, the risk of eutrophication in surface waters, and the emission of trace gases. Increasing concerns for future sustainability have led to deve...

  5. Diagnosing oceanic nutrient deficiency

    PubMed Central

    2016-01-01

    The supply of a range of nutrient elements to surface waters is an important driver of oceanic production and the subsequent linked cycling of the nutrients and carbon. Relative deficiencies of different nutrients with respect to biological requirements, within both surface and internal water masses, can be both a key indicator and driver of the potential for these nutrients to become limiting for the production of new organic material in the upper ocean. The availability of high-quality, full-depth and global-scale datasets on the concentrations of a wide range of both macro- and micro-nutrients produced through the international GEOTRACES programme provides the potential for estimation of multi-element deficiencies at unprecedented scales. Resultant coherent large-scale patterns in diagnosed deficiency can be linked to the interacting physical–chemical–biological processes which drive upper ocean nutrient biogeochemistry. Calculations of ranked deficiencies across multiple elements further highlight important remaining uncertainties in the stoichiometric plasticity of nutrient ratios within oceanic microbial systems and caveats with regards to linkages to upper ocean nutrient limitation. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035255

  6. Diagnosing oceanic nutrient deficiency

    NASA Astrophysics Data System (ADS)

    Moore, C. Mark

    2016-11-01

    The supply of a range of nutrient elements to surface waters is an important driver of oceanic production and the subsequent linked cycling of the nutrients and carbon. Relative deficiencies of different nutrients with respect to biological requirements, within both surface and internal water masses, can be both a key indicator and driver of the potential for these nutrients to become limiting for the production of new organic material in the upper ocean. The availability of high-quality, full-depth and global-scale datasets on the concentrations of a wide range of both macro- and micro-nutrients produced through the international GEOTRACES programme provides the potential for estimation of multi-element deficiencies at unprecedented scales. Resultant coherent large-scale patterns in diagnosed deficiency can be linked to the interacting physical-chemical-biological processes which drive upper ocean nutrient biogeochemistry. Calculations of ranked deficiencies across multiple elements further highlight important remaining uncertainties in the stoichiometric plasticity of nutrient ratios within oceanic microbial systems and caveats with regards to linkages to upper ocean nutrient limitation. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  7. Mitigation of nutrient losses via surface runoff from rice cropping systems with alternate wetting and drying irrigation and site-specific nutrient management practices.

    PubMed

    Liang, X Q; Chen, Y X; Nie, Z Y; Ye, Y S; Liu, J; Tian, G M; Wang, G H; Tuong, T P

    2013-10-01

    Resource-conserving irrigation and fertilizer management practices have been developed for rice systems which may help address water quality concerns by reducing N and P losses via surface runoff. Field experiments under three treatments, i.e., farmers' conventional practice (FCP), alternate wetting and drying (AWD), and AWD integrated with site-specific nutrient management (AWD + SSNM) were carried out during two rice seasons at two sites in the southwest Yangtze River delta region. Across site years, results indicated that under AWD irrigation (i.e., AWD and AWD + SSNM), water inputs were reduced by 13.4~27.5 % and surface runoff was reduced by 30.2~36.7 % compared to FCP. When AWD was implemented alone, total N and P loss masses via surface runoff were reduced by 23.3~30.4 % and 26.9~31.7 %, respectively, compared to FCP. However, nutrient concentrations of surface runoff did not decrease under AWD alone. Under AWD + SSNM, total N and P loss masses via surface runoff were reduced to a greater extent than AWD alone (39.4~47.6 % and 46.1~48.3 % compared to FCP, respectively), while fertilizer inputs and N surpluses significantly decreased and rice grain yields increased relative to FCP. Therefore, by more closely matching nutrient supply with crop demand and reducing both surface runoff and nutrient concentrations of surface runoff, our results demonstrate that integration of AWD and SSNM practices can mitigate N and P losses via surface runoff from rice fields while maintaining high yields.

  8. Nutrients and water masses in the Gulf of Maine - Georges Bank region: Variability and importance to blooms of the toxic dinoflagellate Alexandrium fundyense.

    PubMed

    Townsend, D W; McGillicuddy, D J; Thomas, M A; Rebuck, N R

    2014-05-01

    We report here the results of ten oceanographic survey cruises carried out in the Gulf of Maine - Georges Bank region of the Northwest Atlantic during the late spring to summer period in 2007, 2008 and 2010, for which we examine and characterize relationships among dissolved inorganic nutrient fields, water mass dynamics and cell densities of the toxic dinoflagellate Alexandrium fundyense . Nutrients are supplied to continental shelf waters of the Gulf of Maine - Georges Bank region by inflows of deep offshore water masses; once in the Gulf they are transported with the residual circulation and mix with surface waters, both in the Gulf and on the Bank. Those fluxes of offshore water masses and their nutrient loads are the major source of nutrients for phytoplankton production in the region, including annual blooms of A. fundyense in the Gulf and on Georges Bank. This much is already known. We suggest here that the locations and magnitude of A. fundyense blooms are controlled in part by variable nutrient fluxes to the interior Gulf of Maine from offshore, and, those interior Gulf of Maine waters are, in turn, the main nutrient source to Georges Bank, which are brought onto the Bank by tidal pumping on the Northern Flank. We present evidence that nitrate is the initial form of nitrogenous nutrient for A. fundyense blooms, but it is quickly depleted to limiting concentrations of less than 0.5 μM, at which time continued growth and maintenance of the population is likely fueled by recycled ammonium. We also show that phosphate may be the limiting nutrient over much of Georges Bank in summer, allowing recycled ammonium concentrations to increase. Our temperature-salinity analyses reveal spatial and temporal (seasonal and interannual) variability in the relative proportions of two deep source waters that enter the Gulf of Maine at depth through the Northeast Channel: Warm Slope Water (WSW) and Labrador Slope Water (LSW). Those two source waters are known to vary in their nutrient loads, with nitrate concentrations about 50% higher in WSW than LSW, for example, and as such the proportions of these two water masses to one another are important determinants of the overall nutrient loads in the interior Gulf. In addition to these deep slope water fluxes, we show evidence here of episodic fluxes of relatively fresh and low-nutrient shelf waters from the Nova Scotian Shelf, which enter the Gulf in pulses at depths between the surface and approximately 150 m, displacing deep slope waters, and consequently they significantly dilute the Gulf's interior waters, reducing nutrient concentrations and, in turn, affect the magnitude of A. fundyense blooms.

  9. Nutrients and water masses in the Gulf of Maine - Georges Bank region: Variability and importance to blooms of the toxic dinoflagellate Alexandrium fundyense

    PubMed Central

    Townsend, D.W.; McGillicuddy, D.J.; Thomas, M.A.; Rebuck, N.R.

    2015-01-01

    We report here the results of ten oceanographic survey cruises carried out in the Gulf of Maine - Georges Bank region of the Northwest Atlantic during the late spring to summer period in 2007, 2008 and 2010, for which we examine and characterize relationships among dissolved inorganic nutrient fields, water mass dynamics and cell densities of the toxic dinoflagellate Alexandrium fundyense. Nutrients are supplied to continental shelf waters of the Gulf of Maine - Georges Bank region by inflows of deep offshore water masses; once in the Gulf they are transported with the residual circulation and mix with surface waters, both in the Gulf and on the Bank. Those fluxes of offshore water masses and their nutrient loads are the major source of nutrients for phytoplankton production in the region, including annual blooms of A. fundyense in the Gulf and on Georges Bank. This much is already known. We suggest here that the locations and magnitude of A. fundyense blooms are controlled in part by variable nutrient fluxes to the interior Gulf of Maine from offshore, and, those interior Gulf of Maine waters are, in turn, the main nutrient source to Georges Bank, which are brought onto the Bank by tidal pumping on the Northern Flank. We present evidence that nitrate is the initial form of nitrogenous nutrient for A. fundyense blooms, but it is quickly depleted to limiting concentrations of less than 0.5 μM, at which time continued growth and maintenance of the population is likely fueled by recycled ammonium. We also show that phosphate may be the limiting nutrient over much of Georges Bank in summer, allowing recycled ammonium concentrations to increase. Our temperature-salinity analyses reveal spatial and temporal (seasonal and interannual) variability in the relative proportions of two deep source waters that enter the Gulf of Maine at depth through the Northeast Channel: Warm Slope Water (WSW) and Labrador Slope Water (LSW). Those two source waters are known to vary in their nutrient loads, with nitrate concentrations about 50% higher in WSW than LSW, for example, and as such the proportions of these two water masses to one another are important determinants of the overall nutrient loads in the interior Gulf. In addition to these deep slope water fluxes, we show evidence here of episodic fluxes of relatively fresh and low-nutrient shelf waters from the Nova Scotian Shelf, which enter the Gulf in pulses at depths between the surface and approximately 150 m, displacing deep slope waters, and consequently they significantly dilute the Gulf's interior waters, reducing nutrient concentrations and, in turn, affect the magnitude of A. fundyense blooms. PMID:26028824

  10. A mathematical model for soil solute transfer into surface runoff as influenced by rainfall detachment.

    PubMed

    Yang, Ting; Wang, Quanjiu; Wu, Laosheng; Zhao, Guangxu; Liu, Yanli; Zhang, Pengyu

    2016-07-01

    Nutrients transport is a main source of water pollution. Several models describing transport of soil nutrients such as potassium, phosphate and nitrate in runoff water have been developed. The objectives of this research were to describe the nutrients transport processes by considering the effect of rainfall detachment, and to evaluate the factors that have greatest influence on nutrients transport into runoff. In this study, an existing mass-conservation equation and rainfall detachment process were combined and augmented to predict runoff of nutrients in surface water in a Loess Plateau soil in Northwestern Yangling, China. The mixing depth is a function of time as a result of rainfall impact, not a constant as described in previous models. The new model was tested using two different sub-models of complete-mixing and incomplete-mixing. The complete-mixing model is more popular to use for its simplicity. It captured the runoff trends of those high adsorption nutrients, and of nutrients transport along steep slopes. While the incomplete-mixing model predicted well for the highest observed concentrations of the test nutrients. Parameters inversely estimated by the models were applied to simulate nutrients transport, results suggested that both models can be adopted to describe nutrients transport in runoff under the impact of rainfall. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Carbon and nitrogen biogeochemistry of a Prairie Pothole Wetland, Stutsman County, North Dakota, USA

    USGS Publications Warehouse

    Holloway, JoAnn M.; Goldhaber, Martin B.; Mills, Christopher T.

    2011-01-01

    The concentration and form of dissolved organic C (DOC) and N species (NH4+ and NO3-) were investigated as part of a larger hydrogeochemical study of the Cottonwood Lake Study Area within the Prairie Potholes region. Groundwater, pore water and surface wetland water data were used to help characterize the relationships between surface and groundwater with respect to nutrient dynamics. Photosynthesis and subsequent decomposition of vegetation in these hydrologically dynamic wetlands generates a large amount of dissolved C and N, although the subsurface till, derived in part from organic matter rich Pierre Shale, is a likely secondary source of nutrients in deeper groundwater. While surface water DOC concentrations ranged from 2.2 to 4.6 mM, groundwater values were 0.15 mM to 3.7 mM. Greater specific UV absorbance (SUVA254) in the wetland water column and in soil pore waters relative to groundwater indicate more reactive DOC in the surface to near-surface waters. Circumneutral wetlands had greater SUVA254, possibly because of variations in vegetation communities. The dominant inorganic nitrogen species was NH4+ in both wetland water and most ground water samples. The exceptions were 3 wells with NO3- ranging from 38 to 115 μM. Shallow groundwater wells (Well 28 and Well 13S) with greater connection to wetland surface water had greater NH4+ concentrations (1.1 mM and 120 μM) than other well samples (3–90 μM). Pore water nutrient chemistry was more similar to surface water than ground water. Nitrogen results suggest reducing conditions in both groundwater and surface water, possibly due to the microbial uptake of O2 by decaying vegetation in the wetland water column, labile organic C available in shallow groundwater, or the oxidation of pyrite associated with the subsurface.

  12. Water-quality assessment of the Connecticut, Housatonic, and Thames river basins study unit; analysis of available data on nutrients, suspended sediments, and pesticides, 1972-92

    USGS Publications Warehouse

    Zimmerman, Marc James; Grady, S.J.; Trench, E.C.; Flanagan, S.M.; Nielsen, M.G.

    1996-01-01

    This retrospective report examines available nutrient, suspended sediment, and pesticide data in surface and ground water in the Connecticut, Housatonic and Thames Rivers Study Unit of the National Water-Quality Assessment Program. The purpose of this study is to improve the under- standing of natural and anthropogenic factors affecting water quality in the study unit. Water-quality data were acquired from various sources, primarily, the U.S. Geological Survey and the U.S. Environmental Protection Agency. The report examines data for water years 1972-92, focusing on 1980-92, although it also includes additional data from as early as 1905. The study unit lies within the New England Physiographic Province and altitudes range from sea level in coastal Connecticut to 6,288 feet above sea level at Mount Washington, New Hampshire. Two major aquifer types underlie the study unit--unconsolidated glacial deposits and fractured bedrock. The climate generally is temperate and humid, with four distinct seasons. Average annual precipitation ranges from 34 to 65 inches. The study unit has a population of about 4.5 million, which is most highly concentrated in southwestern Connecticut and along the south-central region of the Connecticut River Valley. Surface-water-quality data were screened to provide information about sites with adequate numbers of analyses (50) over sufficiently long periods (1980-90) to enable valid statistical analyses. In order to compare effects of different types of land use on surface-water quality, examination of data required application of several statistical and graphical techniques, including mapping, histograms, boxplots, concentration-discharge plots, trend analysis, and load estimation. Spatial and temporal analysis of surface-water-quality data indicated that, with a single exception, only/stations in the Connecticut water-quality network had sufficient data collected over adequately long time periods to use in detailed analyses. Ground-water nutrient and pesticide data were compiled from several Federal and State agencies, primarily the U.S. Geological Survey, U.S. Environmental Protection Agency, and Connecticut Department of Health Services. Nutrient data were available for several thousand wells; nitrite plus nitrate as nitrogen was the most commonly reported constituent. Most wells with nutrient data are in Massachusetts and Connecticut. Relative to nutrient data in ground and surface water, pesticide data are less common. Pesticide data were available for slightly more than 200 surface-water sites and less than 500 wells; about 95 percent of the wells are completed in stratified-drift or till aquifers. Data for 81 pesticide compounds were available in various data bases. 2,4-D and silvex were the most commonly detected herbicides in surface water and dieldrin and diazinon were the most commonly detected insecticides. Most surface-water pesticide samples and detections are from bed sediment, but much of the data are not recent. Ethylene dibromide (EDB), a soil fumigant used in tobacco farming was detected in 268 well in a 50 square-mile area of north-central Connecticut; EDB contamination also was detected in wells in Massachusetts. Atrazine, an herbicide commonly used in corn farming, commonly was detected in wells installed in tilled agricultural fields. Corn herbicides were commonly detected in the northern par( of the study unit, although the sampling has been less frequent than in the southern part of the study unit. Pesticides were seldom detected in public-supply wells in Connecticut. Urban sites with relatively high population densities and high concentrations of dischargers were characterized by having the highest nutrient concentrations and loads when adjusted for differences in drainage area or population. Particularly, the Pequabuck, Naugatuck, and Quinnipiac River Basins were characterized by high nutrient concentrations--median total nitrogen concentrations ranged from 3.3 to 4.2 mg

  13. Linking river nutrient concentrations to land use and rainfall in a paddy agriculture-urban area gradient watershed in southeast China.

    PubMed

    Xia, Yongqiu; Ti, Chaopu; She, Dongli; Yan, Xiaoyuan

    2016-10-01

    The effects of land use and land-use changes on river nutrient concentrations are not well understood, especially in the watersheds of developing countries that have a mixed land use of rice paddy fields and developing urban surfaces. Here, we present a three-year study of a paddy agricultural-urban area gradient watershed in southeast China. The annual anthropogenic nitrogen (N) input from the agricultural region to the urban region was high, yet the results showed that the monthly nutrient concentrations in the river were low in the rainy seasons. The nutrient concentrations decreased continuously as the river water passed through the traditional agriculture region (TAR; paddy rice and wheat rotation) and increased substantially in the city region (CR). The traditional agricultural reference region exported most of the nutrient loads at high flows (>1mmd(-1)), the intensified agricultural region (IAR, aquaculture and poultry farming) exported most of the nutrient loads at moderate flows (between 0.5 and 1mmd(-1)), and the CR reference area exported most of the nutrient loads under low to moderate flows. We developed a statistical model to link variations in the nutrient concentrations to the proportion of land-use types and rainfall. The statistical results showed that impervious surfaces, which we interpret as a proxy for urban activities including sewage disposal, were the most important drivers of nutrient concentrations, whereas water surfaces accounted for a substantial proportion of the nutrient sinks. Therefore, to efficiently reduce water pollution, sewage from urban areas must be addressed as a priority, although wetland restoration could also achieve substantial pollutant removal. Copyright © 2016. Published by Elsevier B.V.

  14. Reconstruction of surface water conditions in the central region of the Okhotsk Sea during the last 180 kyrs

    NASA Astrophysics Data System (ADS)

    Khim, Boo-Keun; Sakamoto, Tatsuhiko; Harada, Naomi

    2012-02-01

    Core GC9A, a 6.7 m long gravity core collected from the central region of the Okhotsk Sea during Cruise YK0712 on R/V Yokosuka (JAMSTEC), was used to reconstruct the changes in surface water conditions by measuring biogenic components (biogenic opal, CaCO3, total organic carbon and δ15N of sediment organic matter) of sediment samples. The age of Core GC9A was determined indirectly by graphic correlation comparing the b* (psychometric yellow-blue chromaticness) values with those of well-dated Core MD01-2415, with complement to the tephra layer (K3; 50 ka). The bottom age of Core GC9A was estimated to be about 180 kyr; therefore it provides the history of surface water conditions from MIS 1 to MIS 6. The biogenic opal, CaCO3, and TOC contents were high during the interglacial periods as expected, indicating enhanced surface water production under warm climatic conditions. This condition resulted from sufficient nutrient supply to the surface waters by active vertical mixing, which was validated by low δ15N values of the sediment organic matter. In contrast, surface water productivity was depressed during the colder glacial periods, probably due to the expanded sea-ice distribution and limited nutrient supply. However, the glacial sediments had moderately high δ15N values, indicating enhanced nitrate utilization resulting from the limited nutrient supply caused by strong stratification of the surface water. High δ15N values were also observed during the deglaciation, which was attributed to the increased nitrate utilization during enhanced surface water productivity. However, the low δ15N values during the glacial and deglacial periods may be attributed to the increased supply of terrestrial organic matter. Diatom production was primarily responsible for surface water paleoproductivity during the interglacial periods rather than coccolithophores. However, the succession of glacial to early deglacial coccolithophore production and late deglacial to interglacial diatom production was remarkable, corresponding to the present-day seasonal phytoplankton succession. Such an advanced coccolithophore production relative to diatom production might be attributed to the degree of nutrient availability associated with surface water conditions on the basis of variations in the δ15N value. Finally, the opal and TOC contents decreased abruptly in conjunction with a gradual decrease in CaCO3 content from about 2 ka, which seems to implicate a late Holocene sudden decrease in paleoproductivity in the central region of the Okhotsk Sea. According to the increase in δ15N values during this interval, nutrient availability appears to be poor, which is likely attributed to the resumed strong stratification that occurred due to the southward shift of the Aleutian Low atmospheric pressure system.

  15. Effects of agricultural land-management practices on water quality in northeastern Guilford County, North Carolina, 1985-90

    USGS Publications Warehouse

    Harned, Douglas A.

    1995-01-01

    The effects of selected agricultural land-management practices on water quality were assessed in a comparative study of four small basins in the Piedmont province of North Carolina. Agricultural practices, such as tillage and applications of fertilizer and pesticides, are major sources of sediment, nutrients, and pesticides in surface water, and of nutrients and pesticides in ground water. The four study basins included two adjacent row-crop fields, a mixed land-use basin, and a forested basin. One of the row-crop fields (7.4 acres) was farmed by using conservation land-management (CLM) practices, which included strip cropping, contour plowing, field borders, and grassed waterways. The other row-crop field (4.8 acres) was farmed by using standard land-management (SLM) practices, which included continuous cropping, straight-row plowing without regard to land topography, and poorly maintained waterways. The mixed land-use basin (665 acres) was monitored to compare water quality in surface water as SLM practices were converted to CLM practices during the project. The forested basin (44 acres) provided background surface-water hydrologic and chemical-quality conditions. Surface-water flow was reduced by 18 percent by CLM practices compared to surface-water flow from the SLM practices basin. The thickness of the unsaturated zone in the row-crop basins ranged from a few feet to 25 feet. Areas with thick unsaturated zones have a greater capacity to intercept and store nutrients and pesticides than do areas with thinner zones. Sediment concentrations and yields for the SLM practices basin were considerably higher than those for the other basins. The median sediment concentration in surface water for the SLM basin was 3.4 times that of the CLM basin, 8.2 times that of the mixed land-use basin, and 38.4 times that of the forested basin. The total sediment yield for the SLM basin was 2.3 times that observed for the CLM basin, 14.1 times that observed for the mixed land-use basin, and 19.5 times the yield observed for the forested basin. Nutrient concentrations in surface water from the row-crop and mixed land-use basins were higher than those measured in the forested basin and in precipitation collected near the row-crop basins. The SLM basin generally had the highest concentrations of total nitrogen, nitrite plus nitrate, total phosphorus (equivalent to the mixed land-use basin), and potassium. Nutrient concentrations in soil water and ground water were less than concentrations in surface water for the row-crop basins. Nutrient concentrations generally were at least slightly below the root zone (3-foot depth) and in ground water. Differences in nutrient yields among basins had patterns similar to those observed for nutrient concentrations. The total nitrogen yield for the SLM basin was 1.2 times the yield for the CLM basin, 1.9 times the yield for the mixed land-use basin, and 4.2 times the yield for the forested basin. The total phosphorus yield for the SLM basin was 1.7 times the yield for the CLM basin, 3.3 times the yield for the mixed land-use basin, and 7.8 times the yield for the forested basin. No significant differences in pesticide concentrations in surface water were identified between those measured in the SLM basin and those measured in the CLM basin. Significantly higher pesticide concentrations were observed at the row-crop basins compared with those observed at the mixed land-use basin probably because sampling sites for the row-crop basins were closer to the pesticide sources. No pesticides were detected in the forested basin. Comparisons of pesticide concentrations in soil from the two row-crop basins indicated some differences. Concentrations of the soil pesticides isopropalin and flumetralin were higher in the SLM basin than in the CLM basin. The surface-water quality of the mixed land-use basin generally was less affected by agricultural nonpoint sources than that of the smaller row-crop b

  16. Nutrient sampling slam: high resolution surface-water sampling in streams reveals patterns in groundwater chemistry and flow paths

    EPA Science Inventory

    The groundwater–surface water interface (GSWI), consisting of shallow groundwater adjacent to stream channels, is a hot spot for nitrogen removal processes, a storage zone for other solutes, and a target for restoration activities. Characterizing groundwater-surface water intera...

  17. Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands

    NASA Astrophysics Data System (ADS)

    Hendriks, Rob F. A.; van den Akker, Jan J. A.

    2017-04-01

    Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather conditions and for two extreme climate scenarios of the Royal Netherlands Meteorological Institute. In this study the model results of one of the pilot studies are presented. The case study 'de Krimpenerwaard' is situated in the peat area in the "Green Heart" between the major cities of Amsterdam, The Hague, Rotterdam and Utrecht. Model results show a halving of soil subsidence, a strong increase of water recharge but a lower increase of water discharge, and generally small to moderate effects on nutrient loading , all depending (strongly) on meteorological conditions.

  18. Surface-water-quality assessment of the upper Illinois River Basin in Illinois, Indiana, and Wisconsin; data on agricultural organic compounds, nutrients, and sediment in water, 1988-90

    USGS Publications Warehouse

    Sullivan, D.J.; Terrio, P.J.

    1994-01-01

    This report describes the sampling design and methods and presents data collected to determine the distribution of agricultural organic compounds, nutrients, and sediment in selected areas of the upper Illinois River Basin as part of the National Water-Quality Assessment program. Four stations in small watersheds (two urban, two agricultural) were sampled in 1988 and 1989. Seventeen stations in an agricultural subbasin were sampled in 1990. Samples were collected before, during, and after runoff events from late spring to midsummer to determine concentrations of agricultural organic compounds in surface waters resulting from storm runoff, as well as background concentrations. Over 200 water samples were analyzed for agricultural organic compound, nutrient, and suspended-sediment concentrations. The agricultural organic compounds included triazine and chlorophenoxy-acid herbicides, and organo-phosphorus insecticides.

  19. Remotely Searching for Noctiluca Miliaris in the Arabian Sea

    NASA Technical Reports Server (NTRS)

    Werdell, P. Jeremy; Roesler, Collin S.; Goes, Joaquim I.

    2014-01-01

    Reversing monsoonal winds in the Arabian Sea result in two seasons with elevated biological activity, namely the annual summer Southwest Monsoon (SWM; June to September) and winter Northeast Monsoon (NEM; November to March) [Wiggert et al., 2005]. Generally speaking, the SWM and NEM create two geographically distinct blooms [Banse and English, 2000; Levy et al., 2007]. In the summer, winds from the southwest drive offshore Ekman transport and coastal upwelling along the northwestern coast of Africa, which brings nutrient-rich water to the surface from below the permanent thermocline [Bauer et al., 1991]. In the winter, cooling of the northern Arabian Sea causes surface waters to sink, which generates convective mixing that injects nutrients throughout the upper mixed layer [Madhupratap et al., 1996]. This fertilization of otherwise nutrient-deplete surface waters produces one of the most substantial seasonal extremes of phytoplankton biomass and carbon flux anywhere in the world [Smith, 2005].

  20. FIELD STUDY OF THE FATE OF ARSENIC, LEAD, AND ZINC AT THE GROUND-WATER/SURFACE-WATER INTERFACE

    EPA Science Inventory

    It is recognized that physical and chemical interactions between adjacent ground water and surface water bodies are an important factor impacting water budget and nutrient/contaminant transport within a watershed. This observation is also of importance for hazardous waste site c...

  1. An investigation of submarine groundwater-borne nutrient fluxes to the west Florida shelf and recurrent harmful algal blooms

    USGS Publications Warehouse

    Smith, Christopher G.; Swarzenski, Peter W.

    2012-01-01

    A cross-shelf, water-column mass balance of radon-222 (222Rn) provided estimates of submarine groundwater discharge (SGD), which were then used to quantify benthic nutrient fluxes. Surface water and groundwater were collected along a shore-normal transect that extended from Tampa Bay, Florida, across the Pinellas County peninsula, to the 10-m isobath in the Gulf of Mexico. Samples were analyzed for 222Rn and radium-223,224,226 (223,224,226Ra) activities as well as inorganic and organic nutrients. Cross-shore gradients of 222Rn and 223,224,226Ra activities indicate a nearshore source for these isotopes, which mixes with water characterized by low activities offshore. Radon-based SGD rates vary between 2.5 and 15 cm d-1 proximal to the shoreline and decrease offshore. The source of SGD is largely shallow exchange between surface and pore waters, although deeper groundwater cycling may also be important. Enrichment of total dissolved nitrogen and soluble reactive phosphorus in pore water combined with SGD rates results in specific nutrient fluxes comparable to or greater than estuarine fluxes from Tampa Bay. The significance of these fluxes to nearshore blooms of Karenia brevis is highlighted by comparison with prescribed nutrient demands for bloom maintenance and growth. Whereas our flux estimates do not indicate SGD and benthic fluxes as the dominant nutrient source to the harmful algal blooms, SGD-derived loads do narrow the deficit between documented nutrient supplies and bloom demands.

  2. Toward understanding mechanisms controlling urea delivery in a coastal plain watershed

    USDA-ARS?s Scientific Manuscript database

    Improved understanding of nutrient mobilization and delivery to surface waters is critical to protecting water quality in agricultural watersheds. Urea, a form of organic nitrogen, is a common nutrient found in fertilizers, manures, and human waste, and is gaining recognition as an important driver ...

  3. Hydrology and Water Quality from Managed Turf

    USDA-ARS?s Scientific Manuscript database

    Quantification of nutrient and pesticide losses from managed turf systems (golf courses) is scant. A study was initiated at Northland Country Club in Duluth, MN, in 2003 to quantify nutrient and pesticide losses in surface and subsurface discharge waters. Based on the four years of data collected at...

  4. A new parameterization for surface ocean light attenuation in Earth System Models: assessing the impact of light absorption by colored detrital material

    NASA Astrophysics Data System (ADS)

    Kim, G. E.; Pradal, M.-A.; Gnanadesikan, A.

    2015-03-01

    Light limitation can affect the distribution of biota and nutrients in the ocean. Light absorption by colored detrital material (CDM) was included in a fully coupled Earth System Model using a new parameterization for shortwave attenuation. Two model runs were conducted, with and without light attenuation by CDM. In a global average sense, greater light limitation associated with CDM increased surface chlorophyll, biomass and nutrients together. These changes can be attributed to the movement of biological productivity higher up the water column, which increased surface chlorophyll and biomass while simultaneously decreasing total biomass. Meanwhile, the reduction in biomass resulted in greater nutrient availability throughout the water column. Similar results were found on a regional scale in an analysis of the oceans by biome. In coastal regions, surface chlorophyll increased by 35% while total integrated phytoplankton biomass diminished by 18%. The largest relative increases in modeled surface chlorophyll and biomass in the open ocean were found in the equatorial biomes, while largest decreases in depth-integrated biomass and chlorophyll were found in the subpolar and polar biomes. This mismatch of surface and subsurface trends and their regional dependence was analyzed by comparing the competing factors of diminished light availability and increased nutrient availability on phytoplankton growth in the upper 200 m. Overall, increases in surface biomass were expected to accompany greater nutrient uptake and therefore diminish surface nutrients, but changes in light limitation decoupled trends between these two variables. Understanding changes in biological productivity requires both surface and depth-resolved information. Surface trends may be minimal or of the opposite sign to depth-integrated amounts, depending on the vertical structure of phytoplankton abundance.

  5. Predicting nutrient and sediment loadings to streams from landscape metrics: A multiple watershed study from the United States Mid-Atlantic Region

    Treesearch

    K. Bruce Jones; Anne C. Neale; Malisha S. Nash; Rick D. van Remortel; James D. Wickham; Kurt H. Riitters; Robert V. O' Neill

    2001-01-01

    There has been an increasing interest in evaluating the relative condition or health of water resources at regional and national scales. Of particular interest is an ability to identify those areas where surface and ground waters have the greatest potential for high levels of nutrient and sediment loadings. High levels of nutrient and sediment loadings can have adverse...

  6. Impacts of transportation infrastructure on storm water and surfaces waters in Chittenden County, Vermont, USA.

    DOT National Transportation Integrated Search

    2014-06-01

    Transportation infrastructure is a major source of stormwater runoff that can alter hydrology and : contribute significant loading of nutrients, sediment, and other pollutants to surface waters. These : increased loads can contribute to impairment of...

  7. Phytoplankton distributions and their nutrient environment in the Eastern Bering Sea.

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Nishitani, H.; Narita, H.; Jordan, R. W.

    2004-12-01

    After 1997, coccolithophorids blooms have been frequently observed by research vessels and satellites in the Eastern Bering Sea shelf, where diatoms have previously been dominate. Here, we present CTD, Chl-a, nutrient and phytoplankton data collected during cruises of the T/S Oshoro-Maru and R/V Mirai vessels from 2000 to 2003. Our goal is to refine the relation between phytoplankton distribution and water characteristics, and the controlling features of coccolithophorids blooms in the Eearstern Bering Sea. Samplings were carried out alone 166_E#8249;W from 55_E#8249;N to 59_E#8249;N. For cell counting, seawater samples were filtered through a 25-mm Millipore HA filter, and identification and counting of phytoplankton was performed with a scanning electron microscope. The scale of bloom and abundance of coccolithophorids were different in each year. The most dominant phytoplankton group was coccolithophorids in 2000, which agrees with the large bloom observed by satellite. In 2001, diatoms dominated at 70% and coccolithophorids accounted for 30% at 58, 58.5_E#8249;N. In 2002 and 2003, diatoms dominated at nearly 100% at all stations. Coccolithophorids abundance was nearly halted by pycnocline, since coccolithophorids existed in the middle shelf domain, which is known to be an area of cold-water pool distribution. The difference in density between the surface mixed layer and the cold-water pool gradually increased from 1980 to 2002, that is, seawater stratification in the middle shelf domain was strengthened as the result of the increased surface temperature and decreased salinity that have occurred recently. When stratification strengthens, the supply of nutrients to the surface from the cold-water pool is reduced. Consequently, coccolithophorids take precedence over diatoms in this condition. However, if the decreased salinity in the surface water depended on the increased river discharge, then the nutrients in the surface water would increase. River discharge has two peaks (spring and late summer) in one year (Chikita, 2001). Since river water contains high volumes of silicate and iron, an increase in river discharge would lead to the predominance of diatoms. The frequency and timing of storms, which influence the thickness of the surface mixed layer, may be another controlling factor of coccolithophorids blooms. In fact, there was a second peak in October 2000 and in August 2001. In 2000, the thickness of the surface mixed layer increased from July to September. Because the timing of storms and river discharges in summer controlled the stratification in the middle shelf domain, it greatly influenced the species_f composition of phytoplankton. In 2002 and 2003, the phytoplankton concetrations distribute peaks respectively at the south and north. The dominant classes are centric diatoms in the south, and is penate diatoms in the north, caused by defferent nutrients and temperature distribution. The sources of nutrients to the Estern bering Sea can be classified into three groups: up welling at the shelf edge, from the cold water pool, and from riverwater. The nutrients of surface water are high in the south and are low in the north, and dispense the diffenrent phytoplankton distribution.

  8. Long-term decrease in phosphate concentrations in the surface layer of the southern Japan Sea

    NASA Astrophysics Data System (ADS)

    Kodama, Taketoshi; Igeta, Yosuke; Kuga, Mizuki; Abe, Shoko

    2016-10-01

    To identify possible causes for the long-term trends in nutrient concentrations in the southern Japan Sea (JS), we studied nutrient concentrations that were obtained by the Japan Meteorological Agency. Our evaluation shows that phosphate concentrations declined in the surface layers in summer (0-20 and 21-50 m depth) and winter (0-20, 21-50, and 51-100 m depth) over the last 40 years, while no significant linear trend was observed for nitrate concentrations. The declining trend in the phosphate concentration was quantified as 1.8-3.3 nM yr-1. The increase in atmospheric nutrient deposition to the JS could not explain the decline in phosphate concentration. In addition, the mixed-layer depth during winter did not demonstrate any significant trend, and an increase in phosphate concentrations was not observed in any layers; therefore, the decrease in nutrient supply from deep JS water was not considered a major possible cause for the decline in the phosphate concentration. In contrast, the phosphate concentration in the surface of the southern JS during winter showed a significant positive correlation with the concentration in the 21-50 m depth layer of the saline East China Sea (ECS) water in the preceding summer, and the surface water of the southern JS was almost entirely replaced by water originating from the ECS during May-October. Therefore, it is concluded that the declining trend in the phosphate concentrations in the southern JS is caused by horizontal advection of ECS water.

  9. Surface disturbances: their role in accelerating desertification

    USGS Publications Warehouse

    Belnap, Jayne

    1995-01-01

    Maintaining soil stability and normal water and nutrient cycles in desert systems is critical to avoiding desertification. These particular ecosystem processes are threatened by trampling of livestock and people, and by off-road vehicle use. Soil compaction and disruption of cryptobiotic soil surfaces (composed of cyanobacteria, lichens, and mosses) can result in decreased water availability to vascular plants through decreased water infiltration and increased albedo with possible decreased precipitation. Surface disturbance may also cause accelerated soil loss through wind and water erosion and decreased diversity and abundance of soil biota. In addition, nutrient cycles can be altered through lowered nitrogen and carbon inputs and slowed decomposition of soil organic matter, resulting in lower nutrient levels in associated vascular plants. Some cold desert systems may be especially susceptible to these disruptions due to the paucity of surface-rooting vascular plants for soil stabilization, fewer nitrogen-fixing higher plants, and lower soil temperatures, which slow nutrient cycles. Desert soils may recover slowly from surface disturbances, resulting in increased vulnerability to desertification. Recovery from compaction and decreased soil stability is estimated to take several hundred years. Re-establishment rates for soil bacterial and fungal populations are not known. The nitrogen fixation capability of soil requires at least 50 years to recover. Recovery of crusts can be hampered by large amounts of moving sediment, and re-establishment can be extremely difficult in some areas. Given the sensitivity of these resources and slow recovery times, desertification threatens million of hectares of semiarid lands in the United States.

  10. Nutrient loss with runoff from fairway turf: an evaluation of core cultivation practices and their environmental impact.

    PubMed

    Rice, Pamela J; Horgan, Brian P

    2011-11-01

    The presence of excess nutrients in surface waters can result in undesirable environmental and economic consequences, including nuisance algal blooms and eutrophication. Fertilizer use in highly managed turf systems has raised questions concerning the contribution of nutrients to surrounding surface waters. Experiments were designed to quantify phosphorus and nitrogen transport with runoff from turf plots maintained as a golf course fairway to identify which cultural practice, solid tine (ST) or hollow tine (HT) core cultivation, maximized phosphorus and nitrogen retention at the site of fertilizer application. Simulated precipitation and collection of resulting runoff were completed 26 ± 13 h following granular fertilizer application (18-3-18: N-P₂O₅-K₂O) and 63 d and 2 d following core cultivation. Runoff volumes were reduced in fairway turf plots aerated with HT relative to ST (63 d: 10%, 2 d: 55% reduction). Analysis of the runoff revealed a reduction in soluble phosphorus, ammonium nitrogen, and nitrate nitrogen losses with runoff from plots managed with HT; a 5 to 27% reduction after 63 d; and a 39 to 77% reduction at 2 d. Golf course runoff-to-surface water scenarios were used to calculate estimated environmental concentrations (EECs) of nitrogen and phosphorus in surface water receiving runoff from turf managed with ST or HT core cultivation. Surface water concentrations of phosphorus remained above the U.S. Environmental Protection Agency's water quality criteria to limit eutrophication, with the exception of concentrations associated with HT core cultivation at 2 d. Regardless of management practice (ST or HT) and time between core cultivation and runoff (63 d or 2 d), all EECs of nitrogen were below levels associated with increased algal growth. Understanding nutrient transport with runoff and identifying strategies that reduce off-site transport will increase their effectiveness at intended sites of application and minimize undesirable effects to surrounding surface water resources. Copyright © 2011 SETAC.

  11. Storm event-scale nutrient attenuation in constructed wetlands experiencing a Mediterranean climate: A comparison of a surface flow and hybrid surface-subsurface flow system.

    PubMed

    Adyel, Tanveer M; Oldham, Carolyn E; Hipsey, Matthew R

    2017-11-15

    Among different Water Sensitive Urban Design options, constructed wetlands (CWs) are used to protect and restore downstream water quality by attenuating nutrients generated by stormwater runoff. This research compared the nutrient attenuation ability during a diverse population of storm events of two CWs: (a) a hybrid CW with multiple alternating surface flow (SF) and laterite-based subsurface flow (SSF) compartments, and (b) a single stage SF CW. Within-storm variability, nutrient concentrations were assessed at 2 to 3-h intervals at both the main inlet and outlet of each CW. Dissolved oxygen concentrations of the surface waters were also monitored at 10-min intervals using high frequency in situ sensors. Nutrient loads into the CWs were observed to be higher when a high rainfall event occurred, particularly after longer antecedent dry conditions. Longer hydraulic retention times promoted higher attenuation at both sites. However, the relative extent of nutrient attenuation differed between the CW types; the mean total nitrogen (TN) attenuation in the hybrid and SF CW was 45 and 48%, respectively. The hybrid CW attenuated 67% total phosphorus (TP) loads on average, while the SF CW acted as a net TP source. Periodic storm events transitioned the lentic CW into a lotic CW and caused riparian zone saturation; it was therefore hypothesized that such saturation of organic matter rich-riparian zones led to release of TP in the system. The hybrid CW attenuated the released TP in the downstream laterite-based SSF compartments. Diel oxygen metabolism calculated before and after the storm events was found to be strongly correlated with water temperature, solar exposure and antecedent dry condition during the pre-storm conditions. Furthermore, the SF CW showed a significant relationship between overall nutrient load attenuation and the change in oxygen metabolism during the storm perturbation, suggesting oxygen variation could be a useful proxy indicator of CW function. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Influences of N-fixing and non-N-fixing vegetation and invasive fish on water chemistry of Hawaiian anchialine ponds

    Treesearch

    B. D. Dudley; Richard MacKenzie; T. S. Sakihara; H. Dulaiova; C. A. Waters; Flint Hughes; R. Ostertag

    2014-01-01

    In coastal waters, it remains unclear how terrestrial invasive species might alter nutrient availability and thus affect bottom-up control of primary production. Anchialine ponds are tidal- and groundwater-fed coastal water bodies without surface connections that provide convenient model systems in which to examine terrestrial to aquatic nutrient flow. To investigate...

  13. Protecting Surface Water Systems on Forest Sites Through Herbicide Use

    Treesearch

    J.L. Michael; H.L. Gibbs; J.B. Fischer; E.C. Webber

    2000-01-01

    Sediment, nutrients, and pesticides are universally accepted as the greatest threats to surface water quality world-wide. Sedimentation in surface waters is a natural phenomenon, but is magnified by human activities. Intensive forest management practices, particularly road building, harvesting and planting site preparation, result in the greatest increases in erosion...

  14. Cadmium-isotopic evidence for increasing primary productivity during the Late Permian anoxic event

    NASA Astrophysics Data System (ADS)

    Georgiev, Svetoslav V.; Horner, Tristan J.; Stein, Holly J.; Hannah, Judith L.; Bingen, Bernard; Rehkämper, Mark

    2015-01-01

    Earth's most extreme extinction event near the end of the Late Permian decimated more than 90% of all extant marine species. Widespread and intensive oceanic anoxia almost certainly contributed to the catastrophe, though the driving mechanisms that sustained such conditions are still debated. Of particular interest is whether water column anoxia was a consequence of a 'stagnant ocean', or if it was controlled by increases in nutrient supply, primary productivity, and subsequent heterotrophic respiration. Testing these competing hypotheses requires deconvolving sedimentary/bottom water redox conditions from changes in surface water productivity in marine sediments. We address this issue by studying marine shales from East Greenland and the mid-Norwegian shelf and combining sedimentary redox proxies with cadmium-isotopic analyses. Sedimentary nitrogen-isotopic data, pyrite framboid analyses, and organic and inorganic shale geochemistry reveal sulfidic conditions with vigorous upwelling, and increasingly anoxic conditions with a strengthening upwelling in the Greenland and Norwegian sections, respectively. Detailed analysis of sedimentary metal budgets illustrates that Cd is primarily associated with organic carbon and records primary geochemical signatures, thus enabling reconstruction of surface water nutrient utilization. Cadmium-isotopic analyses of the authigenic shale fraction released by inverse aqua regia digestion yield an average δ114Cd110 of + 0.15 ± 0.01 ‰ (2 SE, n = 12; rel. NIST SRM 3108), indicative of incomplete surface water nutrient utilization up-section. The constant degree of nutrient utilization combined with strong upwelling requires increasing primary productivity - and not oceanic stagnation - to balance the larger nutrient fluxes to both study sites during the development of the Late Permian water column anoxia. Overall, our data illustrate that if bottom water redox and upwelling can be adequately constrained, Cd-isotopic analyses of organic-rich sediments can be used to provide valuable information on nutrient utilization and therefore past productivity.

  15. New England SPARROW Water-Quality Modeling to Assist with the Development of Total Maximum Daily Loads in the Connecticut River Basin

    NASA Astrophysics Data System (ADS)

    Moore, R. B.; Robinson, K. W.; Simcox, A. C.; Johnston, C. M.

    2002-05-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA) and the New England Interstate Water Pollution Control Commission (NEWIPCC), is currently preparing a water-quality model, called SPARROW, to assist in the regional total maximum daily load (TMDL) studies in New England. A model is required to provide estimates of nutrient loads and confidence intervals at unmonitored stream reaches. SPARROW (Spatially Referenced Regressions on Watershed Attributes) is a spatially detailed, statistical model that uses regression equations to relate total phosphorus and nitrogen (nutrient) stream loads to pollution sources and watershed characteristics. These statistical relations are then used to predict nutrient loads in unmonitored streams. The New England SPARROW model is based on a hydrologic network of 42,000 stream reaches and associated watersheds. Point source data are derived from USEPA's Permit Compliance System (PCS). Information about nonpoint sources is derived from data such as fertilizer use, livestock wastes, and atmospheric deposition. Watershed characteristics include land use, streamflow, time-of-travel, stream density, percent wetlands, slope of the land surface, and soil permeability. Preliminary SPARROW results are expected in Spring 2002. The New England SPARROW model is proposed for use in the TMDL determination for nutrients in the Connecticut River Basin, upstream of Connecticut. The model will be used to estimate nitrogen loads from each of the upstream states to Long Island Sound. It will provide estimates and confidence intervals of phosphorus and nitrogen loads, area-weighted yields of nutrients by watershed, sources of nutrients, and the downstream movement of nutrients. This information will be used to (1) understand ranges in nutrient levels in surface waters, (2) identify the environmental factors that affect nutrient levels in streams, (3) evaluate monitoring efforts for better determination of nutrient loads, and (4) evaluate management options for reducing nutrient loads to achieve water-quality goals.

  16. Determining the benefits of Vorticella cell body motion

    NASA Astrophysics Data System (ADS)

    Specht, Matty C.; Pepper, Rachel E.

    2016-11-01

    Microscopic sessile suspension feeders are single-celled organisms found in aquatic ecosystems. They live attached to underwater surfaces and create a fluid flow in order to feed on bacteria and debris. They participate in the natural degradation of contaminants in water. Understanding the fluid flow they create enhances our knowledge of their environmental impact. One type of suspension feeder, Vorticella, have been observed to vary their cell body orientation with respect to their surface, but the benefits of this motion are still unknown. We use simulations to investigate the effect of Vorticella body motion on the feeding current and the nutrient flux to the cell body to determine whether or not the motion increases nutrient consumption. We determine the nutrient flux using COMSOL Multiphysics software to solve the advection-diffusion equation with the flow given by a stokeslet model. We use a range of motions similar and dissimilar to that of live Vorticella. We find that most patterns of motion do not increase the nutrient flux, since the Vorticella feed from regions where they already have depleted the water of nutrients. However, it is possible that their motion could help the Vorticella find nutrients that are inhomogenously distributed in water.

  17. Combining Natural Attenuation Capacity and use of Targeted Technological Mitigation Measures for Reducing Diffuse Nutrient Emissions to Surface Waters: The Danish Way

    NASA Astrophysics Data System (ADS)

    Kronvang, B.; Højberg, A. L.; Hoffmann, C. C.; Windolf, J.; Blicher-Mathiesen, G.

    2015-12-01

    Excess nitrogen (N) and phosphorus (P) emissions to surface waters are a high priority environmental problem worldwide for protection of water resources in times of population growth and climate change. As clean water is a scarce resource the struggle for reducing nutrient emissions are an ongoing issue for many countries and regions. Since the mid1980s a wide range of national regulatory general measures have been implemented to reduce land based nitrogen (N) and phosphorus (P) loadings of the Danish aquatic environment. These measures have addressed both point source emissions and emissions from diffuse sources especially from agricultural production. Following nearly 4 decades of combating nutrient pollution our surface waters such as lakes and estuaries are only slowly responding on the 50% reduction in N and 56% reduction in P. Therefore, the implementation of the EU Water Framework Directive in Danish surface waters still call for further reductions of N and P loadings. Therefore, a new era of targeted implemented measures was the outcome of a Commission on Nature and Agriculture established by the Danish Government in 2013. Their White Book points to the need of increased growth and better environment through more targeted and efficient regulation using advanced technological mitigation methods that are implemented intelligently according to the local natural attenuation capacity for nutrients in the landscape. As a follow up a national consensus model for N was established chaining existing leaching, 3D groundwater and surface water models that enable a calculation of the N dynamics and attenuation capacity within a scale of 15 km2. Moreover, several research projects have been conducted to investigate the effect of a suite of targeted mitigation measures such as restored natural wetlands, constructed wetlands, controlled drainage, buffer strips and constructed buffer strips. The results of these studies will be shared in this presentation.

  18. Economic contribution of 'artificial upwelling' mariculture to sea-thermal power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roels, O.A.

    1976-07-01

    Deep-sea water has two valuable properties: it is uniformly cold and, compared to surface water, it is rich in nutrients such as nitrate and phosphate which are necessary for plant growth. In tropical and subtropical areas, the temperature difference between the warm surface water and the cold deep water can be used for sea-thermal power generation or other cooling applications such as air-conditioning, ice-making, desalination, and cooling of refineries, power plants, etc. Once the deep water is brought to the surface, utilization of both the cold temperature and the nutrient content is likely to be more advantageous than the usemore » of only one of them. Claude demonstrated the technical feasibility of sea-thermal power generation in Cuba in 1930. The technical feasibility of artificial upwelling mariculture in the St. Croix installation has been demonstrated. Results to date demonstrate that the gross sales value of the potential mariculture yield from a given volume of deep-sea water is many times that of the sales value of the power which can be generated by the Claude process from the same volume of deep water. Utilizing both the nutrient content and the cold temperature of the deep water may therefore make sea-thermal power generation economically feasible.« less

  19. Subsurface application of poultry litter and its influence on nutrient losses in runoff water from permanent pastures.

    PubMed

    Watts, D B; Way, T R; Torbert, H A

    2011-01-01

    Environmental pressure to reduce nutrient losses from agricultural fields has increased in recent years. To abate this nutrient loss to the environment, better management practices and new technologies need to be developed. Thus, research was conducted to evaluate if subsurface banding poultry litter (PL) would reduce nitrogen (N) and phosphorus (P) loss in surface water runoff using a four-row prototype implement. Rainfall simulations were conducted to create a 40-min runoff event in an established bermudagrass (Cynodon dactylon L.) pasture on soil types common to the Coastal Plain and Piedmont regions. The Coastal Plain soil type was a Marvyn loamy sand (fine-loamy, kaolinitic, thermic Typic Kanhapludults) and the Piedmont soil type was a Hard Labor loamy sand (fine, kaolinitic, thermic Oxyaquic Kanhapludults). Treatments consisted of surface- and subsurface-applied PL at a rate of 9 Mg ha(-1), surface broadcast-applied commercial fertilizer (CF; urea and triple superphosphate blend) at the equivalent N (330 kg N ha(-1)) and P (315 kg N ha(-1)) content of PL, and a nonfertilized control. The greatest loss for inorganic N, total N, dissolved reactive P (DRP), and total P occurred with the surface broadcast treatments, with CF contributing to the greatest loss. Nutrient losses from the subsurface banded treatment reduced N and P in surface water runoff to levels of the control. Subsurface banding of PL reduced concentrations of inorganic N 91%, total N 90%, DRP 86%, and total P 86% in runoff water compared with surface broadcasted PL. These results show that subsurface band-applied PL can greatly reduce the impact of N and P loss to the environment compared with conventional surface-applied PL and CF practices.

  20. Evaluating the relative roles of ecological regions and land-cover composition for guiding establishment of nutrient criteria

    Treesearch

    James D. Wickham; Kurt H. Riitters; Timothy G. Wade; K. Bruce Jones

    2005-01-01

    The continuing degradation of United States surface waters by excessive nutrient loads has motivated the establishment of nutrient criteria for streams, lakes, and estuaries as a means to protect aquatic resources. Nutrient criteria have been established based on ecoregional differences, recognizing that geographic variation in climate, topography, geology, and land...

  1. Physical determinants of phytoplankton production, algal stoichiometry, and vertical nutrient fluxes.

    PubMed

    Jäger, Christoph G; Diehl, Sebastian; Emans, Maximilian

    2010-04-01

    Most phytoplankters face opposing vertical gradients in light versus nutrient supplies but have limited capacities for vertical habitat choice. We therefore explored a dynamical model of negatively buoyant algae inhabiting a one-dimensional water column to ask how water column depth and turbulence constrain total (areal) phytoplankton biomass. We show that the population persistence boundaries in water column depth-turbulence space are set by sinking losses and light limitation but that nutrients are most limiting to total biomass in water columns that are neither too shallow or too weakly mixed (where sinking losses prevail) nor too deep and turbulent (where light limitation prevails). In shallow waters, the most strongly limiting process is nutrient influx to the bottom of the water column (e.g., from sediments). In deep waters, the most strongly limiting process is turbulent upward transport of nutrients to the photic zone. Consequently, the highest total biomasses are attained in turbulent waters at intermediate water column depths and in deep waters at intermediate turbulences. These patterns are insensitive to the assumption of fixed versus flexible algal carbon-to-nutrient stoichiometry, and they arise irrespective of whether the water column is a surface layer above a deep water compartment or has direct contact with sediments.

  2. Nitrogen dynamics at the groundwater-surface water interface of a degraded urban stream (journal)

    EPA Science Inventory

    Urbanization degrades stream ecosystems by altering hydrology and nutrient dynamics, yet relatively little effort has been devoted to understanding biogeochemistry of urban streams at the ground water-surface water interface. This zone may be especially important for nitrogen re...

  3. Cultural eutrophication control through water reuse.

    PubMed

    Sala, L; Mujeriego, R

    2001-01-01

    The increasing use of mineral fertilisers over the last decades has contributed to the appearance of numerous cases of water eutrophication, a new form of water pollution. The starting point of eutrophication is the increase of nutrient concentration (nitrogen and phosphorus) in a water mass, which is subsequently followed by an uncontrolled growth of primary producers and episodes of oxygen depletion due to microbial decomposition of algal organic matter. The excess nutrient loads reaching surface waters are usually associated to discharges from anthropogenic activities, which normally involve direct water usage instead of reuse of reclaimed effluents. Agriculture activities and livestock breeding are two of the main nutrient sources responsible for water eutrophication, as well as human--urban and industrial--wastewater discharges. Wastewater reclamation and reuse can be a suitable strategy for preserving the quality of natural waters, by suppressing effluent discharges and the associated nutrient contributions to receiving waters. Reuse of reclaimed water for agricultural and landscape irrigation as well as for environmental enhancement offers an adequate strategy for preserving natural water systems from eutrophication.

  4. Coloring the Sea Around the Pribilof Islands

    NASA Image and Video Library

    2017-12-08

    The Operational Land Imager (OLI) on Landsat 8 captured this view of a phytoplankton bloom near Alaska’s Pribilof Islands on Sept. 22, 2014. The Pribilofs are surrounded by nutrient-rich waters in the Bering Sea. The milky green and light blue shading of the water indicates the presence of vast populations of microscopic phytoplankton—mostly coccolithophores, which have calcite scales that appear white in satellite images. Such phytoplankton form the foundation of a tremendously productive habitat for fish and birds. Blooms in the Bering Sea increase significantly in springtime, after winter ice cover retreats and nutrients and freshened water are abundant near the ocean surface. Phytoplankton populations plummet in summertime as the water warms, surface nutrients are depleted by blooms, and the plant-like organisms are depleted by grazing fish, zooplankton, and other marine life. By autumn, storms can stir nutrients back to the surface and cooler waters make better bloom conditions. More information: earthobservatory.nasa.gov/IOTD/view.php?id=85043&eocn... Image Credit: NASA/Landsat 8 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. A Summary of the Scientific Literature on the Effects of Fire on the Concentration of Nutrients in Surface Waters

    DTIC Science & Technology

    2004-01-01

    forests, alpine forests, and so forth); (2) had a range of sampling frequency and dura- tion, such as during and immediately following a fire (from the...1) were done in a variety of environments (savannas, grass- lands, temperate forests, alpine forests, and so forth), (2) had a range of sampling...of Nutrients in Surface Waters Gresswell, R.E., 1999, Fire and aquatic ecosystems in forested biomes of North America: Transactions of the American

  6. Phylogenetic shifts of bacterioplankton community composition along the Pearl Estuary: the potential impact of hypoxia and nutrients

    PubMed Central

    Liu, Jiwen; Fu, Bingbing; Yang, Hongmei; Zhao, Meixun; He, Biyan; Zhang, Xiao-Hua

    2015-01-01

    The significance of salinity in shaping bacterial communities dwelling in estuarine areas has been well documented. However, the influences of other environmental factors such as dissolved oxygen and nutrients in determining distribution patterns of both individual taxa and bacterial communities inhabited local estuarine regions remain elusive. Here, bacterioplankton community structures of surface and bottom waters from eight sites along the Pearl Estuary were characterized with 16S rRNA gene pyrosequencing. The results showed significant differences of bacterioplankton community between freshwater and saltwater sites, and further between surface and bottom waters of saltwater sites. Synechococcus dominated the surface water of saltwater sites while Oceanospirillales, SAR11 and SAR406 were prevalent in the bottom water. Betaproteobacteria was abundant in freshwater sites, with no significant difference between water layers. Occurrence of phylogenetic shifts in taxa affiliated to the same clade was also detected. Dissolved oxygen explained most of the bacterial community variation in the redundancy analysis targeting only freshwater sites, whereas nutrients and salinity explained most of the variation across all samples in the Pearl Estuary. Methylophilales (mainly PE2 clade) was positively correlated to dissolved oxygen, whereas Rhodocyclales (mainly R.12up clade) was negatively correlated. Moreover, high nutrient inputs to the freshwater area of the Pearl Estuary have shifted the bacterial communities toward copiotrophic groups, such as Sphingomonadales. The present study demonstrated that the overall nutrients and freshwater hypoxia play important roles in determining bacterioplankton compositions and provided insights into the potential ecological roles of specific taxa in estuarine environments. PMID:25713564

  7. Spatial distribution of the phytoplankton in the White Sea during atypical domination of dinoflagellates (July 2009)

    NASA Astrophysics Data System (ADS)

    Ilyash, L. V.; Zhitina, L. S.; Belevich, T. A.; Shevchenko, V. P.; Kravchishina, M. D.; Pantyulin, A. N.; Tolstikov, A. V.; Chultsova, A. L.

    2016-05-01

    The species composition and biomass of phytoplankton, concentrations of chlorophyll a (Chl a) and nutrients, and accompanying hydrophysical conditions have been studied in the White Sea on July 6-11, 2009. The temperature of the surface water layer was lower than the multiyear average in July. Dinoflagellates dominated in the entire studied area; this was not the typical event for July. We suggest that domination of dinoflagellates was caused by low water temperature, when the nutrient regeneration rate was insufficient to support diatom growth. The abundance of microalgae and the structure of the phytoplankton community depended on the water structure. Variations in the phytoplankton community structure were caused not by substitution of specific species but rather by variability of the abundance of a single species, Heterocapsa triquetra. The highest phytoplankton biomass has been recorded in weakly stratified waters, where tidal mixing supplied the income of inorganic nutrients. The income of nutrients to the photic layer was limited in the stratified waters of Dvina Bay during the summer low-water period, so the phytoplankton abundance was low. We suggest that the lens of surface desalinated water presumably originated from the outlet of the Dvina River was registered in the central part of the White Sea.

  8. Silage storage runoff characterization: Annual nutrient loading rate and first flush analysis of bunder silos

    USDA-ARS?s Scientific Manuscript database

    Silage runoff produced during the preservation and storage of dairy forage in horizontal bunkers is a source of nutrient loss from the farmstead and a threat to surface water quality. This research evaluated the runoff characteristics from six dairy bunker facilities to determine runoff water qualit...

  9. Nutrient concentrations in leachate and runoff from dairy cattle lots with different surface materials

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) and phosphorus (P) loss from agriculture persists as a water quality issue, and outdoor cattle lots can have a high loss potential. We monitored hydrology and nutrient concentrations in leachate and runoff from dairy heifer lots constructed with three surface materials (soil, sand, bark...

  10. Water infiltration and surface soil structural properties as influenced by animal traffic in the Southern Piedmont USA

    USDA-ARS?s Scientific Manuscript database

    Surface-soil structural condition in long-term perennial pastures is expected to be modified by how forage is (a) harvested through haying or grazing and (b) stimulated through source of nutrient application. We determined the effects of harvest management and nutrient source on macropore filling, ...

  11. Patterns and Controls of Nutrient Concentrations in a Southeastern United States Tidal Creek

    DTIC Science & Technology

    2013-09-01

    which the Duplm’s salinity was controlled solely by mixing between Altamaha River and Atlantic Ocean water . Marine end-membei composition was...ix’iiirrint; within the water - shed must hove been responsible. SEDIMENT AND WATER COLUMN MICROBIAL PROCESSES There was a great deal ot...subsequent processes transform these nutrients in the land-ocean transition zone. Here, we describe spatial and temporal patterns in surface water

  12. CONTRIBUTION OF NUTRIENTS AND E. COLI TO SURFACE WATER CONDITION IN THE OZARKS I. USING PARTIAL LEAST SQUARES PREDICTIONS WHEN STANDARD REGRESSION ASSUMPTIONS ARE VIOLATED

    EPA Science Inventory

    We present here the application of PLS regression to predicting surface water total phosphorous, total ammonia and Escherichia coli from landscape metrics. The amount of variability in surface water constituents explained by each model reflects the composition of the contributi...

  13. Dual permeability modeling of tile drain management influences on hydrologic and nutrient transport characteristics in macroporous soil

    NASA Astrophysics Data System (ADS)

    Frey, Steven K.; Hwang, Hyoun-Tae; Park, Young-Jin; Hussain, Syed I.; Gottschall, Natalie; Edwards, Mark; Lapen, David R.

    2016-04-01

    Tile drainage management is considered a beneficial management practice (BMP) for reducing nutrient loads in surface water. In this study, 2-dimensional dual permeability models were developed to simulate flow and transport following liquid swine manure and rhodamine WT (strongly sorbing) tracer application on macroporous clay loam soils under controlled (CD) and free drainage (FD) tile management. Dominant flow and transport characteristics were successfully replicated, including higher and more continuous tile discharge and lower peak rhodamine WT concentrations in FD tile effluent; in relation to CD, where discharge was intermittent, peak rhodamine concentrations higher, and mass exchange from macropores into the soil matrix greater. Explicit representation of preferential flow was essential, as macropores transmitted >98% of surface infiltration, tile flow, and tile solute loads for both FD and CD. Incorporating an active 3rd type lower boundary condition that facilitated groundwater interaction was imperative for simulating CD, as the higher (relative to FD) water table enhanced water and soluble nutrient movement from the soil profile into deeper groundwater. Scenario analysis revealed that in conditions where slight upwards hydraulic gradients exist beneath tiles, groundwater upwelling can influence the concentration of surface derived solutes in tile effluent under FD conditions; whereas the higher and flatter CD water table can restrict groundwater upwelling. Results show that while CD can reduce tile discharge, it can also lead to an increase in surface-application derived nutrient concentrations in tile effluent and hence surface water receptors, and it can promote NO3 loading into groundwater. This study demonstrates dual permeability modeling as a tool for increasing the conceptual understanding of tile drainage BMPs.

  14. On the Complexity of Nutrient Transport in a Large Watershed in Ohio

    NASA Astrophysics Data System (ADS)

    Schwartz, F. W.; Allen, G.

    2009-12-01

    This paper examines key features of the hydrobiologic setting in controlling the cycling of nutrients through the major streams and rivers of a large agriculturally dominated watershed in central Ohio. The particular focus is on the roles of extreme rainfall events in generating nutrients, and role of reservoirs in attenuating nutrient concentrations. The study also highlights major gaps in process knowledge even in the face in the face of extensive regulatory and other monitoring. Although it has been recognized that reservoirs can significantly affect surface-water flows in watersheds, there is a growing recognition of the need for expanded and complementary studies to understand their role in nutrient transport. The study area is located in central Ohio and includes the entire Upper Scioto and the northern portion of the Lower Scioto River basins, an area encompassing approximately 9984 km2. Five of the sub-watersheds contain major surface-water storage reservoirs. Two watersheds are without reservoirs. There is intensive agriculture within the study area with corn and soybeans as the dominant crops. Tile drainage of fields provides an efficient and rapid connection of agricultural lands to surface waters, facilitating the loading of fertilizers and agrochemicals to surface streams. Storm flows in spring months that coincide with fertilizer applications often provide nitrate concentrations in excess of 10 mg/L as N. In spite of years of routine sampling for regulatory purposes, little is known about nutrient loading patterns during the few, brief, extreme events each year. Interpretations of a high resolution temporal chemical record of sampling on the Scioto River is frustrated by the complexity of loading and mixing as tributaries from sub-watersheds join the main stem of the Scioto River and nutrient utilization within the large reservoirs. Even with literally thousands of individual chemical measurements, extensive stream and precipitation data, the details of processes affecting nutrient transport remain uncertain.

  15. Conservation of soil, water and nutrients in surface runoff using riparian plant species.

    PubMed

    Srivastava, Prabodh; Singh, Shipra

    2012-01-01

    Three riparian plant species viz. Cynodon dactylon (L.) Pers., Saccharum bengalensis Retz. and Parthenium hysterophorus L. were selected from the riparian zone of Kali river at Aligarh to conduct the surface runoff experiment to compare their conservation efficiencies for soil, water and nutrients (phosphorus and nitrogen). Experimental plots were prepared on artificial slopes in botanical garden and on natural slopes on study site. Selected riparian plant species showed the range of conservation values for soil and water from 47.11 to 95.22% and 44.06 to 72.50%, respectively on artificial slope and from 44.53 to 95.33% and 48.36 to 73.15%, respectively on natural slope. Conservation values for phosphorus and nitrogen ranged from 40.83 to 88.89% and 59.78 to 82.22%, respectively on artificial slope and from 50.01 to 90.16% and 68.07 to 85.62%, respectively on natural slope. It was observed that Cynodon dactylon was the most efficient riparian species in conservation of soil, water and nutrients in surface runoff.

  16. Tide- and rainfall-induced variations of physical and chemical parameters in a mangrove-depleted estuary of East Hainan (South China Sea).

    PubMed

    Krumme, Uwe; Herbeck, Lucia S; Wang, Tianci

    2012-12-01

    The estuarine dynamics favoring the coexistence of mangroves, seagrass and corals at small river mouths are often poorly understood. We characterize the tidal, day/night and rainfall-induced short-term dynamics in salinity, pH, dissolved oxygen (DO), chlorophyll a (chl a), total suspended matter (TSM), water transparency, surface currents and dissolved nutrients (NO(x)(-), NH(4)(+), PO(4)(3)(-), Si(OH)(4)) of the Wenchang/Wenjiao Estuary (East Hainan, tropical China). Samples were taken at three fixed sites along the estuary during 24 h spring tide cycles in different seasons. Salinity, DO, water transparency and pH generally increased seawards while nutrients decreased. All parameters varied with the tidal cycle, partially in interaction with the diel cycle. Nutrients, chl a and TSM usually fluctuated inversely with water level. Stratification was strong. Inflowing bottom water was of higher salinity, DO and pH and lower temperature and nutrient concentrations than the surface water. Tidal mixing provided regular ventilation of the estuary and limited eutrophication effects of nutrients from aquaculture, agriculture and urban effluents. Under dry weather conditions, the brackish-water lagoon functioned as a sink of nutrients due to efficient uptake by phytoplankton. Presently, the runoff from common intense rains in the watershed affects the estuary with little time delay due to terrestrial deforestation, channelization and loss of mangrove area. The frequency, strength and duration of intermittent estuarization of the back-reef areas have likely increased in the past and deteriorate present seagrass and coral health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Controls of event-based nutrient transport within nested headwater agricultural watersheds of the western Lake Erie basin

    USDA-ARS?s Scientific Manuscript database

    Understanding the processes controlling nutrient delivery in headwater agricultural watersheds is essential for predicting and mitigating eutrophication and harmful algal blooms in receiving surface waters. The objective of this study was to elucidate nutrient transport pathways and examine key comp...

  18. Qualitatively Modeling solute fate and transport across scales in an agricultural catchment with diverse lithology

    NASA Astrophysics Data System (ADS)

    Wayman, C. R.; Russo, T. A.; Li, L.; Forsythe, B.; Hoagland, B.

    2017-12-01

    As part of the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) project, we have collected geochemical and hydrological data from several subcatchments and four monitoring sites on the main stem of Shaver's Creek, in Huntingon county, Pennsylvania. One subcatchment (0.43 km2) is under agricultural land use, and the monitoring locations on the larger Shaver's Creek (up to 163 km2) drain watersheds with 0 to 25% agricultural area. These two scales of investigation, coupled with advances made across the SSHCZO on multiple lithologies allow us to extrapolate from the subcatchment to the larger watershed. We use geochemical surface and groundwater data to estimate the solute and water transport regimes within the catchment, and to show how lithology and land use are major controls on ground and surface water quality. One area of investigation includes the transport of nutrients between interflow and regional groundwater, and how that connectivity may be reflected in local surface waters. Water and nutrient (Nitrogen) isotopes, will be used to better understand the relative contributions of local and regional groundwater and interflow fluxes into nearby streams. Following initial qualitative modeling, multiple hydrologic and nutrient transport models (e.g. SWAT and CYCLES/PIHM) will be evaluated from the subcatchment to large watershed scales. We will evaluate the ability to simulate the contributions of regional groundwater versus local groundwater, and also impacts of agricultural land management on surface water quality. Improving estimations of groundwater contributions to stream discharge will provide insight into how much agricultural development can impact stream quality and nutrient loading.

  19. Simulation of annual biogeochemical cycles of nutrient balance, phytoplankton bloom(s), and DO in Puget Sound using an unstructured grid model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khangaonkar, Tarang; Sackmann, Brandon; Long, Wen

    2012-08-14

    Nutrient pollution from rivers, nonpoint source runoff, and nearly 100 wastewater discharges is a potential threat to the ecological health of Puget Sound with evidence of hypoxia in some basins. However, the relative contributions of loads entering Puget Sound from natural and anthropogenic sources, and the effects of exchange flow from the Pacific Ocean are not well understood. Development of a quantitative model of Puget Sound is thus presented to help improve our understanding of the annual biogeochemical cycles in this system using the unstructured grid Finite-Volume Coastal Ocean Model framework and the Integrated Compartment Model (CE-QUAL-ICM) water quality kinetics.more » Results based on 2006 data show that phytoplankton growth and die-off, succession between two species of algae, nutrient dynamics, and dissolved oxygen in Puget Sound are strongly tied to seasonal variation of temperature, solar radiation, and the annual exchange and flushing induced by upwelled Pacific Ocean waters. Concentrations in the mixed outflow surface layer occupying approximately 5–20 m of the upper water column show strong effects of eutrophication from natural and anthropogenic sources, spring and summer algae blooms, accompanied by depleted nutrients but high dissolved oxygen levels. The bottom layer reflects dissolved oxygen and nutrient concentrations of upwelled Pacific Ocean water modulated by mixing with biologically active surface outflow in the Strait of Juan de Fuca prior to entering Puget Sound over the Admiralty Inlet. The effect of reflux mixing at the Admiralty Inlet sill resulting in lower nutrient and higher dissolved oxygen levels in bottom waters of Puget Sound than the incoming upwelled Pacific Ocean water is reproduced. Finally, by late winter, with the reduction in algal activity, water column constituents of interest, were renewed and the system appeared to reset with cooler temperature, higher nutrient, and higher dissolved oxygen waters from the Pacific Ocean.« less

  20. Water Mass Classification on a Highly Variable Arctic Shelf Region: Origin of Laptev Sea Water Masses and Implications for the Nutrient Budget

    NASA Astrophysics Data System (ADS)

    Bauch, D.; Cherniavskaia, E.

    2018-03-01

    Large gradients and inter annual variations on the Laptev Sea shelf prevent the use of uniform property ranges for a classification of major water masses. The central Laptev Sea is dominated by predominantly marine waters, locally formed polynya waters and riverine summer surface waters. Marine waters enter the central Laptev Sea from the northwestern Laptev Sea shelf and originate from the Kara Sea or the Arctic Ocean halocline. Local polynya waters are formed in the Laptev Sea coastal polynyas. Riverine summer surface waters are formed from Lena river discharge and local melt. We use a principal component analysis (PCA) in order to assess the distribution and importance of water masses within the Laptev Sea. This mathematical method is applied to hydro-chemical summer data sets from the Laptev Sea from five years and allows to define water types based on objective and statistically significant criteria. We argue that the PCA-derived water types are consistent with the Laptev Sea hydrography and indeed represent the major water masses on the central Laptev Sea shelf. Budgets estimated for the thus defined major Laptev Sea water masses indicate that freshwater inflow from the western Laptev Sea is about half or in the same order of magnitude as freshwater stored in locally formed polynya waters. Imported water dominates the nutrient budget in the central Laptev Sea; and only in years with enhanced local polynya activity is the nutrient budget of the locally formed water in the same order as imported nutrients.

  1. Water quantity and quality response of a green roof to storm events: Experimental and monitoring observations.

    PubMed

    Carpenter, Corey M G; Todorov, Dimitar; Driscoll, Charles T; Montesdeoca, Mario

    2016-11-01

    Syracuse, New York is working under a court-ordered agreement to limit combined sewer overflows (CSO) to local surface waters. Green infrastructure technologies, including green roofs, are being implemented as part of a CSO abatement strategy and to develop co-benefits of diminished stormwater runoff, including decreased loading of contaminants to the wastewater system and surface waters. The objective of this study was to examine the quantity and quality of discharge associated with precipitation events over an annual cycle from a green roof in Syracuse, NY and to compare measurements from this monitoring program with results from a roof irrigation experiment. Wet deposition, roof drainage, and water quality were measured for 87 storm events during an approximately 12 month period over 2011-2012. Water and nutrient (total phosphorus, total nitrogen, and dissolved organic carbon) mass balances were conducted on an event basis to evaluate retention annually and during the growing and non-growing seasons. These results are compared with a hydrological manipulation experiment, which comprised of artificially watering of the roof. Loadings of nutrients were calculated for experimental and actual storms using the concentration of nutrients and the flow data of water discharging the roof. The green roof was effective in retaining precipitation quantity from storm events (mean percent retention 96.8%, SD = 2.7%, n = 87), although the relative fraction of water retained decreased with increases in the size of the event. There was no difference in water retention of the green roof for the growing and non-growing seasons. Drainage waters exhibited high concentration of nutrients during the warm temperature growing season, particularly total nitrogen and dissolved organic carbon. Overall, nutrient losses were low because of the strong retention of water. However, there was marked variation in the retention of nutrients by season due to variations in concentrations in roof runoff. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Monitoring of nutrients, pesticides, and metals in waters, sediments, and fish of a wetland.

    PubMed

    Salvadó, V; Quintana, X D; Hidalgo, M

    2006-10-01

    Wetland areas are of extraordinary importance for the conservation of wildlife. The Aiguamolls de l'Empordà Natural Park, located in Girona (northeast Spain), is one of the few areas in Europe acting as a way station for migratory birds. The natural park is made up of a brackish water reserve and a fresh water reserve. Agriculture and tourism, which are concentrated especially around coastal population centers, are the main activities in this area and result in the release into the environment of nutrients, pesticides, and heavy metals. This article aims to investigate the presence of nutrients, selected pesticides (organochlorine compounds, permethrin and triazines) and metals (Cr, Cu, Cd, Ni and Pb) in water, sediments, and fish samples. In the case of water, seasonal variations in levels of contamination were also monitored. Comparison was made of the fresh and brackish water reserves and concentration factors for metals and pesticides in sediment were determined. We conclude that the most significant sources of contamination in the natural park are from the entry of pesticides and nutrients into surface waters and sediments as a result of the intensive farming activity of the surrounding areas. The pesticides with the greatest presence were found to be lindane, heptachlor epoxide, permethrin, and atrazine. Among the metals analyzed, Cu and Cr presented the highest concentrations in surface waters and sediments.

  3. Estimation of surface water quality in a Yazoo River tributary using the duration curve and recurrence interval approach

    Treesearch

    Ying Ouyang; Prem B. Parajuli; Daniel A. Marion

    2013-01-01

    Pollution of surface water with harmful chemicals and eutrophication of rivers and lakes with excess nutrients are serious environmental concerns. This study estimated surface water quality in a stream within the Yazoo River Basin (YRB), Mississippi, USA, using the duration curve and recurrence interval analysis techniques. Data from the US Geological Survey (USGS)...

  4. Estimation of real-time N load in surface water using dynamic data driven application system

    Treesearch

    Y. Ouyang; S.M. Luo; L.H. Cui; Q. Wang; J.E. Zhang

    2011-01-01

    Agricultural, industrial, and urban activities are the major sources for eutrophication of surface water ecosystems. Currently, determination of nutrients in surface water is primarily accomplished by manually collecting samples for laboratory analysis, which requires at least 24 h. In other words, little to no effort has been devoted to monitoring real-time variations...

  5. Analysis of nutrients in the surface waters of the Georgia-Florida Coastal Plain study unit, 1970-91

    USGS Publications Warehouse

    Ham, L.K.; Hatzell, H.H.

    1996-01-01

    During the early phase of the Georgia-Florida National Water Quality Assessment study, existing information on nutrients was compiled and analyzed in order to evaluate the nutrient concentrations within the 61,545 square mile study unit. Evaluation of the nutrient concentrations collected at surface- water sites between October 1, 1970, and September 30,1991, utilized the environmental characteristics of land resource provinces, land use, and nonpoint and point-source discharges within the study unit. Long-term trends were investigated to determine the temporal distribution of nutrient concentrations. In order to determine a level of concern for nutrient concentrations, the U.S. Environmental Protection Agency (USEPA) guidelines were used-(1) for nitrate concentrations, the maximum contaminant level in public-drinking water supplies (10 mg/L); (2) for ammonia concentrations, the chronic exposure of aquatic organisms to un-ionized ammonia (2.1 mg/L); (3) for total-phosphorus concentrations, the recommended concentration in flowing water to discourage excessive growth of aquatic plants (0.1 mg/L); and (4) for kjeldahl concentrations, however, no guidelines were available. For sites within the 10 major river basins, median nutrient concentrations were generally below USEPA guidelines, except for total-phosphorus concentrations where 45 percent of the medians exceeded the guideline. The only median ammonia concentration that exceeded the guideline occurred at the Swift Creek site (3.4 mg/L), in the Suwannee River basin, perhaps due to wastewater discharges. For all sites within the Withlacoochee, Aucilla, and St. Marys River basins, median concentrations of nitrate, ammonia, and total phosphorus were below the USEPA guidelines. Nutrient data at each monitoring site within each major basin were aggregated for comparisons of median nutrient concentrations among major basins. The Ochlockonee and Hillsborough River basins had the highest median nutrient concentrations, the Aucilla River basin had the lowest. Median concentrations of nitrate and ammonia among all major basins were below USEPA guidelines. The median total-phosphorus concentrations for the following river basins exceeded the USEPA guideline-Hillsborough, St. Johns, Suwannee, Ochlockonee, Satilla, Altamaha, and Ogeechee. Although nutrient concentrations within the study unit were low, long-term increasing trends were found in all four nutrients. All 18 study-unit wide nitrate trends had increasing slopes ranging from less than 0.01 to 0.07 (mg/L)/yr. The range in slope for the 13 ammonia trends was -0.03 to 0.01 (mg/L)/yr with 6 increasing trends in the northern part of the study unit. Of the 17 total-phosphorus trends found in the study unit, 10 were found at sites where the median concentration exceeded the USEPA guideline. At these 10 sites, 4 sites had increasing trends with slopes ranging from less than 0.01 to 0.07 (mg/L)/yr, 5 sites had decreasing trends with slopes ranging from -0.01 to -0.24 (mg/L)/yr, and one site showed a seasonal concentration trend. Median nutrient concentrations were significantly different among the four land resource provinces-Southern Piedmont, Southern Coastal Plain, Coastal Flatwoods, and Central Florida Ridge. As a result, nutrient concentrations among basins with similar nutrient inputs but located within different land resource provinces are not expected to be the same due to differences in the combination of factors such as soil permeability, runoff rates, and stream channel slopes. This concept is an important consideration in designing a surface-water quality network within the study area. For the most part, the Coastal Flatwoods showed the lowest median nutrient concentrations and the Southern Coastal Plain had the highest median nutrient concentrations. Lower median nitrate concentrations in surface-water basins were associated with the forest/wetland land-use category and higher median concentrations of nitrate and ammonia with

  6. [Inventory of regional surface nutrient balance and policy recommendations in China].

    PubMed

    Chen, Min-Peng; Chen, Ji-Ning

    2007-06-01

    By applying OECD surface soil nitrogen balance methodology, the framework, methodology and database for nutrient balance budget in China are established to evaluate the impact of nutrient balance on agricultural production and water environment. Results show that nitrogen and phosphorus surplus in China are 640 x 10(4) t and 98 x 10(4) t respectively, and nitrogen and phosphorus surplus intensity in China are 16.56 kg/hm2 and 2.53 kg/hm2 respectively. Because of striking spatial difference of nutrient balance across the country, China is seeing a dual-challenge of nutrient surplus management as well as nutrient deficit management. Chemical fertilizer and livestock manure are best targets to perform nutrient surplus management due to their marked contributions to nutrient input. However, it is not cost-effective to implement a uniform management for all regions since nutrient input structures of them vary considerably.

  7. Sources of nitrogen and phosphorus emissions to Irish rivers and coastal waters: Estimates from a nutrient load apportionment framework.

