Sample records for surface water stratification

  1. Response of water temperatures and stratification to changing climate in three lakes with different morphometry

    NASA Astrophysics Data System (ADS)

    Magee, Madeline R.; Wu, Chin H.

    2017-12-01

    Water temperatures and stratification are important drivers for ecological and water quality processes within lake systems, and changes in these with increases in air temperature and changes to wind speeds may have significant ecological consequences. To properly manage these systems under changing climate, it is important to understand the effects of increasing air temperatures and wind speed changes in lakes of different depths and surface areas. In this study, we simulate three lakes that vary in depth and surface area to elucidate the effects of the observed increasing air temperatures and decreasing wind speeds on lake thermal variables (water temperature, stratification dates, strength of stratification, and surface heat fluxes) over a century (1911-2014). For all three lakes, simulations showed that epilimnetic temperatures increased, hypolimnetic temperatures decreased, the length of the stratified season increased due to earlier stratification onset and later fall overturn, stability increased, and longwave and sensible heat fluxes at the surface increased. Overall, lake depth influences the presence of stratification, Schmidt stability, and differences in surface heat flux, while lake surface area influences differences in hypolimnion temperature, hypolimnetic heating, variability of Schmidt stability, and stratification onset and fall overturn dates. Larger surface area lakes have greater wind mixing due to increased surface momentum. Climate perturbations indicate that our larger study lakes have more variability in temperature and stratification variables than the smaller lakes, and this variability increases with larger wind speeds. For all study lakes, Pearson correlations and climate perturbation scenarios indicate that wind speed has a large effect on temperature and stratification variables, sometimes greater than changes in air temperature, and wind can act to either amplify or mitigate the effect of warmer air temperatures on lake thermal structure depending on the direction of local wind speed changes.

  2. Understanding the Effect of Stratification on Vertical and Temporal Heterogenieties of Cyanobacteria Blooms in Lakes Using a Long Term in-situ Monitoring Station

    NASA Astrophysics Data System (ADS)

    Wilkinson, A.; Guala, M.; Hondzo, M.

    2017-12-01

    Harmful Algal Blooms (HAB) are made up of potentially toxic freshwater microorganisms called cyanobacteria, because of this they are a ecological and public health hazard. The occurrences of toxic HAB are unpredictable and highly spatially and temporary variable in freshwater ecosystems. To study the abiotic drivers for toxic HAB, a floating research station has been deployed in a hyper-eutrophic lake in Madison Lake, Minnesota, from June-October 2016. This research station provides full depth water quality (hourly) and meteorological monitoring (5 minutes). Water quality monitoring is performed by an autonomously traversed water quality sonde that provides chemical, physical and biological measurements; including phycocyanin, a photosynthetic pigment distinct to cyanobacteria. A bloom of cyanobacteria recorded in the epiliminion in mid-July was driven by prolonged strong thermal stratification in the water column, high surface water temperatures and high phosphate concentrations in the epiliminion. The high biovolume (BV) persisted until late September and was sustained below the surface after stratification weakened, when the thermocline did not confine cyanobacteria-rich layers any more, and cyanobacteria vertical heterogeneities decayed in the water column. High correlations among BV stratification, surface water temperature, and stratification stability informed the development of a quantitative relationship to determine how BV heterogeneities vary with thermal structure in the water column. The BV heterogeneity decreased with thermal stratification stability and surface water temperature, and the dynamic lake stability described by the Lake Number. Finally the location of maximum BV accumulation showed diurnal patterns ie. BV peaks were observed at 1 m depth during the day and deeper layers during the night, which followed patterns in light penetration and thermocline depth. These findings capture cyanobacteria vertical and temporal heterogeneities on a on full depth, seasonal scale and quantify BV distribution throughout the water column under different stratification conditions, which can be important for mitigating risks of contamination of drinking water and recreational exposure.

  3. Shifts in coastal Antarctic marine microbial communities during and after melt water-related surface stratification.

    PubMed

    Piquet, Anouk M-T; Bolhuis, Henk; Meredith, Michael P; Buma, Anita G J

    2011-06-01

    Antarctic coastal waters undergo major physical alterations during summer. Increased temperatures induce sea-ice melting and glacial melt water input, leading to strong stratification of the upper water column. We investigated the composition of micro-eukaryotic and bacterial communities in Ryder Bay, Antarctic Peninsula, during and after summertime melt water stratification, applying community fingerprinting (denaturing gradient gel electrophoresis) and sequencing analysis of partial 18S and 16S rRNA genes. Community fingerprinting of the eukaryotic community revealed two major patterns, coinciding with a period of melt water stratification, followed by a period characterized by regular wind-induced breakdown of surface stratification. During the first stratified period, we observed depth-related differences in eukaryotic fingerprints while differences in bacterial fingerprints were weak. Wind-induced breakdown of the melt water layer caused a shift in the eukaryotic community from an Actinocyclus sp.- to a Thalassiosira sp.-dominated community. In addition, a distinct transition in the bacterial community was found, but with a few days' delay, suggesting a response to the changes in the eukaryotic community rather than to the mixing event itself. Sequence analysis revealed a shift from an Alpha- and Gammaproteobacteria to a Cytophaga-Flavobacterium-Bacteroides-dominated community under mixed conditions. Our results show that melt water stratification and the transition to nonstabilized Antarctic surface waters may have an impact not only on micro-eukaryotic but also bacterial community composition. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. Revealing the timing of ocean stratification using remotely-sensed ocean fronts: links with marine predators

    NASA Astrophysics Data System (ADS)

    Miller, P. I.; Loveday, B. R.

    2016-02-01

    Stratification is of critical importance to the mixing and productivity of the ocean, though currently it can only be measured using in situ sampling, profiling buoys or underwater autonomous vehicles. Stratification is understood to affect the surface aggregation of pelagic fish and hence the foraging behaviour and distribution of their predators such as seabirds and cetaceans. Satellite Earth observation sensors cannot directly detect stratification, but can observe surface features related to the presence of stratification, for example shelf-sea fronts that separate tidally-mixed water from seasonally stratified water. This presentation describes a novel algorithm that accumulates evidence for stratification from a sequence of oceanic front maps, and in certain regions can reveal the timing of the seasonal onset and breakdown of stratification. Initial comparisons will be made with seabird locations acquired through GPS tagging. If successful, a remotely-sensed stratification timing index would augment the ocean front metrics already developed at PML, that have been applied in over 20 journal articles relating marine predators to ocean fronts. The figure below shows a preliminary remotely-sensed 'stratification' index, for 25-31 Jul. 2010, where red indicates water with stronger evidence for stratification.

  5. Influence of Lake Stratification Onset on Summer Surface Water Temperature

    NASA Astrophysics Data System (ADS)

    Woolway, R. I.; Merchant, C. J.

    2016-12-01

    Summer lake surface water temperatures (LSSWT) are sensitive to climatic warming and have previously been shown to increase at a faster rate than surface air temperatures in some lakes, as a response to thermal stratification occurring earlier in spring. We explore this relationship using a combination of in situ, satellite derived, and simulated temperatures from 144 lakes. Our results demonstrate that LSSWTs of high-latitude and large deep lakes are particularly sensitive to changes in stratification onset and can be expected to display an amplified response to climatic changes in summer air temperature. Climatic modification of LSSWT has numerous consequences for water quality and lake ecosystems, so quantifying this amplified response is important.

  6. Revealing the timing of ocean stratification using remotely sensed ocean fronts

    NASA Astrophysics Data System (ADS)

    Miller, Peter I.; Loveday, Benjamin R.

    2017-10-01

    Stratification is of critical importance to the circulation, mixing and productivity of the ocean, and is expected to be modified by climate change. Stratification is also understood to affect the surface aggregation of pelagic fish and hence the foraging behaviour and distribution of their predators such as seabirds and cetaceans. Hence it would be prudent to monitor the stratification of the global ocean, though this is currently only possible using in situ sampling, profiling buoys or underwater autonomous vehicles. Earth observation (EO) sensors cannot directly detect stratification, but can observe surface features related to the presence of stratification, for example shelf-sea fronts that separate tidally-mixed water from seasonally stratified water. This paper describes a novel algorithm that accumulates evidence for stratification from a sequence of oceanic front maps, and discusses preliminary results in comparison with in situ data and simulations from 3D hydrodynamic models. In certain regions, this method can reveal the timing of the seasonal onset and breakdown of stratification.

  7. Maintenance of Coastal Surface Blooms by Surface Temperature Stratification and Wind Drift

    PubMed Central

    Ruiz-de la Torre, Mary Carmen; Maske, Helmut; Ochoa, José; Almeda-Jauregui, César O.

    2013-01-01

    Algae blooms are an increasingly recurrent phenomenon of potentially socio-economic impact in coastal waters globally and in the coastal upwelling region off northern Baja California, Mexico. In coastal upwelling areas the diurnal wind pattern is directed towards the coast during the day. We regularly found positive Near Surface Temperature Stratification (NSTS), the resulting density stratification is expected to reduce the frictional coupling of the surface layer from deeper waters and allow for its more efficient wind transport. We propose that the net transport of the top layer of approximately 2.7 kilometers per day towards the coast helps maintain surface blooms of slow growing dinoflagellate such as Lingulodinium polyedrum. We measured: near surface stratification with a free-rising CTD profiler, trajectories of drifter buoys with attached thermographs, wind speed and direction, velocity profiles via an Acoustic Doppler Current Profiler, Chlorophyll and cell concentration from water samples and vertical migration using sediment traps. The ADCP and drifter data agree and show noticeable current shear within the first meters of the surface where temperature stratification and high cell densities of L. polyedrum were found during the day. Drifters with 1m depth drogue moved towards the shore, whereas drifters at 3 and 5 m depth showed trajectories parallel or away from shore. A small part of the surface population migrated down to the sea floor during night thus reducing horizontal dispersion. The persistent transport of the surface bloom population towards shore should help maintain the bloom in favorable environmental conditions with high nutrients, but also increasing the potential socioeconomic impact of the blooms. The coast wise transport is not limited to blooms but includes all dissolved and particulate constituents in surface waters. PMID:23593127

  8. Maintenance of coastal surface blooms by surface temperature stratification and wind drift.

    PubMed

    Ruiz-de la Torre, Mary Carmen; Maske, Helmut; Ochoa, José; Almeda-Jauregui, César O

    2013-01-01

    Algae blooms are an increasingly recurrent phenomenon of potentially socio-economic impact in coastal waters globally and in the coastal upwelling region off northern Baja California, Mexico. In coastal upwelling areas the diurnal wind pattern is directed towards the coast during the day. We regularly found positive Near Surface Temperature Stratification (NSTS), the resulting density stratification is expected to reduce the frictional coupling of the surface layer from deeper waters and allow for its more efficient wind transport. We propose that the net transport of the top layer of approximately 2.7 kilometers per day towards the coast helps maintain surface blooms of slow growing dinoflagellate such as Lingulodinium polyedrum. We measured: near surface stratification with a free-rising CTD profiler, trajectories of drifter buoys with attached thermographs, wind speed and direction, velocity profiles via an Acoustic Doppler Current Profiler, Chlorophyll and cell concentration from water samples and vertical migration using sediment traps. The ADCP and drifter data agree and show noticeable current shear within the first meters of the surface where temperature stratification and high cell densities of L. polyedrum were found during the day. Drifters with 1m depth drogue moved towards the shore, whereas drifters at 3 and 5 m depth showed trajectories parallel or away from shore. A small part of the surface population migrated down to the sea floor during night thus reducing horizontal dispersion. The persistent transport of the surface bloom population towards shore should help maintain the bloom in favorable environmental conditions with high nutrients, but also increasing the potential socioeconomic impact of the blooms. The coast wise transport is not limited to blooms but includes all dissolved and particulate constituents in surface waters.

  9. Water-quality assessment of part of the Upper Mississippi River basin, Minnesota and Wisconsin, environmental setting and study design

    USGS Publications Warehouse

    Stark, J.R.; Andrews, W.J.; Fallon, J.D.; Fong, A.L.; Goldstein, R.M.; Hanson, P.E.; Kroening, S.E.; Lee, K.E.

    1996-01-01

    Environmental stratification consists of dividing the study unit into subareas with homogeneous characteristics to assess natural and anthropogenic factors affecting water quality. The assessment of water quality in streams and in aquifers is based on the sampling design that compares water quality within homogeneous subareas defined by subbasins or aquifer boundaries. The study unit is stratified at four levels for the surface-water component: glacial deposit composition, surficial geology, general land use and land cover, and secondary land use. Ground-water studies emphasize shallow ground water where quality is most likely influenced by overlying land use and land cover. Stratification for ground-water sampling is superimposed on the distribution of shallow aquifers. For each aquifer and surface-water basin this stratification forms the basis for the proposed sampling design used in the Upper Mississippi River Basin National Water-Quality Assessment.

  10. Tidal asymmetries of velocity and stratification over a bathymetric depression in a tropical inlet

    NASA Astrophysics Data System (ADS)

    Waterhouse, Amy F.; Valle-Levinson, Arnoldo; Morales Pérez, Rubén A.

    2012-10-01

    Observations of current velocity, sea surface elevation and vertical profiles of density were obtained in a tropical inlet to determine the effect of a bathymetric depression (hollow) on the tidal flows. Surveys measuring velocity profiles were conducted over a diurnal tidal cycle with mixed spring tides during dry and wet seasons. Depth-averaged tidal velocities during ebb and flood tides behaved according to Bernoulli dynamics, as expected. The dynamic balance of depth-averaged quantities in the along-channel direction was governed by along-channel advection and pressure gradients with baroclinic pressure gradients only being important during the wet season. The vertical structure of the along-channel flow during flood tides exhibited a mid-depth maximum with lateral shear enhanced during the dry season as a result of decreased vertical stratification. During ebb tides, along-channel velocities in the vicinity of the hollow were vertically sheared with a weak return flow at depth due to choking of the flow on the seaward slope of the hollow. The potential energy anomaly, a measure of the amount of energy required to fully mix the water column, showed two peaks in stratification associated with ebb tide and a third peak occurring at the beginning of flood. After the first mid-ebb peak in stratification, ebb flows were constricted on the seaward slope of the hollow resulting in a bottom return flow. The sinking of surface waters and enhanced mixing on the seaward slope of the hollow reduced the potential energy anomaly after maximum ebb. The third peak in stratification during early flood occurred as a result of denser water entering the inlet at mid-depth. This dense water mixed with ambient deep waters increasing the stratification. Lateral shear in the along-channel flow across the hollow allowed trapping of less dense water in the surface layers further increasing stratification.

  11. Palaeoceanography. Antarctic stratification and glacial CO2.

    PubMed

    Keeling, R F; Visbeck, M

    2001-08-09

    One way of accounting for lowered atmospheric carbon dioxide concentrations during Pleistocene glacial periods is by invoking the Antarctic stratification hypothesis, which links the reduction in CO2 to greater stratification of ocean surface waters around Antarctica. As discussed by Sigman and Boyle, this hypothesis assumes that increased stratification in the Antarctic zone (Fig. 1) was associated with reduced upwelling of deep waters around Antarctica, thereby allowing CO2 outgassing to be suppressed by biological production while also allowing biological production to decline, which is consistent with Antarctic sediment records. We point out here, however, that the response of ocean eddies to increased Antarctic stratification can be expected to increase, rather than reduce, the upwelling rate of deep waters around Antarctica. The stratification hypothesis may have difficulty in accommodating eddy feedbacks on upwelling within the constraints imposed by reconstructions of winds and Antarctic-zone productivity in glacial periods.

  12. Lake Energy Budget and Temperature Profiles Under Future Greenhouse Gas Scenarios

    NASA Astrophysics Data System (ADS)

    Lofgren, B. M.; Xiao, C.

    2017-12-01

    Future climates under higher concentrations of greenhouse gases are expected to feature higher air and water temperatures, and shifts in surface heat fluxes. We investigate in greater detail the evolution of this in terms of the annual cycle of lake temperature profiles, stratification, and ice formation. Other work has found that, although shallower water promotes more rapid changes in surface water temperature within a season, change in surface water temperature across decades is more prominent in locations with greater water depth. Our simulations using the Weather Research and Forecasting (WRF) model and its lake module, WRF-Lake, show a trend toward longer periods of summer stratification, both through earlier onset in the spring and later decay of stratification in the fall. They also show a general increase in temperature throughout the water column, but most pronounced near the surface during the summer. Likewise, ice duration is much shorter and more restricted to shallow embayments. High latent and sensible heat flux during the fall and winter are less intense but longer lasting under the future scenario. Sources of uncertainty are cumulative—actual future greenhouse gas concentrations, global sensitivity of climate change, cloud feedbacks, the combined formulation of the regional climate model (WRF) and its global driving model, and more.

  13. Quantitative analysis of biogeochemically controlled density stratification in an iron-meromictic lake

    NASA Astrophysics Data System (ADS)

    Nixdorf, E.; Boehrer, B.

    2015-11-01

    Lake stratification controls the cycling of dissolved matter within the water body. This is of particular interest in the case of meromictic lakes, where permanent density stratification of the deep water limits vertical transport, and a chemically different (reducing) milieu can be established. As a consequence, the geochemical setting and the mixing regime of a lake can stabilize each other mutually. We attempt a quantitative approach to the contribution of chemical reactions sustaining the density stratification. As an example, we chose the prominent case of iron meromixis in Waldsee near Doebern, a small lake that originated from near-surface underground mining of lignite. From a data set covering 4 years of monthly measured electrical conductivity profiles, we calculated summed conductivity as a quantitative variable reflecting the amount of electro-active substances in the entire lake. Seasonal variations followed the changing of the chemocline height. Coinciding changes of electrical conductivities in the monimolimnion indicated that a considerable share of substances, precipitated by the advancing oxygenated epilimnion, re-dissolved in the remaining anoxic deep waters and contributed considerably to the density stratification. In addition, we designed a lab experiment, in which we removed iron compounds and organic material from monimolimnetic waters by introducing air bubbles. Precipitates could be identified by visual inspection. Eventually, the remaining solutes in the aerated water layer looked similar to mixolimnetic Waldsee water. Due to its reduced concentration of solutes, this water became less dense and remained floating on nearly unchanged monimolimnetic water. In conclusion, iron meromixis as seen in Waldsee did not require two different sources of incoming waters, but the inflow of iron-rich deep groundwater and the aeration through the lake surface were fully sufficient for the formation of iron meromixis.

  14. Thermal stratification hinders gyrotactic micro-organism rising in free-surface turbulence

    NASA Astrophysics Data System (ADS)

    Lovecchio, Salvatore; Zonta, Francesco; Marchioli, Cristian; Soldati, Alfredo

    2017-05-01

    Thermal stratification in water bodies influences the exchange of heat, momentum, and chemical species across the air-water interface by modifying the sub-surface turbulence characteristics. Turbulence modifications may in turn prevent small motile algae (phytoplankton, in particular) from reaching the heated surface. We examine how different regimes of stable thermal stratification affect the motion of these microscopic organisms (modelled as gyrotactic self-propelling cells) in a free-surface turbulent channel flow. This archetypal setup mimics an environmentally plausible situation that can be found in lakes and oceans. Results from direct numerical simulations of turbulence coupled with Lagrangian tracking reveal that rising of bottom-heavy self-propelling cells depends strongly on the strength of stratification, especially near the thermocline where high temperature and velocity gradients occur: Here hydrodynamic shear may disrupt directional cell motility and hamper near-surface accumulation. For all gyrotactic re-orientation times considered in this study (spanning two orders of magnitude), we observe a reduction of the cell rising speed and temporary confinement under the thermocline: If re-orientation is fast, cells eventually trespass the thermocline within the simulated time span; if re-orientation is slow, confinement lasts much longer because cells align in the streamwise direction and their vertical swimming is practically annihilated.

  15. Polar ocean stratification in a cold climate.

    PubMed

    Sigman, Daniel M; Jaccard, Samuel L; Haug, Gerald H

    2004-03-04

    The low-latitude ocean is strongly stratified by the warmth of its surface water. As a result, the great volume of the deep ocean has easiest access to the atmosphere through the polar surface ocean. In the modern polar ocean during the winter, the vertical distribution of temperature promotes overturning, with colder water over warmer, while the salinity distribution typically promotes stratification, with fresher water over saltier. However, the sensitivity of seawater density to temperature is reduced as temperature approaches the freezing point, with potential consequences for global ocean circulation under cold climates. Here we present deep-sea records of biogenic opal accumulation and sedimentary nitrogen isotopic composition from the Subarctic North Pacific Ocean and the Southern Ocean. These records indicate that vertical stratification increased in both northern and southern high latitudes 2.7 million years ago, when Northern Hemisphere glaciation intensified in association with global cooling during the late Pliocene epoch. We propose that the cooling caused this increased stratification by weakening the role of temperature in polar ocean density structure so as to reduce its opposition to the stratifying effect of the vertical salinity distribution. The shift towards stratification in the polar ocean 2.7 million years ago may have increased the quantity of carbon dioxide trapped in the abyss, amplifying the global cooling.

  16. Deglacial development of (sub) sea surface temperature and salinity in the subarctic northwest Pacific: Implications for upper-ocean stratification

    NASA Astrophysics Data System (ADS)

    Riethdorf, Jan-Rainer; Max, Lars; Nürnberg, Dirk; Lembke-Jene, Lester; Tiedemann, Ralf

    2013-01-01

    Based on models and proxy data, it has been proposed that salinity-driven stratification weakened in the subarctic North Pacific during the last deglaciation, which potentially contributed to the deglacial rise in atmospheric carbon dioxide. We present high-resolution subsurface temperature (TMg/Ca) and subsurface salinity-approximating (δ18Oivc-sw) records across the last 20,000 years from the subarctic North Pacific and its marginal seas, derived from combined stable oxygen isotopes and Mg/Ca ratios of the planktonic foraminiferal species Neogloboquadrina pachyderma (sin.). Our results indicate regionally differing changes of subsurface conditions. During the Heinrich Stadial 1 and the Younger Dryas cold phases, our sites were subject to reduced thermal stratification, brine rejection due to sea-ice formation, and increased advection of low-salinity water from the Alaskan Stream. In contrast, the Bølling-Allerød warm phase was characterized by strengthened thermal stratification, stronger sea-ice melting, and influence of surface waters that were less diluted by the Alaskan Stream. From direct comparison with alkenone-based sea surface temperature estimates (SSTUk'37), we suggest deglacial thermocline changes that were closely related to changes in seasonal contrasts and stratification of the mixed layer. The modern upper-ocean conditions seem to have developed only since the early Holocene.

  17. Effects of Climate Change on Stratification-Destratification Cycles and Resulting Cyanobacterial Blooms in Shallow Lakes of the North Temperate Zone

    NASA Astrophysics Data System (ADS)

    King, A. T.; Schaffner, L. R.; Gilman, B.; Gronwall, T. R.; Gronwall, D.; Dietz, E. R.; Hairston, N., Jr.

    2016-12-01

    "Harmful Algal Blooms" of cyanobacteria (cyanoHABs) have become more frequent and larger in extent for inland waters across the globe. Honeoye Lake, the shallowest of the New York State Finger Lakes (9 m max depth, 7 km long), has experienced recent problematic blooms. We use this lake as a model system for understanding the effects of climate change on cyanoHABs in shallow lakes. Cyanobacteria thrive in warm waters with high phosphorus concentrations. While high P is often caused by external nutrient loading via surface runoff, it can also result from internal loading when P-rich sediment is exposed to anoxic/reducing conditions in a lake's hypolimnion after prolonged stratification. In deep lakes, hypolimnetic water remains isolated from the epilimnion throughout the summer with the dissolved P separated from illuminated surface water; in very shallow lakes where the entire water column remains oxygenated/oxidizing, P is bound in insoluble inorganic complexes. However, in lakes of intermediate depth, hypolimnetic water high in soluble reactive P may mix into the photic zone if sufficiently strong winds occur, stimulating a cyanoHAB. We suggest that repeated cycles of stratification, hypolimnetic anoxia, and subsequent mixing may result in "phosphorus pumping" with recurrent cyanoHABs throughout summer. Climate change is causing stronger thermal stratification in lakes through increased surface warming but also causing more frequent storms that can break down stratification in a shallow lake. We use Honeoye Lake as a model system for understanding the extent to which P-pumping occurs and the likely effects of climate change on cyanoHABs. Field data collected in summer 2016 were used to calibrate the publically available General Lake Model (GLM) to predict Honeoye's discontinuous polymictic pattern of stratification punctuated by overturn events and spikes in epilimnetic P and cyanobacterial biomass. We use the calibrated model to determine cyanoHAB incidence as a function of lake morphometry, summer temperature, and summer storm frequency and intensity. This allows projection of the effects of different climate change scenarios on the incidence of cyanoHABs for this lake and for lakes along a continuum of length-depth morphometries across the North Temperate Zone.

  18. Near-surface Stratification and Submesoscale Fronts in the north Bay of Bengal during Summer Monsoon of 2014 and 2015.

    NASA Astrophysics Data System (ADS)

    Sengupta, D.; Jarugula, S. L.; D'Asaro, E. A.; Chaudhuri, D.; S, S.; Tandon, A.; M, R.; Lucas, A.; Simmons, H. L.

    2016-02-01

    The north bay of Bengal is characterised by a shallow layer of fresh water from monsoon rainfall and river discharge, with very strong stratification at its base, and a warm subsurface layer. The thermodynamic structure of the ocean has significant influence on air-sea interaction. We conducted two research cruises of ORV Sagar Nidhi in August-September 2014 and 2015, to study the physical processes that maintain the shallow fresh layer. We collected a total of about 4000 kilometers of underway Conductivity-Temperature-Depth (uCTD) and Acoustic Doppler Current Profiler (ADCP) data. The vertical resolution of the data is 1-2 m; at ship speeds of 4-5 knots, the horizontal resolution is 300-1500 m, sufficient to resolve submesoscale (1-20 km) features. It is known that dynamical instability of submesoscale fronts can lead to slumping of heavier water under lighter water, enhancing vertical stratification. We identified 35 major salinity-dominated near-surface density fronts along the ship track, with surface density gradient exceeding 0.03 kg/m3 per kilometer, and density difference exceeding 0.3 kg/m3. The largest gradients in the open ocean, between fresh water of riverine origin and ambient seawater, exceeded 10 psu in 40 km and 6 psu in 50 km; the spatial scales of the other fronts range from 1 to 25 km. At several submesoscale fronts, the surface mixed layer is shallower directly under the front than on either side, suggesting active restratification. ADCP observations reveal a region of confluence and narrow jets associated with some fronts, consistent with frontal slumping. In addition, wind-driven Ekman transport can enhance near-surface stratification by carrying lighter water over denser water. We discuss the relevance of these two mechanisms in observations and model simulations.

  19. Does the Sverdrup critical depth model explain bloom dynamics in estuaries?

    USGS Publications Warehouse

    Lucas, L.V.; Cloern, J.E.; Koseff, Jeffrey R.; Monismith, Stephen G.; Thompson, J.K.