    PubMed

    Mockler, Eva M; Deakin, Jenny; Archbold, Marie; Gill, Laurence; Daly, Donal; Bruen, Michael

    2017-12-01

    More than half of surface water bodies in Europe are at less than good ecological status according to Water Framework Directive assessments, and diffuse pollution from agriculture remains a major, but not the only, cause of this poor performance. Agri-environmental policy and land management practices have, in many areas, reduced nutrient emissions to water. However, additional measures may be required in Ireland to further decouple the relationship between agricultural productivity and emissions to water, which is of vital importance given on-going agricultural intensification. The Source Load Apportionment Model (SLAM) framework characterises sources of phosphorus (P) and nitrogen (N) emissions to water at a range of scales from sub-catchment to national. The SLAM synthesises land use and physical characteristics to predict emissions from point (wastewater, industry discharges and septic tank systems) and diffuse sources (agriculture, forestry, etc.). The predicted annual nutrient emissions were assessed against monitoring data for 16 major river catchments covering 50% of the area of Ireland. At national scale, results indicate that total average annual emissions to surface water in Ireland are over 2700tyr -1 of P and 82,000tyr -1 of N. The proportional contributions from individual sources show that the main sources of P are from municipal wastewater treatment plants and agriculture, with wide variations across the country related to local anthropogenic pressures and the hydrogeological setting. Agriculture is the main source of N emissions to water across all regions of Ireland. These policy-relevant results synthesised large amounts of information in order to identify the dominant sources of nutrients at regional and local scales, contributing to the national nutrient risk assessment of Irish water bodies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments

    NASA Astrophysics Data System (ADS)

    Jones, Morgan T.; Gislason, Sigurður R.

    2008-08-01

    Deposition of volcanic ash into aqueous environments leads to dissolution of adsorbed metal salts and aerosols, increasing the bioavailability of key nutrients. Volcanogenic fertilization events could increase marine primary productivity, leading to a drawdown of atmospheric CO 2. Here we conduct flow-through experiments on unhydrated volcanic ash samples from a variety of locations and sources, measuring the concentrations and fluxes of elements into de-ionized water and two contrasting ocean surface waters. Comparisons of element fluxes show that dissolution of adsorbed surface salts and aerosols dominates over glass dissolution, even in sustained low pH conditions. These surface ash-leachates appear unstable, decaying in situ even if kept unhydrated. Volcanic ash from recent eruptions is shown to have a large fertilization potential in both fresh and saline water. Fluorine concentrations are integral to bulk dissolution rates and samples with high F concentrations display elevated fluxes of some nutrients, particularly Fe, Si, and P. Bio-limiting micronutrients are released in large quantities, suggesting that subsequent biological growth will be limited by macronutrient availability. Importantly, acidification of surface waters and high fluxes of toxic elements highlights the potential of volcanic ash-leachates to poison aqueous environments. In particular, large pH changes can cause undersaturation of CaCO 3 polymorphs, damaging populations of calcifying organisms. Deposition of volcanic ash can both fertilize and/or poison aqueous environments, causing significant changes to surface water chemistry and biogeochemical cycles.

  9. Evaluation of agricultural best-management practices in the Conestoga River headwaters, Pennsylvania; effects of nutrient management on quality of surface runoff at a small carbonate-rock site near Ephrate, Pennsylvania, 1984-90

    USGS Publications Warehouse

    Hall, D.W.; Lietman, P.L.; Koerkle, E.J.

    1997-01-01

    The U.S. Geological Survey and the Pennsylvania Department of Environmental Protection conducted a study from 1984 to 1990 to determine theeffects of the implementation and practice of nutrient management [an agricultural best-management practice (BMP)] on the quality of surface runoff and ground water at a 55-acre crop and livestock farm in carbonate terrain nearEphrata, Pa. Implementation of nutrient management at Field-Site 2 resulted in application decreases of 33 percent for nitrogen and 29 percent for phosphorus. There wereno significant changes in nitrogen or phosphorusloads for a given amount of runoff from the pre-BMP to the post-BMP periods. However, less than 2 percent of the applied nutrients weredischarged with runoff throughout the study period.After the implementation of nutrient management, statistically significant decreases in concentrations of nitrate in ground-water samples occurred at threeof the four wells monitored throughout the pre- and post-BMP periods. The largest decreases in nitrate concentrations occurred at wells where samples hadthe largest nitrate concentrations prior to nutrient management. Changes in nitrogen applications to the contributing areas of five wells were correlated with nitrate concentrations of the well water. The correlations between the timing and amount of applied nitrogen and changes in ground-water quality met the four conditions that are characteristic of a cause-effect relation: an association, consistency, responsiveness, and a mechanism. Changes in ground-water nitrate concentrations lagged behind changes in loading of nitrogen fertilizers (primarily manure) by approximately 4 to 19 months.

  10. Partial validation of the Dutch model for emission and transport of nutrients (STONE).

    PubMed

    Overbeek, G B; Tiktak, A; Beusen, A H; van Puijenbroek, P J

    2001-11-17

    The Netherlands has to cope with large losses of N and P to groundwater and surface water. Agriculture is the dominant source of these nutrients, particularly with reference to nutrient excretion due to intensive animal husbandry in combination with fertilizer use. The Dutch government has recently launched a stricter eutrophication abatement policy to comply with the EC nitrate directive. The Dutch consensus model for N and P emission to groundwater and surface water (STONE) has been developed to evaluate the environmental benefits of abatement plans. Due to the possibly severe socioeconomic consequences of eutrophication abatement plans, it is of utmost importance that the model is thoroughly validated. Because STONE is applied on a nationwide scale, the model validation has also been carried out on this scale. For this purpose the model outputs were compared with lumped results from monitoring networks in the upper groundwater and in surface waters. About 13,000 recent point source observations of nitrate in the upper groundwater were available, along with several hundreds of observations showing N and P in local surface water systems. Comparison of observations from the different spatial scales available showed the issue of scale to be important. Scale issues will be addressed in the next stages of the validation study.

  11. Increased fluxes of shelf-derived materials to the central Arctic Ocean

    PubMed Central

    Kipp, Lauren E.; Charette, Matthew A.; Moore, Willard S.; Henderson, Paul B.; Rigor, Ignatius G.

    2018-01-01

    Rising temperatures in the Arctic Ocean region are responsible for changes such as reduced ice cover, permafrost thawing, and increased river discharge, which, together, alter nutrient and carbon cycles over the vast Arctic continental shelf. We show that the concentration of radium-228, sourced to seawater through sediment-water exchange processes, has increased substantially in surface waters of the central Arctic Ocean over the past decade. A mass balance model for 228Ra suggests that this increase is due to an intensification of shelf-derived material inputs to the central basin, a source that would also carry elevated concentrations of dissolved organic carbon and nutrients. Therefore, we suggest that significant changes in the nutrient, carbon, and trace metal balances of the Arctic Ocean are underway, with the potential to affect biological productivity and species assemblages in Arctic surface waters. PMID:29326980

  12. Metagenomic sequencing of two salton sea microbiomes.

    PubMed

    Hawley, Erik R; Schackwitz, Wendy; Hess, Matthias

    2014-01-23

    The Salton Sea is the largest inland body of water in California, with salinities ranging from brackish freshwater to hypersaline. The lake experiences high nutrient input, and its surface water is exposed to temperatures up to 40°C. Here, we report the community profiles associated with surface water from the Salton Sea.

  13. Evaluation of pollution levels due to the use of consumer fertilizers under Florida conditions : summary.

    DOT National Transportation Integrated Search

    2010-01-01

    Many surface waters in Florida are polluted with excessive nitrogen and phosphorus. Applied as fertilizer to turf and landscape plants, excess nutrients are deposited into rivers, lakes, and other surface waters through stormwater runoff. These nutri...

  14. Glacial to interglacial surface nutrient variations of Bering Deep Basins recorded by δ13C and δ15N of sedimentary organic matter

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Takeshi; Watanabe, Kazuki; Handa, Nobuhiko; Matsumoto, Eiji; Wada, Eitaro

    1995-12-01

    Stable carbon and nitrogen isotopic ratios (δ13C and δ15N) of organic matter were measured in three sediment cores from deep basins of the Bering Sea to investigate past changes in surface nutrient conditions. For surface water reconstructions, hemipelagic layers in the cores were distinguished from turbidite layers (on the basis of their sedimentary structures and 14C ages) and analyzed for isotopic studies. Although δ13C profiles may have been affected by diagenesis, both δ15N and δ13C values showed common positive anomalies during the last deglaciation. We explain these anomalies as reflecting suppressed vertical mixing and low nutrient concentrations in surface waters caused by injection of meltwater from alpine glaciers around the Bering Sea. Appendix tables are available with entire article on microfiche. Order from American Geophysical Union, 2000 Florida Avenue, N.W., Washington , DC 20009. Document P95-003; $2.50. Payment must accompany order.

  15. Managing urban runoff in residential neighborhoods: Nitrogen and phosphorus in lawn irrigation driven runoff.

    PubMed

    Toor, Gurpal S; Occhipinti, Marti L; Yang, Yun-Ya; Majcherek, Tammy; Haver, Darren; Oki, Lorence

    2017-01-01

    Sources and mechanisms of nutrient transport in lawn irrigation driven surface runoff are largely unknown. We investigated the transport of nitrogen (N) and phosphorus (P) in lawn irrigation driven surface runoff from a residential neighborhood (28 ha) of 56% impervious and 44% pervious areas. Pervious areas encompassing turfgrass (lawns) in the neighborhood were irrigated with the reclaimed water in common areas during the evening to late night and with the municipal water in homeowner's lawns during the morning. The stormwater outlet pipe draining the residential neighborhood was instrumented with a flow meter and Hach autosampler. Water samples were collected every 1-h and triple composite samples were obtained at 3-h intervals during an intensive sampling period of 1-week. Mean concentrations, over 56 sampling events, of total N (TN) and total P (TP) in surface runoff at the outlet pipe were 10.9±6.34 and 1.3±1.03 mg L-1, respectively. Of TN, the proportion of nitrate-N was 58% and other-N was 42%, whereas of TP, orthophosphate-P was 75% and other-P was 25%. Flow and nutrient (N and P) concentrations were lowest from 6:00 a.m. to noon, which corresponded with the use of municipal water and highest from 6:00 p.m. to midnight, which corresponded with the use of reclaimed water. This data suggests that N and P originating in lawn irrigation driven surface runoff from residential catchments is an important contributor of nutrients in surface waters.

  16. Managing urban runoff in residential neighborhoods: Nitrogen and phosphorus in lawn irrigation driven runoff

    PubMed Central

    Occhipinti, Marti L.; Yang, Yun-Ya; Majcherek, Tammy; Haver, Darren; Oki, Lorence

    2017-01-01

    Sources and mechanisms of nutrient transport in lawn irrigation driven surface runoff are largely unknown. We investigated the transport of nitrogen (N) and phosphorus (P) in lawn irrigation driven surface runoff from a residential neighborhood (28 ha) of 56% impervious and 44% pervious areas. Pervious areas encompassing turfgrass (lawns) in the neighborhood were irrigated with the reclaimed water in common areas during the evening to late night and with the municipal water in homeowner’s lawns during the morning. The stormwater outlet pipe draining the residential neighborhood was instrumented with a flow meter and Hach autosampler. Water samples were collected every 1-h and triple composite samples were obtained at 3-h intervals during an intensive sampling period of 1-week. Mean concentrations, over 56 sampling events, of total N (TN) and total P (TP) in surface runoff at the outlet pipe were 10.9±6.34 and 1.3±1.03 mg L–1, respectively. Of TN, the proportion of nitrate–N was 58% and other–N was 42%, whereas of TP, orthophosphate–P was 75% and other–P was 25%. Flow and nutrient (N and P) concentrations were lowest from 6:00 a.m. to noon, which corresponded with the use of municipal water and highest from 6:00 p.m. to midnight, which corresponded with the use of reclaimed water. This data suggests that N and P originating in lawn irrigation driven surface runoff from residential catchments is an important contributor of nutrients in surface waters. PMID:28604811

  17. Estimation of Total Nitrogen and Phosphorus in New England Streams Using Spatially Referenced Regression Models

    USGS Publications Warehouse

    Moore, Richard Bridge; Johnston, Craig M.; Robinson, Keith W.; Deacon, Jeffrey R.

    2004-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA) and the New England Interstate Water Pollution Control Commission (NEIWPCC), has developed a water-quality model, called SPARROW (Spatially Referenced Regressions on Watershed Attributes), to assist in regional total maximum daily load (TMDL) and nutrient-criteria activities in New England. SPARROW is a spatially detailed, statistical model that uses regression equations to relate total nitrogen and phosphorus (nutrient) stream loads to nutrient sources and watershed characteristics. The statistical relations in these equations are then used to predict nutrient loads in unmonitored streams. The New England SPARROW models are built using a hydrologic network of 42,000 stream reaches and associated watersheds. Watershed boundaries are defined for each stream reach in the network through the use of a digital elevation model and existing digitized watershed divides. Nutrient source data is from permitted wastewater discharge data from USEPA's Permit Compliance System (PCS), various land-use sources, and atmospheric deposition. Physical watershed characteristics include drainage area, land use, streamflow, time-of-travel, stream density, percent wetlands, slope of the land surface, and soil permeability. The New England SPARROW models for total nitrogen and total phosphorus have R-squared values of 0.95 and 0.94, with mean square errors of 0.16 and 0.23, respectively. Variables that were statistically significant in the total nitrogen model include permitted municipal-wastewater discharges, atmospheric deposition, agricultural area, and developed land area. Total nitrogen stream-loss rates were significant only in streams with average annual flows less than or equal to 2.83 cubic meters per second. In streams larger than this, there is nondetectable in-stream loss of annual total nitrogen in New England. Variables that were statistically significant in the total phosphorus model include discharges for municipal wastewater-treatment facilities and pulp and paper facilities, developed land area, agricultural area, and forested area. For total phosphorus, loss rates were significant for reservoirs with surface areas of 10 square kilometers or less, and in streams with flows less than or equal to 2.83 cubic meters per second. Applications of SPARROW for evaluating nutrient loading in New England waters include estimates of the spatial distributions of total nitrogen and phosphorus yields, sources of the nutrients, and the potential for delivery of those yields to receiving waters. This information can be used to (1) predict ranges in nutrient levels in surface waters, (2) identify the environmental variables that are statistically significant predictors of nutrient levels in streams, (3) evaluate monitoring efforts for better determination of nutrient loads, and (4) evaluate management options for reducing nutrient loads to achieve water-quality goals.

  18. Evaluation of agricultural best-management practices in the Conestoga River headwaters, Pennsylvania : characterization of surface-runoff and ground-water quantity and quality in a small carbonate basin near Churchtown, Pennsylvania, prior to terracing and implementation of nutrient management : water-quality study of the Conestoga River headwaters, Pennsylvania

    USGS Publications Warehouse

    Leitman, Patricia L.; Hall, D.W.; Langland, M.J.; Chichester, D.C.; Ward, J.R.

    1996-01-01

    Surface-runoff and ground-water quantity and quality of a 22.1-acre field site were characterized from January 1983 through September 1984, before implementation of terracing and nutrient-management practices. The site, underlain by carbonate rock, was cropland used primarily for the production of corn and alfalfa. Average annual application of nutrients to the 14.4 acres of cornfields was 410 pounds of nitrogen and 110 pounds of phosphorus. About three times more nutrients were applied during the 1984 water year than during the 1983 water year. During the investigation, 714,000 cubic feet of runoff transported 244 tons of suspended sediment, 300 pounds of nitrogen, and 170 pounds of phosphorus during the 1984 water year. Runoff from storms on frozen ground produced the highest loads of nitrogen. Regression analyses indicate that runoff rates and quantities were controlled by precipitation intensities of quantities and the amount of crop cover, and that mean concentrations of nitrogen for runoff events increased with increased surface-nitrogen applications made prior to runoff. Ground-water levels responded quickly to recharge, with peaks occurring several hours to a day after precipitation. Median concentrations of dissolved nitrate in ground water ranged from 9.2 to 13 milligrams per liter as nitrogen. A lag time of 1 to 3 months was observed between the time that nitrogen was applied to the land surface and local maximums in nitrate concentrations were detected in ground water unaffected by recharge events. About 3 million cubic feet of ground water and an associated 2,200 pounds of nitrate-nitrogen discharged from the site during the study period. For the study period, 42 percent of the precipitation recharged to ground water, 10 percent became runoff, and 48 percent evapotranspired. Inputs of nitrogen to the study area were estimated to be 93 percent from manure, 5 percent from commercial fertilizer, and 2 percent from precipitation. Nitrogen outputs from the system were estimated to be 38 percent to crop uptake, 39 percent to volatilization, 20 percent to ground- water discharge, and 3 percent to surface runoff.

  19. Effect of land-applied biosolids on surface-water nutrient yields and groundwater quality in Orange County, North Carolina

    USGS Publications Warehouse

    Wagner, Chad R.; Fitzgerald, Sharon A.; McSwain, Kristen Bukowski; Harden, Stephen L.; Gurley, Laura N.; Rogers, Shane W.

    2015-01-01

    The data, analysis, and conclusions associated with this study can be used by regulatory agencies, resource managers, and wastewater-treatment operators to (1) better understand the quantity and characteristics of nutrients, bacteria, metals, and contaminants of emerging concern that are transported away from biosolids land-application fields to surface water and groundwater under current regulations for the purposes of establishing effective total maximum daily loads (TMDLs) and restoring impaired water resources, (2) assess how well existing regulations protect waters of the State and potentially recommend effective changes to regulations or land-application procedures, and (3) establish a framework for developing guidance on effective techniques for monitoring and regulatory enforcement of permitted biosolids land-application fields.

  20. Spatial patterns of soil nutrients and groundwater levels within the Debre Mawi watershed of the Ethiopian highlands

    NASA Astrophysics Data System (ADS)

    Guzman, Christian; Tilahun, Seifu; Dagnew, Dessalegn; Zegeye, Assefe; Tebebu, Tigist; Yitaferu, Birru; Steenhuis, Tammo

    2015-04-01

    Persistent patterns of erosion have emerged in the Ethiopian highlands leading to soil and water conservation practices being implemented throughout the countryside. A common concern is the loss of soil fertility and loss of soil water. This study investigates the spatial patterns of soil nutrients and water table depths in a small sub-watershed in the northwestern Ethiopian highlands. NPK, a particularly important group of nutrients for inorganic fertilizer considerations, did not follow a consistent trend as a group along and across slope and land use transects. Whereas nitrogen content was greatest in the upslope regions (~0.1% TN), available phosphorus had comparably similar content in the different slope regions throughout the watershed (~2.7 mg/kg). The exchangeable cations (K, Ca, Mg) did increase in content in a downslope direction (in most cases though, they were highest in the middle region) but not consistently later in the season. On average, calcium (40 cmol/kg), magnesium (5 cmol/kg), and potassium (0.5 cmol/kg) were orders of magnitudes different in content. The perched water table in different areas of the watershed showed a very distinct trend. The lower part of the sub-watershed had shallower levels of water table depths (less than 10 cm from the surface) than did the upper parts of the sub-watershed (usually greater than 120 cm from the surface). The middle part of the sub-watershed had water table depths located at 40 to 70 cm below the surface. These results show how the landscape slope position and land use may be important for planning where and when soil nutrients and water would be expected to be appropriately "conserved" or stored.

  1. Nutrient processes at the stream-lake interface for a channelized versus unmodified stream mouth

    USGS Publications Warehouse

    Niswonger, Richard G.; Naranjo, Ramon C.; Smith, David; Constantz, James E.; Allander, Kip K.; Rosenberry, Donald O.; Neilson, Bethany; Rosen, Michael R.; Stonestrom, David A.

    2017-01-01

    Inorganic forms of nitrogen and phosphorous impact freshwater lakes by stimulating primary production and affecting water quality and ecosystem health. Communities around the world are motivated to sustain and restore freshwater resources and are interested in processes controlling nutrient inputs. We studied the environment where streams flow into lakes, referred to as the stream-lake interface (SLI), for a channelized and unmodified stream outlet. Channelization is done to protect infrastructure or recreational beach areas. We collected hydraulic and nutrient data for surface water and shallow groundwater in two SLIs to develop conceptual models that describe characteristics that are representative of these hydrologic features. Water, heat, and solute transport models were used to evaluate hydrologic conceptualizations and estimate mean residence times of water in the sediment. A nutrient mass balance model is developed to estimate net rates of adsorption and desorption, mineralization, and nitrification along subsurface flow paths. Results indicate that SLIs are dynamic sources of nutrients to lakes and that the common practice of channelizing the stream at the SLI decreases nutrient concentrations in pore water discharging along the lakeshore. This is in contrast to the unmodified SLI that forms a barrier beach that disconnects the stream from the lake and results in higher nutrient concentrations in pore water discharging to the lake. These results are significant because nutrient delivery through pore water seepage at the lakebed from the natural SLI contributes to nearshore algal communities and produces elevated concentrations of inorganic nutrients in the benthic zone where attached algae grow.

  2. Land use and nutrient concentrations and yields in selected streams in the Albemarle-Pamlico drainage basin, North Carolina and Virginia

    USGS Publications Warehouse

    Woodside, M.D.; Simerl, B.R.

    1995-01-01

    Because nutrients can cause water-quaiity degradation, a major focus of NAWQA is to investigate effects of nutrients on surface- and ground-water quality. This report summarizes surface-water quality study design and land uses in the NAWQA Albemarle-Pamlico Drainage Basin study unit, one of 60 study units nationwide, and shows how nutrient concentrations are related to land uses at selected basins in the study unit. The study area encompasses about 28,000 square miles (mi2) in central and eastern North Carolina and southern Virginia. The major river basins in the Albemarle-Pamlico Drainage Basin are the Chowan, Roanoke, Tar, and Neuse. The barrier islands, estuaries, and the AlbemarIe, Pamlico, and associated sounds are not included in the study-unit area. The Albemarle-Pamlico Drainage Basin covers four physiographic provinces:Valley and Ridge, Blue Ridge, Piedmont, and Coastal Plain. About 50 percent of the land in the study areais forested, 30 percent is cropland, 15 percent is wetland, and 5 percent is developed. The population--of the study unit is about 3 million people.

  3. Evaluation of nitrogen and phosphorus transport with runoff from fairway turf managed with hollow tine core cultivation and verticutting.

    PubMed

    Rice, Pamela J; Horgan, Brian P

    2013-07-01

    Enrichment of surface waters with excess nutrients is associated with increased algal blooms, euthrophication and hypoxic zones, as reported in the northern Gulf of Mexico. A source of nutrients to surface waters results from fertilizer runoff. Management strategies used to maintain turf on golf courses and recreational fields often include aerification and application of fertilizer. Although research exists on benefits of core cultivation and verticutting (VC) to reduce thatch and the transport of applied chemicals with runoff, there are no studies reporting the effect of coupling these management practices with the goal of further reduction of off-site transport of fertilizer with runoff. We hypothesized that the addition of VC to hollow tine core cultivation (HTCC) would enhance infiltration of precipitation, reduce runoff and nutrient transport with runoff and therefore influence concentrations of nutrients in surface waters receiving runoff from turf managed as a golf course fairway. Greater runoff and mass of soluble phosphorus and ammonium nitrogen transported with runoff were measured from plots managed with HTCC+VC than HTCC; however, the reverse was noted for nitrate nitrogen. Only a portion of the observed trends proved to be statistically significant. Our research showed no reduction or enhancement of risk associated with surface water concentrations of phosphorus or nitrogen, resulting from runoff from creeping bentgrass turf that was managed with HTCC+VC compared to HTCC. Data obtained in this research will be useful to grounds superintendents when selecting best management practices and to scientists seeking data relating runoff to land management for watershed-scale modeling. Published by Elsevier B.V.

  4. A hydrologic network supporting spatially referenced regression modeling in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Brakebill, J.W.; Preston, S.D.

    2003-01-01

    The U.S. Geological Survey has developed a methodology for statistically relating nutrient sources and land-surface characteristics to nutrient loads of streams. The methodology is referred to as SPAtially Referenced Regressions On Watershed attributes (SPARROW), and relates measured stream nutrient loads to nutrient sources using nonlinear statistical regression models. A spatially detailed digital hydrologic network of stream reaches, stream-reach characteristics such as mean streamflow, water velocity, reach length, and travel time, and their associated watersheds supports the regression models. This network serves as the primary framework for spatially referencing potential nutrient source information such as atmospheric deposition, septic systems, point-sources, land use, land cover, and agricultural sources and land-surface characteristics such as land use, land cover, average-annual precipitation and temperature, slope, and soil permeability. In the Chesapeake Bay watershed that covers parts of Delaware, Maryland, Pennsylvania, New York, Virginia, West Virginia, and Washington D.C., SPARROW was used to generate models estimating loads of total nitrogen and total phosphorus representing 1987 and 1992 land-surface conditions. The 1987 models used a hydrologic network derived from an enhanced version of the U.S. Environmental Protection Agency's digital River Reach File, and course resolution Digital Elevation Models (DEMs). A new hydrologic network was created to support the 1992 models by generating stream reaches representing surface-water pathways defined by flow direction and flow accumulation algorithms from higher resolution DEMs. On a reach-by-reach basis, stream reach characteristics essential to the modeling were transferred to the newly generated pathways or reaches from the enhanced River Reach File used to support the 1987 models. To complete the new network, watersheds for each reach were generated using the direction of surface-water flow derived from the DEMs. This network improves upon existing digital stream data by increasing the level of spatial detail and providing consistency between the reach locations and topography. The hydrologic network also aids in illustrating the spatial patterns of predicted nutrient loads and sources contributed locally to each stream, and the percentages of nutrient load that reach Chesapeake Bay.

  5. Possible mechanism linking ocean conditions to low body weight and poor recruitment of age-0 walleye pollock (Gadus chalcogrammus) in the southeast Bering Sea during 2007

    NASA Astrophysics Data System (ADS)

    Gann, Jeanette C.; Eisner, Lisa B.; Porter, Steve; Watson, Jordan T.; Cieciel, Kristin D.; Mordy, Calvin W.; Yasumiishi, Ellen M.; Stabeno, Phyllis J.; Ladd, Carol; Heintz, Ron A.; Farley, Edward V.

    2016-12-01

    Changes to physical and chemical oceanographic structure can lead to changes in phytoplankton biomass and growth, which, in-turn, lead to variability in the amount of energy available for transfer to higher trophic levels (e.g., forage fish). In general, age-0 (juvenile) walleye pollock (Gadus chalcogrammus) have been shown to have low fitness (determined by energy density and size), in warm years compared to average or cold years in the southeastern Bering Sea. Contrary to these findings, the year 2007 was a cold year with low fitness of age-0 pollock compared to the transition year of 2006 (transitioning from warm to cold conditions) and cold years, 2008-2011. In late summer/early fall (mid-August through September), significantly lower surface silicic acid concentrations coupled with low phytoplankton production and chlorophyll a (Chl a) biomass were observed in 2007 among 2006-2012 (P<0.05). We postulate that the low silicic acid concentrations may be an indication of reduced surface nutrient flux during summer, leading to low primary productivity (PP). The nutrient replenishing shelf/slope water exchange that occurred during late October-February (2006-2007) indicates that deep-water nutrient/salinity reserves for the start of the 2007 growing season were plentiful and had similar concentrations to other years (2006-2012). The spring bloom magnitude appeared to be slightly below average, and surface silicic acid concentrations at the end of the spring bloom period in 2007 appeared similar to other years in the middle domain of the southeastern Bering Sea. However, during summer (June-August) 2007, high stratification and the low number of storm events resulted in low flux of nutrients to surface waters, indicated by the low surface silicic acid concentrations at the end of summer (mid-August through September). Surface silicic acid may be useful as an indicator of surface nutrient enrichment (and subsequent PP) during summer since other macronutrients (e.g. nitrate) are usually near or below detection limits at this time, and diatoms are generally scarce during summer. Surface silicic acid concentration was also positively associated with the size of juvenile fish (age-0 pollock weight and length). This reinforces the theory that nutrient availability and primary productivity are important to energy allocation for higher trophic levels during summer, and possibly provides links between stratification and wind mixing, surface nutrient input, PP and juvenile fish size and condition.

  6. HIGH PERFORMANCE SIDE-STREAM NITRIFICATION OF MUNICIPAL BIOSOLIDS TREATMENT DECANTS

    EPA Science Inventory

    Nutrient (i.e. nitrogen) contamination of surface waters constitutes one of the most pervasive problems facing wastewater treatment works across the country. Nitrogen discharge to surface water occurs mostly in the form of ammonia which is identified as the most toxic nitrogen sp...

  7. Open inlet conversion: Water quality benefits of two designs

    USDA-ARS?s Scientific Manuscript database

    Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for movement of sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine the reduction in drainage effluent total suspended sediment (TSS) and phosphorus (P) concentr...

  8. Potential Environmental Factors Affecting Oil-Degrading Bacterial Populations in Deep and Surface Waters of the Northern Gulf of Mexico

    PubMed Central

    Liu, Jiqing; Bacosa, Hernando P.; Liu, Zhanfei

    2017-01-01

    Understanding bacterial community dynamics as a result of an oil spill is important for predicting the fate of oil released to the environment and developing bioremediation strategies in the Gulf of Mexico. In this study, we aimed to elucidate the roles of temperature, water chemistry (nutrients), and initial bacterial community in selecting oil degraders through a series of incubation experiments. Surface (2 m) and bottom (1537 m) waters, collected near the Deepwater Horizon site, were amended with 200 ppm light Louisiana sweet crude oil and bacterial inoculums from surface or bottom water, and incubated at 4 or 24°C for 50 days. Bacterial community and residual oil were analyzed by pyrosequencing and gas chromatography-mass spectrometry (GC-MS), respectively. The results showed that temperature played a key role in selecting oil-degrading bacteria. Incubation at 4°C favored the development of Cycloclasticus, Pseudoalteromonas, Sulfitobacter, and Reinekea, while 24°C incubations enhanced Oleibacter, Thalassobius, Phaeobacter, and Roseobacter. Water chemistry and the initial community also had potential roles in the development of hydrocarbon-degrading bacterial communities. Pseudoalteromonas, Oleibacter, and Winogradskyella developed well in the nutrient-enriched bottom water, while Reinekea and Thalassobius were favored by low-nutrient surface water. We revealed that the combination of 4°C, crude oil and bottom inoculum was a key factor for the growth of Cycloclasticus, while the combination of surface inoculum and bottom water chemistry was important for the growth of Pseudoalteromonas. Moreover, regardless of the source of inoculum, bottom water at 24°C was a favorable condition for Oleibacter. Redundancy analysis further showed that temperature and initial community explained 57 and 19% of the variation observed, while oil and water chemistry contributed 14 and 10%, respectively. Overall, this study revealed the relative roles of temperature, water chemistry, and initial bacterial community in selecting oil degraders and regulating their evolution in the northern Gulf of Mexico. PMID:28119669

  9. Potential Environmental Factors Affecting Oil-Degrading Bacterial Populations in Deep and Surface Waters of the Northern Gulf of Mexico.

    PubMed

    Liu, Jiqing; Bacosa, Hernando P; Liu, Zhanfei

    2016-01-01

    Understanding bacterial community dynamics as a result of an oil spill is important for predicting the fate of oil released to the environment and developing bioremediation strategies in the Gulf of Mexico. In this study, we aimed to elucidate the roles of temperature, water chemistry (nutrients), and initial bacterial community in selecting oil degraders through a series of incubation experiments. Surface (2 m) and bottom (1537 m) waters, collected near the Deepwater Horizon site, were amended with 200 ppm light Louisiana sweet crude oil and bacterial inoculums from surface or bottom water, and incubated at 4 or 24°C for 50 days. Bacterial community and residual oil were analyzed by pyrosequencing and gas chromatography-mass spectrometry (GC-MS), respectively. The results showed that temperature played a key role in selecting oil-degrading bacteria. Incubation at 4°C favored the development of Cycloclasticus, Pseudoalteromonas , Sulfitobacter , and Reinekea , while 24°C incubations enhanced Oleibacter, Thalassobius, Phaeobacter, and Roseobacter. Water chemistry and the initial community also had potential roles in the development of hydrocarbon-degrading bacterial communities. Pseudoalteromonas , Oleibacter , and Winogradskyella developed well in the nutrient-enriched bottom water, while Reinekea and Thalassobius were favored by low-nutrient surface water. We revealed that the combination of 4°C, crude oil and bottom inoculum was a key factor for the growth of Cycloclasticus , while the combination of surface inoculum and bottom water chemistry was important for the growth of Pseudoalteromonas . Moreover, regardless of the source of inoculum, bottom water at 24°C was a favorable condition for Oleibacter. Redundancy analysis further showed that temperature and initial community explained 57 and 19% of the variation observed, while oil and water chemistry contributed 14 and 10%, respectively. Overall, this study revealed the relative roles of temperature, water chemistry, and initial bacterial community in selecting oil degraders and regulating their evolution in the northern Gulf of Mexico.

  10. Nontronite and Montmorillonite as Nutrient Sources for Life on Mars

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Mickol, R. L.; Archer, P. D.; Kral, T. A.

    2017-01-01

    Clay minerals have been identified on Mars' oldest (Noachian) terrain and their presence suggests long-term water-rock interactions. The most commonly identified clay minerals on Mars to date are nontronite (Fe-smectite) and montmorillonite (Al-smectite) [1], both of which contain variable amounts of water both adsorbed on their surface and within their structural layers. Over Mars' history, these clay miner-al-water assemblages may have served as nutrient sources for microbial life.

  11. Aquatic macrophytes can be used for wastewater polishing but not for purification in constructed wetlands

    NASA Astrophysics Data System (ADS)

    Tang, Yingying; Harpenslager, Sarah F.; van Kempen, Monique M. L.; Verbaarschot, Evi J. H.; Loeffen, Laury M. J. M.; Roelofs, Jan G. M.; Smolders, Alfons J. P.; Lamers, Leon P. M.

    2017-02-01

    The sequestration of nutrients from surface waters by aquatic macrophytes and sediments provides an important service to both natural and constructed wetlands. While emergent species take up nutrients from the sediment, submerged and floating macrophytes filter nutrients directly from the surface water, which may be more efficient in constructed wetlands. It remains unclear, however, whether their efficiency is sufficient for wastewater purification and how plant species and nutrient loading affects nutrient distribution over plants, water and sediment. We therefore determined nutrient removal efficiencies of different vegetation (Azolla filiculoides, Ceratophyllum demersum and Myriophyllum spicatum) and sediment types (clay, peaty clay and peat) at three nutrient input rates, in a full factorial, outdoor mesocosm experiment. At low loading (0.43 mg P m-2 d-1), plant uptake was the main pathway (100 %) for phosphorus (P) removal, while sediments showed a net P release. A. filiculoides and M. spicatum showed the highest biomass production and could be harvested regularly for nutrient recycling, whereas C. demersum was outcompeted by spontaneously developing macrophytes and algae. Higher nutrient loading only stimulated A. filiculoides growth. At higher rates ( ≥ 21.4 mg P m-2 d-1), 50-90 % of added P ended up in sediments, with peat sediments becoming more easily saturated. For nitrogen (N), 45-90 % was either taken up by the sediment or lost to the atmosphere at loadings ≥ 62 mg N m-2 d-1. This shows that aquatic macrophytes can indeed function as an efficient nutrient filter but only for low loading rates (polishing) and not for high rates (purification). The outcome of this controlled study not only contributes to our understanding of nutrient dynamics in constructed wetlands but also shows the differential effects of wetland sediment types and plant species. Furthermore, the acquired knowledge may benefit the application of macrophyte harvesting to remove and recycle nutrients from both constructed wetlands and nutrient-loaded natural wetlands.

  12. Notable increases in nutrient concentrations in a shallow lake during seasonal ice growth.

    PubMed

    Fang, Yang; Changyou, Li; Leppäranta, Matti; Xiaonghong, Shi; Shengnan, Zhao; Chengfu, Zhang

    2016-12-01

    Nutrients may be eliminated from ice when liquid water is freezing, resulting in enhanced concentrations in the unfrozen water. The nutrients diluted from the ice may contribute to accumulated concentrations in sediment during winter and an increased risk of algae blooms during the following spring and summer. The objective of this study was to evaluate the influence of ice cover on nitrogen (N) and phosphorus (P) concentrations in the water and sediment of a shallow lake, through an examination of Ulansuhai Lake, northern China, from the period of open water to ice season in 2011-2013. The N and P concentrations were between two and five times higher, and between two and eight times higher, than in unfrozen lakes, respectively. As the ice thickness grew, contents of total N and total P showed C-shaped profiles in the ice, and were lower in the middle layer and higher in the bottom and surface layers. Most of the nutrients were released from the ice to liquid water. The results confirm that ice can cause the nutrient concentrations in water and sediment during winter to increase dramatically, thereby significantly impacting on processes in the water environment of shallow lakes.

  13. Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.).

    PubMed

    Lu, Qin; He, Zhenli L; Graetz, Donald A; Stoffella, Peter J; Yang, Xiaoe

    2010-01-01

    Water quality impairment by nutrient enrichment from agricultural activities has been a concern worldwide. Phytoremediation technology using aquatic plants in constructed wetlands and stormwater detention ponds is increasingly applied to remediate eutrophic waters. The objectives of this study were to evaluate the effectiveness and potential of water lettuce (Pistia stratiotes L.) in removing nutrients including nitrogen (N) and phosphorus (P) from stormwater in the constructed water detention systems before it is discharged into the St. Lucie Estuary, an important surface water system in Florida, using phytoremediation technologies. In this study, water lettuce (P. stratiotes) was planted in the treatment plots of two stormwater detention ponds (East and West Ponds) in 2005-2007 and water samples from both treatment and control plots were weekly collected and analyzed for water quality properties including pH, electrical conductivity, turbidity, suspended solids, and nutrients (N and P). Optimum plant density was maintained and plant samples were collected monthly and analyzed for nutrient contents. Water quality in both ponds was improved, as evidenced by decreases in water turbidity, suspended solids, and nutrient concentrations. Water turbidity was decreased by more than 60%. Inorganic N (NH(4) (+) and NO(3) (-)) concentrations in treatment plots were more than 50% lower than those in control plots (without plant). Reductions in both PO(4) (3-) and total P were approximately 14-31%, as compared to the control plots. Water lettuce contained average N and P concentrations of 17 and 3.0 g kg(-1), respectively, and removed 190-329 kg N ha(-1) and 25-34 kg P ha(-1) annually. Many aquatic plants have been used to remove nutrients from eutrophic waters but water lettuce proved superior to most other plants in nutrient removal efficiency, owing to its rapid growth and high biomass yield potential. However, the growth and nutrient removal potential are affected by many factors such as temperature, water salinity, and physiological limitations of the plant. Low temperature, high concentration of salts, and low concentration of nutrients may reduce the performance of this plant in removing nutrients. The results from this study indicate that water lettuce has a great potential in removing N and P from eutrophic stormwaters and improving other water quality properties.

  14. Estimation of groundwater and nutrient fluxes to the Neuse River estuary, North Carolina

    USGS Publications Warehouse

    Spruill, T.B.; Bratton, J.F.

    2008-01-01

    A study was conducted between April 2004 and September 2005 to estimate groundwater and nutrient discharge to the Neuse River estuary in North Carolina. The largest groundwater fluxes were observed to occur generally within 20 m of the shoreline. Groundwater flux estimates based on seepage meter measurements ranged from 2.86??108 to 4.33??108 m3 annually and are comparable to estimates made using radon, a simple water-budget method, and estimates derived by using Darcy's Law and previously published general aquifer characteristics of the area. The lower groundwater flux estimate (equal to about 9 m3 s-1), which assumed the narrowest groundwater discharge zone (20 m) of three zone widths selected for an area west of New Bern, North Carolina, most closely agrees with groundwater flux estimates made using radon (3-9 m3 s-1) and Darcy's Law (about 9 m3 s-1). A groundwater flux of 9 m 3 s-1 is about 40% of the surface-water flow to the Neuse River estuary between Streets Ferry and the mouth of the estuary and about 7% of the surface-water inflow from areas upstream. Estimates of annual nitrogen (333 tonnes) and phosphorus (66 tonnes) fluxes from groundwater to the estuary, based on this analysis, are less than 6% of the nitrogen and phosphorus inputs derived from all sources (excluding oceanic inputs), and approximately 8% of the nitrogen and 17% of the phosphorus annual inputs from surface-water inflow to the Neuse River estuary assuming a mean annual precipitation of 1.27 m. We provide quantitative evidence, derived from three methods, that the contribution of water and nutrients from groundwater discharge to the Neuse River estuary is relatively minor, particularly compared with upstream sources of water and nutrients and with bottom sediment sources of nutrients. Locally high groundwater discharges do occur, however, and could help explain the occurrence of localized phytoplankton blooms, submerged aquatic vegetation, or fish kills. 

  15. Urban Runoff and Nutrients Loading Control from Sustainable BMPs (Invited)

    NASA Astrophysics Data System (ADS)

    Xiao, Q.

    2009-12-01

    Climate change alters hydrodynamic and nutrient dynamic in both large and small geographic scales. These changes in our freshwater system directly affect drinking water, food production, business, and all aspects of our life. Along with climate change is increasing urbanization which alters natural landscape. Urban runoff has been identified as one of many potential drivers of the decline of pelagic fishes in san Francisco Bay-Delta region. Recent found of Pyrethroids in American River has increased scientists, public, and policy makers’ concern about our fresh water system. Increasing our understanding about the fundamental hydrodynamic, nutrient dynamics, and the transport mechanics of runoff and nutrients are important for future water resource and ecosystem management. Urbanization has resulted in significantly increasing the amount of impervious land cover. Most impervious land covers are hydrophobic that alters surface runoff because of the effects on surface retention storage, rainfall interception, and infiltration. Large volumes of excess storm runoff from urbanized areas cause flooding, water pollution, groundwater recharge deficits, destroyed habitat, beach closures, and toxicity to aquatic organisms. Parking lot alone accounts for more than 11% of these impervious surfaces. Contrast to impervious parking lot, turfgrass can accouter for 12% of urban land in California. Irrigated urban landscapes create considerable benefits to our daily living. However, the use of fertilizers and pesticides has caused environmental problems. Preventing fertilizers and pesticides from entering storm drains is an important goal for both landscape and storm runoff managers. Studies of urban runoff have found that the most fertilizers and pesticides are from dry weather runoff which conveys pollutants to sidewalks, streets, and storm drains. Controlling surface runoff is critical to preventing these pollutants from entering storm drains and water bodies. Large scale construction of runoff retention basins and treatment facilities to meet TMDL (Total Maximum Daily Load) regulations are not cost-effective or practical. An alternative approach is to control runoff and nutrients on-site through installation of decentralized BMPs that detain and infiltrate runoff before it reaches storm drains. Recent developed green-infrastructure which integrating engineered soil and trees to reduce runoff and nutrients loading is a self-sustained best management practice (BMP). This BMP has been testing and used in urban runoff control. In Davis, CA this type of BMPs were installed in a parking lot and a residential property to evaluate the system’s effectiveness on reducing storm runoff and pollutant loading from the parking lot and irrigated landscape. Storm runoff and pollutant loading were measured and monitored during February 2007 thru May 2009 from the parking lot. The BMP reduced surface runoff and nutrients by 88.8% and 95.3%, respectively. In the residential irrigated landscape, the dry-weather runoff was monitored during 2007 irrigation season, the BMP captured almost all dry weather runoff. The performance of these BMPs demonstrated their potential use for reducing runoff and nutrients loading. Control urban runoff from these 23% landscape (i.e., parking lot and irrigated turf grass) could largely alter the runoff and nutrients transport and their dynamic in our water system.

  16. Eutrophication threatens Caribbean seagrasses - An example from Curaçao and Bonaire.

    PubMed

    Govers, Laura L; Lamers, Leon P M; Bouma, Tjeerd J; de Brouwer, Jan H F; van Katwijk, Marieke M

    2014-12-15

    Seagrass beds are globally declining due to human activities in coastal areas. We here aimed to identify threats from eutrophication to the valuable seagrass beds of Curaçao and Bonaire in the Caribbean, which function as nursery habitats for commercial fish species. We documented surface- and porewater nutrient concentrations, and seagrass nutrient concentrations in 6 bays varying in nutrient loads. Water measurements only provided a momentary snapshot, due to timing, tidal stage, etc., but Thalassia testudinum nutrient concentrations indicated long-term nutrient loads. Nutrient levels in most bays did not raise any concern, but high leaf % P values of Thalassia in Piscadera Bay (∼0.31%) and Spanish Water Bay (∼0.21%) showed that seagrasses may be threatened by eutrophication, due to emergency overflow of waste water and coastal housing. We thus showed that seagrasses may be threatened and measures should be taken to prevent loss of these important nursery areas due to eutrophication. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Aragonite saturation states and nutrient fluxes in coral reef sediments in Biscayne National Park, FL, USA

    USGS Publications Warehouse

    Lisle, John T.; Reich, Christopher D.; Halley, Robert B.

    2014-01-01

    Some coral reefs, such as patch reefs along the Florida Keys reef tract, are not showing significant reductions in calcification rates in response to ocean acidification. It has been hypothesized that this recalcitrance is due to local buffering effects from biogeochemical processes driven by seagrasses. We investigated the influence that pore water nutrients, dissolved inorganic carbon (DIC) and total alkalinity (TA) have on aragonite saturation states (Ωaragonite) in the sediments and waters overlying the sediment surfaces of sand halos and seagrass beds that encircle Alinas and Anniversary reefs in Biscayne National Park. Throughout the sampling period, sediment pore waters from both bottom types had lower oxidation/reduction potentials (ORP), with lower pH relative to the sediment surface waters. The majority (86.5%) of flux rates (n = 96) for ΣNOx–, PO43–, NH4+, SiO2, DIC and TA were positive, sometimes contributing significant concentrations of the respective constituents to the sediment surface waters. The Ωaragonite values in the pore waters (range: 0.18 to 4.78) were always lower than those in the overlying waters (2.40 to 4.46), and 52% (n = 48) of the values were aragonite in 75% (n = 16) of the samples, but increased it in the remainder. The elevated fluxes of nutrients, DIC and TA into the sediment–water interface layer negatively alters the suitability of this zone for the settlement and development of calcifying larvae, while enhancing the establishment of algal communities.

  18. Approaches to characterizing biogeochemistry effects of groundwater and surface water interaction at the riparian interface

    EPA Science Inventory

    Groundwater-surface water interaction (GSI) in riparian ecosystems strongly influences biological activity that controls nutrient flux and processes. Shallow groundwater in riparian zones is a hot spot for nitrogen removal processes, a storage zone for solutes, and a target for ...

  19. Groundwater flux and nutrient loading in the northeast section of Bear Lake, Muskegon County, Michigan, 2015

    USGS Publications Warehouse

    Totten, Alexander R.; Maurer, Jessica A.; Duris, Joseph W.

    2017-11-30

    Bear Lake in North Muskegon, Michigan, is listed as part of the Muskegon Lake area of concern as designated by the U.S. Environmental Protection Agency. This area of concern was designated as a result of eutrophication and beneficial use impairments. On the northeast end of Bear Lake, two man-made retention ponds (Willbrandt Pond East and Willbrandt Pond West), formerly used for celery farming, may contribute nutrients to Bear Lake. Willbrandt Ponds (East and West) were previously muck fields that were actively used for celery farming from the early 1900s until 2002. The restoration and reconnection of the Willbrandt Ponds into Bear Lake prompted concerns of groundwater nutrient loading into Bear Lake. Studies done by the State of Michigan and Grand Valley State University revised initial internal phosphorus load estimates and indicated an imbalance in the phosphorus budget in Bear Lake. From June through November 2015, the U.S. Geological Survey (USGS) did an investigative study to quantify the load of nutrients from shallow groundwater around the Willbrandt Ponds in an effort to update the phosphorus budget to Bear Lake. Seven sampling locations were established, including five shallow groundwater wells and two surface-water sites, in the Willbrandt pond study area and Bear Lake. A total of 12 nutrient samples and discrete water-level measurements were collected from each site from June through November 2015. Continuous water-level data were recorded for both surface-water monitoring locations for the entire sampling period.Water-level data indicated that Willbrandt Pond West had the highest average water-level elevation of all sites monitored, which indicated the general direction of flux is from Willbrandt Pond West to Bear Lake. Nutrient and chloride loading from Willbrandt Pond West to Bear Lake was calculated using two distinct methods: Dupuit and direct seepage methods. Shallow groundwater loading calculations were determined by using groundwater levels to first determine a flux of shallow groundwater, then nutrient concentrations to determine a load. It was determined that Willbrandt Pond East and Willbrandt Pond West contributed between 2 to 4 percent of the total annual phosphorus load to Bear Lake by way of shallow groundwater flow. Annual loads calculated for other constituents include orthophosphate (40–100 pounds per year [lb P/yr]), total nitrogen (200–830 lb/yr), chloride (12,700–32,100 lb/yr), and ammonia (130–670 lb N/yr). Study results indicated that mean groundwater and surface-water nutrient concentrations calculated in this study were higher than reported Michigan statewide values. The data collected in this study allow understanding of groundwater nutrient loading into Bear Lake in an effort to help inform future restoration and management decisions.

  20. Role of gravity in the formation of bacterial colonies with a hydrophobic surface layer

    NASA Astrophysics Data System (ADS)

    Puzyr, A. P.; Tirranen, L. K.; Krylova, T. Y.; Borodina, E. V.

    A simple technique for determining hydrophobic-hydrophilic properties of bacterial colonies surface, which involves putting a drop of liquid with known properties (e.g. water, oil) on their surface, has been described. This technique allows quick estimate of wettability of bacterial colony surface, i.e. its hydrophobic-hydrophilic properties. The behaviour of water drops on colonies of bacteria Bacillus five strains (of different types) has been studied. It was revealed that 1) orientation in the Earth gravity field during bacterial growth can define the form of colonies with hydrophobic surface; 2) the form and size of the colony are dependent on the extention ability, most probably, of the hydrophobic layer; 3) the Earth gravity field (gravity) serves as a 'pump' providing and keeping water within the colony. We suppose that at growing colonies on agar media the inflow of water-soluble nutrient materials takes place both due to diffusion processes and directed water current produced by the gravity. The revealed effect probably should be taken into consideration while constructing the models of colonies growing on dense nutrient media. The easily determined hydrophobic properties of colonies surface can become a systematic feature after collecting more extensive data on the surface hydrophobic-hydrophilic properties of microorganism colonies of other types and species.

  1. Hydrochemical controls on reservoir nutrient and phytoplankton dynamics under storms.

    PubMed

    Chen, Nengwang; Mo, Qiongli; Kuo, Yi-Ming; Su, Yuping; Zhong, Yanping

    2018-04-01

    Eutrophication and undesired algal blooms in surface water are common and have been linked to increasing nutrient loading. Effects of extreme events such as storms on reservoir nutrient and phytoplankton remain unclear. Here we carried out continuous high-frequency measurements in a long and narrow dam reservoir in southeast China during a storm period in June-July 2015. Our results show a strong nutrient-phytoplankton relationship as well as a very rapid response to storm runoff. We observed an increase in total suspended matter (TSM), ammonium (NH 4 -N), and dissolved reactive phosphate (DRP), with a sharp decline in chlorophyll-a (Chl-a) in the high flow periods. Afterward, Chl-a, total phytoplankton abundance and Cyanophyta fraction elevated gradually. Nitrate was diluted at first with increasing discharge before concentration increased, likely following a delayed input of groundwater. Physiochemical parameters and Chl-a were evenly distributed in the water column during the flooding period. However, 10% of NH 4 -N and 25% of DRP were removed in surface water (0-1m) when an algal bloom (Chl-a>30μgL -1 ) occurred 10days after peak discharge. Conversely, total particulate P (TPP) of surface water was 58% higher than in the deeper water. Dynamic factor analysis (DFA) revealed that TSM, NH 4 -N, DRP, total P and discharge significantly explain Chl-a variations following storms (C eff =0.89). These findings highlight that the reservoir ecosystem was vulnerable to pulse input from storm runoff and the Cyanophyta bloom was likely fueled by phosphate and ammonium rather than nitrate. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Short-lived radium isotopes on the Scotian Shelf: Unique distribution and tracers of cross-shelf CO2 and nutrient transport

    NASA Astrophysics Data System (ADS)

    Burt, William; Thomas, Helmuth

    2013-04-01

    Radium (Ra) isotopes have become a common tool for investigating mixing rates on continental shelves, and more recently have been used to quantify the release of dissolved compounds enriched in pore-waters into the water column. We present results from Ra sampling of the Scotian Shelf region of the Canadian northwestern Atlantic Ocean, which reveal cross-shelf Ra distributions that are unique compared to other coastal regions. We explain the observations of lower 224Ra activities near the coast, relatively high activities at large distances offshore (>100km), and gradients in both offshore and onshore directions by inferring the regional geomorphology, as well as shelf bathymetry and circulation patterns. Ra gradients are used to calculate individual estimates of eddy diffusion in both the cross-shelf (KX) and vertical (KZ) directions using 1-D eddy diffusion models. Enhanced vertical mixing above offshore banks allows for Ra enrichments in offshore surface waters, while horizontal dispersion of this bank-related signal can transport Ra off the shelf break in surface waters, and towards the shore beneath the surface mixed layer. Similar onshore gradients in CO2 and nutrient species combined with Ra-derived KX values can yield onshore carbon and nutrient fluxes in subsurface waters, which in turn supply the CO2 outgassing from the Scotian Shelf. Our results thus provide constraints for cross-shelf transports of carbon and nutrients on the Scotian Shelf in order to guide mass balance or model based budget approaches in future studies.

  3. Groundwater discharge to lakes (GDL) - the disregarded component of lake nutrient budgets

    NASA Astrophysics Data System (ADS)

    Lewandowski, J.; Meinikmann, K.; Pöschke, F.; Nützmann, G.

    2012-04-01

    Eutrophication is a major threat to lakes in temperate climatic zones. It is necessary to determine the relevance of different nutrient sources to conduct effective management measures, to understand in-lake processes and to model future scenarios. A prerequisite for such nutrient budgets are water budgets. While most components of the water budget can be determined quite accurate the quantification of groundwater discharge to lakes (GDL) and surface water infiltration into the aquifer are much more difficult. For example, it is quite common to determine the groundwater component as residual in the water and nutrient budget which is extremely problematic since in that case all errors of the budget terms are summed up in the groundwater term. In total, we identified 10 different reasons for disregarding the groundwater path in nutrient budgets. We investigated the fate of the nutrients nitrogen and phosphorus on their pathway from the catchment through the reactive aquifer-lake interface into the lake. We reviewed the international literature and summarized numbers reported for GDL of nutrients. Since literature is quite sparse we also had a look at numbers reported for submarine groundwater discharge (SGD) of nutrients for which much more literature exists and which is despite some fundamental differences in principal comparable to GDL.

  4. Data to support statistical modeling of instream nutrient load based on watershed attributes, southeastern United States, 2002

    USGS Publications Warehouse

    Hoos, Anne B.; Terziotti, Silvia; McMahon, Gerard; Savvas, Katerina; Tighe, Kirsten C.; Alkons-Wolinsky, Ruth

    2008-01-01

    This report presents and describes the digital datasets that characterize nutrient source inputs, environmental characteristics, and instream nutrient loads for the purpose of calibrating and applying a nutrient water-quality model for the southeastern United States for 2002. The model area includes all of the river basins draining to the south Atlantic and the eastern Gulf of Mexico, as well as the Tennessee River basin (referred to collectively as the SAGT area). The water-quality model SPARROW (SPAtially-Referenced Regression On Watershed attributes), developed by the U.S. Geological Survey, uses a regression equation to describe the relation between watershed attributes (predictors) and measured instream loads (response). Watershed attributes that are considered to describe nutrient input conditions and are tested in the SPARROW model for the SAGT area as source variables include atmospheric deposition, fertilizer application to farmland, manure from livestock production, permitted wastewater discharge, and land cover. Watershed and channel attributes that are considered to affect rates of nutrient transport from land to water and are tested in the SAGT SPARROW model as nutrient-transport variables include characteristics of soil, landform, climate, reach time of travel, and reservoir hydraulic loading. Datasets with estimates of each of these attributes for each individual reach or catchment in the reach-catchment network are presented in this report, along with descriptions of methods used to produce them. Measurements of nutrient water quality at stream monitoring sites from a combination of monitoring programs were used to develop observations of the response variable - mean annual nitrogen or phosphorus load - in the SPARROW regression equation. Instream load of nitrogen and phosphorus was estimated using bias-corrected log-linear regression models using the program Fluxmaster, which provides temporally detrended estimates of long-term mean load well-suited for spatial comparisons. The detrended, or normalized, estimates of load are useful for regional-scale assessments but should be used with caution for local-scale interpretations, for which use of loads estimated for actual time periods and employing more detailed regression analysis is suggested. The mean value of the nitrogen yield estimates, normalized to 2002, for 637 stations in the SAGT area is 4.7 kilograms per hectare; the mean value of nitrogen flow-weighted mean concentration is 1.2 milligrams per liter. The mean value of the phosphorus yield estimates, normalized to 2002, for the 747 stations in the SAGT area is 0.66 kilogram per hectare; the mean value of phosphorus flow-weighted mean concentration is 0.17 milligram per liter. Nutrient conditions measured in streams affected by substantial influx or outflux of water and nutrient mass across surface-water basin divides do not reflect nutrient source and transport conditions in the topographic watershed; therefore, inclusion of such streams in the SPARROW modeling approach is considered inappropriate. River basins identified with this concern include south Florida (where surface-water flow paths have been extensively altered) and the Oklawaha, Crystal, Lower Sante Fe, Lower Suwanee, St. Marks, and Chipola River basins in central and northern Florida (where flow exchange with the underlying regional aquifer may represent substantial nitrogen influx to and outflux from the surface-water basins).

  5. Impact of Submarine Groundwater Discharge on Marine Water Quality and Reef Biota of Maui

    PubMed Central

    Bishop, James M.

    2016-01-01

    Generally unseen and infrequently measured, submarine groundwater discharge (SGD) can transport potentially large loads of nutrients and other land-based contaminants to coastal ecosystems. To examine this linkage we employed algal bioassays, benthic community analysis, and geochemical methods to examine water quality and community parameters of nearshore reefs adjacent to a variety of potential, land-based nutrient sources on Maui. Three common reef algae, Acanthophora spicifera, Hypnea musciformis, and Ulva spp. were collected and/or deployed at six locations with SGD. Algal tissue nitrogen (N) parameters (δ15N, N %, and C:N) were compared with nutrient and δ15N-nitrate values of coastal groundwater and nearshore surface water at all locations. Benthic community composition was estimated for ten 10-m transects per location. Reefs adjacent to sugarcane farms had the greatest abundance of macroalgae, low species diversity, and the highest concentrations of N in algal tissues, coastal groundwater, and marine surface waters compared to locations with low anthropogenic impact. Based on δ15N values of algal tissues, we estimate ca. 0.31 km2 of Kahului Bay is impacted by effluent injected underground at the Kahului Wastewater Reclamation Facility (WRF); this region is barren of corals and almost entirely dominated by colonial zoanthids. Significant correlations among parameters of algal tissue N with adjacent surface and coastal groundwater N indicate that these bioassays provided a useful measure of nutrient source and loading. A conceptual model that uses Ulva spp. tissue δ15N and N % to identify potential N source(s) and relative N loading is proposed for Hawaiʻi. These results indicate that SGD can be a significant transport pathway for land-based nutrients with important biogeochemical and ecological implications in tropical, oceanic islands. PMID:27812171

  6. Impact of Submarine Groundwater Discharge on Marine Water Quality and Reef Biota of Maui.

    PubMed

    Amato, Daniel W; Bishop, James M; Glenn, Craig R; Dulai, Henrietta; Smith, Celia M

    2016-01-01

    Generally unseen and infrequently measured, submarine groundwater discharge (SGD) can transport potentially large loads of nutrients and other land-based contaminants to coastal ecosystems. To examine this linkage we employed algal bioassays, benthic community analysis, and geochemical methods to examine water quality and community parameters of nearshore reefs adjacent to a variety of potential, land-based nutrient sources on Maui. Three common reef algae, Acanthophora spicifera, Hypnea musciformis, and Ulva spp. were collected and/or deployed at six locations with SGD. Algal tissue nitrogen (N) parameters (δ15N, N %, and C:N) were compared with nutrient and δ15N-nitrate values of coastal groundwater and nearshore surface water at all locations. Benthic community composition was estimated for ten 10-m transects per location. Reefs adjacent to sugarcane farms had the greatest abundance of macroalgae, low species diversity, and the highest concentrations of N in algal tissues, coastal groundwater, and marine surface waters compared to locations with low anthropogenic impact. Based on δ15N values of algal tissues, we estimate ca. 0.31 km2 of Kahului Bay is impacted by effluent injected underground at the Kahului Wastewater Reclamation Facility (WRF); this region is barren of corals and almost entirely dominated by colonial zoanthids. Significant correlations among parameters of algal tissue N with adjacent surface and coastal groundwater N indicate that these bioassays provided a useful measure of nutrient source and loading. A conceptual model that uses Ulva spp. tissue δ15N and N % to identify potential N source(s) and relative N loading is proposed for Hawai'i. These results indicate that SGD can be a significant transport pathway for land-based nutrients with important biogeochemical and ecological implications in tropical, oceanic islands.

  7. Macroalgal-sediment nutrient interactions and their importance to macroalgal nutrition in a eutrophic estuary

    NASA Astrophysics Data System (ADS)

    Lavery, Paul S.; McComb, A. J.

    1991-03-01

    The potential for algal banks to influence water quality and sediment nutrient flux was examined through laboratory experiments and in situ monitoring of algal banks. Loose macroalgal banks displayed seasonal changes in tissue nutrient concentrations suggesting a strong dependence on water column nutrients. These banks fail to generate conditions suitable to sediment nutrient release. Dense banks generated low oxygen conditions in the inter-algal water (0-1 mg l -1), corresponding to zones of high, and relatively stable, phosphate and ammonium concentrations (up to 96 μg l -1 PO 4P and 166 μg l -1 NH 4N). Laboratory experiments confirmed that macroalgal banks can generate reducing conditions at the sediment surface, regardless of the aeration regime, through the decomposition of macroalgal tissue. Platinum electrode potentials as low as -200 mV were recorded in the inter-algal water. In such banks, redox-dependent sediment nutrient release and anaerobic accumulation of nitrogen accounted for inter-algal nutrient concentrations of over 60 μg l -1 phosphate and 800 μg l -1 ammonium. The generation of reducing conditions in inter-algal water required 7 days of still conditions and so this mechanism of nutrient generation is unlikely to be important in winter, when strong winds frequently shift the algal banks. It is suggested that in summer this mechanism may provide a source of nutrients to dense algal banks, supplementing reserves stored in winter.

  8. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands

    USGS Publications Warehouse

    Wolf, Kristin L.; Noe, Gregory B.; Ahn, Changwoo

    2013-01-01

    Greater connectivity to stream surface water may result in greater inputs of allochthonous nutrients that could stimulate internal nitrogen (N) and phosphorus (P) cycling in natural, restored, and created riparian wetlands. This study investigated the effects of hydrologic connectivity to stream water on soil nutrient fluxes in plots (n = 20) located among four created and two natural freshwater wetlands of varying hydrology in the Piedmont physiographic province of Virginia. Surface water was slightly deeper; hydrologic inputs of sediment, sediment-N, and ammonium were greater; and soil net ammonification, N mineralization, and N turnover were greater in plots with stream water classified as their primary water source compared with plots with precipitation or groundwater as their primary water source. Soil water-filled pore space, inputs of nitrate, and soil net nitrification, P mineralization, and denitrification enzyme activity (DEA) were similar among plots. Soil ammonification, N mineralization, and N turnover rates increased with the loading rate of ammonium to the soil surface. Phosphorus mineralization and ammonification also increased with sedimentation and sediment-N loading rate. Nitrification flux and DEA were positively associated in these wetlands. In conclusion, hydrologic connectivity to stream water increased allochthonous inputs that stimulated soil N and P cycling and that likely led to greater retention of sediment and nutrients in created and natural wetlands. Our findings suggest that wetland creation and restoration projects should be designed to allow connectivity with stream water if the goal is to optimize the function of water quality improvement in a watershed.

  9. Cycling of nutrient elements in the North Sea

    NASA Astrophysics Data System (ADS)

    Brockmann, U. H.; Laane, R. W. P. M.; Postma, J.

    The cycling of elements of inorganic and organic nutrients (carbon, nitrogen, phosphorus and silicate) in the North Sea is described. The regional effects on nutrient cycling such as thermal and haline stratification, coastal interaction, river discharges, upwelling and frontal zones are discussed. The horizontal and vertical distribution of the inorganic nutrients (nitrate, phosphate, ammonia and silicate) at the surface is given for the whole North Sea during two situations: spring (1986) and winter (1987). In winter, highest nutrient concentrations were found at the northern boundary in the Atlantic inflow, and in the continental coastal waters. During the winter cruise, nutrient minima were detected in the Dogger Bank area. This is an indication that primary production continues during winter. Generally, the surface concentrations during winter were similar to the bottom concentrations. Except for phosphate, highest concentrations were measured just above the bottom. During late spring 1986 the concentrations of nutrients at the surface and below the densicline were generally significantly lower than during winter. Only at the Atlantic boundary in the north and near the estuaries higher concentrations were detected. In stratified parts of the North Sea, the decomposition of sedimented biomass caused the ammonia concentrations in the bottom layer to be significantly higher in spring than in winter. Incidents of frontal upwelling in the central North Sea introduce nutrient-rich bottom water into the euphotic zone, enhancing phytoplankton growth in the central North Sea during summer. The ratios of nitrogen nutrients to phosphate show that in the central North Sea nitrogen is a limiting factor rather than phosphorus, whereas in the continental coastal water and off England the opposite is true. Riverine input and trapping mechanisms in the estuaries and tidal flats cause the concentrations of organic matter (dissolved and particulate) to be highest in the coastal zones and to decrease seaward. During summer the concentration of dissolved organic carbon increases throughout the North Sea. It is calculated that about 60% of the biomass formed by primary production is converted into dissolved organic carbon, 40% directly goes into the foodweb. The biological impact of the plankton is readily apparent from increased surface concentrations of different dissolved organic substances during spring blooms. Examples of eutrophication and effects of nutrient limitation are given, together with other biological repercussions such as coupling of phytoplankton and nutrient succession. Budget calculations for the different nutrient elements show that in the North Sea the biological turnover greatly exceeds the estimated annual inflow and outflow of nutrient elements. Finally, recommendations are given for future research. They include analysing dissolved organic compounds and micronutrients and following multidisciplinary measurements strategies at one location in order to obtain more information for balancing budgets and for the detailed analysis of nutrient cycling in the North Sea.

  10. LAND-COVER CHANGE AND ITS IMPACT ON NUTRIENT EXPORT VARIANCE

    EPA Science Inventory

    Conversion of natural or semi-natural vegetation to anthropogenic use is widely cited as one of the principal threats to ecosystems worldwide. One consequence of these landcover conversions is increased input of nutrients into surface waters, which promotes eutrophication, noxiou...

  11. Fungicide and Nutrient Transport with Runoff from Creeping Bentgrass Turf

    USDA-ARS?s Scientific Manuscript database

    The detection of pesticides and excess nutrients in surface waters of urban watersheds has lead to increased environmental concern and suspect of contaminant contributions from residential, urban, and recreational sources. Highly managed biotic systems such as golf courses and commercial landscapes ...

  12. Soil and water quality implications of production of herbaceous and woody energy crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolbert, V.R.; Lindberg, J.E.; Green, T.H.

    1997-10-01

    Field-scale studies in three physiographic regions of the Tennessee Valley in the Southeastern US are being used to address the environmental effects of producing biomass energy crops on former agricultural lands. Comparison of erosion, surface water quality and quantity, and subsurface movement of water and nutrients from woody crops, switchgrass and agricultural crops began with crop establishment in 1994. Nutrient cycling, soil physical changes, and productivity of the different crops are also being monitored at the three sites.

  13. DRY DEPOSITION OF REDUCED AND REACTIVE NITROGEN: A SURROGATE SURFACES APPROACH. (R826647)

    EPA Science Inventory

    Nitrogen dry deposition causes pH modification of ecosystems, promotes
    eutrophication in some water bodies, interferes with the nutrient geochemical
    cycle on land, and has a deteriorating effect on buildings. In this study, a
    water surface sampler (WSS) and knife-l...

  14. Mitigation of eutrophication in river basins, lakes, and coastal waters requires and integrated and adaptive approach; experiences from The Netherlands.

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J.; Jansen, S.; Villars, N.; Grift, B. V. D.

    2017-12-01

    We propose a guideline for mitigation of eutrophication in river basins, lakes, and coastal waters. The proposed strategy is based on our experiences with implementation of manure legislation and the Water Framework Directive (WFD) in Europe. These regulations led to reduced nutrient losses from highly productive agricultural areas. For example in The Netherlands, the worldwide second largest exporter of agricultural products, nutrient concentrations in agricultural headwaters reduced since the early 1990's. Our guideline builds on three basic principles: (1) a conceptual framework integrating water quality, water quantity, soil, groundwater, and surface water, (2) the `from catchment to coast' approach for up-scaling field-scale pilot results to downstream ecological effects, and (3) a mitigation order of preference from (a) optimizing nutrient uptake efficiency to (b) enhancing nutrient retention and recirculation to (c) nutrient discharge and applying effect oriented measures. The tools needed to mitigate eutrophication are system understanding, smart monitoring, smart modelling, smart measures, and smart governance. Following these principles and using these tools enables an integrated, adaptive approach for selecting, implementing, and evaluating the most cost-effective and sustainable set of mitigation actions.

  15. Benthic nitrogen turnover processes in coastal sediments at the Danube Delta

    NASA Astrophysics Data System (ADS)

    Bratek, Alexander; Dähnke, Kirstin; Neumann, Andreas; Möbius, Jürgen; Graff, Florian

    2017-04-01

    The Black Sea Shelf has been exposed to strong anthropogenic pressures from intense fisheries and high nutrient inputs and eutrophication over the past decades. In the light of decreasing riverine nutrient loads and improving nutrient status in the water column, nutrient regeneration in sediments and biological N-turnover in the Danube Delta Front have an important effect on nutrient loads in the shelf region. In May 2016 we determined pore water nutrient profiles in the Danube River Delta-Black Sea transition zone, aiming to assess N-regeneration and elimination based on nutrient profiles and stable N- isotope changes (nitrate and ammonium) in surface water masses and in pore water. We aimed to investigate the magnitude and isotope values of sedimentary NH4+ and NO3- and their impact on the current N-budget in Black Sea Shelf water. Based on changes in the stable isotope ratios of NO3- and NH4+, we aimed to differentiate diffusion and active processing of ammonium as well as nitrate sources and sinks in bottom water. First results show that the concentration of NH4+ in pore water increases with depth, reaching up to 1500 µM in deeper sediment layers. We find indications for high fluxes of ammonium to the overlying water, while stable isotope profiles of ammonium suggest that further processing, apart from mere diffusion, acts on the pore water ammonium pool. Nitrate concentration and stable isotope profiles show rapid consumption in deeper anoxic sediment layers, but also suggest that nitrate regeneration in bottom water increases the dissolved nitrate pool. Overall, the isotope and concentration data of pore water ammonium clearly mirror a combination of turnover processes and diffusion.

  16. Abrupt changes of intermediate-water oxygen in the northwestern Pacific during the last 27 kyr

    NASA Astrophysics Data System (ADS)

    Ishizaki, Yui; Ohkushi, Ken'ichi; Ito, Takashi; Kawahata, Hodaka

    2009-04-01

    An oxygen minimum zone (OMZ) currently exists at intermediate water depths on the northern Japanese margin in the northwestern Pacific. The OMZ results largely from a combination of high surface-water productivity and poor ventilation of intermediate waters. We investigated the late Quaternary history (last 27 kyr) of the intensity of this OMZ using changes in benthic foraminiferal carbon isotopes and assemblages in a sediment core taken on the continental slope off Shimokita Peninsula, northern Japan, at a water depth of 975 m. The core was located well within the region of the present-day OMZ and high surface-water productivity. The benthic foraminiferal δ13C values, which indicate millennial-scale fluctuations of nutrient contents at the sediment-water interface, were 0.48‰ lower during the last glacial maximum (LGM) than during the late Holocene. These results do not indicate the formation of glacial intermediate waters of subarctic Pacific origin, but rather the large contribution of high-nutrient water masses such as the Antarctic Intermediate Water, implying that the regional circulation pattern during the LGM was similar to that of modern times. Benthic foraminiferal assemblages underwent major changes in response to changes in dissolved oxygen concentrations in ocean floor sediments. The lowest oxygen and highest nutrient conditions, marked by dysoxic taxa and negative values of benthic foraminiferal δ13C, occurred during the Bølling/Allerød (B/A) and Pre-Boreal warming events. Dysoxic conditions in this region during these intervals were possibly caused by high surface-water productivity at times of reduced intermediate-water ventilation in the northwestern Pacific. The benthic assemblages show dysoxic events on approx. 100- to 200-year cycles during the B/A, reflecting centennial-scale productivity changes related to freshwater cycles and surface-water circulation in the North Pacific.

  17. Evaluating the performance of water purification in a vegetated groundwater recharge basin maintained by short-term pulsed infiltration events.

    PubMed

    Mindl, Birgit; Hofer, Julia; Kellermann, Claudia; Stichler, Willibald; Teichmann, Günter; Psenner, Roland; Danielopol, Dan L; Neudorfer, Wolfgang; Griebler, Christian

    2015-01-01

    Infiltration of surface water constitutes an important pillar in artificial groundwater recharge. However, insufficient transformation of organic carbon and nutrients, as well as clogging of sediments often cause major problems. The attenuation efficiency of dissolved organic carbon (DOC), nutrients and pathogens versus the risk of bioclogging for intermittent recharge were studied in an infiltration basin covered with different kinds of macrovegetation. The quality and concentration of organic carbon, major nutrients, as well as bacterial biomass, activity and diversity in the surface water, the porewater, and the sediment matrix were monitored over one recharge period. Additionally, the numbers of viral particles and Escherichia coli were assessed. Our study showed a fast establishment of high microbial activity. DOC and nutrients have sustainably been reduced within 1.2 m of sediment passage. Numbers of E. coli, which were high in the topmost centimetres of sediment porewater, dropped below the detection limit. Reed cover was found to be advantageous over bushes and trees, since it supported higher microbial activities along with a good infiltration and purification performance. Short-term infiltration periods of several days followed by a break of similar time were found suitable for providing high recharge rates, and good water purification without the risk of bioclogging.

  18. High-resolution monitoring of nutrients in groundwater and surface waters: process understanding, quantification of loads and concentrations, and management applications

    NASA Astrophysics Data System (ADS)

    van Geer, Frans C.; Kronvang, Brian; Broers, Hans Peter

    2016-09-01

    Four sessions on "Monitoring Strategies: temporal trends in groundwater and surface water quality and quantity" at the EGU conferences in 2012, 2013, 2014, and 2015 and a special issue of HESS form the background for this overview of the current state of high-resolution monitoring of nutrients. The overview includes a summary of technologies applied in high-frequency monitoring of nutrients in the special issue. Moreover, we present a new assessment of the objectives behind high-frequency monitoring as classified into three main groups: (i) improved understanding of the underlying hydrological, chemical, and biological processes (PU); (ii) quantification of true nutrient concentrations and loads (Q); and (iii) operational management, including evaluation of the effects of mitigation measures (M). The contributions in the special issue focus on the implementation of high-frequency monitoring within the broader context of policy making and management of water in Europe for support of EU directives such as the Water Framework Directive, the Groundwater Directive, and the Nitrates Directive. The overview presented enabled us to highlight the typical objectives encountered in the application of high-frequency monitoring and to reflect on future developments and research needs in this growing field of expertise.

  19. Carbon Cycling and pH regulation on the Scotian Shelf, NW Atlantic

    NASA Astrophysics Data System (ADS)

    Thomas, Helmuth

    2015-04-01

    This presentation intends to describe the biogeochemical context for ocean acidification studies on the Scotian Shelf. The seasonality of the dominant processes, regulating surface ocean CO2 conditions, including pH, will be assessed as well as cross-shelf transports of CO2, acidity and nutrient, the latter ones exerting the "subsurface control" of CO2 air-sea fluxes and surface pH. Methods summary: The seasonal variability of inorganic carbon in the surface waters of the Scotian Shelf region of the Canadian northwestern Atlantic Ocean was assessed using hourly measurements of the partial pressure of CO2 (pCO2), and hydrographic variables obtained by an autonomous moored instrument (44.3°N and 63.3°W). These measurements were complemented by seasonal shipboard sampling of dissolved inorganic carbon (DIC), total alkalinity (TA), and pCO2, at the mooring site, and over the larger spatial scale. The Scotian Shelf is a 700 km long section of the continental shelf off Nova Scotia. Bounded by the Laurentian Channel to the northeast, and by the Northeast Channel and the Gulf of Maine to the southwest, it varies in width from 120 to 240 km covering roughly 120,000 km2 with an average depth of 90 m . Convective mixin in winter time and coastal upwelling and the associated favorable wind conditions on the Scotian Shelf have long been recognized. Strong winds of speeds greater than 10 m s-1, blowing to the northeast, and persisting for several days force relatively cold, saline, water toward the surface, displacing the warmer, fresher water offshore. Upwelling events have frequently been observed in the region in winter, and modeling studies have reproduced these observed events. Furthermore, these events may play a role in initiating and sustaining the spring phytoplankton bloom by displacing nutrient-depleted surface water and bring nutrient-rich waters up to the surface. Biological processes were found to be the dominant control on mixed-layer DIC, with the delivery of carbon-rich subsurface waters also playing an important role. The region acts as a net source of CO2 to the atmosphere at the annual scale, with a reversal of this trend occurring only during the diatom dominated spring phytoplankton bloom, when a pronounced undersaturation of the surface waters is reached for a short period. During that time, the pH is at its annual maximum (pH≈8.15), while the Aragonite saturation state reaches its minimum just before the onset of the spring bloom in late March. After of the spring bloom period, the competing effects of temperature and biology influence surface pCO2 in roughly equal magnitude. During that time carbon fixation is driven by the smaller phytoplankton size classes, which can grow in warmer, nutrient poor conditions. In the Scotian Shelf region the summertime population these numerically abundant small cells accounts for approximately 10-20% of annual carbon uptake. The regional mean surface water pH is roughly 7.8 in April and increases to greater than 8.0 in September; subsurface pH is approximately 7.6 throughout the region and indicates a seasonal decrease due to the respiration of organic matter at depth. The surface aragonite saturation state increases from less than 2.0 to values as high as 3.2 between April and September; the region as a whole exhibits relatively low saturation states, however values approaching 1.0 were only observed in the Cabot Strait at depths below roughly 100m. Subsurface onshore gradients of CO2 and nutrient species yield onshore carbon, nutrient and hydrogen ion (H+) fluxes in subsurface waters, which in turn regulate surface pH and fuel the CO2 outgassing from the Scotian Shelf.

  20. Using the Sacramento soil moisture accounting model to provide short-term forecasts of surface runoff for daily decision making in nutrient management

    USDA-ARS?s Scientific Manuscript database

    Managing the timing of fertilizer and manure application is critical to protecting water quality in agricultural watersheds. When fertilizers and manures are applied at inopportune times (e.g., just prior to a rainfall event that produces surface runoff) the risk of surface water contamination is un...

  1. Modeling hydrological controls on vegetation distribution across topography in Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Mekonnen, Z. A.; Riley, W. J.; Grant, R. F.; Salmon, V. G.; Iversen, C. M.; Biraud, S.; Breen, A. L.

    2017-12-01

    Observed changes in vegetation affect carbon and nutrient cycles in diverse landscapes of northern ecosystems. These changes can be affected by topography and landscape hydrology. We applied a coupled transect version of the ecosystem model ecosys in a landscape underlain by impermeable permafrost at Kougarok, Alaska to examine hydrological controls on watershed-scale vegetation distributions. Our preliminary results indicate strong relationships between vegetation distribution and soil physical and hydraulic properties that control water, nutrients, and energy flows across the hillslope. Modeled differences in aboveground biomass across the Kougarok hillslope had a good agreement (R2 0.80) with preliminary biomass measurements from the NGEE-Arctic project in summer 2016. Low soil water content from shallower soil depth and lateral flow of water and nutrients in the upper slope position of the hillslope resulted in water stress and low N mineralization for plants with deeper roots. The middle slope position had intermediate soil moisture from deeper soil and higher N mineralization that favoured fast-growing and deep-rooted plants. The gentle slope and deeper soil in the lower slope position resulted in saturated soil, thus reduced O2 for microbes, hence favouring plants with higher root porosity. Earth system models that do not account for the underlying mechanisms of surface and sub-surface flows of water, nutrients, and energy may not predict these types of dynamics in Arctic ecosystems.

  2. Nutrient cycling, connectivity, and free-floating plant abundance in backwater lakes of the Upper Mississippi River

    USGS Publications Warehouse

    Houser, Jeff N.; Giblin, Shawn M.; James, William F.; Langrehr, H.A.; Rogala, James T.; Sullivan, John F.; Gray, Brian R.

    2013-01-01

    River eutrophication may cause the formation of dense surface mats of free floating plants (FFP; e.g., duckweeds and filamentous algae) which may adversely affect the ecosystem. We investigated associations among hydraulic connectivity to the channel, nutrient cycling, FFP, submersed aquatic vegetation (SAV), and dissolved oxygen concentration (DO) in ten backwater lakes of the Upper Mississippi River (UMR) that varied in connectivity to the channel. Greater connectivity was associated with higher water column nitrate (NO3-N) concentration, higher rates of sediment phosphorus (P) release, and higher rates of NO3-N flux to the sediments. Rates of sediment P and N (as NH4-N) release were similar to those of eutrophic lakes. Water column nutrient concentrations were high, and FFP tissue was nutrient rich suggesting that the eutrophic condition of the UMR often facilitated abundant FFP. However, tissue nutrient concentrations, and the associations between FFP biomass and water column nutrient concentrations, suggested that nutrients constrained FFP abundance at some sites. FFP abundance was positively associated with SAV abundance and negatively associated with dissolved oxygen concentration. These results illustrate important connections among hydraulic connectivity, nutrient cycling, FFP, SAV, and DO in the backwaters of a large, floodplain river.

  3. Water-quality, water-level, and discharge data associated with the Mississippi embayment agricultural chemical-transport study, 2006-2008

    USGS Publications Warehouse

    Dalton, Melinda S.; Rose, Claire E.; Coupe, Richard H.

    2010-01-01

    In 2006, the Agricultural Chemicals: Sources, Transport and Fate study team (Agricultural Chemicals Team, ACT) of the U.S. Geological Survey National Water-Quality Assessment Program began a study in northwestern Mississippi to evaluate the influence of surface-water recharge on the occurrence of agriculturally related nutrients and pesticides in the Mississippi River Valley alluvial aquifer. The ACT study was composed in the Bogue Phalia Basin, an indicator watershed within the National Water-Quality Assessment Program Mississippi Embayment Study Unit and utilized several small, subbasins within the Bogue Phalia to evaluate surface and groundwater interaction and chemical transport in the Basin. Data collected as part of this ACT study include water-quality data from routine and incident-driven water samples evaluated for major ions, nutrients, organic carbon, physical properties, and commonly used pesticides in the area; discharge, gage height and water-level data for surface-water sites, the shallow alluvial aquifer, and hyporheic zone; additionally, agricultural data and detailed management activities were reported by land managers for farms within two subbasins of the Bogue Phalia Basin—Tommie Bayou at Pace, MS, and an unnamed tributary to Clear Creek near Napanee, MS.

  4. Synoptic events force biological productivity in Patagonian fjord ecosystems

    NASA Astrophysics Data System (ADS)

    Daneri, Giovanni

    2016-04-01

    The annual cycle of primary productivity of the Patagonian fjords has, to date, been described as a two phase system consisting of a short non productive winter phase (during June and July) and a productive phase extending from late winter (August) to autumn (May). Low levels of primary production, phytoplankton biomass and high concentrations of surface nutrients have been described as characterizing winter conditions while pulsed productivity events typifies the productivity pattern during the extended productive season. Pulsed productivity events characterize coastal waters where inorganic nutrients in surface layers are replenished following periods of intensive utilization by autotrophs. Freshwater input in Patagonian fjords in southern Chile (41-55°S) results in one of the largest estuarine regions worldwide. Here strong haline water column stratification prevents nutrient mixing to the surface layers thus potentially shutting off algal production. Our working hypothesis considered that in order to reconcile the observed pulsed productivity pattern, periodic breaking (associated to surface nutrient replenishment) and re-establishment of estuarine conditions (associated to water column stratification) would be required. Up to now however our understanding of the physical processes that control water column conditions in the Patagonian fjord area has been extremely limited. Here we present evidence linking the passage of synoptic low pressure fronts to pulsed productivity events in the Patagonian fjord area. These front controls and influence local processes of interaction between the fjord and the atmosphere generating a rapid water column response. In the specific case of the Puyuhuapi fjord we have been able to show that such synoptic fronts induce surface flow reversal and water column mixing. Phytoplankton blooming occurs after the passage of the synoptic front once calmer conditions prevail and estuarine conditions are re established. The occurrence of an extremely productive bloom of the dinoflagellate Heterocapsa sp. in July 2014, after the passage of a synoptic low pressure front provided, for the first time, strong evidence that phytoplankton blooming in the Patagonian fjord ecosystems is controlled by synoptic processes and that they are not limited by light as previously reported. This research was funded by COPAS Sur-Austral (PFB-31) and FONDECYT 1131063

  5. Denitrification rates in marsh soils and hydrologic and water quality data for Northeast Creek and Bass Harbor Marsh watersheds, Mount Desert Island, Maine

    USGS Publications Warehouse

    Huntington, Thomas G.; Culbertson, Charles W.; Duff, John H.

    2011-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in estuaries. Water-quality degradation has been observed at the park's Bass Harbor Marsh estuary but minimal degradation is observed in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, and have identified shallow groundwater as an additional potential nutrient source. Previous studies at Acadia National Park have assumed that a certain fraction of the nitrogen input was removed through microbial denitrification, but rates of denitrification (natural or maximum potential) in marsh soils have not been determined. The U.S. Geological Survey, in cooperation with Acadia National Park, measured in situ denitrification rates in marsh soils in Northeast Creek and Bass Harbor Marsh watersheds during the summer seasons of 2008 and 2009. Denitrification was measured under ambient conditions and following inorganic nitrogen and glucose additions. Laboratory incubations of marsh soils with and without acetylene were conducted to determine average ratios of nitrous oxide (N2O) to nitrogen (N2) produced during denitrification. Surface water and groundwater samples were analyzed for nutrients, specific conductance, temperature, and dissolved oxygen. Water level was recorded continuously during the growing season in Fresh Meadow Marsh in the Northeast Creek Watershed.

  6. Increase in Nutrients, Mercury, and Methylmercury as a Consequence of Elevated Sulfate Reduction to Sulfide in Experimental Wetland Mesocosms

    NASA Astrophysics Data System (ADS)

    Myrbo, A.; Swain, E. B.; Johnson, N. W.; Engstrom, D. R.; Pastor, J.; Dewey, B.; Monson, P.; Brenner, J.; Dykhuizen Shore, M.; Peters, E. B.

    2017-11-01

    Microbial sulfate reduction (MSR) in both freshwater and marine ecosystems is a pathway for the decomposition of sedimentary organic matter (OM) after oxygen has been consumed. In experimental freshwater wetland mesocosms, sulfate additions allowed MSR to mineralize OM that would not otherwise have been decomposed. The mineralization of OM by MSR increased surface water concentrations of ecologically important constituents of OM: dissolved inorganic carbon, dissolved organic carbon, phosphorus, nitrogen, total mercury, and methylmercury. Increases in surface water concentrations, except for methylmercury, were in proportion to cumulative sulfate reduction, which was estimated by sulfate loss from the surface water into the sediments. Stoichiometric analysis shows that the increases were less than would be predicted from ratios with carbon in sediment, indicating that there are processes that limit P, N, and Hg mobilization to, or retention in, surface water. The highest sulfate treatment produced high levels of sulfide that retarded the methylation of mercury but simultaneously mobilized sedimentary inorganic mercury into surface water. As a result, the proportion of mercury in the surface water as methylmercury peaked at intermediate pore water sulfide concentrations. The mesocosms have a relatively high ratio of wall and sediment surfaces to the volume of overlying water, perhaps enhancing the removal of nutrients and mercury to periphyton. The presence of wild rice decreased sediment sulfide concentrations by 30%, which was most likely a result of oxygen release from the wild rice roots. An additional consequence of the enhanced MSR was that sulfate additions produced phytotoxic levels of sulfide in sediment pore water.

  7. Determining spatially discretized surface flow and baseflow in the context of climate change and water quality management

    NASA Astrophysics Data System (ADS)

    Raimonet, M.; Oudin, L.; Rabouille, C.; Garnier, J.; Silvestre, M.; Vautard, R.; Thieu, V.

    2016-12-01

    Water quality management of fresh and marine aquatic systems requires modelling tools along the land-ocean continuum in order to evaluate the effect of climate change on nutrient transfer and on potential ecosystem dysfonctioning (e.g. eutrophication, anoxia). In addition to direct effects of climate change on water temperature, it is essential to consider indirect effects of precipitation and temperature changes on hydrology since nutrient transfers are particularly sensitive to the partition of streamflow between surface flow and baseflow. Yet, the determination of surface flow and baseflow, their spatial repartition on drainage basins, and their relative potential evolution under climate change remains challenging. In this study, we developed a generic approach to determine 10-day surface flow and baseflow using a regionalized hydrological model applied at a high spatial resolution (unitary catchments of area circa 10km²). Streamflow data at gauged basins were used to calibrate hydrological model parameters that were then applied on neighbor ungauged basins to estimate streamflow at the scale of the French territory. The proposed methodology allowed representing spatialized surface flow and baseflow that are consistent with climatic and geomorphological settings. The methodology was then used to determine the effect of climate change on the spatial repartition of surface flow and baseflow on the Seine drainage bassin. Results showed large discrepancies of both the amount and the spatial repartition of changes of surface flow and baseflow according to the several GCM and RCM used to derive projected climatic forcing. Consequently, it is expected that the impact of climate change on nutrient transfer might also be quite heterogeneous for the Seine River. This methodology could be applied in any drainage basin where at least several gauged hydrometric stations are available. The estimated surface flow and baseflow can then be used in hydro-ecological models in order to evaluate direct and indirect impacts of climate change on nutrient transfers and potential ecosystem dysfunctioning along the land-ocean continuum.

  8. Distribution of Nitrogen Compounds in Marine Aerosol and Their Deposition Over the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Uematsu, M.; Narita, Y.; Sun, S. Y.

    2016-02-01

    Nutrient supply to the ocean surface layer is an important factor controlling the marine ecosystem. The major paths of supplies of nutrients have been considered as those from nutrient-rich deep waters and riverine input, which is mostly taken up near the estuary region, but the nutrients transported through the atmosphere recognize to be important for the open ocean, where the nutrients are limiting primary productivity. Because of rapid economic development surrounding the Pacific Ocean, anthropogenic NOx emissions increased by 2-3 times during the past decades. This rapid increase of NOx emission causes a large amount of N deposition mostly in the form of nitrate and ammonium over ocean surfaces, and strongly impacts their marine ecosystems. Especially, biological N2 fixation, riverine input and atmospheric deposition contribute to support "new production" and affect CO2 air-sea exchange. The concentration of nitrogen compounds in marine aerosol has been measured on the island stations and onboard of research vessels in the Pacific Ocean over a few decades. The temporal and spatial atmospheric distribution of water-soluble particulate nitrogen compounds is summarized in this study. As the transport of anthropogenic nitrogen compounds from land, high concentration is revealed over the marginal seas in the western North Pacific. Most of nitrate exists in the coarse aerosol associated with sea-salt particle while ammonium exists in the fine particle and showing a good relationship with non-sea-salt sulfate. This different particle size affects to estimate the deposition flux of nitrogen compounds to the ocean surface. Over the high primary productive areas such as the equatorial Pacific and the Southern Ocean, ammonia is released into the atmosphere and transported to other area. By wet and dry deposition, ammonium is removed to the ocean surface and modified the distribution of nitrogen compounds in the surface waters.

  9. Effects of Land-use/Land-cover and Climate Changes on Water Quantity and Quality in Sub-basins near Major US Cities in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Murphy, L.; Al-Hamdan, M. Z.; Crosson, W. L.; Barik, M.

    2017-12-01

    Land-cover change over time to urbanized, less permeable surfaces, leads to reduced water infiltration at the location of water input while simultaneously transporting sediments, nutrients and contaminants farther downstream. With an abundance of agricultural fields bordering the greater urban areas of Milwaukee, Detroit, and Chicago, water and nutrient transport is vital to the farming industry, wetlands, and communities that rely on water availability. Two USGS stream gages each located within a sub-basin near each of these Great Lakes Region cities were examined, one with primarily urban land-cover between 1992 and 2011, and one with primarily agriculture land-cover. ArcSWAT, a watershed model and soil and water assessment tool used in extension with ArcGIS, was used to develop hydrologic models that vary the land-covers to simulate surface runoff during a model run period from 2004 to 2008. Model inputs that include a digital elevation model (DEM), Landsat-derived land-use/land-cover (LULC) satellite images from 1992, 2001, and 2011, soil classification, and meteorological data were used to determine the effect of different land-covers on the water runoff, nutrients and sediments. The models were then calibrated and validated to USGS stream gage data measurements over time. Additionally, the watershed model was run based on meteorological data from an IPCC CMIP5 high emissions climate change scenario for 2050. Model outputs from the different LCLU scenarios were statistically evaluated and results showed that water runoff, nutrients and sediments were impacted by LULC change in four out of the six sub-basins. In the 2050 climate scenario, only one out of the six sub-basin's water quantity and quality was affected. These results contribute to the importance of developing hydrologic models as the dependence on the Great Lakes as a freshwater resource competes with the expansion of urbanization leading to the movement of runoff, nutrients, and sediments off the land.

  10. Interactions between plant nutrients, water and carbon dioxide as factors limiting crop yields

    PubMed Central

    Gregory, P. J.; Simmonds, L. P.; Warren, G. P.

    1997-01-01

    Biomass production of annual crops is often directly proportional to the amounts of radiation intercepted, water transpired and nutrients taken up. In many places the amount of rainfall during the period of rapid crop growth is less than the potential rate of evaporation, so that depletion of stored soil water is commonplace. The rate of mineralization of nitrogen (N) from organic matter and the processes of nutrient loss are closely related to the availability of soil water. Results from Kenya indicate the rapid changes in nitrate availability following rain.
    Nutrient supply has a large effect on the quantity of radiation intercepted and hence, biomass production. There is considerable scope for encouraging canopy expansion to conserve water by reducing evaporation from the soil surface in environments where it is frequently rewetted, and where the unsaturated hydraulic conductivity of the soil is sufficient to supply water at the energy limited rate (e.g. northern Syria). In regions with high evaporative demand and coarse-textured soils (e.g. Niger), transpiration may be increased by management techniques that reduce drainage.
    Increases in atmospheric [CO2] are likely to have only a small impact on crop yields when allowance is made for the interacting effects of temperature, and water and nutrient supply.

  11. *CYANOBACTERIA AND THEIR TOXINS

    EPA Science Inventory

    Cyanobacteria, or blue-green algae, are naturally-occurring contaminants of surface waters worldwide. These photosynthesizing prokaryotes thrive in warm, shallow, nutrient-rich waters. Many produce potent toxins as secondary metabolites. Cyanobacteria toxins have been document...

  12. Nutrient, suspended-sediment, and total suspended-solids data for surface water in the Great Salt Lake basins study unit, Utah, Idaho, and Wyoming, 1980-95

    USGS Publications Warehouse

    Hadley, Heidi K.

    2000-01-01

    Selected nitrogen and phosphorus (nutrient), suspended-sediment and total suspended-solids surface-water data were compiled from January 1980 through December 1995 within the Great Salt Lake Basins National Water-Quality Assessment study unit, which extends from southeastern Idaho to west-central Utah and from Great Salt Lake to the Wasatch and western Uinta Mountains. The data were retrieved from the U.S. Geological Survey National Water Information System and the State of Utah, Department of Environmental Quality, Division of Water Quality database. The Division of Water Quality database includes data that are submitted to the U.S. Environmental Protection Agency STOrage and RETrieval system. Water-quality data included in this report were selected for surface-water sites (rivers, streams, and canals) that had three or more nutrient, suspended-sediment, or total suspended-solids analyses. Also, 33 percent or more of the measurements at a site had to include discharge, and, for non-U.S. Geological Survey sites, there had to be 2 or more years of data. Ancillary data for parameters such as water temperature, pH, specific conductance, streamflow (discharge), dissolved oxygen, biochemical oxygen demand, alkalinity, and turbidity also were compiled, as available. The compiled nutrient database contains 13,511 samples from 191 selected sites. The compiled suspended-sediment and total suspended-solids database contains 11,642 samples from 142 selected sites. For the nutrient database, the median (50th percentile) sample period for individual sites is 6 years, and the 75th percentile is 14 years. The median number of samples per site is 52 and the 75th percentile is 110 samples. For the suspended-sediment and total suspended-solids database, the median sample period for individual sites is 9 years, and the 75th percentile is 14 years. The median number of samples per site is 76 and the 75th percentile is 120 samples. The compiled historical data are being used in the basinwide sampling strategy to characterize the broad-scale geographic and seasonal water-quality conditions in relation to major contaminant sources and background conditions. Data for this report are stored on a compact disc.

  13. A coastal surface seawater analyzer for nitrogenous nutrient mapping

    NASA Astrophysics Data System (ADS)

    Masserini, Robert T.; Fanning, Kent A.; Hendrix, Steven A.; Kleiman, Brittany M.

    2017-11-01

    Satellite-data-based modeling of chlorophyll indicates that ocean waters in the mesosphere category are responsible for the majority of oceanic net primary productivity. Coastal waters, which frequently have surface chlorophyll values in the mesosphere range and have strong horizontal chlorophyll gradients and large temporal variations. Thus programs of detailed coastal nutrient surveys are essential to the study of the dynamics of oceanic net primary productivity, along with land use impacts on estuarine and coastal ecosystems. The degree of variability in these regions necessitates flexible instrumentation capable of near real-time analysis to detect and monitor analytes of interest. This work describes the development of a portable coastal surface seawater analyzer for nutrient mapping that can simultaneously elucidate with high resolution the distribution of nitrate, nitrite, and ammonium - the three principal nitrogenous inorganic nutrients in coastal systems. The approach focuses on the use of pulsed xenon flash lamps to construct an analyzer which can be adapted to any automated chemistry with fluorescence detection. The system has two heaters, on-the-fly standardization, on-board data logging, an independent 24 volt direct current power supply, internal local operating network, a 12 channel peristaltic pump, four rotary injection/selection valves, and an intuitive graphical user interface. Using the methodology of Masserini and Fanning (2000) the detection limits for ammonium, nitrite, and nitrate plus nitrite were 11, 10, and 22 nM, respectively. A field test of the analyzer in Gulf of Mexico coastal waters demonstrated its ability to monitor and delineate the complexity of inorganic nitrogen nutrient enrichments within a coastal system.

  14. Reducing Nutrient Losses with Directed Fertilization of Degraded Soils

    NASA Astrophysics Data System (ADS)

    Menzies, E.; Walter, M. T.; Schneider, R.

    2016-12-01

    Degraded soils around the world are stunting agricultural productivity in places where people need it the most. In China, hundreds of years of agriculture and human activity have turned large swaths of productive grasslands into expanses of sandy soils where nothing can grow. Returning soils such as these to healthy productive landscapes is crucial to the livelihoods of rural families and to feeding the expanding population of China and the world at large. Buried wood chips can be used to improve the soils' water holding capacity but additional nutrient inputs are crucial to support plant growth and completely restore degraded soils in China and elsewhere. Improperly applied fertilizer can cause large fluxes of soluble nutrients such as nitrogen (N) and phosphorus (P) to pollute groundwater, and reach surface water bodies causing harmful algal blooms or eutrophication. Similarly, fertilization can create increases in nutrient losses in the form of greenhouse gases (GHGs). It is imperative that nutrient additions to this system be done in a way that fosters restoration and a return to productivity, but minimizes nutrient losses to adjacent surface water bodies and the atmosphere. The primary objective of this study is to characterize soluble and gaseous N and P losses from degraded sandy soils with wood chip and fertilizer amendments in order to identify optimal fertilization methods, frequencies, and quantities for soil restoration. A laboratory soil column study is currently underway to begin examining these questions results of this study will be presented at the Fall Meeting.

  15. Quantitative Assessment of Agricultural Runoff and Soil Erosion Using Mathematical Modeling: Applications in the Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Arhonditsis, G.; Giourga, C.; Loumou, A.; Koulouri, M.

    2002-09-01

    Three mathematical models, the runoff curve number equation, the universal soil loss equation, and the mass response functions, were evaluated for predicting nonpoint source nutrient loading from agricultural watersheds of the Mediterranean region. These methodologies were applied to a catchment, the gulf of Gera Basin, that is a typical terrestrial ecosystem of the islands of the Aegean archipelago. The calibration of the model parameters was based on data from experimental plots from which edge-of-field losses of sediment, water runoff, and nutrients were measured. Special emphasis was given to the transport of dissolved and solid-phase nutrients from their sources in the farmers' fields to the outlet of the watershed in order to estimate respective attenuation rates. It was found that nonpoint nutrient loading due to surface losses was high during winter, the contribution being between 50% and 80% of the total annual nutrient losses from the terrestrial ecosystem. The good fit between simulated and experimental data supports the view that these modeling procedures should be considered as reliable and effective methodological tools in Mediterranean areas for evaluating potential control measures, such as management practices for soil and water conservation and changes in land uses, aimed at diminishing soil loss and nutrient delivery to surface waters. Furthermore, the modifications of the general mathematical formulations and the experimental values of the model parameters provided by the study can be used in further application of these methodologies in watersheds with similar characteristics.

  16. Vertical nutrient fluxes, turbulence and the distribution of chlorophyll a in the north-eastern North Sea

    NASA Astrophysics Data System (ADS)

    Bendtsen, Jørgen; Richardson, Katherine

    2017-04-01

    During summer the northern North Sea is characterized by nutrient rich bottom water masses and nutrient poor surface layers. This explains the distribution of chlorophyll a in the water column where a subsurface maximum, referred to as the deep chlorophyll maximum (DCM), often is present during the growth season. Vertical transport of nutrients between bottom water masses and the well lit surface layer stimulates phytoplankton growth and this generally explains the location of the DCM. However, a more specific understanding of the interplay between vertical transports, nutrient fluxes and phytoplankton abundance is required for identifying the nature of the vertical transport processes, e.g the role of advection versus vertical turbulent diffusion or the role of localized mixing associated with mesoscale eddies. We present results from the VERMIX study in the north-eastern North Sea where nutrients, chlorophyll a and turbulence profiles were measured along five north-south directed transects in July 2016. A high-resolution sampling program, with horizontal distances of 1-10 km between CTD-stations, resolved the horizontal gradients of chlorophyll a across the steep bottom slope from the relatively shallow central North Sea ( 50-80 m) towards the deep Norwegian Trench (>700 m). Low oxygen concentrations in the bottom water masses above the slope indicated enhanced biological production where vertical mixing would stimulate phytoplankton growth around the DCM. Measurements of variable fluorescence (Fv/Fm) showed elevated values in the DCM which demonstrates a higher potential for electron transport in the Photosystem II in the phytoplankton cells, i.e. an indication of nutrient-rich conditions favorable for phytoplankton production. Profiles of the vertical shear and microstructure of temperature and salinity were measured by a VMP-250 turbulence profiler and the vertical diffusion of nutrients was calculated from the estimated vertical turbulent diffusivity and the distributions of nutrients. Results from the five transects and two time-series stations, where vertical profiles were made at hourly intervals, showed that vertical mixing processes above the slope increased the vertical transport of nutrients significantly and mixing above the slope can explain the hydrographic features and the distribution of the DCM in the area.

  17. EFFECTS OF BIOSOLIDS APPLICATION ON EROSION CONTROL AND ECOSYSTEM RECOVERY FOLLOWING THE BUFFALO CREEK FIRE - PART II

    EPA Science Inventory

    Nutrient (i.e. nitrogen) contamination of surface waters constitutes one of the most pervasive problems facing wastewater treatment works across the country. Nitrogen discharge to surface water occurs mostly in the form of ammonia which is identified as the most toxic nitrogen sp...

  18. Surface Water and Groundwater Nitrogen Dynamics in a Well Drained Riparian Forest within a Poorly Drained Agricultural Landscape

    EPA Science Inventory

    The effectiveness of riparian zones in mitigating nutrients in ground and surface water depends on the climate, management and hydrogeomorphology of a site. The purpose of this study was to determine the efficacy of a well-drained, mixed-deciduous riparian forest to buffer a ri...

  19. GRAZING POTENTIAL INDEX (GPI) AND SURFACE WATER QUALITY IN THE STATE OF OREGON: I. LIKELIHOOD OF ANIMAL PATHOGENIC PRESENCE USING ENTEROCOCCI

    EPA Science Inventory

    Cattle grazing is a widespread and persistent ecological stressor in the Western United States. Cattle impact surface water quality by introducing nutrients and bacteria and indirectly damaging stream banks or removing vegetation cover leading to increased sediment loads and incr...

  20. A simple model of variable residence time flow and nutrient transport in the chalk

    NASA Astrophysics Data System (ADS)

    Jackson, Bethanna M.; Wheater, Howard S.; Mathias, Simon A.; McIntyre, Neil; Butler, Adrian P.

    2006-10-01

    SummaryA basic problem of modelling flow and transport in Chalk catchments arises from the existence of a deep unsaturated zone, with complex interactions between flow in fractures and water held in the fine pores of the rock matrix. The response of the water table to major infiltration episodes is rapid (of the order of days). However, chemical signals are strongly damped, suggesting that this water is of varying age, with a corresponding mixed history of nutrient loading. Clearly this effect should be represented in any model of nutrients in Chalk systems. The applicability of simplified physically-based model formulations to represent the dual response in an integrated way has been investigated by a variety of researchers, but it has been shown that these approximations break down in application to the Chalk. Mathias et al. [Mathias, S., Butler, A.P., Jackson, B.M., Wheater, H.S., this issue. Characterising flow in the Chalk unsaturated zone. In: Wheater, H.S., Peach, D., Neal, C, editors, Hydrology on LOCAR in the Pang/Lambourn, special issue of J. Hydrol, doi:10.1016/j.jhydrol.2006.04.010] present a dual permeability model that explains the observed response, but such complex formulations are not readily incorporated in catchment-scale nutrient models. This paper reviews previous approaches to modelling the Chalk and then presents a pragmatic approach, with transport of solute and water through the unsaturated zone treated separately, and combined at the water table. Varying residence times are included through considering the distance between the water table and the soil surface, and the history of nutrient application at the surface. If an average rate of downwards migration of the nutrients is assumed, it is possible to derive a travel time distribution of nitrate transport to the water table using a DTM (digital terrain model) map of elevation and information on groundwater levels. This distribution can then be implemented through difference equations. The rationale behind the model and the resulting algorithm is described, and the algorithm then applied to a hypothetical case study of nutrient loading located in the Lambourn, a groundwater-dominated Chalk catchment in Southern England. Simulated groundwater concentrations are very similar in magnitude and variability to observed Chalk groundwater series, suggesting that this simple conceptual model may well be able to capture the dominant responses of nutrient transport through the Chalk.

  1. Management and modeling: Tools to improve water quality

    USDA-ARS?s Scientific Manuscript database

    Agricultural, urban and suburban sources contribute to the contamination of surface waters, which has been observed by the detection of pesticides, excess nutrients, industrial pollutants, antibiotics, pharmaceuticals, and personal care products in both natural waters and treated wastewaters. The us...

  2. Nutrient dynamics and budget with the surface water-groundwater interaction in the tidal river in Japan

    NASA Astrophysics Data System (ADS)

    Onodera, S.; Saito, M.; Maruyama, Y.; Jin, G.; Miyaoka, K.; Shimizu, Y.

    2013-12-01

    In coastal megacities, sever groundwater depression and water pollution occurred. These impacts affected to river environment change. Especially, the river mouth area has been deposited the polluted matters. These areas have characteristics of water level fluctuation which causes river water-groundwater interaction and the associated change in dynamics of nutrients. However, these effects on the nutrient transport in tidal reaches and nutrient load to the sea have not been fully evaluated in previous studies. Therefore, we aimed to clarify the characteristics of the nutrient transport with the river water-groundwater interaction in the tidal river of Osaka metropolitan city. We conducted the field survey from the river mouth to the 7km upstream area of Yamato River, which has a length of 68km and a watershed area of 1070 km2. Spatial variations in radon (222Rn) concentrations and the difference of hydraulic potential between river waters and the pore waters suggest that the groundwater discharges to the river channel in the upstream area. In contrast, the river water recharged into the groundwater near the river mouth area. It may be caused by the lowering of groundwater level associated with the excess abstraction of groundwater in the urban area. The result also implies the seawater intrusion would accelerate the salinization of groundwater. The spatial and temporal variations in nutrient concentrations indicate that nitrate-nitrogen (NO3-N) concentrations changed temporally and it negative correlated with dissolved organic nitrogen (DON) concentrations. Inorganic phosphorous (PO4-P) concentrations showed the increasing trend with the increase of the river water level. Based on the mass balance, nutrient reproduction from the river bed was suggested in tidal reach. That was estimated to be 10 % of total nitrogen and 3% of phosphorus loads from the upstream.

  3. Nutrient and salt mass balance on the Lower Arkansas River and a contributing tributary in an irrigated agricultural setting

    Treesearch

    Alexander Hulzenga; Ryan T. Bailey; Timothy K. Gates

    2016-01-01

    The Lower Arkansas River Basin is an irrigated, agricultural valley suffering from high concentrations of nutrients and salts in the coupled groundwater-surface water system. The majority of water quality data collection and associated spatial analysis of concentrations and mass loadings from the aquifer to the stream network has been performed at the regional scale (...

  4. Potential foraging decisions by a desert ungulate to balance water and nutrient intake in a water-stressed environment

    USGS Publications Warehouse

    Gedir, Jay V.; Cain, James W.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.; Morgart, John R.

    2016-01-01

    Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8–55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during water-stressed periods may not be necessary for desert bighorn sheep.

  5. Potential Foraging Decisions by a Desert Ungulate to Balance Water and Nutrient Intake in a Water-Stressed Environment.

    PubMed

    Gedir, Jay V; Cain, James W; Krausman, Paul R; Allen, Jamison D; Duff, Glenn C; Morgart, John R

    2016-01-01

    Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8-55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during water-stressed periods may not be necessary for desert bighorn sheep.

  6. Potential Foraging Decisions by a Desert Ungulate to Balance Water and Nutrient Intake in a Water-Stressed Environment

    PubMed Central

    Gedir, Jay V.; Cain, James W.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.

    2016-01-01

    Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8–55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during water-stressed periods may not be necessary for desert bighorn sheep. PMID:26894504

  7. The relationship between cadmium and phosphate in the Atlantic Ocean unravelled

    NASA Astrophysics Data System (ADS)

    Middag, Rob; van Heuven, Steven M. A. C.; Bruland, Kenneth W.; de Baar, Hein J. W.

    2018-06-01

    Cadmium (Cd) is not generally considered a nutrient element, but behaves like a nutrient in the oceans and might play an important role in ocean biology after all. The relationship between Cd and the nutrient phosphate (PO4) has been studied for over 40 yrs, but the debate on the driving mechanism and reason behind the 'kink', a change in the steepness of the slope is ongoing. Using new data of high accuracy and spatial resolution covering the West-Atlantic Ocean from north to south, in combination with a robust extended optimum multiparameter (eOMP) water mass model, we show that mixing between different water masses is the dominant factor explaining the observed correlation and its kink. Regeneration of Cd via remineralisation explains the smaller scale variability, notably in the surface ocean. Observations imply the availability of Cd in surface waters determines the Cd-uptake and thus the Cd:PO4 remineralisation ratio. This ratio is variable between different ocean regions, notably between the northern and southern high latitude oceans. Due to their role in deep water formation, both the northern and southern high latitude oceans are a driving factor in the Atlantic and global Cd and PO4 relation. Outside the Atlantic Ocean, the classical kink is not expected, but the relationship is by no means linear. Most likely, this is due to the interaction between low latitude surface waters and subsurface waters from high latitude origin, but more data are required to assess this in detail.

  8. Constructed wetlands may lower inorganic nutrient inputs but enhance DOC loadings into a drinking water reservoir in North Wales.

    PubMed

    Scholz, C; Jones, T G; West, M; Ehbair, A M S; Dunn, C; Freeman, C

    2016-09-01

    The objective of this study was to monitor a newly constructed wetland (CW) in north Wales, UK, to assess whether it contributes to an improvement in water quality (nutrient removal) of a nearby drinking water reservoir. Inflow and outflow of the Free Water Surface (FWS) CW were monitored on a weekly basis and over a period of 6 months. Physicochemical parameters including pH, conductivity and dissolved oxygen (DO) were measured, as well as nutrients and dissolved organic and inorganic carbon (DOC, DIC) concentration. The CW was seen to contribute to water quality improvement; results show that nutrient removal took place within weeks after construction. It was found that 72 % of initial nitrate (N03 (-)), 53 % of initial phosphate (PO4 (3-)) and 35 % of initial biological oxygen demand (BOD) were removed, calculated as a total over the whole sampling period. From our study, it can be concluded that while inorganic nutrients do decline in CWs, the DOC outputs increases. This may suggest that CWs represent a source for DOC. To assess the carbon in- and output a C budget was calculated.

  9. Harmful freshwater algal blooms, with an emphasis on cyanobacteria.

    PubMed

    Paerl, H W; Fulton, R S; Moisander, P H; Dyble, J

    2001-04-04

    Suspended algae, or phytoplankton, are the prime source of organic matter supporting food webs in freshwater ecosystems. Phytoplankton productivity is reliant on adequate nutrient supplies; however, increasing rates of nutrient supply, much of it manmade, fuels accelerating primary production or eutrophication. An obvious and problematic symptom of eutrophication is rapid growth and accumulations of phytoplankton, leading to discoloration of affected waters. These events are termed blooms. Blooms are a prime agent of water quality deterioration, including foul odors and tastes, deoxygenation of bottom waters (hypoxia and anoxia), toxicity, fish kills, and food web alterations. Toxins produced by blooms can adversely affect animal (including human) health in waters used for recreational and drinking purposes. Numerous freshwater genera within the diverse phyla comprising the phytoplankton are capable of forming blooms; however, the blue-green algae (or cyanobacteria) are the most notorious bloom formers. This is especially true for harmful toxic, surface-dwelling, scum-forming genera (e.g., Anabaena, Aphanizomenon, Nodularia, Microcystis) and some subsurface bloom-formers (Cylindrospermopsis, Oscillatoria) that are adept at exploiting nutrient-enriched conditions. They thrive in highly productive waters by being able to rapidly migrate between radiance-rich surface waters and nutrient-rich bottom waters. Furthermore, many harmful species are tolerant of extreme environmental conditions, including very high light levels, high temperatures, various degrees of desiccation, and periodic nutrient deprivation. Some of the most noxious cyanobacterial bloom genera (e.g., Anabaena, Aphanizomenon, Cylindrospermopsis, Nodularia) are capable of fixing atmospheric nitrogen (N2), enabling them to periodically dominate under nitrogen-limited conditions. Cyanobacteria produce a range of organic compounds, including those that are toxic to higher-ranked consumers, from zooplankton to further up the food chain. Both N2- and non-N2-fixing genera participate in mutualistic and symbiotic associations with microorganisms, higher plants, and animals. These associations appear to be of great benefit to their survival and periodic dominance. In this review, we address the ecological impacts and environmental controls of harmful blooms, with an emphasis on the ecology, physiology, and management of cyanobacterial bloom taxa. Combinations of physical, chemical, and biotic features of natural waters function in a synergistic fashion to determine the sensitivity of water bodies. In waters susceptible to blooms, human activities in water- and airsheds have been linked to the extent and magnitudes of blooms. Control and management of cyanobacterial and other phytoplankton blooms invariably includes nutrient input constraints, most often focused on nitrogen (N) and/or phosphorus (P). The types and amount of nutrient input constraints depend on hydrologic, climatic, geographic, and geologic factors, which interact with anthropogenic and natural nutrient input regimes. While single nutrient input constraints may be effective in some water bodies, dual N and P input reductions are usually required for effective long-term control and management of harmful blooms. In some systems where hydrologic manipulations (i.e., plentiful water supplies) are possible, reducing the water residence time by enhanced flushing and artificial mixing (in conjunction with nutrient input constraints) can be particularly effective alternatives. Implications of various management strategies, based on combined ecophysiological and environmental considerations, are discussed.

  10. Fraser River watershed, Colorado : assessment of available water-quantity and water-quality data through water year 1997

    USGS Publications Warehouse

    Apodaca, Lori Estelle; Bails, Jeffrey B.

    1999-01-01

    The water-quantity and water-quality data for the Fraser River watershed through water year 1997 were compiled for ground-water and surface-water sites. In order to assess the water-quality data, the data were related to land use/land cover in the watershed. Data from 81 water-quantity and water-quality sites, which consisted of 9 ground-water sites and 72 surface-water sites, were available for analysis. However, the data were limited and frequently contained only one or two water-quality analyses per site.The Fraser River flows about 28 miles from its headwaters at the Continental Divide to the confluence with the Colorado River. Ground-water resources in the watershed are used for residential and municipal drinking-water supplies. Surface water is available for use, but water diversions in the upper parts of the watershed reduce the flow in the river. Land use/land cover in the watershed is predominantly forested land, but increasing urban development has the potential to affect the quantity and quality of the water resources.Analysis of the limited ground-water data in the watershed indicates that changes in the land use/land cover affect the shallow ground-water quality. Water-quality data from eight shallow monitoring wells in the alluvial aquifer show that iron and manganese concentrations exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level. Radon concentrations from these monitoring wells exceeded the U.S. Environmental Protection Agency proposed maximum contaminant level. The proposed radon contaminant level is currently being revised. The presence of volatile organic compounds at two monitoring wells in the watershed indicates that land use affects the shallow ground water. In addition, bacteria detected in three samples are at concentrations that would be a concern for public health if the water was to be used as a drinking supply. Methylene blue active substances were detected in the ground water at some sites and are a possible indication of contamination from wastewater. Age of the alluvial ground water ranged from 10 to 30 years; therefore, results of land-management practices to improve water quality may not be apparent for many years.Surface-water-quality data for the Fraser River watershed are sparse. The surface-water-quality data show that elevated concentrations of selected constituents generally are related to specific land uses in the watershed. For one sample (about 2 percent; 1 of 53), dissolved manganese concentration exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level. Two samples from two surface-water sites in the watershed exceeded the un-ionized ammonia chronic criterion. Spatial distribution of nutrient species (ammonia, nitrite, nitrate, and total phosphorus) shows that elevated concentrations occur primarily downstream from urban areas. Sites with five or more years of record were analyzed for temporal trends in concentration of nutrient species. Downward trends were identified for ammonia and nitrite for three surface-water sites. For nitrate, no trends were observed at two sites and a downward trend was observed at one site. Total phosphorus showed no trend for the site near the mouth of the Fraser River. Downward trends in the nutrient species may reflect changes in the wastewater-treatment facilities in the watershed. Bacteria sampling completed in the watershed indicates that more bacteria are present in the water near urban settings.The limited ground-water and surface-water data for the Fraser River watershed provide a general assessment of the quantity and quality of these resources. Concentrations of most water-quality constituents generally are less than ground- and surface-water-quality standards, but the presence of bacteria, some volatile organic compounds, methylene blue active substances, and increased nutrients in the water may indicate that land use is affecting the water quality..

  11. Hydrologic and Water Quality Assessment from Managed Turf

    USDA-ARS?s Scientific Manuscript database

    The potential for nutrients and pesticides to be transported to surface water from turf systems (especially golf courses) is often debated because of limited information on water quality exiting these systems. This four year study quantified the amount and quality of water draining from part of Nort...

  12. Land cover impacts on stream nutrients and fecal coliform in the lower Piedmont of West Georgia

    NASA Astrophysics Data System (ADS)

    Schoonover, Jon E.; Lockaby, B. Graeme

    2006-12-01

    SummaryAs urbanization infiltrates into rural areas, stream water quality is expected to decline as a result from increased impervious surface and greater sources for pollutants. Consequently, West Georgia's water quality is threatened by extensive development as well as other land uses such as livestock grazing and silvicultural activity. Maintenance of stream water quality, as land development occurs, is critical for the protection of drinking water and biotic integrity. A 2-phase, watershed-scale study was established to develop relationships among land cover and water quality within western Georgia. During phase 1, nutrient and fecal coliform data were collected within 18 mixed land use watersheds, ranging in size from 500 to 2500 ha. Regression models were developed that related land cover to stream water nutrient and fecal coliform concentrations. Nutrient and fecal coliform concentrations within watersheds having >24% impervious surface (IS) were often higher than those in nonurban watersheds (i.e., <5% IS) during both base flow (N: 1.64 mg/L versus 0.61 mg/L, and FC: 430 versus 120 MPN/100 ml) and storm flow (N: 1.93 mg/L versus 0.36 mg/L, and FC: 1600 versus 167 MPN/100 ml). Fecal coliform bacteria in urbanized areas consistently exceeded the US EPA's review criterion for recreational waters during both base flow and to a greater extent storm flow. During phase 2, regression models were tested based on data from six newly chosen watersheds with similar land use/cover patterns. Lastly, theoretical watersheds, based on land use percentages, were created to illustrate trends in water quality impairment as land development occurs. The models developed from this research could be used to forecast water quality changes under various land use scenarios in the developing Piedmont region of the US.

  13. Patterns and processes of nutrient transfers from land to water: a catchment approach to evaluate Good Agricultural Practice in Ireland

    NASA Astrophysics Data System (ADS)

    Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.

    2009-04-01

    Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable grassland soils; areas where arable production represents a significant landuse; and catchments on productive and unproductive aquifers. The catchments were identified using a GIS-based multicriteria decision analysis with objective criteria that included landuse data (including agricultural and settlement statistics) combined with soils and geology data to evaluate the risk of P and N loss. Shortlisted catchments were then finalised using practical criteria based on the potential for hydrometry and hydrochemistry research. In each catchment, a conceptual model approach is being used to hypothesize the sources, seasonal mobilisation and pathways of nutrients and water through the soil/subsoil system and transfer into surface and ground water systems to stratify each catchment experimental design. Knowledge of the nutrient management of each catchment farm and resulting soil fertility will be used to monitor the sources of agricultural N and P. Environmental soil nutrient tests will provide baselines and checks on the potential for mobilisation. Areas of high soil fertility that are coincident with high surface or sub-surface hydrological connectivity will be monitored for subsequent nutrient transfer. Other potential nutrient source loads within the catchments, such as rural waste-water treatment plants and domestic septic systems, will be factored in as non-agricultural sources. Similarly, the potential for farmyard transfers will also be assessed. The net balance of nutrient transfer at the catchment outlets will be monitored using a high resolution method that is coincident with hydrometric measurements to ensure that there is a full understanding of the inter-dependence between point and diffuse nutrient transfers and hydrodynamics. This source to transfer approach is highly appropriate and a move towards inductive understanding of nutrient use and export in river catchments - the scale at which policies for water resources management will be assessed under the WFD. The data are also highly conducive to constraining catchment scale, distributed models for predicting chemical transfers in runoff. As the Programme is aiming to integrate the often perceived contentious objectives of water quality management with those of sustainable agriculture, farm economics will also be monitored at the same time and an assessment made of farmer attitudes. An advisory programme is also a major component and dedicated farm advisors will ensure that farmers are fully appraised of obligations and opportunities in the National Action Programme.

  14. Corn yield and nutrient uptake response to subsurface-lateral bands application of poultry litter

    USDA-ARS?s Scientific Manuscript database

    Poultry litter is nutrient rich and traditionally land-applied by broadcast on the soil surface which can lead to potential environmental hazards. This application method leaves PL vulnerable to transport from the field to nearby water bodies and contributes significant amounts of greenhouse gases (...

  15. Nutrient loss with runoff from fairway turf: an evaluation of core cultivation practices and their environmental impact

    USDA-ARS?s Scientific Manuscript database

    The presence of excess nutrients in surfaces waters can result in undesirable environmental and economic consequences including nuisance algal blooms and eutrophication. Fertilizer use in highly managed turf systems such as golf courses and commercial and residential landscapes has raised questions ...

  16. Groundwater-surface water interactions and their effects on ecosystem metabolism in a coastal wetland: example from the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Price, R. M.; Zapata, X.; Koch, G. R.

    2013-05-01

    Groundwater typically has higher concentrations of salts and nutrients as compared to surface waters in coastal wetlands affected by saltwater intrusion. Discharge of the nutrient-laden brackish groundwater is expected to influence ecosystem function in the overlying surface water. In the coastal Everglades, elevated concentrations of phosphorus have been observed in the underlying groundwater due to water-rock interactions occurring as seawater intrudes into the coastal carbonate aquifer. The objective of this research was to determine the timing and amount of brackish groundwater discharge to the coastal wetlands of the Everglades and to evaluate the effects of the groundwater discharge on the surface water chemistry and ecosystem metabolism. The timing of groundwater discharge was determined by four techniques including a water balance, hydraulic gradient, temperature, and geochemical tracers. Groundwater discharge rates were quantified from well data using Darcy's Law. Ecosystem metabolism was estimated as daily rates of gross primary production (GPP), ecosystem respiration (R) and net ecosystem production (NEP) from free-water, diel changes in dissolved oxygen. Over 2 years, all four groundwater discharge techniques converged as to the timing of groundwater discharge which was greatest between May and July. Surface water chemistry was fresh from September through February, but became brackish to hypersaline between March and July, concurrent with the times of highest brackish groundwater discharge. Phosphorus concentrations as well as GPP and R were observed to spike in the surface water during the times of greatest groundwater discharge. The results of this research support the conclusions that brackish groundwater discharge effects surface water chemistry and ecosystem function in the coastal Everglades.

  17. Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution.

    PubMed

    Janke, Benjamin D; Finlay, Jacques C; Hobbie, Sarah E

    2017-09-05

    Expansion of tree cover is a major management goal in cities because of the substantial benefits provided to people, and potentially to water quality through reduction of stormwater volume by interception. However, few studies have addressed the full range of potential impacts of trees on urban runoff, which includes deposition of nutrient-rich leaf litter onto streets connected to storm drains. We analyzed the influence of trees on stormwater nitrogen and phosphorus export across 19 urban watersheds in Minneapolis-St. Paul, MN, U.S.A., and at the scale of individual streets within one residential watershed. Stormwater nutrient concentrations were highly variable across watersheds and strongly related to tree canopy over streets, especially for phosphorus. Stormwater nutrient loads were primarily related to road density, the dominant control over runoff volume. Street canopy exerted opposing effects on loading, where elevated nutrient concentrations from trees near roads outweighed the weak influence of trees on runoff reduction. These results demonstrate that vegetation near streets contributes substantially to stormwater nutrient pollution, and therefore to eutrophication of urban surface waters. Urban landscape design and management that account for trees as nutrient pollution sources could improve water quality outcomes, while allowing cities to enjoy the myriad benefits of urban forests.

  18. Primary Productivity Regime and Nutrient Removal in the Danube Estuary

    NASA Astrophysics Data System (ADS)

    Humborg, C.

    1997-11-01

    The primary productivity regime, as well as the distribution of dissolved inorganic nutrients and particulate organic matter in the Danube estuary, were investigated during several cruises at different discharge regimes of the Danube River. The shallowness of the upper surface layer due to insignificant tidal mixing and strong stratification of the Danube estuary, as well as the high nutrient concentrations, are favourable for elevated primary production. The incident light levels at the bottom of the upper surface layer of the water column (0·5-3·0 m) were generally higher than 20% of the surface irradiance. Elevated chlorophyll (Chl) aconcentrations with maxima at mid salinities were found during each survey. Within the upper mixed layer estimated primary production of 0·2-4·4 g m-2day-1is very high compared with estuaries of other major world rivers. Mixing diagrams of dissolved inorganic nutrients reveal removal of significant quantities of nutrients during estuarine mixing. These observations were consistent with the distribution of particular organic matter, which was negatively correlated to the nutrient distribution during each survey. C:Chl aratios, as well as the elevated estimated production, indicate that biological transformation processes govern the nutrient distribution in this estuary.

  19. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility.

    PubMed

    Hagemann, Nikolas; Joseph, Stephen; Schmidt, Hans-Peter; Kammann, Claudia I; Harter, Johannes; Borch, Thomas; Young, Robert B; Varga, Krisztina; Taherymoosavi, Sarasadat; Elliott, K Wade; McKenna, Amy; Albu, Mihaela; Mayrhofer, Claudia; Obst, Martin; Conte, Pellegrino; Dieguez-Alonso, Alba; Orsetti, Silvia; Subdiaga, Edisson; Behrens, Sebastian; Kappler, Andreas

    2017-10-20

    Amending soil with biochar (pyrolized biomass) is suggested as a globally applicable approach to address climate change and soil degradation by carbon sequestration, reducing soil-borne greenhouse-gas emissions and increasing soil nutrient retention. Biochar was shown to promote plant growth, especially when combined with nutrient-rich organic matter, e.g., co-composted biochar. Plant growth promotion was explained by slow release of nutrients, although a mechanistic understanding of nutrient storage in biochar is missing. Here we identify a complex, nutrient-rich organic coating on co-composted biochar that covers the outer and inner (pore) surfaces of biochar particles using high-resolution spectro(micro)scopy and mass spectrometry. Fast field cycling nuclear magnetic resonance, electrochemical analysis and gas adsorption demonstrated that this coating adds hydrophilicity, redox-active moieties, and additional mesoporosity, which strengthens biochar-water interactions and thus enhances nutrient retention. This implies that the functioning of biochar in soil is determined by the formation of an organic coating, rather than biochar surface oxidation, as previously suggested.

  20. Atmospheric aerosol deposition influences marine microbial communities in oligotrophic surface waters of the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Maki, Teruya; Ishikawa, Akira; Mastunaga, Tomoki; Pointing, Stephen B.; Saito, Yuuki; Kasai, Tomoaki; Watanabe, Koichi; Aoki, Kazuma; Horiuchi, Amane; Lee, Kevin C.; Hasegawa, Hiroshi; Iwasaka, Yasunobu

    2016-12-01

    Atmospheric aerosols contain particulates that are deposited to oceanic surface waters. These can represent a major source of nutrients, trace metals, and organic compounds for the marine environment. The Japan Sea and the western Pacific Ocean are particularly affected by aerosols due to the transport of desert dust and industrially derived particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) from continental Asia. We hypothesized that supplementing seawater with aerosol particulates would lead to measurable changes in surface water nutrient composition as well as shifts in the marine microbial community. Shipboard experiments in the Pacific Ocean involved the recovery of oligotrophic oceanic surface water and subsequent supplementation with aerosol particulates obtained from the nearby coastal mountains, to simulate marine particulate input in this region. Initial increases in nitrates due to the addition of aerosol particulates were followed by a decrease correlated with the increase in phytoplankton biomass, which was composed largely of Bacillariophyta (diatoms), including Pseudo-nitzschia and Chaetoceros species. This shift was accompanied by changes in the bacterial community, with apparent increases in the relative abundance of heterotrophic Rhodobacteraceae and Colwelliaceae in aerosol particulate treated seawater. Our findings provide empirical evidence revealing the impact of aerosol particulates on oceanic surface water microbiology by alleviating nitrogen limitation in the organisms.

  1. Water Quality Indicators Guide [and Teacher's Handbook]: Surface Waters.

    ERIC Educational Resources Information Center

    Terrell, Charles R.; Perfetti, Patricia Bytnar

    This guide aids in finding water quality solutions to problems from sediment, animal wastes, nutrients, pesticides, and salts. The guide allows users to learn the fundamental concepts of water quality assessment by extracting basic tenets from geology, hydrology, biology, ecology, and wastewater treatment. An introduction and eight chapters are…

  2. Influence of hydrography of Central Mexican Pacific in the spatial variation of inorganic nutrients during 2010

    NASA Astrophysics Data System (ADS)

    Olivos-Ortiz, A.; Gaviño-Rodríguez, J. H.; Quijano-Scheggia, S.; Pelayo-Martinez, G.; Torres-Orozco, E.; Calva-Chavez, M.

    2014-12-01

    The Mexican Central Pacific (MCP) is considered an oligotrophic area that holds important populations of different species with ecological and economic importance like marine mammals, billfish and tunas. Hydrographic mechanisms are responsible to interplay with the biogeochemical cycles of nutrients to support primary productivity for these food webs. It is argued that seasonal upwelling of bottom waters rich in nutrients generates distributed in patches of high-productivity, which are also linked to topographic continental forcing. The goal of this study is determine the presence of water masses, depth of the mixed layer, temperature, salinity, patterns of geostrophic currents and their influence on the spatiotemporal variability of inorganic nutrients. For that pupose, three oceanographic cruises were conducted in January, May-June, and October of 2010 off the coast of the MCP. Each campaign consisted of 15 stations in five perpendicular transects with stations at 2, 50 and 100 nm offshore. At each station samples were taken to determine the concentration of NO3-+ NO2-, NH4+, PO43- and SiO2 at 0, 10, 25, 50, 75, 100, 150 and 200 m depth. CTD casts were made up to 500m to obtain profiles of salinity, temperature, water masses, and identify geostrophic currents (direction and intensity). Identified water masses were: Pacific Tropical Surface Water (PTSW), Pacific Equatorial Surface Water (PESW), Equatorial Pacific Water (EPW), California Current Water (CCW), Subtropical Subsurface Water (STSsW), and Pacific Intermediate Water (PIT); these water masses were present in all three seasons being more clear the presence of CCW during autumn and PTSW in winter. The interaction between coastal topography, geostrophic circulation, and the depth of the mixed layer (55m oceanic part in January and 10m coastal area in October) were the factors that determined the location of areas of high concentration of nutrients. The distribution of nutrients was heterogeneous, characterized by mesoscale structures beyond the continental shelf or coastal upwelling events; no significant difference between concentrations at different seasons of the year with the following ranges: 1.2-8.9 uM NO3-+ NO2-, NH4+ 0.8-12.4 mM, 0.1-5.0 mM PO43-, and 3.2-14.5 mM SiO2.

  3. Quality of groundwater and surface water, Wood River Valley, south-central Idaho, July and August 2012

    USGS Publications Warehouse

    Hopkins, Candice B.; Bartolino, James R.

    2013-01-01

    Residents and resource managers of the Wood River Valley of south-central Idaho are concerned about the effects that population growth might have on the quality of groundwater and surface water. As part of a multi-phase assessment of the groundwater resources in the study area, the U.S. Geological Survey evaluated the quality of water at 45 groundwater and 5 surface-water sites throughout the Wood River Valley during July and August 2012. Water samples were analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and alkalinity), major ions, boron, iron, manganese, nutrients, and Escherichia coli (E.coli) and total coliform bacteria. This study was conducted to determine baseline water quality throughout the Wood River Valley, with special emphasis on nutrient concentrations. Water quality in most samples collected did not exceed U.S. Environmental Protection Agency standards for drinking water. E. coli bacteria, used as indicators of water quality, were detected in all five surface-water samples and in two groundwater samples collected. Some analytes have aesthetic-based recommended drinking water standards; one groundwater sample exceeded recommended iron concentrations. Nitrate plus nitrite concentrations varied, but tended to be higher near population centers and in agricultural areas than in tributaries and less populated areas. These higher nitrate plus nitrite concentrations were not correlated with boron concentrations or the presence of bacteria, common indicators of sources of nutrients to water. None of the samples collected exceeded drinking-water standards for nitrate or nitrite. The concentration of total dissolved solids varied considerably in the waters sampled; however a calcium-magnesium-bicarbonate water type was dominant (43 out of 50 samples) in both the groundwater and surface water. Three constituents that may be influenced by anthropogenic activity (chloride, boron, and nitrate plus nitrite) deviate from this pattern and show a wide distribution of concentrations in the unconfined aquifer, indicating possible anthropogenic influence. Time-series plots of historical water-quality data indicated that nitrate does not seem to be increasing or decreasing in groundwater over time; however, time-series plots of chloride concentrations indicate that chloride may be increasing in some wells. The small amount of temporal variability in nitrate concentrations indicates a lack of major temporal changes to groundwater inputs.

  4. Phytoplankton succession in an isolated upwelled Benguela water body in relation to different initial nutrient conditions

    NASA Astrophysics Data System (ADS)

    Wasmund, Norbert; Nausch, Günther; Hansen, Anja

    2014-11-01

    Freshly upwelled water is poor in phytoplankton biomass but rich in nutrients. With its ageing, phytoplankton biomass increases whereas the nutrients are consumed. The overall aim of our investigation was to check the succession in the phytoplankton composition as a consequence of changing nutrient conditions. The experiments were carried out in mesocosms filled with surface water in the northern Benguela region and installed on board of R/V "Maria S. Merian". In the freshly upwelled water, phytoplankton took up nitrogen at a higher rate than phosphorus if compared with the Redfield ratio. Therefore, nitrogen was exhausted already by day 6. Nitrogen limitation after day 6 was indicated by decreasing chlorophyll a (chla) concentrations, primary production rates and productivity indices and increasing C/N ratios in particulate matter. Despite nitrogen limitation, phosphorus addition stimulated further growth, mainly of diatoms, pointing to luxury uptake. Cyanobacteria did not develop and nitrogen fixation was zero even with phosphorus and iron addition. Diatoms stay the most important group in the freshly upwelled water, but autotrophic and heterotrophic dinoflagellates increase strongly in the matured upwelled water. Mesocosms excluded disturbances by advective water transports, which influence the study of succssions under field conditions.

  5. Stream-subsurface nutrient dynamics in a groundwater-fed stream

    NASA Astrophysics Data System (ADS)

    Rezanezhad, F.; Niederkorn, A.; Parsons, C. T.; Van Cappellen, P.

    2015-12-01

    The stream-riparian-aquifer interface plays a major role in the regional flow of nutrients and contaminants due to a strong physical-chemical gradient that promotes the transformation, retention, elimination or release of biogenic elements. To better understand the effect of the near-stream zones on stream biogeochemistry, we conducted a field study on a groundwater-fed stream located in the rare Charitable Research Reserve, Cambridge, Ontario, Canada. This study focused on monitoring the spatial and temporal distributions of nutrient elements within the riparian and hyporheic zones of the stream. Several piezometer nests and a series of passive (diffusion) water samplers, known as peepers, were installed along longitudinal and lateral transects centered on the stream to obtain data on the groundwater chemistry. Groundwater upwelling along the stream resulted in distinctly different groundwater types and associated nitrate concentrations between small distances in the riparian zone (<4m). After the upstream source of the stream surface water, concentrations of nutrients (NO3-, NH4+, SO42- and carbon) did not significantly change before the downstream outlet. Although reduction of nitrate and sulphate were found in the riparian zone of the stream, this did not significantly influence the chemistry of the adjacent stream water. Also, minimal retention in the hyporheic zones limited reduction of reactive compounds (NO3- and SO42-) within the stream channel. The results showed that the dissolved organic carbon (DOC) and residence time of water in the hyporheic zone and in surface water limited denitrification.

  6. Wastewater Treatment Energy Recovery Potential For Adaptation To Global Change: An Integrated Assessment

    NASA Astrophysics Data System (ADS)

    Breach, Patrick A.; Simonovic, Slobodan P.

    2018-04-01

    Approximately 20% of wastewaters globally do not receive treatment, whereas wastewater discharges are projected to increase, thereby leading to excessive water quality degradation of surface waters on a global scale. Increased treatment could help alleviate water quality issues by constructing more treatment plants; however, in many areas there exist economic constraints. Energy recovery methods including the utilization of biogas and incineration of biosolids generated during the treatment process may help to alleviate treatment costs. This study explores the potential for investments in energy recovery from wastewater to increase treatment levels and thus improve surface water quality. This was done by examining the relationships between nutrient over-enrichment, wastewater treatment, and energy recovery at a global scale using system dynamics simulation as part of the ANEMI integrated assessment model. The results show that a significant amount of energy can be recovered from wastewater, which helps to alleviate some of the costs of treatment. It was found that wastewater treatment levels could be increased by 34%, helping to offset the higher nutrient loading from a growing population with access to improved sanitation. The production of renewable natural gas from biogas was found to have the potential to prolong the depletion of natural gas resources used to produce electricity and heat. It is recommended that agricultural nutrient discharges be better managed to help reduce nutrient over-enrichment on global scale. To increase the utility of the simulation, a finer spatial scale should be used to consider regional treatment, economic, and water quality characteristics.

  7. Wastewater Treatment Energy Recovery Potential For Adaptation To Global Change: An Integrated Assessment.

    PubMed

    Breach, Patrick A; Simonovic, Slobodan P

    2018-04-01

    Approximately 20% of wastewaters globally do not receive treatment, whereas wastewater discharges are projected to increase, thereby leading to excessive water quality degradation of surface waters on a global scale. Increased treatment could help alleviate water quality issues by constructing more treatment plants; however, in many areas there exist economic constraints. Energy recovery methods including the utilization of biogas and incineration of biosolids generated during the treatment process may help to alleviate treatment costs. This study explores the potential for investments in energy recovery from wastewater to increase treatment levels and thus improve surface water quality. This was done by examining the relationships between nutrient over-enrichment, wastewater treatment, and energy recovery at a global scale using system dynamics simulation as part of the ANEMI integrated assessment model. The results show that a significant amount of energy can be recovered from wastewater, which helps to alleviate some of the costs of treatment. It was found that wastewater treatment levels could be increased by 34%, helping to offset the higher nutrient loading from a growing population with access to improved sanitation. The production of renewable natural gas from biogas was found to have the potential to prolong the depletion of natural gas resources used to produce electricity and heat. It is recommended that agricultural nutrient discharges be better managed to help reduce nutrient over-enrichment on global scale. To increase the utility of the simulation, a finer spatial scale should be used to consider regional treatment, economic, and water quality characteristics.

  8. Riparian shrub buffers reduce surface water pollutant loads

    Treesearch

    W. A. Geyer; C. Barden; K. Mankin; D. Devlin

    2003-01-01

    Surface water resources in Kansas often contain concentrations of pesticides, nutrients, and sediments that are of concern to local citizens. The United States Geological Survey reported in 1999 that 97 percent of streams and 82 percent of lakes in Kansas would not fully support all uses as designated by state statutes (U.S. Geological Survey 1999). Bacteria and...

  9. Spatial and Temporal Patterns of Dissolved Nitrogen and Phosphorus in Surface Waters of a Multi-Land Use Basin

    EPA Science Inventory

    Research on relationships between dissolved nutrients and land use at the watershed scale is a high priority for protecting surface water quality. We measured dissolved nitrogen (DN) and ortho-phosphorus (P) along 130 km of the Calapooia River (Oregon, USA) and 44 of its sub-bas...

  10. Macronutrient and carbon supply, uptake and cycling across the Antarctic Peninsula shelf during summer

    PubMed Central

    Jones, Elizabeth M.; Venables, Hugh J.; Firing, Yvonne L.; Dittrich, Ribanna; Heiser, Sabrina; Dougans, Julie

    2018-01-01

    The West Antarctic Peninsula shelf is a region of high seasonal primary production which supports a large and productive food web, where macronutrients and inorganic carbon are sourced primarily from intrusions of warm saline Circumpolar Deep Water. We examined the cross-shelf modification of this water mass during mid-summer 2015 to understand the supply of nutrients and carbon to the productive surface ocean, and their subsequent uptake and cycling. We show that nitrate, phosphate, silicic acid and inorganic carbon are progressively enriched in subsurface waters across the shelf, contrary to cross-shelf reductions in heat, salinity and density. We use nutrient stoichiometric and isotopic approaches to invoke remineralization of organic matter, including nitrification below the euphotic surface layer, and dissolution of biogenic silica in deeper waters and potentially shelf sediment porewaters, as the primary drivers of cross-shelf enrichments. Regenerated nitrate and phosphate account for a significant proportion of the total pools of these nutrients in the upper ocean, with implications for the seasonal carbon sink. Understanding nutrient and carbon dynamics in this region now will inform predictions of future biogeochemical changes in the context of substantial variability and ongoing changes in the physical environment. This article is part of the theme issue ‘The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change’. PMID:29760112

  11. Macronutrient and carbon supply, uptake and cycling across the Antarctic Peninsula shelf during summer.

    PubMed

    Henley, Sian F; Jones, Elizabeth M; Venables, Hugh J; Meredith, Michael P; Firing, Yvonne L; Dittrich, Ribanna; Heiser, Sabrina; Stefels, Jacqueline; Dougans, Julie

    2018-06-28

    The West Antarctic Peninsula shelf is a region of high seasonal primary production which supports a large and productive food web, where macronutrients and inorganic carbon are sourced primarily from intrusions of warm saline Circumpolar Deep Water. We examined the cross-shelf modification of this water mass during mid-summer 2015 to understand the supply of nutrients and carbon to the productive surface ocean, and their subsequent uptake and cycling. We show that nitrate, phosphate, silicic acid and inorganic carbon are progressively enriched in subsurface waters across the shelf, contrary to cross-shelf reductions in heat, salinity and density. We use nutrient stoichiometric and isotopic approaches to invoke remineralization of organic matter, including nitrification below the euphotic surface layer, and dissolution of biogenic silica in deeper waters and potentially shelf sediment porewaters, as the primary drivers of cross-shelf enrichments. Regenerated nitrate and phosphate account for a significant proportion of the total pools of these nutrients in the upper ocean, with implications for the seasonal carbon sink. Understanding nutrient and carbon dynamics in this region now will inform predictions of future biogeochemical changes in the context of substantial variability and ongoing changes in the physical environment.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'. © 2018 The Authors.

  12. Nutrient elements in large Chinese estuaries

    NASA Astrophysics Data System (ADS)

    Zhang, Jing

    1996-07-01

    Based on comprehensive observations since 1983, this study summarizes major features of nutrient elements (nitrogen, phosphorus and silicon) in large Chinese river/estuary systems. Elevated nutrient element levels were observed in Chinese rivers, when compared to large and less disturbed aquatic systems (e.g. the Amazon, Zaire and Orinoco). Data from this study are similar to those obtained from the polluted and/or eutrophic rivers in Europe and North America (e.g. the Rhóne and Loire). Nutrient elements may have either conservative or active distributions, or both, in the mixing zone, depending on the element and the estuary. For example, non-conservative behaviors were observed in the upper estuary, where nutrient elements may be remobilized due to the strong desorption and variations of the fresh water end-member, but conservative distributions were found afterwards in the lower estuary. Outside the riverine effluent plumes, nutrient elements may be depleted in surface waters relative to elevated bioproduction, whereas the regeneration with respect to decomposition of organic material and/or nitrification/denitrification offshore, may sustain high levels of nutrient elements in near-bottom waters. Laboratory experiment data generally compares well with field observations. The high fluxes and area] yields of nutrient elements from large Chinese rivers, indicate the extensive use of chemical fertilizers and domestic waste drainage over watersheds in China.

  13. Contribution of Nutrient Pollution to Water Scarcity in the Water-Rich Northeastern United States

    NASA Astrophysics Data System (ADS)

    Hale, R. L.; Lopez, C.; Vorosmarty, C. J.

    2015-12-01

    Most studies of water stress focus on water-scarce regions such as drylands. Yet, even water-rich regions can be water stressed due to local water withdrawals that exceed supply or due to water pollution that makes water unusable. The northeastern United States (NE) is a water-rich region relative to the rest of the country, as it concentrates about 50% of total renewable water of the country. Yes the NE features relatively high water withdrawals, ~50 km3/yr, for thermo-power generation, agriculture, and industry, as well as to support a human population of about 70 million. At the same time, rivers and streams in the NE suffer from nutrient pollution, largely from agricultural and urban land uses. We asked: to what extent is the NE water stressed, and how do water withdrawals and water quality each contribute to water scarcity across the NE? We used information on county-level water withdrawals and runoff to calculate a water scarcity index (WSI) for 200 hydrologic units across the NE from 1987 to 2002. We used data on surface water concentrations of nitrogen to calculate the additional water necessary to dilute surface water pollution to weak, moderate, and strong water quality standards derived from the literature. Only considering withdrawals, we found that approximately 10% of the NE was water stressed. Incorporating a moderate water quality standard, 25% of the NE was water stressed. We calculated a dilution burden by sectors of water users and found that public utilities faced 41% of the total dilution burden for the region, followed by irrigation users at 21%. Our results illustrate that even water rich regions can experience water stress and even scarcity, where withdrawals exceed surface water supplies. Water quality contributes to water stress and can change the spatial patterns of water stress across a region. The common approach to address scarcity has required the use of inter-basin water transfers, or in the case of water quality-caused scarcity, water treatment and nutrient management. Our analysis by sector highlights that the economic cost of water scarcity due to pollution in this region is largely borne by the public.

  14. Quantifying the Urban and Rural Nutrient Fluxes to Lake Erie Using a Paired Watershed Approach

    NASA Astrophysics Data System (ADS)

    Hopkins, M.; Beck, M.; Rossi, E.; Luh, N.; Allen-King, R. M.; Lowry, C.

    2016-12-01

    Excess nutrients have a detrimental impact on the water quality of Lake Erie, specifically nitrate and phosphate, which can lead to toxic algae blooms. Algae blooms have negatively impacted Lake Erie, which is the main source of drinking water for many coastal Great Lake communities. In 2014 the city of Toledo, Ohio was forced to shut down its water treatment plant due to these toxic algae blooms. The objective of this research is to quantify surface water nutrient fluxes to the eastern basin of Lake Erie using a paired watershed approach. Three different western New York watersheds that feed Lake Erie were chosen based on land use and areal extent: one small urban, one small rural, and one large rural. These paired watersheds were chosen to represent a range of sources of potential nutrient loading to the lake. Biweekly water samples were taken from the streams during the 2015-2016 winter to summer seasonal transition to quantify springtime snow melt effects on nutrient fluxes. These results were compared to the previous year samples, collected over the summer of 2015, which represented wetter conditions. Phosphorous levels were assessed using the ascorbic acid colorimetric assay, while nitrate was analyzed by anion-exchange chromatography. Stream gaging was used to obtain flow measurements and establish a rating curve, which was incorporated to quantify seasonal nutrient fluxes entering the lake. Patterns in the nutrient levels show higher level of nutrients in the rural watersheds with a decrease in concentration over the winter to spring transition. However, nutrient patterns in the urban stream show relatively constant patters of nutrient flux, which is independent of seasonal transition or stream discharge. A comparison of wet and dry seasons shows higher nutrient concentrations during summers with greater rainfall. By identifying the largest contributors of each nutrient, we can better allocate limited attenuation resources.

  15. Eutrophication processes in the Gulf of Eilat (Aqaba), Red-Sea, and their effects on the coral reef ecosystem

    NASA Astrophysics Data System (ADS)

    Erez, J.; Iluz, D.; Zakai, D.; Silverman, J.; Lazar, B.

    2003-04-01

    In the past few years (since 1998) an on going eutrophication process has been observed in the Northern Gulf of Eilat. Nutrient levels have increased both in the deep and in the coastal waters. In parallel, the phytoplankton productivity in the open sea has increased by a factor of 3 from 100 to 300 gCm-2y-1. The main source of these nutrients is caged fish farms moored near the North Beach, which over the past 5 years have released more then 300 tons N annually. Surface circulation transports part of the nutrient-algae rich surface water along the Israeli coast, where they have been detected during the stratified period near the coral reef in the Nature Reserve. The bulk of the nutrients released from the fish cages are taken up by phytoplankton and increase the productivity of the pelagic ecosystem. Phytoplankton sinking and zooplankton grazing transport these nutrients to the deep water, below the thermocline where we observed a 50% increase in nitrate and phosphate concentrations relative to the previous decade. During the winter, vertical mixing brings these nutrients to the photic zone where massive blooms of benthic algae are observed in the coastal zone. These blooms are often associated with high coral mortality and have reduced live coral cover by 50% in the winter of 2000. Calcification rates of the reef ecosystem have decreased by a factor of 3--4 compared to earlier measurements in 1989--1991 while the photosynthesis to respiration ratio have increased from 1.0 to values higher then 1.5. These observations demonstrate the detrimental effects of anthropogenic nutrient enrichment on coral reefs.

  16. Macronutrient supply, uptake and recycling in the coastal ocean of the west Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Henley, Sian F.; Tuerena, Robyn E.; Annett, Amber L.; Fallick, Anthony E.; Meredith, Michael P.; Venables, Hugh J.; Clarke, Andrew; Ganeshram, Raja S.

    2017-05-01

    Nutrient supply, uptake and cycling underpin high primary productivity over the continental shelf of the west Antarctic Peninsula (WAP). Here we use a suite of biogeochemical and isotopic data collected over five years in northern Marguerite Bay to examine these macronutrient dynamics and their controlling biological and physical processes in the WAP coastal ocean. We show pronounced nutrient drawdown over the summer months by primary production which drives a net seasonal nitrate uptake of 1.83 mol N m-2 yr-1, equivalent to net carbon uptake of 146 g C m-2 yr-1. High primary production fuelled primarily by deep-sourced macronutrients is diatom-dominated, but non-siliceous phytoplankton also play a role. Strong nutrient drawdown in the uppermost surface ocean has the potential to cause transient nitrogen limitation before nutrient resupply and/or regeneration. Interannual variability in nutrient utilisation corresponds to winter sea ice duration and the degree of upper ocean mixing, implying susceptibility to physical climate change. The nitrogen isotope composition of nitrate (δ15NNO3) shows a utilisation signal during the growing seasons with a community-level net isotope effect of 4.19 ± 0.29‰. We also observe significant deviation of our data from modelled and observed utilisation trends, and argue that this is driven primarily by water column nitrification and meltwater dilution of surface nitrate. This study is important because it provides a detailed description of the nutrient biogeochemistry underlying high primary productivity at the WAP, and shows that surface ocean nutrient inventories in the Antarctic sea ice zone can be affected by intense recycling in the water column, meltwater dilution and sea ice processes, in addition to utilisation in the upper ocean.

  17. Remote Sensing the Phytoplankton Seasonal Succession of the Red Sea

    PubMed Central

    Brewin, Robert J. W.; Stenchikov, Georgiy; Hoteit, Ibrahim

    2013-01-01

    The Red Sea holds one of the most diverse marine ecosystems, primarily due to coral reefs. However, knowledge on large-scale phytoplankton dynamics is limited. Analysis of a 10-year high resolution Chlorophyll-a (Chl-a) dataset, along with remotely-sensed sea surface temperature and wind, provided a detailed description of the spatiotemporal seasonal succession of phytoplankton biomass in the Red Sea. Based on MODIS (Moderate-resolution Imaging Spectroradiometer) data, four distinct Red Sea provinces and seasons are suggested, covering the major patterns of surface phytoplankton production. The Red Sea Chl-a depicts a distinct seasonality with maximum concentrations seen during the winter time (attributed to vertical mixing in the north and wind-induced horizontal intrusion of nutrient-rich water in the south), and minimum concentrations during the summer (associated with strong seasonal stratification). The initiation of the seasonal succession occurs in autumn and lasts until early spring. However, weekly Chl-a seasonal succession data revealed that during the month of June, consistent anti-cyclonic eddies transfer nutrients and/or Chl-a to the open waters of the central Red Sea. This phenomenon occurs during the stratified nutrient depleted season, and thus could provide an important source of nutrients to the open waters. Remotely-sensed synoptic observations highlight that Chl-a does not increase regularly from north to south as previously thought. The Northern part of the Central Red Sea province appears to be the most oligotrophic area (opposed to southern and northern domains). This is likely due to the absence of strong mixing, which is apparent at the northern end of the Red Sea, and low nutrient intrusion in comparison with the southern end. Although the Red Sea is considered an oligotrophic sea, sporadic blooms occur that reach mesotrophic levels. The water temperature and the prevailing winds control the nutrient concentrations within the euphotic zone and enable the horizontal transportation of nutrients. PMID:23755161

  18. Pleistocene atmospheric CO2 change linked to Southern Ocean nutrient utilization

    NASA Astrophysics Data System (ADS)

    Ziegler, M.; Diz, P.; Hall, I. R.; Zahn, R.

    2011-12-01

    Biological uptake of CO2 by the ocean and its subsequent storage in the abyss is intimately linked with the global carbon cycle and constitutes a significant climatic force1. The Southern Ocean is a particularly important region because its wind-driven upwelling regime brings CO2 laden abyssal waters to the surface that exchange CO2 with the atmosphere. The Subantarctic Zone (SAZ) is a CO2 sink and also drives global primary productivity as unutilized nutrients, advected with surface waters from the south, are exported via Subantarctic Mode Water (SAMW) as preformed nutrients to the low latitudes where they fuel the biological pump in upwelling areas. Recent model estimates suggest that up to 40 ppm of the total 100 ppm atmospheric pCO2 reduction during the last ice age were driven by increased nutrient utilization in the SAZ and associated feedbacks on the deep ocean alkalinity. Micro-nutrient fertilization by iron (Fe), contained in the airborne dust flux to the SAZ, is considered to be the prime factor that stimulated this elevated photosynthetic activity thus enhancing nutrient utilization. We present a millennial-scale record of the vertical stable carbon isotope gradient between subsurface and deep water (Δδ13C) in the SAZ spanning the past 350,000 years. The Δδ13C gradient, derived from planktonic and benthic foraminifera, reflects the efficiency of biological pump and is highly correlated (rxy = -0.67 with 95% confidence interval [0.63; 0.71], n=874) with the record of dust flux preserved in Antarctic ice cores6. This strongly suggests that nutrient utilization in the SAZ was dynamically coupled to dust-induced Fe fertilization across both glacial-interglacial and faster millennial timescales. In concert with ventilation changes of the deep Southern Ocean this drove ocean-atmosphere CO2 exchange and, ultimately, atmospheric pCO2 variability during the late Pleistocene.

  19. Remote sensing the phytoplankton seasonal succession of the Red Sea.

    PubMed

    Raitsos, Dionysios E; Pradhan, Yaswant; Brewin, Robert J W; Stenchikov, Georgiy; Hoteit, Ibrahim

    2013-01-01

    The Red Sea holds one of the most diverse marine ecosystems, primarily due to coral reefs. However, knowledge on large-scale phytoplankton dynamics is limited. Analysis of a 10-year high resolution Chlorophyll-a (Chl-a) dataset, along with remotely-sensed sea surface temperature and wind, provided a detailed description of the spatiotemporal seasonal succession of phytoplankton biomass in the Red Sea. Based on MODIS (Moderate-resolution Imaging Spectroradiometer) data, four distinct Red Sea provinces and seasons are suggested, covering the major patterns of surface phytoplankton production. The Red Sea Chl-a depicts a distinct seasonality with maximum concentrations seen during the winter time (attributed to vertical mixing in the north and wind-induced horizontal intrusion of nutrient-rich water in the south), and minimum concentrations during the summer (associated with strong seasonal stratification). The initiation of the seasonal succession occurs in autumn and lasts until early spring. However, weekly Chl-a seasonal succession data revealed that during the month of June, consistent anti-cyclonic eddies transfer nutrients and/or Chl-a to the open waters of the central Red Sea. This phenomenon occurs during the stratified nutrient depleted season, and thus could provide an important source of nutrients to the open waters. Remotely-sensed synoptic observations highlight that Chl-a does not increase regularly from north to south as previously thought. The Northern part of the Central Red Sea province appears to be the most oligotrophic area (opposed to southern and northern domains). This is likely due to the absence of strong mixing, which is apparent at the northern end of the Red Sea, and low nutrient intrusion in comparison with the southern end. Although the Red Sea is considered an oligotrophic sea, sporadic blooms occur that reach mesotrophic levels. The water temperature and the prevailing winds control the nutrient concentrations within the euphotic zone and enable the horizontal transportation of nutrients.

  20. Solid or hollow: which core cultivation method is the most effective at reducing nutrient loss with runoff from turf?

    USDA-ARS?s Scientific Manuscript database

    Excess nutrients in surfaces waters can result in undesirable consequences. Experiments were designed to quantify phosphorus and nitrogen transport with runoff from plots maintained as a golf course fairway to identify which cultural practice, solid tine or hollow tine core cultivation, will maximiz...

  1. A LANDSCAPE MODEL TO PREDICT TOTAL NITROGEN LEVELS IN SURFACE WATERS OF THE WILLAMETTE AND CENTRAL VALLEYS ECOREGION OF THE WESTERN UNITED STATES

    EPA Science Inventory

    Excess nutrients are a leading cause of impairment to streams, rivers, lakes and the coastal ecosystems. Excessive nutrient loadings result in increased primary productivity of plant and algal communities leading to eutrophication and other impacts to aquatic resources. Nitrogen ...

  2. Impact of macropores and gravel outcrops on phosphorus leaching at the plot scale in silt loam soils

    USDA-ARS?s Scientific Manuscript database

    In response to increased nutrient loads in surface waters, scientists and engineers need to identify critical nutrient source areas and transport mechanisms within a catchment to protect beneficial uses of aquatic systems in a cost effective manner. It was hypothesized that hydrologic heterogeneitie...

  3. Addressing agricultural phosphorus loss in artificially drained landscapes with 4R nutrient management practices

    USDA-ARS?s Scientific Manuscript database

    Agricultural phosphorus (P) loss has been linked to the eutrophication of surface water bodies throughout the world and minimizing offsite P transport continues to be a priority in many watersheds. In the U.S. Midwest and other tile-drained regions, there is a critical need to identify nutrient mana...

  4. Impacts of climate and land use changes on regional nutrient export in the South Saskatchewan River catchment

    NASA Astrophysics Data System (ADS)

    Morales-Marin, L. A.; Wheater, H. S.; Lindenschmidt, K. E.

    2016-12-01

    Climate and land use changes modify the physical functioning of river catchments and, in particular, influence the transport of nutrients from land to water. In large-scale catchments, where a variety of climates, topographies, soil types and land uses co-exist to form a highly heterogeneous environment, a more complex nutrient dynamic is imposed by climate and land use changes. This is the case of the South Saskatchewan River (SSR) that, along with the North Saskatchewan River, forms the largest river system in western Canada. In the past years changes in the land use and new industrial developments in the SSR area have heightened serious concerns about the future of water quality in the catchment and downstream waters. Agricultural activities have increased the supply of manure and fertilizer for cropping. Oil and gas exploitation has also increased the risk of surface water and groundwater contamination. The rapid population growth not only leads to increments in water consumption and wastewater, but in the construction of roads, railways and the expansion of new urban developments that impose hydraulic controls on the catchment hydrology and therefore the sediment and nutrient transport. Consequences of the actual anthropogenic changes have been notorious in reservoirs where algal blooms and signs of eutrophication have become common during certain times of the year. Although environmental agencies are constantly improving the mechanisms to reduce nutrient export into the river and ensure safe water quality standards, further research is needed in order to identify major nutrient sources and quantify nutrient export and also, to assess how nutrients are going to vary as a result of future climate and land use change scenarios. The SPAtially Referenced Regression On Watershed (SPARROW) model is therefore implemented to assess water quality regionally, in order to describe spatial and temporal patterns to identify those factors and processes that affect water quality. Climate and land uses change scenarios are incorporated into the model to explain how nutrient export will vary across the catchment in 30, 60 and 90 years from now. Uncertainty of nutrient predictions is also assesses in order to determine the degree of reliability of the estimates.

  5. Impacts of climate and land use changes on regional nutrient export in the South Saskatchewan River catchment

    NASA Astrophysics Data System (ADS)

    Morales-Marin, L. A.; Wheater, H. S.; Lindenschmidt, K. E.