    1998-01-01

    In this paper we use numerical models of coupled biological-hydrodynamic processes to search for general principles of bloom regulation in estuarine waters. We address three questions: what are the dynamics of stratification in coastal systems as influenced by variable freshwater input and tidal stirring? How does phytoplankton growth respond to these dynamics? Can the classical Sverdrup Critical Depth Model (SCDM) be used to predict the timing of bloom events in shallow coastal domains such as estuaries? We present results of simulation experiments which assume that vertical transport and net phytoplankton growth rates are horizontally homogeneous. In the present approach the temporally and spatially varying turbulent diffusivities for various stratification scenarios are calculated using a hydrodynamic code that includes the Mellor-Yamada 2.5 turbulence closure model. These diffusivities are then used in a time- and depth-dependent advection-diffusion equation, incorporating sources and sinks, for the phytoplankton biomass. Our modeling results show that, whereas persistent stratification greatly increases the probability of a bloom, semidiurnal periodic stratification does not increase the likelihood of a phytoplankton bloom over that of a constantly unstratified water column. Thus, for phytoplankton blooms, the physical regime of periodic stratification is closer to complete mixing than to persistent stratification. Furthermore, the details of persistent stratification are important: surface layer depth, thickness of the pycnocline, vertical density difference, and tidal current speed all weigh heavily in producing conditions which promote the onset of phytoplankton blooms. Our model results for shallow tidal systems do not conform to the classical concepts of stratification and blooms in deep pelagic systems. First, earlier studies (Riley, 1942, for example) suggest a monotonic increase in surface layer production as the surface layer shallows. Our model results suggest, however, a nonmonotonic relationship between phytoplankton population growth and surface layer depth, which results from a balance between several 'competing' processes, including the interaction of sinking with turbulent mixing and average net growth occurring within the surface layer. Second, we show that the traditional SCDM must be refined for application to energetic shallow systems or for systems in which surface layer mixing is not strong enough to counteract the sinking loss of phytoplankton. This need for refinement arises because of the leakage of phytoplankton from the surface layer by turbulent diffusion and sinking, processes not considered in the classical SCDM. Our model shows that, even for low sinking rates and small turbulent diffusivities, a significant % of the phytoplankton biomass produced in the surface layer can be lost by these processes.

  20. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water

    PubMed Central

    Frank, Alexander H.; Garcia, Juan A. L.; Herndl, Gerhard J.

    2016-01-01

    Summary To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep‐water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. PMID:26914787

  1. Paleoclimatic analyses of middle Eocene through Oligocene planktic foraminiferal faunas

    USGS Publications Warehouse

    Keller, G.

    1983-01-01

    Quantitative faunal analyses and oxygen isotope ranking of individual planktic foraminiferal species from deep sea sequences of three oceans are used to make paleoceanographic and paleoclimatic inferences. Species grouped into surface, intermediate and deep water categories based on ??18O values provide evidence of major changes in water-mass stratification, and individual species abundances indicate low frequency cool-warm oscillations. These data suggest that relatively stable climatic phases with minor cool-warm oscillations of ???0.5 m.y. frequency are separated by rapid cooling events during middle Eocene to early Oligocene time. Five major climatic phases are evident in the water-mass stratification between middle Eocene through Oligocene time. Phase changes occur at P14/P15, P15/P16, P20/P21 and P21/P22 Zone boundaries and are marked by major faunal turnovers, rapid cooling in the isotope record, hiatuses and changes in the eustatic sea level. A general cooling trend between middle Eocene to early late Oligocene is indicated by the successive replacement of warm middle Eocene surface water species by cooler late Eocene intermediate water species and still cooler Oligocene intermediate and deep water species. Increased water-mass stratification in the latest Eocene (P17), indicated by the coexistence of surface, intermediate and deep dwelling species groups, suggest that increased thermal gradients developed between the equator and poles nearly coincident with the development of the psychrosphere. This pattern may be related to significant ice accumulation between late Eocene and early late Oligocene time. ?? 1983.

  2. Radiolarians decreased silicification as an evolutionary response to reduced Cenozoic ocean silica availability.

    PubMed

    Lazarus, David B; Kotrc, Benjamin; Wulf, Gerwin; Schmidt, Daniela N

    2009-06-09

    It has been hypothesized that increased water column stratification has been an abiotic "universal driver" affecting average cell size in Cenozoic marine plankton. Gradually decreasing Cenozoic radiolarian shell weight, by contrast, suggests that competition for dissolved silica, a shared nutrient, resulted in biologic coevolution between radiolaria and marine diatoms, which expanded dramatically in the Cenozoic. We present data on the 2 components of shell weight change--size and silicification--of Cenozoic radiolarians. In low latitudes, increasing Cenozoic export of silica to deep waters by diatoms and decreasing nutrient upwelling from increased water column stratification have created modern silica-poor surface waters. Here, radiolarian silicification decreases significantly (r = 0.91, P < 0.001), from approximately 0.18 (shell volume fraction) in the basal Cenozoic to modern values of approximately 0.06. A third of the total change occurred rapidly at 35 Ma, in correlation to major increases in water column stratification and abundance of diatoms. In high southern latitudes, Southern Ocean circulation, present since the late Eocene, maintains significant surface water silica availability. Here, radiolarian silicification decreased insignificantly (r = 0.58, P = 0.1), from approximately 0.13 at 35 Ma to 0.11 today. Trends in shell size in both time series are statistically insignificant and are not correlated with each other. We conclude that there is no universal driver changing cell size in Cenozoic marine plankton. Furthermore, biologic and physical factors have, in concert, by reducing silica availability in surface waters, forced macroevolutionary changes in Cenozoic low-latitude radiolarians.

  3. Mixing on the Heard Island Plateau during HEOBI

    NASA Astrophysics Data System (ADS)

    Robertson, R.

    2016-12-01

    On the plateau near Heard and McDonald Islands, the water column was nearly always well mixed. Typically, temperature differences between the surface and the bottom, 100-200 m, were less than 0.2oC and often less that 0.1oC. Surface stratification developed through insolation and deep primarily through a combination of upwelling from canyons and over the edge of the plateau and tidal advection. This stratification was primarily removed by a combination of wind and tidal mixing. Persistent winds of 30 knots mixed the upper 20-50 m. Strong wind events, 40-60 knots, mixed the water column to 100-200 m depth, which over the plateau, was often the entire water column. Benthic tidal friction mixed the bottom 30-50 m. Although the water column was unstratified at the two plume sites intensively investigated, tidal velocities were baroclinic, probably due to topographic controls. Tidal advection changed the bottom temperatures by 0.5oC within 8 hours, more than doubling the prior stratification. Wind mixing quickly homogenized the water column, resulting in the surface often showing the deeper upwelling and advective events. Although acoustic plumes with bubbles were observed in the water column, there was no evidence of geothermal vents or geothermal influence on temperatures. Mixing by bubbles rising in the water column was indistinguishable from the wind and tidal mixing, although the strongest upward vertical velocities were observed at the sites of these acoustic/bubble plumes.

  4. Spatial and Temporal Trends in the Density Stratification of Long Island Sound

    NASA Astrophysics Data System (ADS)

    Marchese, P.

    2017-12-01

    The density structure of Long Island Sound (LIS) was studied using historical hydrographic data. Like many estuaries, LIS suffers from hypoxia during the summer months; a result of the density stratification caused by surface warming and weak wind conditions. In summer, the water column is stratified at both ends (east and west) with a vertically well mixed region near the middle. During these months, the western side of LIS experiences low bottom dissolved from the higher nutrient influx and the resulting oxygen demand. Eastern LIS does not experience hypoxia despite sometimes being more highly stratified than the west because these bottom water are regularly ventilated by incoming higher DO water from outside. Topography and density gradients prevent the low DO water from encroaching to the eastern basin. In the fall, changing atmospheric conditions weakens the density stratification throughout LIS, although in some regions the vertical gradient will persist, sometimes until January.

  5. Environmental stratification framework and water-quality monitoring design strategy for the Islamic Republic of Mauritania, Africa

    USGS Publications Warehouse

    Friedel, Michael J.

    2008-01-01

    Mauritania anticipates an increase in mining activities throughout the country and into the foreseeable future. Because mining-induced changes in the landscape are likely to affect their limited ground-water resources and sensitive aquatic ecosystems, a water-quality assessment program was designed for Mauritania that is based on a nationally consistent environmental stratification framework. The primary objectives of this program are to ensure that the environmental monitoring systems can quantify near real-time changes in surface-water chemistry at a local scale, and quantify intermediate- to long-term changes in groundwater and aquatic ecosystems over multiple scales.

  6. Radiolarians decreased silicification as an evolutionary response to reduced Cenozoic ocean silica availability

    PubMed Central

    Lazarus, David B.; Kotrc, Benjamin; Wulf, Gerwin; Schmidt, Daniela N.

    2009-01-01

    It has been hypothesized that increased water column stratification has been an abiotic “universal driver” affecting average cell size in Cenozoic marine plankton. Gradually decreasing Cenozoic radiolarian shell weight, by contrast, suggests that competition for dissolved silica, a shared nutrient, resulted in biologic coevolution between radiolaria and marine diatoms, which expanded dramatically in the Cenozoic. We present data on the 2 components of shell weight change—size and silicification—of Cenozoic radiolarians. In low latitudes, increasing Cenozoic export of silica to deep waters by diatoms and decreasing nutrient upwelling from increased water column stratification have created modern silica-poor surface waters. Here, radiolarian silicification decreases significantly (r = 0.91, P < 0.001), from ≈0.18 (shell volume fraction) in the basal Cenozoic to modern values of ≈0.06. A third of the total change occurred rapidly at 35 Ma, in correlation to major increases in water column stratification and abundance of diatoms. In high southern latitudes, Southern Ocean circulation, present since the late Eocene, maintains significant surface water silica availability. Here, radiolarian silicification decreased insignificantly (r = 0.58, P = 0.1), from ≈0.13 at 35 Ma to 0.11 today. Trends in shell size in both time series are statistically insignificant and are not correlated with each other. We conclude that there is no universal driver changing cell size in Cenozoic marine plankton. Furthermore, biologic and physical factors have, in concert, by reducing silica availability in surface waters, forced macroevolutionary changes in Cenozoic low-latitude radiolarians. PMID:19458255

  7. High aeration rate enhances flow stratification in full-scale oxidation ditch.

    PubMed

    Diamantis, Vasileios; Papaspyrou, Ioannis; Melidis, Parasxos; Aivasidis, Alexander

    2010-02-01

    Aerated channel reactors with a uniform field of aeration may display flow stratification and short-circuit phenomena in wastewater treatment systems. In this study, we present data suggesting that flow stratification is closely related to the aeration rate and the arrangement of aerators. A full-scale oxidation ditch, with a total volume of 6,500 m(3) and a membrane-diffused aerated zone of 60 x 7 x 5 m (length-width-depth), was selected for water velocity measurements. Two profiles of the oxidation ditch were studied in detail: the first one was at the end of the aerated zone and the second one at the end of the anoxic zone. The results of this work demonstrate that the horizontal water velocity at the end of the aerated zone displayed significant stratification, with maximum velocity near the water surface (0.5-0.7 m/s) and almost zero velocity at a depth of 2.5 m. At the end of the anoxic zone, water velocity was uniform and equal to 0.27-0.31 m/s. Increasing the aeration rate from 1,800 to 4,300 m(3)/h, almost 90% of the water flow was found to discharge through the upper-half of the channel reactor profile. Different options to mitigate flow stratification of the oxidation ditch are discussed in this paper.

  8. Momentum and buoyancy transfer in atmospheric turbulent boundary layer over wavy water surface - Part 1: Harmonic wave

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yu. I.; Ezhova, E. V.; Zilitinkevich, S. S.

    2013-10-01

    The surface-drag and mass-transfer coefficients are determined within a self-consistent problem of wave-induced perturbations and mean fields of velocity and density in the air, using a quasi-linear model based on the Reynolds equations with down-gradient turbulence closure. Investigation of a harmonic wave propagating along the wind has disclosed that the surface drag is generally larger for shorter waves. This effect is more pronounced in the unstable and neutral stratification. The stable stratification suppresses turbulence, which leads to weakening of the momentum and mass transfer.

  9. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water.

    PubMed

    Frank, Alexander H; Garcia, Juan A L; Herndl, Gerhard J; Reinthaler, Thomas

    2016-06-01

    To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep-water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Oceanographic, Air-sea Interaction, and Environmental Aspects of Artificial Upwelling Produced by Wave-Inertia Pumps for Potential Hurricane Intensity Mitigation

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Dean, C.

    2017-12-01

    The artificial upwelling system consisting of the wave-inertia pumps driven by surface waves can produce flow of cold deep water to the surface. One of the recently proposed potential applications of the artificial upwelling system is the hurricane intensity mitigation. Even relatively small reduction of intensity may provide significant benefits. The ocean heat content (OHC) is the "fuel" for hurricanes. The OHC can be reduced by mixing of the surface layer with the cold water produced by wave-inertia pumps. Implementation of this system for hurricane mitigation has several oceanographic and air-sea interaction aspects. The cold water brought to the surface from a deeper layer has higher density than the surface water and, therefore, tends to sink back down. The mixing of the cold water produced by artificial upwelling depends on environmental conditions such as stratification, regional ocean circulation, and vertical shear. Another aspect is that as the sea surface temperature drops below the air temperature, the stable stratification develops in the atmospheric boundary layer. The stable atmospheric stratification suppresses sensible and latent heat air-sea fluxes and reduces the net longwave irradiance from the sea surface. As a result, the artificial upwelling may start increasing the OHC (though still reducing the sea surface temperature). In this work, the fate of the cold water in the stratified environment with vertical shear has been studied using computational fluid dynamics (CFD) tools. A 3D large eddy simulation model is initialized with observational temperature, salinity, and current velocity data from a sample location in the Straits of Florida. A periodic boundary condition is set along the direction of the current, which allows us to simulate infinite fetch. The model results indicate that the cold water brought to the sea surface by a wave-inertia pump forms a convective jet. This jet plunges into the upper ocean mixed layer and penetrates the thermocline. On the way down, the jet partially mixes with the surrounding water reducing the temperature of the upper ocean. The OHC thus can either reduce or increase, depending on the wave-inertia pump parameters. Based on the model results, we discuss feasibility of the implementation of the artificial upwelling system for hurricane intensity mitigation.

  11. Impact of Satellite Remote Sensing Data on Simulations of ...

    EPA Pesticide Factsheets

    We estimated surface salinity flux and solar penetration from satellite data, and performed model simulations to examine the impact of including the satellite estimates on temperature, salinity, and dissolved oxygen distributions on the Louisiana continental shelf (LCS) near the annual hypoxic zone. Rainfall data from the Tropical Rainfall Measurement Mission (TRMM) were used for the salinity flux, and the diffuse attenuation coefficient (Kd) from Moderate Resolution Imaging Spectroradiometer (MODIS) were used for solar penetration. Improvements in the model results in comparison with in situ observations occurred when the two types of satellite data were included. Without inclusion of the satellite-derived surface salinity flux, realistic monthly variability in the model salinity fields was observed, but important inter-annual variability wasmissed. Without inclusion of the satellite-derived light attenuation, model bottom water temperatures were too high nearshore due to excessive penetration of solar irradiance. In general, these salinity and temperature errors led to model stratification that was too weak, and the model failed to capture observed spatial and temporal variability in water-column vertical stratification. Inclusion of the satellite data improved temperature and salinity predictions and the vertical stratification was strengthened, which improved prediction of bottom-water dissolved oxygen. The model-predicted area of bottom-water hypoxia on the

  12. Mechanisms controlling the intra-annual mesoscale variability of SST and SPM in the southern North Sea

    NASA Astrophysics Data System (ADS)

    Pietrzak, Julie D.; de Boer, Gerben J.; Eleveld, Marieke A.

    2011-04-01

    Thermal and optical remote sensing data were used to investigate the spatial and temporal distribution of sea surface temperature (SST) and of suspended particulate matter (SPM) in the southern North Sea. Monthly SST composites showed pronounced seasonal warming of the southern North Sea and delineated the English coastal and continental coastal waters. The East-Anglia Plume is the dominant feature of the English coastal waters in the winter and autumn SPM composites, and the Rhine region of freshwater influence (ROFI), including the Flemish Banks, is the dominant feature of the continental waters. These mesoscale spatial structures are also influenced by the evolution of fronts, such as the seasonal front separating well-mixed water in the southern Bight, from the seasonally stratified central North Sea waters. A harmonic analysis of the SST and SPM images showed pronounced seasonal variability, as well as spring-neap variations in the level of tidal mixing in the East Anglia Plume, the Rhine ROFI and central North Sea. The harmonic analysis indicates the important role played by the local meteorology and tides in governing the SST and near-surface SPM concentrations in the southern North Sea. In the summer, thermal stratification affects the visibility of SPM to satellite sensors in the waters to the north of the Flamborough and Frisian Fronts. Haline stratification plays an important role in the visibility of SPM in the Rhine ROFI throughout the year. When stratified, both regions typically exhibit low surface SPM values. A numerical model study, together with the harmonic analysis, highlights the importance of tides and waves in controlling the stratification in the southern North Sea and hence the visibility of SPM.

  13. Lake Stability and Winter-Spring Transitions: Decoupled Ice Duration and Winter Stratification

    NASA Astrophysics Data System (ADS)

    Daly, J.; Dana, S.; Neal, B.

    2016-12-01

    Ice-out is an important historical record demonstrating the impact of warmer air temperatures on lake ice. To better understand regional differences in ice-out trends, to characterize the thermal dynamics of smaller mountain lakes, and to develop baseline data for Maine's high elevations landscapes, sub-hourly water temperatures have been collected in over a dozen of Maine's mountain lakes since 2010. Both surface water and hypolimnion temperature data are recorded year-round, facilitating the determination of ice-in, ice-out, and the duration of winter stratification. The multi-year record from sites across as 250 km transect allows us to compare spatial variability related to lake morphometry and location with inter-annual variability related to local weather. All of the study lakes are large enough to stratify during the summer and mix extensively during the fall. Most years, our data show that the onset of winter stratification is nearly synchronous across the study area and is associated with cold air temperatures. Winter stratification can begin days to weeks before ice-in; the timing of ice-in shows more variability, with both elevation and basin aspect influencing the timing. Ice-out shows both the anticipated spatial and interannual variability; some years there is strong coherence between locations while other years show high variability, possibly a function of differences in snowpack. Ice-out is not always immediately followed by the end of winter stratification, there is sometimes a lag of days to weeks before the lakes mix. If the warm temperatures that lead to ice-out are followed by calm days without significant wind, the surface of some lakes begins to warm quickly maintaining the density difference and prolonging winter stratification. The longer the lag time, the stronger the density difference becomes which may also result in a very brief period of mixing in the spring prior to set-up of summer stratification. This year's El Niño event resulted in very late ice-in, leading to an unusually short ice duration period at most sites. However, ice-out for these sites was within the range observed previous years and there may not be a significant impact on summer water temperatures.

  14. Paleoceanographic Changes Since the Last Glacial as Revealed by Analysis of Alkenone Organic Biomarkers from the Northwest Pacific (Core LV 63-41-2)

    NASA Astrophysics Data System (ADS)

    Yu, P. S.; Liao, C. J.; Chen, M. T.; Zou, J. J.; Shi, X.; Bosin, A. A.; Gorbarenko, S. A.

    2017-12-01

    Sea surface temperature (SST) records from the subarctic Northwestern (NW) Pacific are ideal for reconstructing regional paleoceanographic changes sensitive to global climate change. Core LV 63-41-2 (52.56°N, 160.00° E; water depth 1924 m) retrieved from a high sedimentation site, in which the interactions of the Bering Sea and the warm water mass from the NW Pacific are highly dynamic. Here we reported high-resolution last glacial alkenone-based records from Core LV 63-41-2. Prior to 27-16 ka BP high glacial C37:4 alkenone concentrations indicate large amount of fresh water influencing the surface water of the NW Pacific with a reaching to the Site LV 63-41-2. We further inferred that during the last glacial the low salinity water may be formed from the ice-melting water on site and/or brought by the surface current from the Bering Sea, and are efficient in producing strong water stratification condition. The stratification weakens vertical mixing of the upper water column, that in turn decreases the nutrients upwelled from deep to the surface therefore causes low productivity of coccolithophorids. During the early Bølling-Allerød (B/A) period, a gradual increasing alkenone-SST and associated with high C37:4 alkenone concentrations, implying that a weakened stratification and much stronger nutrient upwelling of the early B/A period than that of the glacial. The late B/A period is characterized by an abrupt warming with possibly more melting sea ices in the Bering Sea and the coast near the Kamchatka Peninsula. The large amount of fresh water lens formed during the ice melting might have ceased vertical mixing and upwelling in the upper water column as evidenced by a decline of biological productivity of both calcerous and soliceous organism during late B/A. We suggest an early warming and low productivity in the NW Pacific that is coincident with a rapid cooling in most of the Northern Hemisphere high latitudes during the Younger Dryas.

  15. Hydrographic and particle distributions over the Palos Verdes continental shelf: Spatial, seasonal and daily variability

    USGS Publications Warehouse

    Jones, B.H.; Noble, M.A.; Dickey, T.D.

    2002-01-01

    Moorings and towyo mapping were used to study the temporal and spatial variability of physical processes and suspended particulate material over the continental shelf of the Palos Verdes Peninsula in southwestern Los Angeles, California during the late summer of 1992 and winter of 1992-93. Seasonal evolution of the hydrographic structure is related to seasonal atmospheric forcing. During summer, stratification results from heating of the upper layer. Summer insolation coupled with the stratification results in a slight salinity increase nearsurface due to evaporation. Winter cooling removes much of the upper layer stratification, but winter storms can introduce sufficient quantities of freshwater into the shelf water column again adding stratification through the buoyancy input. Vertical mixing of the low salinity surface water deeper into the water column decreases the sharp nearsurface stratification and reduces the overall salinity of the upper water column. Moored conductivity measurements indicate that the decreased salinity persisted for at least 2 months after a major storm with additional freshwater inputs through the period. Four particulate groups contributed to the suspended particulate load in the water column: phytoplankton, resuspended sediments, and particles in treated sewage effluent were observed in every towyo mapping cruise; terrigenous particles are introduced through runoff from winter rainstorms. Terrigenous suspended particulate material sinks from the water column in <9 days and phytoplankton respond to the stormwater input of buoyancy and nutrients within the same period. The suspended particles near the bottom have spatially patchy distributions, but are always present in hydrographic surveys of the shelf. Temporal variations in these particles do not show a significant tidal response, but they may be maintained in suspension by internal wave and tide processes impinging on the shelf. ?? 2002 Elsevier Science Ltd. All rights reserved.

  16. Counterintuitive effect of fall mixed layer deepening on eukaryotic new production in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Fawcett, S. E.; Lomas, M. W.; Ward, B. B.; Sigman, D. M.

    2012-12-01

    The Sargasso Sea is characterized by a short period of deep vertical mixing in the late winter and early spring, followed by strong thermal stratification during the summer. Stratification persists into the fall, impeding the upward flux of nitrate from depth so that recycled forms of nitrogen (N) such as ammonium are thought to support most primary production. We collected particles from surface waters during March, July, October, and December, used flow cytometry to separate the prokaryotic and eukaryotic phytoplankton, and analyzed their respective 15N/14N. In all months, the 15N/14N of the prokaryotic genera, Prochlorococcus and Synechococcus, was low, indicative of reliance on recycled N throughout the year. In July, the 15N/14N of eukaryotic phytoplankton was variable but consistently higher than that of the prokaryotes, reflecting eukaryotic consumption of subsurface nitrate. Two eukaryotic profiles from October and December were similar to those from July. In three other fall profiles, the eukaryotes had a 15N/14N similar to that of the prokaryotes, suggesting a switch toward greater reliance on recycled N. This change in the dominant N source supporting eukaryotic production appears to be driven by the density structure of the upper water column. The very shallow low-density surface "mixed layer" (≤20 m) that develops in early-to-mid summer does not contribute to stratification at the base of the euphotic zone, and subsurface nitrate can mix up into the lower euphotic zone, facilitating continued production. The deepening of the mixed layer into the fall, typically taken as an indication of weaker overall stratification, actually strengthens the isolation of the euphotic zone as a whole, reducing the upward supply of nitrate to the photosynthetically active layer. The same counterintuitive dynamic explains the latitudinal patterns in a set of three October depth profiles. Two northern stations (32°N and 27°N) were characterized by a thick, low-density surface layer, and the 15N/14N of all phytoplankton was low, consistent with assimilation of recycled N. The southernmost station (23°N) had a shallower mixed layer, and eukaryote 15N/14N reflects growth on nitrate. In the subtropics, evidence for the direct supply of nitrate into surface waters in the face of the strong upper ocean stratification has long been sought. Our N isotope results suggest a mechanism by which subsurface nitrate is imported into shallow waters. This interpretation offers a new perspective on the relationship between euphotic zone stratification and nitrate assimilation, implying that significant new production occurs under conditions previously assumed to drive oligotrophy.

  17. Thermally stratified pools and their use by steelhead in northern California streams

    Treesearch

    Jennifer L. Nielsen; Thomas E. Lisle; Vicki Ozaki

    1994-01-01

    Abstract - Thermal stratification occurred in pools of three rivers in northern California when inflow of cold water was sufficiently great or currents were sufficiently weak to prevent thorough mixing of water of contrasting temperatures. Surface water temperatures in such pools were commonly 3-9°C higher than those at the bottom. Cold water entered pools from...

  18. Biogeochemical processes controlling density stratification in an iron-meromictic lake

    NASA Astrophysics Data System (ADS)

    Nixdorf, E.; Boehrer, B.

    2015-06-01

    Biogeochemical processes and mixing regime of a lake can control each other mutually. The prominent case of iron meromixis is investigated in Waldsee near Doebern, a small lake that originated from surface mining of lignite. From a four years data set of monthly measured electrical conductivity profiles, we calculated summed conductivity as a quantitative variable reflecting the amount of electro-active substances in the entire lake. Seasonal variations followed changing chemocline height. Coinciding changes of electrical conductivities in the monimolimnion indicated that a considerable share of substances, precipitated by the advancing oxygenated epilimnion, re-dissolved in the remaining anoxic deep waters and contributed considerably to the density stratification. In addition, we constructed a lab experiment, in which aeration of monimolimnetic waters removed iron compounds and organic material. Precipitates could be identified by visual inspection. Introduced air bubbles ascended through the water column and formed a water mass similar to the mixolimnetic Waldsee water. The remaining less dense water remained floating on the nearly unchanged monimolimnetic water. In conclusion, iron meromixis as seen in Waldsee did not require two different sources of incoming waters, but the inflow of iron rich deep groundwater and the aeration through the lake surface were fully sufficient.

  19. Marine redox stratification during the early Cambrian (ca. 529-509 Ma) and its control on the development of organic-rich shales in Yangtze Platform

    NASA Astrophysics Data System (ADS)

    Zhang, Yuying; He, Zhiliang; Jiang, Shu; Gao, Bo; Liu, Zhongbao; Han, Bo; Wang, Hu

    2017-06-01

    High resolution geochemical data from nine sections representing shelf to basinal environments in the Yangtze Platform were analyzed to reconstruct the marine redox environment during early Cambrian. Based on Fe species and Mo/TOC ratios, we have supplemented marine redox stratification during Stage 4 (late Canglangpuian-Longwangmiaoan, ˜514-509 Ma) on basis of the previously studied Stage 2-Stage 3 (Meishucunian-Qiongzhusian, ˜529-514 Ma). A new proposed marine stratified redox model indicates that the middepth "euxinic wedge" developed at the base of slope during ˜514-509 Ma in contrast to that the "euxinic wedge" prevailed at the shelf margin during ˜529-514 Ma, even though these middepth euxinic waters both occurred between the oxic surface waters and ferruginous deep waters. This marine redox stratification resulted in high production and good preservation of organic matter during early Cambrian. TOC values in euxinic waters in the middle are generally higher than in ferruginous waters due to upwelling in slope. Therefore, the lower Cambrian organic-rich shales in the Yangtze Platform are inferred to be deposited under the anoxic-ferruginous and euxinic bottom waters with moderate-strong restriction.

  20. Phytoplankton Functional Diversity and New Production during Spring and Summer Blooms in the Subarctic Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Van Oostende, N.; Fawcett, S. E.; Ji, Q.; Marconi, D.; Lueders-Dumont, J.; Sigman, D. M.; Ward, B. B.

    2016-02-01

    In the subarctic Atlantic Ocean, strong seasonal cycles in heat flux drive water column stratification, which governs the supply of nutrients to the euphotic zone that fuels the biological pump. The export efficiency of this pump is largely determined by the degree of phytoplankton nitrate (NO3-) assimilation and phytoplankton community size structure. We investigated nitrogen assimilation and phytoplankton community diversity and size structure on spring and summer cruises to 50-60°N, by using a combination of stable isotope tracer incubations, flow cytometry, microscopy, size-fractionated algal pigments, and nitrogen stable isotope measurements. As expected in springtime, the phytoplankton community was dominated by large (>20 µm) cells while in late summer these constituted only a minor fraction of the assemblage. The weaker density stratification of the water column in the spring compared to the summer allowed for surface nutrient concentrations that were not limiting phytoplankton growth (e.g., [NO3-] >5 µM). Despite stronger water column stratification in the summer, partial consumption of subsurface NO3-, which had recently been supplied to surface waters, allowed for total chlorophyll and particulate nitrogen (PN) to attain similar levels during both seasons. High 15N/14N of NO3- and PN in surface waters is consistent with NO3- utilization. In springtime, however, the phytoplankton community consumed NO3- at PN-normalized rates up to fivefold higher than in summer, despite having comparable uptake rates for ammonium and inorganic carbon. This observation implies that the large phytoplankton species that are abundant in spring, mostly diatoms, contribute disproportionally more to new production than summer phytoplankton communities that are devoid of these large species.

  1. Modeling of Dense Water Production and Salt Transport from Alaskan Coastal Polynyas

    NASA Technical Reports Server (NTRS)

    Signorini, Sergio R.; Cavalieri, Donald J.

    2000-01-01

    The main significance of this paper is that a realistic, three-dimensional, high-resolution primitive equation model has been developed to study the effects of dense water formation in Arctic coastal polynyas. The model includes realistic ambient stratification, realistic bottom topography, and is forced by time-variant surface heat flux, surface salt flux, and time-dependent coastal flow. The salt and heat fluxes, and the surface ice drift, are derived from satellite observations (SSM/I and NSCAT sensors). The model is used to study the stratification, salt transport, and circulation in the vicinity of Barrow Canyon during the 1996/97 winter season. The coastal flow (Alaska coastal current), which is an extension of the Bering Sea throughflow, is formulated in the model using the wind-transport regression. The results show that for the 1996/97 winter the northeastward coastal current exports 13% to 26% of the salt produced by coastal polynyas upstream of Barrow Canyon in 20 to 30 days. The salt export occurs more rapidly during less persistent polynyas. The inclusion of ice-water stress in the model makes the coastal current slightly weaker and much wider due to the combined effects of surface drag and offshore Ekman transport.

  2. Turbulent Control Of The Ocean Surface Boundary Layer During The Onset Of Seasonal Stratification

    NASA Astrophysics Data System (ADS)

    Palmer, M.; Hopkins, J.; Wihsgott, J. U.

    2016-02-01

    To provide accurate predictions of global carbon cycles we must first understand the mechanistic control of ocean surface boundary layer (OSBL) temperature and the timing and depth of ocean thermal stratification, which are critical controls on oceanic carbon sequestration via the solubility and biological pumps. Here we present an exciting new series of measurements of the fine-scale physical structure and dynamics of the OSBL that provide fresh insight into the turbulent control of upper ocean structure. This study was made in the centre of the Celtic Sea, a broad section of the NW European continental shelf, and represents one of only a handful of measurements of near-surface turbulence in our shelf seas. Data are provided by an ocean microstructure glider (OMG) that delivers estimates of turbulent dissipation rates and mixing from 100m depth to within 2-3m of the sea surface, approximately every 10 minutes and continually for 21 days during April 2015. The OMG successfully captures the onset of spring stratification as solar radiation finally overcomes the destabilising effects of turbulent surface processes. Using coincident meteorological and wave observations from a nearby mooring, and full water column current velocity data we are able to close the near surface energy budget and provide a valuable test for proposed parameterisations of OSBL turbulence based on wind, wave and buoyancy inputs. We verify recent hypotheses that even very subtle thermal stratification, below often assumed limits of 0.1°C, are sufficient to establish sustained stratification even during active surface forcing. We also find that while buoyant production (convection) is not an efficient mechanism for mixing beyond the base of the mixed layer it does play an important role in modification of surface structure, acting to precondition the OSBL for enhanced (deeper) impacts from wind and wave driven turbulence.

  3. Pumping bottom water to prevent Korean red tide damage caused by Cochlodinium polykrikoides Margalef.

    PubMed

    Cho, Eun Seob; Moon, Seong Yong; Shu, Young Sang; Hwang, Jae Dong; Youn, Seok Hyun

    2015-09-01

    Cochlodinium polykrikoides Margalef produces annual massive blooms in Korean coastal waters which cause great damage to aquaculture and fisheries. Although various methods have been developed to remove the red tide of C. polykrikoides, release of yellow loess has been regarded as the most desirable technique for mitigation for over 10 years. Each August, strong irradiation generates water column stratification separating warm surface from colder bottom waters. Water from a distance of 0 (St. 1), 5 (St. 2), 10 (St. 3), and 15 m (St. 4) was pumped by running a pump for 0, 10, 30 and 90 min and characterized water temperature, salinity collected, suspended solids, Chl-a, and phytoplankton including C. polykrikoides. After running for 30 min, was temperature and salinity in surface water was similar to those of bottom water, and water column stratification completely reversed after 90 min. Likewise, suspended solids, Chl-a, and total phytoplankton cell density decreased after 30 min, but C. polykrikoides did not show strong removal because of low cell density during sampling. However, the number of C. polykrikoides was significantly diluted (80%) after 90 min. These results suggested that pumping device was as an environmentally-friendly method convenient to be install in fish cages and effective to remove C. polykrikoides stratified water column conditions.

  4. Water color affects the stratification, surface temperature, heat content, and mean epilimnetic irradiance of small lakes

    USGS Publications Warehouse

    Houser, J.N.

    2006-01-01

    The effects of water color on lake stratification, mean epilimnetic irradiance, and lake temperature dynamics were examined in small, north-temperate lakes that differed widely in water color (1.5-19.8 m -1). Among these lakes, colored lakes differed from clear lakes in the following ways: (i) the epilimnia were shallower and colder, and mean epilimnetic irradiance was reduced; (ii) the diel temperature cycles were more pronounced; (iii) whole-lake heat accumulation during stratification was reduced. The depth of the epilimnion ranged from 2.5 m in the clearest lake to 0.75 m in the most colored lake, and 91% of the variation in epilimnetic depth was explained by water color. Summer mean morning epilimnetic temperature was ???2??C cooler in the most colored lake compared with the clearest lake. In clear lakes, the diel temperature range (1.4 ?? 0.7??C) was significantly (p = 0.01) less than that in the most colored lake (2.1 ?? 1.0??C). Change in whole-lake heat content was negatively correlated with water color. Increasing water color decreased light penetration more than thermocline depth, leading to reduced mean epilimnetic irradiance in the colored lakes. Thus, in these small lakes, water color significantly affected temperature, thermocline depth, and light climate. ?? 2006 NRC.

  5. Holocene paleoceanography of Bigo Bay, west Antarctic Peninsula: Connections between surface water productivity and nutrient utilization and its implication for surface-deep water mass exchange

    NASA Astrophysics Data System (ADS)

    Kim, Sunghan; Yoo, Kyu-Cheul; Lee, Jae Il; Khim, Boo-Keun; Bak, Young-Suk; Lee, Min Kyung; Lee, Jongmin; Domack, Eugene W.; Christ, Andrew J.; Yoon, Ho Il

    2018-07-01

    Paleoceanographic changes in response to Holocene climate variability in Bigo Bay, west Antarctic Peninsula (WAP) were reconstructed through geochemical, isotopic, sedimentological, and microfossil analysis. Core WAP13-GC47 is composed of 4 lithologic units. Unit 4 was deposited under ice shelf settings. Unit 3 represents the mid-Holocene open marine conditions. Unit 2 indicates lateral sediment transport by a glacier advance during the Neoglacial period. The chronological contrast between the timing of open marine conditions at core WAP13-GC47 (ca. 7060 cal. yr BP at 540 cm) and the ages of calcareous shell fragments (ca. 8500 cal. yr BP) in Unit 2b suggests sediment reworking during the Neoglacial period. Unit 1 was deposited during the Medieval Warm Period (MWP) and the Little Ice Age (LIA). Surface water productivity, represented by biogenic opal and total organic carbon (TOC) concentrations, increased and bulk δ15N (nitrate utilization) decreased during the warmer early to middle Holocene and the MWP. In contrast, surface water productivity decreased with increased bulk δ15N during the colder Neoglacial period and LIA in Bigo Bay. The nitrate utilization was enhanced during cold periods in association with strong surface water stratification resulting from increased sea ice meltwater discharge or proximity to an ice shelf calving front in Bigo Bay. Reduced nitrate utilization during warm periods is related to weak stratification induced by less sea ice meltwater input and stronger Circumpolar Deep Water influence.

  6. Recruitment of Hexagenia mayfly nymphs in western Lake Erie linked to environmental variability

    USGS Publications Warehouse

    Bridgeman, Thomas B.; Schloesser, Don W.; Krause, Ann E.

    2006-01-01

    After a 40-year absence caused by pollution and eutrophication, burrowing mayflies (Hexagenia spp.) recolonized western Lake Erie in the mid 1990s as water quality improved. Mayflies are an important food resource for the economically valuable yellow perch fishery and are considered to be major indicator species of the ecological condition of the lake. Since their reappearance, however, mayfly populations have suffered occasional unexplained recruitment failures. In 2002, a failure of fall recruitment followed an unusually warm summer in which western Lake Erie became temporarily stratified, resulting in low dissolved oxygen levels near the lake floor. In the present study, we examined a possible link between Hexagenia recruitment and periods of intermittent stratification for the years 1997-2002. A simple model was developed using surface temperature, wind speed, and water column data from 2003 to predict stratification. The model was then used to detect episodes of stratification in past years for which water column data are unavailable. Low or undetectable mayfly recruitment occurred in 1997 and 2002, years in which there was frequent or extended stratification between June and September. Highest mayfly reproduction in 2000 corresponded to the fewest stratified periods. These results suggest that even relatively brief periods of stratification can result in loss of larval mayfly recruitment, probably through the effects of hypoxia. A trend toward increasing frequency of hot summers in the Great Lakes region could result in recurrent loss of mayfly larvae in western Lake Erie and other shallow areas in the Great Lakes.

  7. Influences of Ocean Thermohaline Stratification on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Toole, J. M.; Timmermans, M.-L.; Perovich, D. K.; Krishfield, R. A.; Proshutinsky, A.; Richter-Menge, J. A.

    2009-04-01

    The Arctic Ocean's surface mixed layer constitutes the dynamical and thermodynamical link between the sea ice and the underlying waters. Wind stress, acting directly on the surface mixed layer or via wind-forced ice motion, produce surface currents that can in turn drive deep ocean flow. Mixed layer temperature is intimately related to basal sea ice growth and melting. Heat fluxes into or out of the surface mixed layer can occur at both its upper and lower interfaces: the former via air-sea exchange at leads and conduction through the ice, the latter via turbulent mixing and entrainment at the layer base. Variations in Arctic Ocean mixed layer properties are documented based on more than 16,000 temperature and salinity profiles acquired by Ice-Tethered Profilers since summer 2004 and analyzed in conjunction with sea ice observations from Ice Mass Balance Buoys and atmospheric heat flux estimates. Guidance interpreting the observations is provided by a one-dimensional ocean mixed layer model. The study focuses attention on the very strong density stratification about the mixed layer base in the Arctic that, in regions of sea ice melting, is increasing with time. The intense stratification greatly impedes mixed layer deepening by vertical convection and shear mixing, and thus limits the flux of deep ocean heat to the surface that could influence sea ice growth/decay. Consistent with previous work, this study demonstrates that the Arctic sea ice is most sensitive to changes in ocean mixed layer heat resulting from fluxes across its upper (air-sea and/or ice-water) interface.

  8. Shallow ocean response to tropical cyclones observed on the continental shelf of the northwestern South China Sea

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Hou, Yijun; Hu, Po; Liu, Ze; Liu, Yahao

    2015-05-01

    Based on observed temperature and velocity in 2005 in northwestern South China Sea, the shallow ocean responses to three tropical cyclones were examined. The oceanic response to Washi was similar to common observations with 2°C cooling of the ocean surface and slight warming of the thermocline resulted from vertical entrainment. Moreover, the wavefield was dominated by first mode near-inertial oscillations, which were red-shifted and trapped by negative background vorticity leading to an e-folding timescale of 12 days. The repeated reflections by the surface and bottom boundaries were thought to yield the successive emergence of higher modes. The oceanic responses to Vicente appeared to be insignificant with cooling of the ocean surface by only 0.5°C and near-inertial currents no larger than 0.10 m/s as a result of a deepened surface mixed layer. However, the oceanic responses to Typhoon Damrey were drastic with cooling of 4.5°C near the surface and successive barotropic-like near-inertial oscillations. During the forced stage, the upper ocean heat content decreased conspicuously by 11.65% and the stratification was thoroughly destroyed by vertical mixing. In the relaxation stage, the water particle had vertical displacement of 20-30 m generated by inertial pumping. The current response to Damrey was weaker than Washi due to the deepened mixed layer and the destroyed stratification. Our results suggested that the shallow water oceanic responses to tropical cyclones varied significantly with the intensity of tropical cyclones, and was affected by local stratification and background vorticity.

  9. The role of thermal stratification in tidal exchange at the mouth of San Diego Bay

    USGS Publications Warehouse

    Chadwick, D. B.; Largier, J. L.; Cheng, R.T.; Aubrey, D.G.; Friedrichs, C.T.; Aubrey, D.G.; Friedrichs, C.T.

    1996-01-01

    We have examined, from an observational viewpoint, the role of thermal stratification in the tidal exchange process at the mouth of San Diego Bay. In this region, we found that both horizontal and vertical exchange processes appear to be active. The vertical exchange in this case was apparently due to the temperature difference between the'bay water and ocean water. We found that the structure of the outflow and the nature of the tidal exchange process both appear to be influenced by thermal stratification. The tidal outflow was found to lift-off tan the bottom during the initial and later stages of the ebb flow when barotropic forcing was weak. During the peak ebb flow, the mouth section was flooded, and the outflow extended to the bottom. As the ebb flow weakened, a period of two-way exchange occurred, with the surface layer flowing seaward, and the deep layer flowing into the bay. The structure of the tidal-residual flow and the residual transport of a measured tracer were strongly influenced by this vertical exchange. Exchange appeared to occur laterally as well, in a manner consistent with the tidal-pumping mechanism described by Stommel and Farmer [1952]. Tidal cycle variations in shear and stratification were characterized by strong vertical shear and breakdown of stratification during the ebb, and weak vertical shear and build-up of stratification on the flood. Evaluation of multiple tidal-cycles from time-series records of flow and temperature indicated that the vertical variations of the flow and stratification observed during the cross-sectional measurements are a general phenomenon during the summer. Together, these observations suggest that thermal stratification can play an important role in regulating the tidal exchange of low-inflow estuaries.

  10. Rainfall as a trigger for stratification and winter phytoplankton growth in temperate shelf seas

    NASA Astrophysics Data System (ADS)

    Jardine, Jenny; Palmer, Matthew; Mahaffey, Claire; Holt, Jason; Mellor, Adam; Wakelin, Sarah

    2017-04-01

    We present new data from ocean gliders to investigate physical controls on stratification and phytoplankton dynamics, collected in the Celtic Sea between November 2014 and August 2015 as part of the UK Shelf Sea Biogeochemistry programme. This presentation focuses on the winter period (Jan-March) when the diurnal heating cycle results in regular but weak near surface stratification followed by night-time convection. Despite low light conditions, this daily cycle often promotes a daytime increase in observed chlorophyll fluorescence, indicative of phytoplankton growth. This daily cycle is occasionally interrupted when buoyancy inputs are sufficient to outcompete night-time convection and result in short-term periods of sustained winter stratification, typically lasting 2-3 days. Sustained stratification often coincides with periods of heavy rainfall, suggesting freshwater input from precipitation may play a role on these events by producing a subtle yet significant freshening of the surface layer of the order of 0.005 PSU. Comparing rainfall estimates with observed salinity changes confirms rainfall to often be the initiator of these winter stratification periods. As winter winds subside and solar heating increases towards spring, the water column becomes more susceptible to periods of halo-stratification, such that heavy rainfall during the winter-spring transition is likely to promote sustained stratification. The timing and extent of a heavy rainfall event in March 2015 does suggest it may be the critical trigger for shelf-wide stratification that eventually instigates the spring bloom. We propose that the timing of these downpours relative to the daily heating cycle can be a triggering mechanism for both short term and seasonal stratification in shelf seas, and so play a critical role in winter and early spring phytoplankton growth and the shelf sea carbon cycle. We further test the importance of this process using historical data, and results from the NEMO-AMM7 model to test how rainfall events have affected previous winter and spring conditions.

  11. Adaptive scaling model of the main pycnocline and the associated overturning circulation

    NASA Astrophysics Data System (ADS)

    Fuckar, Neven-Stjepan

    This thesis examines a number of crucial factors and processes that control the structure of the main pycnocline and the associated overturning circulation that maintains the ocean stratification. We construct an adaptive scaling model: a semi-empirical low-order theory based on the total transformation balance that linearly superimposes parameterized transformation rate terms of various mechanisms that participate in the water-mass conversion between the warm water sphere and the cold water sphere. The depth of the main pycnocline separates the light-water domain from the dense-water domain beneath the surface, hence we introduce a new definition in an integral form that is dynamically based on the large-scale potential vorticity (i.e., vertical density gradient is selected for the kernel function of the normalized vertical integral). We exclude the abyssal pycnocline from our consideration and limit our domain of interest to the top 2 km of water column. The goal is to understand the controlling mechanisms, and analytically predict and describe a wide spectrum of ocean steady states in terms of key large-scale indices relevant for understanding the ocean's role in climate. A devised polynomial equation uses the average depth of the main pycnocline as a single unknown (the key vertical scale of the upper ocean stratification) and gives us an estimate for the northern hemisphere deep water production and export across the equator from the parts of this equation. The adaptive scaling model aims to elucidate the roles of a limited number of dominant processes that determine some key upper ocean circulation and stratification properties. Additionally, we use a general circulation model in a series of simplified single-basin ocean configurations and surface forcing fields to confirm the usefulness of our analytical model and further clarify several aspects of the upper ocean structure. An idealized numerical setup, containing all the relevant physical and dynamical properties, is key to obtaining a clear understanding, uncomplicated by the effect of the real world geometry or intricacy of realistic surface radiative and turbulent fluxes. We show that wind-driven transformation processes can be decomposed into two terms separately driven by the mid-latitude westerlies and the low-latitude easterlies. Our analytical model smoothly connects all the classical limits describing different ocean regimes in a single-basin single-hemisphere geometry. The adjective "adaptive" refers to a simple and quantitatively successful adjustment to the description of a single-basin two-hemisphere ocean, with and without a circumpolar channel under the hemispherically symmetric surface buoyancy. For example, our water-mass conversion framework, unifying wind-driven and thermohaline processes, provides us with further insight into the "Drake Passage effect without Drake Passage". The modification of different transformation pathways in the Southern Hemisphere results in the equivalent net conversion changes. The introduction of hemispheric asymmetry in the surface density can lead to significant hemispheric differences in the main pycnocline structure. This demonstrates the limitations of our analytical model based on only one key vertical scale. Also, we show a strong influence of the northern hemisphere surface density change in high latitudes on the southern hemisphere stratification and circumpolar transport.

  12. Landsat image and sample design for water reservoirs (Rapel dam Central Chile).

    PubMed

    Lavanderos, L; Pozo, M E; Pattillo, C; Miranda, H

    1990-01-01

    Spatial heterogeneity of the Rapel reservoir surface waters is analyzed through Landsat images. The image digital counts are used with the aim or developing an aprioristic quantitative sample design.Natural horizontal stratification of the Rapel Reservoir (Central Chile) is produced mainly by suspended solids. The spatial heterogeneity conditions of the reservoir for the Spring 86-Summer 87 period were determined by qualitative analysis and image processing of the MSS Landsat, bands 1 and 3. The space-time variations of the different observed strata obtained with multitemporal image analysis.A random stratified sample design (r.s.s.d) was developed, based on the digital counts statistical analysis. Strata population size as well as the average, variance and sampling size of the digital counts were obtained by the r.s.s.d method.Stratification determined by analysis of satellite images were later correlated with ground data. Though the stratification of the reservoir is constant over time, the shape and size of the strata varys.

  13. Simulating 2,368 temperate lakes reveals weak coherence in stratification phenology

    USGS Publications Warehouse

    Read, Jordan S.; Winslow, Luke A.; Hansen, Gretchen J. A.; Van Den Hoek, Jamon; Hanson, Paul C.; Bruce, Louise C; Markfort, Corey D.

    2014-01-01

    Changes in water temperatures resulting from climate warming can alter the structure and function of aquatic ecosystems. Lake-specific physical characteristics may play a role in mediating individual lake responses to climate. Past mechanistic studies of lake-climate interactions have simulated generic lake classes at large spatial scales or performed detailed analyses of small numbers of real lakes. Understanding the diversity of lake responses to climate change across landscapes requires a hybrid approach that couples site-specific lake characteristics with broad-scale environmental drivers. This study provides a substantial advancement in lake ecosystem modeling by combining open-source tools with freely available continental-scale data to mechanistically model daily temperatures for 2,368 Wisconsin lakes over three decades (1979-2011). The model accurately predicted observed surface layer temperatures (RMSE: 1.74°C) and the presence/absence of stratification (81.1% agreement). Among-lake coherence was strong for surface temperatures and weak for the timing of stratification, suggesting individual lake characteristics mediate some - but not all - ecologically relevant lake responses to climate.

  14. North Pacific Cloud Feedbacks Inferred from Synoptic-Scale Dynamic and Thermodynamic Relationships

    NASA Technical Reports Server (NTRS)

    Norris, Joel R.; Iacobellis, Sam F.

    2005-01-01

    This study analyzed daily satellite cloud observations and reanalysis dynamical parameters to determine how mid-tropospheric vertical velocity and advection over the sea surface temperature gradient control midlatitude North Pacific cloud properties. Optically thick clouds with high tops are generated by synoptic ascent, but two different cloud regimes occur under synoptic descent. When vertical motion is downward during summer, extensive stratocumulus cloudiness is associated with near surface northerly wind, while frequent cloudless pixels occur with southerly wind. Examinations of ship-reported cloud types indicates that midlatitude stratocumulus breaks up as the the boundary level decouples when it is advected equatorward over warmer water. Cumulus is prevalent under conditions of synoptic descent and cold advection during winter. Poleward advection of subtropical air over colder water causes stratification of the near-surface layer that inhibits upward mixing of moisture and suppresses cloudiness until a fog eventually forms. Averaging of cloud and radiation data into intervals of 500-hPa vertical velocity and advection over the SST gradient enables the cloud response to changes in temperature and the stratification of the lower troposphere to be investigated independent of the dynamics.

  15. Increasing the Knowledge of Stratification in Shallow Coastal Environments

    NASA Astrophysics Data System (ADS)

    Ojo, T.; Bonner, J.; Hodges, B.; Maidment, D.; Montagna, P.; Minsker, B.

    2006-12-01

    A testbed has been established using Corpus Christi Bay as an environmental field facility to study the phenomenon of hypoxia that has been observed to develop at certain periods during the year. Stratification affects vertical turbulent mixing of heat, momentum and mass (or constituents) within the water column, in turn influencing the transport of material. The mixing threshold is dependent on the value of the Richardson Number, Ri with inhibition due to stratification occurring at low values (< 0.25) and complete vertical mixing occurring at high values (> 0.25) of Ri. Corpus Christi Bay with average depth of ~3 m is the largest among a system of five bays has been known to stratify due to inflows of hypersaline water (up to 50 psu) from adjoining bays, the Laguna Madre and Oso Bay. Laguna Madre is separated from the Gulf of Mexico by a barrier island and becomes hypersaline because of the imbalance between inflow of freshwater and bay evaporation. Hypersalinity also occurs in Oso Bay due to anthropogenic forcing from a power plant that draws 400 MGD of cooling water from the upper Laguna Madre, discharging waste water into Oso Bay. Several wastewater treatment plants also discharge directly into Oso Bay or its tributary streams. The objective of this study is to develop a methodology for prescribing a set of parameters required for modeling and characterization of hypoxia in this shallow wind-driven bay. The extent to which Ri is dependent on external forcing at the surface boundary was measured using our fully instrumented sensor platforms. Each sensor platform includes sensors for synchronic near-surface meteorological (wind velocity, barometric pressure, air temperature) and water column oceanographic (current, water temperature, conductivity, particle size distribution, particulate concentration, dissolved oxygen, nutrient) variables. These were measured using fixed and mobile vertical profiling sensor platforms. A 2D hydrodynamic model was initially developed for the bay and results indicate that water mass is conserved through a strong vortex spawning from the ~ 20 m deep ship channel that runs east-west along the northernmost portion of the bay. HF radar "observations" however does not indicate this vortical structure suggesting that water conservation is maintained through vertical eddies, captured by 3D current measurements using Acoustic Doppler profilers. This is an example of where advanced sensors indicate needs for more advanced modeling, leading us toward the development of 3D hydrodynamic model for the bay. The geomorphology of the bay (shallow with respect to the deep ship channel) poses a challenge in this model development. Knowledge of stratification in this system of bays has been increased through this study. Measurements taken using the instrument suite deployed by our research facility was coupled with (observed and predicted) hydrodynamic and meteorological data, providing new insight into stratification in Corpus Christi Bay. The bay was observed as cycling through quiescent and well-mixed periods under strong wind influence with the onset of hypoxia during the summer months (June through August). Quiescent periods, when combined with tidal cycling and inland horizontal gradient propagation (from adjoining water bodies as described) lead to conditions favorable to stratification.

  16. Spatial and Temporal Variations in the Partial Pressure and Emission of CO2 and CH4 in and Amazon Floodplain Lake

    NASA Astrophysics Data System (ADS)

    Forsberg, B. R.; Amaral, J. H.; Barbosa, P.; Kasper, D.; MacIntyre, S.; Cortes, A.; Sarmento, H.; Borges, A. V.; Melack, J. M.; Farjalla, V.