    2015-12-01

    Climate and land use changes modify the physical functioning of river catchments and, in particular, influence the transport of nutrients from land to water. In large-scale catchments, where a variety of climates, topographies, soil types and land uses co-exist to form a highly heterogeneous environment, a more complex nutrient dynamic is imposed by climate and land use changes. This is the case of the South Saskatchewan River (SSR) that, along with the North Saskatchewan River, forms the largest river system in western Canada. In the past years changes in the land use and new industrial developments in the SSR area have heightened serious concerns about the future of water quality in the catchment and downstream waters. Agricultural activities have increased the supply of manure and fertilizer for cropping. Oil and gas exploitation has also increased the risk of surface water and groundwater contamination. The rapid population growth not only leads to increments in water consumption and wastewater, but in the construction of roads, railways and the expansion of new urban developments that impose hydraulic controls on the catchment hydrology and therefore the sediment and nutrient transport. Consequences of the actual anthropogenic changes have been notorious in reservoirs where algal blooms and signs of eutrophication have become common during certain times of the year. Although environmental agencies are constantly improving the mechanisms to reduce nutrient export into the river and ensure safe water quality standards, further research is needed in order to identify major nutrient sources and quantify nutrient export and also, to assess how nutrients are going to vary as a result of future climate and land use change scenarios. The SPAtially Referenced Regression On Watershed (SPARROW) model is therefore implemented to assess water quality regionally, in order to describe spatial and temporal patterns to identify those factors and processes that affect water quality. Climate and land uses change scenarios are incorporated into the model to explain how nutrient export will vary across the catchment in 30, 60 and 90 years from now. Uncertainty of nutrient predictions is also assesses in order to determine the degree of reliability of the estimates.

  6. Arctic water tracks retain phosphorus and transport ammonium

    NASA Astrophysics Data System (ADS)

    Harms, T.; Cook, C. L.; Wlostowski, A. N.; Godsey, S.; Gooseff, M. N.

    2017-12-01

    Hydrologic flowpaths propagate biogeochemical signals among adjacent ecosystems, but reactions may attenuate signals by retaining, removing, or transforming dissolved and suspended materials. The theory of nutrient spiraling describes these simultaneous reaction and transport processes, but its application has been limited to stream channels. We applied nutrient spiraling theory to water tracks, zero-order channels draining Arctic hillslopes that contain perennially saturated soils and flow at the surface either perennially or in response to precipitation. In the Arctic, experimental warming results in increased availability of nitrogen, the limiting nutrient for hillslope vegetation at the study site, which may be delivered to aquatic ecosystems by water tracks. Increased intensity of rain events, deeper snowpack, earlier snowmelt, and increasing thaw depth resulting from climate change might support increased transport of nutrients, but the reactive capacity of hillslope flowpaths, including sorption and uptake by plants and microbes, could counter transport to regulate solute flux. Characteristics of flowpaths might influence the opportunity for reaction, where slower flowpaths increase the contact time between solutes and soils or roots. We measured nitrogen and phosphorus uptake and transient storage of water tracks through the growing season and found that water tracks retain inorganic phosphorus, but transport ammonium. Nutrient uptake was unrelated to transient storage, suggesting high capacity for nutrient retention by shallow organic soils and vegetation. These observations indicate that increased availability of ammonium, the biogeochemical signal of warming tundra, is propagated by hillslope flowpaths, whereas water tracks attenuate delivery of phosphorus to aquatic ecosystems, where its availability typically limits production.

  7. Late summer distribution and stoichiometry of dissolved N, Si and P in the Southern Ocean near Heard and McDonald Islands on the Kerguelen Plateau

    NASA Astrophysics Data System (ADS)

    Chase, Z.; Bowie, A. R.; Blain, S.; Holmes, T.; Rayner, M.; Sherrin, K.; Tonnard, M.; Trull, T. W.

    2016-12-01

    The Kerguelen plateau in the Southern Indian Ocean is a naturally iron-fertilised region surrounded by iron-limited, High Nutrient Low Chlorophyll waters. The Heard Earth Ocean Biosphere Interaction (HEOBI) project sampled waters south of the Polar Front in the vicinity of Heard and McDonald Islands (HIMI) in January and February 2016. Fe fertilised waters over the plateau generally exhibited high phytoplankton biomass and photosynthetic competency (as in previous studies and satellite observations), but interestingly, phytoplankton biomass was low near HIMI, though photosynthetic competency was high. In plateau waters away from HIMI, silicic acid (Si) concentrations were strongly depleted in surface waters, averaging 3 μM, while nitrate concentrations were close to 25 μM. Relative to the remnant winter water, this represents an average seasonal drawdown of 32 μM Si and only 8 μM nitrate. Though absolute drawdown was lower at an HNLC reference site south of Heard Island, the drawdown ratio was similarly high (ΔSi: ΔN 4-5). The average N:P drawdown ratio was 12, typical for a diatom-dominated system (Weber and Deutsch 2010). N:P drawdown was positively correlated with Si drawdown, perhaps indicative of an impact of Fe on both seasonal Si drawdown and diatom N:P uptake (Price 2005). In the well-mixed, shallow waters (< 200 m) around HIMI nutrient concentrations were elevated, with no surface nutrient depletion. Nutrient concentrations near the islands were generally consistent with input from vertical mixing of the regional nutrient profile. However, N* values (N* = N - P*16) near the islands were anomalously low (-5 to -7) relative to the regional nutrient profile (N* 3). Subsurface minima in N* (as low as -6) were observed just below the pycnocline at several plateau stations. If negative N* values here are indicative of intense remineralisation of P-rich organic matter, and possible preferential remineralisation of P (Blain et al. 2015), these observations suggest the existence of strong production and remineralisation of organic matter around Heard and McDonald Islands, despite the apparent lack of nutrient drawdown or biomass accumulation. Mixed layers deeper than the euphotic zone are one mechanism that retains these remineralization signatures and near the islands, tidal mixing also contributes.

  8. Water Relations, Gas Exchange, and Nutrient Response to a Long Term Constant Water Deficit

    NASA Technical Reports Server (NTRS)

    Berry, Wade L.; Goldstein, Guillermo; Dreschel, Thomas W.; Wheeler, Raymond M.; Sager, John C.; Knott, William M.

    1992-01-01

    Wheat plants (Triticum aestivum) were grown for 43 days in a micro-porous tube nutrient delivery system. Roots were unable to penetrate the microporous tube, but grew on the surface and maintained capillary contact with the nutrient solution on the inside of the tube through the 5-microns pores of the porous tube. Water potential in the system was controlled at -0.4, -0.8, and -3.0 kPa by adjusting the applied pressure (hydrostatic head) to the nutrient solution flowing through the microporous tubes. A relatively small decrease in applied water potential from -0.4 to -3.0 kPa resulted in a 34% reduction of shoot growth but only a moderate reduction in the mid-day leaf water potential from - 1.3 to - 1.7 MPa. Carbon dioxide assimilation decreased and water use efficiency increased with the more negative applied water Potentials, while intercellular C02 concentration remained constant. The physiological responses observed in this study in response to small constant differences in applied water potentials were much greater than expected from either the applied water potential or the observed plant water potential. Even though the micro-porous tube may not represent natural conditions and could possibly introduce morphological and physiological artifacts , it enables a high degree of control of water potential that facilitates the investigation of many aspects of water relations not practical with other experimental systems.

  9. Linking land use changes to surface water quality variability in Lake Victoria: some insights from remote sensing

    NASA Astrophysics Data System (ADS)

    Mugo, R. M.; Limaye, A. S.; Nyaga, J. W.; Farah, H.; Wahome, A.; Flores, A.

    2016-12-01

    The water quality of inland lakes is largely influenced by land use and land cover changes within the lake's catchment. In Africa, some of the major land use changes are driven by a number of factors, which include urbanization, intensification of agricultural practices, unsustainable farm management practices, deforestation, land fragmentation and degradation. Often, the impacts of these factors are observable on changes in the land cover, and eventually in the hydrological systems. When the natural vegetation cover is reduced or changed, the surface water flow patterns, water and nutrient retention capacities are also changed. This can lead to high nutrient inputs into lakes, leading to eutrophication, siltation and infestation of floating aquatic vegetation. To assess the relationship between land use and land cover changes in part of the Lake Victoria Basin, a series of land cover maps were derived from Landsat imagery. Changes in land cover were identified through change maps and statistics. Further, the surface water chlorophyll-a concentration and turbidity were derived from MODIS-Aqua data for Lake Victoria. Chlrophyll-a and turbidity are good proxy indicators of nutrient inputs and siltation respectively. The trends in chlorophyll-a and turbidity concentrations were analyzed and compared to the land cover changes over time. Certain land cover changes related to agriculture and urban development were clearly identifiable. While these changes might not be solely responsible for variability in chlrophyll-a and turbidity concentrations in the lake, they are potentially contributing factors to this problem. This work illustrates the importance of addressing watershed degradation while seeking to solve water quality related problems.

  10. Nutrient characteristics of the water masses and their seasonal variability in the eastern equatorial Indian Ocean.

    PubMed

    Sardessai, S; Shetye, Suhas; Maya, M V; Mangala, K R; Prasanna Kumar, S

    2010-01-01

    Nutrient characteristics of four water masses in the light of their thermohaline properties are examined in the eastern Equatorial Indian Ocean during winter, spring and summer monsoon. The presence of low salinity water mass with "Surface enrichments" of inorganic nutrients was observed relative to 20 m in the mixed layer. Lowest oxygen levels of 19 microM at 3 degrees N in the euphotic zone indicate mixing of low oxygen high salinity Arabian Sea waters with the equatorial Indian Ocean. The seasonal variability of nutrients was regulated by seasonally varying physical processes like thermocline elevation, meridional and zonal transport, the equatorial undercurrent and biological processes of uptake and remineralization. Circulation of Arabian Sea high salinity waters with nitrate deficit could also be seen from low N/P ratio with a minimum of 8.9 in spring and a maximum of 13.6 in winter. This large deviation from Redfield N/P ratio indicates the presence of denitrified high salinity waters with a seasonal nitrate deficit ranging from -4.85 to 1.52 in the Eastern Equatorial Indian Ocean. 2010 Elsevier Ltd. All rights reserved.

  11. Transport of lincomycin to surface and ground water from manure-amended cropland.

    PubMed

    Kuchta, Sandra L; Cessna, Allan J; Elliott, Jane A; Peru, Kerry M; Headley, John V

    2009-01-01

    Livestock manure containing antimicrobials becomes a possible source of these compounds to surface and ground waters when applied to cropland as a nutrient source. The potential for transport of the veterinary antimicrobial lincomycin to surface waters via surface runoff and to leach to ground water was assessed by monitoring manure-amended soil, simulated rainfall runoff, snowmelt runoff, and ground water over a 2-yr period in Saskatchewan, Canada, after fall application of liquid swine manure to cropland. Liquid chromatography tandem mass spectrometry was used to quantify lincomycin in all matrix extracts. Initial concentrations in soil (46.3-117 mug kg(-1)) were not significantly different (p > 0.05) for manure application rates ranging from 60,000 to 95,000 L ha(-1) and had decreased to nondetectable levels by mid-summer the following year. After fall manure application, lincomycin was present in all simulated rainfall runoff (0.07-2.7 mug L(-1)) and all snowmelt runoff (0.038-3.2 mug L(-1)) samples. Concentrations in snowmelt runoff were not significantly different from those in simulated rainfall runoff the previous fall. On average, lincomycin concentrations in ephemeral wetlands dissipated by 50% after 31 d. Concentrations of lincomycin in ground water were generally <0.005 mug L(-1). This study demonstrates that the management practice of using livestock manure from confined animal feeding operations as a plant nutrient source on cropland may result in antimicrobial transport to surface and ground waters.

  12. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.

    1994-01-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet CELSS tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  13. Grazing: the whole picture

    USDA-ARS?s Scientific Manuscript database

    Environmental concerns for our farms include nutrient leaching to ground water, runoff in surface water, gaseous emissions, and the carbon footprint of our production systems. Recent reports have labeled grazing-based dairies as less environmentally sustainable compared to year around confinement sy...

  14. A hydroponic system for microgravity plant experiments

    NASA Technical Reports Server (NTRS)

    Wright, B. D.; Bausch, W. C.; Knott, W. M.

    1988-01-01

    The construction of a permanently manned space station will provide the opportunity to grow plants for weeks or months in orbit for experiments or food production. With this opportunity comes the need for a method to provide plants with a continuous supply of water and nutrients in microgravity. The Capillary Effect Root Environment System (CERES) uses capillary forces to maintain control of circulating plant nutrient solution in the weightless environment of an orbiting spacecraft. The nutrient solution is maintained at a pressure slightly less than the ambient air pressure while it flows on one side of a porous membrane. The root, on the other side of the membrane, is surrounded by a thin film of nutrient solution where it contacts the moist surface of the membrane. The root is provided with water, nutrients and air simultaneously. Air bubbles in the nutrient solution are removed using a hydrophobic/hydrophilic membrane system. A model scaled to the size necessary for flight hardware to test CERES in the space shuttle was constructed.

  15. Sagebrush carrying out hydraulic lift enhances surface soil nitrogen cycling and nitrogen uptake into inflorescences.

    PubMed

    Cardon, Zoe G; Stark, John M; Herron, Patrick M; Rasmussen, Jed A

    2013-11-19

    Plant roots serve as conduits for water flow not only from soil to leaves but also from wetter to drier soil. This hydraulic redistribution through root systems occurs in soils worldwide and can enhance stomatal opening, transpiration, and plant carbon gain. For decades, upward hydraulic lift (HL) of deep water through roots into dry, litter-rich, surface soil also has been hypothesized to enhance nutrient availability to plants by stimulating microbially controlled nutrient cycling. This link has not been demonstrated in the field. Working in sagebrush-steppe, where water and nitrogen limit plant growth and reproduction and where HL occurs naturally during summer drought, we slightly augmented deep soil water availability to 14 HL+ treatment plants throughout the summer growing season. The HL+ sagebrush lifted greater amounts of water than control plants and had slightly less negative predawn and midday leaf water potentials. Soil respiration was also augmented under HL+ plants. At summer's end, application of a gas-based (15)N isotopic labeling technique revealed increased rates of nitrogen cycling in surface soil layers around HL+ plants and increased uptake of nitrogen into HL+ plants' inflorescences as sagebrush set seed. These treatment effects persisted even though unexpected monsoon rainstorms arrived during assays and increased surface soil moisture around all plants. Simulation models from ecosystem to global scales have just begun to include effects of hydraulic redistribution on water and surface energy fluxes. Results from this field study indicate that plants carrying out HL can also substantially enhance decomposition and nitrogen cycling in surface soils.

  16. The effects of phosphorus additions on the sedimentation of contaminants in a uranium mine pit-lake.

    PubMed

    Dessouki, Tarik C E; Hudson, Jeff J; Neal, Brian R; Bogard, Matthew J

    2005-08-01

    We investigated the usefulness of phytoplankton for the removal of surface water contaminants. Nine large mesocosms (92.2m(3)) were suspended in the flooded DJX uranium pit at Cluff Lake (Saskatchewan, Canada), and filled with highly contaminated mine water. Each mesocosm was fertilized with a different amount of phosphorus throughout the 35 day experiment to stimulate phytoplankton growth, and to create a range in phosphorus load (g) to examine how contaminants may be affected by different nutrient regimes. Algal growth was rapid in fertilized mesocosms (as demonstrated by chlorophyll a profiles). As phosphorus loads increased there were significant declines (p<0.05) in the surface water concentrations of As, Co, Cu, Mn, Ni, and Zn. This decline was near significant for uranium (p=0.065). The surface water concentrations of Ra-226, Mo, and Se showed no relationship to phosphorus load. Contaminant concentrations in sediment traps suspended at the bottom of each mesocosm generally showed the opposite trend to that observed in the surface water, with most contaminants (As, Co, Cu, Mn, Ni, Ra-226, U, and Zn) exhibiting a significant positive relationship (p<0.05) with phosphorus load. Selenium and Mo did not respond to nutrient treatments. Our results suggest that phytoremediation has the potential to lower many surface water contaminants through the sedimentation of phytoplankton. Based on our results, we estimate that the Saskatchewan Surface Water Quality Objectives (SSWQO) for DJX pit would be met in approximately 45 weeks for Co, 65 weeks for Ni, 15 weeks for U, and 5 weeks for Zn.

  17. Seasonal variability of chlorophyll-a and oceanographic conditions in Sabah waters in relation to Asian monsoon--a remote sensing study.

    PubMed

    Abdul-Hadi, Alaa; Mansor, Shattri; Pradhan, Biswajeet; Tan, C K

    2013-05-01

    A study was conducted to investigate the influence of Asian monsoon on chlorophyll-a (Chl-a) content in Sabah waters and to identify the related oceanographic conditions that caused phytoplankton blooms at the eastern and western coasts of Sabah, Malaysia. A series of remote sensing measurements including surface Chl-a, sea surface temperature, sea surface height anomaly, wind speed, wind stress curl, and Ekman pumping were analyzed to study the oceanographic conditions that lead to large-scale nutrients enrichment in the surface layer. The results showed that the Chl-a content increased at the northwest coast from December to April due to strong northeasterly wind and coastal upwelling in Kota Kinabalu water. The southwest coast (Labuan water) maintained high concentrations throughout the year due to the effect of Padas River discharge during the rainy season and the changing direction of Baram River plume during the northeast monsoon (NEM). However, with the continuous supply of nutrients from the upwelling area, the high Chl-a batches were maintained at the offshore water off Labuan for a longer time during NEM. On the other side, the northeast coast illustrated a high Chl-a in Sandakan water during NEM, whereas the northern tip off Kudat did not show a pronounced change throughout the year. The southeast coast (Tawau water) was highly influenced by the direction of the surface water transport between the Sulu and Sulawesi Seas and the prevailing surface currents. The study demonstrates the presence of seasonal phytoplankton blooms in Sabah waters which will aid in forecasting the possible biological response and could further assist in marine resource managements.

  18. Spiraling in Urban Streams: A Novel Approach to Link Geomorphic Structure with Ecosystem Function

    NASA Astrophysics Data System (ADS)

    Bean, R. A.; Lafrenz, M. D.

    2011-12-01

    The goal of this study is to quantify the relationship between channel complexity and nutrient spiraling along several reaches of an urbanized watershed in Portland, Oregon. Much research points to the effect urbanization has on watershed hydrology and nutrient loading at the watershed scale for various sized catchments. However the flux of nutrients over short reaches within a stream channel has been less studied because of the effort and costs associated with fieldwork and subsequent laboratory analysis of both surface and hyporheic water samples. In this study we explore a novel approach at capturing connectivity though nutrient spiraling along several short reaches (less than 100-meter) within the highly urbanized Fanno Creek watershed (4400 hectares). We measure channel complexity-sinuosity, bed material texture, organic matter-and use these measurements to determine spatial autocorrelation of 50 reaches in Fanno Creek, a small, urban watershed in Portland, Oregon. Using ion-selective electrodes, the fluxes of nitrate and ammonia are measured within each reach, which when combined with channel geometry and velocity measurements allow us to transform the values of nitrate and ammonia fluxes into spiraling metrics. Along each sampled reach, we collected three surface water samples to characterize nutrient amounts at the upstream, midstream, and downstream position of the reach. Two additional water samples were taken from the left and right bank hyporheic zones at a depth just below the armor layer of the channel bed using mini-piezometers and a hand-pumped vacuum device, which we constructed for this purpose. Adjacent to the hyporheic samples soil cores were collected and analyzed for organic matter composition, bulk density, and texture. We hypothesize that spiral metrics will respond significantly to the measured channel complexity values and will be a more robust predictor of nutrient flux than land cover characteristics in the area draining to each reach. Initial results show significant differences in hyporheic and surface water concentrations within the same reach indicating that sources and sinks of mineral nitrogen can be found within stream channels over very short distances. The implication of this study is that channel complexity is an important driver of nutrient flux in a watershed, and that this technique can be applied in future studies to better characterize the ecosystem services of stream channels over short reaches to entire catchments.

  19. Factors Affecting Nitrate Delivery to Streams from Shallow Ground Water in the North Carolina Coastal Plain

    USGS Publications Warehouse

    Harden, Stephen L.; Spruill, Timothy B.

    2008-01-01

    An analysis of data collected at five flow-path study sites between 1997 and 2006 was performed to identify the factors needed to formulate a comprehensive program, with a focus on nitrogen, for protecting ground water and surface water in the North Carolina Coastal Plain. Water-quality protection in the Coastal Plain requires the identification of factors that affect the transport of nutrients from recharge areas to streams through the shallow ground-water system. Some basins process or retain nitrogen more readily than others, and the factors that affect nitrogen processing and retention were the focus of this investigation to improve nutrient management in Coastal Plain streams and to reduce nutrient loads to coastal waters. Nitrate reduction in ground water was observed at all five flow-path study sites in the North Carolina Coastal Plain, although the extent of reduction at each site was influenced by various environmental, hydrogeologic, and geochemical factors. Denitrification was the most common factor responsible for decreases in nitrate along the ground-water flow paths. Specific factors, some of which affect denitrification rates, that appeared to influence ground-water nitrate concentrations along the flow paths or in the streams include soil drainage, presence or absence of riparian buffers, evapotranspiration, fertilizer use, ground-water recharge rates and residence times, aquifer properties, subsurface tile drainage, sources and amounts of organic matter, and hyporheic processes. The study data indicate that the nitrate-reducing capacity of the buffer zone combined with that of the hyporheic zone can substantially lower the amount of ground-water nitrate discharged to streams in agricultural settings of the North Carolina Coastal Plain. At the watershed scale, the effects of ground-water discharge on surface-water quality appear to be greatly influenced by streamflow conditions and the presence of extensive riparian vegetation. Streamflow statistics that reflect base flow and the general hydrologic dynamics of a stream are important in understanding nutrient transport from a watershed and may be useful indicators of watersheds that are likely to have higher yields of nutrients and water. Combining streamflow statistics with information on such factors as land use, soil drainage, extent of riparian vegetation, geochemical conditions, and subsurface tile drainage in the Coastal Plain can be useful in identifying watersheds that are most likely to export excessive nitrogen due to nonpoint-source loadings and watersheds that are effective in processing nitrogen.

  20. Blade motion and nutrient flux to the kelp, Eisenia arborea.

    PubMed

    Denny, Mark; Roberson, Loretta

    2002-08-01

    Marine algae rely on currents and waves to replenish the nutrients required for photosynthesis. The interaction of algal blades with flow often involves dynamic reorientations of the blade surface (pitching and flapping) that may in turn affect nutrient flux. As a first step toward understanding the consequences of blade motion, we explore the effect of oscillatory pitching on the flux to a flat plate and to two morphologies of the kelp Eisenia arborea. In slow flow (equivalent to a water velocity of 2.7 cm s(-1)), pitching increases the time-averaged flux to both kelp morphologies, but not to the plate. In fast flow (equivalent to 20 cm s(-1) in water), pitching has negligible effect on flux regardless of shape. For many aspects of flux, the flat plate is a reliable model for the flow-protected algal blade, but predictions made from the plate would substantially underestimate the flux to the flow-exposed blade. These measurements highlight the complexities of flow-related nutrient transport and the need to understand better the dynamic interactions among nutrient flux, blade motion, blade morphology, and water flow.

  1. Estimating the sources and transport of nutrients in the Waikato River Basin, New Zealand

    USGS Publications Warehouse

    Alexander, Richard B.; Elliott, Alexander H.; Shankar, Ude; McBride, Graham B.

    2002-01-01

    We calibrated SPARROW (Spatially Referenced Regression on Watershed Attributes) surface water‐quality models using measurements of total nitrogen and total phosphorus from 37 sites in the 13,900‐km2 Waikato River Basin, the largest watershed on the North Island of New Zealand. This first application of SPARROW outside of the United States included watersheds representative of a wide range of natural and cultural conditions and water‐resources data that were well suited for calibrating and validating the models. We applied the spatially distributed model to a drainage network of nearly 5000 stream reaches and 75 lakes and reservoirs to empirically estimate the rates of nutrient delivery (and their levels of uncertainty) from point and diffuse sources to streams, lakes, and watershed outlets. The resulting models displayed relatively small errors; predictions of stream yield (kg ha−1 yr−1) were typically within 30% or less of the observed values at the monitoring sites. There was strong evidence of the accuracy of the model estimates of nutrient sources and the natural rates of nutrient attenuation in surface waters. Estimated loss rates for streams, lakes, and reservoirs agreed closely with experimental measurements and empirical models from New Zealand, North America, and Europe as well as with previous U.S. SPARROW models. The results indicate that the SPARROW modeling technique provides a reliable method for relating experimental data and observations from small catchments to the transport of nutrients in the surface waters of large river basins.

  2. Design and construction of phosphorus removal structures for improving water quality

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) input to surface waters is considered the most limiting nutrient with regard to eutrophication. The result has been a negative impact on recreation, ecosystem diversity, drinking water treatment, and the associated economics of each. Depending on region, over 50% of P inputs to surfa...

  3. The Viking gas exchange experiment results from Chryse and Utopia surface samples

    NASA Technical Reports Server (NTRS)

    Oyama, V. I.; Berdahl, B. J.

    1977-01-01

    Immediate gas changes occurred when untreated Martian surface samples were humidified and/or wet by an aqueous nutrient medium in the Viking lander gas exchange experiment. The evolutions of N2, CO2, and Ar are mainly associated with soil surface desorption caused by water vapor, while O2 evolution is primarily associated with decomposition of superoxides inferred to be present on Mars. On recharges with fresh nutrient and test gas, only CO2 was given off, and its rate of evolution decreased with each recharge. This CO2 evolution is thought to come from the oxidation of organics present in the nutrient by gamma Fe2O3 in the surface samples. Atmospheric analyses were also performed at both sites. The mean atmospheric composition from four analyses is N2, 2.3%; O2, not greater than 0.15%; Ar, 1.5% and CO2, 96.2%.

  4. The Soil-Plant-Atmosphere System - Past and Present.

    NASA Astrophysics Data System (ADS)

    Berry, J. A.; Baker, I. T.; Randall, D. A.; Sellers, P. J.

    2012-12-01

    Plants with stomata, roots and a vascular system first appeared on earth about 415 million years ago. This evolutionary innovation helped to set in motion non-linear feedback mechanisms that led to an acceleration of the hydrologic cycle over the continents and an expansion of the climate zones favorable for plant (and animal) life. Skeletal soils that developed long before plants came onto the land would have held water and nutrients in their pore space, yet these resources would have been largely unavailable to primitive, surface-dwelling non-vascular plants due to physical limitations on water transport once the surface layer of soil dries. Plants with roots and a vascular system that could span this dry surface layer could gain increased and prolonged access to the water and nutrients stored in the soil for photosynthesis. Maintenance of the hydraulic connections permitting water to be drawn through the vascular system from deep in the soil to the sites of evaporation in the leaves required a cuticle and physiological regulation of stomata. These anatomical and physiological innovations changed properties of the terrestrial surface (albedo, roughness, a vascular system and control of surface conductance) and set in motion complex interactions of the soil - plant - atmosphere system. We will use coupled physiological and meteorological models to examine some of these interactions.

  5. Effects of streambank fencing of pasture land on benthic macroinvertebrates and the quality of surface water and shallow ground water in the Big Spring Run basin of Mill Creek watershed, Lancaster County, Pennsylvania, 1993-2001

    USGS Publications Warehouse

    Galeone, Daniel G.; Brightbill, Robin A.; Low, Dennis J.; O'Brien, David L.

    2006-01-01

    Streambank fencing along stream channels in pastured areas and the exclusion of pasture animals from the channel are best-management practices designed to reduce nutrient and suspended-sediment yields from drainage basins. Establishment of vegetation in the fenced area helps to stabilize streambanks and provides better habitat for wildlife in and near the stream. This study documented the effectiveness of a 5- to 12-foot-wide buffer strip on the quality of surface water and near-stream ground water in a 1.42-mi2 treatment basin in Lancaster County, Pa. Two miles of stream were fenced in the basin in 1997 following a 3- to 4-year pre-treatment period of monitoring surface- and ground-water variables in the treatment and control basins. Changes in surface- and ground-water quality were monitored for about 4 years after fence installation. To alleviate problems in result interpretation associated with climatic and hydrologic variation over the study period, a nested experimental design including paired-basin and upstream/downstream components was used to study the effects of fencing on surface-water quality and benthic-macroinvertebrate communities. Five surface-water sites, one at the outlet of a 1.77-mi2 control basin (C-1), two sites in the treatment basin (T-3 and T-4) that were above any fence installation, and two sites (one at an upstream tributary site (T-2) and one at the outlet (T-1)) that were treated, were sampled intensively. Low-flow samples were collected at each site (approximately 25-30 per year at each site), and stormflow was sampled with automatic samplers at all sites except T-3. For each site where stormflow was sampled, from 35 to 60 percent of the storm events were sampled over the entire study period. Surface-water sites were sampled for analyses of nutrients, suspended sediment, and fecal streptococcus (only low-flow samples), with field parameters (only low-flow samples) measured during sample collection. Benthic-macroinvertebrate samples were collected in May and September of each year; samples were collected at the outlet of the control and treatment basins and at three upstream sites, two in the treatment basin and one in the control basin. For each benthic-macroinvertebrate sample: Stream riffles and pools were sampled using the kick-net method; habitat was characterized using Rapid Bioassessment Protocols (RBP); water-quality samples were collected for nutrients and suspended sediment; stream field parameters were measured; and multiple biological metrics were calculated. The experimental design to study the effects of fencing on the quality of near-stream shallow ground water involved a nested well approach. Two well nests were in the treatment basin, one each at surface-water sites T-1 and T-2. Within each well nest, the data from one deep well and three shallow wells (no greater than 12 ft deep) were used for regional characterization of ground-water quality. At each site, two of the shallow wells were inside the eventual fence (treated wells); the other shallow well was outside the eventual fence (control well). The wells were sampled monthly, primarily during periods with little to no recharge, for laboratory analysis of nutrients and fecal streptococcus; field parameters of water quality also were measured.

  6. A mathematical model for the transfer of soil solutes to runoff under water scouring.

    PubMed

    Yang, Ting; Wang, Quanjiu; Wu, Laosheng; Zhang, Pengyu; Zhao, Guangxu; Liu, Yanli

    2016-11-01

    The transfer of nutrients from soil to runoff often causes unexpected pollution in water bodies. In this study, a mathematical model that relates to the detachment of soil particles by water flow and the degree of mixing between overland flow and soil nutrients was proposed. The model assumes that the mixing depth is an integral of average water flow depth, and it was evaluated by experiments with three water inflow rates to bare soil surfaces and to surfaces with eight treatments of different stone coverages. The model predicted outflow rates were compared with the experimentally observed data to test the accuracy of the infiltration parameters obtained by curve fitting the models to the data. Further analysis showed that the comprehensive mixing coefficient (ke) was linearly correlated with Reynolds' number Re (R(2)>0.9), and this relationship was verified by comparing the simulated potassium concentration and cumulative mass with observed data, respectively. The best performance with the bias error analysis (Nash Sutcliffe coefficient of efficiency (NS), relative error (RE) and the coefficient of determination (R(2))) showed that the predicted data by the proposed model was in good agreement with the measured data. Thus the model can be used to guide soil-water and fertilization management to minimize nutrient runoff from cropland. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Policy Guidance From a Multi-scale Suite of Natural Field and Digital Laboratories of Change: Hydrological Catchment Studies of Nutrient and Pollutant Source Releases, Waterborne Transport-Transformations and Mass Flows in Water Ecosystems

    NASA Astrophysics Data System (ADS)

    Destouni, G.

    2008-12-01

    Continental fresh water transports and loads excess nutrients and pollutants from various land surface sources, through the landscape, into downstream inland and coastal water environments. Our ability to understand, predict and control the eutrophication and the pollution pressures on inland, coastal and marine water ecosystems relies on our ability to quantify these mass flows. This paper synthesizes a series of hydro- biogeochemical studies of nutrient and pollutant sources, transport-transformations and mass flows in catchment areas across a range of scales, from continental, through regional and national, to individual drainage basin scales. Main findings on continental scales include correlations between country/catchment area, population and GDP and associated pollutant and nutrient loading, which differ significantly between world regions with different development levels. On regional scales, essential systematic near-coastal gaps are identified in the national monitoring of nutrient and pollutant loads from land to the sea. Combination of the unmonitored near-coastal area characteristics with the relevant regional nutrient and pollutant load correlations with these characteristics shows that the unmonitored nutrient and pollutant mass loads to the sea may often be as large as, or greater than the monitored river loads. Process studies on individual basin- scales show long-term nutrient and pollutant memories in the soil-groundwater systems of the basins, which may continue to uphold large mass loading to inland and coastal waters long time after mitigation of the sources. Linked hydro-biogeochemical-economic model studies finally demonstrate significant comparative advantages of policies that demand explicit quantitative account of the uncertainties implied by these monitoring gaps and long-term nutrient-pollution memories and time lags, and other knowledge, data and model limitations, instead of the now common neglect or subjective implicit handling of such uncertainties in strategies and practices for combating water pollution and eutrophication.

  8. Planktic foraminiferal production stimulated by chlorophyll redistribution and entrainment of nutrients

    NASA Astrophysics Data System (ADS)

    Schiebel, Ralf; Waniek, Joanna; Bork, Matthias; Hemleben, Christoph

    2001-03-01

    During September and October 1996 planktic foraminifers and pteropods were sampled from the upper 2500 m of the water column in the BIOTRANS area (47°N, 20°W), eastern North Atlantic, as part of the JGOFS program. Hydrography, chlorophyll fluorescence, and nutrient content were recorded at high spatial and temporal resolution providing detailed information about the transition time between summer and fall. At the beginning of the cruise a shallow pycnocline was present and oligotrophic conditions prevailed. Over the course of the cruise, the mixed layer depth increased and surface water temperature decreased by 1.5°C. Both chlorophyll- a dispersed in the upper 50 m by vertical mixing and chlorophyll- a concentrations at the sea surface increased. The nitracline shoaled and nutrient enriched waters were entrained into the mixed layer. Planktic foraminifers and pteropods closely reflected the changes in the hydrography by increased growth rates and changes in species composition. Three main groups of planktic foraminiferal species were recognized: (1) a temperate and low-productivity group dominated by Neogloboquadrina incompta characterized the shallow mixed layer depths. (2) A temperate and high-productivity group dominated by Globigerina bulloides characterized the period with wind-induced dispersal of chlorophyll- a and entrainment of nutrient-enriched waters. (3) A warm water group containing Globigerinoides sacculifer, Orbulina universa, Globigerinoides ruber (white), and Globigerinella siphonifera was most common during the first days of sampling. Synchronous with the hydrographic change from summer to fall, planktic foraminiferal and pteropod growth was stimulated by redistribution of chlorophyll- a and entrainment of nutrient-enriched waters into the mixed layer. In addition, the seasonal change in the eastern North Atlantic resulted in a transition of the epipelagic faunal composition and an increased calcareous particle flux, which could be used to trace seasonality in fossil assemblages and allow for better paleoceanographic interpretation of the boreal Atlantic.

  9. Evidence for self-organization in determining spatial patterns of stream nutrients, despite primacy of the geomorphic template

    PubMed Central

    Dong, Xiaoli; Grimm, Nancy B.

    2017-01-01

    Nutrients in freshwater ecosystems are highly variable in space and time. Nevertheless, the variety of processes contributing to nutrient patchiness, and the wide range of spatial and temporal scales at which these processes operate, obfuscate how this spatial heterogeneity is generated. Here, we describe the spatial structure of stream nutrient concentration, quantify the relative importance of the physical template and biological processes, and detect and evaluate the role of self-organization in driving such patterns. We examined nutrient spatial patterns in Sycamore Creek, an intermittent desert stream in Arizona that experienced an ecosystem regime shift [from a gravel/algae-dominated to a vascular plant-dominated (hereafter, “wetland”) system] in 2000 when cattle grazing ceased. We conducted high-resolution nutrient surveys in surface water along a 10-km stream reach over four visits spanning 18 y (1995–2013) that represent different successional stages and prewetland stage vs. postwetland state. As expected, groundwater upwelling had a major influence on nutrient spatial patterns. However, self-organization realized by the mechanism of spatial feedbacks also was significant and intensified over ecosystem succession, as a resource (nitrogen) became increasingly limiting. By late succession, the effects of internal spatial feedbacks and groundwater upwelling were approximately equal in magnitude. Wetland establishment influenced nutrient spatial patterns only indirectly, by modifying the extent of surface water/groundwater exchange. This study illustrates that multiple mechanisms interact in a dynamic way to create spatial heterogeneity in riverine ecosystems, and provides a means to detect spatial self-organization against physical template heterogeneity as a dominant driver of spatial patterns. PMID:28559326

  10. Evidence for self-organization in determining spatial patterns of stream nutrients, despite primacy of the geomorphic template.

    PubMed

    Dong, Xiaoli; Ruhí, Albert; Grimm, Nancy B

    2017-06-13

    Nutrients in freshwater ecosystems are highly variable in space and time. Nevertheless, the variety of processes contributing to nutrient patchiness, and the wide range of spatial and temporal scales at which these processes operate, obfuscate how this spatial heterogeneity is generated. Here, we describe the spatial structure of stream nutrient concentration, quantify the relative importance of the physical template and biological processes, and detect and evaluate the role of self-organization in driving such patterns. We examined nutrient spatial patterns in Sycamore Creek, an intermittent desert stream in Arizona that experienced an ecosystem regime shift [from a gravel/algae-dominated to a vascular plant-dominated (hereafter, "wetland") system] in 2000 when cattle grazing ceased. We conducted high-resolution nutrient surveys in surface water along a 10-km stream reach over four visits spanning 18 y (1995-2013) that represent different successional stages and prewetland stage vs. postwetland state. As expected, groundwater upwelling had a major influence on nutrient spatial patterns. However, self-organization realized by the mechanism of spatial feedbacks also was significant and intensified over ecosystem succession, as a resource (nitrogen) became increasingly limiting. By late succession, the effects of internal spatial feedbacks and groundwater upwelling were approximately equal in magnitude. Wetland establishment influenced nutrient spatial patterns only indirectly, by modifying the extent of surface water/groundwater exchange. This study illustrates that multiple mechanisms interact in a dynamic way to create spatial heterogeneity in riverine ecosystems, and provides a means to detect spatial self-organization against physical template heterogeneity as a dominant driver of spatial patterns.

  11. A screening-level modeling approach to estimate nitrogen loading and standard exceedance risk, with application to the Tippecanoe River watershed, Indiana

    EPA Science Inventory

    This paper presents a screening-level modeling approach that can be used to rapidly estimate nutrient loading and assess numerical nutrient standard exceedance risk of surface waters leading to potential classification as impaired for designated use. It can also be used to explor...

  12. Soil erosion and nutrient runoff in corn silage production with kura clover living mulch and winter rye

    USDA-ARS?s Scientific Manuscript database

    Corn (Zea mays L.) harvested for silage is a productive forage crop, but one that can exacerbate soil loss, surface water runoff, and nonpoint source nutrient pollution from agricultural fields. The objective of this research was to compare the effects of using Kura clover (Trifolium ambiguum M. Bie...

  13. River delta network hydraulic residence time distributions and their role in coastal nutrient biogeochemistry

    NASA Astrophysics Data System (ADS)

    Hiatt, M. R.; Castaneda, E.; Twilley, R.; Hodges, B. R.; Passalacqua, P.

    2015-12-01

    River deltas have the potential to mitigate increased nutrient loading to coastal waters by acting as biofilters that reduce the impact of nutrient enrichment on downstream ecosystems. Hydraulic residence time (HRT) is known to be a major control on biogeochemical processes and deltaic floodplains are hypothesized to have relatively long HRTs. Hydrological connectivity and delta floodplain inundation induced by riverine forces, tides, and winds likely alter surface water flow patterns and HRTs. Since deltaic floodplains are important elements of delta networks and receive significant fluxes of water, sediment, and nutrients from distributary channels, biogeochemical transformations occurring within these zones could significantly reduce nutrient loading to coastal receiving waters. However, network-scale estimates of HRT in river deltas are lacking and little is known about the effects of tides, wind, and the riverine input on the HRT distribution. Subsequently, there lacks a benchmark for evaluating the impact of engineered river diversions on coastal nutrient ecology. In this study, we estimate the HRT of a coastal river delta by using hydrodynamic modeling supported by field data and relate the HRT to spatial and temporal patterns in nitrate levels measured at discrete stations inside a delta island at Wax Lake Delta. We highlight the control of the degree of hydrological connectivity between distributary channels and interdistributary islands on the network HRT distribution and address the roles of tides and wind on altering the shape of the distribution. We compare the observed nitrate concentrations to patterns of channel-floodplain hydrological connectivity and find this connectivity to play a significant role in the nutrient removal. Our results provide insight into the potential role of deltaic wetlands in reducing the nutrient loading to near-shore waters in response to large-scale river diversions.

  14. Water quality in the Cambridge, Massachusetts, drinking-water source area, 2005-8

    USGS Publications Warehouse

    Smith, Kirk P.; Waldron, Marcus C.

    2015-01-01

    During 2005-8, the U.S. Geological Survey, in cooperation with the Cambridge, Massachusetts, Water Department, measured concentrations of sodium and chloride, plant nutrients, commonly used pesticides, and caffeine in base-flow and stormwater samples collected from 11 tributaries in the Cambridge drinking-water source area. These data were used to characterize current water-quality conditions, to establish a baseline for future comparisons, and to describe trends in surface-water quality. The data also were used to assess the effects of watershed characteristics on surface-water quality and to inform future watershed management.

  15. LANDSCAPE INDICATORS OF SURFACE WATER CONDITIONS

    EPA Science Inventory

    This task comprises three inter-related projects: 1) impervious surface mapping and evaluation of its impact ; 2) detection of BMPs and estimation of their ability to reduce nutrient input into streams, and; 3) detection of isolated wetlands. Each substask addresses critical is...

  16. Impacts of fertilization on water quality of a drained pine plantation: a worst case scenario.

    PubMed

    Beltran, Bray J; Amatya, Devendra M; Youssef, Mohamed; Jones, Martin; Callahan, Timothy J; Skaggs, R Wayne; Nettles, Jami E

    2010-01-01

    Intensive plantation forestry will be increasingly important in the next 50 yr to meet the high demand for domestic wood in the United States. However, forest management practices can substantially influence downstream water quality and ecology. This study analyses, the effect of fertilization on effluent water quality of a low gradient drained coastal pine plantation in Carteret County, North Carolina using a paired watershed approach. The plantation consists of three watersheds, two mature (31-yr) and one young (8-yr) (age at treatment). One of the mature watersheds was commercially thinned in 2002. The mature unthinned watershed was designated as the control. The young and mature-thinned watersheds were fertilized at different rates with Arborite (Encee Chemical Sales, Inc., Bridgeton, NC), and boron. The outflow rates and nutrient concentrations in water drained from each of the watersheds were measured. Nutrient concentrations and loadings were analyzed using general linear models (GLM). Three large storm events occurred within 47 d of fertilization, which provided a worst case scenario for nutrient export from these watersheds to the receiving surface waters. Results showed that average nutrient concentrations soon after fertilization were significantly (alpha = 0.05) higher on both treatment watersheds than during any other period during the study. This increase in nutrient export was short lived and nutrient concentrations and loadings were back to prefertilization levels as soon as 3 mo after fertilization. Additionally, the mature-thinned watershed presented higher average nutrient concentrations and loadings when compared to the young watershed, which received a reduced fertilizer rate than the mature-thinned watershed.

  17. U.S. Geological Survey nutrient preservation experiment; nutrient concentration data for surface-, ground-, and municipal-supply water samples and quality-assurance samples

    USGS Publications Warehouse

    Patton, Charles J.; Truitt, Earl P.

    1995-01-01

    This report is a compilation of analytical results from a study conducted at the U.S. Geological Survey, National Water Quality Laboratory (NWQL) in 1992 to assess the effectiveness of three field treatment protocols to stabilize nutrient concentra- tions in water samples stored for about 1 month at 4C. Field treatments tested were chilling, adjusting sample pH to less than 2 with sulfuric acid and chilling, and adding 52 milligrams of mercury (II) chloride per liter of sample and chilling. Field treatments of samples collected for determination of ammonium, nitrate plus nitrite, nitrite, dissolved Kjeldahl nitrogen, orthophosphate, and dissolved phosphorus included 0.45-micrometer membrane filtration. Only total Kjeldahl nitrogen and total phosphorus were determined in unfiltered samples. Data reported here pertain to water samples collected in April and May 1992 from 15 sites within the continental United States. Also included in this report are analytical results for nutrient concentrations in synthetic reference samples that were analyzed concurrently with real samples.

  18. A geographical approach to tracking Escherichia coli and other water quality constituents in a Texas coastal plains watershed.

    PubMed

    Harclerode, C L; Gentry, T J; Aitkenhead-Peterson, J A

    2013-06-01

    Diffuse sources of surface water pathogens and nutrients can be difficult to isolate in larger river basins. This study used a geographical or nested approach to isolate diffuse sources of Escherichia coli and other water quality constituents in a 145.7-km(2) river basin in south central Texas, USA. Average numbers of E. coli ranged from 49 to 64,000 colony forming units (CFU) per 100 mL depending upon season and stream flow over the 1-year sampling period. Nitrate-N concentrations ranged from 48 to 14,041 μg L(-1) and orthophosphate-P from 27 to 2,721 μg L(-1). High concentrations of nitrate-N, dissolved organic nitrogen, and orthophosphate-P were observed downstream of waste water treatment plants but E. coli values were higher in a watershed draining an older part of the city. Total urban land use explained between 56 and 72 % of the variance in mean annual E. coli values (p < 0.05) in nine hydrologically disconnected creeks. Of the types of urban land use, commercial land use explained most of the variance in E. coli values in the fall and winter. Surface water sodium, alkalinity, and potassium concentrations in surface water were best described by the proportion of commercial land use in the watershed. Based on our nested approach in examining surface water, city officials are able to direct funding to specific areas of the basin in order to mitigate high surface water E. coli numbers and nutrient concentrations.

  19. Fueling export production: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Palter, J. B.; Sarmiento, J. L.; Gnanadesikan, A.; Simeon, J.; Slater, R. D.

    2010-11-01

    In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC). One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be significantly reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global export production between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, nutrients exported in the SAMW layer are utilized and converted rapidly (in less than 40 years) to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.

  20. Fueling primary productivity: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Palter, J. B.; Sarmiento, J. L.; Gnanadesikan, A.; Simeon, J.; Slater, D.

    2010-06-01

    In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC). One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be catastrophically reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global primary productivity between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, the high preformed nutrients subducted in the SAMW layer are converted rapidly (in less than 40 years) to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.

  1. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.

    PubMed

    Schaffner, Monika; Bader, Hans-Peter; Scheidegger, Ruth

    2009-08-15

    Major rivers in developing and emerging countries suffer increasingly of severe degradation of water quality. The current study uses a mathematical Material Flow Analysis (MMFA) as a complementary approach to address the degradation of river water quality due to nutrient pollution in the Thachin River Basin in Central Thailand. This paper gives an overview of the origins and flow paths of the various point- and non-point pollution sources in the Thachin River Basin (in terms of nitrogen and phosphorus) and quantifies their relative importance within the system. The key parameters influencing the main nutrient flows are determined and possible mitigation measures discussed. The results show that aquaculture (as a point source) and rice farming (as a non-point source) are the key nutrient sources in the Thachin River Basin. Other point sources such as pig farms, households and industries, which were previously cited as the most relevant pollution sources in terms of organic pollution, play less significant roles in comparison. This order of importance shifts when considering the model results for the provincial level. Crosschecks with secondary data and field studies confirm the plausibility of our simulations. Specific nutrient loads for the pollution sources are derived; these can be used for a first broad quantification of nutrient pollution in comparable river basins. Based on an identification of the sensitive model parameters, possible mitigation scenarios are determined and their potential to reduce the nutrient load evaluated. A comparison of simulated nutrient loads with measured nutrient concentrations shows that nutrient retention in the river system may be significant. Sedimentation in the slow flowing surface water network as well as nitrogen emission to the air from the warm oxygen deficient waters are certainly partly responsible, but also wetlands along the river banks could play an important role as nutrient sinks.

  2. Field investigation to assess nutrient emission from paddy field to surface water in river catchment

    NASA Astrophysics Data System (ADS)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2015-04-01

    In order to maintain good river environment, it is remarkably important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. Our former research dealing with nutrient emission analysis in the Tone River basin area in Japan, in addition to urban and industrial waste water, nutrient emission from agricultural activity is dominant pollution source into the river system. Japanese style agriculture produces large amount of rice and paddy field occupies large areas in Japanese river basin areas. While paddy field can deteriorate river water quality by outflow of fertilizer, it is also suggested that paddy field has water purification function. As we carried out investigation in the Tone River Basin area, data were obtained which dissolved nitrogen concentration is lower in discharging water from paddy field than inflowing water into the field. Regarding to nutrient emission impact from paddy field, sufficient data are required to discuss quantitatively seasonal change of material behavior including flooding season and dry season, difference of climate condition, soil type, and rice species, to evaluate year round comprehensive impact from paddy field to the river system. In this research, field survey in paddy field and data collection relating rice production were carried out as a preliminary investigation to assess how Japanese style paddy field contributes year round on surface water quality. Study sites are three paddy fields located in upper reach of the Tone River basin area. The fields are flooded from June to September. In 2014, field investigations were carried out three times in flooding period and twice in dry period. To understand characteristics of each paddy field and seasonal tendency accompanying weather of agricultural event, short term investigations were conducted and we prepare for further long term investigation. Each study site has irrigation water inflow and outflow. Two sites have tile drainage system under the field and TD water can be sampled for infiltrating water measurement. We installed monitoring wells to measure ground water level and water quality. Inflow, outflow, flooding water, infiltrating water, and ground water were measured and sampled. Regarding to parameters, temperature, pH, EC, DO and COD, main ions were measured to understand characteristic of water quality and transformation processes. Inorganic forms of nitrogen and phosphorus were also measured, as behavior and balance of nitrogen and phosphorus are focused on. We observed following points by taking data of water quality; seasonal trend, changes occurred according to agricultural events like irrigation and fertilization. Nitrogen in ground water tends to high in June due to fertilizer. It is thought because farmers fertilize the filed before transplanting at the beginning of flooding season. Regarding to dissolved inorganic nitrogen, higher concentrations were observed in inflow water than in flooding water and outflow water. Though it needs discussion in loads as well as flow measurement, this suggests that nutrients are absorbed in paddy field and less nutrients are emitted after irrigation water passing through paddy field. Based on this research we are planning continuous investigation to assess environmental impact from paddy field.

  3. USDA Forest Service national protocols for sampling air pollution-sensitive waters

    Treesearch

    T. J. Sullivan

    2012-01-01

    The first step in designing a surface water sampling program is identifying one or more problems or questions that require information on water quality. Common water quality problems include nutrient enrichment (from a variety of causes), effects of atmospheric deposition (acidification, eutrophication, toxicity), and effects of major disturbances such as fire or pest...

  4. Using Soluble Reactive Phosphorus and Ammonia to Identify Point Source Discharge from Large Livestock Facilities

    NASA Astrophysics Data System (ADS)

    Borrello, M. C.; Scribner, M.; Chessin, K.

    2013-12-01

    A growing body of research draws attention to the negative environmental impacts on surface water from large livestock facilities. These impacts are mostly in the form of excessive nutrient loading resulting in significantly decreased oxygen levels. Over-application of animal waste on fields as well as direct discharge into surface water from facilities themselves has been identified as the main contributor to the development of hypoxic zones in Lake Erie, Chesapeake Bay and the Gulf of Mexico. Some regulators claim enforcement of water quality laws is problematic because of the nature and pervasiveness of non-point source impacts. Any direct discharge by a facility is a violation of permits governed by the Clean Water Act, unless the facility has special dispensation for discharge. Previous research by the principal author and others has shown runoff and underdrain transport are the main mechanisms by which nutrients enter surface water. This study utilized previous work to determine if the effects of non-point source discharge can be distinguished from direct (point-source) discharge using simple nutrient analysis and dissolved oxygen (DO) parameters. Nutrient and DO parameters were measured from three sites: 1. A stream adjacent to a field receiving manure, upstream of a large livestock facility with a history of direct discharge, 2. The same stream downstream of the facility and 3. A stream in an area relatively unimpacted by large-scale agriculture (control site). Results show that calculating a simple Pearson correlation coefficient (r) of soluble reactive phosphorus (SRP) and ammonia over time as well as temperature and DO, distinguishes non-point source from point source discharge into surface water. The r value for SRP and ammonia for the upstream site was 0.01 while the r value for the downstream site was 0.92. The control site had an r value of 0.20. Likewise, r values were calculated on temperature and DO for each site. High negative correlations between temperature and DO are indicative of a relatively unimpacted stream. Results from this study are commensurate with nutrient correlations and are: r = -0.97 for the upstream site, r = -0.21 for the downstream site and r = -0.89 for the control site. Results from every site tested were statistically significant (p ≤ 0.05). These results support previous studies and demonstrate that the simple analytical techniques mentioned provide an effective means for regulatory agencies and community groups to monitor and identify point source discharge from large livestock facilities.

  5. The impact of surface water - groundwater interactions on nitrate cycling assessed by means of hydrogeologic and isotopic techniques in the Alento river basin (Italy)

    NASA Astrophysics Data System (ADS)

    Stellato, Luisa; Di Rienzo, Brunella; Di Fusco, Egidio; Rubino, Mauro; Marzaioli, Fabio; Terrasi, Filippo; D'Onofrio, Antonio; De Vita, Pantaleone; Allocca, Vincenzo; Salluzzo, Antonio; Rimauro, Juri; Romano, Nunzio; Celico, Fulvio

    2017-04-01

    Currently a major concern of water resources managers is to understand the fate and dynamics of nutrients in riverine ecosystems because of their potential impacts on both river quality and human health (e.g., European Council Directive 91/676/EEC). Nutrients are released within a catchment (or river basin) mainly by agricultural practices and urban/industrial activities, in addition to natural sources such as soils and organic matter. They are discharged into surface water bodies by means of nutrient-rich groundwater inflows and/or overland flow pathways, which can be important controls on hot moment/hot spot type biogeochemical behaviors. Groundwater has been recognized to have a major role in controlling stream ecosystem health since it influences stream ecology when surface and subsurface water are hydraulically connected. In particular, processes occurring at the reach or sub-reach scale more directly influence nutrient transport to rivers than larger scale processes. In this general context, the main scope of this study, within the framework of the IAEA Coordinated Research Project (CRP) "Environmental Isotopes and Age Dating Methods to Assess Nitrogen Pollution and Other Quality Issues in Rivers", was to spatially and temporally quantify groundwater inflows to the Alento river (Southern Italy) to characterize sw-gw interactions in the catchment in order to finally assess nitrates contamination of a groundwater dependent river ecosystem. Four sampling campaigns have been carried out in July and October 2014, in April 2015 and in June 2016 during which 1 spring, rain water, 17 surface water and 27 groundwater points were sampled all over the plain. The piezometric reconstruction has been realized by means of the monitoring of groundwater levels in 43 domestic and agricultural wells (10-15 m deep). The preliminary hydrogeological (water table morphology and stream discharge measurements), physico-chemical (T and EC), hydrochemical and isotopic (222Rn, δD and δ18O) data evidence a gaining river in the northern part of the plain. Moreover, δD and δ18O data evidence a fast recharge from seasonal precipitations originating from evaporated and re-evaporated air masses. Finally, even though chemical data evidence no groundwater nitrate pollution (< 50 mg L-1) in the study area, δ15N and δ18O of dissolved nitrates have been used to infer possible nitrate sources in the study area.

  6. SEMP Integration Project

    DTIC Science & Technology

    2006-05-24

    and D.J. Bjornstad. 2002 Why would anyone object? An exploration of social aspects of phytoremediation acceptability. Critical Reviews in Plant... leachate ions ½ m below soil surface Water collected from field lysimeters; ion concentrations measured in lab ions in ppm Anions and cations that are being...indicator set Prescott College (P5) Nutrient Leakage: Ammonium The measurement of leachate ions ½ m below soil surface Water collected from field

  7. The Prospects for Using Little Diomede Island as a Base for Monitoring Bering Strait

    NASA Astrophysics Data System (ADS)

    Cooper, L. W.; Kelly, V.; Codispoti, L. A.; Sheffield, G.; Grebmeier, J. M.

    2002-12-01

    Diomede, Alaska is arguably the most isolated community in the United States, located on a small island in the center of Bering Strait, one mile from the international dateline, where nutrient-rich waters from the Bering Sea enter the Arctic Ocean. Postal service is once weekly via helicopter, weather permitting and the 140 Native Inupiat residents (2000 census) are highly dependent upon a subsistence lifestyle utilizing local seabirds, marine mammals, and shellfish. Since the summer of 2000, we have worked with the local community to improve analytical capabilities to analyze waters flowing through the Bering Strait. Other goals of the Bering Strait Environmental Observatory include evaluating the biological health and contaminant burdens of marine mammals used for subsistence by island residents. We have also been annually using the Canadian Coast Guard Service Sir Wilfrid Laurier to assess the biological productivity of benthic organisms that are important as food sources in the Bering Strait region for apex predators such as bearded seal, walrus, diving ducks and gray whale. Future infrastructure that is needed includes a subsea water intake system that would be less vulnerable to wave and ice damage than the interim systems we have employed to date. Using a jet well pump in August, 2001, we pumped water onshore through a thermosalinograph, automated nutrient monitoring devices, a fluorometer, and we also collected discrete samples for silica and oxyen-18/oxygen-16 ratios in a small laboratory constructed under the village school. Results indicate that there is a strong relationship between the surface wind regime and the fertility of waters flowing through the center of Bering Strait. Following sustained northerly wind events, and an approximate 72 hour lag period, waters passing Little Diomede Island were predominantly of Alaska Coastal Water origin, with low nutrients and salinity, and comparatively high temperatures. Southerly winds were by contrast significantly correlated with higher nutrients, lower temperatures, and higher salinities following a similar 72-hour period. These observations are consistent with expected Coriolis forcing and suggest that the flux of high nutrient water flowing through Bering Strait may be particularly sensitive to short and long-term variability in surface wind patterns in this localized region.

  8. A summary of the scientific literature on the effects of fire on the concentration of nutrients in surface waters

    USGS Publications Warehouse

    Ranalli, Anthony J.

    2004-01-01

    This paper provides a detailed review of the chemical changes that occur in soil during a fire, the pathways by which nutrients are transferred from soil to surface-water bodies following a fire, and the temporal and spatial effects of fires on the concentration of nutrients in surface-water bodies during and following a fire that have been reported in the scientific literature. Thirty-nine papers from the scientific literature that represent studies that (1) were done in a variety of environments (savannas, grasslands, temperate forests, alpine forests, and so forth); (2) had a range of sampling frequency and duration, such as during and immediately following a fire (from the start of fire to 1 year later), short-term sampling (from end of fire to 3 years later), and long term-sampling (sampling for greater than 3 years following a fire); and (3) incorporated watersheds with various burn intensities, severities, and histories were reviewed and summarized. The review of the scientific literature has revealed that measurable effects of fires on streamwater quality are most likely to occur if the fire was severe enough to burn large amounts of organic matter, if windy conditions were present during the fire, if heavy rain occurred following the fire, and if the fire occurred in a watershed with steep slopes and soils with little cation-exchange capacity. Measurable effects of fires on lake- and reservoir-water quality are most likely to occur if, in addition to the factors listed for streams, the lake or reservoir is oligotrophic or mesotrophic and the residence time of water in the lake or reservoir is short relative to the length of time elevated concentrations of nutrients occur in runoff. Knowledge of whether a lake or reservoir is nitrogen or phosphorus limited is important because eutrophication of nitrogen-limited lakes may occur following a fire due to increasing nitrogen:phosphorus ratios caused by prolonged increases of nitrogen concentrations, especially nitrate.

  9. Water quality status and trends in agriculture-dominated headwaters; a national monitoring network for assessing the effectiveness of national and European manure legislation in The Netherlands.

    PubMed

    Rozemeijer, J C; Klein, J; Broers, H P; van Tol-Leenders, T P; van der Grift, B

    2014-12-01

    Large nutrient losses to groundwater and surface waters are a major drawback of the highly productive agricultural sector in The Netherlands. The resulting high nutrient concentrations in water resources threaten their ecological, industrial, and recreational functions. To mitigate eutrophication problems, legislation on nutrient application in agriculture was enforced in 1986 in The Netherlands. The objective of this study was to evaluate this manure policy by assessing the water quality status and trends in agriculture-dominated headwaters. We used datasets from 5 agricultural test catchments and from 167 existing monitoring locations in agricultural headwaters. Trend analysis for these locations showed a fast reduction of nutrient concentrations after the enforcement of the manure legislation (median slopes of -0.55 mg/l per decade for total nitrogen (N-tot) and -0.020 mg/l per decade for total phosphorus (P-tot)). Still, up to 76 % of the selected locations currently do not comply with either the environmental quality standards (EQSs) for nitrogen (N-tot) or phosphorus (P-tot). This indicates that further improvement of agricultural water quality is needed. We observed that weather-related variations in nutrient concentrations strongly influence the compliance testing results, both for individual locations and for the aggregated results at the national scale. Another important finding is that testing compliance for nutrients based on summer average concentrations may underestimate the agricultural impact on ecosystem health. The focus on summer concentrations does not account for the environmental impact of high winter loads from agricultural headwaters towards downstream water bodies.

  10. Water quality status and trends in agriculture dominated headwaters; a national monitoring network for assessing the effectiveness of national and European manure legislation in The Netherlands

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J.; Klein, J.

    2016-12-01

    Large nutrient losses to groundwater and surface waters are a major drawback of the highly productive agricultural sector in The Netherlands. The resulting high nutrient concentrations in water resources threaten their ecological, industrial, and recreational functions. To mitigate eutrophication problems, legislation on nutrient application in agriculture was enforced in 1986 in The Netherlands. The objective of this study was to evaluate this manure policy by assessing the water quality status and trends in agriculture dominated headwaters. We used datasets from 5 agricultural test catchments and from 167 existing monitoring locations in agricultural headwaters. Trend analysis for these locations showed a fast reduction of nutrient concentrations after the enforcement of the manure legislation (median slopes of -0.55 mg/L per decade for total nitrogen (N-tot) and -0.020 mg/L per decade for total phosphorus (P-tot)). Still, up to 76% of the selected locations currently do not comply with either the environmental quality standards (EQSs) for nitrogen (N-tot) or phosphorus (P-tot). This indicates that further improvement of agricultural water quality is needed. We observed that weather-related variations in nutrient concentrations strongly influence the compliance testing results, both for individual locations and for the aggregated results at the national scale. Another important finding is that testing compliance for nutrients based on summer average concentrations may underestimate the agricultural impact on ecosystem health. The focus on summer concentrations does not account for the environmental impact of high winter loads from agricultural headwaters towards downstream water bodies.

  11. Scaling of physical constraints at the root-soil interface to macroscopic patterns of nutrient retention in ecosystems.

    PubMed

    Gerber, Stefan; Brookshire, E N Jack

    2014-03-01

    Nutrient limitation in terrestrial ecosystems is often accompanied with maintaining a nearly closed vegetation-soil nutrient cycle. The ability to retain nutrients in an ecosystem requires the capacity of the plant-soil system to draw down nutrient levels in soils effectually such that export concentrations in soil solutions remain low. Here we address the physical constraints of plant nutrient uptake that may be limited by the diffusive movement of nutrients in soils, by the uptake at the root/mycorrhizal surface, and from interactions with soil water flow. We derive an analytical framework of soil nutrient transport and uptake and predict levels of plant available nutrient concentration and residence time. Our results, which we evaluate for nitrogen, show that the physical environment permits plants to lower soil solute concentration substantially. Our analysis confirms that plant uptake capacities in soils are considerable, such that water movement in soils is generally too small to significantly erode dissolved plant-available nitrogen. Inorganic nitrogen concentrations in headwater streams are congruent with the prediction of our theoretical framework. Our framework offers a physical-based parameterization of nutrient uptake in ecosystem models and has the potential to serve as an important tool toward scaling biogeochemical cycles from individual roots to landscapes.

  12. Postimpoundment survey of water-quality characteristics of Raystown Lake, Huntingdon and Bedford Counties, Pennsylvania

    USGS Publications Warehouse

    Williams, Donald R.

    1978-01-01

    Water-quality data, collected from May 1974 to September 1976 at thirteen sites within Raystown Lake and in the inflow and outflow channels, define the water-quality characteristics of the lake water and the effects of impoundment on the quality of the lake outflow. Depth-profile measurements show Raystown Lake to be dimictic. Thermal stratification is well developed during the summer. Generally high concentrations of dissolved oxygen throughout the hypolimnion during thermal stratification, low phytoplankton concentrations, and small diel fluctuations of dissolved oxygen, pH, and specific conductance indicate that the lake is low in nutrients, or oligotrophic. Algal assays of surface samples indicate that orthophosphate was a growth-limiting nutrient. The diatoms (Chrysophyta) were the dominant phytoplankton group found through-out the study period. The lake waters contained very low populations of zooplankton. Fecal coliform and fecal streptococcus densities measured throughout the lake indicated no potentially dangerous areas of water-contact recreation. The most apparent effect that the impoundment had on water quality was the removal of nutrients, particularly orthophosphate, through phytoplankton uptake and sediment deposition.

  13. SPRINGFIELD SURFACE WATER ACTION MONITORING PARTNERSHIP(SSWAMP)

    EPA Science Inventory

    The objectives of this project are as follows: 1) To determine the baseline chemical and biological characteristics of the water bodies and to determine the baseline levels of nutrients, metals and organic contaminants in the sediments. To determine the current level of mercur...

  14. Watershed delineation and nitrogen source analysis for Bayou Chico, an urban watershed in northwest Florida

    EPA Science Inventory

    Nutrient pollution in stormwater runoff from urbanized areas contributes to water quality degradation in streams and receiving waterbodies. Agriculture, population growth, and industrial activities are significant sources of nitrogen inputs for surface waters. Increased nitrogen ...

  15. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.

    1994-01-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet Controlled Ecological Life Support Systems (CELSS) tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  16. Recent Advances in Hyporheic Zone Science

    NASA Astrophysics Data System (ADS)

    Hester, E. T.

    2017-12-01

    The hyporheic zone exists beneath and adjacent to streams and rivers where surface water and groundwater interact. It provides unique habitat for aquatic organisms, can buffer surface water temperatures, and can be highly reactive, processing nutrients and improving water quality. The hyporheic zone is the subject of considerable research and the past year in WRR witnessed important conceptual advances. A key focus was rigorous evaluation of mixing between surface water and groundwater that occurs within hyporheic sediments. Field observations indicate that greater mixing occurs in the hyporheic zone than in deeper groundwater, and this distinction has been explored by recent numerical modeling studies, but more research is needed to fully understand the causes. A commentary this year in WRR proposed that hyporheic mixing is enhanced by a combination of fluctuating boundary conditions and multiscale physical and chemical spatial heterogeneity but confirmation is left to future research. This year also witnessed the boundaries of knowledge pushed back in a number of other key areas. Field quantification of hyporheic exchange and reactions benefited from advances including the use and interpretation of high frequency nutrient sensors, actively heater fiber optic sensors, isotope tracers, and geophysical methods such as electrical resistivity imaging. Conceptual advances were made in understanding the effects of unsteady environmental conditions (e.g., tides and storms) and preferential flow on hyporheic processes. Finally, hyporheic science is being brought increasingly to bear on applied issues such as informing nutrient removal crediting for stream restoration practices, for example in the Chesapeake Bay watershed.

  17. Impacts of extreme weather events on highly eutrophic marine ecosystem (Rogoznica Lake, Adriatic coast)

    NASA Astrophysics Data System (ADS)

    Ciglenečki, I.; Janeković, I.; Marguš, M.; Bura-Nakić, E.; Carić, M.; Ljubešić, Z.; Batistić, M.; Hrustić, E.; Dupčić, I.; Garić, R.

    2015-10-01

    Rogoznica Lake is highly eutrophic marine system located on the Eastern Adriatic coast (43°32‧N, 15°58‧E). Because of the relatively small size (10,276 m2) and depth (15 m) it experiences strong natural and indirect anthropogenic influences. Dynamics within the lake is characterized by the extreme and highly variable environmental conditions (seasonal variations in salinity and temperature, water stratification and mixing, redox and euxinic conditions, concentrations of nutrients) which significantly influence the biology inside the lake. Due to the high phytoplankton activity, the upper part of the water column is well oxygenated, while hypoxia/anoxia usually occurs in the bottom layers. Anoxic part of the water column is characterized with high concentrations of sulfide (up to 5 mM) and nutrients (NH4+ up to 315 μM; PO43- up to 53 μM; SiO44- up to 680 μM) indicating the pronounced remineralization of the allochthonous organic matter, produced in the surface waters. The mixolimnion varies significantly within a season feeling effects of the Adriatic atmospheric and ocean dynamics (temperature, wind, heat fluxes, rainfall) which all affect the vertical stability and possibly induce vertical mixing and/or turnover. Seasonal vertical mixing usually occurs during the autumn/winter upon the breakdown of the stratification, injecting oxygen-rich water from the surface into the deeper layers. Depending on the intensity and duration of the vertical dynamics (slower diffusion and/or faster turnover of the water layers) anoxic conditions could developed within the whole water column. Extreme weather events such as abrupt change in the air temperature accompanied with a strong wind and consequently heat flux are found to be a key triggering mechanism for the fast turnover, introducing a large amount of nutrients and sulfur species from deeper parts to the surface. Increased concentration of nutrients, especially ammonium, phosphate, and silicates persisting for several months after the mixing event, together with anoxic stress conditions, additionally influence already stressed ecosystem, hence shifting the community structure and food/web interactions in this marine system.

  18. The role of gravity in the nutrition and formation of Bacillus colonies

    NASA Astrophysics Data System (ADS)

    Puzyr, A.; Tirranen, L.; Krylova, T.

    The soil-like substrate is used to cultivate higher plants in man-made closed ecosystems. It allows increasing the closeness of the systems and decreasing the plant solid residues and human wastes. Unusual funnel-shaped bacterial colonies of Bacillus species have been observed during analysis of microflora of plant nutritional solution. The colonies have the following characteristics: a) the diameter of "funnel socket" (the biomass contacting with nutritional agar) is 10.0-15.0 mm; b) the thickness of "funnel socket" is 0.5-2.5 mm; c) the diameter of the middle part of the "funnel spout" (the biomass contacting with the gas phase) is 1,0-1,5 mm; d) the length of the "funnel spout" is 10.0-15.0 mm. In the socket and the middle part of the "funnel spout" there is a gas cavity which is most probably formed by bacterial gas metabolites. It has been shown that: i) the surface of these funnel-shaped colonies of Bacillus species is hydrophobic, as is the surface of other Bacillus species ( . brevis, B. cellulomonos, B. flavus, B.B formosus, B. subtilis); ii) the forms of colonies can be changed by varying the position of the growing biomass in relation to the gravitation forces. The experiment proved that the form of the "funnel sockets" and the length of the "funnel spouts" of the colonies are determined by hydrophobic air-contacting surface layer, which does not leak and stretches under the weight of accumulated water. A hypothesis has been suggested that the gravity force plays the role of a "pump" supplying and holding water within the colony. Thus, the water that comes under the gravity force contains dissolved nutrients and bacterial cells in the hydrophobic layer. These cells that are situated far away from the nutrient agar have no nutrient deficiency. The water accumulated by the colonies might be free water of agar media or it can be produced by metabolic disruption of medium fat. Hence, when growing a colony in agar media the water-soluble nutrient substances enter the growing colonies not only due to diffusion processes but also with the directional water flow under the gravity force.

  19. Mycobacterium fortuitum and Mycobacterium chelonae biofilm formation under high and low nutrient conditions.

    PubMed

    Hall-Stoodley, L; Keevil, C W; Lappin-Scott, H M

    1998-12-01

    The rapidly growing mycobacteria (RGM) are broadly disbursed in the environment. They have been recovered from freshwater, seawater, wastewater and even potable water samples and are increasingly associated with non-tuberculous mycobacterial disease. There is scant evidence that non-tuberculous mycobacteria (NTM) and RGM form biofilms. Therefore, an experimental system was designed to assess the ability of RGM to form biofilms under controlled laboratory conditions. A flat plate reactor flow cell was attached to either a high or low nutrient reservoir and monitored by image analysis over time. Two surfaces were chosen for assessment of biofilm growth: silastic which is commonly used in medical settings and high density polyethylene (HDPE) which is prevalent in water distribution systems. The results show that Mycobacterium fortuitum and M. chelonae formed biofilms under both high and low nutrient conditions on both surfaces studied. These results suggest that RGM may form biofilms under a variety of conditions in industrial and medical environments. 1998 Society of Applied Microbiology.

  20. Nitrogen, phosphorus, organic carbon, and biochemical oxygen demand : in Florida surface waters, 1972

    USGS Publications Warehouse

    Kaufman, Matthew I.; Dysart, J.E.

    1978-01-01

    Water samples were collected during spring and autumn 1972 from about 100 surface-water sites in Florida. The samples were analyzed for the plant nutrients, nitrogen and phosphorus. In most waters, nitrogen concentrations are less than 2.0 milligrams per liter as nitrogen, and organic nitrogen is dominant. Median total nitrogen concentration for Florida surface waters is between 1.2 and 2.0 milligrams per liter as nitrogen. In samples from 85 percent of the sites, total nitrogen exceeded 0.6 milligrams per liter. Median total phosphorus concentration as phosphorus for Florida surface waters is between 0.05 and 0.1 milligrams per liter. The information will form a base useful to agencies concerned with setting concentration limits for nitrogen and phosphorus in industrial and sewage plant outfalls. (Woodard-USGS)

  1. Summary of Surface-Water Quality Data from the Illinois River Basin in Northeast Oklahoma, 1970-2007

    USGS Publications Warehouse

    Andrews, William J.; Becker, Mark F.; Smith, S. Jerrod; Tortorelli, Robert L.

    2009-01-01

    The quality of streams in the Illinois River Basin of northeastern Oklahoma is potentially threatened by increased quantities of wastes discharged from increasing human populations, grazing of about 160,000 cattle, and confined animal feeding operations raising about 20 million chickens. Increasing numbers of humans and livestock in the basin contribute nutrients and bacteria to surface water and groundwater, causing greater than the typical concentrations of those constituents for this region. Consequences of increasing contributions of these substances can include increased algal growth (eutrophication) in streams and lakes; impairment of habitat for native aquatic animals, including desirable game fish species; impairment of drinking-water quality by sediments, turbidity, taste-and-odor causing chemicals, toxic algal compounds, and bacteria; and reduction in the aesthetic quality of the streams. The U.S. Geological Survey, in cooperation with the Oklahoma Scenic Rivers Commission, prepared this report to summarize the surface-water-quality data collected by the U.S. Geological Survey at five long-term surface-water-quality monitoring sites. The data summarized include major ions, nutrients, sediment, and fecal-indicator bacteria from the Illinois River Basin in Oklahoma for 1970 through 2007. General water chemistry, concentrations of nitrogen and phosphorus compounds, chlorophyll-a (an indicator of algal biomass), fecal-indicator bacteria counts, and sediment concentrations were similar among the five long-term monitoring sites in the Illinois River Basin in northeast Oklahoma. Most water samples were phosphorus-limited, meaning that they contained a smaller proportion of phosphorus, relative to nitrogen, than typically occurs in algal tissues. Greater degrees of nitrogen limitation occurred at three of the five sites which were sampled back to the 1970s, probably due to use of detergents containing greater concentrations of phosphorus than in subsequent periods. Concentrations of nitrogen, phosphorus, and sediment, and counts of bacteria generally increased with streamflow at the five sites, probably due to runoff from the land surface and re-suspension of streambed sediments. Phosphorus concentrations typically exceeded the Oklahoma standard of 0.037 milligrams per liter for Scenic Rivers. Concentrations of chlorophyll-a in phytoplankton in water samples collected at the five sites were not well correlated with streamflow, nor to concentrations of the nutrients nitrogen and phosphorus, probably because much of the algae growing in these streams are periphyton attached to streambed cobbles and other debris, rather than phytoplankton in the water column. Sediment concentrations correlated with phosphorus concentrations in water samples collected at the sites, probably due to sorption of phosphorus to soil particles and streambed sediments and runoff of soils and animal wastes at the land surface and resuspension of streambed sediments and phosphorus during wet, high-flow periods. Fecal coliform bacteria counts at the five sites sometimes exceeded the Oklahoma Primary Body Contact Standard of 400 colonies per 100 milliliters when streamflows were greater than 1000 cubic feet per second. Ultimately, Lake Tenkiller, an important ecological and economic resource for the region, receives the compounds that runoff the land surface or seep to local streams from groundwater in the basin. Because of eutrophication from increased nutrient loading, Lake Tenkiller is listed for impairment by diminished dissolved oxygen concentrations, phosphorus, and chlorophyll-a by the State of Oklahoma in evaluation of surface-water quality required by section 303d of the Clean Water Act. Stored phosphorus in soils and streambed and lakebed sediments may continue to provide phosphorus to local streams and lakes for decades to come. Steps are being made to reduce local sources of phosphorus, including upgrades in capacity and effective

  2. Quality of surface water at selected sites in the Suwannee River basin, Florida

    USGS Publications Warehouse

    Coffin, J.E.

    1982-01-01

    This report presents the results of analyses of water-quality samples collected from 14 surface-water sites in the Suwannee River basin in Florida from January through December 1980. The analyses of samples collected routinely included: nutrients, total organic carbon, and 5-day biochemical oxygen demand, bimonthly; and trace metals, annually. The array of constituents sampled was expanded in October 1978 at three of the original nine stations to provide quality-of-water information for streams draining an industrial area: Rocky Creek near Belmont, Hunter Creek near Belmont, and Swift Creek at Facil. Data collected at these three sites now include: major chemical constituents, six times per year: radium-226, two times per year; and trace metals, one time per year. These constituents are determined in addition to nutrients, total organic carbon, and bio-chemical oxygen demand which continue to be analyzed six times per year. All results of analyses of the water-quality samples collected from January through December 1980 remained within, or near, previously measured ranges and water-quality fluctuations were similar to those noted from data collected since 1971. (USGS)

  3. Effect of alternative surface inlet designs on sediment and phosphorus drainage losses

    USDA-ARS?s Scientific Manuscript database

    Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine whether modifying open inlets by burying them in gravel capped with 30 cm of sandy clay loam soil or in ve...

  4. Nutrient Enrichment in Estuaries from Discharge of Shallow Ground Water, Mt. Desert Island, Maine

    USGS Publications Warehouse

    Culbertson, Charles W.; Huntington, Thomas G.; Caldwell, James M.

    2007-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in its estuaries. Water-quality degradation has been observed at the Park?s Bass Harbor Marsh estuary but not in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, but the importance of shallow ground water that may contain nutrients derived from domestic or other sources is unknown. Northeast Creek and Bass Harbor Marsh estuaries were studied to (1) identify shallow ground-water seeps, (2) assess the chemistry of the water discharged from selected seeps, and (3) assess the chemistry of ground water in shallow ground-water hyporheic zones. The hyporheic zone is defined here as the region beneath and lateral to a stream bed, where there is mixing of shallow ground water and surface water. This study also provides baseline chemical data for ground water in selected bedrock monitoring wells and domestic wells on Mt. Desert Island. Water samples were analyzed for concentrations of nutrients, wastewater compounds, dissolved organic carbon, pH, dissolved oxygen, temperature and specific conductance. Samples from bedrock monitoring wells also were analyzed for alkalinity, major cations and anions, and trace metals. Shallow ground-water seeps to Northeast Creek and Bass Harbor Marsh estuaries at Acadia National Park were identified and georeferenced using aerial infrared digital imagery. Monitoring included the deployment of continuously recording temperature and specific conductance sensors in the seep discharge zone to access marine or freshwater signatures related to tidal flooding, gradient-driven shallow ground-water flow, or shallow subsurface flow related to precipitation events. Many potential shallow ground-water discharge zones were identified from aerial thermal imagery during flights in May and December 2003 in both estuaries. The occurrence of ground-water seeps was confirmed using continuous and discrete measurements of temperature and specific conductance in selected seeps and in the adjacent estuaries that showed salinity anomalies reflecting the input of freshwater in these complex tidal systems. Analysis of water samples from shallow ground water in the hyporheic zone and from ground-water seeps indicated the presence of elevated concentrations of dissolved nitrogen, compared to concentrations in the adjacent estuaries and surface-water tributaries draining into the estuaries. These findings indicate that shallow ground water is a source of dissolved nitrogen to the estuaries. Orthophosphate levels were low in ground water in the hyporheic zone in Bass Harbor Marsh, but somewhat higher in one hyporheic-zone well in Northeast Creek compared with the concentrations in both estuaries that were at or below detection limits. Household wastewater-related compounds were not detected in ground water in the hyporheic zone. Analysis of water samples from domestic and bedrock monitoring wells developed in fractured bedrock indicated that concentrations of dissolved nitrogen, phosphorus, and household wastewater-related compounds were typically at or below detection, suggesting that the aquifers sampled had not been contaminated from septic sources.

  5. Ra and Rn isotopes as natural tracers of submarine groundwater discharge in Tampa Bay, Florida

    USGS Publications Warehouse

    Swarzenski, P.W.; Reich, C.; Kroeger, K.D.; Baskaran, M.

    2007-01-01

    A suite of naturally occurring radionuclides in the U/Th decay series (222Rn, 223,224,226,228Ra) were studied during wet and dry conditions in Tampa Bay, Florida, to evaluate their utility as groundwater discharge tracers, both within the bay proper and within the Alafia River/estuary — a prominent free-flowing river that empties into the bay. In Tampa Bay, almost 30% of the combined riverine inputs still remain ungauged. Consequently, groundwater/surface water (hyporheic) exchange in the discharging coastal rivers, as well as submarine groundwater discharge (SGD) within the bay, are still unresolved components of this system's water and material budgets. Based on known inputs and sinks, there exists an excess of 226Ra in the water column of Tampa Bay, which can be evaluated in terms of a submarine groundwater contribution to the bay proper. Submarine groundwater discharge rates calculated using a mass balance of excess 226Ra ranged from 2.2 to 14.5 L m− 2 day− 1, depending on whether the estuarine residence time was calculated using 224Ra/xs228Ra isotope ratios, or whether a long term, averaged model-derived estuarine residence time was used. When extrapolated to the total shoreline length of the bay, such SGD rates ranged from 1.6 to 10.3 m3 m− 1 day− 1. Activities of 222Rn were also elevated in surface water and shallow groundwater of the bay, as well as in the Alafia River estuary, where upstream activities as high as 250 dpm L− 1 indicate enhanced groundwater/surface water exchange, facilitated by an active spring vent. From average nutrient concentrations of 39 shallow, brackish, groundwater samples, rates of nutrient loading into Tampa Bay by SGD rates were estimated, and these ranged from 0.2 to 1.4 × 105 mol day− 1 (PO43−), 0.9–6.2 × 105 mol day− 1 (SiO4−), 0.7–5.0 × 105 mol day− 1 (dissolved organic nitrogen, DON), and 0.2–1.4 × 106 mol day− 1 (total dissolved nitrogen, TDN). Such nutrient loading estimates, when compared to average river discharge estimates (e.g., TDN = 6.9 × 105 mol day− 1), suggest that SGD-derived nutrient fluxes to Tampa Bay are indeed important components to the overall nutrient economy of these coastal waters.