    2015-12-01

    The Amazon floodplain contains a variety of wetland environments which contribute CO2 and CH4 to the regional and global atmospheres. The partial pressure and emission of these greenhouse gases (GHGs) varies: 1) between habitats, 2) seasonally, as the characteristics these habitats changes and 3) diurnally, in response to diurnal stratification. In this study, we investigated the combined influence of these factors on the partial pressure and emission of GHGs in Lago Janauacá, a central Amazon floodplain lake (3o23' S; 60o18' O). All measurements were made between August of 2014 and April of 2015 at two different sites and in three distinct habitats: open water, flooded forest, flooded macrophytes. Concentrations of CO2 and CH4 in air were measured continuously with a cavity enhanced absorption spectrometer, Los Gatos Research´s Ultraportable Greenhouse Gas Analyzer (UGGA). Vertical profiles o pCO2 and pCH4 were measured using the UGGA connected to an electric pump and equilibrator. Diffusive surface emissions were estimated with the UGGA connected to a static floating chamber. To investigate the influence of vertical stratification and mixing on GHG partial pressure and emissions, a meteorological station and submersible sensor chain were deployed at each site. Meteorological sensors included wind speed and direction. The submersible chains included thermistors and oxygen sensors. Depth profiles of partial pressure and diffusive emissions for both CO2 and CH4 varied diurnally, seasonally and between habitats. Both pCO2 and pCH4 were consistently higher in bottom than surface waters with the largest differences occurring at high water when thermal stratification was most stable. Methane emissions and partial pressures were highest at low water while pCO2 and CO2 fluxes were highest during high water periods, with 35% of CO2 fluxes at low water being negative. The highest average surface value of pCO2 (5491 μatm), encountered during rising water, was ~3 times higher than that encountered at low water (1708 μatm). Partial pressures and emissions of both CO2 and CH4 were greatest in open water habitats and consistently higher at night. These patterns reflected the higher levels of wind driven mixing and turbulence in open water environments and higher convective mixing at night which promoted diffusive emission.

  17. Response of the North Atlantic surface and intermediate ocean structure to climate warming of MIS 11.

    PubMed

    Kandiano, Evgenia S; van der Meer, Marcel T J; Schouten, Stefan; Fahl, Kirsten; Sinninghe Damsté, Jaap S; Bauch, Henning A

    2017-04-10

    Investigating past interglacial climates not only help to understand how the climate system operates in general, it also forms a vital basis for climate predictions. We reconstructed vertical stratification changes in temperature and salinity in the North Atlantic for a period some 400 ka ago (MIS11), an interglacial time analogue of a future climate. As inferred from a unique set of biogeochemical, geochemical, and faunal data, the internal upper ocean stratification across MIS 11 shows distinct depth-dependent dynamical changes related to vertical as well as lateral shifts in the upper Atlantic meridional circulation system. Importantly, transient cold events are recognized near the end of the long phase of postglacial warming at surface, subsurface, mid, and deeper water layers. These data demonstrate that MIS 11 coolings over the North Atlantic were initially triggered by freshwater input at the surface and expansion of cold polar waters into the Subpolar Gyre. The cooling signal was then transmitted downwards into mid-water depths. Since the cold events occurred after the main deglacial phase we suggest that their cause might be related to continuous melting of the Greenland ice sheet, a mechanism that might also be relevant for the present and upcoming climate.

  18. Trapping of Momentum due to Low Salinity Water in the north Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Chaudhuri, D.; Tandon, A.; Farrar, T.; Weller, R. A.; Venkatesan, R.; S, S.; MacKinnon, J. A.; D'Asaro, E. A.; Sengupta, D.

    2016-02-01

    We study the relation between near-surface ocean stratification and upper ocean currents (momentum) during the diurnal cycle and subseasonal "active-break cycle" of the summer monsoon in the north Bay of Bengal. We use time series of hourly observations from NIOT moorings BD08, BD09 and an INCOIS mooring near 18 N, 89 E in 2013, and data collected during two research cruises of ORV Sagar Nidhi in August-September 2014 and 2015. Our analyses are based on upper ocean profiles of temperature, salinity and density (from moorings and a shipborne underway conductivity-temperature-depth profiler), velocity (Acoustic Doppler Current Profiler), and surface forcing (meterology sensors on moored buoy and ship). Monsoon breaks are characterized by low rainfall, low wind speed (0-5 m/s) and high incident shortwave radiation, whereas active phases are marked by intense rainfall, high wind speed (8-16 m/s) and low incident sunlight. Our main findings are: (i) Net surface heat flux is positive (ocean gains heat) during break spells, and sea surface temperature (SST) rises by upto 1.5 C in 1-2 weeks. (ii) During breaks, day-night SST difference can reach 1.5C; mixed layer depth (MLD) shoals to 5m during day time, and deepens to 15-20 m by late night/early morning. (iii) During active spells, SST cools on subseasonal scales; MLD is deep (exceeding 20 m), and diurnal re-stratification is weak or absent. (iv) Once very low-salinity water (<30 psu) from rivers arrives at the moorings in late August, MLD remains shallow, and is insensitive to subseasonal changes in surface forcing. (v) Moored data and high-resolution observations from the summer 2014 and 2015 cruises reveal trapping of momentum from winds in a relatively thin surface layer when surface salinity is low and the shallow stratification is strong. Results of ingoing analyses will be presented at the meeting.

  19. Water-Column Stratification Observed along an AUV-Tracked Isotherm

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Messié, M.; Ryan, J. P.; Kieft, B.; Stanway, M. J.; Hobson, B.; O'Reilly, T. C.; Raanan, B. Y.; Smith, J. M.; Chavez, F.

    2016-02-01

    Studies of marine physical, chemical and microbiological processes benefit from observing in a Lagrangian frame of reference, i.e. drifting with ambient water. Because these processes can be organized relative to specific density or temperature ranges, maintaining observing platforms within targeted environmental ranges is an important observing strategy. We have developed a novel method to enable a Tethys-class long-range autonomous underwater vehicle (AUV) (which has a propeller and a buoyancy engine) to track a target isotherm in buoyancy-controlled drift mode. In this mode, the vehicle shuts off its propeller and autonomously detects the isotherm and stays with it by actively controlling the vehicle's buoyancy. In the June 2015 CANON (Controlled, Agile, and Novel Observing Network) Experiment in Monterey Bay, California, AUV Makai tracked a target isotherm for 13 hours to study the coastal upwelling system. The tracked isotherm started from 33 m depth, shoaled to 10 m, and then deepened to 29 m. The thickness of the tracked isotherm layer (within 0.3°C error from the target temperature) increased over this duration, reflecting weakened stratification around the isotherm. During Makai's isotherm tracking, another long-range AUV, Daphne, acoustically tracked Makai on a circular yo-yo trajectory, measuring water-column profiles in Makai's vicinity. A wave glider also acoustically tracked Makai, providing sea surface measurements on the track. The presented method is a new approach for studying water-column stratification, but requires careful analysis of the temporal and spatial variations mingled in the vehicles' measurements. We will present a synthesis of the water column's stratification in relation to the upwelling conditions, based on the in situ measurements by the mobile platforms, as well as remote sensing and mooring data.

  20. Postimpoundment survey of water-quality characteristics of Raystown Lake, Huntingdon and Bedford Counties, Pennsylvania

    USGS Publications Warehouse

    Williams, Donald R.

    1978-01-01

    Water-quality data, collected from May 1974 to September 1976 at thirteen sites within Raystown Lake and in the inflow and outflow channels, define the water-quality characteristics of the lake water and the effects of impoundment on the quality of the lake outflow. Depth-profile measurements show Raystown Lake to be dimictic. Thermal stratification is well developed during the summer. Generally high concentrations of dissolved oxygen throughout the hypolimnion during thermal stratification, low phytoplankton concentrations, and small diel fluctuations of dissolved oxygen, pH, and specific conductance indicate that the lake is low in nutrients, or oligotrophic. Algal assays of surface samples indicate that orthophosphate was a growth-limiting nutrient. The diatoms (Chrysophyta) were the dominant phytoplankton group found through-out the study period. The lake waters contained very low populations of zooplankton. Fecal coliform and fecal streptococcus densities measured throughout the lake indicated no potentially dangerous areas of water-contact recreation. The most apparent effect that the impoundment had on water quality was the removal of nutrients, particularly orthophosphate, through phytoplankton uptake and sediment deposition.

  1. Dissipation in the Baltic proper during winter stratification

    NASA Astrophysics Data System (ADS)

    Lass, Hans Ulrich; Prandke, Hartmut; Liljebladh, Bengt

    2003-06-01

    Profiles of dissipation rates and stratification between 10 and 120 m depth were measured with a loosely tethered profiler over a 9-day winter period in the Gotland Basin of the Baltic Sea. Supplementary measurements of current profiles were made with moored ADCPs. Temporal and spatial patterns of the stratification were observed by means of towed CTD. Shallow freshwater lenses in the surface mixed layer, mesoscale eddies, inertial oscillations, and inertial waves as part of the internal wave spectrum provided the marine physical environment for the small-scale turbulence. Two well-separated turbulence regimes were detected. The turbulence in the surface mixed layer was well correlated with the wind. The majority of the energy flux from the wind to the turbulent kinetic energy was dissipated within the surface mixed layer. A minor part of this flux was consumed by changes of the potential energy of the fresh water lenses. The penetration depth Hpen of the wind-driven turbulence into the weakly stratified surface mixed layer depended on the local wind speed (W10) as Hpen = cW103/2 Active erosion of the Baltic halocline by wind-driven turbulence is expected for wind speeds greater than 14 m/s. The turbulence in the strongly stratified interior of the water column was quite independent of the meteorological forcing at the sea surface. The integrated production of turbulent kinetic energy exceeded the energy loss of inertial oscillations in the surface layer suggesting additional energy sources which might have been provided by inertial wave radiation during geostrophic adjustment of coastal jets and mesoscale eddies. The averaged dissipation rate profile in the stratified part of the water column, best fitted by ɛ ∝ EN, was different from the scaling of the dissipation in the thermocline of the ocean [, 1986]. The diapycnical mixing coefficient (Kv) was best fit by Kv = a0/N according to [1987] with a0 ≈ 0.87 × 10-7 m2/s2. The diapycnal diffusivity estimated from the dissipation rate was lower than those estimated by the bulk method.

  2. Oceanography of Glacier Bay, Alaska: Implications for biological patterns in a glacial fjord estuary

    USGS Publications Warehouse

    Etherington, L.L.; Hooge, P.N.; Hooge, Elizabeth Ross; Hill, D.F.

    2007-01-01

    Alaska, U.S.A, is one of the few remaining locations in the world that has fjords that contain temperate idewater glaciers. Studying such estuarine systems provides vital information on how deglaciation affects oceanographic onditions of fjords and surrounding coastal waters. The oceanographic system of Glacier Bay, Alaska, is of particular interest ue to the rapid deglaciation of the Bay and the resulting changes in the estuarine environment, the relatively high oncentrations of marine mammals, seabirds, fishes, and invertebrates, and the Bay’s status as a national park, where ommercial fisheries are being phased out. We describe the first comprehensive broad-scale analysis of physical and iological oceanographic conditions within Glacier Bay based on CTD measurements at 24 stations from 1993 to 2002. easonal patterns of near-surface salinity, temperature, stratification, turbidity, and euphotic depth suggest that freshwater nput was highest in summer, emphasizing the critical role of glacier and snowmelt to this system. Strong and persistent tratification of surface waters driven by freshwater input occurred from spring through fall. After accounting for seasonal nd spatial variation, several of the external physical factors (i.e., air temperature, precipitation, day length) explained a large mount of variation in the physical properties of the surface waters. Spatial patterns of phytoplankton biomass varied hroughout the year and were related to stratification levels, euphotic depth, and day length. We observed hydrographic atterns indicative of strong competing forces influencing water column stability within Glacier Bay: high levels of freshwater ischarge promoted stratification in the upper fjord, while strong tidal currents over the Bay’s shallow entrance sill enhanced ertical mixing. Where these two processes met in the central deep basins there were optimal conditions of intermediate tratification, higher light levels, and potential nutrient renewal. These conditions were associated with high and sustained hlorophylla levels observed from spring through fall in these zones of the Bay and provide a framework for understanding he abundance patterns of higher trophic levels within this estuarine system.

  3. Surface pressure maps from scatterometer data

    NASA Technical Reports Server (NTRS)

    Brown, R. A.; Levy, Gad

    1991-01-01

    The ability to determine surface pressure fields from satellite scatterometer data was shown by Brown and Levy (1986). The surface winds are used to calculate the gradient winds above the planetary boundary layer, and these are directly related to the pressure gradients. There are corrections for variable stratification, variable surface roughness, horizontal inhomogeneity, humidity and baroclinity. The Seasat-A Satellite Scatterometer (SASS) data have been used in a systematic study of 50 synoptic weather events (regions of approximately 1000 X 1000 km). The preliminary statistics of agreement with national weather service surface pressure maps are calculated. The resulting surface pressure maps can be used together with SASS winds and Scanning Multichannel Microwave Radiometer (SMMR) water vapor and liquid water analyses to provide good front and storm system analyses.

  4. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota

    NASA Astrophysics Data System (ADS)

    Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.; Kostka, Joel E.; Hanson, Paul; Chanton, Jeffrey P.

    2018-02-01

    We characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur, and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and excitation-emission matrix parallel factor analysis components within the peat column. In particular, the intermediate depth zone ( 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputs from surface vegetation. The intermediate depth zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively, these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table, redox oscillation, and pore water advection.

  5. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota: Pore Water DOM composition in a peat bog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.

    We characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and EEM-PARAFAC components within the peat column. In particular the intermediate depth zone (~ 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputs from surface vegetation. The intermediate-depthmore » zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds (PAC) that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate-depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table and redox oscillation and porewater advection.« less

  6. On the Single-Layer Hydraulics Model for Flows and Ventilation over Unban Areas in Stable Stratification

    NASA Astrophysics Data System (ADS)

    Liu, C. H.

    2015-12-01

    Atmospheric stability has substantial effects on the flows and heat/mass transport processes. While extensive studies have been conducted for neutral and unstable stabilities, rather limited studies have been devoted to stable stratification. Major technical reason is the demanding spatio-temporal resolution required to solve the small scales in stratified turbulent flows. Instead of continuous density variation, we use the single-layer hydraulics model (analogous to shallow water equations for global dynamics), to simulate the stratified flows and turbulence structure over hypothetical urban areas. An array of identical ribs in cross flows is used to model an idealized urban surface and the aerodynamic resistance is controlled by the separation among the ribs. Two immiscible fluids (water and air) with a large density difference (three order of magnitude) are used to simulate the stratification. The key assumption is that the density in the (lower) single layer is uniform. As a result, the stratification is measured by the Froude number Fr (= U/(gH)1/2; where U is the flow speed, g the gravitational acceleration and H the single-layer depth). One of the characteristics of single-layer hydraulics model is hydraulic jump which occurs when the flows are slowing down from Fr > 1 (high-speed flows over smoother surfaces) to Fr < 1 (lower-speed flows over rougher surfaces). It is noteworthy that kinetic energy does not conserve across hydraulic jump that, unavoidably, cascades to turbulent kinetic energy (TKE). We thus hypotheses that the elevated TKE could modify the street-level ventilation mechanism in the stratified flows across an abrupt change in surface roughness entering urban areas. Large-eddy simulation and laboratory-scale water channel experiments are sought to improve our understanding of the occurrence of hydraulic jump and the associated street-level ventilation mechanism in the stratified flows over urban areas. Preliminary results, by comparing the dynamics at Fr = 2.4 and Fr = 2.8, demonstrate the notable changes in ventilation performance in the first several rows of ribs of urban areas. Substantial changes in the mean and fluctuating velocities are observed that contribute to the different street-level ventilation mechanism. Detailed results will be reported in the upcoming AGU fall meeting.

  7. Modeling the periodic stratification and gravitational circulation in San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, Ralph T.; Casulli, Vincenzo

    1996-01-01

    A high resolution, three-dimensional (3-D) hydrodynamic numerical model is applied to San Francisco Bay, California to simulate the periodic tidal stratification caused by tidal straining and stirring and their long-term effects on gravitational circulation. The numerical model is formulated using fixed levels in the vertical and uniform computational mesh on horizontal planes. The governing conservation equations, the 3-D shallow water equations, are solved by a semi-implicit finite-difference scheme. Numerical simulations for estuarine flows in San Francisco Bay have been performed to reproduce the hydrodynamic properties of tides, tidal and residual currents, and salt transport. All simulations were carried out to cover at least 30 days, so that the spring-neap variance in the model results could be analyzed. High grid resolution used in the model permits the use of a simple turbulence closure scheme which has been shown to be sufficient to reproduce the tidal cyclic stratification and well-mixed conditions in the water column. Low-pass filtered 3-D time-series reveals the classic estuarine gravitational circulation with a surface layer flowing down-estuary and an up-estuary flow near the bottom. The intensity of the gravitational circulation depends upon the amount of freshwater inflow, the degree of stratification, and spring-neap tidal variations.

  8. Physical oceanographic investigation of Massachusetts and Cape Cod Bays

    USGS Publications Warehouse

    Geyer, W. Rockwell; Gardner, George B.; Brown, Wendell S.; Irish, James D.; Butman, Bradford; Loder, T.C.; Signell, Richard P.

    1992-01-01

    This physical oceanographic study of the Massachusetts Bays (fig. 1) was designed to provide for the first time a bay-wide description of the circulation and mixing processes on a seasonal basis. Most of the measurements were conducted between April 1990 and June 1991 and consisted of moored observations to study the current flow patterns (fig. 2), hydrographic surveys to document the changes in water properties (fig. 3), high-resolution surveys of velocity and water properties to provide information on the spatial variability of the flow, drifter deployments to measure the currents, and acquisition of satellite images to provide a bay-wide picture of the surface temperature and its spatial variability. A longterm objective of the Massachusetts Bays program is to develop an understanding of the transport of water, dissolved substances and particles throughout the bays. Because horizontal and vertical transport is important to biological, chemical, and geological processes in Massachusetts and Cape Cod Bays, this physical oceanographic study will have broad application and will improve the ability to manage and monitor the water and sediment quality of the Bays. Key results are:There is a marked seasonal variation in stratification in the bays, from well mixed conditions during the winter to strong stratification in the summertime. The stratification acts as a partial barrier to exchange between the surface waters and the deeper waters and causes the motion of the surface waters to be decoupled from the more sluggish flow of the deep waters. During much of the year, there is weak but persistent counterclockwise flow around the bays, made up of southwesterly flow past Cape Ann, southward flow along the western shore, and outflow north of Race Point. The data suggest that this residual flow pattern reverses in fall. Fluctuations caused by wind and density variations are typically larger than the long-term mean. With the exception of western Massachusetts Bay, flushing of the Bays is largely the result of the mean throughflow. Residence time estimates of the surface waters range from 20-45 days. The deeper water has a longer residence time, but its value is difficult to estimate. There is evidence that the deep waters in Stellwagen Basin are not renewed between the onset of stratification and the fall cooling period.Current measurements made near the new outfall site in western Massachusetts Bay suggest that water and material discharged there are not swept away in a consistent direction by a well-defined steady current but are mixed and transported by a variety of processes, including the action of tides, winds, and river inflow. One-day particle excursions are typically less than 10 km. The outfall is apparently located in a region to the west of the basin-wide residual flow pattern.Observations in western Massachusetts Bay, near the location of the future Boston sewage outfall, show that the surficial sediments are episodically resuspended from the seafloor during storms. The observations suggest onshore transport of suspended material during tranquil periods and episodic offshore and southerly alongshore transport of resuspended sediments during storms. The spatial complexity of the flow in the Massachusetts Bays is typical of nearshore areas that have irregular coastal shorelines and topography and currents that are forced locally by wind and river runoff as well as by the flow in adjacent regions. Numerical models are providing a mechanism to interpret the complex spatial flow patterns that cannot be completely resolved by field observations and to investigate key physical processes that control the physics of water and particle transport.

  9. Selenium and trace element mobility affected by periodic displacement of stratification in the Great Salt Lake, Utah

    USGS Publications Warehouse

    Beisner, K.; Naftz, D.L.; Johnson, W.P.; Diaz, X.

    2009-01-01

    The Great Salt Lake (GSL) is a unique ecosystem in which trace element activity cannot be characterized by standard geochemical parameters due to the high salinity. Movement of selenium and other trace elements present in the lake bed sediments of GSL may occur due to periodic stratification displacement events or lake bed exposure. The water column of GSL is complicated by the presence of a chemocline persistent over annual to decadal time scales. The water below the chemocline is referred to as the deep brine layer (DBL), has a high salinity (16.5 to 22.9%) and is anoxic. The upper brine layer (UBL) resides above the chemocline, has lower salinity (12.6 to 14.7%) and is oxic. Displacement of the DBL may involve trace element movement within the water column due to changes in redox potential. Evidence of stratification displacement in the water column has been observed at two fixed stations on the lake by monitoring vertical water temperature profiles with horizontal and vertical velocity profiles. Stratification displacement events occur over periods of 12 to 24 h and are associated with strong wind events that can produce seiches within the water column. In addition to displacement events, the DBL shrinks and expands in response to changes in the lake surface area over a period of months. Laboratory tests simulating the observed sediment re-suspension were conducted over daily, weekly and monthly time scales to understand the effect of placing anoxic bottom sediments in contact with oxic water, and the associated effect of trace element desorption and (or) dissolution. Results from the laboratory simulations indicate that a small percentage (1%) of selenium associated with anoxic bottom sediments is periodically solubilized into the UBL where it potentially can be incorporated into the biota utilizing the oxic part of GSL.

  10. Numerical model of frazil ice and suspended sediment concentrations and formation of sediment laden ice in the Kara Sea

    USGS Publications Warehouse

    Sherwood, C.R.

    2000-01-01

    A one-dimensional (vertical) numerical model of currents, mixing, frazil ice concentration, and suspended sediment concentration has been developed and applied in the shallow southeastern Kara Sea. The objective of the calculations is to determine whether conditions suitable for turbid ice formation can occur during times of rapid cooling and wind- and wave-induced sediment resuspension. Although the model uses a simplistic approach to ice particles and neglects ice-sediment interactions, the results for low-stratification, shallow (∼20-m) freeze-up conditions indicate that the coconcentrations of frazil ice and suspended sediment in the water column are similar to observed concentrations of sediment in turbid ice. This suggests that wave-induced sediment resuspension is a viable mechanism for turbid ice formation, and enrichment mechanisms proposed to explain the high concentrations of sediment in turbid ice relative to sediment concentrations in underlying water may not be necessary in energetic conditions. However, salinity stratification found near the Ob' and Yenisey Rivers damps mixing between ice-laden surface water and sediment-laden bottom water and probably limits incorporation of resuspended sediment into turbid ice until prolonged or repeated wind events mix away the stratification. Sensitivity analyses indicate that shallow (≤20 m), unstratified waters with fine bottom sediment (settling speeds of ∼1 mm s−1 or less) and long open water fetches (>25 km) are ideal conditions for resuspension.

  11. On influencing factors of hypoxia in waters adjacent to the Changjiang estuary

    NASA Astrophysics Data System (ADS)

    Luo, Xiaofan; Wei, Hao; Fan, Renfu; Liu, Zhe; Zhao, Liang; Lu, Youyu

    2018-01-01

    Based on observational data from ten cruises carried out in 2012 and 2013, the distribution of dissolved oxygen (DO) and the evolution of hypoxia (DO concentrations < 2.0 mg L-1) in waters adjacent to the Changjiang estuary are studied. The linkage between summer hypoxia and hydrodynamic conditions is explored. The results suggest that hypoxia frequently occurred from June to October to the south of the Changjiang estuary near the 30-50 m isobaths and was prone to happening under strong stratification without the presence of the Kuroshio Subsurface Water (KSW). Over the Changjiang Bank, hypoxia mainly occurred in July, August and September. Low-oxygen areas initially appeared under strong stratification induced by the spreading of the Changjiang Diluted Water (CDW), and developed into hypoxic zones due to lack of DO replenishment from the relatively DO-rich Yellow Sea Water and the KSW. The yearly evolution of hypoxia was influenced by shelf circulation especially the path of the KSW in the bottom layer of the water to the south of the Changjiang estuary, and the extension of the CDW in the surface layer over the Changjiang Bank.

  12. The Impact of Internal Wave Seasonality on the Continental Shelf Energy Budget

    NASA Astrophysics Data System (ADS)

    Wihsgott, Juliane U.; Sharples, Jonathan; Hopkins, Joanne; Palmer, Matthew R.; Mattias Green, J. A.

    2017-04-01

    Heating-stirring models are widely used to simulate the timing and strength of stratification in continental shelf environments. Such models are based on bulk potential energy (PE) budgets: the loss of PE due to thermal stratification is balanced by wind and tidal mixing. The model often fails to accurately predict the observed vertical structure, as it only considers forces acting on the surface and bottom boundary of the water column. This highlights the need for additional internal energy sources to close this budget, and produce an accurate seasonal cycle of stratification. We present new results that test the impact of boundary layer and internal wave forcing on stratification and vertical density structure in continental shelves. A new series of continuous measurements of full water depth vertical structure, dynamics and meteorological data spanning 17 months (March'14-July'15) provide unprecedented coverage over a full seasonal cycle at a station 120 km north-east from the continental shelf break. We observe a highly variable but energetic internal wave field from the onset of stratification that suggests a continuous supply of internal PE. The heating-stirring model reproduces bulk characteristics of the seasonal cycle. While it accurately predicts the timing of the onset in spring and peak stratification in late summer there is a persistent 20 J m-3 positive offset between the model and observations throughout this period. By including a source of internal energy in the model we improve the prediction for the strength of stratification and the vertical distribution of heat. Yet a constant source of PE seems to result in a seasonal discrepancy resulting in too little mixing during strong stratification and too much mixing during transient periods. The discrepancy seen in the model is consistent with the seasonality observed in the internal wave field. We will establish the role that changing stratification (N2) exerts on the internal wave field and vice versa. Ultimately, we will demonstrate how the strength and vertical range of shear varies seasonally and what effect it has on supplying PE to midwater mixing.

  13. Tropical Indian Ocean surface salinity bias in Climate Forecasting System coupled models and the role of upper ocean processes

    NASA Astrophysics Data System (ADS)

    Parekh, Anant; Chowdary, Jasti S.; Sayantani, Ojha; Fousiya, T. S.; Gnanaseelan, C.