  6. An approach to understanding hydrologic connectivity on the hillslope and the implications for nutrient transport

    USGS Publications Warehouse

    Stieglitz, M.; Shaman, J.; McNamara, J.; Engel, V.; Shanley, J.; Kling, G.W.

    2003-01-01

    Hydrologic processes control much of the export of organic matter and nutrients from the land surface. It is the variability of these hydrologic processes that produces variable patterns of nutrient transport in both space and time. In this paper, we explore how hydrologic "connectivity" potentially affects nutrient transport. Hydrologic connectivity is defined as the condition by which disparate regions on the hillslope are linked via subsurface water flow. We present simulations that suggest that for much of the year, water draining through a catchment is spatially isolated. Only rarely, during storm and snowmelt events when antecedent soil moisture is high, do our simulations suggest that mid-slope saturation (or near saturation) occurs and that a catchment connects from ridge to valley. Observations during snowmelt at a small headwater catchment in Idaho are consistent with these model simulations. During early season discharge episodes, in which the mid-slope soil column is not saturated, the electrical conductivity in the stream remains low, reflecting a restricted, local (lower slope) source of stream water and the continued isolation of upper and mid-slope soil water and nutrients from the stream system. Increased streamflow and higher stream water electrical conductivity, presumably reflecting the release of water from the upper reaches of the catchment, are simultaneously observed when the mid-slope becomes sufficiently wet. This study provides preliminary evidence that the seasonal timing of hydrologic connectivity may affect a range of ecological processes, including downslope nutrient transport, C/N cycling, and biological productivity along the toposequence. A better elucidation of hydrologic connectivity will be necessary for understanding local processes as well as material export from land to water at regional and global scales. Copyright 2003 by the American Geophysical Union.

  7. Nutrient Mitigation Efficiency in Agricultural Drainage Ditches: An Influence of Landscape Management.

    PubMed

    Iseyemi, Oluwayinka O; Farris, Jerry L; Moore, Matthew T; Choi, Seo-Eun

    2016-06-01

    Drainage systems are integral parts of agricultural landscapes and have the ability to intercept nutrient loading from runoff to surface water. This study investigated nutrient removal efficiency within replicated experimental agricultural drainage ditches during a simulated summer runoff event. Study objectives were to examine the influence of routine mowing of vegetated ditches on nutrient mitigation and to assess spatial transformation of nutrients along ditch length. Both mowed and unmowed ditch treatments decreased NO3 (-)-N by 79 % and 94 % and PO4 (3-) by 95 % and 98 %, respectively, with no significant difference in reduction capacities between the two treatments. This suggests occasional ditch mowing as a management practice would not undermine nutrient mitigation capacity of vegetated drainage ditches.

  8. Water Source Utilization of Hammock and Pine Rockland Plant Communities in the Everglades, USA.

    NASA Astrophysics Data System (ADS)

    Saha, A. K.; Sternberg, L.; Miralles-Wilhelm, F.

    2007-12-01

    South Florida has a mosaic of plant communities resulting from topographical differences, spatially varying hydroperiods and fire. The only plant communities not flooded in the wet season are hardwood hammocks and often pine rocklands. Natural fires burn off litter accumulated in pine rocklands, with the exception of organic matter in sinkholes in the limestone bedrock. This relative lack of soil is thought to constrain pineland plants in the Everglades to depend upon groundwater that is typically low in nutrients. In contrast, adjoining hardwood hammocks have accumulated an organic soil layer that traps rainwater and nutrients. Plants in hammocks may be able to utilize this water and thereby access nutrients present in the litter. Hammocks are thus viewed as localized areas of high nutrients and instances of vegetation feedback upon the oligotrophic everglades landscape enabling establishment and survival of flood-intolerant tropical hardwood species. This study examines water source use and couples it to foliar nutrient concentrations of plants found in hammocks and pinelands. We examined the δ2H and δ18O of stem waters in plants in Everglades National Park and compared those with the δ2H and δ18O of potential water sources. In the wet season hammock plants accessed both groundwater and water in the surface organic soil layer while in the dry season they relied more on groundwater. A similar seasonal shift was observed in pineland plants; however groundwater constituted a much higher proportion of total water uptake throughout the year under observation. Concomitant with differential water utilization by hammock and pineland plant communities, we observed hammock plants having a significantly higher annual mean foliar N and P concentration than pineland plants. Most hammock species are intolerant of flooded soils and are thus constrained by the high water table in the wet season, yet access the lowered groundwater table in the dry season due to drying up of surface soilwater. This dependence on a relatively narrow seasonal range of water table depth has important implications for South Florida water resource management that can affect these ecologically important upland communities in the Everglades. Being the only emergent areas in the wet season, hammocks provide habitat for a wide range of flora and fauna.

  9. Linking Land Use Changes to Surface Water Quality Variability in Lake Victoria: Some Insights From Remote Sensing (GC41B-1101)

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh; Mugo, Robinson; Wanjohi, James; Farah, Hussein; Wahome, Anastasia; Flores, Africa; Irwin, Dan

    2016-01-01

    Various land use changes driven by urbanization, conversion of grasslands and woodlands into farmlands, intensification of agricultural practices, deforestation, land fragmentation and degradation are taking place in Africa. In Kenya, agriculture is the main driver of land use conversions. The impacts of these land use changes are observable in land cover maps, and eventually in the hydrological systems. Reduction or change of natural vegetation cover types increases the speed of surface runoff and reduces water and nutrient retention capacities. This can lead to high nutrient inputs into lakes, resulting in eutrophication, siltation and infestation of floating aquatic vegetation. To assess if changes in land use could be contributing to increased phytoplankton blooms and sediment loads into Lake Victoria, we analyzed land use land cover data from Landsat, as well as surface chlorophyll-a and total suspended matter from MODIS-Aqua sensor.

  10. Monitoring of chlorophyll-a and sea surface silicate concentrations in the south part of Cheju island in the East China sea using MODIS data

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanzhi; Huang, Zhaojun; Fu, Dongyang; Tsou, Jin Yeu; Jiang, Tingchen; Liang, X. San; Lu, Xia

    2018-05-01

    Continually supplied with nutrients, phytoplankton maintains high productivity under ideal illumination and temperature conditions. Data in the south part of Cheju Island in the East China Sea (ECS), which has experienced a spring bloom since the 2000s, were acquired during a research cruise in the spring of 2007. Compared with in-situ measurements, MODIS chlorophyll-a measurements showed high stability in this area. Excluding some invalid stations data, the relationships between nutrients and chlorophyll-a concentrations in the study area were examined and compared with the results in 2015. A high positive correlation between silicate and chlorophyll-a concentration was identified, and a regression relationship was proposed. MODIS chlorophyll-a measurements and sea surface temperature were utilized to determine surface silicate distribution. The silicate concentration retrieved from MODIS exhibited good agreement with in-situ measurements with R2 of 0.803, root mean square error (RMSE) of 0.326 μmol/L (8.23%), and mean absolute error (MAE) of 0.925 μmol/L (23.38%). The study provides a new solution to identify nutrient distributions using satellite data such as MODIS for water bodies, but the method still needs to be refined to determine the relationship of chlorophyll-a and nutrients during other seasons to monitor water quality in this and other areas.

  11. Evaluation of a combined macrophyte-epiphyte bioassay for assessing nutrient enrichment in the Portneuf River, Idaho, USA.

    PubMed

    Ray, Andrew M; Mebane, Christopher A; Raben, Flint; Irvine, Kathryn M; Marcarelli, Amy M

    2014-07-01

    We describe and evaluate a laboratory bioassay that uses Lemna minor L. and attached epiphytes to characterize the status of ambient and nutrient-enriched water from the Portneuf River, Idaho. Specifically, we measured morphological (number of fronds, longest surface axis, and root length) and population-level (number of plants and dry mass) responses of L. minor and community-level (ash-free dry mass [AFDM] and chlorophyll a [Chl a]) responses of epiphytes to nutrient enrichment. Overall, measures of macrophyte biomass and abundance increased with increasing concentrations of dissolved phosphorus (P) and responded more predictably to nutrient enrichment than morphological measures. Epiphyte AFDM and Chl a were also greatest in P-enriched water; enrichments of N alone produced no measurable epiphytic response. The epiphyte biomass response did not directly mirror macrophyte biomass responses, illustrating the value of a combined macrophyte-epiphyte assay to more fully evaluate nutrient management strategies. Finally, the most P-enriched waters not only supported greater standing stocks of macrophyte and epiphytes but also had significantly higher water column dissolved oxygen and dissolved organic carbon concentrations and a lower pH. Advantages of this macrophyte-epiphyte bioassay over more traditional single-species assays include the use of a more realistic level of biological organization, a relatively short assay schedule (~10 days), and the inclusion of multiple biological response and water-quality measures.

  12. Evaluation of a combined macrophyte–epiphyte bioassay for assessing nutrient enrichment in the Portneuf River, Idaho, USA

    USGS Publications Warehouse

    Ray, Andrew M.; Mebane, Christopher A.; Raben, Flint; Irvine, Kathryn M.; Marcarelli, Amy M.

    2014-01-01

    We describe and evaluate a laboratory bioassay that uses Lemna minor L. and attached epiphytes to characterize the status of ambient and nutrient-enriched water from the Portneuf River, Idaho. Specifically, we measured morphological (number of fronds, longest surface axis, and root length) and population-level (number of plants and dry mass) responses of L. minor and community-level (ash-free dry mass [AFDM] and chlorophyll a [Chl a]) responses of epiphytes to nutrient enrichment. Overall, measures of macrophyte biomass and abundance increased with increasing concentrations of dissolved phosphorus (P) and responded more predictably to nutrient enrichment than morphological measures. Epiphyte AFDM and Chl a were also greatest in P-enriched water; enrichments of N alone produced no measurable epiphytic response. The epiphyte biomass response did not directly mirror macrophyte biomass responses, illustrating the value of a combined macrophyte–epiphyte assay to more fully evaluate nutrient management strategies. Finally, the most P-enriched waters not only supported greater standing stocks of macrophyte and epiphytes but also had significantly higher water column dissolved oxygen and dissolved organic carbon concentrations and a lower pH. Advantages of this macrophyte–epiphyte bioassay over more traditional single-species assays include the use of a more realistic level of biological organization, a relatively short assay schedule (~10 days), and the inclusion of multiple biological response and water-quality measures.

  13. Nitrogen and phosphorus exports from high rainfall zone cropping in Australia: issues and opportunities for research.

    PubMed

    Mathers, Nicole J; Nash, David M; Gangaiya, Philomena

    2007-01-01

    Cropping is one of the many industries contributing to the excessive loading of nitrogen (N) and phosphorus (P) to rivers and lakes in Australia. Nitrogen and P exports from cropping systems have not been systematically investigated to the same extent as those from other agricultural sectors, such as dairy pastures. Therefore, this review relies heavily on information derived from agronomy and other fundamental studies on soil-nutrient interactions to determine the potential for nutrient export from high rainfall zone (HRZ) cropping. There is a great deal of variation in environmental and management strategies across cropping in the HRZ, which suggests that nutrient exports could occur under a range of scenarios. The potential for exports is therefore discussed within a conceptual framework of nutrient sources, mechanisms for mobilization, and transport pathways in HRZ cropping. Transport refers to nutrient movement by flowing water after it has been mobilized, and export refers to the transfer of nutrients from one landscape compartment (e.g., a soil) to another (e.g., a stream or lake). The transport of nutrients from HRZ cropping can occur through surface and/or subsurface pathways depending on factors such as landform and infiltration and nutrient sorption characteristics of the soil profile. Surface pathways are likely to be more significant for phosphorus. For N, subsurface movement is likely to be as significant as surface movement because nitrates are generally not bound by most soils. Information about mechanisms of nutrient mobilization is essential for developing management strategies to control nutrient exports from HRZ cropping.

  14. Occurrence of Surface Water Contaminations: An Overview

    NASA Astrophysics Data System (ADS)

    Shahabudin, M. M.; Musa, S.

    2018-04-01

    Water is a part of our life and needed by all organisms. As time goes by, the needs by human increased transforming water quality into bad conditions. Surface water contaminated in various ways which is pointed sources and non-pointed sources. Pointed sources means the source are distinguished from the source such from drains or factory but the non-pointed always occurred in mixed of elements of pollutants. This paper is reviewing the occurrence of the contaminations with effects that occurred around us. Pollutant factors from natural or anthropology factors such nutrients, pathogens, and chemical elements contributed to contaminations. Most of the effects from contaminated surface water contributed to the public health effects also to the environments.

  15. Water-quality assessment of the Rio Grande Valley, Colorado, New Mexico, and Texas; occurrence and distribution of selected pesticides and nutrients at selected surface-water sites in the Mesilla Valley, 1994-95

    USGS Publications Warehouse

    Healy, D.F.

    1996-01-01

    The Rio Grande Valley study unit of the U.S. Geological Survey National Water-Quality Assessment Program conducted a two-phase synoptic study of the occurrence and distribution of pesticides and nutrients in the surface water of the Mesilla Valley, New Mexico and Texas. Phase one, conducted in April-May 1994 during the high-flow irrigation season, consisted of a 6-week time- series sampling event during which 17 water-column samples were collected at 3 main-stem sites on the Rio Grande and a synoptic irrigation-run sampling event during which 19 water-column samples were collected at 7 main-stem sites, 10 drain sites, and 2 sites at the discharges of wastewater-treatment plants. Three samples are included in both the time-series and irrigation-run events. Phase two, conducted in January 1995 during the low-flow non-irrigation season, consisted of a non-irrigation synoptic sampling event during which 18 water-column samples were collected at seven main-stem sites, nine drain sites, and two sites at the discharges of wastewater-treatment plants and a bed- material sampling event during which 6 bed-material samples were collected at six sites near the mouths of drains that discharge to the Rio Grande. The 51 water-column samples were analyzed for 78 pesticides and metabolites and 8 nutrients along with other constituents. The six bed-material samples were analyzed for 21 pesticides and metabolites, gross polychlorinated biphenyls, and gross polychlorinated naphthalenes. The presence of dissolved pesticides in the surface water of the Mesilla Valley is erratic. A total of 100 detections of 17 different pesticides were detected in 44 of the water-column samples. As many as 38 percent of these detections may be attributed to pesticide use upstream from the valley or to nonagricultural pesticide use within the valley. There were 29 detections of 10 different pesticides in 17 samples during the irrigation run and 41 detections of 13 pesticides in 16 samples during the non-irrigation run. Nine pesticides were detected during both phases of the study. The most commonly detected pesticides in the water-column samples were DCPA, which was detected in 29 samples, and metolachlor, which was detected in 17 of the samples. DCPA was detected throughout the Mesilla Valley, whereas metolachlor was detected mainly in the northern and central parts of the valley. The maximum pesticide concentration found during the study was 0.75 microgram per liter of carbofuran, which was detected at the East Side Drain site during the irrigation run. No water-column pesticide concentration exceeded U.S. Environmental Protection Agency's drinking-water standards or any applicable Federal or State criteria or guidelines. A total of 21 occurrences of six pesticides and metabolites were found in the bed-material samples. Chlordane, diazinon, and methyl parathion were detected once each, whereas DDD, DDE, and DDT were detected at all six bed-material sites. Water-column samples for the analysis of nutrient concentrations were collected at all sampling sites during both phases of the study. The concentrations of each nutrient ranged from at or below the individual minimum reporting level to as much as two or three orders of magnitude larger than the minimum reporting level. The concentration of each nutrient was left skewed with most of the values toward the lower end of the range. The larger concentrations of each nutrient, except dissolved nitrite plus nitrate, were associated with wastewater-treatment- plant sites 4 and 16. The larger concentrations of dissolved nitrite plus nitrate were generally associated with the non- irrigation run; however, the largest concentration was at site 4 during the irrigation run. During this study, the Mesilla Valley as a unit was a source of nutrients to the Rio Grande. Wi

  16. Extent of fungal growth on fiberglass duct liners with and without biocides under challenging environmental conditions.

    PubMed

    Samimi, Behzad S; Ross, Kristen

    2003-03-01

    Eight brands of fiberglass duct liners, including three that contained biocides, were exposed to challenging environmental conditions that would promote fungal growth. Twenty-four rectangular sheet metal ducts in three groups of eight ducts per group were lined with the eight selected liners. Each group of ducts was exposed to one of the three test conditions within an environmental chamber for a period of 15 days. These conditions were a) 75 percent RH, b) 75 percent RH plus water spray, c) 75 percent RH plus dry nutrient, and d) 75 percent RH plus water plus nutrient. Viable spores of Aspergillus niger were aerosolized into each duct as seed. On the 16th day, air and surface samples for fungal spores were collected from inside ducts. The results of air sampling using N6 sampler and visual inspection indicated that two out of three biocide-containing liners, Permacote and Toughgard, inhibited fungal growth but only under condition A. The third biocide-containing liner, Aeroflex Plus, was effective even when it was wet (conditions A and B). All three biocide-containing liners failed to inhibit fungal growth under conditions C and D. Among the five other types of liners that did not contain biocides, ATCO Flex with a smooth Mylar coating was more preferable, exhibiting lower fungal activity during conditions A, B, and C. All liners failed under condition D when nutrient and water were added together. Surface sampling using adhesive tape failed to produce representative results, apparently due to rough/porous surface of duct liners. It was concluded that duct liners with biocide treatment could be less promoting to microbial growth under high humidity as long as their surfaces remain clean and water-free. A liner with an impermeable and smooth surface seems to be less subject to microbial growth under most conditions than biocide-containing liners having porous and/or rough surfaces.

  17. Nitrogen dynamics at the ground water-surface water interface of a degraded urban stream

    EPA Science Inventory

    Urbanization degrades stream ecosystems by altering hydrology and nutrient dynamics. We investigated temporal and spatial patterns in biogeochemistry and hydrology in and near the stream channel of a geomorphically degraded urban stream of Baltimore County, Maryland, USA. Our o...

  18. REMOTE SENSING FOR DETECTING SWINE ANIMAL FEEDING OPERATIONS

    EPA Science Inventory

    Surface runoff from animal feeding operations (AFO's) and its infiltration into ground water can
    pose a number of risks to water quality mainly because of the amount of animal manure and wastewater they produce. Excess nutrients generated by livestock facilities can lead to a...

  19. Application of index number theory to the construction of a water quality index: aggregated nutrient loadings related to the areal extent of hypoxia in the northern Gulf of Mexico

    USDA-ARS?s Scientific Manuscript database

    The development of an index for description and monitoring of surface water quality has received significant attention in the water resources literature in recent years, primarily because of the increasing need for assessing water quality and the complex, multidimensional data collected from water q...

  20. Differential contributions of archaeal ammonia oxidizer ecotypes to nitrification in coastal surface waters

    PubMed Central

    Smith, Jason M; Casciotti, Karen L; Chavez, Francisco P; Francis, Christopher A

    2014-01-01

    The occurrence of nitrification in the oceanic water column has implications extending from local effects on the structure and activity of phytoplankton communities to broader impacts on the speciation of nitrogenous nutrients and production of nitrous oxide. The ammonia-oxidizing archaea, responsible for carrying out the majority of nitrification in the sea, are present in the marine water column as two taxonomically distinct groups. Water column group A (WCA) organisms are detected at all depths, whereas Water column group B (WCB) are present primarily below the photic zone. An open question in marine biogeochemistry is whether the taxonomic definition of WCA and WCB organisms and their observed distributions correspond to distinct ecological and biogeochemical niches. We used the natural gradients in physicochemical and biological properties that upwelling establishes in surface waters to study their roles in nitrification, and how their activity—ascertained from quantification of ecotype-specific ammonia monooxygenase (amoA) genes and transcripts—varies in response to environmental fluctuations. Our results indicate a role for both ecotypes in nitrification in Monterey Bay surface waters. However, their respective contributions vary, due to their different sensitivities to surface water conditions. WCA organisms exhibited a remarkably consistent level of activity and their contribution to nitrification appears to be related to community size. WCB activity was less consistent and primarily constrained to colder, high nutrient and low chlorophyll waters. Overall, the results of our characterization yielded a strong, potentially predictive, relationship between archaeal amoA gene abundance and the rate of nitrification. PMID:24553472

  1. Phosphorus losses from an irrigated watershed in the Northwestern U.S.: Case study of the Upper Snake Rock Watershed

    USDA-ARS?s Scientific Manuscript database

    Watersheds utilizing surface water for irrigation often return a portion of the water to a water body. This irrigation return flow often includes sediment and nutrients that reduce the quality of the receiving water body. Research in the 82,000 ha Upper Snake Rock (USR) watershed from 2005 to 2008 s...

  2. Performance of five plant species in removal of nitrogen and phosphorus from an experimental phytoremediation system in the Ningxia irrigation area.

    PubMed

    Chen, Chongjuan; Zhao, Tiancheng; Liu, Ruliang; Luo, Liangguo

    2017-09-10

    Agricultural non-point source (ANPS) pollution is an important contributor to elevated nitrogen (N) and phosphorus (P) in surface waters, which can cause serious environmental problems. Considerable effort has therefore gone into the development of methods that control the ANPS input of N and P to surface waters. Phytoremediation has been extensively used because it is cost-effective, environmentally friendly, and efficient. The N and P loads from agricultural drainage are a potential threat to the water quality of the Yellow River in Ningxia, China. Yet, phytoremediation has only rarely been applied within the Ningxia irrigation area. In an experimental set-up, five species (Ipomoea aquatica, IA; Lactuca sativa, LS; Oryza sativa, OS; Typha latifolia, TL; Zizania latifolia, ZL) were evaluated for their ability to reduce N and P loads over 62 days and five observation periods. Total N and P concentrations, plant biomass, and nutrient content were measured. The results showed that OS, LS, and IA performed better than ZL and TL in terms of nutrients removal, biomass accumulation, and nutrients storage. The highest overall removal rates of N and P (57.7 and 57.3%, respectively) were achieved by LS treatment. In addition, plant uptake contributed significantly to nutrient removal, causing a 25.9-72.0% reduction in N removal and a 54.3-86.5% reduction in P removal. Thus, this study suggests that OS, LS, and IA would be more suitable than ZL and TL for controlling nutrient loads in the Ningxia irrigation area using phytoremediation.

  3. Controlled artificial upwelling in a fjord to combat toxic algae

    NASA Astrophysics Data System (ADS)

    McClimans, T. A.; Hansen, A. H.; Fredheim, A.; Lien, E.; Reitan, K. I.

    2003-04-01

    During the summer, primary production in the surface layers of some fjords depletes the nutrients to the degree that some arts of toxic algae dominate the flora. We describe an experiment employing a bubble curtain to lift significant amounts of nutrient-rich seawater to the light zone and provide an environment in which useful algae can survive. The motivation for the experiment is to provide a local region in which mussels can be cleansed from the effects of toxic algae. Three 100-m long, perforated pipes were suspended at 40 m depth in the Arnafjord, a side arm of the Sognefjord. Large amounts of compressed air were supplied during a period of three weeks. The deeper water mixed with the surface water and flowed from the mixing region at 5 to 15 m depth. Within a few days, the mixture of nutrient-rich water covered most of the inner portion of Arnafjord. Within 10 days, the plankton samples showed that the artificial upwelling produced the desired type of algae and excluded the toxic blooms that were occurring outside the manipulated fjord arm. The project (DETOX) is supported by the Norwegian ministries of Fisheries, Agriculture and Public Administration.

  4. Cost-Effectiveness Analysis of Surface Flow Constructed Wetlands (SFCW) for Nutrient Reduction in Drainage Discharge from Agricultural Fields in Denmark.

    PubMed

    Gachango, F G; Pedersen, S M; Kjaergaard, C

    2015-12-01

    Constructed wetlands have been proposed as cost-effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as case studies, this paper explores the feasibility of implementing surface flow constructed wetlands (SFCW) based on their cost effectiveness. Sensitivity analysis is conducted by varying the cost elements of the wetlands in order to establish the most cost-effective scenario and a comparison with the existing nutrients reduction measures carried out. The analyses show that the cost effectiveness of the SFCW is higher in the drainage catchments with higher nutrient loads. The range of the cost effectiveness ratio on nitrogen reduction differs distinctively with that of catch crop measure. The study concludes that SFCW could be a better optimal nutrients reduction measure in drainage catchments characterized with higher nutrient loads.

  5. Influence of Typhoon Matsa on Phytoplankton Chlorophyll-a off East China

    PubMed Central

    Shao, Jinchao; Han, Guoqi; Yang, Dezhou

    2015-01-01

    Typhoons can cause strong disturbance, mixing, and upwelling in the upper layer of the oceans. Rich nutrients from the subsurface layer can be brought to the euphotic layer, which will induce the phytoplankton to breed and grow rapidly. In this paper, we investigate the impact of an intense and fast moving tropical storm, Typhoon Matsa, on phytoplankton chlorophyll-a (Chl-a) concentration off East China. By using satellite remote sensing data, we analyze the changes of Chl-a concentration, Sea Surface Temperature (SST) and wind speed in the pre- and post-typhoon periods. We also give a preliminary discussion on the different responses of the Chl-a concentration between nearshore and offshore waters. In nearshore/coastal regions where nutrients are generally rich, the Chl-a maximum occurs usually at the surface or at the layer close to the surface. And, in offshore tropical oligotrophic oceans, the subsurface maxima of Chl-a exist usually in the stratified water column. In an offshore area east of Taiwan, the Chl-a concentration rose gradually in about two weeks after the typhoon. However, in a coastal area north of Taiwan high Chl-a concentration decreased sharply before landfall, rebounded quickly to some degree after landfall, and restored gradually to the pre-typhoon level in about two weeks. The Chl-a concentration presented a negative correlation with the wind speed in the nearshore area during the typhoon, which is opposite to the response in the offshore waters. The phenomena may be attributable to onshore advection of low Chl-a water, coastal downwelling and intensified mixing, which together bring pre-typhoon surface Chl-a downward in the coastal area. In the offshore area, the typhoon may trigger increase of Chl-a concentration through uptake of nutrients by typhoon-induced upwelling and entrainment mixing. PMID:26407324

  6. Resource-limited heterotrophic prokaryote production and its potential environmental impact associated with Mn nodule exploitation in the northeast equatorial pacific.

    PubMed

    Hyun, Jung-Ho

    2006-08-01

    Shipboard enrichment incubation experiments were performed to elucidate the limiting resources for heterotrophic prokaryotic production and to discuss the potential impact of bottom water and sediment discharges in relation to manganese (Mn) nodule exploitation on the heterotrophic prokaryotes in the oligotrophic northeast equatorial Pacific. Compared to an unamended control, the production of heterotrophic prokaryotes increased 25-fold in water samples supplemented with amino acids (i.e., organic carbon plus nitrogen), whereas the production increased five and two times, respectively, in samples supplemented with either glucose or ammonium alone. These results indicate that heterotrophic prokaryote production in the northeast equatorial Pacific was co-limited by the availability of dissolved organic carbon and inorganic nitrogen. In samples from the nutrient-depleted surface mixed layer (10-m depth), the addition of a slurry of bottom water and sediment doubled heterotrophic prokaryote production compared to an unamended control, whereas sonicating the slurry prior to addition quadrupled the production rate. However, little difference was observed between an unamended control and slurry-amended samples in the subsurface chlorophyll a (Chl a) maximum (SCM) layer. Thus, the impact of slurry discharge is more significant at the nutrient-depleted surface mixed layer than at the high-nutrient SCM layer. The greatly enhanced prokaryote production resulting from the addition of sonicated slurry further suggests that dissociated organic carbon may directly stimulate heterotrophic prokaryote production in the surface mixed layer. Overall, the results suggest that the surface discharge of bottom water and sediments during manganese nodule exploitation could have a significant environmental impact on the production of heterotrophic prokaryotes that are currently resource limited.

  7. The effect of restored and native oxbows on hydraulic loads of nutrients and stream water quality

    USGS Publications Warehouse

    Kalkhoff, Stephen J.; Hubbard, Laura E.; Joseph P.Schubauer-Berigan,

    2016-01-01

    The use of oxbow wetlands has been identified as a potential strategy to reduce nutrient transport from agricultural drainage tiles to streams in Iowa. In 2013 and 2014, a study was conducted in north-central Iowa in a native oxbow in the Lyons Creek watershed and two restored oxbow wetlands in the Prairie Creek watershed (Smeltzer west and Smeltzer east) to assess their effectiveness at reducing nitrogen and phosphorus loads. The tile line inlets carrying agricultural runoff to the oxbows, the outfall from the oxbows, and the surface waters in the streams receiving the outfall water were monitored for discharge and nutrients from February 2013 to September 2015. Smeltzer west and east also had four monitoring wells each, two in the upland and two between the oxbow and Prairie Creek to monitor surface water-groundwater interaction. The Smeltzer west and east oxbow sites also were instrumented to continuously measure the nitrate concentration. Rainfall was measured at one Lyons Creek and one Smeltzer site. Daily mean nitrate-N concentrations in Lyons Creek in 2013 ranged from 11.8 mg/L to 40.9 mg/L, the median daily mean nitrate-N concentration was 33.0 mg/L. Daily mean nitrate-N concentrations in Prairie Creek in 2013 ranged from 0.07 mg/L in August to 32.2 mg/L in June. In 2014, daily mean nitrate-N concentrations in Prairie Creek ranged from 0.17 mg/L in April to 26.7 mg/L in July; the daily mean nitrate-N concentration for the sampled period was 9.78 mg/L. Nutrient load reduction occurred in oxbow wetlands in Lyons and Prairie Creek watersheds in north-central Iowa but efficiency of reduction was variable. Little nutrient reduction occurred in the native Lyons Creek oxbow during 2013. Concentrations of all nutrient constituents were not significantly (P>0.05, Wilcoxon rank sum) different in water discharging from the tile line than in water leaving the Lyons Creek oxbow. A combination of physical features and flow conditions suggest that the residence time of water in the oxbow may not have been sufficient to allow for removal of substantial amounts of nutrients. Approximately 54 percent less nitrate-N was measured leaving the Smeltzer west oxbow than was measured entering from a small 6-inch field tile. The efficiency of nitrate-N removal in the oxbow was not able to be definitively quantified as other hydrologic factors such as overland and groundwater flow into and through the oxbow were not addressed and may provide alternative routes for nutrient transport. Damage to the Smeltzer east oxbow outfall weir prevented analysis of its nutrient load reduction capability. The study provides important information to managers and land owners looking for strategies to reduce nutrient transport from fields. Additional research is needed to understand how increased discharge from larger field tiles and drainage district mains may influence the efficiency of nutrient reduction in relation to the size, type, and landscape setting of a wetland.

  8. The Effect of Atrazine on Louisiana Gulf Coast Estuarine Phytoplankton.

    PubMed

    Starr, Alexis V; Bargu, Sibel; Maiti, Kanchan; DeLaune, Ronald D

    2017-02-01

    Pesticides may enter water bodies in areas with a high proportion of agricultural land use through surface runoff, groundwater discharge, and erosion and thus negatively impact nontarget aquatic organisms. The herbicide atrazine is used extensively throughout the Midwest and enters the Mississippi River through surface runoff and groundwater discharge. The purpose of this study was to determine the extent of atrazine contamination in Louisiana's estuaries from Mississippi River water under different flow and nutrient regimes (spring and summer) and its effect on the biomass and oxygen production of the local phytoplankton community. The results showed that atrazine was consistently present in these systems at low levels. Microcosm experiments exposed to an atrazine-dilution series under low and high nutrient conditions to determine the phytoplankton stress response showed that high atrazine levels greatly decreased phytoplankton biomass and oxygen production. Phytoplankton exposed to low and moderate atrazine levels under high nutrient conditions were able to recover after an extended acclimation period. Communities grown under high nutrient conditions grew more rapidly and produced greater levels of oxygen than the low nutrient treatment groups, thus indicating that atrazine exposure may induce a greater stress response in phytoplankton communities under low-nutrient conditions. The native community also experienced a shift from more sensitive species, such as chlorophytes, to potentially more resilient species such as diatoms. The phytoplankton response to atrazine exposure at various concentrations can be especially important to greater trophic levels because their growth and abundance can determine the potential productivity of the entire ecosystem.

  9. Cross-shelf transport of sub-thermocline nitrate by the internal tide and rapid (3-6 h) incorporation by an inshore macroalga

    NASA Astrophysics Data System (ADS)

    Ladah, Lydia B.; Filonov, Anatoliy; Lavín, Miguel F.; Leichter, James J.; Zertuche-González, José A.; Pérez-Mayorga, Diana M.

    2012-07-01

    During summer in shallow waters off Baja California, Mexico, the internal tide is a dominant thermal feature of the water column. However, its importance for sub-thermocline nutrient provision to benthic macroalgae is unknown. In order to determine if internal motions provide nutrients to macroalgae in summer, Ulva lactuca was outplanted at inshore stations for short (3 and 6 h) intervals, at the surface, 5 and 10 m depth, and tissue nitrogen content was measured before and after each deployment. Concurrently temperature, currents, and nutrients were measured using moored thermistors, current profilers, CTDs, Niskin bottles, and an in-situ UV absorbance nitrate sensor (ISUS). Discrete pulses of cool, nutrient-rich water were horizontally displaced at least 4 km on the shelf and shoaled more than 20 m depth at the semidiurnal frequency, resulting in more than a 10-fold change in the concentration of nitrate. Inshore, tissue nitrogen of Ulva outplants increased significantly during longer exposures to this cool water. At this site, the semidiurnal signal dominates water column temperature fluctuations from April to November, with summer showing the greatest cooling (up to 5 °C) in a one-hour period. We estimated that 11% of the days of a year show internal waves that would cause a significant change in nutrient availability to macroalgae at 5 m depth. This study supports the hypothesis that nitrate can reach and be rapidly incorporated by inshore macroalgae such as Ulva through transport forced by the internal tide, and that even very short (<1 h) nutrient pulses in nature are reflected in macroalgal tissue. We propose that at this site, the internal tide provides a significant, yet understudied, high frequency nutrient source to inshore primary producers, particularly in summer.

  10. High latitude control on tropical North Pacific thermocline oxygen via deep ocean circulation: implications for atmospheric CO2 and N2O concentrations over TERM1.

    NASA Astrophysics Data System (ADS)

    Jaccard, S. L.; Eric, G. D.; Haug, G. H.; Sigman, D. M.; Francois, R.; Dulski, P.

    2006-12-01

    Low-latitude Pacific Ocean records of past changes in productivity and denitrification have often been ascribed to local processes, including changes in local wind forcing, with some recent hypothesis calling on remote control by thermocline ventilation processes. Here we show that deep thermohaline circulation, a fundamentally high-latitude process, is also linked to the low-latitude thermocline biogeochemistry through its impact on nutrient and dissolved oxygen distributions. We present new, multi-proxy evidence from sediment records from the abyssal subarctic North Pacific, including sedimentary redox-sensitive trace metal distribution, Th-normalized biogenic barium, calcium carbonate, and opal mass accumulation rates, and bulk sedimentary 15N measurements. These proxies show that the abyss was significantly depleted in oxygen, and low 13C, all consistent with high DIC concentrations. Meanwhile, above a deep chemical divide, the overlying waters were relatively well-oxygenated and nutrient-poor. At the mid-point of the deglaciation, the glacial deep water mass dissipated upwards in the water column, releasing deeply-sequestered CO2 to the atmosphere and shifting nutrients into the thermocline. The flux of regenerated nutrients to the sunlit surface ocean associated with this breakdown of the deep water mass enhanced primary productivity throughout the subarctic Pacific, while records from lower latitudes of the North Pacific show a parallel boom in export production. The accelerated flux of organic matter from the surface contributed towards an intensification of the thermocline oxygen minimum zone, accelerating denitrification in the Eastern (sub)tropical North Pacific and the production of nitrous oxide. These observations, taken together with our evidence for changes in the deep North Pacific, suggest that the flux of nutrients from the deep North Pacific into the upper water column increased at the end of the ice age. This release may have occurred via the polar oceans, which today feed nutrients into the lower latitude thermocline. Alternatively, it may have occurred directly, by vertical mixing in the ocean interior. Regardless of the mechanism, this transition led to the modern configuration of a relatively well-ventilated deep sea, overlain by an oxygen minimum.

  11. Water-quality data for selected sites on Reversed, Rush, and Alger Creeks and Gull and Silver Lakes, Mono County, California, April 1994 to March 1995

    USGS Publications Warehouse

    Wang, Bronwen; Rockwell, G.L.; Blodgett, J.C.

    1995-01-01

    Water-quality data for selected sites on Reversed, Rush, and Alger Creeks and Gull and Silver Lakes, Mono County, California, were collected from April 1994 to March 1995. Water samples were analyzed for major ions and trace elements, nutrients, methylene blue active substances, and oil and grease. Field measurements were made for discharge, specific conductance, pH, water temperature, barometric pressure, dissolved oxygen, and alkalinity. Additional data collected include vertical water profiles of specific conductance, pH, water temperature, and dissolved oxygen collected at 3.3-foot intervals for Gull and Silver Lakes; chlorophyll-a and -b concentrations and Secchi depth for Gull and Silver Lakes; sediment interstitial- water nutrient concentrations in cores from Gull Lake; and lake surface and volume of Gull and Silver Lakes.

  12. Influence of Mesoscale Eddies on New Production in the Sargasso Sea

    NASA Technical Reports Server (NTRS)

    McGillicuddy, D. J., Jr.; Robinson, A. R.; Siegel, D. A.; Jannasch, H. W.; Johnson, R.; Dickey, T. D.; McNeil, J.; Michaels, A. F.; Knap, A. H.

    1998-01-01

    It is problematic that geochemical estimates of new production, that fraction of total primary production in surface waters fueled by externally supplied nutrients, in oligotrophic waters of the open ocean surpass that which can be sustained by the traditionally accepted mechanisms of nutrient supply. In the cam of the Sargasso Sea, for example, these mechanisms account for less than half of the annual nutrient requirement indicated by new production estimates based on three independent transient-tracer techniques. Specifically, approximately one-quarter to one-third of the annual nutrient requirement can be supplied by entrainment into the mixed layer during wintertime convection, with minor contributions from mixing in the thermocline and wind-driven transport (the potentially important role of nitrogen fixation- for which estimates vary by an order of magnitude in this region- is excluded from this budget). Here we present four lines of evidence-eddy-resolving model simulations, high-resolution observations from moored instrumentation, shipboard surveys and satellite data-which suggest that the vertical flux of nutrients induced by the dynamics of mesoscale eddies is sufficient to balance the nutrient budget in the Sargasso Sea.

  13. Enzyme Sorption onto Soil and Biocarbon Amendments Alters Catalytic Capacity and Depends on the Specific Protein and pH

    NASA Astrophysics Data System (ADS)

    Foster, E.; Fogle, E. J.; Cotrufo, M. F.

    2017-12-01

    Enzymes catalyze biogeochemical reactions in soils and play a key role in nutrient cycling in agricultural systems. Often, to increase soil nutrients, agricultural managers add organic amendments and have recently experimented with charcoal-like biocarbon products. These amendments can enhance soil water and nutrient holding capacity through increasing porosity. However, the large surface area of the biocarbon has the potential to sorb nutrients and other organic molecules. Does the biocarbon decrease nutrient cycling through sorption of enzymes? In a laboratory setting, we compared the interaction of two purified enzymes β-glucosidase and acid phosphatase with a sandy clay loam and two biocarbons. We quantified the sorbed enzymes at three different pHs using a Bradford protein assay and then measured the activity of the sorbed enzyme via high-throughput fluorometric analysis. Both sorption and activity depended upon the solid phase, pH, and specific enzyme. Overall the high surface area biocarbon impacted the catalytic capacity of the enzymes more than the loam soil, which may have implications for soil nutrient management with these organic amendments.

  14. Nutrient interleaving below the mixed layer of the Kuroshio Extension Front

    NASA Astrophysics Data System (ADS)

    Nagai, Takeyoshi; Clayton, Sophie

    2017-08-01

    Nitrate interleaving structures were observed below the mixed layer during a cruise to the Kuroshio Extension in October 2009. In this paper, we investigate the formation mechanisms for these vertical nitrate anomalies, which may be an important source of nitrate to the oligotrphoc surface waters south of the Kuroshio Extension Front. We found that nitrate concentrations below the main stream of the Kuroshio Extension were elevated compared to the ambient water of the same density ( σ 𝜃 = 23.5-25). This appears to be analogous to the "nutrient stream" below the mixed layer, associated with the Gulf Stream. Strong turbulence was observed above the vertical nitrate anomaly, and we found that this can drive a large vertical turbulent nitrate flux >O (1 mmol N m-2 day-1). A realistic, high-resolution (2 km) numerical simulation reproduces the observed Kuroshio nutrient stream and nitrate interleaving structures, with similar lateral and vertical scales. The model results suggest that the nitrate interleaving structures are first generated at the western side of the meander crest on the south side of the Kuroshio Extension, where the southern tip of the mixed layer front is under frontogenesis. Lagrangian analyses reveal that the vertical shear of geostrophic and subinertial ageostrophic flow below the mixed layer tilts the existing along-isopycnal nitrate gradient of the Kuroshio nutrient stream to form nitrate interleaving structures. This study suggests that the multi-scale combination of (i) the lateral stirring of the Kuroshio nutrient stream by developed mixed layer fronts during fall to winter, (ii) the associated tilting of along-isopycnal nitrate gradient of the nutrient stream by subinertial shear, which forms vertical interleaving structures, and (iii) the strong turbulent diffusion above them, may provide a route to supply nutrients to oligotrophic surface waters on the south side of the Kuroshio Extension.

  15. Nutrient load can lead to enhanced CH4 fluxes through changes in vegetation, peat surface elevation and water table depth in ombrotrophic bog

    NASA Astrophysics Data System (ADS)

    Juutinen, Sari; Bubier, Jill; Larmola, Tuula; Humphreys, Elyn; Arnkil, Sini; Roy, Cameron; Moore, Tim

    2016-04-01

    Atmospheric nitrogen (N) deposition has led to nutrient enrichment in wetlands, particularly in temperate areas, affecting plant community composition, carbon (C) cycling, and microbial dynamics. It is vital to understand the temporal scales and mechanisms of the changes, because peatlands are long-term sinks of C, but sources of methane (CH4), an important greenhouse gas. Rainwater fed (ombrotrophic) bogs are considered to be vulnerable to nutrient loading due to their natural nutrient poor status. We fertilized Mer Bleue Bog, a Sphagnum moss and evergreen shrub-dominated ombrotrophic bog near Ottawa, Ontario, now for 11-16 years with N (NO3 NH4) at 0.6, 3.2, and 6.4 g N m-2 y-1 (~5, 10 and 20 times ambient N deposition during summer months) with and without phosphorus (P) and potassium (K). Treatments were applied to triplicate plots (3 x 3 m) from May - August 2000-2015 and control plots received distilled water. We measured CH4 fluxes with static chambers weekly from May to September 2015 and peat samples were incubated in laboratory to measure CH4 production and consumption potentials. Methane fluxes at the site were generally low, but after 16 years, mean CH4 emissions have increased and more than doubled in high nitrogen addition treatments if P and K input was also increased (3.2 and 6.4 g N m-2yr-1 with PK), owing to drastic changes in vegetation and soil moisture. Vegetation changes include a loss of Sphagnum moss and introduction of new species, typical to minerogenic mires, which together with increased decomposition have led to decreased surface elevation and to higher water table level relative to the surface. The trajectories indicate that the N only treatments may result in similar responses, but only over longer time scales. Elevated atmospheric deposition of nutrients to peatlands may increase loss of C not only due to changes in CO2 exchange but also due to enhanced CH4 emissions in peatlands through a complex suite of feedbacks and interactions among vegetation, microclimate, and microbial processes. It is uncertain, however, how the vegetation change continues due to collapsing surface and higher water table levels, and how that will affect future CH4 emissions and C balance.

  16. Nutrient Characterization of Rainwater, Soil and Groundwater from Two Different Watersheds, Lake Taihu, China

    NASA Astrophysics Data System (ADS)

    Thaw, M.; Gao, F.; Yu, Z.; Acharya, K.

    2012-12-01

    Over the past two decades, an increase of nutrients to Lake Taihu, China has resulted in hyper-eutrophication and the production of severe cyanobacterial blooms. While many past studies have focused on how surface water transports nutrients to the lake, this study seeks to characterize the concentration of nutrients in different media, including rainwater, soil and groundwater from two different watersheds. These two watersheds varied in overall land use, and agricultural sites within each watershed varied by crop type and growing method. Samples were collected from the Meilin watershed, a mix of forest and agricultural land and the Zhangjiagang watershed, which consisted of industrial, urban and agricultural lands. Samples included soils, groundwater and rain water. Soils from each site were characterized by aggregate size class and analyzed for total nitrogen and total phosphorus. Rainwater and groundwater samples were analyzed for total nitrogen and total phosphorus.

  17. Growing duckweed in swine wastewater for nutrient recovery and biomass production.

    PubMed

    Xu, Jiele; Shen, Genxiang

    2011-01-01

    Spirodela oligorrhiza, a promising duckweed identified in previous studies, was examined under different cropping conditions for nutrient recovery from swine wastewater and biomass production. To prevent algae bloom during the start-up of a duckweed system, inoculating 60% of the water surface with duckweed fronds was required. In the growing season, the duckweed system was capable of removing 83.7% and 89.4% of total nitrogen (TN) and total phosphorus (TP) respectively from 6% swine lagoon water in eight weeks at a harvest frequency of twice a week. The total biomass harvested was 5.30 times that of the starting amount. In winter, nutrients could still be substantially removed in spite of the limited duckweed growth, which was probably attributed to the improved protein accumulation of duckweed plants and the nutrient uptake by the attached biofilm (algae and bacteria) on duckweed and walls of the system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Dispersion/dilution enhances phytoplankton blooms in low-nutrient waters

    NASA Astrophysics Data System (ADS)

    Lehahn, Yoav; Koren, Ilan; Sharoni, Shlomit; D'Ovidio, Francesco; Vardi, Assaf; Boss, Emmanuel

    2017-03-01

    Spatial characteristics of phytoplankton blooms often reflect the horizontal transport properties of the oceanic turbulent flow in which they are embedded. Classically, bloom response to horizontal stirring is regarded in terms of generation of patchiness following large-scale bloom initiation. Here, using satellite observations from the North Pacific Subtropical Gyre and a simple ecosystem model, we show that the opposite scenario of turbulence dispersing and diluting fine-scale (~1-100 km) nutrient-enriched water patches has the critical effect of regulating the dynamics of nutrients-phytoplankton-zooplankton ecosystems and enhancing accumulation of photosynthetic biomass in low-nutrient oceanic environments. A key factor in determining ecological and biogeochemical consequences of turbulent stirring is the horizontal dilution rate, which depends on the effective eddy diffusivity and surface area of the enriched patches. Implementation of the notion of horizontal dilution rate explains quantitatively plankton response to turbulence and improves our ability to represent ecological and biogeochemical processes in oligotrophic oceans.

  19. Two dimensions of nitrate pollution management in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Wachniew, Przemysław; Martinez, Grit; Bar-Michalczyk, Dominika; Kania, Jarosław; Malina, Grzegorz; Michalczyk, Tomasz; Różański, Kazimierz; Witczak, Stanisław; Zięba, Damian; Żurek, Anna J.; Berrini, Anne

    2017-04-01

    The Kocinka River catchment underlain by the karstic-fissured upper Jurrasic Częstochowa aquifer in Southern Poland is the site of an interdisciplinary research aimed at finding solutions to pollution of water resources with nutrients. These efforts are conducted in the framework of the BONUS Soils2Sea project that deals with the development of differentiated environmental management measures based on utilization of the natural ability of soils, groundwater and surface water to remove surplus nutrients. Implementation of these or any other measures for the improvement of water quality depends primarily on the perceptions and attitudes of the major actors, which in turn are a product of the socio-economic, cultural-historical and political development spanning many generations. The problem of the deteriorating water quality is therefore twofold. Understanding the complex natural system consisting of the coupled groundwater and surface water component with a wide spectrum of time lags of pollution transport is only the beginning of the solution. The mitigation policies and measures based on this scientific knowledge have to recognize the equally complex nature of social factors and interactions. Implementation of the European and national policies and legislations has to take into account the regional perspective. Identification of the key stakeholders is in this regard a first step followed by an inquiry into their values, perceptions and motivations through interviews, workshops, etc. Understanding of the socio-cultural, historical, economic and political factors that shape stakeholder actions is a prerequisite for the development of the successful management and mitigation schemes. The process of gaining insights into the environmental and social aspects of nutrient pollution in the Kocinka catchment is partly presented by the documentary film "Soils2Sea: Reducing nutrient loadings into the Baltic Sea" (https://www.youtube.com/watch?v=LUouES4SeJk).

  20. Hydrogeologic framework and water quality of the Vermont Army National Guard Ethan Allen Firing Range, northern Vermont, October 2002 through December 2003

    USGS Publications Warehouse

    Clark, Stewart F.; Chalmers, Ann; Mack, Thomas J.; Denner, Jon C.

    2005-01-01

    The Ethan Allen Firing Range of the Vermont Army National Guard is a weapons-testing and training facility in a mountainous region of Vermont that has been in operation for about 80 years. The hydrologic framework and water quality of the facility were assessed between October 2002 and December 2003. As part of the study, streamflow was continuously measured in the Lee River and 24 observation wells were installed at 19 locations in the stratified drift and bedrock aquifers to examine the hydrogeology. Chemical analyses of surface water, ground water, streambed sediment, and fish tissue were collected to assess major ions, trace elements, nutrients, and volatile and semivolatile compounds. Sampling included 5 surface-water sites sampled during moderate and low-flow conditions; streambed-sediment samples collected at the 5 surface-water sites; fish-tissue samples collected at 3 of the 5 surface-water sites; macroinvertebrates collected at 4 of the 5 surface-water sites; and ground-water samples collected from 10 observation wells, and samples collected at all surface- and ground-water sites. The hydrogeologic framework at the Ethan Allen Firing Range is dominated by the upland mountain and valley setting of the site. Bedrock wells yield low to moderate amounts of water (0 to 23 liters per minute). In the narrow river valleys, layered stratified-drift deposits of sand and gravel of up to 18 meters thick fill the Lee River and Mill Brook Valleys. In these deposits, the water table is generally within 3 meters below the land surface and overall ground-water flow is from east to west. Streamflow in the Lee River averaged 0.72 cubic meters per second (25.4 cubic feet per second) between December 2002 and December 2003. Streams are highly responsive to precipitation events in this mountainous environment and a comparison with other nearby watersheds shows that Lee River maintains relatively high streamflow during dry periods. Concentrations of trace elements and nutrients in surface-water samples are well below freshwater-quality guidelines for the protection of aquatic life. Brook-trout samples collected in 1992 and 2003 show trace-metal concentrations have decreased over the past 11 years. concentrations in water samples are well below levels that restrict swimming at all five stream sites at moderate and low-flow conditions and in all observation wells. Comparisons among surface-water, streambed-sediment, and biological samples collected in 2003 to earlier studies at the Ethan Allen Firing Range indicate water-quality conditions are similar or have improved over the past 15 years. Ground water in the stratified-drift aquifers at the facility is well buffered with relatively high alkalinities and pH greater than 6. Concentrations of arsenic, cadmium, chromium, lead, nickel, uranium, and zinc were below detection levels in ground-water samples. Barium, cobalt, copper, iron, manganese, molybdenum, and strontium were the only trace elements detected in ground-water samples. Cobalt and iron were detected at low levels in two wells near Mill Brook, and copper was detected at the detection limit in one of these wells. These same two wells had concentrations of barium and manganese 2 to 10 times greater than other ground-water samples. Concentrations of nutrients are at or below detection levels in most ground-water samples. Volatile organic compounds and semivolatile organic compounds were not detected in any water samples from the Ethan Allen Firing Range.

  1. Runoff quality from no-till cotton fertilized with broiler litter in subsurface bands.

    PubMed

    Adeli, A; Tewolde, H; Shankle, M W; Way, T R; Brooks, J P; McLaughlin, M R

    2013-01-01

    Surface broadcast of broiler litter to no-till row crops exposes the litter and its nutrients to risks of loss in runoff water and volatilization and may limit the potential benefit of litter to the crops. Subsurface banding of litter could alleviate these risks. A field study was conducted in 2008 and 2009 on an upland Falkner silt loam soil to determine the effect of broiler litter placement on runoff nutrient losses from no-till cotton ( L.). Treatments included surface broadcast broiler litter applied manually, subsurface-banded litter applied by tractor-drawn equipment, and no broiler litter, all in combination with or without winter wheat ( L.) cover crop residue. Broiler litter rate was 5.6 Mg ha. The experimental design was a randomized complete block with a split-plot arrangement of treatments replicated three times. In 2008, simulated rainfall was used to generate runoff 27 d after litter application. Subsurface-banded litter reduced runoff total C, N, P, NH, NO, Cu, Zn and water-soluble P (WP) concentrations by 72, 64, 51, 49, 70, 36, 65, and 77%, respectively, compared with surface broadcast. The reductions were greater in 2009 where runoff occurred 1 d after litter application. Bacterial runoff was decreased by one log with subsurface-banded litter compared to surface broadcast. Except for C, NH, N, and WP, the presence of winter cover crop residue did not affect the load or runoff nutrient concentrations in either year. The results indicate that subsurface banding litter to no-till cotton substantially reduces nutrient and bacterial losses in runoff compared with surface broadcasting. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. REMEDIADE™

    EPA Pesticide Factsheets

    Technical product bulletin: this bioremediation agent (nutrient additive) used in oil spill cleanups may be applied to any surface or water of any salinity to remove hydrocarbons. In soil, apply by tilling in specified increments.

  3. Integrating water quality responses to best management practices in Portugal.

    PubMed

    Fonseca, André; Boaventura, Rui A R; Vilar, Vítor J P

    2018-01-01

    Nutrient nonpoint pollution has a significant impact on water resources worldwide. The main challenge of this work was to assess the application of best management practices in agricultural land to comply with water quality legislation for surface waters. The Hydrological Simulation Program-FORTRAN was used to evaluate water quality of Ave River in Portugal. Best management practices (infiltration basin) (BMP) were applied to agricultural land (for 3, 6, 9, 12, and 15% area) with removal efficiencies of 50% for fecal coliforms and 30% for nitrogen, phosphorus, and biochemical oxygen demand. The inflow of water quality constituents was reduced for all scenarios, with fecal coliforms achieving the highest reduction between 5.8 and 28.9% and nutrients and biochemical oxygen demand between 2 and 13%. Biochemical oxygen demand and orthophosphates concentrations achieved a good water quality status according to the European Legislation for scenarios of BMP applied to 3 and 12% agricultural area, respectively. Fecal coliform levels in Ave River basin require further treatment to fall below the established value in the abovementioned legislation. This study shows that agricultural watersheds such as Ave basins demand special attention in regard to nonpoint pollution sources effects on water quality and nutrient loads.

  4. Nitrogen and carbon dynamics beneath on-site wastewater treatment systems in Pitt County, North Carolina.

    PubMed

    Del Rosario, Katie L; Humphrey, Charles P; Mitra, Siddhartha; O'Driscoll, Michael A

    2014-01-01

    On-site wastewater treatment systems (OWS) are a potentially significant non-point source of nutrients to groundwater and surface waters, and are extensively used in coastal North Carolina. The goal of this study was to determine the treatment efficiency of four OWS in reducing total dissolved nitrogen (TDN) and dissolved organic carbon (DOC) concentrations before discharge to groundwater and/or adjacent surface water. Piezometers were installed for groundwater sample collection and nutrient analysis at four separate residences that use OWS. Septic tank effluent, groundwater, and surface water samples (from an adjacent stream) were collected four times during 2012 for TDN and DOC analysis and pH, temperature, electrical conductivity, and dissolved oxygen measurements. Treatment efficiencies from the tank to the groundwater beneath the drainfields ranged from 33 to 95% for TDN and 45 to 82% for DOC, although dilution accounted for most of the concentration reductions. There was a significant positive correlation between nitrate concentration and separation distance from trench bottom to water table and a significant negative correlation between DOC concentration and separation distance. The TDN and DOC transport (>15 m) from two OWS with groundwater saturated drainfield trenches was significant.

  5. Nutrient leaching in a Colombian savanna Oxisol amended with biochar.

    PubMed

    Major, Julie; Rondon, Marco; Molina, Diego; Riha, Susan J; Lehmann, Johannes

    2012-01-01

    Nutrient leaching in highly weathered tropical soils often poses a challenge for crop production. We investigated the effects of applying 20 t ha biochar (BC) to a Colombian savanna Oxisol on soil hydrology and nutrient leaching in field experiments. Measurements were made over the third and fourth years after a single BC application. Nutrient contents in the soil solution were measured under one maize and one soybean crop each year that were routinely fertilized with mineral fertilizers. Leaching by unsaturated water flux was calculated using soil solution sampled with suction cup lysimeters and water flux estimates generated by the model HYDRUS 1-D. No significant difference ( > 0.05) was observed in surface-saturated hydraulic conductivity or soil water retention curves, resulting in no relevant changes in water percolation after BC additions in the studied soils. However, due to differences in soil solution concentrations, leaching of inorganic N, Ca, Mg, and K measured up to a depth of 0.6 m increased ( < 0.05), whereas P leaching decreased, and leaching of all nutrients (except P) at a depth of 1.2 m was significantly reduced with BC application. Changes in leaching at 2.0 m depth with BC additions were about one order of magnitude lower than at other depths, except for P. Biochar applications increased soil solution concentrations and downward movement of nutrients in the root zone and decreased leaching of Ca, Mg, and Sr at 1.2 m, possibly by a combination of retention and crop nutrient uptake. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Effect of replacing surface inlets with blind or gravel inlets on sediment and phosphorus subsurface drainage losses

    USDA-ARS?s Scientific Manuscript database

    Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine whether modifying open inlets by burying them in gravel capped with 30 cm of sandy clay loam soil or in ve...

  7. Pathways of upwelling deep waters to the surface of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Tamsitt, Veronica; Drake, Henri; Morrison, Adele; Talley, Lynne; Dufour, Carolina; Gray, Alison; Griffies, Stephen; Mazloff, Matthew; Sarmiento, Jorge; Wang, Jinbo; Weijer, Wilbert

    2017-04-01

    Upwelling of Atlantic, Indian and Pacific deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of anthropogenic carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. Here we go beyond the two-dimensional view of Southern Ocean upwelling, to show detailed Southern Ocean upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution ocean and climate models. The northern deep waters enter the Antarctic Circumpolar Current (ACC) via narrow southward currents along the boundaries of the three ocean basins, before spiraling southeastward and upward through the ACC. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the southern ACC boundary, with a spatially nonuniform distribution, regionalizing warm water supply to Antarctic ice shelves and the delivery of nutrient and carbon-rich water to the sea surface. The timescale for half of the deep water to upwell from 30°S to the mixed layer is on the order of 60-90 years, which has important implications for the timescale for signals to propagate through the deep ocean. In addition, we quantify the diabatic transformation along particle trajectories, to identify where diabatic processes are important along the upwelling pathways.

  8. Equatorial Pacific peak in biological production regulated by nutrient and upwelling during the late Pliocene/early Pleistocene cooling

    NASA Astrophysics Data System (ADS)

    Etourneau, J.; Robinson, R. S.; Martinez, P.; Schneider, R.

    2013-03-01

    The largest increase in export production in the eastern Pacific of the last 5.3 Myr (million years) occurred between 2.2 and 1.6 Myr, a time of major climatic and oceanographic reorganization in the region. Here, we investigate the causes of this event using reconstructions of export production, nutrient supply and oceanic conditions across the Pliocene-Pleistocene in the eastern equatorial Pacific (EEP) for the last 3.2 Myr. Our results indicate that the export production peak corresponds to a cold interval marked by high nutrient supply relative to consumption, as revealed by the low bulk sedimentary 15N/14N (δ15N) and alkenone-derived sea surface temperature (SST) values. This ~ 0.6 million years long episode of enhanced delivery of nutrients to the surface of the EEP was predominantly initiated through the upwelling of nutrient-enriched water sourced in high latitudes. In addition, this phenomenon was likely promoted by the regional intensification of upwelling in response to the development of intense Walker and Hadley atmospheric circulations. Increased nutrient consumption in the polar oceans and enhanced denitrification in the equatorial regions restrained nutrient supply and availability and terminated the high export production event.

  9. Impacts of light shading and nutrient enrichment geo-engineering approaches on the productivity of a stratified, oligotrophic ocean ecosystem.

    PubMed

    Hardman-Mountford, Nick J; Polimene, Luca; Hirata, Takafumi; Brewin, Robert J W; Aiken, Jim

    2013-12-06

    Geo-engineering proposals to mitigate global warming have focused either on methods of carbon dioxide removal, particularly nutrient fertilization of plant growth, or on cooling the Earth's surface by reducing incoming solar radiation (shading). Marine phytoplankton contribute half the Earth's biological carbon fixation and carbon export in the ocean is modulated by the actions of microbes and grazing communities in recycling nutrients. Both nutrients and light are essential for photosynthesis, so understanding the relative influence of both these geo-engineering approaches on ocean ecosystem production and processes is critical to the evaluation of their effectiveness. In this paper, we investigate the relationship between light and nutrient availability on productivity in a stratified, oligotrophic subtropical ocean ecosystem using a one-dimensional water column model coupled to a multi-plankton ecosystem model, with the goal of elucidating potential impacts of these geo-engineering approaches on ecosystem production. We find that solar shading approaches can redistribute productivity in the water column but do not change total production. Macronutrient enrichment is able to enhance the export of carbon, although heterotrophic recycling reduces the efficiency of carbon export substantially over time. Our results highlight the requirement for a fuller consideration of marine ecosystem interactions and feedbacks, beyond simply the stimulation of surface blooms, in the evaluation of putative geo-engineering approaches.

  10. Impacts of light shading and nutrient enrichment geo-engineering approaches on the productivity of a stratified, oligotrophic ocean ecosystem

    PubMed Central

    Hardman-Mountford, Nick J.; Polimene, Luca; Hirata, Takafumi; Brewin, Robert J. W.; Aiken, Jim

    2013-01-01

    Geo-engineering proposals to mitigate global warming have focused either on methods of carbon dioxide removal, particularly nutrient fertilization of plant growth, or on cooling the Earth's surface by reducing incoming solar radiation (shading). Marine phytoplankton contribute half the Earth's biological carbon fixation and carbon export in the ocean is modulated by the actions of microbes and grazing communities in recycling nutrients. Both nutrients and light are essential for photosynthesis, so understanding the relative influence of both these geo-engineering approaches on ocean ecosystem production and processes is critical to the evaluation of their effectiveness. In this paper, we investigate the relationship between light and nutrient availability on productivity in a stratified, oligotrophic subtropical ocean ecosystem using a one-dimensional water column model coupled to a multi-plankton ecosystem model, with the goal of elucidating potential impacts of these geo-engineering approaches on ecosystem production. We find that solar shading approaches can redistribute productivity in the water column but do not change total production. Macronutrient enrichment is able to enhance the export of carbon, although heterotrophic recycling reduces the efficiency of carbon export substantially over time. Our results highlight the requirement for a fuller consideration of marine ecosystem interactions and feedbacks, beyond simply the stimulation of surface blooms, in the evaluation of putative geo-engineering approaches. PMID:24132201

  11. Impact of climate change on crop nutrient and water use efficiencies.

    PubMed

    Brouder, Sylvie M; Volenec, Jeffrey J

    2008-08-01

    Implicit in discussions of plant nutrition and climate change is the assumption that we know what to do relative to nutrient management here and now but that these strategies might not apply in a changed climate. We review existing knowledge on interactive influences of atmospheric carbon dioxide concentration, temperature and soil moisture on plant growth, development and yield as well as on plant water use efficiency (WUE) and physiological and uptake efficiencies of soil-immobile nutrients. Elevated atmospheric CO(2) will increase leaf and canopy photosynthesis, especially in C3 plants, with minor changes in dark respiration. Additional CO(2) will increase biomass without marked alteration in dry matter partitioning, reduce transpiration of most plants and improve WUE. However, spatiotemporal variation in these attributes will impact agronomic performance and crop water use in a site-specific manner. Nutrient acquisition is closely associated with overall biomass and strongly influenced by root surface area. When climate change alters soil factors to restrict root growth, nutrient stress will occur. Plant size may also change but nutrient concentration will remain relatively unchanged; therefore, nutrient removal will scale with growth. Changes in regional nutrient requirements will be most remarkable where we alter cropping systems to accommodate shifts in ecozones or alter farming systems to capture new uses from existing systems. For regions and systems where we currently do an adequate job managing nutrients, we stand a good chance of continued optimization under a changed climate. If we can and should do better, climate change will not help us.

  12. Examining Dehydration and Hypoxic Stress in Wheat Plants Using a Porous Tube Plant Nutrient Delivery System Developed for Microgravity

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Hall, C. R.; Foster, T. E.; Salganic, M.; Warren, L.; Corbett, M.

    2005-01-01

    The Porous Tube Plant Nutrient Delivery System (PTPNDS) was designed for NASA to grow plants in microgravity of space. The system utilizes a controlled fluid loop to supply nutrients and water to plant roots growing on a ceramic surface moistened by capiflary action. A PTPNDS test bed was developed and utilizing remote sensing systems, spectral analyses procedures, gas-exchange, and fluorescence measurements, we examined differences in plant water status for wheat plants (Triticum aestivum, cv. Perigee) grown in a modified growth chamber during the summers of 2003 and 2004. Some differences in plant performance were detectable in the gas-exchange and fluorescence measurements. For instance, in both years the plants grown with the most available water had the lowest rates of photosynthesis and exhibited higher proportions of non-photochemical quenching particularly under low light levels. In addition, small differences in mean leaf water content between treatments were detected using spectral reflectance analyses.

  13. The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink.

    PubMed

    Abelmann, Andrea; Gersonde, Rainer; Knorr, Gregor; Zhang, Xu; Chapligin, Bernhard; Maier, Edith; Esper, Oliver; Friedrichsen, Hans; Lohmann, Gerrit; Meyer, Hanno; Tiedemann, Ralf

    2015-09-18

    Reduced surface-deep ocean exchange and enhanced nutrient consumption by phytoplankton in the Southern Ocean have been linked to lower glacial atmospheric CO2. However, identification of the biological and physical conditions involved and the related processes remains incomplete. Here we specify Southern Ocean surface-subsurface contrasts using a new tool, the combined oxygen and silicon isotope measurement of diatom and radiolarian opal, in combination with numerical simulations. Our data do not indicate a permanent glacial halocline related to melt water from icebergs. Corroborated by numerical simulations, we find that glacial surface stratification was variable and linked to seasonal sea-ice changes. During glacial spring-summer, the mixed layer was relatively shallow, while deeper mixing occurred during fall-winter, allowing for surface-ocean refueling with nutrients from the deep reservoir, which was potentially richer in nutrients than today. This generated specific carbon and opal export regimes turning the glacial seasonal sea-ice zone into a carbon sink.

  14. Trends in nutrients

    USGS Publications Warehouse

    Heathwaite, A.L.; Johnes, P.J.; Peters, N.E.

    1996-01-01

    The roles of nitrogen (N) and phosphorus (P) as key nutrients determining the trophic status of water bodies are examined, and evidence reviewed for trends in concentrations of N and P species which occur in freshwaters, primarily in northern temperate environments. Data are reported for water bodies undergoing eutrophication and acidification, especially water bodies receiving increased nitrogen inputs through the atmospheric deposition of nitrogen oxides (NOx). Nutrient loading on groundwaters and surface freshwaters is assessed with respect to causes and rates of (change, relative rates of change for N and P, and implications of change for the future management of lakes, rivers and groundwaters. In particular, the nature and emphasis of studies for N species and P fractions in lakes versus rivers and groundwaters are contrasted. This review paper primarily focuses on results from North America and Europe, particularly for the UK where a wide range of data sets exists. Few nutrient loading data have been published on water bodies in less developed countries; however, some of the available data are presented to provide a global perspective. In general, N and P concentrations have increased dramatically (>20 times background concentrations) in many areas and causes vary considerably, ranging from urbanization to changes in agricultural practices.

  15. Environmental setting, water quality, and ecological indicators of surface-water quality in the Mermentau River Basin, southwestern Louisiana, 1998-2001

    USGS Publications Warehouse

    Skrobialowski, Stanley C.; Mize, Scott V.; Demcheck, Dennis K.

    2004-01-01

    The U.S. Geological Survey collected data from 29 wells and 24 surface-water sites in the Mermentau River Basin, 1998-2001, to better understand ground-water and surface-water quality; aquatic invertebrate communities; and habitat conditions, in relation to land use. This study was apart of the National Water-Quality Assessment Program, which was designed to assess water quality as it relates to various land uses. Water-quality data were evaluated with criteria established for the protection of drinking water and aquatic life, and bed-sediment data were compared to aquatic life criteria. Water-quality and ecological data were analyzed statistically in relation to drainage area and agricultural land-use integrity. Concentrations of nutrients and major inorganic ions in ground water and surface water generally were highest in the southeastern part of the study area where soils contain thick loess deposits. Peak concentrations of nutrients in surface water occurred March-may at two sites with high agricultural intensity; the lowest concentrations occurred August-January. The greatest potential for eutrophic conditions in surface water, based on nutrient concentrations, existed March-May, at about the same time or shortly after ricefields were drained. Secondary Maximum Contaminant Levels established by the U.S. Environmental Protection Agency (USEPA) were exceeded for sulfate, chloride, iron, or manganese in samples from 20 wells, and for iron or manganese in samples from all surface-water sites. Fewer pesticides were detected in ground water than in surface water. In 11 of of the 29 wells sampled, at least one pesticide or pesticide degradation product was detected. The most frequently detected pesticides or pesticide degradation products in ground water were the herbicides benzaton and atrazine. Concentrations of 47 pesticides and degradation products were detected in surface water. At least 3 pesticides were detected in all surface-water samples. In 72 percent of the samples at least 5 hydrophilic pesticides were detected, and in more than 70 percent of the samples at least 3 hydrophobic pesticides were detected. Although atrazine concentrations in three samples collected in the spring exceeded 3 micrograms per liter, the USEPA Maximum Contaminant Level of 3 micrograms per liter was not exceeded because it is based on an annual average of quarterly samples. Concentrations larger than 3.0 micrograms per liter were not detected in samples collected during other times of the year. Tebuthiuron was detected at all surface-water sites; the largest concentration (6.33 micrograms per liter) was detected at a site on Bayou des Cannes, and was the only detection that exceeded the criterion (1.6 micrograms per liter) for the protection of aquatic life. Malathion was detected at 16 surface-water sites; the largest concentration (0.113 micrograms per liter) was detected at a site on Bayou Lacassine and was the only detection that exceeded the criterion (0.1 micrograms per liter) for the protection of aquatic life. Concentrations of fipronil exceeded numeric targets for acute total maximum daily loads (2.3 micrograms per liter) at 3 sites and chronic total maximum daily loads (4.6 micrograms per liter) at 14 sites. Maximum pesticide concentrations in surface water usually occurred in the spring at about the same time or shortly after ricefields were drained. Concentrations of DDE in bed sediment at two sites exceeded interim freshwater sediment quality guidelines for the protection of aquatic life. Fipronil sulfide and desulfinylpronil were detected at all 17 sites from which bed-sediment samples were collected, but there are no current (2002) guidelines with which to evaluate the environmental effects of fipronil and degradation products. Two methods were used to group the ecological data-collection sites: (1) Sites were grouped before data collection (according to the study design) using drainage area

  16. Mean residence time of the shelf water in the East China and the Yellow Seas determined by 228Ra/226Ra measurements

    NASA Astrophysics Data System (ADS)

    Nozaki, Yoshiyuki; Kasemsupaya, Vimonrut; Tsubota, Hiroyuki

    1989-11-01

    Increasing attention of oceanographers has recently been paied on East Asian marginal seas regarding their role on the global environment, yet geochemical investigations have been few to date. We here report new data on the distribution of 228Ra and 226Ra in the surface water of the East China and the Yellow seas in an effort to constrain the time necessary for the coastal and shelf waters to exchange with offshore waters. Such information is needed in evaluating the exchange of heat and water across the air-sea interface that affects the local climate and the fate of pollutants, nutrients and weathering products supplied from the continent. Based on the Ra isotope signals, we have estimated that the shelf water component contributes ˜ 20 % of the Tsushima Current water passing through the Tsushima Strait and the mean residence time for the shelf water to mix with the Kuroshio surface water is ˜ 2.3 years. As many of materials derived from the continent such as heavy metals and the nutrients have their mean residence times less than a few months in the nearshore and shelf waters, they must largely deposit on the shelf sediments prior to the transport from the shelf to the open sea by mixing.

  17. Hydrological and biogeochemical investigation of an agricultural watershed, southeast New Hampshire, USA

    NASA Astrophysics Data System (ADS)

    Davis, J. M.; McDowell, W. H.; Campbell, J. E.; Hristov, A. N.

    2010-12-01

    Developing sustainable agricultural practices and policies requires an understanding of the hydrological and biological processes that control nutrient fluxes and how those processes are manifested in nutrient loading of surface water bodies. Groundwater and surface water from the UNH Organic Research Dairy, located in southeast New Hampshire, flow into the Lamprey River and then into the Great Bay, New Hampshire; both are experiencing increasing nutrient loads. The farm hosts approximately 80 Jersey cows (40 milking) and is located on relatively thin (<10m) glacial deposits that include sandy glacial till moraines, an ice-contact delta, and marine silt and clay overlying fractured calcareous quartzite. Recharge of precipitation is the dominant mode through which nutrients are introduced into the hydrologic system. Intensive meteorological, hydrological, and biogeochemical monitoring of a 35 hectare watershed that includes the main farm operation buildings and several pastures has been underway since June 2009. A three-dimensional transient unsaturated-saturated groundwater flow model was developed using LIDAR topography and detailed field mapping. The transient model was calibrated to observed water level and streamflow observations. Model results suggest that summer recharge rates vary considerably across the site and depth to the water table is the dominant control on the recharge flux. Areas having depth to water of 1-2 m experience the greatest recharge (up to 60% of precipitation). Areas with deeper water tables experience greater evapotranspiration from the vadose zone, and shallower water tables experience greater runoff. Water budget calculations suggest that the hydrologic fluxes occur predominately in the shallow groundwater, wetlands, and small surface streams draining the watershed. High dissolved nitrogen (N) concentrations (up to an average concentration of 35 mg N/L) are observed in groundwater immediately downgradient from the main farm operation and decrease more than an order of magnitude along the flowpaths. However, Nitrogen-15 concentrations do not change appreciably along flowpaths, suggesting that reductions in N concentrations are primarily due to dilution rather than denitrification. Our overall objective is to understand how farm hydrology and biogeochemistry are linked to farm management. Our understanding of biophysical feedbacks and functional links can be used to guide sustainable management actions, informing decisions about the timing and location of manure applications and other farm operations.

  18. Yield and environmental effects of organic and inorganic fertilizer applications on mixed-season perennial forages

    USDA-ARS?s Scientific Manuscript database

    Although primarily a research project, this study included a training component whereby undergraduate research assistants gained practical knowledge in plant, soil and soil-water sampling and analysis, and learned about the environmental impact of nutrient loading in ground and surface waters. The ...

  19. Citizen-volunteer and professional monitoring to identify fecal sources of contamination in southwestern Puerto Rico

    EPA Science Inventory

    High concentrations of nutrients, fecal microorganisms, and sediments in surface waters can be a public health threat and can impact fringing coral reefs in Guánica Bay in southwestern Puerto Rico. Yet, the main factors and sources contributing to water quality degradation...

  20. Improved or unimproved urban areas effect on soil and water quality

    USDA-ARS?s Scientific Manuscript database

    Construction in urban areas usually results in compacted soil, which restricts plant growth and infiltration. Nutrients may be lost in storm runoff water and sediment. The purpose of this study was to determine if existing lawns benefit from aeration and surface compost additions without negative im...

  1. Land application of spent gypsum from ditch filters: phosphorus source or sink?

    USDA-ARS?s Scientific Manuscript database

    Agricultural drainage ditches can provide a direct connection between fields and surface waters, and some have been shown to deliver high loads of phosphorus (P) to sensitive water bodies. A potential way to reduce nutrient loads in drainage ditches is to install filter structures containing P sorbi...

  2. TESTING LINKAGES BETWEEN GROUNDWATER, WATERSHED, AND IN-STREAM MODELS IN THE CONTENTNEA CREEK BASIN, NORTH CAROLINA, USA

    EPA Science Inventory

    Computer modeling provides support for the development of TMDLs (total maximum daily loads) of impaired water bodies. Evaluations of TMDLs for nutrients, especially for nitrogen, benefits from a multi-media assessment (i.e., atmosphere, landscape, subsurface, surface water). In t...

  3. The influence of tide-topography interaction on low-frequency heat and nutrient fluxes. Application to Cape Trafalgar

    NASA Astrophysics Data System (ADS)

    Vargas-Yáñez, Manuel; Viola, Tarek Sarhan; Jorge, Francisco Plaza; Rubín, Juan P.; García-Martínez, M. Carmen

    2002-01-01

    During July 1994, 1995 and 1996, the Instituto Español de Oceanografía carried out three multidisciplinar surveys in the Northwestern Alboran Sea, Strait of Gibraltar and Gulf of Cadiz. Conductivity-temperature-depth (CTD) data and nutrient measurements revealed the existence of a pool of cool surface waters, rich in nutrients and with high fluorescence values offshore Cape Trafalgar during the three surveys. These data are considered as an indication of some sort of upwelling. The presence of a submarine ridge, breaking the continental shelf off Trafalgar and intercepting along shore tidal currents, and the intense winds in this area make us think that tide-topography interaction, probably enhanced by wind stirring in surface layers, is responsible for this phenomenon. Its permanence is inspected by means of the sea surface temperature (SST) satellite images recompiled for one year. They show that the pool is very frequent in summer and autumn, more unusual in spring and exceptional in winter. The explanation considered is that the mixing of deep and surface waters is only an effective means of heat exchange when the water column is stratified. To support our initial hypothesis and to get some insight of the relevant factors involved, we develop a bidimensional model aimed at studying along shore variations on the temperature, nutrient and chlorophyll distributions. Although the physical-biological model is very simple, it is able to show how large vertical excursions due to tide-topography interaction produce an eddy flux of heat and nutrients, cooling and fertilising areas around the topographic accident. The model is initialised with along-shore homogeneous distributions of all the variables modelled to check if the mechanism proposed is able to break this homogeneity in a similar way to the observed in experimental data. Appreciable differences between areas affected by tide-topography interaction and those far away from it appear in several days, a time scale much shorter than that associated with seasonal changes. Although the model is aimed at studying just the capability of tide-topography interaction for creating a similar situation to the pool off Trafalgar, a sensitivity test revealed the importance of time dependence of eddy diffusion coefficients (not considered in our bidimensional model) when studying seasonal cycles of temperature and nutrients. On the other hand, this dependence is not so relevant for shorter scales as those affecting our problem. The magnitude of the cooling, nutrient and chlorophyll concentrations and the shape of chlorophyll vertical profiles around topography are sensitive to the choice of eddy coefficients in upper layers, which is our way of parameterising the effect of wind stirring. They also have an effect on determining which is the limiting factor (light or nutrients) at the sea surface of areas affected by vertical forcing.

  4. Response of diatom and silicoflagellate assemblages in the central Gulf of California to regional climate change during the past 55 kyrs

    USGS Publications Warehouse

    Barron, John A.; Bukry, David; Cheshire, Heather

    2014-01-01

    High-resolution studies of diatoms and silicoflagellates of the past 55 kyrs in cores MD02-2517/2515 from the central Gulf of California (GoC) reveal profound changes in GoC surface waters. Roperia tesselata, a diatom proxy for late winter–early spring upwelling, and Dictyocha stapedia, a subtropical silicoflagellate indicative of GoC sea surface temperatures (SSTs) > 24 °C, are common during the Holocene but rare during Marine Isotope Stage (MIS) 2 and most of MIS 3, a relationship that likely reflects a more northerly position of the North Pacific High (NPH) during the Holocene. In contrast during most of MIS 2 (~ 27–15 ka), the persistent presence of Distephanus speculum, a silicoflagellate associated with SSTs During MIS 3 (~ 55–27 ka), increased dominance of Azpeitia nodulifera (diatom) implies that stratified, tropical waters were present year round, whereas silicoflagellate assemblages suggest that stratified tropical conditions alternated with more productive, upwelling conditions on millennial timescales. Reduced biosiliceous productivity during Heinrich events likely reflected a reduction in both surface water nutrient levels and in the strength of northwest winds due to a weakened and more southerly NPH. Conversely, enhanced biosiliceous productivity during MIS 3 interstadials was probably linked to heightened nutrient levels and a strengthened NPH. Abrupt relative abundance increases of the silicoflagellate, Dictyocha aculeata, approximate the termination of MIS3 Heinrich events and may signal times when nutrient-rich deep waters associated with the resumption of enhanced Atlantic Meridional Overturning Circulation penetrated into the central Gulf.

  5. Potential and timescales for oxygen depletion in coastal upwelling systems: A box-model analysis

    NASA Astrophysics Data System (ADS)

    Harrison, C. S.; Hales, B.; Siedlecki, S.; Samelson, R. M.