    2016-04-01

    In the present study sea surface salinity (SSS) biases and seasonal tendency over the Tropical Indian Ocean (TIO) in the coupled models [Climate Forecasting System version 1 (CFSv1) and version 2 (CFSv2)] are examined with respect to observations. Both CFSv1 and CFSv2 overestimate SSS over the TIO throughout the year. CFSv1 displays improper SSS seasonal cycle over the Bay of Bengal (BoB), which is due to weaker model precipitation and improper river runoff especially during summer and fall. Over the southeastern Arabian Sea (AS) weak horizontal advection associated with East Indian coastal current during winter limits the formation of spring fresh water pool. On the other hand, weaker Somali jet during summer results for reduced positive salt tendency in the central and eastern AS. Strong positive precipitation bias in CFSv1 over the region off Somalia during winter, weaker vertical mixing and absence of horizontal salt advection lead to unrealistic barrier layer during winter and spring. The weaker stratification and improper spatial distribution of barrier layer thickness (BLT) in CFSv1 indicate that not only horizontal flux distribution but also vertical salt distribution displays large discrepancies. Absence of fall Wyrtki jet and winter equatorial currents in this model limit the advection of horizontal salt flux to the eastern equatorial Indian Ocean. The associated weaker stratification in eastern equatorial Indian Ocean can lead to deeper mixed layer and negative Sea Surface Temperature (SST) bias, which in turn favor positive Indian Ocean Dipole bias in CFSv1. It is important to note that improper spatial distribution of barrier layer and stratification can alter the air-sea interaction and precipitation in the models. On the other hand CFSv2 could produce the seasonal evolution and spatial distribution of SSS, BLT and stratification better than CFSv1. However CFSv2 displays positive bias in evaporation over the whole domain and negative bias in precipitation over the BoB and equatorial Indian Ocean, resulting net reduction in the fresh water availability. This net reduction in fresh water forcing and the associated weaker stratification lead to deeper (than observed) mixed layer depth and is primarily responsible for the cold SST bias in CFSv2. However overall improvement of mean salinity distribution in CFSv2 is about 30 % and the mean error has reduced by more than 1 psu over the BoB. This improvement is mainly due to better fresh water forcing and model physics. Realistic run off information, better ocean model and high resolution in CFSv2 contributed for the improvement. Further improvement can be achieved by reducing biases in the moisture flux and precipitation.

  14. Breakup of last glacial deep stratification in the South Pacific

    NASA Astrophysics Data System (ADS)

    Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F.; Molina-Kescher, Mario; Pahnke, Katharina

    2018-02-01

    Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO2 through upwelling.

  15. Representing Reservoir Stratification in Land Surface and Earth System Models

    NASA Astrophysics Data System (ADS)

    Yigzaw, W.; Li, H. Y.; Leung, L. R.; Hejazi, M. I.; Voisin, N.; Payn, R. A.; Demissie, Y.

    2017-12-01

    A one-dimensional reservoir stratification modeling has been developed as part of Model for Scale Adaptive River Transport (MOSART), which is the river transport model used in the Accelerated Climate Modeling for Energy (ACME) and Community Earth System Model (CESM). Reservoirs play an important role in modulating the dynamic water, energy and biogeochemical cycles in the riverine system through nutrient sequestration and stratification. However, most earth system models include lake models that assume a simplified geometry featuring a constant depth and a constant surface area. As reservoir geometry has important effects on thermal stratification, we developed a new algorithm for deriving generic, stratified area-elevation-storage relationships that are applicable at regional and global scales using data from Global Reservoir and Dam database (GRanD). This new reservoir geometry dataset is then used to support the development of a reservoir stratification module within MOSART. The mixing of layers (energy and mass) in the reservoir is driven by eddy diffusion, vertical advection, and reservoir inflow and outflow. Upstream inflow into a reservoir is treated as an additional source/sink of energy, while downstream outflow represented a sink. Hourly atmospheric forcing from North American Land Assimilation System (NLDAS) Phase II and simulated daily runoff by ACME land component are used as inputs for the model over the contiguous United States for simulations between 2001-2010. The model is validated using selected observed temperature profile data in a number of reservoirs that are subject to various levels of regulation. The reservoir stratification module completes the representation of riverine mass and heat transfer in earth system models, which is a major step towards quantitative understanding of human influences on the terrestrial hydrological, ecological and biogeochemical cycles.

  16. Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period.

    PubMed

    Erbacher, J; Huber, B T; Norris, R D; Markey, M

    2001-01-18

    Ocean anoxic events were periods of high carbon burial that led to drawdown of atmospheric carbon dioxide, lowering of bottom-water oxygen concentrations and, in many cases, significant biological extinction. Most ocean anoxic events are thought to be caused by high productivity and export of carbon from surface waters which is then preserved in organic-rich sediments, known as black shales. But the factors that triggered some of these events remain uncertain. Here we present stable isotope data from a mid-Cretaceous ocean anoxic event that occurred 112 Myr ago, and that point to increased thermohaline stratification as the probable cause. Ocean anoxic event 1b is associated with an increase in surface-water temperatures and runoff that led to decreased bottom-water formation and elevated carbon burial in the restricted basins of the western Tethys and North Atlantic. This event is in many ways similar to that which led to the more recent Plio-Pleistocene Mediterranean sapropels, but the greater geographical extent and longer duration (approximately 46 kyr) of ocean anoxic event 1b suggest that processes leading to such ocean anoxic events in the North Atlantic and western Tethys were able to act over a much larger region, and sequester far more carbon, than any of the Quaternary sapropels.

  17. Outgassing of the Eastern Equatorial Pacific during the Pliocene period.

    NASA Astrophysics Data System (ADS)

    Guillermic, M.; Tripati, A.

    2016-12-01

    The transition from the warm, ice-free conditions of the early Cenozoic to present-day glacial state with ice sheets in both hemispheres has been ascribed to long- and short-term changes in atmospheric CO2. The processes causing long-term changes in atmospheric CO2 levels are of debate. One possible explanation for changes in atmospheric CO2 relates to changes in air-sea exchange due to fluctuations in ocean carbon sources and sinks, as modulated by the stratification of surface waters. While nutrient consumption in low-latitude environments and associated export of CO2 to the deep sea works to sequester CO2 in the ocean interior, the return of deep water to the surface in the high latitudes and upwelling at the equator and in the eastern portion of ocean basins releases CO2. Quantitative estimates for surface water pH and pCO2 in different regions of the ocean and identification of CO2-sources and sinks are needed to better understand the role of the ocean in driving and/or amplifying variations in the atmospheric CO2 reservoir and climate change. Here we present preliminary results of surface water pH for the early Pliocene to Holocene based on boron isotope measurements of planktic foraminifera for the Eastern Equatorial Pacific. We develop records of B/Ca, Mg/Ca ratios, boron isotopes, and oxygen isotopes measurements in foraminifera tests (Globigeneroides sacculifer, Globigeneroides ruber, Neogloboquadrina dutertrei). We reconstruct changes in ocean CO2 outgassing in the Eastern Equatorial Pacific using records from ODP Site 847 (0°N, 95°W, 3373 m water depth). These data are used to examine if there is evidence for changes in stratification and CO2 outgassing during the early Pliocene warm period and during Pliocene intensification of Northern Hemisphere glaciation.

  18. Phytoplankton distributions and their nutrient environment in the Eastern Bering Sea.

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Nishitani, H.; Narita, H.; Jordan, R. W.

    2004-12-01

    After 1997, coccolithophorids blooms have been frequently observed by research vessels and satellites in the Eastern Bering Sea shelf, where diatoms have previously been dominate. Here, we present CTD, Chl-a, nutrient and phytoplankton data collected during cruises of the T/S Oshoro-Maru and R/V Mirai vessels from 2000 to 2003. Our goal is to refine the relation between phytoplankton distribution and water characteristics, and the controlling features of coccolithophorids blooms in the Eearstern Bering Sea. Samplings were carried out alone 166_E#8249;W from 55_E#8249;N to 59_E#8249;N. For cell counting, seawater samples were filtered through a 25-mm Millipore HA filter, and identification and counting of phytoplankton was performed with a scanning electron microscope. The scale of bloom and abundance of coccolithophorids were different in each year. The most dominant phytoplankton group was coccolithophorids in 2000, which agrees with the large bloom observed by satellite. In 2001, diatoms dominated at 70% and coccolithophorids accounted for 30% at 58, 58.5_E#8249;N. In 2002 and 2003, diatoms dominated at nearly 100% at all stations. Coccolithophorids abundance was nearly halted by pycnocline, since coccolithophorids existed in the middle shelf domain, which is known to be an area of cold-water pool distribution. The difference in density between the surface mixed layer and the cold-water pool gradually increased from 1980 to 2002, that is, seawater stratification in the middle shelf domain was strengthened as the result of the increased surface temperature and decreased salinity that have occurred recently. When stratification strengthens, the supply of nutrients to the surface from the cold-water pool is reduced. Consequently, coccolithophorids take precedence over diatoms in this condition. However, if the decreased salinity in the surface water depended on the increased river discharge, then the nutrients in the surface water would increase. River discharge has two peaks (spring and late summer) in one year (Chikita, 2001). Since river water contains high volumes of silicate and iron, an increase in river discharge would lead to the predominance of diatoms. The frequency and timing of storms, which influence the thickness of the surface mixed layer, may be another controlling factor of coccolithophorids blooms. In fact, there was a second peak in October 2000 and in August 2001. In 2000, the thickness of the surface mixed layer increased from July to September. Because the timing of storms and river discharges in summer controlled the stratification in the middle shelf domain, it greatly influenced the species_f composition of phytoplankton. In 2002 and 2003, the phytoplankton concetrations distribute peaks respectively at the south and north. The dominant classes are centric diatoms in the south, and is penate diatoms in the north, caused by defferent nutrients and temperature distribution. The sources of nutrients to the Estern bering Sea can be classified into three groups: up welling at the shelf edge, from the cold water pool, and from riverwater. The nutrients of surface water are high in the south and are low in the north, and dispense the diffenrent phytoplankton distribution.

  19. Near-Surface Effects of Free Atmosphere Stratification in Free Convection

    NASA Astrophysics Data System (ADS)

    Mellado, Juan Pedro; van Heerwaarden, Chiel C.; Garcia, Jade Rachele

    2016-04-01

    The effect of a linear stratification in the free atmosphere on near-surface properties in a free convective boundary layer (CBL) is investigated by means of direct numerical simulation. We consider two regimes: a neutral stratification regime, which represents a CBL that grows into a residual layer, and a strong stratification regime, which represents the equilibrium (quasi-steady) entrainment regime. We find that the mean buoyancy varies as z^{-1/3}, in agreement with classical similarity theory. However, the root-mean-square (r.m.s.) of the buoyancy fluctuation and the r.m.s. of the vertical velocity vary as z^{-0.45} and ln z, respectively, both in disagreement with theory. These scaling laws are independent of the stratification regime, but the depth over which they are valid depends on the stratification. In the strong stratification regime, this depth is about 20 to 25 % of the CBL depth instead of the commonly used 10 %, which we only observe under neutral conditions. In both regimes, the near-surface flow structure can be interpreted as a hierarchy of circulations attached to the surface. Based on this structure, we define a new near-surface layer in free convection, the plume-merging layer, that is conceptually different from the constant-flux layer. The varying depth of the plume-merging layer depending on the stratification accounts for the varying depth of validity of the scaling laws. These findings imply that the buoyancy transfer law needed in mixed-layer and single-column models is well described by the classical similarity theory, independent of the stratification in the free atmosphere, even though other near-surface properties, such as the r.m.s. of the buoyancy fluctuation and the r.m.s. of the vertical velocity, are inconsistent with that theory.

  20. Global warming and ocean stratification: A potential result of large extraterrestrial impacts

    NASA Astrophysics Data System (ADS)

    Joshi, Manoj; von Glasow, Roland; Smith, Robin S.; Paxton, Charles G. M.; Maycock, Amanda C.; Lunt, Daniel J.; Loptson, Claire; Markwick, Paul

    2017-04-01

    The prevailing paradigm for the climatic effects of large asteroid or comet impacts is a reduction in sunlight and significant short-term cooling caused by atmospheric aerosol loading. Here we show, using global climate model experiments, that the large increases in stratospheric water vapor that can occur upon impact with the ocean cause radiative forcings of over +20 W m-2 in the case of 10 km sized bolides. The result of such a positive forcing is rapid climatic warming, increased upper ocean stratification, and potentially disruption of upper ocean ecosystems. Since two thirds of the world's surface is ocean, we suggest that some bolide impacts may actually warm climate overall. For impacts producing both stratospheric water vapor and aerosol loading, radiative forcing by water vapor can reduce or even cancel out aerosol-induced cooling, potentially causing 1-2 decades of increased temperatures in both the upper ocean and on the land surface. Such a response, which depends on the ratio of aerosol to water vapor radiative forcing, is distinct from many previous scenarios for the climatic effects of large bolide impacts, which mostly account for cooling from aerosol loading. Finally, we discuss how water vapor forcing from bolide impacts may have contributed to two well-known phenomena: extinction across the Cretaceous/Paleogene boundary and the deglaciation of the Neoproterozoic snowball Earth.

  1. Methane oxidation in Saanich Inlet during summer stratification

    NASA Technical Reports Server (NTRS)

    Ward, B. B.; Kilpatrick, K. A.; Wopat, A. E.; Minnich, E. C.; Lidstrom, M. E.

    1989-01-01

    Saanich Inlet, British Columbia, an fjord on the southeast coast of Vancouver Island, typically stratifies in summer, leading to the formation of an oxic-anoxic interface in the water column and accumulation of methane in the deep water. The results of methane concentration measurements in the water column of the inlet at various times throughout the summer months in 1983 are presented. Methane gradients and calculated diffusive fluxes across the oxic-anoxic interface increased as the summer progressed. Methane distribution and consumption in Saanich Inlet were studied in more detail during August 1986. At this time, a typical summer stratification with an oxic-anoxic interface around 140 m was present. At the interface, steep gradients in nutrient concentrations, bacterial abundance and methane concentration were observed. Methane oxidation was detected in the aerobic surface waters and in the anaerobic deep layer, but highest rates occurred in a narrow layer at the oxic-anoxic interface. Estimated methane oxidation rates were suffcient to consume 100 percent of the methane provided by diffusive flux from the anoxic layer. Methane oxidation is thus a mechanism whereby atmospheric flux from anoxic waters is minimized.

  2. Extreme diel dissolved oxygen and carbon cycles in shallow vegetated lakes.

    PubMed

    Andersen, Mikkel R; Kragh, Theis; Sand-Jensen, Kaj

    2017-09-13

    A common perception in limnology is that shallow lakes are homogeneously mixed owing to their small water volume. However, this perception is largely gained by downscaling knowledge from large lakes to their smaller counterparts. Here we show that shallow vegetated lakes (less than 0.6 m), in fact, undergo recurring daytime stratification and nocturnal mixing accompanied by extreme chemical variations during summer. Dense submerged vegetation effectively attenuates light and turbulence generating separation between warm surface waters and much colder bottom waters. Photosynthesis in surface waters produces oxygen accumulation and CO 2 depletion, whereas respiration in dark bottom waters causes anoxia and CO 2 accumulation. High daytime pH in surface waters promotes precipitation of CaCO 3 which is re-dissolved in bottom waters. Nocturnal convective mixing re-introduces oxygen into bottom waters for aerobic respiration and regenerated inorganic carbon into surface waters, which supports intense photosynthesis. Our results reconfigure the basic understanding of local environmental gradients in shallow lakes, one of the most abundant freshwater habitats globally. © 2017 The Author(s).

  3. The biological pump and lower trophic level controls on carbon cycling in Lake Superior: Insights from a multi-pronged study

    NASA Astrophysics Data System (ADS)

    Schreiner, K. M.; Bramburger, A.; Ozersky, T.; Sheik, C.; Steinman, B. A.

    2016-02-01

    Lake Superior is the largest freshwater lake in the world, supporting economically important fisheries and providing drinking water to hundreds of thousands of people. In recent decades, summer surface water temperature and the intensity and duration of water column stratification in the lake has increased steadily. These physical changes have resulted in significant perturbations to lower trophic level ecosystem characteristics. Recent observations of Great Lakes plankton assemblages have revealed multi-decadal patterns of community reorganization, with increased relative abundance of taxa characteristic of warmer waters. These changes, coupled with changing nutrient concentrations and colonization by non-native taxa, threaten to shift trophic structure and carbon dynamics at the bottom of the food web. To this end, this study seeks to quantify the impacts of this ecosystem shift on carbon fixation, the biological pump, and organic carbon cycling in Lake Superior. Utilizing a combined sampling approach, in the summer of 2015 we collected water, sediment, and biological samples across a nearshore-to-offshore gradient in the western arm of Lake Superior. Analyses included the community composition of bacteria, archaea, phytoplankton, and zooplankton; water column carbon and nutrient speciation; algal pigments and pigment degradation products; and net primary productivity. The collection of surface sediments allowed for additional assessment of benthic-pelagic coupling. The novel combination of this wide-ranging set of analyses to a locally and globally important water body like Lake Superior allowed us to fully assess the interactions between lower trophic level biology and carbon and nutrient cycling throughout the water column. Preliminary data indicates that microbial community composition was variable across the western arm of Lake Superior and showed signs of stratification at individual stations (>100 m deep). Sample collection occurred soon after lake stratification in July 2015, and the presence of a deep chlorophyll maximum was noted. The results shed light on the functioning of the biological pump and nutrient and carbon dynamics in a changing ecosystem and provides insight on how further change in Lake Superior and other aquatic systems will affect ecosystem function and services.

  4. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota: Pore Water DOM composition in a peat bog

    DOE PAGES

    Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.; ...

    2018-01-29

    Here, we characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur, and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and excitation-emission matrix parallel factor analysis components within the peat column. In particular, the intermediate depth zone (~ 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputsmore » from surface vegetation. The intermediate depth zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively, these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Lastly, our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table, redox oscillation, and pore water advection.« less

  5. Vertical Stratification of Peat Pore Water Dissolved Organic Matter Composition in a Peat Bog in Northern Minnesota: Pore Water DOM composition in a peat bog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.

    Here, we characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur, and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and excitation-emission matrix parallel factor analysis components within the peat column. In particular, the intermediate depth zone (~ 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputsmore » from surface vegetation. The intermediate depth zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively, these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Lastly, our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table, redox oscillation, and pore water advection.« less

  6. Wind variability and sheltering effects on measurements and modeling of air-water exchange for a small lake

    NASA Astrophysics Data System (ADS)

    Markfort, Corey D.; Resseger, Emily; Porté-Agel, Fernando; Stefan, Heinz

    2014-05-01

    Lakes with a surface area of less than 10 km2 account for over 50% of the global cumulative lake surface water area, and make up more than 99% of the total number of global lakes, ponds, and wetlands. Within the boreal regions as well as some temperate and tropical areas, a significant proportion of land cover is characterized by lakes or wetlands, which can have a dramatic effect on land-atmosphere fluxes as well as the local and regional energy budget. Many of these small water bodies are surrounded by complex terrain and forest, which cause the wind blowing over a small lake or wetland to be highly variable. Wind mixing of the lake surface layer affects thermal stratification, surface temperature and air-water gas transfer, e.g. O2, CO2, and CH4. As the wind blows from the land to the lake, wake turbulence behind trees and other shoreline obstacles leads to a recirculation zone and enhanced turbulence. This wake flow results in the delay of the development of wind shear stress on the lake surface, and the fetch required for surface shear stress to fully develop may be ~O(1 km). Interpretation of wind measurements made on the lake is hampered by the unknown effect of wake turbulence. We present field measurements designed to quantify wind variability over a sheltered lake. The wind data and water column temperature profiles are used to evaluate a new method to quantify wind sheltering of lakes that takes into account lake size, shape and the surrounding landscape features. The model is validated against field data for 36 Minnesota lakes. Effects of non-uniform sheltering and lake shape are also demonstrated. The effects of wind sheltering must be included in lake models to determine the effect of wind-derived energy inputs on lake stratification, surface gas transfer, lake water quality, and fish habitat. These effects are also important for correctly modeling momentum, heat, moisture and trace gas flux to the atmosphere.

  7. Improved fine-scale transport model performance using AUV and HSI feedback in a tidally dominated system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hibler, Lyle F.; Maxwell, Adam R.; Miller, Lee M.

    2008-08-22

    Applied numerical circulation and transport modeling study of Sequim Bay, WA focused on the simulation of the redistribution of rhodamine dye release at the water surface. Model sensitivity to bathymetric variation, side-wall boundary conditions, and thermal stratification is examined. Model results compared to observational datasets.

  8. Effects of physical and morphometric factors on nutrient removal properties in agricultural ponds.

    PubMed

    Saito, M; Onodera, S; Okubo, K; Takagi, S; Maruyama, Y; Jin, G; Shimizu, Y

    2015-01-01

    Effects of physical and morphometric factors on nutrient removal properties were studied in small agricultural ponds with different depths, volumes, and residence times in western Japan. Average residence time was estimated to be >15 days, and it tended to decrease from summer to winter because of the increase in water withdrawal for agricultural activity. Water temperature was clearly different between the surface and bottom layers; this indicates that thermal stratification occurred in summer. Chlorophyll-a was significantly high (>20 μg/L) in the surface layer (<0.5 m) and influenced by the thermal stratification. Removal ratios of dissolved total nitrogen (DTN) and dissolved total phosphorus in the ponds were estimated to be 53-98% and 39-98% in August and 10-92% and 36-57% in December, respectively. Residence time of the ponds was longer in August than in December, and DTN removal, in particular, was more significant in ponds with longer residence time. Our results suggest residence time is an important factor for nitrogen removal in small agricultural ponds as well as large lakes.

  9. Subsurface low dissolved oxygen occurred at fresh- and saline-water intersection of the Pearl River estuary during the summer period.

    PubMed

    Li, Gang; Liu, Jiaxing; Diao, Zenghui; Jiang, Xin; Li, Jiajun; Ke, Zhixin; Shen, Pingping; Ren, Lijuan; Huang, Liangmin; Tan, Yehui

    2018-01-01

    Estuarine oxygen depletion is one of the worldwide problems, which is caused by the freshwater-input-derived severe stratification and high nutrients loading. In this study we presented the horizontal and vertical distributions of dissolved oxygen (DO) in the Pearl River estuary, together with temperature, salinity, chlorophyll a concentration and heterotrophic bacteria abundance obtained from two cruises during the summer (wet) and winter (dry) periods of 2015. In surface water, the DO level in the summer period was lower and varied greater, as compared to the winter period. The DO remained unsaturated in the summer period if salinity is <12 and saturated if salinity is >12; while in the winter period it remained saturated throughout the estuary. In subsurface (>5m) water, the DO level varied from 0.71 to 6.65mgL -1 and from 6.58 to 8.20mgL -1 in the summer and winter periods, respectively. Particularly, we observed an area of ~1500km 2 low DO zone in the subsurface water with a threshold of 4mgDOL -1 during this summer period, that located at the fresh- and saline-water intersection where is characterized with severe stratification and high heterotrophic bacteria abundance. In addition, our results indicate that spatial DO variability in surface water was contributed differently by biological and physio-chemical variables in the summer and winter periods, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Breakup of last glacial deep stratification in the South Pacific.

    PubMed

    Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F; Molina-Kescher, Mario; Pahnke, Katharina

    2018-02-23

    Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO 2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO 2 through upwelling. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. Submesoscale-selective compensation of fronts in a salinity-stratified ocean.

    PubMed

    Spiro Jaeger, Gualtiero; Mahadevan, Amala

    2018-02-01

    Salinity, rather than temperature, is the leading influence on density in some regions of the world's upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity.

  12. Results of Sustained Observations from SABSOON

    NASA Astrophysics Data System (ADS)

    Seim, H.; Nelson, J.

    2001-12-01

    A variety of meteorological and oceanographic data being collected on the continental shelf off Georgia by the South Atlantic Bight Synoptic Offshore Observational Network (SABSOON) permit an examination of episodic and seasonal phenomena operative on the shelf. Data are collected at offshore platforms and transmitted to shore in near-real time and made available on the project website. Examples of data collected since 1999 are presented that illustrate some of processes being addressed using the network. Maximum winds occur during remarkably energetic downbursts observed in spring and summer, associated with the passage of squalls over the coastal ocean. Peak wind speed at 50 m height exceed 40 ms and air temperature drops by 4 oC or more in less than 6 minutes, often accompanied by large changes in humidity and heavy rainfall, suggesting down draft of air from aloft. These events may play an important role in the offshore transport of continentally-derived material. Continuous ADCP measurements are being used to examine the seasonality of cross-shelf exchange and its relationship to the cross-shelf density gradient. The low-frequency cross-shelf circulation changes sign when the cross-shelf density gradient changes sign. Vertical stratification is surprisingly episodic, and maximum stratification has occurred in the winter and spring associated with appearance of long-salinity surface lens and may be associated with baroclinic instabilities. Strong stratification has also been observed in summer during Gulf Stream-derived intrusions onto the shelf, during which time the upper and lower layers become largely decoupled. Continuous optical measurements of above-water and in-water irradiance (PAR) show the mid-shelf surface sediments are often in the euphotic zone. Chlorophyll fluorescence (stimulated) shows strong light-dependent diurnal variability in near-surface waters and evidence of resuspension of benthic diatoms during storm events, particularly in the early fall. >http://www.skio.peachnet.edu/projects/sabsoon.html

  13. Stratification and loading of fecal indicator bacteria (FIB) in a tidally muted urban salt marsh.

    PubMed

    Johnston, Karina K; Dorsey, John H; Saez, Jose A

    2015-03-01

    Stratification and loading of fecal indicator bacteria (FIB) were assessed in the main tidal channel of the Ballona Wetlands, an urban salt marsh receiving muted tidal flows, to (1) determine FIB concentration versus loading within the water column at differing tidal flows, (2) identify associations of FIB with other water quality parameters, and (3) compare wetland FIB concentrations to the adjacent estuary. Sampling was conducted four times during spring-tide events; samples were analyzed for FIB and turbidity (NTU) four times over a tidal cycle at pre-allocated depths, depending on the water level. Additional water quality parameters measured included temperature, salinity, oxygen, and pH. Loadings were calculated by integrating the stratified FIB concentrations with water column cross-sectional volumes corresponding to each depth. Enterococci and Escherichia coli were stratified both by concentration and loading, although these variables portrayed different patterns over a tidal cycle. Greatest concentrations occurred in surface to mid-strata levels, during flood tides when contaminated water flowed in from the estuary, and during ebb flows when sediments were suspended. Loading was greatest during flood flows and diminished during low tide periods. FIB concentrations within the estuary often were significantly greater than those within the wetland tide channel, supporting previous studies that the wetlands act as a sink for FIB. For public health water quality monitoring, these results indicate that more accurate estimates of FIB concentrations would be obtained by sampling a number of points within a water column rather than relying only on single surface samples.

  14. Violent storms within the sea: Dense water formation episodes in the Mediterranean.

    NASA Astrophysics Data System (ADS)

    Salat, J.

    2009-09-01

    The Mediterranean is a semi enclosed basin which receives surface water from the Atlantic Ocean. Most of this water is returned into the Ocean with higher density, spreading at more than 1000 m depth (the rest is transported by the atmosphere and the rivers to the Ocean surface). In terms of water budget, the Mediterranean is considered an evaporation basin, but the loss of water is neither the only process that increases the water density nor it is a steady or uniform process. The factors affecting the water density, temperature and salinity, are driven by mass and heat exchanges with the atmosphere. Those exchanges may be by direct contact or mediated by the land. Therefore, changes in water density depend on the water circulation and local weather conditions, both with seasonal and geographical constraints. As the compressibility of water is very low, stratification is expected and horizontal motion is the predominant in the sea interior. Among the few processes that may introduce a vertical component in the water motion are surface heat loss or evaporation that increase the surface water density triggering convective cells. Such processes will be enhanced by surface cooling or by dry continental winds, and counterbalanced by rain, river runoff, solar heating and condensation. Therefore dense water formation are more likely to occur when sea surface temperature is higher than the surface air temperature. There are several scales of convective motions in the ocean, starting from the formation of the surface mixed layer during summer, by night cooling, breezes, and occasional wind storms. During autumn and winter, the vertical scale of the mixing is increasing by steps, through wind storms and progressive cooling, to easily reach the bottom over the continental shelves, typically not deeper than 150 m. However, as the Gibraltar sill is relatively shallow (~350 m) in relation to the average Mediterranean basin (2000-3000 m), the stratification of the deeper layers is weak. Therefore, where and when the surface layer becomes well mixed, typically in winter, in the northern regions, conditions are given (pre-conditioning phase) to the occurrence of dense water formation episodes. Those episodes require the participation of strong cold and dry winds which force an intense evaporation. In the NW Mediterranean, such forcing may act over the continental shelves, like that of the Gulf of Lions, or over deep open seas, typically the central part east of Catalonia and south of Provence. Over the shelf, surface water is expected to be fresher because of the runoff (e.g. the Rhône). Along the continental margin the water circulation, geostrophically adapted, is cyclonic and the stratification in the centre is lower, then density reached may be higher in the central part than on the shelf. However, cooling will be more effective over the shelf as the heat content of the water column is lower because it is much shorter. Once density over the shelf is high enough, the bottom water overflows and violently sinks along the slope in relatively narrow areas through what has been called a cascading event. In the central part, dense water formed sinks almost vertically in funnels not larger than a few kilometres in diameter, and is accompanied by a compensating rise of water from great depth on all sides. In such open sea winter convection events, the dense water can sink some 800 m within a matter of hours and may reach the bottom level, >2500 m deep, within a couple of days. Such short and violent episodes, cascading or open sea convection, of a few days' duration supply enough water to feed the lower layer to compensate the outflow through the Strait of Gibraltar for several weeks. The repeated events in some few points across the Mediterranean, like those above mentioned, are maintaining the Mediterranean circulation and the water exchanges with the Ocean. The overall amount of dense water formed however is highly variable from one year to another according to the forcings involved and perturbations of the water circulation.

  15. Understanding variability of the Southern Ocean overturning circulation in CORE-II models

    NASA Astrophysics Data System (ADS)

    Downes, S. M.; Spence, P.; Hogg, A. M.

    2018-03-01

    The current generation of climate models exhibit a large spread in the steady-state and projected Southern Ocean upper and lower overturning circulation, with mechanisms for deep ocean variability remaining less well understood. Here, common Southern Ocean metrics in twelve models from the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) are assessed over a 60 year period. Specifically, stratification, surface buoyancy fluxes, and eddies are linked to the magnitude of the strengthening trend in the upper overturning circulation, and a decreasing trend in the lower overturning circulation across the CORE-II models. The models evolve similarly in the upper 1 km and the deep ocean, with an almost equivalent poleward intensification trend in the Southern Hemisphere westerly winds. However, the models differ substantially in their eddy parameterisation and surface buoyancy fluxes. In general, models with a larger heat-driven water mass transformation where deep waters upwell at the surface ( ∼ 55°S) transport warmer waters into intermediate depths, thus weakening the stratification in the upper 2 km. Models with a weak eddy induced overturning and a warm bias in the intermediate waters are more likely to exhibit larger increases in the upper overturning circulation, and more significant weakening of the lower overturning circulation. We find the opposite holds for a cool model bias in intermediate depths, combined with a more complex 3D eddy parameterisation that acts to reduce isopycnal slope. In summary, the Southern Ocean overturning circulation decadal trends in the coarse resolution CORE-II models are governed by biases in surface buoyancy fluxes and the ocean density field, and the configuration of the eddy parameterisation.

  16. Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing.

    PubMed

    Qian, Pei-Yuan; Wang, Yong; Lee, On On; Lau, Stanley C K; Yang, Jiangke; Lafi, Feras F; Al-Suwailem, Abdulaziz; Wong, Tim Y H

    2011-03-01

    The ecosystems of the Red Sea are among the least-explored microbial habitats in the marine environment. In this study, we investigated the microbial communities in the water column overlying the Atlantis II Deep and Discovery Deep in the Red Sea. Taxonomic classification of pyrosequencing reads of the 16S rRNA gene amplicons showed vertical stratification of microbial diversity from the surface water to 1500 m below the surface. Significant differences in both bacterial and archaeal diversity were observed in the upper (20 [corrected] and 50 m) and deeper layers (200 and 1500 m). There were no obvious differences in community structure at the same depth for the two sampling stations. The bacterial community in the upper layer was dominated by Cyanobacteria whereas the deeper layer harbored a large proportion of Proteobacteria. Among Archaea, Euryarchaeota, especially Halobacteriales, were dominant in the upper layer but diminished drastically in the deeper layer where Desulfurococcales belonging to Crenarchaeota became the dominant group. The results of our study indicate that the microbial communities sampled in this study are different from those identified in water column in other parts of the world. The depth-wise compositional variation in the microbial communities is attributable to their adaptations to the various environments in the Red Sea.

  17. An operational large-scale marine planetary boundary layer model

    NASA Technical Reports Server (NTRS)

    Brown, R. A.; Liu, W. T.

    1982-01-01

    A marine planetary boundary layer (PBL) model is presented and compared with data from sea-based experiments. The PBL model comprises two layers, the outer an Ekman-Taylor layer with stratification-dependent secondary flow, and the logarithmic surface layer corrected for stratification and humidity effects and variable surface roughness. Corrections are noted for air much warmer than water in stable conditions and for low wind speeds. The layers are analytically defined along with similarity relations and a resistance law for inclusion in a program. An additional interfacial layer correction is developed and shown to be significant for heat flux calculations. Experimental data from GOASEX were used to predict the windfield in the Gulf of Alaska, and JASIN data was used for windfields SE of Iceland. The JASIN-derived wind field predictions were accurate to within 1 m/sec and 10 deg in a 200 km triangle.

  18. Notes on a Mesodinium rubrum red tide in San Francisco Bay (California, USA)

    USGS Publications Warehouse

    Cloern, James E.; Cole, Brian E.; Hager, Stephen W.

    1994-01-01

    Discrete red patches of water were observed in South San Francisco Bay (USA) on 30 April 1993, and examination of live samples showed that this red tide was caused by surface accumulations of the pigmented ciliate Mesodinium rubrum . Vertical profiles showed strong salinity and temperature stratification in the upper 5 m, peak chlorophyll fluorescence in the upper meter, and differences in the small-scale density structure and fluorescence distribution among red patches. Events preceding this Mesodinium red tide included: (i) heavy precipitation and run-off, allowing for strong salinity stratification; (ii) a spring diatom bloom where the chlorophyll a concentration reached 50 mg m −3 ; (ii) depletions of dissolved inorganic N and Si in the photic zone; and (iv) several days of rapid warming and stabilization of the upper surface layer. These conditions may be general prerequisites for M.rubrum blooms in temperate estuaries.

  19. Generalized scaling of seasonal thermal stratification in lakes

    NASA Astrophysics Data System (ADS)

    Shatwell, T.; Kirillin, G.

    2016-12-01

    The mixing regime is fundamental to the biogeochemisty and ecology of lakes because it determines the vertical transport of matter such as gases, nutrients, and organic material. Whereas shallow lakes are usually polymictic and regularly mix to the bottom, deep lakes tend to stratify seasonally, separating surface water from deep sediments and deep water from the atmosphere. Although empirical relationships exist to predict the mixing regime, a physically based, quantitative criterion is lacking. Here we review our recent research on thermal stratification in lakes at the transition between polymictic and stratified regimes. Using the mechanistic balance between potential and kinetic energy in terms of the Richardson number, we derive a generalized physical scaling for seasonal stratification in a closed lake basin. The scaling parameter is the critical mean basin depth that delineates polymictic and seasonally stratified lakes based on lake water transparency (Secchi depth), lake length, and an annual mean estimate for the Monin-Obukhov length. We validated the scaling on available data of 374 global lakes using logistic regression and found it to perform better than other criteria including a conventional open basin scaling or a simple depth threshold. The scaling has potential applications in estimating large scale greenhouse gas fluxes from lakes because the required inputs, like water transparency and basin morphology, can be acquired using the latest remote sensing technologies. The generalized scaling is universal for freshwater lakes and allows the seasonal mixing regime to be estimated without numerically solving the heat transport equations.

  20. Recent trends and variations in Baltic Sea temperature, salinity, stratification and circulation

    NASA Astrophysics Data System (ADS)

    Elken, Jüri; Lehmann, Andreas; Myrberg, Kai

    2015-04-01

    The presentation highlights the results of physical oceanography from BACC II (Second BALTEX Assessment of Climate Change for the Baltic Sea basin) book based on the review of recent literature published until 2013. We include also information from some more recent publications. A recent warming trend in sea surface waters has been clearly demonstrated by all available methods: in-situ measurements, remote sensing data and modelling tools. In particular, remote sensing data for the period 1990-2008 indicate that the annual mean SST has increased even by 1°C per decade, with the greatest increase in the northern Bothnian Bay and also with large increases in the Gulf of Finland, the Gulf of Riga, and the northern Baltic Proper. Although the increase in the northern areas is affected by the recent decline in the extent and duration of sea ice, and corresponding changes in surface albedo, warming is still evident during all seasons and with the greatest increase occurring in summer. The least warming of surface waters (0.3-0.5°C per decade) occurred northeast of Bornholm Island up to and along the Swedish coast, probably owing to an increase in the frequency of coastal upwelling forced by the westerly wind events. Comparing observations with the results of centennial-scale modelling, recent changes in sea water temperature appear to be within the range of the variability observed during the past 500 years. Overall salinity pattern and stratification conditions are controlled by river runoff, wind conditions, and salt water inflows through the Danish straits. The mean top-layer salinity is mainly influenced by the accumulated river runoff, with higher salinity during dry periods and lower salinity during wet periods. Observations reveal a low-salinity period above the halocline starting in the 1980s. The strength of stratification and deep salinity are reduced when the mean zonal wind stress increases, as it occurred since 1987. Major Baltic Inflows of highly saline water of North Sea origin occur sporadically and transport high-saline water into the deep layers of the Baltic Sea. These inflow events occur when high pressure over the Baltic region with easterly winds is followed by several weeks of strong westerly winds; changes in the inflow activity are related to the frequency of deep cyclones and their pathways over the Baltic area. Major inflows are often followed by a period of stagnation during which saline stratification decreases and oxygen deficiency develops in the deep basins of the central Baltic. Major inflows are usually of barotropic character. They normally occur during winter and spring and transport relatively cold, salty and oxygen-rich waters to the deep basins. Since 1996, another type of inflows have been observed during summer or early autumn. These inflows are of baroclinic character and transport high-saline, but warm and low-oxygen water into the deep layers of the Baltic Sea. Event-like water exchange and mixing anomalies, driven by specific atmospheric forcing patterns like sequences of deep cyclones, occur also in other parts of the Baltic Sea.

  1. Reconstruction of surface water conditions in the central region of the Okhotsk Sea during the last 180 kyrs

    NASA Astrophysics Data System (ADS)

    Khim, Boo-Keun; Sakamoto, Tatsuhiko; Harada, Naomi

    2012-02-01

    Core GC9A, a 6.7 m long gravity core collected from the central region of the Okhotsk Sea during Cruise YK0712 on R/V Yokosuka (JAMSTEC), was used to reconstruct the changes in surface water conditions by measuring biogenic components (biogenic opal, CaCO3, total organic carbon and δ15N of sediment organic matter) of sediment samples. The age of Core GC9A was determined indirectly by graphic correlation comparing the b* (psychometric yellow-blue chromaticness) values with those of well-dated Core MD01-2415, with complement to the tephra layer (K3; 50 ka). The bottom age of Core GC9A was estimated to be about 180 kyr; therefore it provides the history of surface water conditions from MIS 1 to MIS 6. The biogenic opal, CaCO3, and TOC contents were high during the interglacial periods as expected, indicating enhanced surface water production under warm climatic conditions. This condition resulted from sufficient nutrient supply to the surface waters by active vertical mixing, which was validated by low δ15N values of the sediment organic matter. In contrast, surface water productivity was depressed during the colder glacial periods, probably due to the expanded sea-ice distribution and limited nutrient supply. However, the glacial sediments had moderately high δ15N values, indicating enhanced nitrate utilization resulting from the limited nutrient supply caused by strong stratification of the surface water. High δ15N values were also observed during the deglaciation, which was attributed to the increased nitrate utilization during enhanced surface water productivity. However, the low δ15N values during the glacial and deglacial periods may be attributed to the increased supply of terrestrial organic matter. Diatom production was primarily responsible for surface water paleoproductivity during the interglacial periods rather than coccolithophores. However, the succession of glacial to early deglacial coccolithophore production and late deglacial to interglacial diatom production was remarkable, corresponding to the present-day seasonal phytoplankton succession. Such an advanced coccolithophore production relative to diatom production might be attributed to the degree of nutrient availability associated with surface water conditions on the basis of variations in the δ15N value. Finally, the opal and TOC contents decreased abruptly in conjunction with a gradual decrease in CaCO3 content from about 2 ka, which seems to implicate a late Holocene sudden decrease in paleoproductivity in the central region of the Okhotsk Sea. According to the increase in δ15N values during this interval, nutrient availability appears to be poor, which is likely attributed to the resumed strong stratification that occurred due to the southward shift of the Aleutian Low atmospheric pressure system.

  2. Quantitative description of the effect of stratification on dormancy release of grape seeds in response to various temperatures and water contents

    PubMed Central

    Wang, W. Q.; Song, S. Q.; Li, S. H.; Gan, Y. Y.; Wu, J. H.; Cheng, H. Y.

    2009-01-01

    The effect of stratification on dormancy release of grape seeds crossing from the sub- to the supraoptimal range of temperatures and water contents was analysed by modified threshold models. The stratification impacted on dormancy release in three different ways: (i) dormancy was consistently released with prolonged stratification time when stratified at temperatures of <15 °C; (ii) at 15 °C and 20 °C, the stratification effect initially increased, and then decreased with extended time; and (iii) stratification at 25 °C only reduced germinable seeds. These behaviours indicated that stratification could not only release primary dormancy but also induce secondary dormancy in grape seed. The rate of dormancy release changed linearly in two phases, while induction increased exponentially with increasing temperature. The thermal time approaches effectively quantified dormancy release only at suboptimal temperature, but a quantitative method to integrate the occurrence of dormancy release and induction at the same time could describe it well at either sub- or supraoptimal temperatures. The regression with the percentage of germinable seeds versus stratification temperature or water content within both the sub- and supraoptimal range revealed how the optimal temperature (Tso) and water content (Wso) for stratification changed. The Tso moved from 10.6 °C to 5.3 °C with prolonged time, while Wso declined from >0.40 g H2O g DW−1 at 5 °C to ∼0.23 g H2O g DW−1 at 30 °C. Dormancy release in grape seeds can occur across a very wide range of conditions, which has important implications for their ability to adapt to a changeable environment in the wild. PMID:19491305

  3. Submesoscale-selective compensation of fronts in a salinity-stratified ocean

    PubMed Central

    Spiro Jaeger, Gualtiero; Mahadevan, Amala

    2018-01-01

    Salinity, rather than temperature, is the leading influence on density in some regions of the world’s upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity. PMID:29507874

  4. Synoptic events force biological productivity in Patagonian fjord ecosystems

    NASA Astrophysics Data System (ADS)

    Daneri, Giovanni

    2016-04-01

    The annual cycle of primary productivity of the Patagonian fjords has, to date, been described as a two phase system consisting of a short non productive winter phase (during June and July) and a productive phase extending from late winter (August) to autumn (May). Low levels of primary production, phytoplankton biomass and high concentrations of surface nutrients have been described as characterizing winter conditions while pulsed productivity events typifies the productivity pattern during the extended productive season. Pulsed productivity events characterize coastal waters where inorganic nutrients in surface layers are replenished following periods of intensive utilization by autotrophs. Freshwater input in Patagonian fjords in southern Chile (41-55°S) results in one of the largest estuarine regions worldwide. Here strong haline water column stratification prevents nutrient mixing to the surface layers thus potentially shutting off algal production. Our working hypothesis considered that in order to reconcile the observed pulsed productivity pattern, periodic breaking (associated to surface nutrient replenishment) and re-establishment of estuarine conditions (associated to water column stratification) would be required. Up to now however our understanding of the physical processes that control water column conditions in the Patagonian fjord area has been extremely limited. Here we present evidence linking the passage of synoptic low pressure fronts to pulsed productivity events in the Patagonian fjord area. These front controls and influence local processes of interaction between the fjord and the atmosphere generating a rapid water column response. In the specific case of the Puyuhuapi fjord we have been able to show that such synoptic fronts induce surface flow reversal and water column mixing. Phytoplankton blooming occurs after the passage of the synoptic front once calmer conditions prevail and estuarine conditions are re established. The occurrence of an extremely productive bloom of the dinoflagellate Heterocapsa sp. in July 2014, after the passage of a synoptic low pressure front provided, for the first time, strong evidence that phytoplankton blooming in the Patagonian fjord ecosystems is controlled by synoptic processes and that they are not limited by light as previously reported. This research was funded by COPAS Sur-Austral (PFB-31) and FONDECYT 1131063

  5. Effects of slow recovery rates on water column geochemistry in aquitard wells

    USGS Publications Warehouse

    Schilling, K.E.

    2011-01-01

    Monitoring wells are often installed in aquitards to verify effectiveness for preventing migration of surface contaminants to underlying aquifers. However, water sampling of aquitard wells presents a challenge due to the slow recovery times for water recharging the wells, which can take as long as weeks, months or years to recharge depending on the sample volume needed. In this study, downhole profiling and sampling of aquitard wells was used to assess geochemical changes that occur in aquitard wells during water level recovery. Wells were sampled on three occasions spanning 11years, 1year and 1week after they were purged and casing water showed substantial water chemistry variations. Temperature decreased with depth, whereas pH and specific conductance increased with depth in the water column after 11years of water level recovery. Less stable parameters such as dissolved O2 (DO) and Eh showed strong zonation in the well column, with DO stratification occurring as the groundwater slowly entered the well. Oxidation of reduced till groundwater along with degassing of CO2 from till pore water affects mineral solubility and dissolved solid concentrations. Recommendations for sampling slowly recovering aquitard wells include identifying the zone of DO and Eh stratification in the well column and collecting water samples from below the boundary to better measure unstable geochemical parameters. ?? 2011 Elsevier Ltd.

  6. Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring

    NASA Astrophysics Data System (ADS)

    Sosik, Heidi M.; Green, Rebecca E.; Pegau, W. Scott; Roesler, Collin S.

    2001-05-01

    Relationships between optical and physical properties were examined on the basis of intensive sampling at a site on the New England continental shelf during late summer 1996 and spring 1997. During both seasons, particles were found to be the primary source of temporal and vertical variability in optical properties since light absorption by dissolved material, though significant in magnitude, was relatively constant. Within the particle pool, changes in phytoplankton were responsible for much of the observed optical variability. Physical processes associated with characteristic seasonal patterns in stratification and mixing contributed to optical variability mostly through effects on phytoplankton. An exception to this generalization occurred during summer as the passage of a hurricane led to a breakdown in stratification and substantial resuspension of nonphytoplankton particulate material. Prior to the hurricane, conditions in summer were highly stratified with subsurface maxima in absorption and scattering coefficients. In spring, stratification was much weaker but increased over the sampling period, and a modest phytoplankton bloom caused surface layer maxima in absorption and scattering coefficients. These seasonal differences in the vertical distribution of inherent optical properties were evident in surface reflectance spectra, which were elevated and shifted toward blue wavelengths in the summer. Some seasonal differences in optical properties, including reflectance spectra, suggest that a significant shift toward a smaller particle size distribution occurred in summer. Shorter timescale optical variability was consistent with a variety of influences including episodic events such as the hurricane, physical processes associated with shelfbreak frontal dynamics, biological processes such as phytoplankton growth, and horizontal patchiness combined with water mass advection.

  7. The role stratification on Indian ocean mixing under global warming

    NASA Astrophysics Data System (ADS)

    Praveen, V.; Valsala, V.; Ravindran, A. M.

    2017-12-01

    The impact of changes in Indian ocean stratification on mixing under global warming is examined. Previous studies on global warming and associated weakening of winds reported to increase the stratification of the world ocean leading to a reduction in mixing, increased acidity, reduced oxygen and there by a reduction in productivity. However this processes is not uniform and are also modulated by changes in wind pattern of the future. Our study evaluate the role of stratification and surface fluxes on mixing focusing northern Indian ocean. A dynamical downscaling study using Regional ocean Modelling system (ROMS) forced with stratification and surface fluxes from selected CMIP5 models are presented. Results from an extensive set of historical and Representative Concentration Pathways 8.5 (rcp8.5) scenario simulations are used to quantify the distinctive role of stratification on mixing.

  8. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms.

    PubMed

    Mahadevan, Amala; D'Asaro, Eric; Lee, Craig; Perry, Mary Jane

    2012-07-06

    Springtime phytoplankton blooms photosynthetically fix carbon and export it from the surface ocean at globally important rates. These blooms are triggered by increased light exposure of the phytoplankton due to both seasonal light increase and the development of a near-surface vertical density gradient (stratification) that inhibits vertical mixing of the phytoplankton. Classically and in current climate models, that stratification is ascribed to a springtime warming of the sea surface. Here, using observations from the subpolar North Atlantic and a three-dimensional biophysical model, we show that the initial stratification and resulting bloom are instead caused by eddy-driven slumping of the basin-scale north-south density gradient, resulting in a patchy bloom beginning 20 to 30 days earlier than would occur by warming.

  9. Impact on Water Heater Performance of Heating Methods that Promote Tank Temperature Stratification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gluesenkamp, Kyle R; BushPE, John D

    2016-01-01

    During heating of a water heater tank, the vertical temperature stratification of the water can be increased or decreased, depending on the method of heating. Methods that increase stratification during heating include (1) removing cold water from the tank bottom, heating it, and re-introducing it to the tank top at relatively low flow rate, (2) using a heat exchanger wrapped around the tank, through which heating fluid (with finite specific heat) flows from top to bottom, and (3) using an immersed heat element that is relatively high in the tank. Using such methods allows for improved heat pump water heatermore » (HPWH) cycle efficiencies when the heat pump can take advantage of the lower temperatures that exist lower in the tank, and accommodate the resulting glide. Transcritical cycles are especially well-suited to capitalize on this opportunity, and other HPWH configurations (that have been proposed elsewhere) may benefit as well. This work provides several stratification categories of heat pump water heater tank configurations relevant to their stratification potential. To illustrate key differences among categories, it also compiles available experimental data for (a) single pass pumped flow, (b) multi-pass pumped flow, and (c) top-down wrapped tank with transcritical refrigerant.« less

  10. The bio-optical properties of CDOM as descriptor of lake stratification.

    PubMed

    Bracchini, Luca; Dattilo, Arduino Massimo; Hull, Vincent; Loiselle, Steven Arthur; Martini, Silvia; Rossi, Claudio; Santinelli, Chiara; Seritti, Alfredo

    2006-11-01

    Multivariate statistical techniques are used to demonstrate the fundamental role of CDOM optical properties in the description of water masses during the summer stratification of a deep lake. PC1 was linked with dissolved species and PC2 with suspended particles. In the first principal component that the role of CDOM bio-optical properties give a better description of the stratification of the Salto Lake with respect to temperature. The proposed multivariate approach can be used for the analysis of different stratified aquatic ecosystems in relation to interaction between bio-optical properties and stratification of the water body.

  11. Seasonality of submesoscale dynamics in the Kuroshio Extension

    NASA Astrophysics Data System (ADS)

    Rocha, Cesar B.; Gille, Sarah T.; Chereskin, Teresa K.; Menemenlis, Dimitris

    2016-11-01

    Recent studies show that the vigorous seasonal cycle of the mixed layer modulates upper ocean submesoscale turbulence. Here we provide model-based evidence that the seasonally changing upper ocean stratification in the Kuroshio Extension also modulates submesoscale (here 10-100 km) inertia-gravity waves. Summertime restratification weakens submesoscale turbulence but enhances inertia-gravity waves near the surface. Thus, submesoscale turbulence and inertia-gravity waves undergo vigorous out-of-phase seasonal cycles. These results imply a strong seasonal modulation of the accuracy of geostrophic velocity diagnosed from submesoscale sea surface height delivered by the Surface Water and Ocean Topography satellite mission.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Wang, Taiping

    A three-dimensional coastal ocean model with a tidal turbine module was used in this paper to study the effects of tidal energy extraction on temperature and salinity stratification and density driven two-layer estuarine circulation. Numerical experiments with various turbine array configurations were carried out to investigate the changes in tidally mean temperature, salinity and velocity profiles in an idealized stratified estuary that connects to coastal water through a narrow tidal channel. The model was driven by tides, river inflow and sea surface heat flux. To represent the realistic size of commercial tidal farms, model simulations were conducted based on amore » small percentage of the total number of turbines that would generate the maximum extractable energy in the system. Model results indicated that extraction of tidal energy will increase the vertical mixing and decrease the stratification in the estuary. Extraction of tidal energy has stronger impact on the tidally-averaged salinity, temperature and velocity in the surface layer than the bottom. Energy extraction also weakens the two-layer estuarine circulation, especially during neap tides when tidal mixing the weakest and energy extraction is the smallest. Model results also show that energy generation can be much more efficient with higher hub height with relatively small changes in stratification and two-layer estuarine circulation.« less

  13. Diurnal and Seasonal Variations of Thermal Stratification and Vertical Mixing in a Shallow Fresh Water Lake

    NASA Astrophysics Data System (ADS)

    Yang, Yichen; Wang, Yongwei; Zhang, Zhen; Wang, Wei; Ren, Xia; Gao, Yaqi; Liu, Shoudong; Lee, Xuhui

    2018-04-01

    Among several influential factors, the geographical position and depth of a lake determine its thermal structure. In temperate zones, shallow lakes show significant differences in thermal stratification compared to deep lakes. Here, the variation in thermal stratification in Lake Taihu, a shallow fresh water lake, is studied systematically. Lake Taihu is a warm polymictic lake whose thermal stratification varies in short cycles of one day to a few days. The thermal stratification in Lake Taihu has shallow depths in the upper region and a large amplitude in the temperature gradient, the maximum of which exceeds 5°C m-1. The water temperature in the entire layer changes in a relatively consistent manner. Therefore, compared to a deep lake at similar latitude, the thermal stratification in Lake Taihu exhibits small seasonal differences, but the wide variation in the short term becomes important. Shallow polymictic lakes share the characteristic of diurnal mixing. Prominent differences on the duration and frequency of long-lasting thermal stratification are found in these lakes, which may result from the differences of local climate, lake depth, and fetch. A prominent response of thermal stratification to weather conditions is found, being controlled by the stratifying effect of solar radiation and the mixing effect of wind disturbance. Other than the diurnal stratification and convection, the representative responses of thermal stratification to these two factors with contrary effects are also discussed. When solar radiation increases, stronger wind is required to prevent the lake from becoming stratified. A daily average wind speed greater than 6 m s-1 can maintain the mixed state in Lake Taihu. Moreover, wind-induced convection is detected during thermal stratification. Due to lack of solar radiation, convection occurs more easily in nighttime than in daytime. Convection occurs frequently in fall and winter, whereas long-lasting and stable stratification causes less convection in summer.