    2016-05-01

    A simple box model is used to examine oxygen depletion in an idealized ocean-margin upwelling system. Near-bottom oxygen depletion is controlled by a competition between flushing with oxygenated offshore source waters and respiration of particulate organic matter produced near the surface and retained near the bottom. Upwelling-supplied nutrients are consumed in the surface box, and some surface particles sink to the bottom where they respire, consuming oxygen. Steady states characterize the potential for hypoxic near-bottom oxygen depletion; this potential is greatest for faster sinking rates, and largely independent of production timescales except in that faster production allows faster sinking. Timescales for oxygen depletion depend on upwelling and productivity differently, however, as oxygen depletion can only be reached in meaningfully short times when productivity is rapid. Hypoxia thus requires fast production, to capture upwelled nutrients, and fast sinking, to deliver the respiration potential to model bottom waters. Combining timescales allows generalizations about tendencies toward hypoxia. If timescales of sinking are comparable to or smaller than the sum of those for respiration and flushing, the steady state will generally be hypoxic, and results indicate optimal timescales and conditions exist to generate hypoxia. For example, the timescale for approach to hypoxia lengthens with stronger upwelling, since surface particle and nutrient are shunted off-shelf, in turn reducing subsurface respiration and oxygen depletion. This suggests that if upwelling winds intensify with climate change the increased forcing could offer mitigation of coastal hypoxia, even as the oxygen levels in upwelled source waters decline.

  6. Water-quality assessment of the Ozark Plateaus study unit, Arkansas, Kansas, Missouri, and Oklahoma; nutrients, bacteria, organic carbon, and suspended sediment in surface water, 1993-95

    USGS Publications Warehouse

    Davis, Jerri V.; Bell, Richard W.

    1998-01-01

    Nutrient, bacteria, organic carbon, and suspended- sediment samples were collected from 1993-95 at 43 surface-water-quality sampling sites within the Ozark Plateaus National Water- Quality Assessment Program study unit. Most surface-water-quality sites have small or medium drainage basins, near-homogenous land uses (primarily agricultural or forest), and are located predominantly in the Springfield and Salem Plateaus. The water-quality data were analyzed using selected descriptive and statistical methods to determine factors affecting occurrence in streams in the study unit. Nitrogen and phosphorus fertilizer use increased in the Ozark Plateaus study unit for the period 1965-85, but the application rates are well below the national median. Fertilizer use differed substantially among the major river basins and physiographic areas in the study unit. Livestock and poultry waste is a major source of nutrient loading in parts of the study unit. The quantity of nitrogen and phosphorus from livestock and poultry wastes differed substantially among the river basins of the study unit's sampling network. Eighty six municipal sewage-treatment plants in the study unit have effluents of 0.5 million gallons per day or more (for the years 1985-91). Statistically significant differences existed in surface-water quality that can be attributed to land use, physiography, and drainage basin size. Dissolved nitrite plus nitrate, total phosphorus, fecal coliform bacteria, and dissolved organic carbon concentrations generally were larger at sites associated with agricultural basins than at sites associated with forested basins. A large difference in dissolved nitrite plus nitrate concentrations occurred between streams draining basins with agricultural land use in the Springfield and Salem Plateaus. Streams draining both small and medium agricultural basins in the Springfield Plateau had much larger concentrations than their counterparts in the Salem Plateau. Drainage basin size was not a significant factor in affecting total phosphorus, fecal coliform bacteria, or dissolved organic carbon concentrations. Suspended-sediment concentrations generally were small and indicative of the clear water in streams in the Ozark Plateaus. A comparison of the dissolved nitrite plus nitrate, total phosphorus, and fecal coliform data collected at the fixed and synoptic sites indicates that generally the data for streams draining basins of similar physiography, land-use setting, and drainage basin size group together. Many of the variations are most likely the result of differences in percent agricultural land use between the sites being compared or are discharge related. The relation of dissolved nitrite plus nitrate, total phosphorus, and fecal coliform concentration to percent agricultural land use has a strong positive 2 Water-Quality Assessment-Nutrients, Bacteria, Organic Carbon, and Suspended Sediment in Surface Water, 1993-95 correlation, with percent agricultural land use accounting for between 42 and 60 percent of the variation in the observed concentrations.

  7. Water uptake and nutrient concentrations under a floodplain oak savanna during a non-flood period, lower Cedar River, Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Jacobson, P.

    2009-01-01

    Floodplains during non-flood periods are less well documented than when flooding occurs, but non-flood periods offer opportunities to investigate vegetation controls on water and nutrient cycling. In this study, we characterized water uptake and nutrient concentration patterns from 2005 to 2007 under an oak savanna located on the floodplain of the Cedar River in Muscatine County, Iowa. The water table ranged from 0.5 to 2.5 m below ground surface and fluctuated in response to stream stage, plant water demand and rainfall inputs. Applying the White method to diurnal water table fluctuations, daily ET from groundwater averaged more than 3.5 mm/day in June and July and approximately 2 mm/day in May and August. Total annual ET averaged 404 mm for a growing season from mid-May to mid-October. Savanna groundwater concentrations of nitrate-N, ammonium-N, and phosphate-P were very low (mean <0.18, <0.14, <0.08 mg/l, respectively), whereas DOC concentrations were high (7.1 mg/l). Low concentrations of N and P were in contrast to high nutrient concentrations in the nearby Cedar River, where N and P averaged 7.5 mg/ l and 0.13, respectively. In regions dominated by intensive agriculture, study results document valuable ecosystem services for native floodplain ecosystems in reducing watershed-scale nutrient losses and providing an oasis for biological complexity. Improved understanding of the environmental conditions of regionally significant habitats, including major controls on water table elevations and water quality, offers promise for better management aimed at preserving the ecology of these important habitats. Copyright ?? 2009 John Wiley & Sons, Ltd.

  8. Water-quality assessment of the largely urban blue river basin, Metropolitan Kansas City, USA, 1998 to 2007

    USGS Publications Warehouse

    Wilkison, D.H.; Armstrong, D.J.; Hampton, S.A.

    2009-01-01

    From 1998 through 2007, over 750 surface-water or bed-sediment samples in the Blue River Basin - a largely urban basin in metropolitan Kansas City - were analyzed for more than 100 anthropogenic compounds. Compounds analyzed included nutrients, fecal-indicator bacteria, suspended sediment, pharmaceuticals and personal care products. Non-point source runoff, hydrologic alterations, and numerous waste-water discharge points resulted in the routine detection of complex mixtures of anthropogenic compounds in samples from basin stream sites. Temporal and spatial variations in concentrations and loads of nutrients, pharmaceuticals, and organic wastewater compounds were observed, primarily related to a site's proximity to point-source discharges and stream-flow dynamics. ?? 2009 ASCE.

  9. Determining the Role of Sediment Deposition and Transport in the Formation and Maintenance of Tree Islands in the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Mitchell-Bruker, S.; Childers, D.; Ross, M.; Leonard, L.; Solo-Gabriel, H.; Stothoff, S.

    2002-05-01

    Tree islands are a prominent feature in the Everglades ridge and slough wetlands. These tree islands are believed to be a remnant of the historical pre-drainage flow system. Within Everglades National Park, hardwood hammock and bayhead tree islands commonly form as teardrop-shaped mounds, rising above the sawgrass marsh. These tree islands are usually oriented along the direction of surface water flow, with the highest elevation and widest part of the island at the upstream head. The island narrows as it descends into the marsh at the downstream end, terminating in a tail that sometimes includes a zone of dead or dying sawgrass. The shape and orientation of the tree islands suggests that surface water flow has been instrumental in their formation, however occasional flow measurements indicate that the slow moving water of the Everglades does not provide sufficient energy to transport even moderate amounts of suspended sediment. This low flow velocity, coupled with the extremely low turbidity of the Everglades water suggests that if sediment transport and deposition processes are instrumental in forming tree islands, the process is probably occurring over short distances and long time intervals. It is also possible that concentration and transport of nutrients is an important element in tree island formation. Because the Everglades marsh is a low nutrient environment, processes that create areas of increased phosphorous concentration result in changes in the vegetation. Because many hardwood hammock and bayhead tree islands have heads that are situated on bedrock highs, the higher and drier elevation of the head allows for trees to grow. These trees could concentrate phosphorous either by acting as wildlife attractors, or by acting as \\x8Dphosphorous pumpsŒ, transporting groundwater with high concentrations of phosphorous through the roots to the tree. We are characterizing vegetation, litter fall, sediments, surface water flow, hydrologic gradients and nutrient gradients on tree islands and in the surrounding marsh. These data will be analyzed using statistical and hydrologic models to test the hypothesis that surface water flow is an essential force in forming and maintaining tree islands. A sediment and nutrient transport model is being developed to apply these data to scenarios for flow in a vegetated wetland. By constraining model parameters to the limits supported by these data, the full range of possible flow and transport scenarios can be tested in the model. These model results, along with statistical analysis will be used to support or reject the hypothesis that sediment and nutrient transport are key components in the formation of hardwood hammock and bay head tree islands.

  10. Environmental Stress-mediated EPS Production Shape Microbial Activity on Various Hydrated Rough Surfaces

    NASA Astrophysics Data System (ADS)

    Wang, G.; Liu, L.; Chen, G.

    2016-12-01

    The complex environmental physical and chemical processes and interplay with the associating biological responses are keys to understanding the environmental microbiology ensconced in environmental remediation, water quality control, food safety, nutrient cycling, and etc., yet remain poorly understood. Using experimental micromodels, we study how environmental conditions (e.g., hydration fluctuation, nutrient limitation, pH variation, etc.) affect microbial extracellular polymeric substances (EPS) production and their configuration within various hydrated surfaces, and impacts on microbial motility, surface attachment, aggregation, and other bioremediation activities. To elucidate the potential mechanisms underlying the complex bio-physicochemical processes, we developed an individual-based and spatio-temporally resolved modeling platform that explicitly considers microscale aqueous-phase configuration and nutrient transport/diffusion and associated biophysical processes affecting individual microbial cell life history. We quantitatively explore the effects of the above microscale environmental processes on bio-physicochemical interactions affecting microbial growth, motility, surface attachment and aggregation, and shaping population interactions and functions. Simulation scenarios of microbial induced pollutant (e.g., roxarsone) biotransformation on various hydrated rough surfaces will also be present.

  11. Seasonal variation of hydrographic and nutrient fields during the US JGOFS Arabian Sea Process Study

    NASA Astrophysics Data System (ADS)

    Morrison, J. M.; Codispoti, L. A.; Gaurin, S.; Jones, B.; Manghnani, V.; Zheng, Z.

    Between September 1994 and December 1995, the US JGOFS Arabian Sea Process Experiment collected extensive, high quality hydrographic data (temperature, salinity, dissolved oxygen and nutrients) during all seasons in the northern Arabian Sea. An analysis of this unique data suite suggests the presence of many features that are described in the canonical literature, but these new data provided the following insights. Although the seasonal evolution of mixed-layer depths was in general agreement with previous descriptions, the deepest mixed-layer depths in our data occurred during the late NE Monsoon instead of the SW Monsoon. The region exhibits considerable mesoscale variability resulting in extremely variable temperature-salinity (TS) distributions in the upper 1000 db. This mesoscale variability is readily observed in satellite imaging, in the high resolution data taken by a companion ONR funded project, and in underway ADCP data. The densest water reaching the sea surface during coastal upwelling appeared to have maximum offshore depths of ˜150 m and σθ's close to the core value (˜25) for the saline Arabian Sea Water (ASW), but salinities in these upwelling waters were relatively low. The densest water found at the sea surface during late NE Monsoon conditions has σθ's>24.8 and relatively high salinities, suggesting that they are a source for the ASW salinity maximum. Persian Gulf Water (PGW) with a core σθ of 26.6 forms a widespread salinity maximum. Despite the considerable extent of this feature, Persian Gulf outflow water, with a salinity (4) of ˜39 at its source, can only be a minor contributor. Within the standard US JGOFS sampling grid, maximum salinities on this surface are ˜36.8 at stations near the Gulf, falling to values as low as ˜35.3 at the stations farthest removed from its influence. Even at our standard stations closest to the Gulf (N-1 and N-2), the high-salinity, low-nutrient Persian Gulf water has only a modest direct effect on nutrient concentrations. This PGW salinity maximum is associated with the suboxic portions of the Arabian Sea's oxygen minimum zone. The salinity maximum associated with Red Sea Water (RSW, core σθ=27.2) in the JGOFS study region is clearly evident at the southermost sampling site at 10'N (S-15). Elsewhere, this signal is weak or absent and salinity on the 27.2 σθ surface tends to increase towards the Persian Gulf, suggesting that the disappearance of this salinity maximum is due, at least in part, to the influence of the Persian Gulf outflow. Inorganic nitrogen-to-phosphate ratios were lower (frequently much lower) than the standard Redfield ratio of 15/1-16/1 (by atoms) at all times and all depths suggesting that inorganic nitrogen was more important than phosphate as a limiting nutrient for phytoplankton growth, and that the effects of denitrification dominated the effects of nitrogen fixation. The water upwelling off the Omani coast during the SW Monsoon has inorganic nitrogen to silicate ratios that were higher (˜2/1) than the ˜1/1 ratio often assumed as the ratio of uptake during diatom growth. The temporal evolution of inorganic nitrogen-to-silicate ratios suggests major alteration by diatom uptake only during the late SW Monsoon cruise (TN050) in August-September 1995. Widespread moderate surface layer nutrient concentrations occurred during the late NE Monsoon. A zone of high offshore nutrient concentrations was encountered during the SW Monsoon, but instead of being associated with offshore upwelling it may represent offshore advection from the coastal upwelling zone, the influence of an eddy, or both. Although our data do not contradict previous suggestions that the volume of subtoxic water may be reduced the SW Monsoon, they suggest a weaker re-oxygenation than indicated by some previous work. Similarly, they do not confirm results suggesting that secondary nitrite maxima may be common in waters with oxygen concentrations >5 μM.

  12. Assessment of soil and water contaminants from selected locations in and near the Idaho Army National Guard Orchard Training Area, Ada County, Idaho, 2001-2003

    USGS Publications Warehouse

    Parliman, D.J.

    2004-01-01

    In 2001, the National Guard Bureau and the U.S. Geological Survey began a project to compile hydrogeologic data and determine presence or absence of soil, surface-water, and ground-water contamination at the Idaho Army National Guard Orchard Training Area in southwestern Idaho. Between June 2002 and April 2003, a total of 114 soil, surface-water, ground-water, precipitation, or dust samples were collected from 68 sample sites (65 different locations) in the Orchard Training Area (OTA) or along the vehicle corridor to the OTA. Soil and water samples were analyzed for concentrations of selected total trace metals, major ions, nutrients, explosive compounds, semivolatile organics, and petroleum hydrocarbons. Water samples also were analyzed for concentrations of selected dissolved trace metals and major ions. Distinguishing naturally occurring large concentrations of trace metals, major ions, and nutrients from contamination related to land and water uses at the OTA was difficult. There were no historical analyses for this area to compare with modern data, and although samples were collected from 65 locations in and near the OTA, sampled areas represented only a small part of the complex OTA land-use areas and soil types. For naturally occurring compounds, several assumptions were made?anomalously large concentrations, when tied to known land uses, may indicate presence of contamination; naturally occurring concentrations cannot be separated from contamination concentrations in mid- and lower ranges of data; and smallest concentrations may represent the lowest naturally occurring range of concentrations and (or) the absence of contaminants related to land and water uses. Presence of explosive, semivolatile organic (SVOC), and petroleum hydrocarbon compounds in samples indicates contamination from land and water uses. In areas along the vehicle corridor and major access roads within the OTA, most trace metal, major ion, and nutrient concentrations in soil samples were not in the upper 10th percentile of data, but concentrations of 25 metals, ions, or nutrients were in the upper 10th percentile in a puddle sample near the heavy equipment maneuvering area, MPRC-H. The largest concentrations of tin, ammonia, and nitrite plus nitrate (as nitrogen) in water from the OTA were detected in a sample from this puddle. Petroleum hydrocarbons were the most common contaminant, detected in all soil and surface-water samples. An SVOC, bis (2-ethylhexyl) phthalate, a plasticizer, was detected at a site along the vehicle corridor. In Maneuver Areas within the OTA, many soil samples contained at least one trace metal, major ion, or nutrient in the upper 10th percentile of data, and the largest concentrations of cobalt, iron, mercury, titanium, sodium, ammonia, or total phosphorus were detected in 6 of 13 soil samples outside the Tadpole Lake area. The largest concentrations of aluminum, arsenic, beryllium, nickel, selenium, silver, strontium, thallium, vanadium, chloride, potassium, sulfate, and nitrite plus nitrate were detected in soil samples from the Tadpole Lake area. Water from Tadpole Lake contained the largest total concentrations of 19 trace metals, 4 major ions, and 1 nutrient. Petroleum hydrocarbons were detected in 5 soil samples and water from Tadpole Lake. SVOCs related to combustion of fuel or plasticizers were detected in 1 soil sample. Explosive compounds were detected in 1 precipitation sample.In the Impact Area within the OTA, most soil samples contained at least one trace metal, major ion, or nutrient in the upper 10th percentile of data, and the largest concentrations of barium, chromium, copper, manganese, lead, or orthophosphate were detected in 6 of the 18 soil samples. Petroleum hydrocarbons were detected in 4 soil samples, SVOCs in 6 samples, and explosive compounds in 4 samples. In the mobilization and training equipment site (MATES) compound adjacent to the OTA, all soil and water samples contained at lea

  13. Spatio-temporal patterns of groundwater depths and soil nutrients in a small watershed in the Ethiopian highlands: Topographic and land-use controls

    NASA Astrophysics Data System (ADS)

    Guzman, Christian D.; Tilahun, Seifu A.; Dagnew, Dessalegn C.; Zimale, Fasikaw A.; Zegeye, Assefa D.; Boll, Jan; Parlange, Jean-Yves; Steenhuis, Tammo S.

    2017-12-01

    Soil and water conservation structures, promoted by local and international development organizations throughout rural landscapes, aim to increase recharge and prevent degradation of soil surface characteristics. This study investigates this unexamined relationship between recharge, water table depths, and soil surface characteristics (nutrients) in a small sub-watershed in the northwestern Ethiopian highlands. These highland watersheds have high infiltration rates (mean 70 mm hr-1, median 33 mm hr-1), recharging the shallow unconfined hillslope aquifer with water transport occurring via subsurface pathways down the slope. The perched water tables reflect the subsurface flux and are deep where this flux is rapid in the upland areas (138 cm below surface). Soil saturation and overland flow occur when the subsurface flux exceeds the transport capacity of the soil in the lower downslope areas near the ephemeral stream (19 cm below surface). Land use is directly related to the water table depth, corresponding to grazing and fallowed (saturated) land in the downslope areas and cultivated (unsaturated) land in the middle and upper parts where the water table is deeper. Kjeldahl Total Nitrogen (TN), Bray II available phosphorus (AP), and exchangeable potassium (K+) averages exhibit different behaviors across slope, land use transects, or saturation conditions. TN was moderate to low (0.07% ± 0.04) in various land uses and slope regions. Bray II AP had very low concentrations (0.25 mg kg-1 ± 0.26) among the different slope regions with no significant differences throughout (p > .05). The exchangeable cation (K+, Ca2+, Mg2+) concentrations and pH, however, were greater in non-cultivated (seasonally saturated) lands and in a downslope direction (p < .001, p < .005, p < .05, and p < .005, respectively). These results show that the perched groundwater plays an important role in influencing land use, the amount of water seasonally available for crop growth, and exchangeable cations, but have no clear effect on the concentration of the two primarily applied nutrients in fertilizers (N, P).

  14. Sustained climate warming drives declining marine biological productivity

    NASA Astrophysics Data System (ADS)

    Moore, J. Keith; Fu, Weiwei; Primeau, Francois; Britten, Gregory L.; Lindsay, Keith; Long, Matthew; Doney, Scott C.; Mahowald, Natalie; Hoffman, Forrest; Randerson, James T.

    2018-03-01

    Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease by more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.

  15. Water-quality assessment of the Rio Grande Valley study unit, Colorado, New Mexico, and Texas: analysis of selected nutrient, suspended-sediment, and pesticide data

    USGS Publications Warehouse

    Anderholm, S.K.; Radell, M.J.; Richey, S.F.

    1995-01-01

    This report contains a summary of data compiled from sources throughout the Rio Grande Valley study unit of the National Water-Quality Assessment program. Information presented includes the sources and types of water-quality data available, the utility of water-quality data for statistical analysis, and a description of recent water-quality conditions and trends and their relation to natural and human factors. Water-quality data are limited to concentrations of selected nutrient species in surface water and ground water, concentrations of suspended sediment and suspended solids in surface water, and pesticides in surface water, ground water, and biota.The Rio Grande Valley study unit includes about 45,900 square miles in Colorado, New Mexico, and Texas upstream from the streamflow-monitoring station Rio Grande at El Paso, Texas. The area also includes the San Luis Closed Basin and the surface-water closed basins east of the Continental Divide and north of the United States-Mexico international border. The Rio Grande drains about 29,300 square miles in these States; the remainder of the study unit area is in closed basins. Concentrations of all nutrients found in surface-water samples collected from the Rio Grande, with the exception of phosphorus, generally remained nearly constant from the northernmost station in the study unit to Rio Grande near Isleta, where concentrations were larger by an order of magnitude. Total nitrogen and total phosphorus loads increased downstream between Lobatos, Colorado, and Albuquerque, New Mexico. Nutrient concentrations remained elevated with slight variations until downstream from Elephant Butte Reservoir, where nutrient concentrations were lower. Nutrient concentrations then increased downstream from the reservoir, as evidenced by elevated concentrations at Rio Grande at El Paso, Texas.Suspended-sediment concentrations were similar at stations upstream from Otowi Bridge near San Ildefonso, New Mexico. The concentration and estimated load were nearly two orders of magnitude larger at this station relative to upstream stations. Cochiti Lake allows suspended sediment to settle, thus the resulting concentration is substantially lower downstream from the reservoir. Downstream from Cochiti Lake, concentrations again increased due to inflow from tributaries, other ephemeral streams and arroyos, and agricultural and urban areas. Two ephemeral tributaries (Rio Puerco and Rio Salado, which are south of Albuquerque) contribute substantial amounts of suspended sediment to the Rio Grande. Suspended-sediment concentrations in the Rio Grande just downstream from Elephant Butte Dam decreased by nearly three orders of magnitude due to settling in the reservoir. Concentrations then increased due to agricultural and urban impacts downstream from the reservoir.Nutrients in ground water in the study unit do not appear to be a widespread problem. However, localized areas that have elevated nitrate concentrations have been documented. The largest median nitrate concentration was found in water from wells located in the Basin and Range-mountains-urban data stratum (3.0 milligrams per liter) and the smallest median nitrate concentration was found in water from wells located in the Southern Rocky Mountainsmountains-forest data stratum (0.08 milligram per liter). Few (3 percent) nitrate concentrations in water from wells in all data strata were greater than 10 milligrams per liter, and most (82 percent) were less than 2 milligrams per liter. Comparison of nitrate concentrations in water from wells located in specific land-use settings across all hydrogeologic settings, with the exception of the Colorado Plateau, indicated that the largest median nitrate concentration was associated with rangeland land use and that larger nitrate concentrations were found in water from shallow wells. Water from wells located in areas of rangeland land use consistently had larger median nutrient concentrations than water from wells in areas of other land uses. The largest median ammonia concentration was in water from wells located in the Colorado Plateau-San Juan Basin-rangeland data stratum (0.27 milligram per liter). Most median ammonia concentrations were less than 0.03 milligram per liter, indicating that elevated ammonia concentrations are not a major issue in the study unit.The largest median orthophosphate concentration was found in water from wells located in the Southern Rocky Mountains-mountains-forest data stratum (0.15 milligram per liter) and the smallest was found in water from wells located in the Basin and Range-mountains-urban data stratum (0.02 milligram per liter). Most orthophosphate concentrations (85 percent) sampled were less than 0.2 milligram per liter, indicating that elevated orthophosphate concentrations are not a major issue in the study unit.Pesticide analyses were available for only 38 ground-water sampling sites in the Rio Grande Valley study unit. Diazinon, at a concentration of 0.01 microgram per liter, was the only pesticide detected and it was detected at only one site. More study is needed to determine if pesticides are affecting ground-water quality in the Rio Grande Valley study unit.Surface-water biological pesticide data were inadequate for in-depth analysis. The primary sources of data were the U.S. Fish and Wildlife Service and the U.S. Geological Survey. In the U.S. Fish and Wildlife Service study p,p'-DDE, a degradation product of DDT, was detected most frequently; highest concentrations were found at Stahman Farms in carp (6.3 micrograms per gram wet-weight) and at Hatch in Western kingbird (5.1 micrograms per gram wet-weight). In the U.S. Geological Survey study of Bosque del Apache National Wildlife Refuge no detectable organochlorine concentrations were found in plants, but detectable levels of p,p'-DDE were found in coot and carp, with a maximum concentration of 0.12 microgram per gram wet-weight found in coot.

  16. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters

    NASA Astrophysics Data System (ADS)

    Takeda, Shigenobu

    1998-06-01

    The major nutrients (nitrate, phosphate and silicate) needed for phytoplankton growth are abundant in the surface waters of the subarctic Pacific, equatorial Pacific and Southern oceans, but this growth is limited by the availability of iron. Under iron-deficient conditions, phytoplankton exhibit reduced uptake of nitrate and lower cellular levels of carbon, nitrogen and phosphorus. Here I describe seawater and culture experiments which show that iron limitation can also affect the ratio of consumed silicate to nitrate and phosphate. In iron-limited waters from all three of the aforementioned environments, addition of iron to phytoplankton assemblages in incubation bottles halved the silicate:nitrate and silicate:phosphate consumption ratios, in spite of the preferential growth of diatoms (silica-shelled phytoplankton). The nutrient consumption ratios of the phytoplankton assemblage from the Southern Ocean were similar to those of an iron-deficient laboratory culture of Antarctic diatoms, which exhibit increased cellular silicon or decreased cellular nitrogen and phosphorus in response to iron limitation. Iron limitation therefore increases the export of biogenic silicon, relative to nitrogen and phosphorus, from the surface to deeper waters. These findings suggest how the sedimentary records of carbon and silicon deposition in the glacial Southern Ocean can be consistent with the idea that changes in productivity, and thus in drawdown of atmospheric CO2, during the last glaciation were stimulated by changes in iron inputs from atmospheric dust.

  17. Water Quality Conditions Associated with Cattle Grazing and Recreation on National Forest Lands

    PubMed Central

    Roche, Leslie M.; Kromschroeder, Lea; Atwill, Edward R.; Dahlgren, Randy A.; Tate, Kenneth W.

    2013-01-01

    There is substantial concern that microbial and nutrient pollution by cattle on public lands degrades water quality, threatening human and ecological health. Given the importance of clean water on multiple-use landscapes, additional research is required to document and examine potential water quality issues across common resource use activities. During the 2011 grazing-recreation season, we conducted a cross sectional survey of water quality conditions associated with cattle grazing and/or recreation on 12 public lands grazing allotments in California. Our specific study objectives were to 1) quantify fecal indicator bacteria (FIB; fecal coliform and E. coli), total nitrogen, nitrate, ammonium, total phosphorus, and soluble-reactive phosphorus concentrations in surface waters; 2) compare results to a) water quality regulatory benchmarks, b) recommended maximum nutrient concentrations, and c) estimates of nutrient background concentrations; and 3) examine relationships between water quality, environmental conditions, cattle grazing, and recreation. Nutrient concentrations observed throughout the grazing-recreation season were at least one order of magnitude below levels of ecological concern, and were similar to U.S. Environmental Protection Agency (USEPA) estimates for background water quality conditions in the region. The relative percentage of FIB regulatory benchmark exceedances widely varied under individual regional and national water quality standards. Relative to USEPA’s national E. coli FIB benchmarks–the most contemporary and relevant standards for this study–over 90% of the 743 samples collected were below recommended criteria values. FIB concentrations were significantly greater when stream flow was low or stagnant, water was turbid, and when cattle were actively observed at sampling. Recreation sites had the lowest mean FIB, total nitrogen, and soluble-reactive phosphorus concentrations, and there were no significant differences in FIB and nutrient concentrations between key grazing areas and non-concentrated use areas. Our results suggest cattle grazing, recreation, and provisioning of clean water can be compatible goals across these national forest lands. PMID:23826370

  18. Global implementation of two shared socioeconomic pathways for future sanitation and wastewater flows.

    PubMed

    van Puijenbroek, P J T M; Bouwman, A F; Beusen, A H W; Lucas, P L

    2015-01-01

    Households are an important source of nutrient loading to surface water. Sewage systems without or with only primary wastewater treatment are major polluters of surface water. Future emission levels will depend on population growth, urbanisation, increases in income and investments in sanitation, sewage systems and wastewater treatment plants. This study presents the results for two possible shared socioeconomic pathways (SSPs). SSP1 is a scenario that includes improvement of wastewater treatment and SSP3 does not include such improvement, with fewer investments and a higher population growth. The main drivers for the nutrient emission model are population growth, income growth and urbanisation. Under the SSP1 scenario, 5.7 billion people will be connected to a sewage system and for SSP3 this is 5 billion. Nitrogen and phosphorus emissions increase by about 70% under both SSP scenarios, with the largest increase in SSP1. South Asia and Africa have the largest emission increases, in the developed countries decrease the nutrient emissions. The higher emission level poses a risk to ecosystem services.

  19. Liming Influences Growth and Nutrient Balances in Sugar Maple (Acer saccharum) Seedlings on an Acidic Forest Soil

    Treesearch

    Dudley J. Raynal

    1998-01-01

    Forests in the northeastern US have been limed to mitigate soil acidification and the acidity of surface waters and to improve soil base cation status. Much of the area considered for liming is within the range of sugar maple (Acer saccharum), but there is a poor understanding of how liming influences growth and nutrient balance of this species on...

  20. Digital data used to relate nutrient inputs to water quality in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Brakebill, John W.; Preston, Stephen D.

    1999-01-01

    Digital data sets were compiled by the U. S. Geological Survey (USGS) and used as input for a collection of Spatially Referenced Regressions On Watershed attributes for the Chesapeake Bay region. These regressions relate streamwater loads to nutrient sources and the factors that affect the transport of these nutrients throughout the watershed. A digital segmented network based on watershed boundaries serves as the primary foundation for spatially referencing total nitrogen and total phosphorus source and land-surface characteristic data sets within a Geographic Information System. Digital data sets of atmospheric wet deposition of nitrate, point-source discharge locations, land cover, and agricultural sources such as fertilizer and manure were created and compiled from numerous sources and represent nitrogen and phosphorus inputs. Some land-surface characteristics representing factors that affect the transport of nutrients include land use, land cover, average annual precipitation and temperature, slope, and soil permeability. Nutrient input and land-surface characteristic data sets merged with the segmented watershed network provide the spatial detail by watershed segment required by the models. Nutrient stream loads were estimated for total nitrogen, total phosphorus, nitrate/nitrite, amonium, phosphate, and total suspended soilds at as many as 109 sites within the Chesapeake Bay watershed. The total nitrogen and total phosphorus load estimates are the dependent variables for the regressions and were used for model calibration. Other nutrient-load estimates may be used for calibration in future applications of the models.

  1. Nutrients levels in paddy soils and flood waters from Tagus-Sado basin: the impact of farming system

    NASA Astrophysics Data System (ADS)

    Santos, Erika S.; Abreu, Maria Manuela; Magalhães, Maria Clara; Viegas, Wanda; Amâncio, Sara; Cordovil, Cláudia

    2017-04-01

    Application of fertilizers for crops can contribute to nutrients surplus, namely nitrogen, in both groundwater and surface waters resulting in serious environmental problems. The impacts on water quality due to fertilizers are related to land management. In paddy fields using high amounts of water, the nutrient dynamic knowledge is essential to evaluate the impact of farming system. The aims of this study were to evaluate: i)nutrients levels in soils and floodwaters from rice cultivation in Tagus-Sado basin (Portugal); ii)the effect, under controlled conditions, of different irrigation techniques on nutrient enrichment of floodwaters from rice cultivation. Composite samples (n=24) of paddy soils (0-15 cm) and floodwaters were collected, during rice flooding period. In the field, pH and electrical conductivity (EC) were determined in waters. Soil pH, concentrations of Corganic, NPK and nutrients (Ca, Cu, Fe, Mg, Mn, Zn) in soils and floodwaters (nitrites, nitrates, phosphates) were determined. A mesocosm assay was performed in lysimeters with a paddy soil (pH: 5.6; g/kg- Ntotal: 2.0, Pextractable: 0.04, Kextractable: 0.6, Corganic: 35.5) and different irrigation techniques (n=3): a)flood; b)four floods per day (great water renewal); c)flood until rice flowering and then a normal superficial irrigation. Rice cultivation was done by transplant as in the field. Irrigation water come from a well. Same chemical characterization than in field assay were determined in floodwater and irrigation water. In field conditions, paddy soils had values of pH between 5.1 and 8.1 and a great fertility range (g/kg; Ntotal: 0.4‒2.2; Pextractable: 0.01‒0.2; Kextractable: 0.04‒0.7; Corganic: 6.5‒37.9). Total soil concentrations of Cu, Fe, and Zn in soils were in same range and below maximum admissible values for agriculture. Total soil concentrations of Ca, Mg and Mn, showed higher heterogeneity (g/kg; 1.2‒19.3, 7.6‒34.2 and 0.2‒1.5 respectively). Floodwaters presented pH ≈7 and, usually, EC>1 mS/cm (MRV‒maximum recommended value for irrigation water). Nitrites concentrations were <0.1 mg/L in floodwaters, while concentrations of nitrates (<2.4 mg/L), Cu (<2‒12.3 µg/L), Fe (<0.1‒0.9 mg/L) and Zn (0.04‒1.9 mg/L) were below MRV. The fertilizers used in rice cultivation did not seem to affect the water quality. Nitrates concentration in irrigation water of lysimeters (24 mg/L) was close to MVR for irrigation water. Intensive agriculture of corn surrounding the well can explain the greater nutrients concentrations, especially nitrates, nitrites and phosphates, in this water compared to water from river used for paddy fields irrigation. Independently of irrigation technique, nutrient concentrations in lysimeters floodwaters (except phosphates in some samples) were in same range of those in irrigation water from well. The nutrients excess in water seems not to be uptake by rice contributing to nutrient enrichment of nearby waters and soils. Studied paddy fields from Tejo-Sado basin are not a potential pollution source of nutrients. However, according mesocosm assay, the potential irrigation of paddy soils with water rich in nitrates can contribute to serious environmental risks. The authors are thankful to: Atlantic Meals for financial and sampling support, and NitroPortugal, H2020-TWINN-2015, EU coordination and support action n. 692331 funding.

  2. Effects of anthropogenic activities on chemical contamination within the Grand Canal, China.

    PubMed

    Wang, Xiaolong; Han, Jingyi; Xu, Ligang; Gao, Junfeng; Zhang, Qi

    2011-06-01

    Contamination of nutrients and heavy metals within aquatic system is of great concern due to its potential impact on human and animal health. The Grand Canal of China, the largest artificial river in the world, is of great importance in supplying water resource, transporting cargo, and recreating resident, as well as great historical heritage. This study assessed and examined the impact of human activities on characters of contamination distribution within the section of the Canal in Taihu watershed. Physicochemical parameters of surface water quality were determined monthly from the year 2004 to 2006 at 11 sites that were influenced by different anthropogenic activities along the Canal. Moreover, contaminations at surface sediments (20 cm) at the same locations were also analyzed in September 2006. Results showed that the Canal had been seriously polluted, which was characterized with high spatial variations in contaminations distribution. The sites influenced mainly by industry and urbanization showed higher contents of nutrients and lower levels of dissolve oxygen than other sites. Concentrations of nitrogen at all studied sites exceeded the worst level of surface water quality according to the National Criterion of Surface Water Quality, China, with the average values varying from 2.27 to 10.34 mg/L. Furthermore, the site influenced mainly by industry (i.e., Site 4) presented the highest contents of cadmium (3.453 mg/kg), chromium (196.87 mg/kg), nickel (87.12 mg/kg), zinc (381.8 mg/kg), and copper (357.32 mg/kg). While sites in vicinity to cities had presented relatively higher contents of metals, especially for the site located downstream of Changzhou City (Site 3) had presented the highest contents of mercury (1.64 mg/kg) and lead (197.62 mg/kg). Copper at Sites 2 to 6, Nickel at Sites 2 to 9 except for Site 7, chromium, lead, and zinc at Sites 3 to 6 had exceeded New York State Department of Environmental Conservation (NYSDEC) Severe Effect Level (SEL). By multivariate statistical, nutrient variables, companied with V-phen, had contributed the most variation of water quality, while nutrient and metals had explained the most part of total variance of contaminations in sediment. This study indicated that the canal had been polluted severely and urgently need to control.

  3. Proactive modeling of water quality impacts of extreme precipitation events in a drinking water reservoir.

    PubMed

    Jeznach, Lillian C; Hagemann, Mark; Park, Mi-Hyun; Tobiason, John E

    2017-10-01

    Extreme precipitation events are of concern to managers of drinking water sources because these occurrences can affect both water supply quantity and quality. However, little is known about how these low probability events impact organic matter and nutrient loads to surface water sources and how these loads may impact raw water quality. This study describes a method for evaluating the sensitivity of a water body of interest from watershed input simulations under extreme precipitation events. An example application of the method is illustrated using the Wachusett Reservoir, an oligo-mesotrophic surface water reservoir in central Massachusetts and a major drinking water supply to metropolitan Boston. Extreme precipitation event simulations during the spring and summer resulted in total organic carbon, UV-254 (a surrogate measurement for reactive organic matter), and total algae concentrations at the drinking water intake that exceeded recorded maximums. Nutrient concentrations after storm events were less likely to exceed recorded historical maximums. For this particular reservoir, increasing inter-reservoir transfers of water with lower organic matter content after a large precipitation event has been shown in practice and in model simulations to decrease organic matter levels at the drinking water intake, therefore decreasing treatment associated oxidant demand, energy for UV disinfection, and the potential for formation of disinfection byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Urbanization and nutrient retention in freshwater riparian wetlands

    USGS Publications Warehouse

    Hogan, D.M.; Walbridge, M.R.

    2007-01-01

    Urbanization can degrade water quality and alter watershed hydrology, with profound effects on the structure and function of both riparian wetlands (RWs) and aquatic ecosystems downstream. We used freshwater RWs in Fairfax County, Virginia, USA, as a model system to examine: (1) the effects of increasing urbanization (indexed by the percentage of impervious surface cover [%ISC] in the surrounding watershed) on nitrogen (N) and phosphorus (P) concentrations in surface soils and plant tissues, soil P saturation, and soil iron (Fe) chemistry; and (2) relationships between RW soil and plant nutrient chemistries vs. the physical and biotic integrity of adjacent streams. Soil total P and NaOH-extractable P (representing P bound to aluminum [Al] and Fe hydrous oxides) varied significantly but nonlinearly with %ISC (r2 = 0.69 and 0.57, respectively); a similar pattern was found for soil P saturation but not for soil total N. Relationships were best described by second-order polynomial equations. Riparian wetlands appear to receive greater P loads in moderately (8.6-13.3% ISC) than in highly (25.1-29.1% ISC) urbanized watersheds. These observations are consistent with alterations in watershed hydrology that occur with increasing urbanization, directing water and nutrient flows away from natural RWs. Significant increases in total and crystalline soil Fe (r 2 = 0.57 and 0.53, respectively) and decreases in relative soil Fe crystallinity with increasing %ISC suggest the mobilization and deposition of terrestrial sediments in RWs, likely due to construction activities in the surrounding watershed. Increases in RW plant tissue nutrient concentrations and %ISC in the surrounding watershed were negatively correlated with standard indices of the physical and biotic integrity of adjacent streams. In combination, these data suggest that nutrient and sediment inputs associated with urbanization and storm-water management are important variables that affect wetland ecosystem services, such as water quality improvement, in urbanizing landscapes. ?? 2007 by the Ecological Society of America.

  5. Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate Scale Water Quality Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khangaonkar, Tarang; Sackmann, Brandon S.; Long, Wen

    2012-10-01

    The Salish Sea, including Puget Sound, is a large estuarine system bounded by over seven thousand miles of complex shorelines, consists of several subbasins and many large inlets with distinct properties of their own. Pacific Ocean water enters Puget Sound through the Strait of Juan de Fuca at depth over the Admiralty Inlet sill. Ocean water mixed with freshwater discharges from runoff, rivers, and wastewater outfalls exits Puget Sound through the brackish surface outflow layer. Nutrient pollution is considered one of the largest threats to Puget Sound. There is considerable interest in understanding the effect of nutrient loads on themore » water quality and ecological health of Puget Sound in particular and the Salish Sea as a whole. The Washington State Department of Ecology (Ecology) contracted with Pacific Northwest National Laboratory (PNNL) to develop a coupled hydrodynamic and water quality model. The water quality model simulates algae growth, dissolved oxygen, (DO) and nutrient dynamics in Puget Sound to inform potential Puget Sound-wide nutrient management strategies. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or control human impacts to DO levels in the sensitive areas. The project did not include any additional data collection but instead relied on currently available information. This report describes model development effort conducted during the period 2009 to 2012 under a U.S. Environmental Protection Agency (EPA) cooperative agreement with PNNL, Ecology, and the University of Washington awarded under the National Estuary Program« less

  6. The Ups and Downs of Rhizosphere Resource Exchange

    NASA Astrophysics Data System (ADS)

    Cardon, Z. G.; Fu, C.; Wang, G.; Stark, J.

    2014-12-01

    Hydraulic redistribution (HR) of soil water by plants occurs in seasonally dry ecosystems worldwide. During HR, soil water flows from wet soil into roots, through the root system, and out of roots into dry rhizosphere soil. Hydraulic redistribution affects plant physiology and landscape hydrology, and it has long been hypothesized that upward HR of deep water to dry, nutrient-rich surface soil may also stimulate soil nutrient cycling and thus enhance nutrient availability to plants in the field. We report results from a sagebrush-steppe field experiment in northern Utah, USA, showing that stimulation of sagebrush-mediated HL increased rates of nitrogen cycling in the surface soil layer around shrubs at summer's end, and more than quadrupled uptake of nitrogen into developing sagebrush inflorescences. We have built on these empirical data by folding Ryel et al.'s (2002) HR formulation into CLM4.5 and examining how well the combined model can simultaneously simulate measured evapotranspiration, the vertical profile of soil moisture, and the amplitude of HR-associated diel changes in water content, at multiple seasonally-dry Ameriflux sites: Wind River Crane (US-Wrc), Southern California Climate Gradient (US-SCs,g,f,w,d,&c), and Santa Rita Mesquite Savanna (US-SRM). The simulated hydraulic lift during the dry periods has an average value in the range from 0.09 (at US-SCc) to 0.64 (at US-SCf) mm H2O d-1. In many cases, the combined model reproduced seasonal and daily (diel) observations with reasonable accuracy. Among the many model parameters tested, the Clapp and Hornberger parameter "B" in CLM4.5 was critical for a realistic simulation of soil moisture. Modeled HR was also sensitive to the maximum radial soil-root conductance and the soil water potential where that conductance is reduced by 50%. Our next step is to explore how modeled carbon and nutrient cycling in soil layers are affected by redistributed water in the soil column caused by inclusion of HR in CLM4.5.

  7. Status and trends of dissolved oxygen in Corpus Christi Bay, Texas, U.S.A.

    PubMed

    Applebaum, Sally; Montagna, Paul A; Ritter, Christine

    2005-08-01

    The purpose of this study was to determine status and long-term trends of dissolved oxygen concentrations (DO) in Corpus Christi Bay, Texas, U.S.A. A 20-year record of randomized stations was used to determine the trend of surface water DO, salinity, and temperature over space and time. A 13-year record of two fixed stations was used to determine the temporal nutrient trends. A 10-year record of fixed stations in the southeastern region of Corpus Christi Bay was used to determine the status of disturbance caused by low DO in bottom waters. From 1982 to 2002, there was a significant decrease in surface water DO at a rate of 0.06 mg L(-1) yr(-1) and a significant increase in surface water temperature at a rate of 0.07 degrees C yr(-1). The southeastern region of Corpus Christi Bay had the lowest average DO, and during July and August, DO are steadily declining at a rate of 0.09 mg L(-1) yr(-1). It is not likely that eutrophication is causing hypoxia, because freshwater inflow rates have significantly decreased since 1941 and nutrient levels have not changed from 1987 to 2000. Even though long-term trends indicate that average surface DO is decreasing, disturbance by hypoxia appears to be stable, but this may be due to just eight years of data. In fact, if the current trend continues, surface water DO will not meet exceptional aquatic life standards (< or = 5 mg L(-1)) in 2032.

  8. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    NASA Astrophysics Data System (ADS)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-05-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone, with Fe(II) oxidation taking place in the soil surrounding the ditch during summer and in the surface water during winter. The dynamics in Fe(II) oxidation did not affect the dissolved P concentrations. The dissolved P concentrations of the in-stream reservoirs water were an order of magnitude lower than observed in the groundwater and have no seasonal trend. Our data showed preferential binding of P during initial stage of the Fe(II) oxidation process, indicating the formation of Fe(III)-phosphate precipitates. The formation of Fe(III)-phosphates at the groundwater-surface water interface is an important geochemical mechanism in the transformation of dissolved phosphate to particulate phosphate and therefore a major control on the P retention in natural waters that drain anaerobic aquifers.

  9. Precipitation chemistry - Atmospheric loadings to the surface waters of the Indian River lagoon basin by rainfall

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.; Madsen, Brooks C.; Maull, Lee A.; Hinkle, C. R.; Knott, William M., III

    1990-01-01

    Rain volume and chemistry monitoring as part of the Kennedy Space Center Long Term Environmental Monitoring Program included the years 1984-1987 as part of the National Atmospheric Deposition Program. Atmospheric deposition in rainfall consisted primarily of sea salt and hydrogen ion, sulfate, nitrate, and ammonium ions. The deposition of nitrogen (a principal plant nutrient) was on the order of 200-300 metric tons per year to the surface waters.

  10. Low transient storage and uptake efficiencies in seven agricultural streams: implications for nutrient demand

    USGS Publications Warehouse

    Sheibley, Rich W.; Duff, John H.; Tesoriero, Anthony J.

    2014-01-01

    We used mass load budgets, transient storage modeling, and nutrient spiraling metrics to characterize nitrate (NO3−), ammonium (NH4+), and inorganic phosphorus (SRP) demand in seven agricultural streams across the United States and to identify in-stream services that may control these conditions. Retention of one or all nutrients was observed in all but one stream, but demand for all nutrients was low relative to the mass in transport. Transient storage metrics (As/A, Fmed200, Tstr, and qs) correlated with NO3− retention but not NH4+ or SRP retention, suggesting in-stream services associated with transient storage and stream water residence time could influence reach-scale NO3− demand. However, because the fraction of median reach-scale travel time due to transient storage (Fmed200) was ≤1.2% across the sites, only a relatively small demand for NO3− could be generated by transient storage. In contrast, net uptake of nutrients from the water column calculated from nutrient spiraling metrics were not significant at any site because uptake lengths calculated from background nutrient concentrations were statistically insignificant and therefore much longer than the study reaches. These results suggest that low transient storage coupled with high surface water NO3− inputs have resulted in uptake efficiencies that are not sufficient to offset groundwater inputs of N. Nutrient retention has been linked to physical and hydrogeologic elements that drive flow through transient storage areas where residence time and biotic contact are maximized; however, our findings indicate that similar mechanisms are unable to generate a significant nutrient demand in these streams relative to the loads.

  11. Growth of Phragmites australis (Cav.) Trin ex. Steudel in mine water treatment wetlands: effects of metal and nutrient uptake.

    PubMed

    Batty, Lesley C; Younger, Paul L

    2004-11-01

    The abandoned mine of Shilbottle Colliery, Northumberland, UK is an example of acidic spoil heap discharge that contains elevated levels of many metals. Aerobic wetlands planted with the common reed, Phragmites australis, were constructed at the site to treat surface runoff from the spoil heap. The presence of a perched water table within the spoil heap resulted in the lower wetlands receiving acidic metal contaminated water from within the spoil heap while the upper wetland receives alkaline, uncontaminated surface runoff from the revegetated spoil. This unique situation enabled the comparison of metal uptake and growth of plants used in treatment schemes in two cognate wetlands. Results indicated a significant difference in plant growth between the two wetlands in terms of shoot height and seed production. Analyses of metal and nutrient concentrations within plant tissues provided the basis for three hypotheses to explain these differences: (i) the toxic effects of high levels of metals in shoot tissues, (ii) the inhibition of Ca (an essential nutrient) uptake by the presence of metals and H+ ions, and (iii) low concentrations of bioavailable nitrogen sources resulting in nitrogen deficiency. This has important implications for the engineering of constructed wetlands in terms of the potential success of plant establishment and vegetation development.

  12. Influence of Mesoscale Eddies on New Production in the Sargasso Sea

    NASA Technical Reports Server (NTRS)

    McGillicuddy , Dennis J., Jr.; Robinson, A. R.; Siegel, D. A.; Jannasch, H. W.; Johnson, R.; Dickey, T. D.; McNeil, J.; Michaels, A. F.; Knap, A. H.

    1998-01-01

    It is problematic that geochemical estimates of new production - that fraction of total primary production in surface waters fueled by externally supplied nutrients - in oligotrophic waters of the open ocean surpass that which can be sustained by the traditionally accepted mechanisms of nutrient supply. In the case of the Sargasso Sea, for example, these mechanisms account for less than half of the annual nutrient requirement indicated by new production estimates based on three independent transient-tracer techniques. Specifically, approximately one-quarter to one-third of the annual nutrient requirement can be supplied by entrainment into the mixed layer during wintertime convection, with minor contributions from mixing in the thermocline and wind-driven transport (the potentially important role of nitrogen fixation - for which estimates vary by an order of magnitude in this region - is excluded from this budget). Here we present four lines of evidence - eddy-resolving model simulations, high-resolution observations from moored instrumentation, shipboard surveys, and satellite data - which suggest that the vertical flux of nutrients induced by the dynamics of mesoscale eddies is sufficient to balance the nutrient budget in the Sargasso Sea. Additional information is contained in the original extended abstract.

  13. Effects of detention on water quality of two stormwater detention ponds receiving highway surface runoff in Jacksonville, Florida

    USGS Publications Warehouse

    Hampson, P.S.

    1986-01-01

    Water and sediment samples were analyzed for major chemical constituents, nutrients, and heavy metals following ten storm events at two stormwater detention ponds that receive highway surface runoff in the Jacksonville, Florida, metropolitan area. The purpose of the sampling program was to detect changes in constituent concentration with time of detention within the pond system. Statistical inference of a relation with total rainfall was found in the initial concentrations of 11 constituents and with antecedent dry period for the initial concentrations of 3 constituents. Based on graphical examination and factor analysis , constituent behavior with time could be grouped into five relatively independent processes for one of the ponds. The processes were (1) interaction with shallow groundwater systems, (2) solubilization of bottom materials, (3) nutrient uptake, (4) seasonal changes in precipitation, and (5) sedimentation. Most of the observed water-quality changes in the ponds were virtually complete within 3 days following the storm event. (Author 's abstract)

  14. Nutrient exports from watersheds with varying septic system densities in the North Carolina Piedmont.

    PubMed

    Iverson, G; Humphrey, C P; O'Driscoll, M A; Sanderford, C; Jernigan, J; Serozi, B

    2018-04-01

    Septic systems (SSs) have been shown to be a significant source of nitrogen and phosphorus to nutrient-sensitive coastal surface and groundwaters. However, few published studies have quantified the effects of SSs on nutrient inputs to water supply watersheds in the Piedmont region of the USA. This region consists of rolling hills at the surface underlain by clayey soils. There are nearly 1 million SSs in this region, which accounts for approximately 50% of all SSs in North Carolina. The goal of this study was to determine if significant differences in nutrient concentrations and exports exist between Piedmont watersheds with different densities of SSs. Water quality was assessed in watersheds with SSs (n = 11) and a sewer and a forested watershed, which were designated as controls. Stream flow and environmental readings were recorded and water samples were collected from the watersheds from January 2015-December 2016. Additional samples were collected from sand filter watersheds in April 2015-March 2016 to compare to septic and control watersheds. Samples were analyzed for total dissolved nitrogen (TDN) and orthophosphate (PO 4 -P). Results indicated that watersheds served by a high-density (HD) of SSs (4.9 kg-N yr -1 ha -1 ; 0.2 kg-P yr -1 ha -1 ) exported more than double the median masses of TDN and PO 4 -P, respectively, relative to low-density (1.0 kg-N yr -1 ha -1 ; <0.1 kg-P yr -1 ha -1 ) and control watersheds (1.4 kg-N yr -1 ha -1 ; <0.1 kg-P yr -1 ha -1 ) during baseflow. Isotopic analysis indicated that wastewater was the most likely source of nitrate-N in HD watersheds. In all other watersheds, isotopic results suggested non-wastewater sources as the dominant nitrate-N provider. These findings indicated that SS density was a significant factor in the delivery of septic-derived nutrients to these nutrient-sensitive, water supply watersheds of the North Carolina Piedmont. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Suspended sediment impact on chlorophyll a, nitrogen and phosphorus relationships in Moon Lake, MS

    USDA-ARS?s Scientific Manuscript database

    Moon Lake, MS is a 947 ha. oxbow lake of the Mississippi River Alluvial Plain also known as the Mississippi Delta. Water was sampled from five sites, bi-weekly from 1982 to 1985. Analysis of surface water quality reviled loading of nutrients from nonpoint source pollution associated with agricultu...

  16. A SEMI-AUTOMATED APPROACH FOR DETECTING AND LOCATING SWINE ANIMAL FEEDING OPERATIONS OVER REGIONAL AREAS

    EPA Science Inventory

    Surface runoff from animal feeding operations (AFO's) and its infiltration into ground water can
    pose a number of risks to water quality mainly because of the amount of animal manure and wastewater they produce. Excess nutrients generated by livestock facilities can lead to a...

  17. Small-scale studies on low intensity chemical dosing (LICD) for treatment of highway runoff.

    DOT National Transportation Integrated Search

    2006-04-01

    In the Tahoe Basin, strict surface water discharge limits of 20 NTU for turbidity and 0.1 mg/L : for total phosphorus are due to come into effect in 2008. The main concern in terms of water : quality is the discharge of fine particles and nutrients i...

  18. Edge-of-field research to quantify the impacts of agricultural practices on water quality in Ohio

    USDA-ARS?s Scientific Manuscript database

    Drainage is needed to sustain agricultural production to meet the demands of a growing global population, but it also transports nutrients from fields to surface water bodies. The State of Ohio is facing the tremendous challenge of maintaining agricultural production while protecting the environment...

  19. CONTRIBUTION OF NUTRIENTS AND E. COLI TO SURFACE WATER CONDITION IN THE OZARKS

    EPA Science Inventory

    The U.S. EPA's Office of Research and Development, and U.S. EPA Region 7 have collaborated to map and interpret landscape-scale (i.e., broad-scale) ecological metrics among watersheds of the Upper White River, and have produced the first geospatial models of water quality vulnera...

  20. Removal of phosphorus using AMD-treated lignocellulosic material

    Treesearch

    James S. Han; Soo-Hong Min; Yeong-Kwan Kim

    2005-01-01

    Excess nutrients, including phosphorus, can cause eutrophication in surface water and reservoirs. We tested the phosphate removal capacity of juniper fiber through isotherm, kinetic, column, and field tests. Heavy metals from an acid mine drainage (AMD) site were precipitated on the surface ofjuniper fiber. The modified fiber was tested in laboratory- caled batch and...

  1. Effects of poultry litter placement on seedling and early-stage growth of corn and cotton

    USDA-ARS?s Scientific Manuscript database

    Interest in using poultry litter (PL) as a nutrient source for row crop production within the Southeastern U.S. has increased. Poultry litter is generally broadcast on the soil surface. This practice exposes the litter’s N to volatilization and P to surface water runoff, potentially negatively impac...

  2. Poultry litter placement effects on cotton seedling emergence and early growth stage

    USDA-ARS?s Scientific Manuscript database

    Interest in using poultry litter (PL) as a nutrient source for row crop production has increased in the Southeastern U.S. Poultry litter is generally broadcasted on the soil surface. This practice exposes litter N to volatilization and litter P to loss with surface water runoff, which potentially ne...

  3. Modeling Phosphorous Losses from Seasonal Manure Application Schemes

    NASA Astrophysics Data System (ADS)

    Menzies, E.; Walter, M. T.

    2015-12-01

    Excess nutrient loading, especially nitrogen and phosphorus, to surface waters is a common and significant problem throughout the United States. While pollution remediation efforts are continuously improving, the most effective treatment remains to limit the source. Appropriate timing of fertilizer application to reduce nutrient losses is currently a hotly debated topic in the Northeastern United States; winter spreading of manure is under special scrutiny. We plan to evaluate the loss of phosphorous to surface waters from agricultural systems under varying seasonal fertilization schemes in an effort to determine the impacts of fertilizers applied throughout the year. The Cayuga Lake basin, located in the Finger Lakes region of New York State, is a watershed dominated by agriculture where a wide array of land management strategies can be found. The evaluation will be conducted on the Fall Creek Watershed, a large sub basin in the Cayuga Lake Watershed. The Fall Creek Watershed covers approximately 33,000 ha in central New York State with approximately 50% of this land being used for agriculture. We plan to use the Soil and Water Assessment Tool (SWAT) to model a number of seasonal fertilization regimes such as summer only spreading and year round spreading (including winter applications), as well as others. We will use the model to quantify the phosphorous load to surface waters from these different fertilization schemes and determine the impacts of manure applied at different times throughout the year. More detailed knowledge about how seasonal fertilization schemes impact phosphorous losses will provide more information to stakeholders concerning the impacts of agriculture on surface water quality. Our results will help farmers and extensionists make more informed decisions about appropriate timing of manure application for reduced phosphorous losses and surface water degradation as well as aid law makers in improving policy surrounding manure application.

  4. A submesoscale coherent vortex in the Ligurian Sea: From dynamical barriers to biological implications

    NASA Astrophysics Data System (ADS)

    Bosse, Anthony; Testor, Pierre; Mayot, Nicolas; Prieur, Louis; D'Ortenzio, Fabrizio; Mortier, Laurent; Le Goff, Hervé; Gourcuff, Claire; Coppola, Laurent; Lavigne, Héloïse; Raimbault, Patrick