  14. Climate, carbon cycling, and deep-ocean ecosystems.

    PubMed

    Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S

    2009-11-17

    Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.

  15. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China).

    PubMed

    Zhang, Yunlin; Wu, Zhixu; Liu, Mingliang; He, Jianbo; Shi, Kun; Zhou, Yongqiang; Wang, Mingzhu; Liu, Xiaohan

    2015-05-15

    From January 2010 to March 2014, detailed depth profiles of water temperature, dissolved oxygen (DO), and chromophoric dissolved organic matter (CDOM) were collected at three sites in Lake Qiandaohu, a large, deep subtropical reservoir in China. Additionally, we assessed the changes in DO stratification over the past 61 years (1953-2013) based on our empirical models and long-term air temperature and transparency data. The DO concentration never fell below 2 mg/L, the critical value for anoxia, and the DO depth profiles were closely linked to the water temperature depth profiles. In the stable stratification period in summer and autumn, the significant increase in CDOM in the metalimnion explained the decrease in DO due to the oxygen consumed by CDOM. Well-developed oxygen stratification was detected at the three sites in spring, summer and autumn and was associated with thermal stratification. Oxycline depth was significantly negatively correlated with daily air temperature and thermocline thickness but significantly positively correlated with thermocline depth during the stratification weakness period (July-February). However, there were no significant correlations among these parameters during the stratification formation period (March-June). The increase of 1.67 °C in yearly average daily air temperature between 1980 and 2013 and the decrease of 0.78 m in Secchi disk depth caused a decrease of 1.65 m and 2.78 m in oxycline depth, respectively, facilitating oxygen stratification and decreasing water quality. Therefore, climate warming has had a substantial effect on water quality through changing the DO regime in Lake Qiandaohu. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Rain Impact Model Assessment of Near-Surface Salinity Stratification Following Rainfall

    NASA Astrophysics Data System (ADS)

    Drushka, K.; Jones, L.; Jacob, M. M.; Asher, W.; Santos-Garcia, A.

    2016-12-01

    Rainfall over oceans produces a layer of fresher surface water, which can have a significant effect on the exchanges between the surface and the bulk mixed layer and also on satellite/in-situ comparisons. For satellite sea surface salinity (SSS) measurements, the standard is the Hybrid Coordinate Ocean Model (HYCOM), but there is a significant difference between the remote sensing sampling depth of 0.01 m and the typical range of 5-10 m of in-situ instruments. Under normal conditions the upper layer of the ocean is well mixed and there is uniform salinity; however, under rainy conditions, there is a dilution of the near-surface salinity that mixes downward by diffusion and by mechanical mixing (gravity waves/wind speed). This significantly modifies the salinity gradient in the upper 1-2 m of the ocean, but these transient salinity stratifications dissipate in a few hours, and the upper layer becomes well mixed at a slightly fresher salinity. Based upon research conducted within the NASA/CONAE Aquarius/SAC-D mission, a rain impact model (RIM) was developed to estimate the change in SSS due to rainfall near the time of the satellite observation, with the objective to identify the probability of salinity stratification. RIM uses HYCOM (which does not include the short-term rain effects) and a NOAA global rainfall product CMORPH to model changes in the near-surface salinity profile in 0.5 h increments. Based upon SPURS-2 experimental near-surface salinity measurements with rain, this paper introduces a term in the RIM model that accounts for the effect of wind speed in the mechanical mixing, which translates into a dynamic vertical diffusivity; whereby a Generalized Ocean Turbulence Model (GOTM) is used to investigate the response to rain events of the upper few meters of the ocean. The objective is to determine how rain and wind forcing control the thickness, stratification strength, and lifetime of fresh lenses and to quantify the impacts of rain-formed fresh lenses on the fresh bias in satellite retrievals of salinity. Results will be presented of comparisons of RIM measurements at depth of a few meters with measurements from in-situ salinity instruments. Also, analytical results will be shown, which assess the accuracy of RIM salinity profiles under a variety of rain rate, wind/wave conditions.

  17. The correspondence of surface climate parameters with satellite and terrain data

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff; Davis, Frank

    1987-01-01

    One of the goals of the research was to develop a ground sampling stragegy for calibrating remotely sensed measurements of surface climate parameters. The initial sampling strategy involved the stratification of the terrain based on important ancillary surface variables such as slope, exposure, insolation, geology, drainage, fire history, etc. For a spatially heterogeneous population, sampling error is reduced and efficiency increased by stratification of the landscape into more homogeneous sub-areas and by employing periodic random spacing of samples. These concepts were applied in the initial stratification of the study site for the purpose of locating and allocating instrumentation.

  18. The warmer the ocean surface, the shallower the mixed layer. How much of this is true?

    PubMed Central

    González‐Pola, C.; Fernández‐Diaz, J.

    2017-01-01

    Abstract Ocean surface warming is commonly associated with a more stratified, less productive, and less oxygenated ocean. Such an assertion is mainly based on consistent projections of increased near‐surface stratification and shallower mixed layers under global warming scenarios. However, while the observed sea surface temperature (SST) is rising at midlatitudes, the concurrent ocean record shows that stratification is not unequivocally increasing nor is MLD shoaling. We find that while SST increases at three study areas at midlatitudes, stratification both increases and decreases, and MLD deepens with enhanced deepening of winter MLDs at rates over 10 m  decade−1. These results rely on the estimation of several MLD and stratification indexes of different complexity on hydrographic profiles from long‐term hydrographic time‐series, ocean reanalysis, and Argo floats. Combining this information with estimated MLDs from buoyancy fluxes and the enhanced deepening/attenuation of the winter MLD trends due to changes in the Ekman pumping, MLD variability involves a subtle interplay between circulation and atmospheric forcing at midlatitudes. Besides, it is highlighted that the density difference between the surface and 200 m, the most widely used stratification index, should not be expected to reliably inform about changes in the vertical extent of mixing. PMID:29201584

  19. The warmer the ocean surface, the shallower the mixed layer. How much of this is true?

    PubMed

    Somavilla, R; González-Pola, C; Fernández-Diaz, J

    2017-09-01

    Ocean surface warming is commonly associated with a more stratified, less productive, and less oxygenated ocean. Such an assertion is mainly based on consistent projections of increased near-surface stratification and shallower mixed layers under global warming scenarios. However, while the observed sea surface temperature (SST) is rising at midlatitudes, the concurrent ocean record shows that stratification is not unequivocally increasing nor is MLD shoaling. We find that while SST increases at three study areas at midlatitudes, stratification both increases and decreases, and MLD deepens with enhanced deepening of winter MLDs at rates over 10 m  decade-1. These results rely on the estimation of several MLD and stratification indexes of different complexity on hydrographic profiles from long-term hydrographic time-series, ocean reanalysis, and Argo floats. Combining this information with estimated MLDs from buoyancy fluxes and the enhanced deepening/attenuation of the winter MLD trends due to changes in the Ekman pumping, MLD variability involves a subtle interplay between circulation and atmospheric forcing at midlatitudes. Besides, it is highlighted that the density difference between the surface and 200 m, the most widely used stratification index, should not be expected to reliably inform about changes in the vertical extent of mixing.

  20. Limnological Conditions in Lake William C. Bowen and Municipal Reservoir #1, Spartanburg County, South Carolina, August to September 2005, May 2006, and October 2006

    USGS Publications Warehouse

    Journey, Celeste A.; Abrahamsen, Thomas A.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Spartanburg Water System, conducted three spatial surveys of the limnological conditions in Lake William C. Bowen (Lake Bowen) and Municipal Reservoir #1 (Reservoir #1), Spartanburg County, South Carolina, during August to September 2005, May 2006, and October 2006. The surveys were conducted to identify spatial distribution and concentrations of geosmin and 2-methylisoborneol, common trophic state indicators (nutrients, transparency, and chlorophyll a), algal community structure, and stratification of the water column at the time of sampling. Screening tools such as the Carlson trophic state index, total nitrogen to total phosphorus ratios, and relative thermal resistance to mixing were used to help compare data among sites and among seasons. Water-column samples were collected at two depths at each selected site: a near-surface sample collected above a 1-meter depth and a lake-bottom sample collected at a depth of 2.5 to 7 meters, depending on the depth at the site. The degree of stratification of the water column was demonstrated by temperature-depth profiles and computed relative thermal resistance to mixing. Seasonal occurrence of thermal stratification (August to September 2005; May 2006) and de-stratification (October 2006) was evident in the depth profiles of water temperature in Lake Bowen. The most stable water-column (highest relative thermal resistance to mixing) conditions occurred in Lake Bowen during the August to September 2005 survey. The least stable water-column (destratified) conditions occurred in Lake Bowen during the October 2006 survey and Reservoir #1 during all three surveys. Changes with depth in dissolved oxygen (decreased with depth to near anoxic conditions in the hypolimnion), pH (decreased with depth), and specific conductance (increased with depth) along with thermal stratification indicated Lake Bowen was exhibiting characteristics common to both mesotrophic and eutrophic conditions. Nutrient dynamics were different in Lake Bowen during the May 2006 survey from those during the August to September 2005 and October 2006 surveys. Total organic nitrogen concentrations (total Kjeldahl nitrogen minus ammonia) remained relatively constant within the surveys and ranged from 0.15 to 0.36 milligram per liter during the period of study. Nitrate was the dominant inorganic species of nitrogen during May 2006. Ammonia was the dominant species during the August to September 2005 and October 2006 surveys. During the August and September 2005 survey, ammonia was detected only in bottom samples collected in the near anoxic hypolimnion, but during the October 2006 survey, ammonia was detected under destratified conditions in surface and bottom samples. In Lake Bowen, total phosphorus concentrations in bottom samples did not exhibit the dramatic, high values during the May 2006 and October 2006 surveys (0.009 to 0.014 milligram per liter) that were identified for the August to September 2005 survey (0.022 to 0.034 milligram per liter). Chlorophyll a concentrations appeared to vary with the species of inorganic nitrogen. Greater chlorophyll a concentrations were identified in samples from the May 2006 survey (6.8 to 15 micrograms per liter) than in the August to September 2005 (1.2 to 6.4 micrograms per liter) and October surveys (5.6 to 8.2 micrograms per liter) at all sites in Lake Bowen and Reservoir #1. For the three limnological surveys, surface concentrations of chlorophyll a and total phosphorus were well below established numerical criteria for South Carolina. In general, the computed trophic state indices indicated that mesotrophic conditions were present in Lake Bowen and Reservoir #1. The total nitrogen to total phosphorus ratios in Lake Bowen and Reservoir #1 were below 22:1 for the August to September 2005 survey, indicating a high probability of dominance by nitrogen-fixing cyanobacteria. Ratios during the May and October 2006 surveys at

  1. A Metagenomics Transect into the Deepest Point of the Baltic Sea Reveals Clear Stratification of Microbial Functional Capacities

    PubMed Central

    Poole, Anthony M.; Sjöberg, Britt-Marie; Sjöling, Sara

    2013-01-01

    The Baltic Sea is characterized by hyposaline surface waters, hypoxic and anoxic deep waters and sediments. These conditions, which in turn lead to a steep oxygen gradient, are particularly evident at Landsort Deep in the Baltic Proper. Given these substantial differences in environmental parameters at Landsort Deep, we performed a metagenomic census spanning surface to sediment to establish whether the microbial communities at this site are as stratified as the physical environment. We report strong stratification across a depth transect for both functional capacity and taxonomic affiliation, with functional capacity corresponding most closely to key environmental parameters of oxygen, salinity and temperature. We report similarities in functional capacity between the hypoxic community and hadal zone communities, underscoring the substantial degree of eutrophication in the Baltic Proper. Reconstruction of the nitrogen cycle at Landsort deep shows potential for syntrophy between archaeal ammonium oxidizers and bacterial denitrification at anoxic depths, while anaerobic ammonium oxidation genes are absent, despite substantial ammonium levels below the chemocline. Our census also reveals enrichment in genetic prerequisites for a copiotrophic lifestyle and resistance mechanisms reflecting adaptation to prevalent eutrophic conditions and the accumulation of environmental pollutants resulting from ongoing anthropogenic pressures in the Baltic Sea. PMID:24086414

  2. Near-Inertial Surface Currents and their influence on Surface Dispersion in the Northeastern Gulf of Mexico near the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Gough, M.; Reniers, A.; MacMahan, J. H.; Howden, S. D.

    2014-12-01

    The continental shelf along the northeastern Gulf of Mexico is transected by the critical latitude (30°N) for inertial motions. At this latitude the inertial period is 24 hours and diurnal surface current oscillations can amplify due to resonance with diurnal wind and tidal forcing. Tidal amplitudes are relatively small in this region although K1 tidal currents can be strong over the shelf west of the DeSoto Canyon where the K1 tide propagates onshore as a Sverdrup wave. Other sources of diurnal motions include internal tidal currents, Poincaré waves, and basin resonance. It is therefore very difficult to separate inertial wind-driven motions from other diurnal motions. Spatiotemporal surface currents were measured using hourly 6 km resolution HF radar data collected in June 2010 during the Deepwater Horizon oil spill and July 2012 during the Grand Lagrangian Deployment (GLAD). Surface currents were also measured using GLAD GPS-tracked drifters. NDBC buoy wind data were used to determine wind-forcing, and OSU Tidal Inversion Software (OTIS) were used to predict tidal currents. The relative spatiotemporal influence of diurnal wind and tidal forcing on diurnal surface current oscillations is determined through a series of comparative analyses: phase and amplitude of bandpassed timeseries, wavelet analyses, wind-driven inertial oscillation calculations, and tidal current predictions. The wind-driven inertial ocean response is calculated by applying a simple "slab" model where wind-forcing is allowed to excite a layer of low-density water riding over high density water. The spatial variance of diurnal motions are found to be correlated with satellite turbidity imagery indicating that stratification influences the sea surface inertial response to wind-forcing. Surface dispersion is found to be minimized in regions of high diurnal variance suggesting that mean surface transport is restricted in regions of inertial motions associated with stratification.

  3. Effects of warm water inflows on the dispersion of pollutants in small reservoirs.

    PubMed

    Palancar, María C; Aragón, José M; Sánchez, Fernando; Gil, Roberto

    2006-11-01

    The effects of the warm water discharged by a nuclear power plant (NPP) into a small reservoir are studied. A case study is presented (José Cabrera NPP-Zorita Hidráulica Reservoir) with experimental data of the reservoir stratification and predicted data of the dispersion of radioactive pollutants from operative or accidental releases. The vertical and longitudinal temperature profiles, electrical conductivity and transparency of the reservoir water were measured for an annual cycle. The results indicate that the continuous warm water discharge from the NPP causes permanent and artificial reservoir stratification. The stratification is significant within 1500 m upstream and 1000 m downstream from the warm water outfall. The pollutant dispersion has been predicted by using a flow model based on N(T) perfect-mixing compartments in series with feedback. The model parameter, N(T), is calculated from the longitudinal diffusion coefficient. The prediction of pollutant dispersion by means of this model shows that the stratification slows down the vertical mixing in the whole water body, and reduces the reservoir volume that is effective for the dilution and dispersion of pollutants. This means that, in the case of a radioactive pollutant release, the reservoir radioactivity level could increase significantly.

  4. Spatio-temporal variations of carbon dioxide and its gross emission regulated by artificial operation in a typical hydropower reservoir in China.

    PubMed

    Li, Zhe; Zhang, Zengyu; Xiao, Yan; Guo, Jinsong; Wu, Shengjun; Liu, Jing

    2014-05-01

    Supersaturation and excess emission of greenhouse gases in freshwater reservoirs have received a great deal of attention in recent years. Although impoundment of reservoirs has been shown to contribute to the net emission of greenhouse gases, reservoir age, geographical distribution, submerged soil type and artificial regulation also have a great impact on their emissions. To examine how large scale reservoir operation impact the water column CO2 and its air-water interface flux, a field study was conducted in 2010 to evaluate potential ecological processes that regulate the partial pressure of CO2 (pCO2) in the water column in the Pengxi River backwater area (PBA), a typical tributary in the Three Gorges Reservoir, China. Measurements of total alkalinity (TA), pH and water temperature were applied to compute the pCO2. And this approach was also validated by calculation of pCO2 from the dissolved inorganic carbon data of samples. Partial least squares (PLS) regression was used to determine how the dynamics of the water pCO2 were related to the available variables. The estimated pCO2 in our sample ranged from 26 to 4,087 μatm in the surface water. During low water operation from July to early September, there was an obvious pCO2 stratification, and pCO2 in the surface was almost unsaturated. This phenomenon was also observed in the spring bloom during discharge period. Conversely, there was no significant pCO2 stratification and the entire water column was supersaturated during high water operation from November to the following February. Significant correlation was observed between the magnitude of pCO2, DO and chlorophyll a, suggesting that phytoplankton dynamics regulate pCO2 in the PBA. The average areal rate of CO2 emissions from the Pengxi River ranged from 18.06 to 48.09 mmol m(-2) day(-1), with an estimated gross CO2 emission from the water surface of 14-37 t day(-1) in this area in 2010. Photosynthesis and respiration rates by phytoplankton might be the dominant processes that regulated pCO2 in the water column. We conclude that pCO2 values in the surface water of Pengxi River could be regarded as potential sources of CO2 to the atmosphere were smaller or similar to those that have been reported for many other reservoirs to date.

  5. The fluid dynamics of deep-sea mining

    NASA Astrophysics Data System (ADS)

    Peacock, Thomas; Rzeznik, Andrew

    2017-11-01

    With vast mineral deposits on the ocean floor, deep-sea nodule mining operations are expected to commence in the next decade. Among several fundamental fluid dynamics problems, this could involve plans for dewatering plumes to be released into the water column by surface processing vessels. To study this scenario, we consider the effects of non-uniform, realistic stratifications on forced compressible plumes with finite initial size. The classical plume model is developed to take into account the influence of thermal conduction through the dewatering pipe and also compressibility effects, for which a dimensionless number is introduced to determine their importance compared to the background stratification. Among other things, our results show that small-scale features of a realistic stratification can have a large effect on plume dynamics compared to smoothed profiles and that for any given set of environmental parameters there is a discharge flow rate that minimizes the plume vertical extent. Our findings are put in the context of nodule mining plumes for which the rapid and efficient re-sedimentation of waste material has important environmental consequences.

  6. Bivalve grazing can shape phytoplankton communities

    USGS Publications Warehouse

    Lucas, Lisa; Cloern, James E.; Thompson, Janet K.; Stacey, Mark T.; Koseff, Jeffrey K.

    2016-01-01

    The ability of bivalve filter feeders to limit phytoplankton biomass in shallow waters is well-documented, but the role of bivalves in shaping phytoplankton communities is not. The coupled effect of bivalve grazing at the sediment-water interface and sinking of phytoplankton cells to that bottom filtration zone could influence the relative biomass of sinking (diatoms) and non-sinking phytoplankton. Simulations with a pseudo-2D numerical model showed that benthic filter feeding can interact with sinking to alter diatom:non-diatom ratios. Cases with the smallest proportion of diatom biomass were those with the fastest sinking speeds and strongest bivalve grazing rates. Hydrodynamics modulated the coupled sinking-grazing influence on phytoplankton communities. For example, in simulations with persistent stratification, the non-sinking forms accumulated in the surface layer away from bottom grazers while the sinking forms dropped out of the surface layer toward bottom grazers. Tidal-scale stratification also influenced vertical gradients of the two groups in opposite ways. The model was applied to Suisun Bay, a low-salinity habitat of the San Francisco Bay system that was transformed by the introduction of the exotic clam Potamocorbula amurensis. Simulation results for this Bay were similar to (but more muted than) those for generic habitats, indicating that P. amurensis grazing could have caused a disproportionate loss of diatoms after its introduction. Our model simulations suggest bivalve grazing affects both phytoplankton biomass and community composition in shallow waters. We view these results as hypotheses to be tested with experiments and more complex modeling approaches.

  7. Modeling nearshore-offshore exchange in Lake Superior

    PubMed Central

    Tokos, Kathy S.; Matsumoto, Katsumi

    2018-01-01

    Lake Superior′s ecosystem includes distinct nearshore and offshore food webs linked by hydrodynamic processes that transport water and tracers along and across shore. The scales over which these processes occur and their sensitivity to increasing summer surface temperatures are not well understood. This study investigated horizontal mixing between nearshore and offshore areas of Lake Superior over the 10-year period from 2003 to 2012 using a realistically forced three-dimensional numerical model and virtual tracers. An age tracer was used to characterize the time scales of horizontal mixing between nearshore areas of the lake where water depth is less than 100 m and deeper areas. The age of water in nearshore areas increased and decreased in an annual cycle corresponding to the lake′s dimictic cycle of vertical mixing and stratification. Interannual variability of mixing in the isothermal period was significantly correlated to average springtime wind speed, whereas variability during the stratified season was correlated to the average summer surface temperature. Dispersal of a passive tracer released from nine locations around the model lake’s perimeter was more extensive in late summer when stratification was established lakewide than in early summer. The distribution of eddies resolved in the model reflected differences between the early and late summer dispersal patterns. In the eastern part of the lake dispersal was primarily alongshore, reflecting counterclockwise coastal circulation. In the western part of the lake, cross-shore mixing was enhanced by cross-basin currents. PMID:29447286

  8. Spatiotemporal analysis of microbial community dynamics during seasonal stratification events in a freshwater lake (Grand Lake, OK, USA)

    PubMed Central

    Morrison, Jessica M.; Baker, Kristina D.; Zamor, Richard M.; Nikolai, Steve; Elshahed, Mostafa S.

    2017-01-01

    Many freshwater lakes undergo seasonal stratification, where the formation of phototrophic blooms in the epilimnion and subsequent sedimentation induces hypoxia/anoxia in the thermocline and hypolimnion. This autochthonously produced biomass represents a major seasonal organic input that impacts the entire ecosystem. While the limnological aspects of this process are fairly well documented, relatively little is known regarding the microbial community response to such events, especially in the deeper anoxic layers of the water column. Here, we conducted a spatiotemporal survey of the particle-associated and free-living microbial communities in a warm monomictic freshwater reservoir (Grand Lake O’ the Cherokees) in northeastern Oklahoma, USA. Pre-stratification samples (March) harbored a homogeneous community throughout the oxygenated water column dominated by typical oligotrophic aquatic lineages (acl clade within Actinobacteria, and Flavobacterium within the Bacteroidetes). The onset of phototrophic blooming in June induced the progression of this baseline community into two distinct trajectories. Within the oxic epilimnion, samples were characterized by the propagation of phototrophic (Prochlorococcus), and heterotrophic (Planctomycetes, Verrucomicrobia, and Beta-Proteobacteria) lineages. Within the oxygen-deficient thermocline and hypolimnion, the sedimentation of surface biomass induced the development of a highly diverse community, with the enrichment of Chloroflexi, “Latescibacteria”, Armatimonadetes, and Delta-Proteobacteria in the particle-associated fraction, and Gemmatimonadetes and “Omnitrophica” in the free-living fraction. Our work documents the development of multiple spatially and temporally distinct niches during lake stratification, and supports the enrichment of multiple yet-uncultured and poorly characterized lineages in the lake’s deeper oxygen-deficient layers, an ecologically relevant microbial niche that is often overlooked in lakes diversity surveys. PMID:28493994

  9. Low planktic foraminiferal diversity and abundance observed in a spring 2013 west-east Mediterranean Sea plankton tow transect

    NASA Astrophysics Data System (ADS)

    Mallo, Miguel; Ziveri, Patrizia; Mortyn, P. Graham; Schiebel, Ralf; Grelaud, Michael

    2017-05-01

    Planktic foraminifera were collected with 150 µm BONGO nets from the upper 200 m water depth at 20 stations across the Mediterranean Sea between 2 May and 2 June 2013. The main aim is to characterize the species distribution and test the covariance between foraminiferal area density (ρA) and seawater carbonate chemistry in a biogeochemical gradient including ultraoligotrophic conditions. Average foraminifera abundances are 1.42 ± 1.43 ind. 10 m-3 (ranging from 0.11 to 5.20 ind. 10 m-3), including 12 morphospecies. Large differences in species assemblages and total abundances are observed between the different Mediterranean sub-basins, with an overall dominance of spinose, symbiont-bearing species indicating oligotrophic conditions. The highest values in absolute abundance are found in the Strait of Gibraltar and the Alboran Sea. The western basin is dominated by Globorotalia inflata and Globigerina bulloides at slightly lower standing stocks than in the eastern basin. In contrast, the planktic foraminiferal assemblage in the warmer, saltier, and more nutrient-limited eastern basin is dominated by Globigerinoides ruber (white). These new results, when combined with previous findings, suggest that temperature-induced surface water stratification and food availability are the main factors controlling foraminiferal distribution. In the oligotrophic and highly alkaline and supersaturated with respect to calcite and aragonite Mediterranean surface water, standing stocks and ρA of G. ruber (white) and G. bulloides are affected by both food availability and seawater carbonate chemistry. Rapid warming increased surface ocean stratification impacting food availability and changes in trophic conditions could be the causes of reduced foraminiferal abundance, diversity, and species-specific changes in planktic foraminiferal calcification.

  10. Interaction between the tidal and seasonal variability of the Gulf of Maine and Scotian Shelf region

    NASA Astrophysics Data System (ADS)

    Katavouta, Anna; Thompson, Keith; Lu, Youyu; Loder, John

    2017-04-01

    In the Gulf of Maine and Scotian Shelf (off the northeastern coast of North America) tides are large and can alter the local hydrographic properties, circulation, and sea surface height through processes such as tidal rectification, mixing, and horizontal advection. Furthermore, the stratification of the water column can influence tidal elevation and currents over the shelves (e.g., baroclinic tides). To investigate this interaction, a newly developed high resolution (1/36 degree) regional circulation model is used (GoMSS model). First, numerical experiments with and without density stratification are used to demonstrate the influence of stratification on the tides. GoMSS model is then used to interpret the physical mechanisms responsible for the largest seasonal variations in the M2 surface current which occur over, and to the north of, Georges Bank. An alternating pattern of highs and lows in the summer maximum M2 surface speed in the Gulf of Maine is identified, for the first time, in both the model output and observations by a high frequency coastal radar system. This pattern consists of extended striations in tidal speed aligned with the northern flank of Georges Bank that separates the Gulf of Maine from the North Atlantic. The striations are explained in terms of a linear superposition of the barotropic tide flowing across the northern flank of Georges Bank and the reflected, phase-locked baroclinic tide. The striations have amplitudes of about 0.1 m/s and longitudinal length scales of order 100 km, and are thus of practical significance.

  11. Impacts of extreme weather events on highly eutrophic marine ecosystem (Rogoznica Lake, Adriatic coast)

    NASA Astrophysics Data System (ADS)

    Ciglenečki, I.; Janeković, I.; Marguš, M.; Bura-Nakić, E.; Carić, M.; Ljubešić, Z.; Batistić, M.; Hrustić, E.; Dupčić, I.; Garić, R.