    2017-08-01

    In June 2013, a glider equipped with oxygen and fluorescence sensors has been used to extensively sample an anticyclonic Submesoscale Coherent Vortex (SCV) in the Ligurian Sea (NW Mediterranean Sea). Those measurements are complemented by full-depth CTD casts (T, S, and oxygen) and water samples documenting nutrients and phytoplankton pigments within the SCV and outside. The SCV has a very homogeneous core of oxygenated waters between 300 and 1200 m formed 4.5 months earlier during the winter deep convection event. It has a strong dynamical signature with peak velocities at 700 m depth of 13.9 cm s-1 in cyclogeostrophic balance. The eddy has a small radius of 6.2 km corresponding to high Rossby number of -0.45. The vorticity at the eddy center reaches -0.8f. Cross-stream isopycnic diffusion of tracers between the eddy core and the surroundings is found to be very limited due to dynamical barriers set by the SCV associated with a diffusivity coefficient of about 0.2 m2 s-1. The deep core is nutrients-depleted with concentrations of nitrate, phosphate, and silicate, 13-18% lower than the rich surrounding waters. However, the nutriclines are shifted of about 20-50 m toward the surface thus increasing the nutrients availability for phytoplankton. Chlorophyll-a concentrations at the deep chlorophyll maximum are subsequently about twice bigger as compared to outside. Pigments further reveal the predominance of nanophytoplankton inside the eddy and an enhancement of the primary productivity. This study demonstrates the important impact of postconvective SCVs on nutrients distribution and phytoplankton community, as well as on the subsequent primary production and carbon sequestration.Plain Language SummaryDue to harsh meteorological conditions in winter, a few places of the world's ocean experience an intense cooling of their surface waters that start to sink in a process called oceanic deep convection. It is crucial for the functioning of the ocean, but also the marine biology as it brings oxygen deep below the surface and nutrients up to the surface thereby stimulating phytoplankton growth. In this study, we describe with unprecedented details the physics and its biological implications of an eddy formed after a convective event occurring in winter 2013 south of France in the northwestern Mediterranean Sea. This oceanic eddy has a radius of about 6 km and a subsurface signature with intensified rotation of about 15 cm/s at around 750 m. Its size is rather small for an oceanic eddy and makes it particularly challenging to sample and detect. This type of eddies are able to live for years in the quiescent deep ocean and this specimen was observed 4.5 months after its formation. Water samples collected by a ship inside the eddy enable us to further evaluate for the first time its influence on the nutrients concentration, as well as on the phytoplankton size group.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19458255','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19458255"><span>Radiolarians decreased silicification as an evolutionary response to reduced Cenozoic ocean silica availability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lazarus, David B; Kotrc, Benjamin; Wulf, Gerwin; Schmidt, Daniela N</p> <p>2009-06-09</p> <p>It has been hypothesized that increased water column stratification has been an abiotic "universal driver" affecting average cell size in Cenozoic marine plankton. Gradually decreasing Cenozoic radiolarian shell weight, by contrast, suggests that competition for dissolved silica, a shared nutrient, resulted in biologic coevolution between radiolaria and marine diatoms, which expanded dramatically in the Cenozoic. We present data on the 2 components of shell weight change--size and silicification--of Cenozoic radiolarians. In low latitudes, increasing Cenozoic export of silica to deep waters by diatoms and decreasing nutrient upwelling from increased water column stratification have created modern silica-poor surface waters. Here, radiolarian silicification decreases significantly (r = 0.91, P < 0.001), from approximately 0.18 (shell volume fraction) in the basal Cenozoic to modern values of approximately 0.06. A third of the total change occurred rapidly at 35 Ma, in correlation to major increases in water column stratification and abundance of diatoms. In high southern latitudes, Southern Ocean circulation, present since the late Eocene, maintains significant surface water silica availability. Here, radiolarian silicification decreased insignificantly (r = 0.58, P = 0.1), from approximately 0.13 at 35 Ma to 0.11 today. Trends in shell size in both time series are statistically insignificant and are not correlated with each other. We conclude that there is no universal driver changing cell size in Cenozoic marine plankton. Furthermore, biologic and physical factors have, in concert, by reducing silica availability in surface waters, forced macroevolutionary changes in Cenozoic low-latitude radiolarians.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..559..749W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..559..749W"><span>Controls of event-based nutrient transport within nested headwater agricultural watersheds of the western Lake Erie basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, Mark R.; Livingston, Stanley J.; Penn, Chad J.; Smith, Douglas R.; King, Kevin W.; Huang, Chi-hua</p> <p>2018-04-01</p> <p>Understanding the processes controlling nutrient delivery in headwater agricultural watersheds is essential for predicting and mitigating eutrophication and harmful algal blooms in receiving surface waters. The objective of this study was to elucidate nutrient transport pathways and examine key components driving nutrient delivery processes during storm events in four nested agricultural watersheds (298-19,341 ha) in the western Lake Erie basin with poorly drained soils and an extensive artificial drainage network typical of the Midwestern U.S. Concentration-discharge hysteresis patterns of nitrate-nitrogen (NO3-N), dissolved reactive phosphorus (DRP), and particulate phosphorus (PP) occurring during 47 storm events over a 6 year period (2004-2009) were evaluated. An assessment of the factors producing nutrient hysteresis was completed following a factor analysis on a suite of measured environmental variables representing the fluvial and wider watershed conditions prior to, and during the monitored storm events. Results showed the artificial drainage network (i.e., surface tile inlets and subsurface tile drains) in these watersheds was the primary flow pathway for nutrient delivery to streams, but nutrient behavior and export during storm events was regulated by the flow paths to and the intensity of the drainage network, the availability of nutrients, and the relative contributions of upland and in-stream nutrient sources. Potential sources and flow pathways for transport varied among NO3-N, PP, and DRP with results underscoring the challenge of mitigating nutrient loss in these watersheds. Conservation practices addressing both nutrient management and hydrologic connectivity will likely be required to decrease nutrient loss in artificially drained landscapes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHI34A1805S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHI34A1805S"><span>Water Quality Monitoring in the Execution of Canal Remediation Methods in the Florida Keys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Serna, A.; Briceno, H.</p> <p>2016-02-01</p> <p>Monitoring data indicate relatively high nutrient concentrations in waters close to shore along the Florida Keys, and corresponding responses from the system, such as higher phytoplankton biomass, turbidity and light attenuation as well as lower oxygenation and lower salinities of the water column. These changes, associated to human impact, have become more obvious near canal mouths. Waters close to shore show characteristics closely related to those in residential canals, affected by quick movement of infiltrated runoff and wastewaters (septic tanks), tides and high water table. Many canals do not meet the minimum water quality (WQ) criteria established by the State of Florida and are a potential source of contaminants to near shore waters designated as Outstanding Florida Waters. Canal remediation is being conducted by the Monroe County targeting poor circulation and organic matter accumulation. The restoration technologies include reduction in weed wrack, enhanced circulation, organic removal and partial backfilling. The objective of WQ monitoring is to measure the status and trends of WQ parameters to evaluate progress toward achieving and maintaining WQ standards and protecting/restoring the living marine resources. Monitoring followed a Before-and-After-Control-Impact scheme (BACI). Field measurements, included diel observations and vertical profiles of physical-chemical properties (salinity, DO, %DO saturation, temperature and turbidity) and nutrient analysis. Comparing profiles between remediated and control canals indicated similar patterns in physicochemical properties, and suggesting larger seasonal than spatial variability. BACI diel observations, in surface and bottom waters of remediated canals indicated little difference for surface waters, but significant improvements for bottom waters. Most surface waters are well oxygenated, while bottom waters show a significant increase in DO following culvert installation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2009/5004/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2009/5004/"><span>Hydrologic and Water-Quality Conditions During Restoration of the Wood River Wetland, Upper Klamath River Basin, Oregon, 2003-05</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Carpenter, Kurt D.; Snyder, Daniel T.; Duff, John H.; Triska, Frank J.; Lee, Karl K.; Avanzino, Ronald J.; Sobieszczyk, Steven</p> <p>2009-01-01</p> <p>Restoring previously drained wetlands is a strategy currently being used to improve water quality and decrease nutrient loading into Upper Klamath Lake, Oregon. In this 2003-05 study, ground- and surface-water quality and hydrologic conditions were characterized in the Wood River Wetland. Nitrogen and phosphorus levels, primarily as dissolved organic nitrogen and ammonium (NH4) and soluble reactive phosphorus (SRP), were high in surface waters. Dissolved organic carbon concentrations also were elevated in surface water, with median concentrations of 44 and 99 milligrams of carbon per liter (mg-C/L) in the North and South Units of the Wood River Wetland, respectively, reaching a maximum of 270 mg-C/L in the South Unit in late autumn. Artesian well water produced NH4 and SRP concentrations of about 6,000 micrograms per liter (ug/L), and concentrations of 36,500 ug-N/L NH4 and 4,110 ug-P/L SRP in one 26-28 ft deep piezometer well. Despite the high ammonium concentrations, the nitrate levels were moderate to low in wetland surface and ground waters. The surface-water concentrations of NH4 and SRP increased in spring and summer, outpacing those for chloride (a conservative tracer), indicative of evapoconcentration. In-situ chamber experiments conducted in June and August 2005 indicated a positive flux of NH4 and SRP from the wetland sediments. Potential sources of NH4 and SRP include diffusion of nutrients from decomposed peat, decomposing aquatic vegetation, or upwelling ground water. In addition to these inputs, evapoconcentration raised surface-water solute concentrations to exceedingly high values by the end of summer. The increase was most pronounced in the South Unit, where specific conductance reached 2,500 uS/cm and median concentrations of total nitrogen and total phosphorus reached 18,000-36,500 ug-N/L and about 18,000-26,000 ug-P/L, respectively. Water-column SRP and total phosphorus levels decreased during autumn and winter following inputs of irrigation water and precipitation, which have lower nutrient concentrations. The SRP concentrations, however, decreased faster than the dilution rate alone, possibly due to precipitation of phosphorus with iron, manganese, or calcium. The high concentrations of dissolved nitrogen and phosphorus during the growing season give rise to a rich plant community in the wetland consisting of emergent and submergent macrophytes and algae including phytoplankton and benthic and epiphytic algae that have pronounced effects on dissolved oxygen (DO) and pH. Midday readings of surface-water DO during summer often were supersaturated (as much as 310 percent saturation) with elevated pH (as much as 9.2 units), indicative of high rates of photosynthesis. Minimum DO concentrations in the shallow ground-water piezometer wells were 0.4 mg/L in the North Unit and 0.8 mg/L in the South Unit during summer, which is probably low enough to support microbial denitrification. Denitrification was confirmed during in-situ experiments conducted at the sediment-water interface, but rates were low due to low background nitrate (NO3). Nevertheless, denitrification (and plant uptake) likely contribute to low nitrate levels. Another possible cause of low nitrate levels is dissimilatory nitrate reduction to ammonia (DNRA), a microbial process that converts and decreases nitrate to ammonia. DNRA explains the excess ammonia production measured in the chambers treated with nitrate. Surface-water levels and standing surface-water volume in the Wood River Wetland reached a maximum in early spring, inundating 80-90 percent of the wetland. Surface-water levels and standing volume then declined reaching a minimum in August through November, when the South Unit was only 10 percent inundated and the North Unit was nearly dry. The shallow ground-water levels followed a trend similar to surface-water levels and indicated a strong upward gradient. A monthly water budget was developed individually for the North</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGeo...10.5663E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGeo...10.5663E"><span>Equatorial Pacific peak in biological production regulated by nutrient and upwelling during the late Pliocene/early Pleistocene cooling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Etourneau, J.; Robinson, R. S.; Martinez, P.; Schneider, R.</p> <p>2013-08-01</p> <p>The largest increase in export production in the eastern Pacific of the last 5.3 Myr (million years) occurred between 2.2 and 1.6 Myr, a time of major climatic and oceanographic reorganization in the region. Here, we investigate the causes of this event using reconstructions of export production, nutrient supply and oceanic conditions across the Pliocene-Pleistocene in the eastern equatorial Pacific (EEP) for the last 3.2 Myr. Our results indicate that the export production peak corresponds to a cold interval marked by high nutrient supply relative to consumption, as revealed by the low bulk sedimentary 15N/14N (δ15N) and alkenone-derived sea surface temperature (SST) values. This ∼0.6 million year long episode of enhanced delivery of nutrients to the surface of the EEP was predominantly initiated through the upwelling of nutrient-enriched water sourced in high latitudes. In addition, this phenomenon was likely promoted by the regional intensification of upwelling in response to the development of intense Walker and Hadley atmospheric circulations. Increased nutrient consumption in the polar oceans and enhanced denitrification in the equatorial regions restrained nutrient supply and availability and terminated the high export production event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29890473','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29890473"><span>Exploring spatiotemporal changes of the Yangtze River (Changjiang) nitrogen and phosphorus sources, retention and export to the East China Sea and Yellow Sea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Xiaochen; Beusen, Arthur H W; Van Beek, Ludovicus P H; Mogollón, José M; Ran, Xiangbin; Bouwman, Alexander F</p> <p>2018-06-04</p> <p>Nitrogen (N) and phosphorus (P) flows from land to sea in the Yangtze River basin were simulated for the period 1900-2010, by combining models for hydrology, nutrient input to surface water, and an in-stream retention. This study reveals that the basin-wide nutrient budget, delivery to surface water, and in-stream retention increased during this period. Since 2004, the Three Gorges Reservoir has contributed 5% and 7% of N and P basin-wide retention, respectively. With the dramatic rise in nutrient delivery, even this additional retention was insufficient to prevent an increase of riverine export from 337 Gg N yr -1 and 58 Gg P yr -1 (N:P molar ratio = 13) to 5896 Gg N yr -1 and 381 Gg P yr -1 (N:P molar ratio = 35) to the East China Sea and Yellow Sea (ECSYS). The midstream and upstream subbasins dominate the N and P exports to the ECSYS, respectively, due to various human activities along the river. Our spatially explicit nutrient source allocation can aid in the strategic targeting of nutrient reduction policies. We posit that these should focus on improving the agricultural fertilizer and manure use efficiency in the upstream and midstream and better urban wastewater management in the downstream subbasin. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14.2469Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14.2469Y"><span>Sequential nutrient uptake as a potential mechanism for phytoplankton to maintain high primary productivity and balanced nutrient stoichiometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yin, Kedong; Liu, Hao; Harrison, Paul J.</p> <p>2017-05-01</p> <p>We hypothesize that phytoplankton have the sequential nutrient uptake strategy to maintain nutrient stoichiometry and high primary productivity in the water column. According to this hypothesis, phytoplankton take up the most limiting nutrient first until depletion, continue to draw down non-limiting nutrients and then take up the most limiting nutrient rapidly when it is available. These processes would result in the variation of ambient nutrient ratios in the water column around the Redfield ratio. We used high-resolution continuous vertical profiles of nutrients, nutrient ratios and on-board ship incubation experiments to test this hypothesis in the Strait of Georgia. At the surface in summer, ambient NO3- was depleted with excess PO43- and SiO4- remaining, and as a result, both N : P and N : Si ratios were low. The two ratios increased to about 10 : 1 and 0. 45 : 1, respectively, at 20 m. Time series of vertical profiles showed that the leftover PO43- continued to be removed, resulting in additional phosphorus storage by phytoplankton. The N : P ratios at the nutricline in vertical profiles responded differently to mixing events. Field incubation of seawater samples also demonstrated the sequential uptake of NO3- (the most limiting nutrient) and then PO43- and SiO4- (the non-limiting nutrients). This sequential uptake strategy allows phytoplankton to acquire additional cellular phosphorus and silicon when they are available and wait for nitrogen to become available through frequent mixing of NO3- (or pulsed regenerated NH4). Thus, phytoplankton are able to maintain high productivity and balance nutrient stoichiometry by taking advantage of vigorous mixing regimes with the capacity of the stoichiometric plasticity. To our knowledge, this is the first study to show the in situ dynamics of continuous vertical profiles of N : P and N : Si ratios, which can provide insight into the in situ dynamics of nutrient stoichiometry in the water column and the inference of the transient status of phytoplankton nutrient stoichiometry in the coastal ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29448079','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29448079"><span>Identifying the underlying causes of biological instability in a full-scale drinking water supply system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nescerecka, Alina; Juhna, Talis; Hammes, Frederik</p> <p>2018-05-15</p> <p>Changes in bacterial concentration and composition in drinking water during distribution are often attributed to biological (in)stability. Here we assessed temporal biological stability in a full-scale distribution network (DN) supplied with different types of source water: treated and chlorinated surface water and chlorinated groundwater produced at three water treatment plants (WTP). Monitoring was performed weekly during 12 months in two locations in the DN. Flow cytometric total and intact cell concentration (ICC) measurements showed considerable seasonal fluctuations, which were different for two locations. ICC varied between 0.1-3.75 × 10 5  cells mL -1 and 0.69-4.37 × 10 5  cells mL -1 at two locations respectively, with ICC increases attributed to temperature-dependent bacterial growth during distribution. Chlorinated water from the different WTP was further analysed with a modified growth potential method, identifying primary and secondary growth limiting compounds. It was observed that bacterial growth in the surface water sample after chlorination was primarily inhibited by phosphorus limitation and secondly by organic carbon limitation, while carbon was limiting in the chlorinated groundwater samples. However, the ratio of available nutrients changed during distribution, and together with disinfection residual decay, this resulted in higher bacterial growth potential detected in the DN than at the WTP. In this study, bacterial growth was found to be higher (i) at higher water temperatures, (ii) in samples with lower chlorine residuals and (iii) in samples with less nutrient (carbon, phosphorus, nitrogen, iron) limitation, while this was significantly different between the samples of different origin. Thus drinking water microbiological quality and biological stability could change during different seasons, and the extent of these changes depends on water temperature, the water source and treatment. Furthermore, differences in primary growth limiting nutrients in different water sources could contribute to biological instability in the network, where mixing occurs. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.epa.gov/agriculture/agriculture-nutrient-management-and-fertilizer','PESTICIDES'); return false;" href="https://www.epa.gov/agriculture/agriculture-nutrient-management-and-fertilizer"><span>Agriculture: Nutrient Management and Fertilizer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Fertilizers and soil amendments can be derived from raw materials, composts and other organic matter, and wastes, such as sewage sludge and certain industrial wastes. Overuse of fertilizers can result in contamination of surface water and groundwater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H11F1407G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H11F1407G"><span>Steel Slag and Shredded Tires as Media for Blind Inlets to Improve Water Quality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gonzalez, J. M.; Smith, D. R.; Livingston, S.</p> <p>2015-12-01</p> <p>Off-site transport of contaminants through surface runoff affects water quality. Blind inlets are proven conservation practices for reducing surface runoff, and consequently reducing nutrient loadings from small agricultural closed depressions to water bodies. Gravel is the most widely used blind inlet media to reduce flow, but not to sorb contaminants from the water. Readily available byproducts, such as steel slag and shredded tires, could be used as alternative media in blind inlets to sorb nutrients and pesticides from surface runoff. Sorption isotherms were performed to investigate the sorption capabilities of steel slag and shredded tires for phosphate and atrazine in electrolyte background solutions containing either 10 mM CaCl2 or KCl. Results of this research demonstrated that phosphate and atrazine were irreversibly sorbed by the steel slag and shredded tires. The steel slag increased the pH solution increased about 4 pH units after the sorption step; while the pH of the solution with shredded tires remained the same. Desorption of the phosphate and atrazine was low from the steel slag and shredded tires, respectively. Thus, the above results suggest that the steel slag and shredded tires can potentially be used as media to sorb phosphate and atrazine, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032711','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032711"><span>Gypsies in the palace: Experimentalist's view on the use of 3-D physics-based simulation of hillslope hydrological response</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>James, A.L.; McDonnell, Jeffery J.; Tromp-Van Meerveld, I.; Peters, N.E.</p> <p>2010-01-01</p> <p>As a fundamental unit of the landscape, hillslopes are studied for their retention and release of water and nutrients across a wide range of ecosystems. The understanding of these near-surface processes is relevant to issues of runoff generation, groundwater-surface water interactions, catchment export of nutrients, dissolved organic carbon, contaminants (e.g. mercury) and ultimately surface water health. We develop a 3-D physics-based representation of the Panola Mountain Research Watershed experimental hillslope using the TOUGH2 sub-surface flow and transport simulator. A recent investigation of sub-surface flow within this experimental hillslope has generated important knowledge of threshold rainfall-runoff response and its relation to patterns of transient water table development. This work has identified components of the 3-D sub-surface, such as bedrock topography, that contribute to changing connectivity in saturated zones and the generation of sub-surface stormflow. Here, we test the ability of a 3-D hillslope model (both calibrated and uncalibrated) to simulate forested hillslope rainfall-runoff response and internal transient sub-surface stormflow dynamics. We also provide a transparent illustration of physics-based model development, issues of parameterization, examples of model rejection and usefulness of data types (e.g. runoff, mean soil moisture and transient water table depth) to the model enterprise. Our simulations show the inability of an uncalibrated model based on laboratory and field characterization of soil properties and topography to successfully simulate the integrated hydrological response or the distributed water table within the soil profile. Although not an uncommon result, the failure of the field-based characterized model to represent system behaviour is an important challenge that continues to vex scientists at many scales. We focus our attention particularly on examining the influence of bedrock permeability, soil anisotropy and drainable porosity on the development of patterns of transient groundwater and sub-surface flow. Internal dynamics of transient water table development prove to be essential in determining appropriate model parameterization. ?? 2010 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=334574','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=334574"><span>Evaluating Aquatic Life Benefits of Reducing Nutrient Loading ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Theoretical linkages between excess nutrient loading, nutrient-enhanced community metabolism (i.e., production and respiration), and hypoxia in estuaries are well-understood. In seasonally-stratified estuaries and coastal systems (e.g., Chesapeake Bay, northern Gulf of Mexico), hypoxia is predominantly seasonal, such that the spatial extent indicates potential aquatic life impacts. However, in relatively small and shallow Gulf of Mexico bays and bayous, hypoxia frequently occurs episodically or on a diel basis. This study utilized continuous DO monitoring and 3-D hydrodynamic (Environmental Fluid Dynamics Code) and water quality (Water Quality Analysis Simulation Program) models to examine physical and biological controls on DO dynamics and ecosystem metabolism in Weeks Bay, AL. Observed vertical DO gradients varied on a diel basis, with larger amplitude variations at depth relative to the surface, underscoring the importance of benthic production and respiration as a driver of ecosystem metabolism in shallow estuaries. Hydrodynamic and water quality models simulated seasonal and event-driven dynamics, but struggled to resolve the amplitude of daily DO fluctuations, particularly in bottom waters. Using these data in conjunction with the 10-year continuous O2 record from Weeks Bay, we applied empirical relationships and simple scaling relations to predict how reducing nutrient loading may affect the frequency, severity and duration of hypoxia. We further applied</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25034018','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25034018"><span>Plant nutrition: root transporters on the move.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zelazny, Enric; Vert, Grégory</p> <p>2014-10-01</p> <p>Nutrient and water uptake from the soil is essential for plant growth and development. In the root, absorption and radial transport of nutrients and water toward the vascular tissues is achieved by a battery of specialized transporters and channels. Modulating the amount and the localization of these membrane transport proteins appears as a way to drive their activity and is essential to maintain nutrient homeostasis in plants. This control first involves the delivery of newly synthesized proteins to the plasma membrane by establishing check points along the secretory pathway, especially during the export from the endoplasmic reticulum. Plasma membrane-localized transport proteins are internalized through endocytosis followed by recycling to the cell surface or targeting to the vacuole for degradation, hence constituting another layer of control. These intricate mechanisms are often regulated by nutrient availability, stresses, and endogenous cues, allowing plants to rapidly adjust to their environment and adapt their development. © 2014 American Society of Plant Biologists. All Rights Reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.B34A0335S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.B34A0335S"><span>The biological pump and lower trophic level controls on carbon cycling in Lake Superior: Insights from a multi-pronged study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schreiner, K. M.; Bramburger, A.; Ozersky, T.; Sheik, C.; Steinman, B. A.</p> <p>2016-02-01</p> <p>Lake Superior is the largest freshwater lake in the world, supporting economically important fisheries and providing drinking water to hundreds of thousands of people. In recent decades, summer surface water temperature and the intensity and duration of water column stratification in the lake has increased steadily. These physical changes have resulted in significant perturbations to lower trophic level ecosystem characteristics. Recent observations of Great Lakes plankton assemblages have revealed multi-decadal patterns of community reorganization, with increased relative abundance of taxa characteristic of warmer waters. These changes, coupled with changing nutrient concentrations and colonization by non-native taxa, threaten to shift trophic structure and carbon dynamics at the bottom of the food web. To this end, this study seeks to quantify the impacts of this ecosystem shift on carbon fixation, the biological pump, and organic carbon cycling in Lake Superior. Utilizing a combined sampling approach, in the summer of 2015 we collected water, sediment, and biological samples across a nearshore-to-offshore gradient in the western arm of Lake Superior. Analyses included the community composition of bacteria, archaea, phytoplankton, and zooplankton; water column carbon and nutrient speciation; algal pigments and pigment degradation products; and net primary productivity. The collection of surface sediments allowed for additional assessment of benthic-pelagic coupling. The novel combination of this wide-ranging set of analyses to a locally and globally important water body like Lake Superior allowed us to fully assess the interactions between lower trophic level biology and carbon and nutrient cycling throughout the water column. Preliminary data indicates that microbial community composition was variable across the western arm of Lake Superior and showed signs of stratification at individual stations (>100 m deep). Sample collection occurred soon after lake stratification in July 2015, and the presence of a deep chlorophyll maximum was noted. The results shed light on the functioning of the biological pump and nutrient and carbon dynamics in a changing ecosystem and provides insight on how further change in Lake Superior and other aquatic systems will affect ecosystem function and services.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910536D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910536D"><span>USA Nutrient managment forecasting via the "Fertilizer Forecaster": linking surface runnof, nutrient application and ecohydrology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Drohan, Patrick; Buda, Anthony; Kleinman, Peter; Miller, Douglas; Lin, Henry; Beegle, Douglas; Knight, Paul</p> <p>2017-04-01</p> <p>USA and state nutrient management planning offers strategic guidance that strives to educate farmers and those involved in nutrient management to make wise management decisions. A goal of such programs is to manage hotspots of water quality degradation that threaten human and ecosystem health, water and food security. The guidance provided by nutrient management plans does not provide the day-to-day support necessary to make operational decisions, particularly when and where to apply nutrients over the short term. These short-term decisions on when and where to apply nutrients often make the difference between whether the nutrients impact water quality or are efficiently utilized by crops. Infiltrating rainfall events occurring shortly after broadcast nutrient applications are beneficial, given they will wash soluble nutrients into the soil where they are used by crops. Rainfall events that generate runoff shortly after nutrients are broadcast may wash off applied nutrients, and produce substantial nutrient losses from that site. We are developing a model and data based support tool for nutrient management, the Fertilizer Forecaster, which identifies the relative probability of runoff or infiltrating events in Pennsylvania (PA) landscapes in order to improve water quality. This tool will support field specific decisions by farmers and land managers on when and where to apply fertilizers and manures over 24, 48 and 72 hour periods. Our objectives are to: (1) monitor agricultural hillslopes in watersheds representing four of the five Physiographic Provinces of the Chesapeake Bay basin; (2) validate a high resolution mapping model that identifies soils prone to runoff; (3) develop an empirically based approach to relate state-of-the-art weather forecast variables to site-specific rainfall infiltration or runoff occurrence; (4) test the empirical forecasting model against alternative approaches to forecasting runoff occurrence; and (5) recruit farmers from the four watersheds to use web-based forecast maps in daily manure and fertilizer application decisions. Data from on-farm trials is being used to assess farmer fertilizer, manure, and tillage management decisions before and after use of the Fertilizer Forecaster. This data will help us understand not only the effectiveness of the tool, but also characteristics of farmers with the greatest potential to benefit from such a tool. Feedback from on-farm trials will be used to refine a final tool for field deployment. We hope that the Fertilizer Forecaster will serve as the basis for state (USA-PA), regional (Chesapeake Bay), and national changes in nutrient management planning. This Fertilizer Forecaster is an innovative management practice that is designed to enhance the services of aquatic ecosystems by improving water quality and enhance the services of terrestrial ecosystems by increasing the efficiency of nutrient use by targeted crops.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.esa.org/esa/wp-content/uploads/2013/03/issue7.pdf','USGSPUBS'); return false;" href="http://www.esa.org/esa/wp-content/uploads/2013/03/issue7.pdf"><span>Issues in ecology: Nutrient pollution of coastal rivers, bays, and seas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Howarth, Robert W.; Anderson, D. B.; Cloern, James E.; Elfring, Chris; Hopkinson, Charles S.; Lapointe, Brian; Maloney, Thomas J.; Marcus, Nancy; McGlathery, Karen; Sharpley, A.N.; Walker, D.</p> <p>2000-01-01</p> <p>Over the past 40 years, antipollution laws have greatly reduced discharges of toxic substances into our coastal waters. This effort, however, has focused largely on point-source pollution of industrial and municipal effluent. No comparable effort has been made to restrict the input of nitrogen (N) from municipal effluent, nor to control the flows of N and phosphorus (P) that enter waterways from dispersed or nonpoint sources such as agricultural and urban runoff or as airborne pollutants. As a result, inputs of nonpoint pollutants, particularly N, have increased dramatically. Nonpoint pollution from N and P now represents the largest pollution problem facing the vital coastal waters of the United States. Nutrient pollution is the common thread that links an array of problems along the nation’s coastline, including eutrophication, harmful algal blooms, ”dead zones,” fish kills, some shellfish poisonings, loss of seagrass and kelp beds, some coral reef destruction, and even some marine mammal and seabird deaths. More than 60 percent of our coastal rivers and bays in every coastal state of the continental United States are moderately to severely degraded by nutrient pollution. This degradation is particularly severe in the mid Atlantic states, in the southeast, and in the Gulf of Mexico. A recent report from the National Research Council entitled “Clean Coastal Waters: Understanding and Reduc- ing the Effects of Nutrient Pollution” concludes that: Nutrient over-enrichment of coastal ecosystems generally triggers ecological changes that decrease the biologi- cal diversity of bays and estuaries. While moderate N enrichment of some coastal waters may increase fish production, over-enrichment generally degrades the marine food web that supports commercially valuable fish. The marked increase in nutrient pollution of coastal waters has been accompanied by an increase in harmful algal blooms, and in at least some cases, pollution has triggered these blooms. High nutrient levels and the changes they cause in water quality and the makeup of the algal community are detrimental to the health of coral reefs and the diversity of animal life supported by seagrass and kelp communi- ties. Research during the past decade confirms that N is the chief culprit in eutrophication and other impacts of nutrient over-enrichment in temperate coastal waters, while P is most problematic in eutrophication of freshwa- ter lakes. Human conversion of atmospheric N into biologically useable forms, principally synthetic inorganic fertilizers, now matches the natural rate of biological N fixation from all the land surfaces of the earth. Both agriculture and the burning of fossil fuels contribute significantly to nonpoint flows of N to coastal waters, either as direct runoff or airborne pollutants. N from animal wastes that leaks directly to surface waters or is volatilized to the atmosphere as ammonia may be the largest single source of N that moves from agricultural operations into coastal waters. The National Research Council report recommended that, as a minimum goal, the nation should work to reverse nutrient should be taken to assure that the 40 percent of coastal areas now ranked as healthy do not develop symptoms of nutrient pollution in 10 percent of its degraded coastal systems by 2010 and 25 percent of them by 2020. Also, action should be taken to assure that the 40 percent of coastal areas now ranked as healthy do not develop symptoms of nutrient pollution.  Meeting these goals will require an array of strategies and approaches tailored to specific regions and coastal ecosystems. There is an urgent need for development and testing of techniques that can reliably pinpoint the sources of N pollutants to an estuary. For some coastal systems, N removal during treatment of human sewage may be sufficient to reverse nutrient pollution. For most coastal systems, however, the solutions will be more complex and may involve controls on N compounds emitted during fossil fuel combustion as well as incentives to reduce over-fertilization of agricul- tural fields and nutrient pollution from animal wastes in livestock feedlot operations. </p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70179023','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70179023"><span>Changing agricultural practices: Potential consequences to aquatic organisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lasier, Peter J.; Urich, Matthew L.; Hassan, Sayed M.; Jacobs, Whitney N.; Bringolf, Robert B.; Owens, Kathleen M.</p> <p>2016-01-01</p> <p>Agricultural practices pose threats to biotic diversity in freshwater systems with increasing use of glyphosate-based herbicides for weed control and animal waste for soil amendment becoming common in many regions. Over the past two decades, these particular agricultural trends have corresponded with marked declines in populations of fish and mussel species in the Upper Conasauga River watershed in Georgia/Tennessee, USA. To investigate the potential role of agriculture in the population declines, surface waters and sediments throughout the basin were tested for toxicity and analyzed for glyphosate, metals, nutrients, and steroid hormones. Assessments of chronic toxicity with Ceriodaphnia dubia and Hyalella azteca indicated that few water or sediment samples were harmful and metal concentrations were generally below impairment levels. Glyphosate was not observed in surface waters, although its primary degradation product, aminomethyl phosphonic acid (AMPA), was detected in 77% of the samples (mean = 509 μg/L, n = 99) and one or both compounds were measured in most sediment samples. Waterborne AMPA concentrations supported an inference that surfactants associated with glyphosate may be present at levels sufficient to affect early life stages of mussels. Nutrient enrichment of surface waters was widespread with nitrate (mean = 0.7 mg NO3-N/L, n = 179) and phosphorus (mean = 275 μg/L, n = 179) exceeding levels associated with eutrophication. Hormone concentrations in sediments were often above those shown to cause endocrine disruption in fish and appear to reflect the widespread application of poultry litter and manure. Observed species declines may be at least partially due to hormones, although excess nutrients and herbicide surfactants may also be implicated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ERL.....6c5301E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ERL.....6c5301E"><span>Rapid microbial respiration of oil from the Deepwater Horizon spill in offshore surface waters of the Gulf of Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edwards, Bethanie R.; Reddy, Christopher M.; Camilli, Richard; Carmichael, Catherine A.; Longnecker, Krista; Van Mooy, Benjamin A. S.</p> <p>2011-07-01</p> <p>The Deepwater Horizon oil spill was one of the largest oil spills in history, and the fate of this oil within the Gulf of Mexico ecosystem remains to be fully understood. The goal of this study—conducted in mid-June of 2010, approximately two months after the oil spill began—was to understand the key role that microbes would play in the degradation of the oil in the offshore oligotrophic surface waters near the Deepwater Horizon site. As the utilization of organic carbon by bacteria in the surface waters of the Gulf had been previously shown to be phosphorus limited, we hypothesized that bacteria would be unable to rapidly utilize the oil released from the Macondo well. Although phosphate was scarce throughout the sampling region and microbes exhibited enzymatic signs of phosphate stress within the oil slick, microbial respiration within the slick was enhanced by approximately a factor of five. An incubation experiment to determine hydrocarbon degradation rates confirmed that a large fraction of this enhanced respiration was supported by hydrocarbon degradation. Extrapolating our observations to the entire area of the slick suggests that microbes had the potential to degrade a large fraction of the oil as it arrived at the surface from the well. These observations decidedly refuted our hypothesis. However, a concomitant increase in microbial abundance or biomass was not observed in the slick, suggesting that microbial growth was nutrient limited; incubations amended with nutrients showed rapid increases in cell number and biomass, which supported this conclusion. Our study shows that the dynamic microbial community of the Gulf of Mexico supported remarkable rates of oil respiration, despite a dearth of dissolved nutrients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1425334-sustained-climate-warming-drives-declining-marine-biological-productivity','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1425334-sustained-climate-warming-drives-declining-marine-biological-productivity"><span>Sustained climate warming drives declining marine biological productivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Moore, J. Keith; Fu, Weiwei; Primeau, Francois; ...</p> <p>2018-03-01</p> <p>Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease bymore » more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1425334-sustained-climate-warming-drives-declining-marine-biological-productivity','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1425334-sustained-climate-warming-drives-declining-marine-biological-productivity"><span>Sustained climate warming drives declining marine biological productivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Moore, J. Keith; Fu, Weiwei; Primeau, Francois</p> <p></p> <p>Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease bymore » more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H41D1262A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H41D1262A"><span>Improved hydrological-model design by integrating nutrient and water flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arheimer, B.; Lindstrom, G.</p> <p>2013-12-01</p> <p>The potential of integrating hydrologic and nutrient concentration data to better understand patterns of catchment response and to better design hydrological modeling was explored using a national multi-basin model system for Sweden, called ';S-HYPE'. The model system covers more than 450 000 km2 and produce daily values of nutrient concentration and water discharge in 37 000 catchments from 1961 and onwards. It is based on the processed-based and semi-distributed HYdrological Predictions for the Environment (HYPE) code. The model is used operationally for assessments of water status or climate change impacts and for forecasts by the national warning service of floods, droughts and fire. The first model was launched in 2008, but S-HYPE is continuously improved and released in new versions every second year. Observations are available in 400 sites for daily water discharge and some 900 sites for monthly grab samples of nutrient concentrations. The latest version (2012) has an average NSE for water discharge of 0.7 and an average relative error of 5%, including both regulated and unregulated rivers with catchments from ten to several thousands of km2 and various landuse. The daily relative errors of nutrient concentrations are on average 20% for total Nitrogen and 35% for total Phosphorus. This presentation will give practical examples of how the nutrient data has been used to trace errors or inadequate parameter values in the hydrological model. Since 2008 several parts of the model structure has been reconsidered both in the source code, parameter values and input data of catchment characteristics. In this process water quality has been guiding much of the overall model design of catchment hydrological functions and routing along the river network. The model structure has thus been developed iteratively when evaluating results and checking time-series. Examples of water quality driven improvements will be given for estimation of vertical flow paths, such as separation of the hydrograph in surface flow, snow melt and baseflow, as well as horizontal flow paths in the landscape, such as mixing from various land use, impact from lakes and river channel volume. Overall, the S-HYPE model performance of water discharge increased from NSE 0.55 to 0.69 as an average for 400 gauges between the version 2010 and 2012. Most of this improvement, however, can be referred to improved regulations routines, rating curves for major lakes and parameters correcting ET and precipitation. Nevertheless, integrated water and nutrient modeling put constraints on the hydrological parameter values, which reduce equifinality for the hydrological part without reducing the model performance. The examples illustrates that the credibility of the hydrological model structure is thus improved by integrating water and nutrient flow. This lead to improved understanding of flow paths and water-nutrient process interactions in Sweden, which in turn will be very useful in further model analysis on impact of climate change or measures to reduce nutrient load from rivers to the Baltic Sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995GPC....11....1M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995GPC....11....1M"><span>Cyclic and secular variation in microfossil biomineralization: clues to the biogeochemical evolution of Phanerozoic oceans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, Ronald E.</p> <p>1995-06-01</p> <p>The stratigraphic occurrence and mineralogy of major protistan microfossil taxa tend to reflect evolutionary innovation in response to ocean chemistry and fertility. In foraminefera, the characteristic test composition—and, in some cases, ultrastructure—of each suborder is indicative of the degree of surface ocean CaCO 3 saturation, which varied in a cyclic manner through the Phanerozoic, at the time of origin of the suborder. High dissolved phosphate and low CaCO 3 saturation in late Precambrian-Early Cambrian surface waters may have prevented calcification in primitive non-calcareous (organic, agglutinated) foraminiferal stocks. Scattered reports of coccolithophorid-like microfossils from the Paleozoic are indicative of a secular trend in rising nutrient levels and marine productivity that controlled the initiation of calcareous oozes. Based on acritarch, carbon isotope, and phosphorite records, extremely low nutrient levels ("superligotrophic" conditions) in Cambrian-to-Devonian seas typically limited population densities of calcareous nannoplankton and prevented the formation of calcareous oozes. The overall "superoligotrophic" surface conditions of the Paleozoic were punctuated, though, by episodes of "catastrophic" eutrophication in the Late Ordovician, Late Devonia, and Late Carboniferous (Worsley et al., 1986). Following each episode, CaCO 3 rain rates were presumably enhanced because Marine C:P (MCP) burial ratios increased permanently above previous levels (Worsley et al., 1986). Nevertheless, it was not until the Carboniferous that the CCD had deepened sufficiently (via erosion of cratonic limestones) to allow pelagic calcareous oozes to begin to accumulate. Prior to this time, surface waters appear to have been sufficiently corrosive (high atmospheric pCO 2 and low CaCO 3 saturation), and the CCD sufficiently shallow, to dissolve virtually all incipient calcareous nannofossils. Following Late Permian extinctions, plankton re-expanded in response to both eustatic sea level rise (increased habitat availability) and increased nutrient levels ("mesotrophic" conditions). As organic matter (C org) and CaCO 3 rain rates increased, bioturbation rates also increased, thereby recycling nutrients back to the surface and accentuating productivity and calcareous ooze formation. MCP episodes further accelerated nutrient cycling and productivity in the Neogene, as indicated by the expansion of diatoms, which prefer nutrient-rich ("eutrophic") conditions. Ironically, while permanently increasing C:P burial ratios and productivity through the Phanerozoic, catastrophic fluctuations in nutrient levels may have also exacerbated mass extinctions via shortening of pelagic food chains. Nevertheless, re-expansion of the marine biosphere following each extinction episode resulted in a secular trend of increasing biomass and biotic diversity that may have contributed to the decline in background extinction rates through the Phanerozoic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5111892','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5111892"><span>Pico and nanoplankton abundance and carbon stocks along the Brazilian Bight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lopes dos Santos, Adriana; Marie, Dominique; Helena Pellizari, Vivian; Pereira Brandini, Frederico; Vaulot, Daniel</p> <p>2016-01-01</p> <p>Pico and nanoplankton communities from the Southwest Atlantic Ocean along the Brazilian Bight are poorly described. The hydrography in this region is dominated by a complex system of layered water masses, which includes the warm and oligotrophic Tropical Water (TW), the cold and nutrient rich South Atlantic Central Water (SACW) and the Coastal Water (CW), which have highly variable properties. In order to assess how pico- and nanoplankton communities are distributed in these different water masses, we determined by flow cytometry the abundance of heterotrophic bacteria, Prochlorococcus, Synechococcus and autotrophic pico and nanoeukaryotes along three transects, extending from 23°S to 31°S and 39°W to 49°W. Heterotrophic bacteria (including archaea, maximum of 1.5 × 106 cells mL−1) were most abundant in Coastal and Tropical Water whereas Prochlorococcus was most abundant in open-ocean oligotrophic waters (maximum of 300 × 103 cells mL−1). Synechococcus(up to 81 × 103 cells mL−1), as well as autotrophic pico and nanoeukaryotes seemed to benefit from the influx of nutrient-rich waters near the continental slope. Autotrophic pico and nanoeukaryotes were also abundant in deep chlorophyll maximum (DCM) layers from offshore waters, and their highest abundances were 20 × 103 cells mL−1 and 5 × 103 cells mL−1, respectively. These data are consistent with previous observations in other marine areas where Synechococcus and autotrophic eukaryotes dominate mesotrophic waters, whereas Prochlorococcus dominate in more oligotrophic areas. Regardless of the microbial community structure near the surface, the carbon stock dominance by autotrophic picoeukaryotes near the DCM is possibly linked to vertical mixing of oligotrophic surface waters with the nutrient-rich SACW and their tolerance to lower light levels. PMID:27867760</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H23M..05H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H23M..05H"><span>Field Study to Assess the Effects of Trace Concentrations of the Common Antibiotic Sulfamethoxazole on the Attached Bacterial Community Inhabiting a Sandy, Drinking-Water Aquifer in Cape Cod, Massachusetts USA.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harvey, R. W.; Underwood, J. C.; Metge, D. W.; Barber, L. B.; LeBlanc, D. R.</p> <p>2016-12-01</p> <p>Subtherapeutic levels of a commonly used antibiotic, sulfamethoxazole (SMx), has been detected in a variety of drinking-water aquifers. Recent microcosm studies suggest that very low concentrations of SMx, which is highly mobile and persistent in subsurface environments, can suppress nitrate reduction and growth of unattached groundwater bacteria. However, most aquifer bacteria are associated with mineral surfaces and it remains unclear to what extent attached microbial communities are impacted by SMx and whether any such impairment(s) are ameliorated by the presence of nutrients from the same contaminant source. The present 30-day in-situ dosing study assessed the inhibitory effects of low SMx concentrations upon sediment-attached aquifer bacteria in the presence and absence of nutrient amendments. Bacterial responses were compared for exposure to: 1) SMx alone ( 400 ppb), 2) SMx and nutrients ( 0.2 mM acetate, 0.1 mM NaNO3 and 0.1 mM NH4Cl), 3) nutrients alone, and 4) ambient groundwater. The field test used an array of 8 pairs of 5-cm (diameter) PVC injection and observation wells with slotted screens placed 9.6-10.2 m below land surface (˜5 m below water table). Aquifer sediments containing microbial communities were placed inside filter chambers that were positioned within the screened sections of the observation wells arranged in a row perpendicular to the direction of groundwater flow. Bromide (0.7 mM) was used as a conservative tracer. Evidence that SMx suppresses in-situ reduction of nitrate to nitrite was apparent from the substantial lag (9.5 days) in breakthrough of the nitrite within the wells exposed to SMx and nutrients as compared to nutrients alone. Acetate consumption data indicated that the presence of SMx could affect degradation of other organic contaminants in groundwater, although the inhibitory effects may be ameliorated, in part, by the presence of nutrients that are co-transported within a wastewater plume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.8240B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.8240B"><span>A national scale monitoring network for nutrients in agriculture dominated headwaters in the Netherlands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Broers, H. P.; Rozemeijer, J.; Klein, J.</p> <p>2012-04-01</p> <p>Although specific monitoring networks exist in the Netherlands which assess the leaching of nutrients to surface waters and groundwater, none of them was capable to quantify the effects of nutrient reduction schemes to agriculture dominated headwaters. Thus, an important link was missing which relates the nutrient concentrations measured in shallow groundwater at farm scale to nutrient concentrations measured at the scale of Water Framework Directive water bodies. A new network was composed using existing monitoring locations and water quality time series owned by the 24 water boards in the Netherlands. Only monitoring locations were selected where no other pollution sources , such as water sewage treatment plants were influencing water quality. Eventually, 168 monitoring locations were selected to assess compliance to environmental standards and 80 for trend analysis. Compliance was tested applying environmental quality standards (EQS) based on summer averaged concentrations, which are set by the water boards and which are water type and location dependent. Compliance was strongly weather dependent, and only 24% of the locations complied for N and P under all weather conditions. Trends were assessed using a combination of seasonal Mann-Kendall tests and Theil-Sen robust lines for individual time series, and aggregating those trends to acquire median and average trend slopes for the sand, clay and peat regions in the Netherlands. Significant downward trends were demonstrated for N and P over the whole period (slopes between -0,55 mgN/l and -0.015 and 0.02 mg P/l per 10 year). Slopes were even more pronounced for winter concentrations of N (-0.89 mg N/l per 10 year). The slopes were relevant and environmentally significant in relation to the height of the EQS and were attributed to the effective reduction of nutrient leaching as the result of adapted farming practices. The presentation will highlight and evaluate choices in the design of the newly composed network, including the use of existing monitoring data and its probable effect on the outcomes of the network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2010/5188/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2010/5188/"><span>Characterization of water quality and biological communities, Fish Creek, Teton County, Wyoming, 2007-08</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Eddy-Miller, Cheryl A.; Peterson, David A.; Wheeler, Jerrod D.; Leemon, Daniel J.</p> <p>2010-01-01</p> <p>Fish Creek, a tributary to the Snake River, is about 25 river kilometers long and is located in Teton County in western Wyoming near the town of Wilson. Public concern about nuisance growths of aquatic plants in Fish Creek have been increasing in recent years. To address this concern, the U.S. Geological Survey conducted a study in cooperation with the Teton Conservation District to characterize the water quality and biological communities in Fish Creek. Water-quality samples were collected for analyses of physical properties and water chemistry (nutrients, nitrate isotopes, and wastewater chemicals) between March 2007 and October 2008 from seven surface-water sites and three groundwater wells. During this same period, aquatic plant and macroinvertebrate samples were collected and habitat characteristics were measured at the surface-water sites. The main objectives of this study were to (1) evaluate nutrient concentrations (that influence biological indicators of eutrophication) and potential sources of nutrients by using stable isotope analysis and other indicator chemicals (such as caffeine and disinfectants) that could provide evidence of anthropogenic sources, such as wastewater or septic tank contamination in Fish Creek and adjacent groundwater, and (2) characterize the algal, macrophyte, and macroinvertebrate communities and habitat of Fish Creek. Nitrate was the dominant species of dissolved nitrogen present in all samples and was the only bioavailable species detected at concentrations greater than the laboratory reporting level in all surface-water samples. Average concentrations of dissolved nitrate in surface water were largest in samples collected from the two sites with seasonal flow near Teton Village and decreased downstream; the smallest concentration was at downstream site A-Wck. Concentrations of dissolved nitrate in groundwater were consistently greater than concentrations in corresponding surface-water sites during the same sampling event. Orthophosphate was the primary dissolved species of phosphorus present in all surface-water and groundwater samples. The average concentration of dissolved orthophosphate in surface water was largest in samples collected from near Teton Village; samples from all other sites had similar average concentrations. Concentrations of dissolved orthophosphate in groundwater also were typically greater than concentrations in corresponding surface-water sites during the same sampling event. The aquatic plant communities in Fish Creek typically were composed of a mixture of macrophytes, macroalgae, microalgae, and moss. The composition of the aquatic plant community in Fish Creek appeared to shift in the downstream direction in 2007. On average, the proportion of macrophytes ranged from about 1 percent at site A-R1U, the most upstream site, to 54 percent of the plant community at site A-R6D, the farthest downstream site sampled during 2007. The downstream increase in macrophytes was accompanied by a downstream decrease in microalgae. The average proportion of microalgae ranged from 80 percent at site A-R1U to 24 percent at site A-R6D. The proportion of the macroalgae Cladophora in the aquatic plant community was relatively high at sites A-Wck and A-R3D in both 2007 and 2008.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PrOce..72..364M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PrOce..72..364M"><span>Influence of basin-scale and mesoscale physical processes on biological productivity in the Bay of Bengal during the summer monsoon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muraleedharan, K. R.; Jasmine, P.; Achuthankutty, C. T.; Revichandran, C.; Dinesh Kumar, P. K.; Anand, P.; Rejomon, G.</p> <p>2007-03-01</p> <p>Physical forcing plays a major role in determining biological processes in the ocean across the full spectrum of spatial and temporal scales. Variability of biological production in the Bay of Bengal (BoB) based on basin-scale and mesoscale physical processes is presented using hydrographic data collected during the peak summer monsoon in July-August, 2003. Three different and spatially varying physical processes were identified in the upper 300 m: (I) anticyclonic warm gyre offshore in the southern Bay; (II) a cyclonic eddy in the northern Bay; and (III) an upwelling region adjacent to the southern coast. In the warm gyre (>28.8 °C), the low salinity (33.5) surface waters contained low concentrations of nutrients. These warm surface waters extended below the euphotic zone, which resulted in an oligotrophic environment with low surface chlorophyll a (0.12 mg m -3), low surface primary production (2.55 mg C m -3 day -1) and low zooplankton biovolume (0.14 ml m -3). In the cyclonic eddy, the elevated isopycnals raised the nutricline upto the surface (NO 3-N > 8.2 μM, PO 4-P > 0.8 μM, SiO 4-Si > 3.5 μM). Despite the system being highly eutrophic, response in the biological activity was low. In the upwelling zone, although the nutrient concentrations were lower compared to the cyclonic eddy, the surface phytoplankton biomass and production were high (Chl a - 0.25 mg m -3, PP - 9.23 mg C m -3 day -1), and mesozooplankton biovolume (1.12 ml m -3) was rich. Normally in oligotrophic, open ocean ecosystems, primary production is based on ‘regenerated’ nutrients, but during episodic events like eddies the ‘production’ switches over to ‘new production’. The switching over from ‘regenerated production’ to ‘new production’ in the open ocean (cyclonic eddy) and establishment of a new phytoplankton community will take longer than in the coastal system (upwelling). Despite the functioning of a cyclonic eddy and upwelling being divergent (transporting of nutrients from deeper waters to surface), the utilization of nutrients leading to enhanced biological production and its transfer to upper trophic levels in the upwelling region imply that the energy transfer from primary production to secondary production (mesozooplankton) is more efficient than in the cyclonic eddy of the open ocean. The results suggest that basin-scale and mesoscale processes influence the abundance and spatial heterogeneity of plankton populations across a wide spatial scale in the BoB. The multifaceted effects of these physical processes on primary productivity thus play a prominent role in structuring of zooplankton communities and could consecutively affect the recruitment of pelagic fisheries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.8875V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.8875V"><span>The nitrate response of a lowland catchment and groundwater travel times</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van der Velde, Ype; Rozemeijer, Joachim; de Rooij, Gerrit; van Geer, Frans</p> <p>2010-05-01</p> <p>Intensive agriculture in lowland catchments causes eutrophication of downstream waters. To determine effective measures to reduce the nutrient loads from upstream lowland catchments, we need to understand the origin of long-term and daily variations in surface water nutrient concentrations. Surface water concentrations are often linked to travel time distributions of water passing through the saturated and unsaturated soil of the contributing catchment. This distribution represents the contact time over which sorption, desorption and degradation takes place. However, travel time distributions are strongly influenced by processes like tube drain flow, overland flow and the dynamics of draining ditches and streams and therefore exhibit strong daily and seasonal variations. The study we will present is situated in the 6.6 km2 Hupsel brook catchment in The Netherlands. In this catchment nitrate and chloride concentrations have been intensively monitored for the past 26 years under steadily decreasing agricultural inputs. We described the complicated dynamics of subsurface water fluxes as streams, ditches and tube drains locally switch between active or passive depending on the ambient groundwater level by a groundwater model with high spatial and temporal resolutions. A transient particle tracking approach is used to derive a unique catchment-scale travel time distribution for each day during the 26 year model period. These transient travel time distributions are not smooth distributions, but distributions that are strongly spiked reflecting the contribution of past rainfall events to the current discharge. We will show that a catchment-scale mass response function approach that only describes catchment-scale mixing and degradation suffices to accurately reproduce observed chloride and nitrate surface water concentrations as long as the mass response functions include the dynamics of travel time distributions caused by the highly variable connectivity of the surface water network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatGe..11..190C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatGe..11..190C"><span>Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coxall, Helen K.; Huck, Claire E.; Huber, Matthew; Lear, Caroline H.; Legarda-Lisarri, Alba; O'Regan, Matt; Sliwinska, Kasia K.; van de Flierdt, Tina; de Boer, Agatha M.; Zachos, James C.; Backman, Jan</p> <p>2018-03-01</p> <p>The onset of the North Atlantic Deep Water formation is thought to have coincided with Antarctic ice-sheet growth about 34 million years ago (Ma). However, this timing is debated, in part due to questions over the geochemical signature of the ancient Northern Component Water (NCW) formed in the deep North Atlantic. Here we present detailed geochemical records from North Atlantic sediment cores located close to sites of deep-water formation. We find that prior to 36 Ma, the northwestern Atlantic was stratified, with nutrient-rich, low-salinity bottom waters. This restricted basin transitioned into a conduit for NCW that began flowing southwards approximately one million years before the initial Antarctic glaciation. The probable trigger was tectonic adjustments in subarctic seas that enabled an increased exchange across the Greenland-Scotland Ridge. The increasing surface salinity and density strengthened the production of NCW. The late Eocene deep-water mass differed in its carbon isotopic signature from modern values as a result of the leakage of fossil carbon from the Arctic Ocean. Export of this nutrient-laden water provided a transient pulse of CO2 to the Earth system, which perhaps caused short-term warming, whereas the long-term effect of enhanced NCW formation was a greater northward heat transport that cooled Antarctica.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21250446','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21250446"><span>[Effects of sediment dredging on benthos community structure and water quality in Zhushan Bay].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Guo-Feng; Zhang, Zhi-Yong; Liu, Hai-Qin; Zhong, Ji-Cheng; Yan, Shao-Hua; Fan, Cheng-Xin</p> <p>2010-11-01</p> <p>We surveyed the changes of macro-benthos community composition and nutrients concentration in water in Zhushan Bay after it had been dredged 6 months, which aimed to remove the polluted surface sediments. The results showed that the main benthos in the dredged and un-dredged sediments were Limodrilus hoffmeisteri, Pelopia and Bellamya aeruginosa; compared to the un-dredged sediments, the bio-diversity of dredged areas became lower. However, its biomass became higher than that in un-dredged areas. Concentration range changes of TN and TP in overlying water was 1.64-4.45 mg/L and 0.133-0.258 mg/L, respectively. The post-dredged sediments were still in a higher state of nutrients for the higher concentration nutrients in overlying water, macro-benthos were the species that lived in a serious polluted water environment. Using Shannon-Weaver, Simpson, and Goodnight benthic index to evaluate the results show that the dredged area is in the moderately polluted level, but un-dredged area is in the middle-heavily polluted level. According to the benthos fauna surveys and water quality monitoring results, the effective of sediment dredging could play its role only the strict control on the external pollution resources have been made and reduces the effects of polluted water on the sediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.H12C..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.H12C..05S"><span>Quantifying nutrient sources in an upland catchment using multiple chemical and isotopic tracers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Doctor, D. H.; Kendall, C.; Aiken, G. R.</p> <p>2006-12-01</p> <p>To explore processes that control the temporal variation of nutrients in surface waters, we measured multiple environmental tracers at the Sleepers River Research Watershed, an upland catchment in northeastern Vermont, USA. Using a set of high-frequency stream water samples, we quantified the variation of nutrients over a range of stream flow conditions with chemical and isotopic tracers of water, nitrate, and dissolved organic carbon (DOC). Stream water concentrations of nitrogen (predominantly in the forms of nitrate and dissolved organic nitrogen) and DOC reflected mixing of water contributed from distinct sources in the forested landscape. Water isotopic signatures and end-member mixing analysis revealed when solutes entered the stream from these sources and that the sources were linked to the stream by preferential shallow subsurface and overland flow paths. Results from the tracers indicated that freshly-leached, terrestrial organic matter was the overwhelming source of high DOC concentrations in stream water. In contrast, in this region where atmospheric nitrogen deposition is chronically elevated, the highest concentrations of stream nitrate were attributable to atmospheric sources that were transported via melting snow and rain fall. These findings are consistent with a conceptual model of the landscape in which coupled hydrological and biogeochemical processes interact to control stream solute variability over time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11..437R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11..437R"><span>Factors controlling stream water nitrate and phosphor loads during precipitation events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rozemeijer, J. C.; van der Velde, Y.; van Geer, F. G.; de Rooij, G. H.; Broers, H. P.; Bierkens, M. F. P.</p> <p>2009-04-01</p> <p>Pollution of surface waters in densely populated areas with intensive land use is a serious threat to their ecological, industrial and recreational utilization. European and national manure policies and several regional and local pilot projects aim at reducing pollution loads to surface waters. For the evaluation of measures, water authorities and environmental research institutes are putting a lot of effort into monitoring surface water quality. Fro regional surface water quality monitoring, the measurement locations are usually situated in the downstream part of the catchment to represent a larger area. The monitoring frequency is usually low (e.g. monthly), due to the high costs for sampling and analysis. As a consequence, human induced trends in nutrient loads and concentrations in these monitoring data are often concealed by the large variability of surface water quality caused by meteorological variations. Because natural surface water quality variability is poorly understood, large uncertainties occur in the estimates of (trends in) nutrient loads or average concentrations. This study aims at uncertainty reduction in the estimates of mean concentrations and loads of N and P from regional monitoring data. For this purpose, we related continuous N and P records of stream water to variations in precipitation, discharge, groundwater level and tube drain discharge. A specially designed multi scale experimental setup was installed in an agricultural lowland catchment in The Netherlands. At the catchment outlet, continuous measurements of water quality and discharge were performed from July 2007-January 2009. At an experimental field within the catchment continuous measurements of precipitation, groundwater levels and tube drain discharges were collected. 20 significant rainfall events with a variety of antecedent conditions, durations and intensities were selected for analysis. Singular and multiple regression analysis was used to identify relations between the continuous N and P records and characteristics of the dynamics of discharge, precipitation, groundwater level and tube drain discharge. From this study, we conclude that generally available and easy to measure explanatory data (such as continuous records of discharge, precipitation and groundwater level) can reduce uncertainty in estimations of N and P loads and mean concentrations. However, for capturing the observed short load pulses of P, continuous or discharge proportional sampling is needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.H42D..02R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.H42D..02R"><span>Factors controlling stream water nitrate and phosphor loads during precipitation events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rozemeijer, J.; van der Velde, Y.; van Geer, F.; de Rooij, G. H.; Broers, H.; Bierkens, M. F.</p> <p>2009-12-01</p> <p>Pollution of surface waters in densely populated areas with intensive land use is a serious threat to their ecological, industrial and recreational utilization. European and national manure policies and several regional and local pilot projects aim at reducing pollution loads to surface waters. For the evaluation of measures, water authorities and environmental research institutes are putting a lot of effort into monitoring surface water quality. Within regional surface water quality monitoring networks, the measurement locations are usually situated in the downstream part of the catchment to represent a larger area. The monitoring frequency is usually low (e.g. monthly), due to the high costs for sampling and analysis. As a consequence, human induced trends in nutrient loads and concentrations in these monitoring data are often concealed by the large variability of surface water quality caused by meteorological variations. Because this natural variability in surface water quality is poorly understood, large uncertainties occur in the estimates of (trends in) nutrient loads or average concentrations. This study aims at uncertainty reduction in the estimates of mean concentrations and loads of N and P from regional monitoring data. For this purpose, we related continuous records of stream water N and P concentrations to easier and cheaper to collect quantitative data on precipitation, discharge, groundwater level and tube drain discharge. A specially designed multi scale experimental setup was installed in an agricultural lowland catchment in The Netherlands. At the catchment outlet, continuous measurements of water quality and discharge were performed from July 2007-January 2009. At an experimental field within the catchment we collected continuous measurements of precipitation, groundwater levels and tube drain discharges. 20 significant rainfall events with a variety of antecedent conditions, durations and intensities were selected for analysis. Singular and multiple regression analysis were used to identify relations between the N and P response to the rainfall events and the quantitative event characteristics. We successfully used these relations to predict the N and P responses to events and to improve the interpolation between low frequency grab sample measurements. Incorporating the predicted concentration changes during high discharge events dramatically improved the precision of our load estimations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917933M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917933M"><span>Sources of nitrogen and phosphorus emissions to Irish rivers: estimates from the Source Load Apportionment Model (SLAM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mockler, Eva; Deakin, Jenny; Archbold, Marie; Daly, Donal; Bruen, Michael</p> <p>2017-04-01</p> <p>More than half of the river and lake water bodies in Europe are at less than good ecological status or potential, and diffuse pollution from agriculture remains a major, but not the only, cause of this poor performance. In Ireland, it is evident that agri-environmental policy and land management practices have, in many areas, reduced nutrient emissions to water, mitigating the potential impact on water quality. However, additional measures may be required in order to further decouple the relationship between agricultural productivity and emissions to water, which is of vital importance given the on-going agricultural intensification in Ireland. Catchment management can be greatly supported by modelling, which can reduce the resources required to analyse large amounts of information and can enable investigations and measures to be targeted. The Source Load Apportionment Model (SLAM) framework was developed to support catchment management in Ireland by characterising the contributions from various sources of phosphorus (P) and nitrogen (N) emissions to water. The SLAM integrates multiple national spatial datasets relating to nutrient emissions to surface water, including land use and physical characteristics of the sub-catchments to predict emissions from point (wastewater, industry discharges and septic tank systems) and diffuse sources (agriculture, forestry, peatlands, etc.). The annual nutrient emissions predicted by the SLAM were assessed against nutrient monitoring data for 16 major river catchments covering 50% of the area of Ireland. At national scale, results indicate that the total average annual emissions to surface water in Ireland are over 2,700 t yr-1 of P and 80,000 t yr-1 of N. The SLAM results include the proportional contributions from individual sources at a range of scales from sub-catchment to national, and show that the main sources of P are from wastewater and agriculture, with wide variations across the country related to local anthropogenic pressures and the hydrogeological setting. Agriculture is the main source of N emissions to water across all regions of Ireland. The SLAM results have been incorporated into an Integrated Catchment Management process and used in conjunction with monitoring data and local knowledge during the characterisation of all Irish water bodies by the Environmental Protection Agency. This demonstrates the successful integration of research into catchment management to inform the identification of (i) the sources of nutrients at regional and local scales and (ii) the potential significant pressures and appropriate mitigation measures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1263785','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1263785"><span>Algae Resources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>None</p> <p></p> <p>Algae are highly efficient at producing biomass, and they can be found all over the planet. Many use sunlight and nutrients to create biomass, which contain key components—including lipids, proteins, and carbohydrates— that can be converted and upgraded to a variety of biofuels and products. A functional algal biofuels production system requires resources such as suitable land and climate, sustainable management of water resources, a supplemental carbon dioxide (CO2) supply, and other nutrients (e.g., nitrogen and phosphorus). Algae can be an attractive feedstock for many locations in the United States because their diversity allows for highpotential biomass yields in amore » variety of climates and environments. Depending on the strain, algae can grow by using fresh, saline, or brackish water from surface water sources, groundwater, or seawater. Additionally, they can grow in water from second-use sources such as treated industrial wastewater; municipal, agricultural, or aquaculture wastewater; or produced water generated from oil and gas drilling operations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24686791','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24686791"><span>Reduced nutrient pollution in a rural stream following septic tank upgrade and installation of runoff retention measures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ockenden, M C; Quinton, J N; Favaretto, N; Deasy, C; Surridge, B</p> <p>2014-07-01</p> <p>Surface water quality in the UK and much of Western Europe has improved in recent decades, in response to better point source controls and the regulation of fertilizer, manure and slurry use. However, diffuse sources of pollution, such as leaching or runoff of nutrients from agricultural fields, and micro-point sources including farmyards, manure heaps and septic tank sewerage systems, particularly systems without soil adsorption beds, are now hypothesised to contribute a significant proportion of the nutrients delivered to surface watercourses. Tackling such sources in an integrated manner is vital, if improvements in freshwater quality are to continue. In this research, we consider the combined effect of constructing small field wetlands and improving a septic tank system on stream water quality within an agricultural catchment in Cumbria, UK. Water quality in the ditch-wetland system was monitored by manual sampling at fortnightly intervals (April-October 2011 and February-October 2012), with the septic tank improvement taking place in February 2012. Reductions in nutrient concentrations were observed through the catchment, by up to 60% when considering total phosphorus (TP) entering and leaving a wetland with a long residence time. Average fluxes of TP, soluble reactive phosphorus (SRP) and ammonium-N (NH4-N) at the head of the ditch system in 2011 (before septic tank improvement) compared to 2012 (after septic tank improvement) were reduced by 28%, 9% and 37% respectively. However, TP concentration data continue to show a clear dilution with increasing flow, indicating that the system remained point source dominated even after the septic tank improvement.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.H51C0775M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.H51C0775M"><span>SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mohanty, A. K.</p> <p>2009-12-01</p> <p>SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA A.K. Mohanty, K. Mahesh Kumar, B. A. Prakash and V.V.S. Gurunadha Rao Ecology and Environment Group National Geophysical Research Institute, (CSIR) Hyderabad - 500 606, India E-mail:atulyakumarmohanty@yahoo.com Abstract: Hyderabad Metropolitan Development Authority has taken up restoration of urban lakes around Hyderabad city under Green Hyderabad Environment Program. Restoration of Mir Alam Tank, Durgamcheruvu, Patel cheruvu, Pedda Cheruvu and Nallacheruvu lakes have been taken up under the second phase. There are of six lakes viz., RKPuramcheruvu, Nadimicheruvu (Safilguda), Bandacheruvu Patelcheruvu, Peddacheruvu, Nallacheruvu, in North East Musi Basin covering 38 sq km. Bimonthly monitoring of lake water quality for BOD, COD, Total Nitrogen, Total phosphorous has been carried out for two hydrological cycles during October 2002- October 2004 in all the five lakes at inlet channels and outlets. The sediments in the lake have been also assessed for nutrient status. The nutrient parameters have been used to assess eutrophic condition through computation of Trophic Status Index, which has indicated that all the above lakes under study are under hyper-eutrophic condition. The hydrogeological, geophysical, water quality and groundwater data base collected in two watersheds covering 4 lakes has been used to construct groundwater flow and mass transport models. The interaction of lake-water with groundwater has been computed for assessing the lake water budget combining with inflow and outflow measurements on streams entering and leaving the lakes. Individual lake water budget has been used for design of appropriate capacity of Sewage Treatment Plants (STPs) on the inlet channels of the lakes for maintaining Full Tank Level (FTL) in each lake. STPs are designed for tertiary treatment i.e. removal of nutrient load viz., Phosphates and Nitrates. Phosphates are removed through addition of Alum to the influent stream to the STPs whereas Nitrates reduction is achieved by sending the treated wastewater from the STP through a wetland before entering the lake. STP Capacity ranging from 2-10 MLD have been recommended depending on lake water budget of individual lake and considering surrounding urbanization. Sediment nutrient data has helped for deciding the need for dredging of lake bed for removal of phosphates. Key Words: Lake water budget, Eutrophication, Trophic Status Index, Urban Lakes Restoration</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMEP33B0615P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMEP33B0615P"><span>Surface-subsurface flow modeling: an example of large-scale research at the new NEON user facility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Powell, H.; McKnight, D. M.</p> <p>2009-12-01</p> <p>Climate change is predicted to alter surface-subsurface interactions in freshwater ecosystems. These interactions are hypothesized to control nutrient release at diel and seasonal time scales, which may then exert control over epilithic algal growth rates. The mechanisms underlying shifts in complex physical-chemical-biological patterns can be elucidated by long-term observations at sites that span hydrologic and climate gradients across the continent. Development of the National Ecological Observatory Network (NEON) will provide researchers the opportunity to investigate continental-scale patterns by combining investigator-driven measurements with Observatory data. NEON is a national-scale research platform for analyzing and understanding the impacts of climate change, land-use change, and invasive species on ecology. NEON features sensor networks and experiments, linked by advanced cyberinfrastructure to record and archive ecological data for at least 30 years. NEON partitions the United States into 20 ecoclimatic domains. Each domain hosts one fully instrumented Core Aquatic site in a wildland area and one Relocatable site, which aims to capture ecologically significant gradients (e.g. landuse, nitrogen deposition, urbanization). In the current definition of NEON there are 36 Aquatic sites: 30 streams/rivers and 6 ponds/lakes. Each site includes automated, in-situ sensors for groundwater elevation and temperature; stream flow (discharge and stage); pond water elevation; atmospheric chemistry (Tair, barometric pressure, PAR, radiation); and surface water chemistry (DO, Twater, conductivity, pH, turbidity, cDOM, nutrients). Groundwater and surface water sites shall be regularly sampled for selected chemical and isotopic parameters. The hydrologic and geochemical monitoring design provides basic information on water and chemical fluxes in streams and ponds and between groundwater and surface water, which is intended to support investigator-driven modeling studies. Theoretical constructs, such as the River Continuum Concept, that aim to elucidate general mechanistic underpinnings of freshwater ecosystem function via testable hypotheses about relative rates of photosynthesis and respiration, for example, may be readily examined using data collected at hourly time scales at the NEON facility once constructed. By taking advantage of NEON data and adding PI-driven research to the Observatory, we can further our understanding of the relative roles of water flow, nutrients, temperature, and light on freshwater ecosystem function and structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=333869','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=333869"><span>Off-site transport of nitrogen fertilizer with runoff from golf course fairway turf: A comparison of creeping bentgrass with a fine fescue mixture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Maintaining quality golf course turf often requires irrigation and application of fertilizer. The transport of excess nutrients with runoff water from highly managed and fertilized biological systems to surrounding surface waters has been shown to result in enhanced algal blooms and promotion of eut...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=64938&keyword=agriculture+AND+metrics&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=64938&keyword=agriculture+AND+metrics&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>PREDICTING NUTRIENT AND SEDIMENT LOADINGS TO STREAMS FROM LANDSCAPE METRICS: A MULTIPLE WATERSHED STUDY FROM THE UNITED STATES MID-ATLANTIC REGION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>There has been an increasing interest in evaluating the relative condition or health of water resources at regional and national scales. Of particular interest is an ability to identify those areas where surface and ground waters have the greatest potential for high levels of ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=342539','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=342539"><span>Water quality of surface runoff and lint yield in cotton under furrow irrigation in Northeast Arkansas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Use of furrow irrigation in row crop production is a common practice through much of the Midsouth US and yet, nutrients can be transported off-site through surface runoff. A field study with cotton (Gossypium hirsutum, L.) was conducted to understand the impact of furrow tillage practices and nitrog...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28738513','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28738513"><span>Mitigation of nonpoint source pollution in rural areas: From control to synergies of multi ecosystem services.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Yonghong; Liu, Junzhuo; Shen, Renfang; Fu, Bojie</p> <p>2017-12-31</p> <p>Nonpoint source (NPS) pollution produced by human activities in rural areas has induced excessive nutrient input into surface waters and the decline of water quality. The essence of NPS pollution is the transport of nutrients between soil and water. Traditional NPS pollution control strategies, however, are mainly based on the solid and liquid phases, with little focus on the bio-phase between water and soil. The pollutants produced from NPS can be regarded as a resource if recycled or reused in an appropriate way in the agricultural ecosystem. This mini review proposes novel strategies for NPS pollution control based on three phases (liquid, solid and bio-phase) and highlights the regulating services of an agricultural ecosystem by optimizing land use/cover types. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28638369','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28638369"><span>Diversity and Activity of Diazotrophs in Great Barrier Reef Surface Waters.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Messer, Lauren F; Brown, Mark V; Furnas, Miles J; Carney, Richard L; McKinnon, A D; Seymour, Justin R</p> <p>2017-01-01</p> <p>Discrepancies between bioavailable nitrogen (N) concentrations and phytoplankton growth rates in the oligotrophic waters of the Great Barrier Reef (GBR) suggest that undetermined N sources must play a significant role in supporting primary productivity. One such source could be biological dinitrogen (N 2 ) fixation through the activity of "diazotrophic" bacterioplankton. Here, we investigated N 2 fixation and diazotroph community composition over 10° S of latitude within GBR surface waters. Qualitative N 2 fixation rates were found to be variable across the GBR but were relatively high in coastal, inner and outer GBR waters, reaching 68 nmol L -1 d -1 . Diazotroph assemblages, identified by amplicon sequencing of the nifH gene, were dominated by the cyanobacterium Trichodesmium erythraeum , γ-proteobacteria from the Gamma A clade, and δ-proteobacterial phylotypes related to sulfate-reducing genera. However, diazotroph communities exhibited significant spatial heterogeneity, correlated with shifts in dissolved inorganic nutrient concentrations. Specifically, heterotrophic diazotrophs generally increased in relative abundance with increasing concentrations of phosphate and N, while Trichodesmium was proportionally more abundant when concentrations of these nutrients were low. This study provides the first in-depth characterization of diazotroph community composition and N 2 fixation dynamics within the oligotrophic, N-limited surface waters of the GBR. Our observations highlight the need to re-evaluate N cycling dynamics within oligotrophic coral reef systems, to include diverse N 2 fixing assemblages as a potentially significant source of dissolved N within the water column.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H32E..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H32E..07S"><span>How well will the Surface Water and Ocean Topography (SWOT) mission observe global reservoirs?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Solander, K.; Famiglietti, J. S.; David, C. H.; Reager, J. T., II</p> <p>2014-12-01</p> <p>Subsurface drainage is a very common practice in the agricultural U.S. Midwest. It is typically installed in poorly drained soils in order to enhance crop yields. The presence of tile drains creates a route for agrichemicals to travel and therefore negatively impacts stream water quality. This study estimated through end-member analyses the contributions of tile drainage, groundwater, and surface runoff to streamflow at the watershed scale based on continuously monitored data. Especial attention was devoted to quantifying tile drainage impact on watershed streamflow and nutrient export loads. Data analyzed includes streamflow, rainfall, soil moisture, shallow groundwater levels, in-stream nitrate+nitrite concentrations and specific conductance. Data were collected at a HUC12 watershed located in Northeast Iowa, USA. Approximately 60% of the total watershed area is devoted to agricultural activities and forest and grassland are the other two predominant land uses. Results show that approximately 20% of total annual streamflow comes from tile drainage and during rainfall events tile drainage contribution can go up to 30%. Furthermore, for most of the analyzed rainfall events groundwater responded faster and in a more dramatic fashion than tile drainage. The State of Iowa is currently carrying out a plan to reduce nutrients in Iowa waters and the Gulf of Mexico (Iowa Nutrient Reduction Strategy). The outcome of this investigation has the potential to assist in Best Management Practice (BMP) scenario selection and therefore help the state achieve water quality goals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22056464','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22056464"><span>On-farm treatment of dairy soiled water using aerobic woodchip filters.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ruane, Eimear M; Murphy, Paul N C; Healy, Mark G; French, Padraig; Rodgers, Michael</p> <p>2011-12-15</p> <p>Dairy soiled water (DSW) is produced on dairy farms through the washing-down of milking parlours and holding areas, and is generally applied to land. However, there is a risk of nutrient loss to surface and ground waters from land application. The aim of this study was to use aerobic woodchip filters to remove organic matter, suspended solids (SS) and nutrients from DSW. This novel treatment method would allow the re-use of the final effluent from the woodchip filters to wash down yards, thereby reducing water usage and environmental risks associated with land spreading. Three replicate 100 m(2) farm-scale woodchip filters, each 1 m deep, were constructed and operated to treat DSW from 300 cows over an 11-month study duration. The filters were loaded at a hydraulic loading rate of 30 L m(-2) d(-1), applied in four doses through a network of pipes on the filter surface. Average influent concentrations of chemical oxygen demand (COD), SS and total nitrogen (TN) of 5750 ± 1441 mg L(-1), 602 ± 303 mg L(-1) and 357 ± 100 mg L(-1), respectively, were reduced by 66, 86 and 57% in the filters. Effluent nutrient concentrations remained relatively stable over the study period, indicating the effectiveness of the filter despite increasing and/or fluctuating influent concentrations. Woodchip filters are a low cost, minimal maintenance treatment system, using a renewable resource that can be easily integrated into existing farm infrastructure. Copyright © 2011 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ECSS..156..175M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ECSS..156..175M"><span>Gastropod growth and survival as bioindicators of stress associated with high nutrients in the intertidal of a shallow temperate estuary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marsden, Islay D.; Baharuddin, Nursalwa</p> <p>2015-04-01</p> <p>The effects of multiple stressors on estuarine organisms are not well understood. Using cage experiments we measured the survival and growth of the pulmonate gastropod Amphibola crenata at five locations which differed contaminant levels. Water nutrients came from a nearby sewage treatment works and the sediment contained low levels of trace metals. Over 6 weeks of exposure, sediment surface chlorophyll levels varied amongst locations. The Chl a values were positively correlated with sediment N and P and trace metals As, Cd, Cu, Pb and Zn. Pulmonate survival depended on location, highest mortality was from a site close to the treatment plant and mortality rate of large individuals decreased significantly with distance away from it. For four locations, medium A. crenata had higher survival than small (juveniles) or adults. Growth rates of small individuals exceeded those for medium and large A. crenata. The mean length increment/week for medium gastropods ranged between 0.49 and 1.11 mm and was negatively correlated with the amount of Chl a in the surface sediment, suggesting the negative effects of eutrophication on gastropod growth. Growth rate of the pulmonate was not correlated with nutrient concentration or trace metal concentrations in the sediment. The dry weight condition index (CI) did not correlate with the growth rate, and for medium individuals, was unaffected by any of the environmental variables. The CI of small individuals was negatively affected by increasing water nutrient levels and the CI of large individuals negatively affected by increasing sediment nutrients and trace metal concentrations. The results from this study suggest that gastropod growth and survival could be used as tools to monitor the effects of changing nutrient levels and recovery from eutrophication within temperate estuaries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70040700','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70040700"><span>Microbial colonization and controls in dryland systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pointing, Stephen B.; Belnap, Jayne</p> <p>2012-01-01</p> <p>Drylands constitute the most extensive terrestrial biome, covering more than one-third of the Earth's continental surface. In these environments, stress limits animal and plant life, so life forms that can survive desiccation and then resume growth following subsequent wetting assume the foremost role in ecosystem processes. In this Review, we describe how these organisms assemble in unique soil- and rock-surface communities to form a thin veneer of mostly microbial biomass across hot and cold deserts. These communities mediate inputs and outputs of gases, nutrients and water from desert surfaces, as well as regulating weathering, soil stability, and hydrological and nutrient cycles. The magnitude of regional and global desert-related environmental impacts is affected by these surface communities; here, we also discuss the challenges for incorporating the consideration of these communities and their effects into the management of dryland resources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3485180','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3485180"><span>Ordovician ash geochemistry and the establishment of land plants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2012-01-01</p> <p>The colonization of the terrestrial environment by land plants transformed the planetary surface and its biota, and shifted the balance of Earth’s biomass from the subsurface towards the surface. However there was a long delay between the formation of palaeosols (soils) on the land surface and the key stage of plant colonization. The record of palaeosols, and their colonization by fungi and lichens extends well back into the Precambrian. While these early soils provided a potential substrate, they were generally leached of nutrients as part of the weathering process. In contrast, volcanic ash falls provide a geochemically favourable substrate that is both nutrient-rich and has high water retention, making them good hosts to land plants. An anomalously extensive system of volcanic arcs generated unprecedented volumes of lava and volcanic ash (tuff) during the Ordovician. The earliest, mid-Ordovician, records of plant spores coincide with these widespread volcanic deposits, suggesting the possibility of a genetic relationship. The ash constituted a global environment of nutrient-laden, water-saturated soil that could be exploited to maximum advantage by the evolving anchoring systems of land plants. The rapid and pervasive inoculation of modern volcanic ash by plant spores, and symbiotic nitrogen-fixing fungi, suggests that the Ordovician ash must have received a substantial load of the earliest spores and their chemistry favoured plant development. In particular, high phosphorus levels in ash were favourable to plant growth. This may have allowed photosynthesizers to diversify and enlarge, and transform the surface of the planet. PMID:22925460</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/549156-sewage-ground-water-florida-keys','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/549156-sewage-ground-water-florida-keys"><span>Sewage in ground water in the Florida Keys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shinn, E.A.</p> <p>1995-12-31</p> <p>More than 24,000 septic tanks, 5,000 cesspools, and greater than 600 shallow disposal wells introduce sewage effluents into porous and permeable limestone underlying the Florida Keys. To porous and permeable limestone underlying the Florida Keys. To assess the fate of sewage nutrients, 21 2- to 20-m-deep wells were core drilled and completed as water-monitoring wells. The wells were sampled quarterly and analyzed for 17 parameters. including nutrients and bacteria. Nutrients (mainly NH4, - which is 30 to 40 times higher than in surface sea water) were detected in ground water beneath the Keys and offshore coral reefs. Highest levels weremore » beneath reefs 5 to 8 km offshore. Ground waters were generally hypersaline and fecal bacteria (fecal coliform and streptococci) were detected in ground water beneath living coral reefs. Higher sea level on the Florida Bay side of the Keys is proposed as the mechanism for forcing ground water toward offshore coral reefs. Tidal pumping, which is more pronounced near the Keys, causes leakage of ground water where the sediment is thin. Areas lacking sediment cover consist of bare limestone bedrock or permeable coral reefs. These are the areas where coral diseases and algal growth have increased in recent years. Pollutants entering the ground water beneath the Florida Keys are likely to be transported seaward beneath impermeable Holocene sediments and may be upwelling through coral reefs and other hardbottom communities.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMOS53D..05W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMOS53D..05W"><span>Nutrient Dynamics in the Northern South China Sea Shelf-sea (NoSoCS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wong, G. T.; Guo, X.</p> <p>2011-12-01</p> <p>The Northern South China Sea Shelf-sea (NoSoCS) is situated in the sub-tropics along the southern Chinese coast between the southern end of the Taiwan Strait and the Hainan Island. Samples were collected in four cross-shelf transects in summer, 2010 and two cross-shelf transects in winter, 2011 in this Shelf-sea. The shelf may be sub-divided into the inner shelf (<40 m, low water temperature, high chlorophyll concentration), the middle shelf (50-80 m), and the outer shelf (90-120 m, high water temperature, low nutrient and chlorophyll concentrations). The mixed layer depth and the top of the nutricline depth (at ~30 m in the summer and ~70 m in the winter) were shallower than the shelf break depth (~120 m) in both seasons. The relatively nutrient-rich upper nutricline water (>1 μM in NO3- and >0.1 μM in soluble reactive phosphate) stretched across the shelf at least to the middle shelf. Thus, vertical mixing, even to relatively shallow depths, on the shelf may supply nutrients to and play a critical role in determining the primary production in the mixed layer. At least three such processes were observed. Through the year, internal waves of various strengths generated at the Luzon Strait propagated westward along the bottom of the mixed layer and dissipated along the middle and outer shelf. The effects of these waves were especially conspicuous north of the Dongsha Atoll and their action enhances vertical mixing. In the summer, upwelling occurred in the inner/middle shelf off Dongshan in response to the along shore southwest monsoon and the topographic forcing by the ridge extending offshore from Dongshan to the Taiwan Bank. In the winter, surface cooling and the strong northeast monsoon led to complete overturn in the shelf. The maximum density, reaching 24.6, in the surface waters was found offshore in the inner and middle shelf. This density was equivalent to the density of the water at >100 m offshore. As a result, this dense water also appeared as a layer of bottom water that extended across the shelf to the shelf edge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.8944M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.8944M"><span>Front-Eddy Influence on Water Column Properties, Phytoplankton Community Structure, and Cross-Shelf Exchange of Diatom Taxa in the Shelf-Slope Area off Concepción (˜36-37°S)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morales, Carmen E.; Anabalón, Valeria; Bento, Joaquim P.; Hormazabal, Samuel; Cornejo, Marcela; Correa-Ramírez, Marco A.; Silva, Nelson</p> <p>2017-11-01</p> <p>In eastern boundary current systems (EBCSs), submesoscale to mesocale variability contributes to cross-shore exchanges of water properties, nutrients, and plankton. Data from a short-term summer survey and satellite time series (January-February 2014) were used to characterize submesoscale variability in oceanographic conditions and phytoplankton distribution across the coastal upwelling and coastal transition zones north of Punta Lavapié, and to explore cross-shelf exchanges of diatom taxa. A thermohaline front (FRN-1) flanked by a mesoscale anticyclonic intrathermocline eddy (ITE-1), or mode-water eddy, persisted during the time series and the survey was undertaken during a wind relaxation event. At the survey time, ITE-1 contributed to an onshore intrusion of warm oceanic waters (southern section) and an offshore advection of cold coastal waters (northern section), with the latter forming a cold, high chlorophyll-a filament. In situ phytoplankton and diatom biomasses were highest at the surface in FRN-1 and at the subsurface in ITE-1, whereas values in the coastal zone were lower and dominated by smaller cells. Diatom species typical of the coastal zone and species dominant in oceanic waters were both found in the FRN-1 and ITE-1 interaction area, suggesting that this mixture was the result of both offshore and onshore advection. Overall, front-eddy interactions in EBCSs could enhance cross-shelf exchanges of coastal and oceanic plankton, as well as sustain phytoplankton growth in the slope area through localized upward injections of nutrients in the frontal zone, combined with ITE-induced advection and vertical nutrient inputs to the surface layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4242196','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4242196"><span>The Function of the Superficial Root Mat in the Biogeochemical Cycles of Nutrients in Congolese Eucalyptus Plantations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>LACLAU, JEAN‐PAUL; TOUTAIN, FRANÇOIS; M’BOU, ARMEL THONGO; ARNAUD, MICHEL; JOFFRE, RICHARD; RANGER, JACQUES</p> <p>2004-01-01</p> <p>• Background and Aims The importance of superficial root mats inside the forest floor for the nutrition of Amazonian rain forests has been extensively investigated. The present study was aimed at assessing the function of a root mat adherent to decomposing organic material observed in Eucalyptus plantations. • Methods The development of the root mat was studied through micromorphological observations of thin litter sections, and the influence of soil microtopography and soil water repellency on root mat biomass was assessed in situ on an area of 5 m2. In addition, input–output budgets of nutrients within the forest floor were established from measurements of litterfall, dissolved nutrients in gravitational solutions, and forest floor nutrient contents. • Key Findings The amounts of nutrients released during litter decay in this ecosystem during the period of study were, on average, 46, 3, 4, 19 and 17 kg ha–1 year–1 for N, P, K, Ca and Mg, respectively. The simultaneous measurements of the chemical composition of throughfall solutions and leachates beneath the forest floor showed a very quick uptake of nutrients by the root mat during the decomposition processes. Indeed, the solutions did not become noticeably enriched in nutrients during their passage through the holorganic layer, despite large amounts of elements being released during litter decay. The root mat biomass decreased significantly during the dry season, and a preferential development in microdepressions at the soil surface was observed. A strong water repellency observed in these depressions might enhance the ability of the roots to take up water and nutrients during the dry periods. • Conclusions The root mat was active throughout the year to catch the flux of nutrients from the biodegradation of the forest floor, preventing the transfer of dissolved nutrients toward deeper soil horizons. This mechanism is involved in the successful adaptation of this Eucalyptus hybrid in areas covered by ‘climacic’ savannas in Congo. PMID:14749252</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.5390W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.5390W"><span>Real-time monitoring of nutrients in the Changjiang Estuary reveals short-term nutrient-algal bloom dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Kui; Chen, Jianfang; Ni, Xiaobo; Zeng, Dingyong; Li, Dewang; Jin, Haiyan; Glibert, Patricia M.; Qiu, Wenxian; Huang, Daji</p> <p>2017-07-01</p> <p>The Changjiang Estuary is a large-river estuary ecosystem in the East China Sea, and its plume, the Changjiang Diluted Water (CDW), transports a large mass of nutrients (NO3- + NO2-, PO43-, SiO32-) to the shelf sea, leading to substantial eutrophication; the CDW also supports high primary production. However, relationships between nutrient delivery and phytoplankton responses have been difficult to establish, as many nutrient delivery events and algal blooms are episodic, and the CDW may expand or become detached with changing winds. To study the relationship between nutrient delivery events, algal blooms and estuarine metabolism dynamics, a buoy system was deployed in the CDW from 9 September to 10 October 2013, with measurements of chlorophyll a and dissolved nutrients. Day-to-day nutrient increases covaried with salinity decreases, regulated by both the spring-neap tidal cycle and wind events. Several specific nutrient injection periods were detected, each followed by nutrient drawdown and chlorophyll a accumulation (algal blooms). Each algal bloom had its own unique pattern of nutrient uptake based on change in nutrient ratios (ΔN:ΔP; ΔN:ΔSi) and appeared to be dominated by different algal groups. These events occurred under weak wind and stable hydrodynamic conditions. Ecosystem metabolism based on net community production (NCP) showed that the upper estuarine ecosystem was autotrophic when chlorophyll a accumulated, but heterotrophic when wind-induced mixing strengthened, and upwelling brought organic-rich water to the near surface. In spite of several short-lived algal blooms, the average NCPdaily was negative during the observation period, indicating a net source of CO2 to the atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914122B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914122B"><span>Using high-frequency sensors to identify hydroclimatological controls on storm-event variability in catchment nutrient fluxes and source zone activation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blaen, Phillip; Khamis, Kieran; Lloyd, Charlotte; Krause, Stefan</p> <p>2017-04-01</p> <p>At the river catchment scale, storm events can drive highly variable behaviour in nutrient and water fluxes, yet short-term dynamics are frequently missed by low resolution sampling regimes. In addition, nutrient source contributions can vary significantly within and between storm events. Our inability to identify and characterise time dynamic source zone contributions severely hampers the adequate design of land use management practices in order to control nutrient exports from agricultural landscapes. Here, we utilise an 8-month high-frequency (hourly) time series of streamflow, nitrate concentration (NO3) and fluorescent dissolved organic matter concentration (FDOM) derived from optical in-situ sensors located in a headwater agricultural catchment. We characterised variability in flow and nutrient dynamics across 29 storm events. Storm events represented 31% of the time series and contributed disproportionately to nutrient loads (43% of NO3 and 36% of CDOM) relative to their duration. Principal components analysis of potential hydroclimatological controls on nutrient fluxes demonstrated that a small number of components, representing >90% of variance in the dataset, were highly significant model predictors of inter-event variability in catchment nutrient export. Hysteresis analysis of nutrient concentration-discharge relationships suggested spatially discrete source zones existed for NO3 and FDOM, and that activation of these zones varied on an event-specific basis. Our results highlight the benefits of high-frequency in-situ monitoring for characterising complex short-term nutrient dynamics and unravelling connections between hydroclimatological variability and river nutrient export and source zone activation under extreme flow conditions. These new process-based insights are fundamental to underpinning the development of targeted management measures to reduce nutrient loading of surface waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ERL....12g5005M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ERL....12g5005M"><span>Wastewater treatment and reuse in urban agriculture: exploring the food, energy, water, and health nexus in Hyderabad, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miller-Robbie, Leslie; Ramaswami, Anu; Amerasinghe, Priyanie</p> <p>2017-07-01</p> <p>Nutrients and water found in domestic treated wastewater are valuable and can be reutilized in urban agriculture as a potential strategy to provide communities with access to fresh produce. In this paper, this proposition is examined by conducting a field study in the rapidly developing city of Hyderabad, India. Urban agriculture trade-offs in water use, energy use and GHG emissions, nutrient uptake, and crop pathogen quality are evaluated, and irrigation waters of varying qualities (treated wastewater, versus untreated water and groundwater) are compared. The results are counter-intuitive, and illustrate potential synergies and key constraints relating to the food-energy-water-health (FEW-health) nexus in developing cities. First, when the impact of GHG emissions from untreated wastewater diluted in surface streams is compared with the life cycle assessment of wastewater treatment with reuse in agriculture, the treatment-plus-reuse case yields a 33% reduction in life cycle system-wide GHG emissions. Second, despite water cycling benefits in urban agriculture, only <1% of the nutrients are able to be captured in urban agriculture, limited by the small proportion of effluent divertible to urban agriculture due to land constraints. Thus, water treatment plus reuse in urban farms can enhance GHG mitigation and also directly save groundwater; however, very large amounts of land are needed to extract nutrients from dilute effluents. Third, although energy use for wastewater treatment results in pathogen indicator organism concentrations in irrigation water to be reduced by 99.9% (three orders of magnitude) compared to the untreated case, crop pathogen content was reduced by much less, largely due to environmental contamination and farmer behavior and harvesting practices. The study uncovers key physical, environmental, and behavioral factors that constrain benefits achievable at the FEW-health nexus in urban areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24080415','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24080415"><span>A global assessment of climate-water quality relationships in large rivers: an elasticity perspective.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Jiping; Sharma, Ashish; Sivakumar, Bellie; Wang, Peng</p> <p>2014-01-15</p> <p>To uncover climate-water quality relationships in large rivers on a global scale, the present study investigates the climate elasticity of river water quality (CEWQ) using long-term monthly records observed at 14 large rivers. Temperature and precipitation elasticities of 12 water quality parameters, highlighted by N- and P-nutrients, are assessed. General observations on elasticity values show the usefulness of this approach to describe the magnitude of stream water quality responses to climate change, which improves that of simple statistical correlation. Sensitivity type, intensity and variability rank of CEWQ are reported and specific characteristics and mechanism of elasticity of nutrient parameters are also revealed. Among them, the performance of ammonia, total phosphorus-air temperature models, and nitrite, orthophosphorus-precipitation models are the best. Spatial and temporal assessment shows that precipitation elasticity is more variable in space than temperature elasticity and that seasonal variation is more evident for precipitation elasticity than for temperature elasticity. Moreover, both anthropogenic activities and environmental factors are found to impact CEWQ for select variables. The major relationships that can be inferred include: (1) human population has a strong linear correlation with temperature elasticity of turbidity and total phosphorus; and (2) latitude has a strong linear correlation with precipitation elasticity of turbidity and N nutrients. As this work improves our understanding of the relation between climate factors and surface water quality, it is potentially helpful for investigating the effect of climate change on water quality in large rivers, such as on the long-term change of nutrient concentrations. © 2013.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820029350&hterms=1593&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3D%2526%25231593','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820029350&hterms=1593&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3D%2526%25231593"><span>Synoptic thermal and oceanographic parameter distributions in the New York Bight Apex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, R. W.; Bahn, G. S.; Thomas, J. P.</p> <p>1981-01-01</p> <p>Concurrent surface water measurements made from a moving oceanographic research vessel were used to calibrate and interpret remotely sensed data collected over a plume in the New York Bight Apex on 23 June 1977. Multiple regression techniques were used to develop equations to map synoptic distributions of chlorophyll a and total suspended matter in the remotely sensed scene. Thermal (which did not have surface calibration values) and water quality parameter distributions indicated a cold mass of water in the Bight Apex with an overflowing nutrient-rich warm water plume that originated in the Sandy Hook Bay and flowed south near the New Jersey shoreline. Data analysis indicates that remotely sensed data may be particularly useful for studying physical and biological processes in the top several metres of surface water at plume boundaries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS33A1452W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS33A1452W"><span>Winter nutrient behaviours in the Pearl River estuary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, G.; Jin, S.; Du, M.</p> <p>2017-12-01</p> <p>Nutrient (nitrate, nitrite, ammonium, phosphate, and silicate) mapping and time-series investigation were carried out in winter in the Pearl River estuary, China. These nutrients behaved non-conservatively in the upper estuary. In the middle and lower estuary, however, nitrate and silicate seemed to be controled by physical mixing, while additions of nitrite, ammonium, and phosphate were found in the middle estuary. Nitrate was the dominant disslved inorganic nitrogen, with a fraction of more than 2/3. From the upper to the lower estuary the N:P ratio decreased from more than 200 to near the Redfield ratio of 16. Nutrients near the surface behaved almost the same as near the bottom in the water column at both the uppper and lower estuary. During a tidal cycle these nutrients seemed to be regulated more by physical mixing than by other processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27083909','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27083909"><span>Water quality in Atlantic rainforest mountain rivers (South America): quality indices assessment, nutrients distribution, and consumption effect.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Avigliano, Esteban; Schenone, Nahuel</p> <p>2016-08-01</p> <p>The South American Atlantic rainforest is a one-of-a-kind ecosystem considered as a biodiversity hotspot; however, in the last decades, it was intensively reduced to 7 % of its original surface. Water resources and water quality are one of the main goods and services this system provides to people. For monitoring and management recommendations, the present study is focused on (1) determining the nutrient content (nitrate, nitrite, ammonium, and phosphate) and physiochemical parameters (temperature, pH, electrical conductivity, turbidity, dissolved oxygen, and total dissolved solids) in surface water from 24 rainforest mountain rivers in Argentina, (2) analyzing the human health risk, (3) assessing the environmental distribution of the determined pollutants, and (4) analyzing water quality indices (WQIobj and WQImin). In addition, for total coliform bacteria, a dataset was used from literature. Turbidity, total dissolved solids, and nitrite (NO2 (-)) exceeded the guideline value recommended by national or international guidelines in several sampling stations. The spatial distribution pattern was analyzed by Principal Component Analysis and Factor Analysis (PCA/FA) showing well-defined groups of rivers. Both WQI showed good adjustment (R (2) = 0.89) and rated water quality as good or excellent in all sampling sites (WQI > 71). Therefore, this study suggests the use of the WQImin for monitoring water quality in the region and also the water treatment of coliform, total dissolved solids, and turbidity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.U41D0032D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.U41D0032D"><span>Drainage Basins as Large-Scale Field Laboratories of Change: Hydro-biogeochemical- economic Model Study Support for Water Pollution and Eutrophication Management Under Uncertainty</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Destouni, G.</p> <p>2008-12-01</p> <p>Excess nutrient and pollutant releases from various point and diffuse sources at and below the land surface, associated with land use, industry and households, pose serious eutrophication and pollution risks to inland and coastal water ecosystems worldwide. These risks must be assessed, for instance according to the EU Water Framework Directive (WFD). The WFD demands economically efficient, basin-scale water management for achieving and maintaining good physico-chemical and ecological status in all the inland and coastal waters of EU member states. This paper synthesizes a series of hydro-biogeochemical and linked economic efficiency studies of basin-scale waterborne nutrient and pollutant flows, the development over the last decades up to the current levels of these flows, the main monitoring and modelling uncertainties associated with their quantification, and the effectiveness and economic efficiency of different possible abatement strategies for abating them in order to meet WFD requirements and other environmental goals on local, national and international levels under climate and other regional change. The studies include different Swedish and Baltic Sea drainage basins. Main findings include quantification of near-coastal monitoring gaps and long-term nutrient and pollutant memory in the subsurface (soil-groundwater-sediment) water systems of drainage basins. The former may significantly mask nutrient and pollutant loads to the sea while the latter may continue to uphold large loads to inland and coastal waters long time after source mitigation. A methodology is presented for finding a rational trade-off between the two resource-demanding options to reduce, or accept and explicitly account for the uncertainties implied by these monitoring gaps and long-term nutrient-pollution memories and time lags, and other knowledge, data and model uncertainties that limit the effectiveness and efficiency of water pollution and eutrophication management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817902G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817902G"><span>Organic matter composition of soil macropore surfaces under different agricultural management practices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glæsner, Nadia; Leue, Marin; Magid, Jacob; Gerke, Horst H.</p> <p>2016-04-01</p> <p>Understanding the heterogeneous nature of soil, i.e. properties and processes occurring specifically at local scales is essential for best managing our soil resources for agricultural production. Examination of intact soil structures in order to obtain an increased understanding of how soil systems operate from small to large scale represents a large gap within soil science research. Dissolved chemicals, nutrients and particles are transported through the disturbed plow layer of agricultural soil, where after flow through the lower soil layers occur by preferential flow via macropores. Rapid movement of water through macropores limit the contact between the preferentially moving water and the surrounding soil matrix, therefore contact and exchange of solutes in the water is largely restricted to the surface area of the macropores. Organomineral complex coated surfaces control sorption and exchange properties of solutes, as well as availability of essential nutrients to plant roots and to the preferentially flowing water. DRIFT (Diffuse Reflectance infrared Fourier Transform) Mapping has been developed to examine composition of organic matter coated macropores. In this study macropore surfaces structures will be determined for organic matter composition using DRIFT from a long-term field experiment on waste application to agricultural soil (CRUCIAL, close to Copenhagen, Denmark). Parcels with 5 treatments; accelerated household waste, accelerated sewage sludge, accelerated cattle manure, NPK and unfertilized, will be examined in order to study whether agricultural management have an impact on the organic matter composition of intact structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29803036','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29803036"><span>Surface accumulation of low molecular weight dissolved organic matter in surface waters and horizontal off-shelf spreading of nutrients and humic-like fluorescence in the Chukchi Sea of the Arctic Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Meilian; Jung, Jinyoung; Lee, Yun Kyung; Hur, Jin</p> <p>2018-05-23</p> <p>Polar regions play unique roles in global overturning circulation, carbon cycling, and climate change. In this study, seawater dissolved organic matter (DOM) was characterized for the Chukchi Sea in the Arctic Ocean in the summer season. The seawater generally contains high concentrations of dissolved organic carbon (DOC, up to 92 μM C) and tyrosine-like fluorescence (up to 0.21 RU), and it was enriched with heteroatomic molecular formula with nitrogen-containing and sulfur-containing formulas counting 2246 (~41% of total identified molecular formula) and 1838 (~34%), respectively. Significant correlations were observed between salinity and the absorption coefficient at 254 nm, between chlorophyll-a and DOC as well as the tyrosine-like component, C 270/302 (C ex/em maxima), and between biological index and two protein-like components, C 275/338 and C 305/344 . A comparison between surface waters and close-to-seafloor deep waters suggested a trend of the accumulation of low molecular weight (LMW) fraction (~54-74%, nominal average molecular weight M n  < ~350 Da) in the surface waters. Another interesting finding from spatial data was an obvious horizontal off-shelf spreading of nutrients and humic-like fluorescence. This study sheds novel insights of DOM characteristics and dynamics in the highly productive polar sea. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=87559&Lab=NERL&keyword=cost+AND+benefit+AND+public&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=87559&Lab=NERL&keyword=cost+AND+benefit+AND+public&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>COMPARISON OF HYDROLOGIC RESPONSES AT DIFFERENT WATERSHED SCALES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Land surface hydrology controls runoff production and the associated transport of sediments, and a wide variety of anthropogenic organic chemicals, and nutrients from upland landscape areas and hillslopes to streams and other water bodies. Based on interactions between landscape ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/34720','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/34720"><span>Design of a Decision Support Tool for Nutrient Credit Exchange Feasibility in Stormwater Regulatory Compliance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2015-06-01</p> <p>Virginia Stormwater Management Program (VSMP) regulations require transportation projects to account for stormwater runoff impacts from increased impervious surfaces in order to prevent water quality reduction, erosion, and flooding.1 Organizations l...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.epa.gov/emergency-response/land-and-sea-restoration','PESTICIDES'); return false;" href="https://www.epa.gov/emergency-response/land-and-sea-restoration"><span>LAND AND SEA RESTORATION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Technical product bulletin: this bioremediation agent (nutrient additive) for oil spill cleanups can be used on water, soil, or hard surfaces. It will not damage cured asphalt if used as an absorbent for spills. Apply at 1 part to 3 parts hydrocarbon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC33A..08L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC33A..08L"><span>Gulf of Mexico Loop Current Interactions with the West Florida Shelf and its Influence on Harmful Algae Blooms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Y.; Weisberg, R. H.</p> <p>2016-02-01</p> <p>Interactions of the Loop Current (LC) system with the West Florida Shelf (WFS) are examined using 20+ years (1993 - 2015) of Ssalto/Duacs multi-mission altimetry data in the eastern Gulf of Mexico. Characteristic patterns of LC system sea surface height and surface geostrophic currents are extracted by an unsupervised neural network, Self-Organizing Map, along with their frequencies of occurrence. These current patterns suggest linkages with harmful algae bloom occurrences as recorded by in situ K. brevis cell counts. It is argued that LC system interactions with the shelf slope play an important role in WFS ecology through the upwelling of new inorganic nutrients across the shelf break. This is particularly important when the LC impinges on the southwest corner of the WFS slope, thereby impacting shallow water isobaths and setting the entire shelf circulation into motion. If such conditions persist, then deeper ocean waters with elevated nutrient content may broach the shelf and be transported landward. Resetting the nutrient state of the shelf by the coastal ocean circulation in response to deep-ocean forcing demonstrates the importance of physical oceanography in shelf ecology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JSAES..71..143A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JSAES..71..143A"><span>Paleogene-Neogene calcareous nannofossil biostratigraphy and paleoecological inferences from northern Campos Basin, Brazil (well Campos-01)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alves, Thamara Daniel; Cooper, Maurice Kevin Edward; Rios-Netto, Aristóteles de Moraes</p> <p>2016-11-01</p> <p>Quantitative analyses of calcareous nannofossils were performed on 50 ditch-cuttings samples from a well drilled in the northern Campos Basin, Brazil. Nine zones and two subzones were recognised in the Paleogene-Neogene section. The absence of zones NN9-NN7 (earliest late-latest middle Miocene), NP25-NP21 (Oligocene) and NP18-NP1 (earliest late Eocene-Paleocene) implies the occurrence of three stratigraphic breaks/unconformities within the studied interval. Nannofossil assemblages present suggest an open-ocean depositional environment under oligotrophic-surface water conditions for the Miocene section of the well. Hughesius spp. and Umbilicosphaera spp., here named the "small dark" group, were recognised as an index of high nutrient concentration. We suggest that small coccolith/nannolith size is a better indicator of eutrophic condition than taxonomic affinity. Morphometric analysis of specimens of Sphenolithus belemnos and Sphenolithus disbelemnos showed that size tends to decrease within the highstand system tract. The influx of nutrients associated with the highstand could explain this size reduction and may also support our hypothesis that small specimens are indicative of high nutrient concentrations in the surface water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.5822D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.5822D"><span>Iron Resources and Oceanic Nutrients - Advancement of Global Environment Simulations (ironages)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Baar, H. J. W.; Ironages Team</p> <p></p> <p>Iron limits productivity in 40 percent of the oceans, and is a co-limitation in the re- maining 60 percent of surface waters. Moreover the paradigm of a single factor limit- ing plankton blooms, is presently giving way to co-limitation by light, and the nutri- ents N, P, Si, and Fe. Primary production, export into the deep sea, and CO2 uptake from the atmosphere together form the 'biological pump' in Ocean Biogeochemi- cal Climate Models (OBCM's). Thus far OBCM's assume just one limiting nutrient (P) and one universal phytoplankton species, for deriving C budgets and CO2 ex- change with the atmosphere. New realistic OBCM's are being developed in IRON- AGES for budgeting and air/sea exchanges of both CO2 and DMS, implementing (1) co-limitation by 4 nutrients of 5 major taxonomic classes of phytoplankton in a nested plankton ecosystem model, (ii) DMS(P) pathways, (iii) global iron cycling, (iv) chem- ical forms of iron and (v) iron supply in surface waters from above by aerosols and from below out of reducing margin sediments. IRONAGES is a consortium of 12 Eu- ropean institutes coordinated by the Royal NIOZ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033219','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033219"><span>Impacts of waste from concentrated animal feeding operations on water quality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M.</p> <p>2007-01-01</p> <p>Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This workgroup, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards-Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1817674','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1817674"><span>Impacts of Waste from Concentrated Animal Feeding Operations on Water Quality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Burkholder, JoAnn; Libra, Bob; Weyer, Peter; Heathcote, Susan; Kolpin, Dana; Thorne, Peter S.; Wichman, Michael</p> <p>2007-01-01</p> <p>Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This work-group, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards—Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems. PMID:17384784</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3758869','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3758869"><span>Effects of Environmental Factors on Nutrients Release at Sediment-Water Interface and Assessment of Trophic Status for a Typical Shallow Lake, Northwest China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hou, Dekun; He, Jiang; Lü, Changwei; Sun, Ying; Zhang, Fujin; Otgonbayar, Khureldavaa</p> <p>2013-01-01</p> <p>Surface sediment and water samples were collected from Daihai Lake to study the biogeochemical characteristics of nitrogen and phosphorus, to estimate the loads of these nutrients, and to assess their effects on water quality. The contents and spatial distributions of total phosphorus (TP), total nitrogen (TN), and different nitrogen forms in sediments were analyzed. The results showed that concentrations of TN and TP in surface sediments ranged from 0.27 to 1.78 g/kg and from 558.31 to 891.29 mg/kg, respectively. Ratios of C : N ranged between 8.2 and 12.1, which indicated that nitrogen accumulated came mainly from terrestrial source. Ratios of N : P in all sampling sites were below 10, which indicated that N was the limiting nutrient for algal growth in this lake. Effects of environment factors on the release of nitrogen and phosphorus in lake sediments were also determined; high pH values could encourage the release of nitrogen and phosphorus. Modified Carlson's trophic state index (TSIM) and comprehensive trophic state index (TSIC) were applied to ascertain the trophic classification of the studied lake, and the values of TSIM and TSIC ranged from 53.72 to 70.61 and from 47.73 to 53.67, respectively, which indicated that the Daihai Lake was in the stage of hypereutropher. PMID:24023535</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2695065','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2695065"><span>Radiolarians decreased silicification as an evolutionary response to reduced Cenozoic ocean silica availability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lazarus, David B.; Kotrc, Benjamin; Wulf, Gerwin; Schmidt, Daniela N.</p> <p>2009-01-01</p> <p>It has been hypothesized that increased water column stratification has been an abiotic “universal driver” affecting average cell size in Cenozoic marine plankton. Gradually decreasing Cenozoic radiolarian shell weight, by contrast, suggests that competition for dissolved silica, a shared nutrient, resulted in biologic coevolution between radiolaria and marine diatoms, which expanded dramatically in the Cenozoic. We present data on the 2 components of shell weight change—size and silicification—of Cenozoic radiolarians. In low latitudes, increasing Cenozoic export of silica to deep waters by diatoms and decreasing nutrient upwelling from increased water column stratification have created modern silica-poor surface waters. Here, radiolarian silicification decreases significantly (r = 0.91, P < 0.001), from ≈0.18 (shell volume fraction) in the basal Cenozoic to modern values of ≈0.06. A third of the total change occurred rapidly at 35 Ma, in correlation to major increases in water column stratification and abundance of diatoms. In high southern latitudes, Southern Ocean circulation, present since the late Eocene, maintains significant surface water silica availability. Here, radiolarian silicification decreased insignificantly (r = 0.58, P = 0.1), from ≈0.13 at 35 Ma to 0.11 today. Trends in shell size in both time series are statistically insignificant and are not correlated with each other. We conclude that there is no universal driver changing cell size in Cenozoic marine plankton. Furthermore, biologic and physical factors have, in concert, by reducing silica availability in surface waters, forced macroevolutionary changes in Cenozoic low-latitude radiolarians. PMID:19458255</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApWS....7.4461B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApWS....7.4461B"><span>An economic assessment of local farm multi-purpose surface water retention systems in a Canadian Prairie setting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berry, Pamela; Yassin, Fuad; Belcher, Kenneth; Lindenschmidt, Karl-Erich</p> <p>2017-12-01</p> <p>There is a need to explore more sustainable approaches to water management on the Canadian Prairies. Retention pond installation schemes designed to capture surface water may be a viable option that would reduce water stress during drought periods by providing water for irrigation. The retention systems would serve to capture excess spring runoff and extreme rainfall events, reducing flood potential downstream. Additionally, retention ponds may be used for biomass production and nutrient retention. The purpose of this research was to investigate the economic viability of adopting local farm surface water retention systems as a strategic water management strategy. A retention pond was analyzed using a dynamic simulation model to predict its storage capacity, installation and upkeep cost, and economic advantage to farmers when used for irrigation. While irrigation application increased crop revenue, the cost of irrigation and reservoir infrastructure and installation costs were too high for the farmer to experience a positive net revenue. Farmers who harvest cattails from retention systems for biomass and available carbon offset credits can gain 642.70/hectare of harvestable cattail/year. Cattail harvest also removes phosphorus and nitrogen, providing a monetized impact of 7014/hectare of harvestable cattail/year. The removal of phosphorus, nitrogen, carbon, and avoided flooding damages of the retention basin itself provide an additional 17,730-18,470/hectare of retention system/year. The recommended use of retention systems is for avoided flood damages, nutrient retention, and biomass production. The revenue gained from these functions can support farmers wanting to invest in irrigation while providing economic and environmental benefits to the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.467....1Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.467....1Z"><span>A long history of equatorial deep-water upwelling in the Pacific Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yi Ge; Pagani, Mark; Henderiks, Jorijntje; Ren, Haojia</p> <p>2017-06-01</p> <p>Cold, nutrient- and CO2-rich waters upwelling in the eastern equatorial Pacific (EEP) give rise to the Pacific cold tongue. Quasi-periodic subsidence of the thermocline and attenuation in wind strength expressed by El Niño conditions decrease upwelling rates, increase surface-water temperatures in the EEP, and lead to changes in regional climates both near and far from the equatorial Pacific. EEP surface waters have elevated CO2 concentrations during neutral (upwelling) or La Niña (strong upwelling) conditions. In contrast, approximate air-sea CO2 equilibrium characterizes El Niño events. One hypothesis proposes that changes in physical oceanography led to the establishment of a deep tropical thermocline and expanded mixed-layer prior to 3 million years ago. These effects are argued to have substantially reduced deep-water upwelling rates in the EEP and promoted a "permanent El Niño-like" climate state. For this study, we test this supposition by reconstructing EEP "excess CO2" and upwelling history for the past 6.5 million years using the alkenone-pCO2 methodology. Contrary to previous assertions, our results indicate that average temporal conditions in the EEP over the past ∼6.5 million years were characterized by substantial CO2 disequilibrium and high nutrient delivery to surface waters - characteristics that imply strong upwelling of deep waters. Upwelling appears most vigorous between ∼6.5 to 4.5 million years ago coinciding with high accumulation rates of biogenic material during the late Miocene - early Pliocene "biogenic bloom".</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2005/5261/sir_2005-5261.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2005/5261/sir_2005-5261.pdf"><span>Assessment of hydrologic and water quality data collected in Abbotts Lagoon watershed, Point Reyes National Seashore, California, during water years 1999 and 2000</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kratzer, Charles R.; Saleh, Dina K.; Zamora, Celia</p> <p>2006-01-01</p> <p>Abbotts Lagoon is part of Point Reyes National Seashore, located about 40 miles northwest of San Francisco and about 20 miles south of Bodega Bay. Water-quality samples were collected quarterly during water year 1999 at a site in each of three connected lagoons that make up Abbotts Lagoon and at a site in its most significant tributary. The quarterly samples were analyzed for major ions, nutrients, and chlorophyll-a. A bed-sediment sample was collected in each lagoon during August 1999 and was analyzed for organic carbon, iron, and total phosphorus. Seven tributaries were sampled during a February 1999 storm and four during an April 1999 storm. These samples were analyzed only for nutrients. One storm sample collected in April 1999 from a tributary downstream of the I Ranch dairy was analyzed for a suite of 47 compounds indicative of wastewater. Continuous water-level recorders were installed in the most significant tributary and the two largest lagoons for portions of the study. A water budget analysis for an April 2000 storm indicated that the main tributary accounted for 85 percent of surface inflows to Abbotts Lagoon. The portion of the surface inflow from the main tributary was lower in the February 1999 storms and is a function of upstream storage and vegetative growth in the tributary basins. Another water budget analysis for a period of no surface inflow (June and July 2000) indicated that the net ground-water contribution was an outflow (seepage) from Abbotts Lagoon of about 0.3 ft3/s. Salinity increased and nutrient concentrations decreased from upstream to downstream in the chain of lagoons. The lower lagoon, nearest the ocean, had less organic carbon and total phosphorus in the bed sediment than the upper lagoons. The two tributaries originating in the I Ranch dairy had the highest concentrations of nutrients in storm runoff, and the highest loading rates and yields of ammonia and phosphorus. These tributaries account for only 10.3 percent of the area drained by the sampled tributaries, but contributed 83 percent of the ammonia load and 79 percent of the orthophosphate load. The basins with the highest nutrient loading rates and yields had the highest percentage of dairy and (or) ranching impacted land use and, to a lesser extent, grazing land use. The ratios of inorganic nitrogen to phosphorus in the lagoons ranged from 0.1 to 9.5 in the upper lagoon, 0.10 to 0.15 in the middle lagoon, and 0.05 to 0.10 in the lower lagoon. Thus, there is an abundance of phosphorus in the lagoons, and nitrogen appears to be limiting the growth of phytoplankton. Two sterols indicative of fecal material were among 11 compounds detected in the sample collected for analysis of wastewater indicators from a tributary downstream of the I Ranch dairy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B43B2124T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B43B2124T"><span>Nutrient Budgets Calculated in Floodwaters Using a Whole-Ecosystem Experimental Manipulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Talbot, C. J.; Paterson, M. J.; Xenopoulos, M. A.</p> <p>2017-12-01</p> <p>Flooding provides pathways for nutrients to move into surface waters and alter nutrient concentrations, therefore influencing downstream ecosystems and increasing events of eutrophication. Nutrient enrichment will likely affect water quality, primary production, and overall ecosystem function. Quantifying nutrient movement post-flood will help evaluate the risks or advantages that flooding will have on ecosystem processes. Here we constructed nutrient budgets using data collected as part of the Flooded Upland Dynamics Experiment (FLUDEX) at the Experimental Lakes Area (ELA) in northwestern Ontario. Three experimental reservoirs with varying amounts of stored carbon were created by flooding forested land from May through September annually from 1999 to 2003. Organic matter became a significant source of nutrients under flooded conditions and elevated reservoir total nitrogen (TN) and total phosphorus (TP) concentrations within one week of flooding. The highest TN (2.6 mg L-1) and TP (579 µg L-1) concentrations throughout the entire flooding experiment occurred in the medium carbon reservoir within the first two weeks of flooding in 1999. TN and TP fluxes were positive in all years of flooding. TP fluxes decreased after each flooding season therefore, TP production may be less problematic in floodplains subject to frequent repeated flooding. However, TN fluxes remained large even after repeated flooding. Therefore, flooding, whether naturally occurring or from anthropogenic flow alteration, may be responsible for producing significant amounts of nitrogen and phosphorus in aquatic ecosystems.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040112117&hterms=Knott&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3DKnott%252C%2BC','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040112117&hterms=Knott&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3DKnott%252C%2BC"><span>Potato growth and yield using nutrient film technique (NFT)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Hinkle, C. R.</p> <p>1990-01-01</p> <p>Potato plants, cvs Denali and Norland, were grown in polyvinyl chloride (PVC) trays using a continuous flowing nutrient film technique (NFT) to study tuber yield for NASA's Controlled Ecological Life Support Systems (CELSS) program. Nutrient solution pH was controlled automatically using 0.39M (2.5% (v/v) nitric acid (HNO3), while water and nutrients were replenished manually each day and twice each week, respectively. Plants were spaced either one or two per tray, allotting 0.2 or 0.4 m2 per plant. All plants were harvested after 112 days. Denali plants yielded 2850 and 2800 g tuber fresh weight from the one- and two-plant trays, respectively, while Norland plants yielded 1800 and 2400 g tuber fresh weight from the one- and two-plant trays. Many tubers of both cultivars showed injury to the periderm tissue, possibly caused by salt accumulation from the nutrient solution on the surface. Total system water usage throughout the study for all the plants equaled 709 liters (L), or approximately 2 L m-2 d-1. Total system acid usage throughout the study (for nutrient solution pH control) equaled 6.60 L, or 18.4 ml m-2 d-1 (7.2 mmol m-2 d-1). The results demonstrate that continuous flowing nutrient film technique can be used for tuber production with acceptable yields for the CELSS program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194302','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194302"><span>Biological soil crusts in deserts: A short review of their role in soil fertility, stabilization, and water relations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Belnap, Jayne</p> <p>2003-01-01</p> <p>Cyanobacteria and cyanolichens dominate most desert soil surfaces as the major component of biological soil crusts (BSC). BSCs contribute to soil fertility in many ways. BSC can increase weathering of parent materials by up to 100 times. Soil surface biota are often sticky, and help retain dust falling on the soil surface; this dust provides many plant-essential nutrients including N, P, K, Mg, Na, Mn, Cu, and Fe. BSCs also provide roughened soil surfaces that slow water runoff and aid in retaining seeds and organic matter. They provide inputs of newly-fixed carbon and nitrogen to soils. They are essential in stabilizing soil surfaces by linking soil particles together with filamentous sheaths, enabling soils to resist both water and wind erosion. These same sheaths are important in keeping soil nutrients from becoming bound into plant-unavailable forms. Experimental disturbances applied in US deserts show soil surface impacts decrease N and C inputs from soil biota by up to 100%. The ability to hold aeolian deposits in place is compromised, and underlying soils are exposed to erosion. While most undisturbed sites show little sediment production, disturbance by vehicles or livestock produces up to 36 times more sediment production, with soil movement initiated at wind velocities well below commonly-occurring wind speeds. Winds across disturbed areas can quickly remove this material from the soil surface, thereby potentially removing much of current and future soil fertility. Thus, reduction in the cover of cyanophytes in desert soils can both reduce fertility inputs and accelerate fertility losses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BGeo...15.2551L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BGeo...15.2551L"><span>Phytoplankton response to a plume front in the northern South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Qian P.; Zhou, Weiwen; Chen, Yinchao; Wu, Zhengchao</p> <p>2018-04-01</p> <p>Due to a strong river discharge during April-June 2016, a persistent salinity front, with freshwater flushing seaward on the surface but seawater moving landward at the bottom, was formed in the coastal waters west of the Pearl River estuary (PRE) over the northern South China Sea (NSCS) shelf. Hydrographic measurements revealed that the salinity front was influenced by both the river plume and coastal upwelling. On shipboard nutrient-enrichment experiments with size-fractionation chlorophyll a measurements were taken on both sides of the front as well as in the frontal zone to diagnose the spatial variations of phytoplankton physiology across the frontal system. We also assessed the size-fractionated responses of phytoplankton to the treatment of plume water at the frontal zone and the sea side of the front. The biological impact of vertical mixing or upwelling was further examined by the response of surface phytoplankton to the addition of local bottom water. Our results suggested that there was a large variation in phytoplankton physiology on the sea side of the front, driven by dynamic nutrient fluxes, although P limitation was prevailing on the shore side of the front and at the frontal zone. The spreading of plume water at the frontal zone would directly improve the growth of microphytoplankton, while nano- and picophytoplankton growths could have become saturated at high percentages of plume water. Also, the mixing of bottom water would stimulate the growth of surface phytoplankton on both sides of the front by altering the surface N/P ratio to make it closer to the Redfield stoichiometry. In summary, phytoplankton growth and physiology could be profoundly influenced by the physical dynamics in the frontal system during the spring-summer of 2016.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wri014137','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wri014137"><span>Geohydrology and limnology of Walden Pond, Concord, Massachusetts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Colman, John A.; Friesz, Paul J.</p> <p>2001-01-01</p> <p>The trophic ecology and ground-water contributing area of Walden Pond, in Concord and Lincoln, Mass., were investigated by the U.S. Geological Survey in cooperation with the Massachusetts Department of Environmental Management from April 1997 to July 2000. Bathymetric investigation indicated that Walden Pond (24.88 hectares), a glacial kettle-hole lake with no surface inlet or outlet, has three deep areas. The maximum depth (30.5 meters) essentially was unchanged from measurements made by Henry David Thoreau in 1846. The groundwater contributing area (621,000 square meters) to Walden Pond was determined from water-table contours in areas of stratified glacial deposits and from land-surface contours in areas of bedrock highs. Walden Pond is a flow-through lake: Walden Pond gains water from the aquifer along its eastern perimeter and loses water to the aquifer along its western perimeter. Walden Pond contributing area also includes Goose Pond and its contributing area. A water budget calculated for Walden Pond, expressed as depth of water over the lake surface, indicated that 45 percent of the inflow to the lake was from precipitation (1.215 meters per year) and 55 percent from ground water (1.47 meters per year). The groundwater inflow estimate was based on the average of two different approaches including an isotope mass-balance approach. Evaporation accounted for 26 percent of the outflow from the lake (0.71 meters per year) whereas lake-water seepage to the groundwater system contributed 74 percent of the outflow (1.97 meters per year). The water-residence time of Walden Pond is approximately 5 years. Potential point sources of nutrients to ground water, the Concord municipal landfill and a trailer park, were determined to be outside the Walden Pond groundwater contributing area. A third source, the septic leach field for the Walden Pond State Reservation facilities, was within the groundwater contributing area. Nutrient budgets for the lake indicated that nitrogen inputs (858 kilograms per year) were dominated (30 percent) by plume water from the septic leach field and, possibly, by swimmers (34 percent). Phosphorus inputs (32 kilograms per year) were dominated by atmospheric dry deposition, background ground water, and estimated swimmer inputs. Swimmer inputs may represent more than 50 percent of the phosphorus load during the summer. The septic-system plume did not contribute phosphorus, but increased the nitrogen to phosphorus ratio for inputs from 41 to 59, on an atom-to-atom basis. The ratio of nitrogen to phosphorus in input loads and within the lake indicated algal growth would be strongly phosphorus limited. Nitrogen supply in excess of plant requirements may mitigate against nitrogen fixing organisms including undesirable blooms of cyanobacteria. Based on areal nutrient loading, Walden Pond is a mesotrophic lake. Hypolimnetic oxygen demand of Walden Pond has increased since a profile was measured in 1939. Currently (1999), the entire hypolimnion of Walden Pond becomes devoid of dissolved oxygen before fall turnover in late November; whereas historical data indicated dissolved oxygen likely remained in the hypolimnion during 1939. The complete depletion of dissolved oxygen likely causes release of phosphorus from the sediments. Walden Pond contains a large population of the deep-growing benthic macro alga Nitella, which has been hypothesized to promote water clarity in other clear-water lakes by sequestering nutrients and keeping large areas of the sediment surface oxygenated. Loss of Nitella populations in other lakes has correlated with a decline in water quality. Although the Nitella standing crop is large in Walden Pond, Nitella still appears to be controlled by nutrient availability. Decreasing phosphorus inputs to Walden Pond, by amounts under anthropogenic control would likely contribute to the stability of the Nitella population in the metalimnion, may reverse oxygen depletion in the hypolimnion, and decreas</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040141678&hterms=hair&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D10%26Ntt%3Dhair','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040141678&hterms=hair&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D10%26Ntt%3Dhair"><span>Through form to function: root hair development and nutrient uptake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gilroy, S.; Jones, D. L.</p> <p>2000-01-01</p> <p>Root hairs project from the surface of the root to aid nutrient and water uptake and to anchor the plant in the soil. Their formation involves the precise control of cell fate and localized cell growth. We are now beginning to unravel the complexities of the molecular interactions that underlie this developmental regulation. In addition, after years of speculation, nutrient transport by root hairs has been demonstrated clearly at the physiological and molecular level, with evidence for root hairs being intense sites of H(+)-ATPase activity and involved in the uptake of Ca(2+), K(+), NH(4)(+), NO(3)(-), Mn(2+), Zn(2+), Cl(-) and H(2)PO(4)(-).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMS...156...30W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMS...156...30W"><span>Coupling of the spatial-temporal distributions of nutrients and physical conditions in the southern Yellow Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, Qin-Sheng; Yu, Zhi-Gang; Wang, Bao-Dong; Fu, Ming-Zhu; Xia, Chang-Shui; Liu, Lu; Ge, Ren-Feng; Wang, Hui-Wu; Zhan, Run</p> <p>2016-04-01</p> <p>This study investigated the coupling of the spatial-temporal variations in nutrient distributions and physical conditions in the southern Yellow Sea (SYS) using data compiled from annual-cycle surveys conducted in 2006-2007 as well as satellite-derived sea-surface temperature (SST) images. The influence of physical dynamics on the distribution and transport of nutrients varied spatially and seasonally in the SYS. The Changjiang Diluted Water (CDW) plume (in summertime), the Subei Coastal Water (SCW) (year-round), and the Lubei Coastal Current (LCC) (in wintertime) served as important sources of nutrients in the inshore area in a dynamic environment. The saline Taiwan Warm Current (TWC) might transport nutrients to the northeast region of the Changjiang Estuary in the summer, and this nutrient source began to increase from spring to summer and decrease when autumn arrived. Three types of nutrient fronts, i.e., estuarine, offshore, and coastal, were identified. A circular nutrient front caused by cross-shelf transport of SCW in the southeast shelf bank area in the winter and spring was observed. The southeastward flow of western coastal cold water in the SYS might be an important conduit for cross-shelf nutrient exchange between the SYS and the East China Sea (ECS). The tongue-shaped low-nutrient region in the western study area in the wintertime was driven by the interaction of the southward Yellow Sea Western Coastal Current (YSWCC) and the biological activity. The vertically variable SCM (subsurface Chl-a maximum) in the central SYS was controlled by coupled physical-chemical processes that involved stratification and associated nutricline. The average nutrient fluxes into the euphotic zone due to upwelling near the frontal zone of the Yellow Sea Cold Water Mass (YSCWM) in the summer are estimated here for the first time: 1.4 ± 0.9 × 103 μmol/m2/d, 0.1 ± 0.1 × 103 μmol/m2/d, and 2.0 ± 1.3 × 103 μmol/m2/d for DIN, PO4-P, and SiO3-Si, respectively. The depletion of nutrients in the central SYS and the upwelled transport in the boundary of the YSCWM resulted in a spatial transfer of the high Chl-a zone, varying generally from the central SYS to the boundary of the YSCWM from spring to summer, and the nutrient flux associated with this upwelling could contribute significantly to local primary production. This study deepens our understanding of the mechanisms influencing the distribution and transport of nutrients in the SYS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/wsp/1873a/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wsp/1873a/report.pdf"><span>Factors initiating phytoplankton blooms and resulting effects on dissolved oxygen in Duwamish River estuary, Seattle, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Welch, Eugene Brummer</p> <p>1969-01-01</p> <p>Phytoplankton productivity, standing stock, and related environmental factors were studied during 1964-66 in the Duwamish River estuary, at Seattle, Wash., to ascertain the factors that affect phytoplankton growth in the estuary; a knowledge of these factors in turn permits the detection and evaluation of the influence that effluent nutrients have on phytoplankton production. The factors that control the concentration of dissolved oxygen were also evaluated because of the importance of dissolved oxygen to the salmonid populations that migrate through the estuary. Phytoplankton blooms, primarily of diatoms, occurred in the lower estuary during August 1965 and 1966. No bloom occurred during 1964, but the presence of oxygen-supersaturated surface water in August 1963 indicates that a bloom did occur then. Nutrients probably were not the primary factor controlling the timing of phytoplankton blooms. Ammonia ,and phosphate concentrations increased significantly downstream from the Municipality of Metropolitan Seattle's Renton Treatment Plant outfall after the plant began operation in June 1965, and concentrations of nitrogen and phosphorus were relatively high before operation of the Renton Treatment Plant and during nonbloom periods. The consistent coincidence of blooms with minimum fresh-water discharge and tidal exchange during August throughout the study period indicates that bloom timing probably was controlled mostly by hydrographic factors that determine retention time and stability of the surface-water layer. This control was demonstrated in part by a highly significant correlation of gross productivity with retention time (as indicated by fresh-water discharge) and vertical stability (as indicated by the difference between mean surface and mean bottom temperatures). The failure of a bloom to develop in 1964 is related to a minimum fresh-water discharge that was much greater than normal during that summer. Hydrographic factors are apparently important because, as shown by studies of other estuarine environments by other workers, phytoplankton production increases when the zone of vertical turbulent mixing is not markedly deeper than the compensation depth. Phytoplankton cells produced in the surface waters sink, thereby contributing oxidizable organic matter to the bottom saline-water wedge. The maximum BOD (biochemical oxygen demand) in this bottom wedge occurs in the same section of the estuary and ,at the same time as the maximum phytoplankton biomass (as indicated by chlorophyll a) and minimum DO (dissolved oxygen). Other sources of BOD occur in the estuary, and conditions of minimum discharge and tidal exchange assist in reducing DO. Nonetheless, the highly significant correlation of chlorophyll a with BOD throughout the summer indicates that respiration and decomposition of phytoplankton cells is dearly an important contributor of BOD. Increases in the biomass and resultant B0D of blooms because of increased effluent nutrients presumably would further decrease the concentration of DO. This possible effect of effluent nutrients was evaluated by laboratory .bioassays and by a comparison of mean annual biomasses in the estuary. A green algal population in vitro did increase in response to added effluent nutrients; however, the available field data suggest that a 46-percent increase in effluent discharge between 1965 and 1966 did not increase the estuary's phytoplankton biomass significantly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wri034203/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wri034203/"><span>Occurrence and distribution of nutrients, suspended sediment, and pesticides in the Mobile River Basin, Alabama, Georgia, Mississippi, and Tennessee, 1999-2001</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McPherson, Ann K.; Moreland, Richard S.; Atkins, J. Brian</p> <p>2003-01-01</p> <p>The Mobile River Basin is one of more than 50 river basins and aquifer systems being investigated as part of the U.S. Geological Survey's National Water- Quality Assessment (NAWQA) Program. This basin is the sixth largest river basin in the United States and the fourth largest in terms of streamflow. The Mobile River Basin encompasses parts of Alabama, Georgia, Mississippi, and Tennessee, and almost two-thirds of the 44,0000-square-mile basin is located in Alabama. The extensive water resources of the Mobile River Basin are influenced by an array of natural and cultural factors, which impart unique and variable qualities to the streams, rivers, and aquifers and provide abundant habitat to sustain the diverse aquatic life in the basin. From January 1999 to December 2001, a study was conducted of the occurrence and distribution of nutrients, suspended sediment, and pesticides in surface water of the Mobile River Basin. Nine sampling sites were selected on the basis of land use. The nine sites included two streams draining agricultural areas, two urban streams, and five large rivers with mixed land use. Surface-water samples were collected from one to four times each month to characterize the spatial and temporal variation in nutrient and pesticide concentrations. Nutrient and suspended-sediment concentrations were highest in watersheds dominated by urban or agricultural land uses. Forty-two percent of the total phosphorus concentrations at all nine sites exceeded the U.S. Environmental Protection Agency's recommended maximum concentration of 0.1 milligram per liter. Flow-weighted mean concentrations at the Mobile River Basin sites generally were in the lower to middle percentile ranges compared with data from other NAWQA studies across the Nation. However, flow-weighted mean concentrations of ammonia, total nitrogen, orthophosphate, and total phosphorus at Bogue Chitto Creek, an agricultural watershed, ranked in the upper 20th percentile of agricultural sites sampled across the Nation as part of the NAWQA Program. Nutrient loads in the Tombigbee River were nearly twice as high compared with nutrient loads in the Alabama River. Nutrient yields were highest in Bogue Chitto Creek, Cahaba Valley Creek, and Threemile Branch because of agricultural and urban land uses in these watersheds. Of the 104 pesticides and degradation products analyzed in the stream samples, 69 were detected in one or more samples. Of the 69 detected pesticides, 51 were herbicides, 15 were insecticides, and 3 were fungicides. A relatively small number of heavily used herbicides accounted for most of the detections, including atrazine and its metabolites (deethylatrazine, 2-hydroxyatrazine, deisopropylatrazine, and deethyldeisopropylatrazine), simazine, metolachlor, tebuthiuron, prometon, diuron, and 2,4-D. Diazinon, chlorpyrifos, and carbaryl were the most frequently detected insecticides; metalaxyl was the most frequently detected fungicide in the Mobile River Basin. Concentrations of pesticides detected in surface water of the Mobile River Basin were among the highest concentrations recorded nationally by the NAWQA Program during 1991 to 2001. The three highest concentrations of atrazine detected at sites across the country were recorded at Bogue Chitto Creek; the highest concentrations of 2,4-D, imazaquin, and malathion recorded nationally were detected at Threemile Branch. Aquatic-life criteria were exceeded by concentrations of five herbicides (2,4-D, atrazine, cyanazine, diuron, and metolachlor), six insecticides (carbaryl, chlorpyrifos, diazinon, dieldrin, malathion, and p,p'-DDE), and one fungicide (chlorothalonil). Drinking-water standards were exceeded by concentrations of four herbicides (2,4-D, atrazine, cyanazine, and simazine), three insecticides (alpha- HCH, diazinon, and dieldrin), and one fungicide (chlorothalonil). The types and concentrations of pesticides found in surface water are linked to land use and to the types of pesti</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B51H0503R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B51H0503R"><span>Characterizing the Fate and Mobility of Phosphorus in Utah Lake Sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Randall, M.; Carling, G. T.; Nelson, S.; Bickmore, B.; Miller, T.</p> <p>2016-12-01</p> <p>An increasing number of lakes worldwide are impacted by eutrophication and harmful algal blooms due to nutrient inputs. Utah Lake, located in northern Utah, is a eutrophic freshwater lake that is unique because it is naturally shallow, turbid, and alkaline with high dissolved oxygen levels. Recently, the Utah Division of Water Quality has proposed a new rule to limit phosphorus (P) loading to Utah Lake from wastewater treatment plants in an effort to mitigate eutrophication. However, reducing external P loads may not lead to immediate improvements in water quality due to the legacy pool of nutrients in lake sediments. The purpose of this study is to characterize the fate and mobility of P in Utah Lake to better understand P cycling in this unique system. We analyzed P speciation, mineralogy, and binding capacity in lake sediment samples collected from 9 locations across Utah Lake. P concentrations in sediment ranged from 1120 to 1610 ppm, with highest concentrations in Provo Bay near the major metropolitan area. Likewise, P concentrations in sediment pore water were highest in Provo Bay with concentrations up to 4 mg/L. Sequential leach tests indicate that 30-45% of P is bound to apatite and another 40-55% is adsorbed onto the surface of redox sensitive Fe/Mn hydroxides. This was confirmed by SEM images, which showed the highest P concentrations correlating with both Ca (apatite) and Fe (Fe hydroxides). The apatite-bound P fraction is likely immobile, but the P fraction sorbed to Fe/Mn hydroxides is potentially bioavailable under changing redox conditions. Batch sorption results indicate that lake sediments have a high capacity to absorb and remove P from the water column, with an average uptake of 70-96% of P from spiked surface water with concentrations ranging from 1-10 mg/L. Mineral precipitation and sorption to bottom sediments is an efficient removal mechanism of P in Utah Lake, but a significant portion of P may be available for resuspension and cycling in surface waters. Mitigating lake eutrophication is a complex problem that goes beyond reducing nutrient loads to the water body and requires a better understanding of internal P cycling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29274609','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29274609"><span>Trends and seasonality of river nutrients in agricultural catchments: 18years of weekly citizen science in France.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abbott, Benjamin W; Moatar, Florentina; Gauthier, Olivier; Fovet, Ophélie; Antoine, Virginie; Ragueneau, Olivier</p> <p>2018-05-15</p> <p>Agriculture and urbanization have disturbed three-quarters of global ice-free land surface, delivering huge amounts of nitrogen and phosphorus to freshwater ecosystems. These excess nutrients degrade habitat and threaten human food and water security at a global scale. Because most catchments are either currently subjected to, or recovering from anthropogenic nutrient loading, understanding the short- and long-term responses of river nutrients to changes in land use is essential for effective management. We analyzed a never-published, 18-year time series of anthropogenic (NO 3 - and PO 4 3- ) and naturally derived (dissolved silica) riverine nutrients in 13 catchments recovering from agricultural pollution in western France. In a citizen science initiative, high-school students sampled catchments weekly, which ranged from 26 to 1489km 2 . Nutrient concentrations decreased substantially over the period of record (19 to 50% for NO 3 - and 14 to 80% for PO 4 3- ), attributable to regional, national, and international investment and regulation, which started immediately prior to monitoring. For the majority of catchments, water quality during the summer low-flow period improved faster than during winter high-flow conditions, and annual minimum concentrations improved relatively faster than annual maximum concentrations. These patterns suggest that water-quality improvements were primarily due to elimination of discrete nutrient sources with seasonally-constant discharge (e.g. human and livestock wastewater), agreeing with available land-use and municipal records. Surprisingly, long-term nutrient decreases were not accompanied by changes in nutrient seasonality in most catchments, attributable to persistent, diffuse nutrient stocks. Despite decreases, nutrient concentrations in almost all catchments remained well above eutrophication thresholds, and because additional improvements will depend on decreasing diffuse nutrient sources, future gains may be much slower than initial rate of recovery. These findings demonstrate the value of citizen science initiatives in quantifying long-term and seasonal consequences of changes in land management, which are necessary to identify sustainable limits and predict recovery timeframes. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H13D1399A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H13D1399A"><span>Vulnerability Assessment of Groundwater Resources by Nutrient Source Apportionment to Individual Groundwater Wells: A Case Study in North Carolina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ayub, R.; Obenour, D. R.; Keyworth, A. J.; Genereux, D. P.; Mahinthakumar, K.</p> <p>2016-12-01</p> <p>Groundwater contamination by nutrients (nitrogen and phosphorus) is a major concern in water table aquifers that underlie agricultural areas in the mid-Atlantic Coastal Plain of the United States. High nutrient concentrations leaching into shallow groundwater can lead to human health problems and eutrophication of receiving surface waters. Liquid manure from concentrated animal feeding operations (CAFOs) stored in open-air lagoons and applied to spray fields can be a significant source of nutrients to groundwater, along with septic waste. In this study, we developed a model-based methodology for source apportionment and vulnerability assessment using sparse groundwater quality sampling measurements for Duplin County, North Carolina (NC), obtained by the NC Department of Environmental Quality (NC DEQ). This model provides information relevant to management by estimating the nutrient transport through the aquifer from different sources and addressing the uncertainty of nutrient contaminant propagation. First, the zones of influence (dependent on nutrient pathways) for individual groundwater monitoring wells were identified using a two-dimensional vertically averaged groundwater flow and transport model incorporating geologic uncertainty for the surficial aquifer system. A multiple linear regression approach is then applied to estimate the contribution weights for different nutrient source types using the nutrient measurements from monitoring wells and the potential sources within each zone of influence. Using the source contribution weights and their uncertainty, a probabilistic vulnerability assessment of the study area due to nutrient contamination is performed. Knowledge of the contribution of different nutrient sources to contamination at receptor locations (e.g., private wells, municipal wells, stream beds etc.) will be helpful in planning and implementation of appropriate mitigation measures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.H41E0926P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.H41E0926P"><span>Metal and Nutrient Distribution and Fractionation in Managed Urban Watersheds Across the US Southwest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Papelis, C.; Williams, A. C.; Boettcher, T. M.</p> <p>2008-12-01</p> <p>Metals, metalloids, and nutrients are common contaminants of concern in arid and semi-arid watersheds in the Southwestern U.S. Because of the dramatic population growth in this part of the U.S., the potential for contamination of urban watersheds has also increased over the last few decades. Streams in urban watersheds receive storm water, urban runoff, shallow groundwater, and treated wastewater, among other sources. In addition, urban watersheds are often heavily managed to mitigate flood events and sediment- related impacts. Sediment transport can have a profound effect on the water quality of affected bodies of water. However, differences in geology, hydrogeology, and land use may have dramatic effects on the distribution of nutrients and metals in different urban watersheds. To test these effects, aqueous and sediment samples were collected above and below erosion control and other structures along two heavily managed urban watersheds, namely the Las Vegas Wash in the Las Vegas Valley Watershed, Nevada, and the Rio Salado (Salt River) in the Phoenix Metropolitan Area, Arizona. The construction of such control structures has the potential to alter the distribution of metals and metalloids in bodies of water used by wildlife. In this study, all sediments were characterized by particle size distribution, specific surface area, mineralogical composition, and scanning electron microscopy. The results of total arsenic, boron, and phosphorus extractions will be discussed, as a function of sediment characteristics. Significant differences exist between the two U.S. Southwest watersheds studied, including land use, water sources, sediment characteristics, nutrient and metal distribution, and overall system complexity. These differences lead to significant variations in metalloid and nutrient distributions in the two watersheds. Differences and similarities in the two systems will be explained as a function of sediment characteristics and watershed properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/circ/circ1210/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/circ/circ1210/"><span>Water quality in the eastern Iowa basins, Iowa and Minnesota, 1996-98</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kalkhoff, Stephen J.; Barnes, Kimberlee K.; Becher, Kent D.; Savoca, Mark E.; Schnoebelen, Douglas J.; Sadorf, Eric M.; Porter, Stephen D.; Sullivan, Daniel J.</p> <p>2000-01-01</p> <p>The water quality in rivers and streams and in selected aquifers in eastern Iowa and part of southern Minnesota is described and illustrated. Major ions, nitrogen and other nutrients, and pesticides and some of their breakdown compounds were analyzed in both surface and ground water. Biological communities that included fish, invertebrates, and algae, were described in relation to stream water quality. Volatile organic compounds that originate from fuels, solvent, and industry were analyzed from ground-water samples. Agricultural and urban land-use effects on shallow ground-water compared and contrasted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21240624','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21240624"><span>Spatial and temporal characterization of trace elements and nutrients in the Rawal Lake Reservoir, Pakistan using multivariate analysis techniques.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Malik, Riffat Naseem; Nadeem, Muhammad</p> <p>2011-12-01</p> <p>Rawal Lake Reservoir is renowned for its ecological significance and is the sole source of drinking water of the third largest city of Pakistan. However, fish kill in recent years and anthropogenic impacts from human-related activities in its catchment area have resulted in deterioration of its surface water quality. This study aims to characterize spatial and temporal variations in surface water quality, identify contaminant sources, and compare their levels with quality guidelines. Surface water samples were collected from 10 sites and analyzed for 27 physicochemical parameters for a period of 2 years on a seasonal basis. Concentration of metals in surface water in pre-monsoon were in the order: Fe > Mg > Ca > Mn > Zn > Ni > Cr > Cu > Co > Pb, whereas in post-monsoon, the order of elemental concentrations was: Ca > Mg > Na > Fe > K > Zn > Cr > Li > Pb > Co > Ni > Cu > Mn > Cd. Metals (Ni, Fe, Zn, and Ca), pH, electrical conductivity (EC), dissolved oxygen (DO), chemical oxygen demand (COD), and nutrients (PO (4) (3-) , NO(3)-N, and SO (4) (2-) ) were measured higher in pre-monsoon, whereas concentration of Cu, Mn, Cr, Co, Pb, Cd, K, Na, Mg, Li, Cl(-), and NH(4)-N were recorded higher in post-monsoon. Results highlighted serious metal pollution of surface water. Mean concentration of Zn, Cd, Ni, Cu, Fe, Cr, and Pb in both seasons and Mn in post-monsoon were well above the permissible level of surface water quality criteria. Results stress the dire need to reduce heavy-metal input into the lake basin and suggest that heavy-metal contamination should be considered as an integral part of future planning and management strategies for restoration of water quality of the lake reservoir.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003GBioC..17.1008W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003GBioC..17.1008W"><span>Dissolved inorganic phosphorus, dissolved iron, and Trichodesmium in the oligotrophic South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Jingfeng; Chung, Shi-Wei; Wen, Liang-Saw; Liu, Kon-Kee; Chen, Yuh-Ling Lee; Chen, Houng-Yung; Karl, David M.</p> <p>2003-03-01</p> <p>Dissolved inorganic phosphorus (DIP) concentrations in the oligotrophic surface waters of the South China Sea decrease from ˜20 nM in March 2000 to ˜5 nM in July 2000, in response to seasonal water column stratification. These minimum DIP concentrations are one order of magnitude higher than those in the P-limited, iron-replete stratified surface waters of the western North Atlantic, suggesting that the ecosystem in the South China Sea may be limited by bioavailable nitrogen or some trace nutrient rather than DIP. Nutrient enrichment experiments using either nitrate, phosphate or both indicate that nitrogen limits the net growth of phytoplankton in the South China Sea, at least during March and July 2000. The fixed nitrogen limitation may result from the excess phosphate (N:P<16) transported into the South China Sea from the North Pacific relative to microbial population needs, or from iron control of nitrogen fixation. The iron-limited nitrogen fixation hypothesis is supported by the observation of low population densities of Trichodesmium spp. (<48 × 103 trichomes/m3), the putative N2 fixing cyanobacterium, and with low concentrations of dissolved iron (˜0.2-0.3 nM) in the South China Sea surface water. Our results suggest that nitrogen fixation can be limited by available iron even in regions with a high rate of atmospheric dust deposition such as in the South China Sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2009/1273/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2009/1273/"><span>Investigation of Submarine Groundwater Discharge along the Tidal Reach of the Caloosahatchee River, Southwest Florida</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reich, Christopher D.</p> <p>2010-01-01</p> <p>The tidal reach of the Caloosahatchee River is an estuarine habitat that supports a diverse assemblage of biota including aquatic vegetation, shellfish, and finfish. The system has been highly modified by anthropogenic activity over the last 150 years (South Florida Water Management District (SFWMD), 2009). For example, the river was channelized and connected to Lake Okeechobee in 1881 (via canal C-43). Subsequently, three control structures (spillway and locks) were installed for flood protection (S-77 and S-78 in the 1930s) and for saltwater-intrusion prevention (S-79, W.P. Franklin Lock and Dam in 1966). The emplacement of these structures and their impact to natural water flow have been blamed for water-quality problems downstream within the estuary (Flaig and Capece, 1998; SFWMD, 2009). Doering and Chamberlain (1999) found that the operation of these control structures caused large and often rapid variations in salinity during various times of the year. Variable salinities could have deleterious impacts on the health of organisms in the Caloosahatchee River estuary. Flow restriction along the Caloosahatchee has also been linked to surface-water eutrophication problems (Doering and Chamberlain, 1999; SFWMD, 2009) and bottom-sediment contamination (Fernandez and others, 1999). Sources of nutrients (nitrogen and phosphorous) that cause eutrophication are primarily from residential sources and agriculture, though wastewater-treatment-plant discharges can also play a major role (SFWMD, 2009). The pathway for many of these nutrients is by land runoff and direct discharge from stormwater drains. An often overlooked source of nutrients and other chemical constituents is from submarine groundwater discharge (SGD). SGD can be either a diffuse or point source (for example, submarine springs) of nutrients and other chemical constituents to coastal waters (Valiela and others, 1990; Swarzenski and others, 2001; 2006; 2007; 2008). SGD can be composed of either fresh or marine water or various mixed ratios of fresh and marine water (Martin and others, 2007). In coastal areas where water-table elevations (hydraulic gradients) are steep, such as in Hood Canal, Washington (Swarzenski and others, 2007; Simonds and others, 2008), groundwater entering the coastal marine waters can be fresh (~1-4 parts per thousand, ppt). SGD in coastal locations that have low relief (low hydraulic gradients) such as the study area or other locations in Florida are typically driven by tidal pumping (Reich and others, 2002; 2008; Swarzenski and others, 2008), and water advecting into surface water is composed of recirculated marine water mixed with either fresh or brackish groundwaters. The importance of SGD in the delivery of nutrients and trace elements to coastal environments has been shown to be both beneficial and deleterious to ecosystem health (Valiela and others, 1990). The logical step in studying SGD is to map areas where SGD occurs. Methods such as continuous surface-water radon-222 (222Rn) mapping and electrical resistivity (continuous resistivity profiles, CRP) have been developed and used to identify potential SGD sites (Dulaiova and others, 2005; Swarzenski and others 2004; 2006; 2007; 2008; Reich and others, 2008). CRP data record subsurface, bulk-resistivity measurements to depths up to 25 meters (m). The bulk resistivity can be representative of changes in porewater salinity or in lithology (Reich and others, 2008; Swarzenski and others, 2008). Radon-222 (half-life = 3.28 days) is a natural tracer of groundwater, because sediments and rocks, containing uranium-bearing materials such as limestone and phosphatic material, continually produce 222Rn. Rn-222 (also referred to simply as radon) is an ideal tracer, because there is a constant source. Since radon is a gas, 222Rn does not build up in the surface water but rather evades directly to the atmosphere (Burnett and Dulaiova, 2003; Burnett and others, 2003; Dulaiova and Burnett, 2006).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=308724','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=308724"><span>Soluble calcium amendments: reducing pathogen losses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Flue gas desulfurization (FGD) gypsum is a byproduct of coal-fired power plants. Its application to agricultural fields may increase water infiltration, reduce soil erosion, and decrease nutrient losses from applications of animal manures. It may also reduce fecal bacterial contamination of surface ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26439124','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26439124"><span>A review of the ecohydrology of the Sakumo wetland in Ghana.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nonterah, Cynthia; Xu, Yongxin; Osae, Shiloh; Akiti, Thomas T; Dampare, Samuel B</p> <p>2015-11-01</p> <p>The Sakumo wetland is an internationally recognized Ramsar site located in a largely urban area and provides essential ecological and social services to wetland community dwellers. Despite its importance, the wetland has over the years been subjected to human interference resulting in considerable risks of deteriorating water quality, biodiversity loss, and drying up of most parts of the wetland. The conversion of land for residential and agricultural uses has significantly altered the hydrological characteristics of the land surface and modified pathways and flow of water into the wetland. Other drivers identified included drainage (mainly as runoff from agricultural farms), anthropogenic pressure (waste discharge) due to infrastructure development associated with urbanization, chemical contamination as a result of industrial and household pollution, and unsustainable fishing practices (overfishing). The purpose of the study was to review some of the physical and chemical properties of the Sakumo wetland on the changing wetland resources with emphasis on water quality. Rapid urbanization, industrialization, and overexploitation of wetland resources were identified as key causative factors affecting the wetland functions. Their effects on the wetland among others include increased nutrient and toxic chemical load which has resulted in reduced wetland surface water quality and decrease in species diversity. pH of the wetland waters was generally alkaline which is characteristic of water bodies influenced by seawater under oxygenated conditions. The increasing trends of electrical conductivity, phosphates, ammonia, nitrate, and nitrite, though small, point to deteriorating water quality in the wetland. The lagoon water was observed to be heavily polluted with nutrients particularly phosphate. The sequence of nutrient in the wetland was found to be in the order of PO4-P>NH3-N>NO3-N>NO2-N. These, if not checked, will result in further deterioration of the wetland function. In order to protect the wetland structure and function, it is recommended that a determination for both surface water and groundwater (quality and quantity) components of the ecological reserve (aquatic ecosystem) as well as the basic human need should be undertaken. In addition, a complete hydrological study of the wetland must be done. This will enable a well-balanced water allocation scheme to all users while still ensuring long-term survival and sustainability of the wetland.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA578497','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA578497"><span>A Non-Equilibrium Sediment Transport Model for Coastal Inlets and Navigation Channels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-01-01</p> <p>exchange of water , sediment, and nutrients between estuaries and the ocean. Because of the multiple interacting forces (waves, wind, tide, river...in parallel using OpenMP. The CMS takes advantage of the Surface- water Modeling System (SMS) interface for grid generation and model setup, as well...as for plotting and post- processing (Zundel, 2000). The circulation model in the CMS (called CMS-Flow) computes the unsteady water level and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19806463','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19806463"><span>Anthropogenic influence on surface water quality of the Nhue and Day sub-river systems in Vietnam.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hanh, Pham Thi Minh; Sthiannopkao, Suthipong; Kim, Kyoung-Woong; Ba, Dang The; Hung, Nguyen Quang</p> <p>2010-06-01</p> <p>In order to investigate the temporal and spatial variations of 14 physical and chemical surface water parameters in the Nhue and Day sub-river systems of Vietnam, surface water samples were taken from 43 sampling sites during the dry and rainy seasons in 2007. The results were statistically examined by Mann-Whitney U-test and hierarchical cluster analysis. The results show that water quality of the Day River was significantly improved during the rainy season while this was not the case of the Nhue River. However, the river water did not meet the Vietnamese surface water quality standards for dissolved oxygen (DO), biological oxygen demand (BOD(5)), chemical oxygen demand (COD), nutrients, total coliform, and fecal coliform. This implies that the health of local communities using untreated river water for drinking purposes as well as irrigation of vegetables may be at risk. Forty-three sampling sites were grouped into four main clusters on the basis of water quality characteristics with particular reference to geographic location and land use and revealed the contamination levels from anthropogenic sources.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7034260-freshwater-aquatic-plant-biomass-production-florida','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7034260-freshwater-aquatic-plant-biomass-production-florida"><span>Freshwater aquatic plant biomass production in Florida</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Reddy, K.R.; Sutton, D.L.; Bowes, G.</p> <p>1983-01-01</p> <p>About 8% (1.2 million ha) of the total surface area of Florida is occupied by freshwater. Many of these water bodies are eutrophic. Nutrients present in these water bodies can be potentially used to culture aquatic plants as a possible feedstock for methane production. This paper summarizes the results of known research findings on biomass production potential of freshwater aquatic plants in Florida and identifies key research needs to improve the quality and quantity of biomass yields. Among floating aquatic plants, biomass yield potential was in the order of water-hyacinth > water lettuce > pennywort > salvinia > duckweed >more » azolla. Pennywort, duckweed, and azolla appear to perform well during the cooler months compared to other aquatic plants. Among emergent plants, biomass yield potential was in the order of southern wild rice > cattails > soft rush > bulrush. Cultural techniques, nutrient management, and environmental factors influencing the biomass yields were discussed. 68 references.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/488/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/488/"><span>Data Used in Analyses of Trends, and Nutrient and Suspended-Sediment Loads for Streams in the Southeastern United States, 1973-2005</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Staub, Erik L.; Peak, Kelly L.; Tighe, Kirsten C.; Sadorf, Eric M.; Harned, Douglas A.</p> <p>2010-01-01</p> <p>Water-quality data from selected surface-water monitoring sites in the Southeastern United States were assessed for trends in concentrations of nutrients, suspended sediment, and major constituents and for in-stream nutrient and suspended-sediment loads for the period 1973-2005. The area of interest includes river basins draining into the southern Atlantic Ocean, the Gulf of Mexico, and the Tennessee River-drainage basins in Hydrologic Regions 03 (South Atlantic - Gulf) and 06 (Tennessee). This data assessment is related to studies of several major river basins as part of the U.S. Geological Survey National Water-Quality Assessment Program, which was designed to assess national water-quality trends during a common time period (1993-2004). Included in this report are data on which trend tests could be performed from 44 U.S. Geological Survey National Water Information System (NWIS) sampling sites. The constituents examined include major ions, nutrients, and suspended sediment; the physical properties examined include pH, specific conductance, dissolved oxygen, and streamflow. Also included are data that were tested for trends from an additional 290 sites from the U.S. Environmental Protection Agency Storage and Retrieval (STORET) database. The trend analyses of the STORET data were limited to total nitrogen and total phosphorus concentrations. Data from 48 U.S. Geological Survey NWIS sampling sites with sufficient water-quality and continuous streamflow data for estimating nutrient and sediment loads are included. The methods of data compilation and modification used prior to performing trend tests and load estimation are described. Results of the seasonal Kendall trend test and the Tobit trend test are given for the 334 monitoring sites, and in-stream load estimates are given for the 48 monitoring sites. Basin characteristics are provided, including regional landscape variables and agricultural nutrient sources (annual variations in cropping and fertilizer use). The data and results presented in this report are in tabular format and can be downloaded and used by environmental researchers and water managers, particularly in the Southeast.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.B51F0464S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.B51F0464S"><span>Lake Diefenbaker: Water Quality Assessment and Modeling for Management under Environmental Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sereda, J.; Wheater, H. S.; Hudson, J.; Doig, L.; Liber, K.; Jones, P.; Giesy, J.; Bharadwaj, L.</p> <p>2011-12-01</p> <p>Preliminary results are presented for a comprehensive inter-disciplinary study on Lake Diefenbaker initiated by the Global Institute for Water Security to understand the physical and biogeochemical processes affecting water quality under climate change and their policy implications. Lake Diefenbaker is a large reservoir (surface area ~500km2 and Zmean ~33m) located in Southern Saskatchewan, Canada and is a critically-important water resource for Saskatchewan. It receives nearly all of its flow from the South Saskatchewan River, which flows through some of the most urbanized and intense agricultural lands of southern Alberta. As a result these waters contain high levels of nutrients [nitrogen (N) and phosphorus (P)] along with a variety of chemical contaminants characteristic of anthropogenic activity. In addition, riparian and in-lake activities provide local sources of nutrients, from domestic sewage, agriculture and fish farming. The South Saskatchewan River has been identified by the World Wildlife Fund (2009) as Canada's most threatened river in terms of environmental flow. Lake Diefenbaker has numerous large deep embayments (depth >20m) and an annual water level fluctuation of ~6m. A deep thermocline (~25m) forms infrequently. Stratification does not occur throughout the lake. Anecdotal information suggests that the frequency and severity of algal blooms are increasing; although blooms have been sporadic and localized. This localized eutrophication may be related to local stratification patterns, point source nutrient loading, and/or internal lake processes (i.e., internal nutrient loading). A paleolimnological reconstruction has begun to assess historical nutrient and contaminant loading to Lake Diefenbaker and hence the trajectory of water quality in the lake. Major point sources and diffuse sources of N and P are also under investigation. In addition, the type (N versus P) and degree of nutrient limitation of bacteria and algae are being assessed (spatially and temporally). Concentrations of nutrients are heterogeneous throughout the lake. Preliminary results indicate that the degree and type of nutrient limitation, along with the cycling of phosphorus (uptake and regeneration) by plankton assemblages varies spatially and temporally. This information will be coupled with an understanding of the physical characteristics of the lake (i.e., mixing patterns) to explain the timing and distribution of algal blooms. A model will be developed to provide a platform for water and nutrient simulations to explore lake response to scenarios of climate and land use change, and the potential effects of local and regional management interventions. The research includes a community based participatory research program, which has involved key stakeholders in research definition and experimental design and ongoing discussion of research progress, and will include participation in management recommendations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.H41C0648S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.H41C0648S"><span>Quantifying runoff water quality characteristics from nurseries and avocado groves subjected to altered irrigation and fertilizer regimes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samant, S. A.; Beighley, R. E.</p> <p>2007-12-01</p> <p>In agriculture, improper, excessive or poorly timed irrigation and fertilizer applications can result in increased pollutants in runoff and degraded water quality. Specifically, the cultivation of salt sensitive plants and nurseries require significant irrigation and fertilizer that leads to high nutrient leaching. In southern California, a large producer of Avocados and nursery plant, waterways are often subjected to elevated nutrient concentrations, which stress the aquatic ecosystem. In this research, the specific objectives are to determine optimal irrigation and fertilizer application rates for minimizing nutrient and sediment export from avocado groves and nurseries. Altered irrigation and fertilizer application experiments will be implemented and monitored at the San Diego State University's Santa Margarita Ecological Reserve, which contains a 12 ha avocado grove and newly constructed 0.4 ha nursery. The study will last for twelve months, with runoff from natural rainfall or irrigation sampled and analyzed for nutrient concentrations on a monthly basis. The growth rate, leaf nutrient content and plant yield will also be monitored monthly. The nursery site is divided into eight plots (13.5-m x 13.5-m), with each plot containing 1200 plants consisting of four commonly used landscaping varieties in southern California. The avocado grove of the Hass variety is divided into four 1-ha plots. The experimental plots represent combinations of irrigation and fertilization practices with different methods and rates. In all cases, irrigation is fully automated based on soil moisture. To assess the effectiveness of the altered irrigation and fertilizer strategies, runoff water quality and plant yield will be compared to controlled treatments. This research is intended to provide a better understanding of how irrigation and fertilizer management can be used for the long-term reduction of nutrients in the Santa Margarita Watershed, which in turn will lead to improved surface water quality, aquatic habitats, and overall stream health. Preliminary results for runoff water quality (N and P) and plant growth characteristics from two months of monitoring are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.1573S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.1573S"><span>Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus</p> <p>2010-05-01</p> <p>Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased potentially toxic, blue-green algae blooms. The presentation will summarize recent results (Behrendt et al. 2009, Schernewski et al. 2009, Schernewski et al. in press, Schernewski et al. submitted) and give an overview how Climate Change and socio-economic transformation processes in the river basin will effect coastal water quality during the next decades. The opportunities and threats of a changing lagoon ecosystem for tourism and fisheries, the major economic activities, will be shown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1184957-organic-matter-remineralization-predominates-phosphorus-cycling-mid-bay-sediments-chesapeake-bay','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1184957-organic-matter-remineralization-predominates-phosphorus-cycling-mid-bay-sediments-chesapeake-bay"><span>Organic Matter Remineralization Predominates Phosphorus Cycling in the Mid-Bay Sediments in the Chesapeake Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sunendra, Joshi R.; Kukkadapu, Ravi K.; Burdige, David J.</p> <p>2015-05-19</p> <p>The Chesapeake Bay, the largest and most productive estuary in the US, suffers from varying degrees of water quality issues fueled by both point and non–point source nutrient sources. Restoration of the bay is complicated by the multitude of nutrient sources, their variable inputs and hydrological conditions, and complex interacting factors including climate forcing. These complexities not only restrict formulation of effective restoration plans but also open up debates on accountability issues with nutrient loading. A detailed understanding of sediment phosphorus (P) dynamics enables one to identify the exchange of dissolved constituents across the sediment- water interface and aid tomore » better constrain mechanisms and processes controlling the coupling between the sediments and the overlying waters. Here we used phosphate oxygen isotope ratios (δ18Op) in concert with sediment chemistry, XRD, and Mössbauer spectroscopy on the sediment retrieved from an organic rich, sulfidic site in the meso-haline portion of the mid-bay to identify sources and pathway of sedimentary P cycling and to infer potential feedback effect on bottom water hypoxia and surface water eutrophication. Isotope data indicate that the regeneration of inorganic P from organic matter degradation (remineralization) is the predominant, if not sole, pathway for authigenic P precipitation in the mid-bay sediments. We interpret that the excess inorganic P generated by remineralization should have overwhelmed any bottom-water and/or pore-water P derived from other sources or biogeochemical processes and exceeded saturation with respect to authigenic P precipitation. It is the first research that identifies the predominance of remineralization pathway against remobilization (coupled Fe-P cycling) pathway in the Chesapeake Bay. Therefore, these results are expected to have significant implications for the current understanding of P cycling and benthic-pelagic coupling in the bay, particularly on the source and pathway of P that sustains hypoxia and supports phytoplankton growth in the surface water.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1259779','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1259779"><span>High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rozemeijer, J. C.; Visser, A.; Borren, W.</p> <p></p> <p>High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates andmore » the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007–2008) and after (2009–2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. Furthermore, this may be counteracted by the higher groundwater levels and the larger contribution of N- and P-rich shallow groundwater and overland flow to the surface water.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1259779-high-frequency-monitoring-water-fluxes-nutrient-loads-assess-effects-controlled-drainage-water-storage-nutrient-transport','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1259779-high-frequency-monitoring-water-fluxes-nutrient-loads-assess-effects-controlled-drainage-water-storage-nutrient-transport"><span>High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Rozemeijer, J. C.; Visser, A.; Borren, W.; ...</p> <p>2016-01-19</p> <p>High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates andmore » the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007–2008) and after (2009–2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. Furthermore, this may be counteracted by the higher groundwater levels and the larger contribution of N- and P-rich shallow groundwater and overland flow to the surface water.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016HESS...20..347R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016HESS...20..347R"><span>High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rozemeijer, J. C.; Visser, A.; Borren, W.; Winegram, M.; van der Velde, Y.; Klein, J.; Broers, H. P.</p> <p>2016-01-01</p> <p>High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates and the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007-2008) and after (2009-2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. However, this may be counteracted by the higher groundwater levels and the larger contribution of N- and P-rich shallow groundwater and overland flow to the surface water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H41F1519J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H41F1519J"><span>In Situ Groundwater Denitrification in the Riparian Zone of a Short-Rotation Woody Crop Experimental Watershed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jeffers, J. B.; Jackson, C. R.; Rau, B.; Pringle, C. M.; Matteson, C.</p> <p>2017-12-01</p> <p>The southeastern United States has potential to become a major producer of short rotation woody crops (SRWC) for the production of biofuels, but this will require converting to more intensive forest management practices that will increase nitrate (NO3-) loading and alter nitrogen cycling in nearby freshwater ecosystems. Water quality monitoring in an experimental short-rotation woody crop watershed in the Coastal Plain of South Carolina has shown increased concentrations of NO3- in groundwater but no evidence of increased NO3- in riparian groundwater or surface waters. Forested riparian areas established as streamside management zones (SMZ) are known to act as buffers to surface water bodies by mitigating nutrients. The objectives of this study were to quantify denitrification by measuring dinitrogen (N2) and nitrous oxide (N2O) concentrations along groundwater flow paths and analyze relationships between denitrification estimates, nutrients, and water chemistry parameters. A network of piezometers has been established in the Fourmile Experimental Watershed at the Department of Energy - Savannah River Site. Water samples were collected monthly and were analyzed for concentrations of nutrients (temperature, specific conductivity, dissolved oxygen, pH, dissolved organic carbon) and dissolved gases (N2, Ar, N2O). Preliminary data showed greater dissolved N2O concentrations than dissolved N2 concentrations in groundwater. The ratios of N2O to combined end products of denitrification (N2O / N2O+N2) ranged from 0.33 to 0.99. Mean N2O+N2 concentrations were greater in groundwater samples in the SRWC plot and along the SMZ boundary than along the ephemeral stream within the riparian zone. Correlations between water chemistry parameters and N2 concentrations are indicative of known biogeochemical driving factors of denitrification. Continued monthly sampling will be coupled with analysis of nutrient concentrations (NO3-, NH4+, TN) to help determine transport and processing of NO3- and production of dissolved gases within the groundwater system. Use of hydrologic models combined with dissolved gas concentrations will provide estimates of denitrification rates and indirect gaseous emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.9144W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.9144W"><span>The effect of the 2011 flood on agricultural chemical and sediment movement in the lower Mississippi River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Welch, H.; Coupe, R.; Aulenbach, B.</p> <p>2012-04-01</p> <p>Extreme hydrologic events, such as floods, can overwhelm a surface water system's ability to process chemicals and can move large amounts of material downstream to larger surface water bodies. The Mississippi River is the 3rd largest River in the world behind the Amazon in South America and the Congo in Africa. The Mississippi-Atchafalaya River basin grows much of the country's corn, soybean, rice, cotton, pigs, and chickens. This is large-scale modern day agriculture with large inputs of nutrients to increase yields and large applied amounts of crop protection chemicals, such as pesticides. The basin drains approximately 41% of the conterminous United States and is the largest contributor of nutrients to the Gulf of Mexico each spring. The amount of water and nutrients discharged from the Mississippi River has been related to the size of the low dissolved oxygen area that forms off of the coast of Louisiana and Texas each summer. From March through April 2011, the upper Mississippi River basin received more than five times more precipitation than normal, which combined with snow melt from the Missouri River basin, created a historic flood event that lasted from April through July. The U.S. Geological Survey, as part of the National Stream Quality Accounting Network (NASQAN), collected samples from six sites located in the lower Mississippi-Atchafalaya River basin, as well as, samples from the three flow-diversion structures or floodways: the Birds Point-New Madrid in Missouri and the Morganza and Bonnet Carré in Louisiana, from April through July. Samples were analyzed for nutrients, pesticides, suspended sediments, and particle size; results were used to determine the water quality of the river during the 2011 flood. Monthly loads for nitrate, phosphorus, pesticides (atrazine, glyphosate, fluometuron, and metolachlor), and sediment were calculated to quantify the movement of agricultural chemicals and sediment into the Gulf of Mexico. Nutrient loads were compared to historic loads to assess the effect of the flood on the zone of hypoxia that formed in the Gulf of Mexico during the spring of 2011.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040074258','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040074258"><span>Flexible Microsensor Array for the Root Zone Monitoring of Porous Tube Plant Growth System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sathyan, Sandeep; Kim, Chang-Soo; Porterfield, D. Marshall; Nagle, H. Troy; Brown, Christopher S.</p> <p>2004-01-01</p> <p>Control of oxygen and water in the root zone is vital to support plant growth in the microgravity environment. The ability to control these sometimes opposing parameters in the root zone is dependent upon the availability of sensors to detect these elements and provide feedback for control systems. In the present study we demonstrate the feasibility of using microsensor arrays on a flexible substrate for dissolved oxygen detection, and a 4-point impedance microprobe for surface wetness detection on the surface of a porous tube (PT) nutrient delivery system. The oxygen microsensor reported surface oxygen concentrations that correlated with the oxygen concentrations of the solution inside the PT when operated at positive pressures. At negative pressures the microsensor shows convergence to zero saturation (2.2 micro mol/L) values due to inadequate water film formation on porous tube surface. The 4-point microprobe is useful as a wetness detector as it provides a clear differentiation between dry and wet surfaces. The unique features of the dissolved oxygen microsensor array and 4-point microprobe include small and simple design, flexibility and multipoint sensing. The demonstrated technology is anticipated to provide low cost, and highly reliable sensor feedback monitoring plant growth nutrient delivery system in both terrestrial and microgravity environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987PrOce..19..353P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987PrOce..19..353P"><span>Interactions of phytoplankton, zooplankton and microorganisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pomeroy, L. R.; Paffenhöfer, G.-A.; Yoder, J. A.</p> <p></p> <p>We present evidence that there are significant interactions between heterotrophic microorganisms, doliolids and Fritillaria within intrusions of nutrient-rich Gulf Stream water stranding on the continental shelf. During the summer of 1981 cold, nutrient-rich water from below the surface of the Gulf Stream was repeatedly intruded and stranded on the continental shelf off northeastern Florida. On August 6 old, stranded Gulf Stream water depleted of nitrate occupied the lower layer on the outer shelf. The upper water was continental shelf water, older but of undefined age. On August 6 free-living bacteria were >10 6ml -1 everywhere at all depths, an order of magnitude greater than normal bacterial numbers on the northeastern Florida continental shelf. Over 10 days the numbers of free bacteria doubled while bacteria attached to particles increased by a factor of four. The adenylate/chlorophyll ratio showed that phytoplankton dominated the lower layers of intruded water, while the surface water became increasingly dominated by heterotrophic microorganisms (bacteria and protozoa) over 10 days. There were significant, negative correlations between bacteria and doliolids and between bacteria and Fritillaria. Regions of maximum bacterial numbers did not coincide with locations of salp swarms. The increased numbers of bacteria at all depths in a highly stratified system in which most phytoplankton are in the lower layer suggests a diverse source of bacterial growth substrates, some of which involve zooplankton as intermediaries. Production of autotrophs is more than twice that of microheterotrophs on average, but because of their differential distribution, microheterotrophs are the dominant biomass in much of the surface water and may be significant in energy flux to metazoan consumers as well as competitors for mutually useable sources of nutrition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMED44A..07B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMED44A..07B"><span>Solving Nutrient Loading in the Great Lakes: An Integrative, Interdisciplinary and Ambidextrous Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borrello, M. C.; Keeton, T.; Foley, T.; Frost, A.; Green, N.; Isler, J.</p> <p>2014-12-01</p> <p>Environmental impacts from industrialized agriculture have been studied extensively over the past two decades. Degradation of surface water occurs, primarily as a result of nutrient loading, causing algal blooms in streams and lakes. Discovery of the toxin microcystin in Lake Erie, a drinking water source for some municipalities, has been associated with agricultural runoff and created a new awareness in the general public. This study used data gathered over ten years by local residents, high school students and undergraduates on surface water around the Lower Peninsula of Michigan to test a simple correlation of nutrients (soluble reactive phosphorus and nitrogen ammonia) along with the presence of specific antibiotics and antibiotic resistance to identify dominant sources of nutrient loading in the Lake Huron Watershed. Data gathering came from multiple sources and were processed by faculty and students at an undergraduate, liberal arts institution. College students from various disciplines worked with community members and municipalities in an effort to describe the problem. Students proposed solutions which by-passed relatively inactive regulatory agencies to create an integrative, interactive resolution that involved a surprisingly wide extent of the community. Addressing cultural norms beginning with those most affected by a degraded environment has reaped some success in changing behavior and moving towards a sustainable solution. The research conducted and supervised by undergraduate students has significance in the broader, professional area of geochemistry, environmental health and sustainable agriculture. That fact plays an important role in how the students see themselves in the process and what motivated them to: 1. Choose to participate in the research in the first place, 2. Reach out to the broader community (scientific and regional) to carry out their research and 3. Pursue solutions beyond the classroom and summer research experience.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2015/5074/pdf/sir20155074.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2015/5074/pdf/sir20155074.pdf"><span>Nutrient attenuation in rivers and streams, Puget Sound Basin, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sheibley, Rich W.; Konrad, Christopher P.; Black, Robert W.</p> <p>2015-01-01</p> <p>From a management perspective, preservation and improvement of instream nutrient attenuation should focus on increasing the travel time through a reach and contact time of water sediment (reactive) surfaces and lowering nutrient concentrations (and loads) to avoid saturation of instream attenuation and increase attenuation efficiency. These goals can be reached by maintaining and restoring channel-flood plain connectivity, maintaining and restoring healthy riparian zones along streams, managing point and nonpoint nutrient loads to streams and rivers, and restoring channel features that promote attenuation such as the addition of woody debris and maintaining pool-riffle morphologies. Many of these management approaches are already being undertaken during projects aimed to restore quality salmon habitat. Therefore, there is a dual benefit to these projects that also may lead to enhanced potential for nitrogen and phosphorus attenuation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPA23B0376M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPA23B0376M"><span>Remote Sensing of Water Quality in Multipurpose Reservoirs: Case Study Applications in Indonesia, Mexico, and Uruguay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miralles-Wilhelm, F.; Serrat-Capdevila, A.; Rodriguez, D.</p> <p>2017-12-01</p> <p>This research is focused on development of remote sensing methods to assess surface water pollution issues, particularly in multipurpose reservoirs. Three case study applications are presented to comparatively analyze remote sensing techniquesforo detection of nutrient related pollution, i.e., Nitrogen, Phosphorus, Chlorophyll, as this is a major water quality issue that has been identified in terms of pollution of major water sources around the country. This assessment will contribute to a better understanding of options for nutrient remote sensing capabilities and needs and assist water agencies in identifying the appropriate remote sensing tools and devise an application strategy to provide information needed to support decision-making regarding the targeting and monitoring of nutrient pollution prevention and mitigation measures. A detailed review of the water quality data available from ground based measurements was conducted in order to determine their suitability for a case study application of remote sensing. In the first case study, the Valle de Bravo reservoir in Mexico City reservoir offers a larger database of water quality which may be used to better calibrate and validate the algorithms required to obtain water quality data from remote sensing raw data. In the second case study application, the relatively data scarce Lake Toba in Indonesia can be useful to illustrate the value added of remote sensing data in locations where water quality data is deficient or inexistent. The third case study in the Paso Severino reservoir in Uruguay offers a combination of data scarcity and persistent development of harmful algae blooms. Landsat-TM data was obteined for the 3 study sites and algorithms for three key water quality parameters that are related to nutrient pollution: Chlorophyll-a, Total Nitrogen, and Total Phosphorus were calibrated and validated at the study sites. The three case study applications were developed into capacity building/training workshops for water resources students, applied scientists, practitioners, reservoir and water quality managers, and other interested stakeholders.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18514234','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18514234"><span>Seasonal and spatial dynamics of nutrients and phytoplankton biomass in Victoria Harbour and its vicinity before and after sewage abatement.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ho, Alvin Y T; Xu, Jie; Yin, Kedong; Yuan, Xiangcheng; He, Lei; Jiang, Yuelu; Lee, Joseph H W; Anderson, Donald M; Harrison, Paul J</p> <p>2008-01-01</p> <p>This study investigated the seasonal and spatial dynamics of nutrients and phytoplankton biomass at 12 stations in Hong Kong (HK) waters during a three year period from 2004 to 2006 after upgraded sewage treatment and compared these results to observations before sewage treatment. Pearl River estuary (PRE) discharge significantly increased NO(3) and SiO(4) concentrations, particularly in western and southern waters when rainfall and river discharge was maximal in summer. Continuous year round discharge of sewage effluent resulted in high NH(4) and PO(4) in Victoria Harbour (VH) and its vicinity. In winter, spring and fall, the water column at all stations was moderately mixed by winds and tidal currents, and phytoplankton biomass was relatively low compared to summer. In summer, the mean surface phytoplankton chl biomass was generally > 9 microL(-1) in most areas as a result of thermohaline stratification, and high nutrients, light, and water temperature. In summer, the potential limiting nutrient is PO(4) in the most productive southern waters and it seldom decreased to limiting levels ( approximately 0.1 microM), suggesting that phytoplankton growth may be only episodically limiting. The mean bottom dissolved oxygen (DO) remained > 3.5 mg L(-1) at most stations, indicating that the eutrophication impact in HK waters was not as severe as expected for such a eutrophic area. After the implementation of chemically enhanced primary sewage treatment in 2001, water quality in VH improved as indicated by a significant decrease in NH(4) and PO(4) and an increase in bottom DO. In contrast, there were an increase in chl a and NO(3), and a significant decrease in bottom DO in southern waters in summer, suggesting that hypoxic events are most likely to occur in this region if phytoplankton biomass and oxygen consumption keep increasing and exceed the buffering capacity of HK waters maintained by monsoon winds, tidal mixing and zooplankton grazing. Therefore, future studies on the long-term changes in nutrient loading from PRE and HK sewage discharge will be crucial for developing future strategies of sewage management in HK waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EnMan..44..205C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EnMan..44..205C"><span>Contribution of Wastewater Treatment Plant Effluents to Nutrient Dynamics in Aquatic Systems: A Review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carey, Richard O.; Migliaccio, Kati W.</p> <p>2009-08-01</p> <p>Excessive nutrient loading (considering nitrogen and phosphorus) is a major ongoing threat to water quality and here we review the impact of nutrient discharges from wastewater treatment plants (WWTPs) to United States (U.S.) freshwater systems. While urban and agricultural land uses are significant nonpoint nutrient contributors, effluent from point sources such as WWTPs can overwhelm receiving waters, effectively dominating hydrological characteristics and regulating instream nutrient processes. Population growth, increased wastewater volumes, and sustainability of critical water resources have all been key factors influencing the extent of wastewater treatment. Reducing nutrient concentrations in wastewater is an important aspect of water quality management because excessive nutrient concentrations often prevent water bodies from meeting designated uses. WWTPs employ numerous physical, chemical, and biological methods to improve effluent water quality but nutrient removal requires advanced treatment and infrastructure that may be economically prohibitive. Therefore, effluent nutrient concentrations vary depending on the particular processes used to treat influent wastewater. Increasingly stringent regulations regarding nutrient concentrations in discharged effluent, along with greater freshwater demand in populous areas, have led to the development of extensive water recycling programs within many U.S. regions. Reuse programs provide an opportunity to reduce or eliminate direct nutrient discharges to receiving waters while allowing for the beneficial use of reclaimed water. However, nutrients in reclaimed water can still be a concern for reuse applications, such as agricultural and landscape irrigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4062075','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4062075"><span>Environmental Conditions in Water Storage Drums and Influences on Aedes aegypti inTrinidad, West Indies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hemme, Ryan R.; Tank, Jennifer L.; Chadee, Dave D.; Severson, David W.</p> <p>2014-01-01</p> <p>Water storage drums are often a primary breeding site for Aedes aegypti in developing countries. Habitat characteristics can impact both adult and larval fitness and survival, which may potentially influence arbovirus transmission. Our objective was to compare fundamental environmental differences in water drums based on the presence or absence of larvae in Trinidad. Drums were categorized according to the larval status, and if the drum was constructed of steel or plastic. Water samples were analyzed for ammonium, nitrate, and soluble reactive phosphorus (SRP). Continuous surface water temperatures were also recorded. Nutrient concentrations were considerably lower than those reported for other container breeding mosquitoes. No nutrient measured differed in concentration between drums positive compared to those that were negative for the presence of Aedes aegypti larvae. Levels of SRP and ammonium in steel drums were significantly lower than in plastic water drums. Both maximum and minimum surface temperatures were significantly lower in drums positive for the presence of larvae than in drums without larvae. Water temperatures in March and May were warmer than during October sampling periods. Larval presence is likely dependent upon the interaction among multiple biotic and abiotic factors. Despite appearance, not all water storage drums are equally suitable for Aedes aegypti development. Exposing water storage drums to direct sunlight or increased heat may be used in conjunction with sealing containers to reduce production of Aedes aegypti when draining and chemical treatment are impractical. PMID:19539592</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19539592','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19539592"><span>Environmental conditions in water storage drums and influences on Aedes aegypti in Trinidad, West Indies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hemme, Ryan R; Tank, Jennifer L; Chadee, Dave D; Severson, David W</p> <p>2009-10-01</p> <p>Water storage drums are often a primary breeding site for Aedes aegypti in developing countries. Habitat characteristics can impact both adult and larval fitness and survival, which may potentially influence arbovirus transmission. Our objective was to compare fundamental environmental differences in water drums based on the presence or absence of larvae in Trinidad. Drums were categorized according to the larval status, and if the drum was constructed of steel or plastic. Water samples were analyzed for ammonium, nitrate, and soluble reactive phosphorus (SRP). Continuous surface water temperatures were also recorded. Nutrient concentrations were considerably lower than those reported for other container breeding mosquitoes. No nutrient measured differed in concentration between drums positive compared to those that were negative for the presence of A. aegypti larvae. Levels of SRP and ammonium in steel drums were significantly lower than in plastic water drums. Both maximum and minimum surface temperatures were significantly lower in drums positive for the presence of larvae than in drums without larvae. Water temperatures in March and May were warmer than during October sampling periods. Larval presence is likely dependent upon the interaction among multiple biotic and abiotic factors. Despite appearance, not all water storage drums are equally suitable for A. aegypti development. Exposing water storage drums to direct sunlight or increased heat may be used in conjunction with sealing containers to reduce production of A. aegypti when draining and chemical treatment are impractical.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>