    2015-10-01

    Rogoznica Lake is highly eutrophic marine system located on the Eastern Adriatic coast (43°32‧N, 15°58‧E). Because of the relatively small size (10,276 m2) and depth (15 m) it experiences strong natural and indirect anthropogenic influences. Dynamics within the lake is characterized by the extreme and highly variable environmental conditions (seasonal variations in salinity and temperature, water stratification and mixing, redox and euxinic conditions, concentrations of nutrients) which significantly influence the biology inside the lake. Due to the high phytoplankton activity, the upper part of the water column is well oxygenated, while hypoxia/anoxia usually occurs in the bottom layers. Anoxic part of the water column is characterized with high concentrations of sulfide (up to 5 mM) and nutrients (NH4+ up to 315 μM; PO43- up to 53 μM; SiO44- up to 680 μM) indicating the pronounced remineralization of the allochthonous organic matter, produced in the surface waters. The mixolimnion varies significantly within a season feeling effects of the Adriatic atmospheric and ocean dynamics (temperature, wind, heat fluxes, rainfall) which all affect the vertical stability and possibly induce vertical mixing and/or turnover. Seasonal vertical mixing usually occurs during the autumn/winter upon the breakdown of the stratification, injecting oxygen-rich water from the surface into the deeper layers. Depending on the intensity and duration of the vertical dynamics (slower diffusion and/or faster turnover of the water layers) anoxic conditions could developed within the whole water column. Extreme weather events such as abrupt change in the air temperature accompanied with a strong wind and consequently heat flux are found to be a key triggering mechanism for the fast turnover, introducing a large amount of nutrients and sulfur species from deeper parts to the surface. Increased concentration of nutrients, especially ammonium, phosphate, and silicates persisting for several months after the mixing event, together with anoxic stress conditions, additionally influence already stressed ecosystem, hence shifting the community structure and food/web interactions in this marine system.

  12. Methane Emissions from Small Lakes: Dynamics and Distribution Patterns

    NASA Astrophysics Data System (ADS)

    Encinas Fernández, J. M.; Peeters, F.; Hofmann, H.

    2014-12-01

    The dynamics of dissolved methane were measured during three years in five small lakes with different surface areas and maximum water depth. We analyze and compare the horizontal and vertical distribution of dissolved methane within these lakes during different time periods: the stratified period in summer, the autumn overturn, the winter mixing period, and the period from spring to summer stratification. The horizontal distributions of dissolved methane within the lakes suggest that the relation between surface area and maximum water-depth is a key factor determining the heterogeneity of methane concentrations in the surface water. During most of the year littoral zones are the main source of the methane that is emitted to the atmosphere except for the overturn periods. The vertical distributions of temperature and dissolved oxygen within the different seasons affect the vertical distribution of dissolved methane and thus the methane budget within lakes. Anoxic conditions in the hypolimnion and the intense mixing during overturn periods are key factors for the overall annual methane emissions from lakes.

  13. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity.

    PubMed

    Soetaert, Karline; Mohn, Christian; Rengstorf, Anna; Grehan, Anthony; van Oevelen, Dick

    2016-10-11

    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This 'topographically-enhanced carbon pump' leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs.

  14. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity

    NASA Astrophysics Data System (ADS)

    Soetaert, Karline; Mohn, Christian; Rengstorf, Anna; Grehan, Anthony; van Oevelen, Dick

    2016-10-01

    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This ’topographically-enhanced carbon pump’ leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs.

  15. Salt tracer experiments in wetland ponds: will density stratification spoil the outcome?

    NASA Astrophysics Data System (ADS)

    Schmid, Bernhard H.; Hengl, Michael A.

    2017-04-01

    Wetland ponds are among the treatment options for peatland flows prior to their discharge into a receiving ambient water course or water body. The removal efficiency and effectiveness of wetland ponds (free water surface or FWS wetlands) is considered to be strongly related to the residence time or travel time distribution in the pond, with a narrow distribution (close to plug flow) being preferable to a wider one. This travel time distribution is, in turn, reflected by a breakthrough curve of an ideal tracer injected instantaneously into the flow (entering the wetland). As the term 'ideal tracer' suggests, such a substance, in real world cases, does not exist and can, at best, be approximated by a real tracer. Among the tracer groups in most widespread use, salt has the advantage of low cost, straightforward detection and analysis as well as low related environmental risk. In contrast, use of radioactive artificial tracers may meet with resistance from authorities and public, and fluorescent dyes are not necessarily devoid of problems, either (as recently discovered, there are two structural isomers of Rhodamin WT, the mixture of which may compromise the validity of breakthrough data analyses). From previous work by the authors it is known that density stratification may result from the injection of a salt tracer into a low Reynolds number free surface flow, which is a frequent characteristic of wetland ponds. As the formation of density layers in the course of a tracer experiment is highly undesirable, it may be useful to judge prior to beginning of the field work, if stratification is to be expected (and the experimental design should, consequently, be adapted suitably). The current work reported here employs an energy argument to extend existing criteria for density stratification in turbulent free surface flows. Vertical mixing is assumed to be sustained by a fraction of the frictional energy loss (expressed by Manning's law, but this can easily be adapted to other friction laws such as Darcy-Weisbach's). Experimental data obtained by the authors in the course of the PRIMROSE project (Contract no. EVK1-CT-2000-00065) were used to calibrate the criterion with respect to the actual percentage of the friction loss that fuels the vertical mixing. The distance x (m) needed for (full) vertical mixing of the salt tracer (NaCl or KBr) is finally derived as: C0 ṡ(0.802- 0.002ṡTw) ṡh R4h/3 x =----0.0694-ṡρw----ṡ(n-ṡu)2 (1) with C = -M0-- 0 Q ṡΔt0 (2) and M0 the tracer mass (g), Q the flow rate (m3/s), Δt0 the injection pulse duration (s), Rh (m) the hydraulic radius (= flow cross-sectional area divided by wetted perimeter), Tw the water temperature (˚ C), ρw water mass density (g/m3), Manning's n in SI-units (s/m1/3) and cross-sectionally averaged flow velocity u (m/s). Tracer concentration C0, as obtained from Eq.(2), is to be expressed in mg/l or g/m3 for use in Eq.(1).

  16. Lidar Observation of Aerosol and Temperature Stratification over Urban Area During the Formation of a Stable Atmospheric PBL

    NASA Technical Reports Server (NTRS)

    Kolev, I.; Parvanov, O.; Kaprielov, B.; Mitev, V.; Simeonov, V.; Grigorov, I.

    1992-01-01

    In recent years, the processes in the atmospheric planetary boundary layer (PBL) over urban areas were intensely investigated, due to ecological problems related to the air, soil, and water pollution. New pollution sources in new residential districts, when in contradiction to the microclimate and topography requirements of that region, create a number of considerable hazards and problems. The present study is a continuation of our preceding investigations and aims at revealing the aerosol structure and stratification during the transition after sunset as measured by two lidars. Such observation of the nocturnal, stable PBL formation over an urban area in Bulgaria has not been reported before. The lidars' high time and spatial resolutions allow the changes of the internal structure of the PBL's part located above the surface layer to be observed.

  17. Annual subsurface transport of a red tide dinoflagellate to its bloom area: Water circulation patterns and organism distributions in the Chesapeake Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, M.A.; Seliger, H.H.

    1978-03-01

    An annual, long range, subsurface transport of Prorocentrum mariae-lebouriae, from the mouth of the Chesapeake Bay to its bloom area in the upper bay, a distance of 240 km, is described and completely documented. Prorocentrum in surface outflowing waters at the mouth of the bay is recruited in late winter into more dense inflowing coastal waters. Strong stratification produced by late winter--early spring surface runoff results in the development of a stable pycnocline. Prorocentrum, now in northward-flowing bottom waters, is retained in these bottom waters. It accumulates in a subsurface concentration maximum below the pycnocline and is transported northward tomore » reach its bloom area in the Patapsco River and north of the Bay Bridge by late spring. The rapidly decreasing depth of the upper bay causes the pycnocline to rise, mixing the previously light-limited Prorocentrum and its nutrient-rich bottom waters to the surface, where rapid growth ensues. Once the dinoflagellate is in surface waters, positive phototaxis, combined with both wind- and tide-driven surface convergences, produce dense surface patches or red tides. Prorocentrum is effectively retained in the bay until late winter by sequential inoculation into the tributary estuaries on the western shore, which exchange relatively slowly with bay waters. By late winter the annual cycle is complete. Prorocentrum is again in surface waters at the mouth of the bay where it is reintroduced into northward-flowing bottom waters. The mechanisms described provide a key to understanding the origins of subsurface chlorophyll maxima and the delivery of toxic dinoflagellates to coastal bloom areas.« less

  18. Pan-Arctic distributions of continental runoff in the Arctic Ocean.

    PubMed

    Fichot, Cédric G; Kaiser, Karl; Hooker, Stanford B; Amon, Rainer M W; Babin, Marcel; Bélanger, Simon; Walker, Sally A; Benner, Ronald

    2013-01-01

    Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region.

  19. Relationship between wind, waves and radar backscatter

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.; Ataktuerk, Serhad S.

    1991-01-01

    The aim of the research was to investigate the relationship between wind, waves, and radar backscatter from water surface. To this end, three field experiments with periods of 2 to 4 weeks were carried out during summer months in 1988, 1989 and 1990. For these periods, the University of Washington group provided (1) environmental parameters such as wind speed, wind stress, and atmospheric stratification through measurements of surface fluxes (of momentum, sensible heat and latent heat) and of air and water temperatures; and (2) wave height spectra including both the dominant waves and the short gravity-capillary waves. Surface flux measurements were performed by using our well tested instruments: a K-Gill twin propeller-vane anemometer and a fast response thermocouple psychrometer. Wave heights were measured by a resistance wire wave gauge. The University of Kansas group was responsible for the operation of the microwave radars.

  20. Upper-mantle water stratification inferred from observations of the 2012 Indian Ocean earthquake.

    PubMed

    Masuti, Sagar; Barbot, Sylvain D; Karato, Shun-Ichiro; Feng, Lujia; Banerjee, Paramesh

    2016-10-20

    Water, the most abundant volatile in Earth's interior, preserves the young surface of our planet by catalysing mantle convection, lubricating plate tectonics and feeding arc volcanism. Since planetary accretion, water has been exchanged between the hydrosphere and the geosphere, but its depth distribution in the mantle remains elusive. Water drastically reduces the strength of olivine and this effect can be exploited to estimate the water content of olivine from the mechanical response of the asthenosphere to stress perturbations such as the ones following large earthquakes. Here, we exploit the sensitivity to water of the strength of olivine, the weakest and most abundant mineral in the upper mantle, and observations of the exceptionally large (moment magnitude 8.6) 2012 Indian Ocean earthquake to constrain the stratification of water content in the upper mantle. Taking into account a wide range of temperature conditions and the transient creep of olivine, we explain the transient deformation in the aftermath of the earthquake that was recorded by continuous geodetic stations along Sumatra as the result of water- and stress-activated creep of olivine. This implies a minimum water content of about 0.01 per cent by weight-or 1,600 H atoms per million Si atoms-in the asthenosphere (the part of the upper mantle below the lithosphere). The earthquake ruptured conjugate faults down to great depths, compatible with dry olivine in the oceanic lithosphere. We attribute the steep rheological contrast to dehydration across the lithosphere-asthenosphere boundary, presumably by buoyant melt migration to form the oceanic crust.

  1. On summer stratification and tidal mixing in the Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Zhu, Jia; Hu, Jianyu; Liu, Zhiyu

    2013-06-01

    On continental shelves, a front that separates the sea into well-mixed and stratified zones is usually formed in warm seasons due to spatial variations of tidal mixing. In this paper, using eight years of in situ hydrographic observations, satellite images of sea surface temperature (SST) and chlorophyll- a (Chl- a) concentration, and results of a tidal model, we investigate summer stratification in the Taiwan Strait and its dependence on tidal mixing, upwelling, and river diluted water plumes. In most regions of the strait the dominant role of tidal mixing in determining the thermohaline structure is confirmed by the correlation between the two; there are some regions, however, where thermohaline structure varies in different ways owing to significant influences of upwelling and river diluted water plumes. The well-mixed regions are mainly distributed on the Taiwan Bank and in the offshore regions off the Dongshan Island, Nanao Island, and Pingtan Island, while the northern and central Taiwan Strait and the region south of the Taiwan Bank are stratified. The critical Simpson-Hunter parameter for the region is estimated to be 1.78.

  2. Ground water stratification and delivery of nitrate to an incised stream under varying flow conditions.

    PubMed

    Böhlke, J K; O'Connell, Michael E; Prestegaard, Karen L

    2007-01-01

    Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr(-1)) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds.

  3. Ground water stratification and delivery of nitrate to an incised stream under varying flow conditions

    USGS Publications Warehouse

    Böhlke, J.K.; O'Connell, M. E.; Prestegaard, K.L.

    2007-01-01

    Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr-1) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds. ?? ASA, CSSA, SSSA.

  4. Effects of the Relaxation of Upwelling-Favorable Winds on the Diurnal and Semidiurnal Water Temperature Fluctuations in the Santa Barbara Channel, California

    NASA Astrophysics Data System (ADS)

    Aristizábal, María. F.; Fewings, Melanie R.; Washburn, Libe

    2017-10-01

    In the Santa Barbara Channel, California, and around the Northern Channel Islands, water temperature fluctuations in the diurnal and semidiurnal frequency bands are intermittent, with amplitudes that vary on time scales of days to weeks. The cause of this intermittency is not well understood. We studied the effects of the barotropic tide, vertical stratification, propagation of coastal-trapped waves, regional wind relaxations, and diurnal-band winds on the intermittency of the temperature fluctuations during 1992-2015. We used temperature data from 43 moorings in 10-200 m water depth and wind data from two buoys and one land station. Subtidal-frequency changes in vertical stratification explain 20-40% of the intermittency in diurnal and semidiurnal temperature fluctuations at time scales of days to weeks. Along the mainland north of Point Conception and at the Northern Channel Islands, the relaxation of upwelling-favorable winds substantially increases vertical stratification, accounting for up to 55% of the subtidal-frequency variability in stratification. As a result of the enhanced stratification, wind relaxations enhance the diurnal and semidiurnal temperature fluctuations at those sites, even though the diurnal-band wind forcing decreases during wind relaxation. A linear model where the background stratification is advected vertically explains a substantial fraction of the temperature fluctuations at most sites. The increase of vertical stratification and subsequent increase in diurnal and semidiurnal temperature fluctuations during wind relaxation is a mechanism that can supply nutrients to the euphotic zone and kelp forests in the Channel in summer when upwelling is weak.

  5. Air-water CO2 and CH4 fluxes along a river-reservoir continuum: Case study in the Pengxi River, a tributary of the Yangtze River in the Three Gorges Reservoir, China.

    PubMed

    Huang, Yang; Yasarer, Lindsey M W; Li, Zhe; Sturm, Belinda S M; Zhang, Zengyu; Guo, Jinsong; Shen, Yu

    2017-05-01

    Water surface greenhouse gas (GHG) emissions in freshwater reservoirs are closely related to limnological processes in the water column. Affected by both reservoir operation and seasonal changes, variations in the hydro-morphological conditions in the river-reservoir continuum will create distinctive patterns in water surface GHG emissions. A one-year field survey was carried out in the Pengxi River-reservoir continuum, a part of the Three Gorges Reservoir (TGR) immediately after the TGR reached its maximum water level. The annual average water surface CO 2 and CH 4 emissions at the riverine background sampling sites were 6.23 ± 0.93 and 0.025 ± 0.006 mmol h -1  m -2 , respectively. The CO 2 emissions were higher than those in the downstream reservoirs. The development of phytoplankton controlled the downstream decrease in water surface CO 2 emissions. The presence of thermal stratification in the permanent backwater area supported extensive phytoplankton blooms, resulting in a carbon sink during several months of the year. The CH 4 emissions were mainly impacted by water temperature and dissolved organic carbon. The greatest water surface CH 4 emission was detected in the fluctuating backwater area, likely due to a shallower water column and abundant organic matter. The Pengxi River backwater area did not show significant increase in water surface GHG emissions reported in tropical reservoirs. In evaluating the net GHG emissions by the impoundment of TGR, the net change in the carbon budget and the contribution of nitrogen and phosphorus should be taken into consideration in this eutrophic river-reservoir continuum.

  6. An Isopycnal Box Model with predictive deep-ocean structure for biogeochemical cycling applications

    NASA Astrophysics Data System (ADS)

    Goodwin, Philip

    2012-07-01

    To simulate global ocean biogeochemical tracer budgets a model must accurately determine both the volume and surface origins of each water-mass. Water-mass volumes are dynamically linked to the ocean circulation in General Circulation Models, but at the cost of high computational load. In computationally efficient Box Models the water-mass volumes are simply prescribed and do not vary when the circulation transport rates or water mass densities are perturbed. A new computationally efficient Isopycnal Box Model is presented in which the sub-surface box volumes are internally calculated from the prescribed circulation using a diffusive conceptual model of the thermocline, in which upwelling of cold dense water is balanced by a downward diffusion of heat. The volumes of the sub-surface boxes are set so that the density stratification satisfies an assumed link between diapycnal diffusivity, κd, and buoyancy frequency, N: κd = c/(Nα), where c and α are user prescribed parameters. In contrast to conventional Box Models, the volumes of the sub-surface ocean boxes in the Isopycnal Box Model are dynamically linked to circulation, and automatically respond to circulation perturbations. This dynamical link allows an important facet of ocean biogeochemical cycling to be simulated in a highly computationally efficient model framework.

  7. Effect of Stratification on Surface Properties of Corneal Epithelial Cells

    PubMed Central

    Yáñez-Soto, Bernardo; Leonard, Brian C.; Raghunathan, Vijay Krishna; Abbott, Nicholas L.; Murphy, Christopher J.

    2015-01-01

    Purpose The purpose of this study was to determine the influence of mucin expression in an immortalized human corneal epithelial cell line (hTCEpi) on the surface properties of cells, such as wettability, contact angle, and surface heterogeneity. Methods hTCEpi cells were cultured to confluence in serum-free medium. The medium was then replaced by stratification medium to induce mucin biosynthesis. The mucin expression profile was analyzed using quantitative PCR and Western blotting. Contact angles were measured using a two-immiscible liquid method, and contact angle hysteresis was evaluated by tilting the apparatus and recording advancing and receding contact angles. The spatial distribution of mucins was evaluated with fluorescently labeled lectin. Results hTCEpi cells expressed the three main ocular mucins (MUC1, MUC4, and MUC16) with a maximum between days 1 and 3 of the stratification process. Upon stratification, cells caused a very significant increase in contact angle hysteresis, suggesting the development of spatially discrete and heterogeneously distributed surface features, defined by topography and/or chemical functionality. Although atomic force microscopy measurements showed no formation of appreciable topographic features on the surface of the cells, we observed a significant increase in surface chemical heterogeneity. Conclusions The surface chemical heterogeneity of the corneal epithelium may influence the dynamic behavior of tear film by “pinning” the contact line between the cellular surface and aqueous tear film. Engineering the surface properties of corneal epithelium could potentially lead to novel treatments in dry eye disease. PMID:26747762

  8. Removal of iron and manganese by artificial destratification in a tropical climate (Upper Layang Reservoir, Malaysia).

    PubMed

    Ismail, R; Kassim, M A; Inman, M; Baharim, N H; Azman, S

    2002-01-01

    Environmental monitoring was carried out at Upper Layang Reservoir situated in Masai, Johor, Malaysia. The study shows that thermal stratification and natural mixing of the water column do exist in the reservoir and the level of stratification varies at different times of the year. Artificial destratification via diffused air aeration techniques was employed at the reservoir for two months. The results show that thermal stratification was eliminated after a week of continuous aeration. The concentrations of iron and to a lesser extent manganese in the water column was also reduced during the aeration period.

  9. Boiling water scarification plus stratification improves germination of Iliamna rivularis (Malvaceae) seeds

    Treesearch

    Katri Himanen; Markku Nygren; R. Kasten Dumroese

    2012-01-01

    Scarification with boiling water plus stratification was most effective in improving germination of Iliamna rivularis (Douglas ex Hook.) Greene (Malvaceae) in an experiment that compared 3 treatments. Seeds from 15 sites representing 5 western US states were used in the experiment. Initial response of the seedlots to the treatments was similar, apart from one seedlot....

  10. Water quality, hydrology, and invertebrate communities of three remnant wetlands in Missouri, 1995-97

    USGS Publications Warehouse

    Heimann, David C.; Femmer, Suzanne R.

    1998-01-01

    This report presents the results of a study conducted by the U.S. Geological Survey in cooperation with the Missouri Department of Natural Resources from December 1995 through May 1997 to describe the water quality, hydrologic, and invertebrate characteristics of three remnant wetlands. These data may be used to help develop selected water-quality standards for wetlands in Missouri. Wetlands monitored in this study include Spile Lake, Vernon County; Little Bean Marsh, Platte County; and Forker Oxbow, Linn County, Missouri. Extremes in physicochemical properties in these wetlands were greatly affected by thermal stratification, hydrologic fluctuations, biological activity, and ice formation. The wetlands had dissolved-oxygen concentrations below the 5-milligrams-per-liter State water-quality standard from 40 to 60 percent of a selected 1-year period, corresponding to periods of thermal stratification. Hydrologic fluctuations were common as the water-surface elevation changes in these systems ranged up to 12 feet during the course of the study. Photosynthesis and respiration are likely causes of diurnal fluctuations in pH and dissolved oxygen throughout the study period, but particularly in the summer months. Periods of ice formation were short lived in the wetlands, but corresponded with maximum values of specific conductance and dissolved oxygen in all three systems. Analyses of invertebrate results using the Jaccard Coefficient of Community Similarity indicated mixed results. Woody snag sample results showed little similarities between sites, while sweep net sample results indicated similarities existed. Most of the families detected at these sites are considered organic tolerant as indicated by the Hilsenhoff Biotic Index. Analysis of the dominant taxon indicates that one or two invertebrate families that are tolerant to organic enrichment generally dominate the wetlands. The hydrologic, water quality, and invertebrate information analyzed in this study indicate that while there are similarities among wetlands, these are unique systems. The statistical comparisons between water-quality constituents in wetlands and streams indicate dissimilarities are common. Including the presence of thermal stratification in these wetlands, the exclusions and modifications in State standards that are applied to lakes and reservoirs also may be applicable.

  11. The influence of atmospheric stratification on scatterometer data

    NASA Technical Reports Server (NTRS)

    Louis, Jean-Francois; Hoffman, Ross N.

    1989-01-01

    The effects of atmospheric stratification and the stability of the atmospheric stratification on the scatterometer data measuring surface winds over the ocean were investigated using the boundary layer model developed by Louis (1979). A variational analysis method is proposed, which allows direct assimilation of scatterometer data. It is shown that the effect of the stability of atmospheric stratification on the wind increment is relatively small. However, it is a systematic effect, and neglecting it would consistently underestimate the winds in stable regions.

  12. Storm-driven Mixing and Potential Impact on the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Yang, Jiayan; Comiso, Josefino; Walsh, David; Krishfield, Richard; Honjo, Susumu; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Observations of the ocean, atmosphere, and ice made by Ice-Ocean Environmental Buoys (IOEBs) indicate that mixing events reaching the depth of the halocline have occurred in various regions in the Arctic Ocean. Our analysis suggests that these mixing events were mechanically forced by intense storms moving across the buoy sites. In this study, we analyzed these mixing events in the context of storm developments that occurred in the Beaufort Sea and in the general area just north of Fram Strait, two areas with quite different hydrographic structures. The Beaufort Sea is strongly influenced by inflow of Pacific water through Bering Strait, while the area north of Fram Strait is directly affected by the inflow of warm and salty North Atlantic water. Our analyses of the basin-wide evolution of the surface pressure and geostrophic wind fields indicate that the characteristics of the storms could be very different. The buoy-observed mixing occurred only in the spring and winter seasons when the stratification was relatively weak. This indicates the importance of stratification, although the mixing itself was mechanically driven. We also analyze the distribution of storms, both the long-term climatology as well as the patterns for each year in the last two decades. The frequency of storms is also shown to be correlated- (but not strongly) to Arctic Oscillation indices. This study indicates that the formation of new ice that leads to brine rejection is unlikely the mechanism that results in the type of mixing that could overturn the halocline. On the other hand, synoptic-scale storms can force mixing deep enough to the halocline and thermocline layer. Despite a very stable stratification associated with the Arctic halocline, the warm subsurface thermocline water is not always insulated from the mixed layer.

  13. The influence of topographic and dynamic cyclic variables on the distribution of small cetaceans in a shallow coastal system.

    PubMed

    de Boer, Marijke N; Simmonds, Mark P; Reijnders, Peter J H; Aarts, Geert

    2014-01-01

    The influence of topographic and temporal variables on cetacean distribution at a fine-scale is still poorly understood. To study the spatial and temporal distribution of harbour porpoise Phocoena phocoena and the poorly known Risso's dolphin Grampus griseus we carried out land-based observations from Bardsey Island (Wales, UK) in summer (2001-2007). Using Kernel analysis and Generalized Additive Models it was shown that porpoises and Risso's appeared to be linked to topographic and dynamic cyclic variables with both species using different core areas (dolphins to the West and porpoises to the East off Bardsey). Depth, slope and aspect and a low variation in current speed (for Risso's) were important in explaining the patchy distributions for both species. The prime temporal conditions in these shallow coastal systems were related to the tidal cycle (Low Water Slack and the flood phase), lunar cycle (a few days following the neap tidal phase), diel cycle (afternoons) and seasonal cycle (peaking in August) but differed between species on a temporary but predictable basis. The measure of tidal stratification was shown to be important. Coastal waters generally show a stronger stratification particularly during neap tides upon which the phytoplankton biomass at the surface rises reaching its maximum about 2-3 days after neap tide. It appeared that porpoises occurred in those areas where stratification is maximised and Risso's preferred more mixed waters. This fine-scale study provided a temporal insight into spatial distribution of two species that single studies conducted over broader scales (tens or hundreds of kilometers) do not achieve. Understanding which topographic and cyclic variables drive the patchy distribution of porpoises and Risso's in a Headland/Island system may form the initial basis for identifying potentially critical habitats for these species.

  14. Effects of Geostrophic Kinetic Energy on the Distribution of Mesopelagic Fish Larvae in the Southern Gulf of California in Summer/Fall Stratified Seasons.

    PubMed

    Contreras-Catala, Fernando; Sánchez-Velasco, Laura; Beier, Emilio; Godínez, Victor M; Barton, Eric D; Santamaría-Del-Angel, Eduardo

    2016-01-01

    Effects of geostrophic kinetic energy flux on the three-dimensional distribution of fish larvae of mesopelagic species (Vinciguerria lucetia, Diogenichthys laternatus, Benthosema panamense and Triphoturus mexicanus) in the southern Gulf of California during summer and fall seasons of stronger stratification were analyzed. The greatest larval abundance was found at sampling stations in geostrophic kinetic energy-poor areas (<7.5 J/m3), where the distribution of the dominant species tended to be stratified. Larvae of V. lucetia (average abundance of 318 larvae/10m2) and B. panamense (174 larvae/10m2) were mostly located in and above the pycnocline (typically ~ 40 m depth). In contrast, larvae of D. laternatus (60 larvae/10m2) were mainly located in and below the pycnocline. On the other hand, in sampling stations from geostrophic kinetic energy-rich areas (> 21 J/m3), where mesoscale eddies were present, the larvae of the dominant species had low abundance and were spread more evenly through the water column, in spite of the water column stratification. For example, in a cyclonic eddy, V. lucetia larvae (34 larvae/10m2) extended their distribution to, at least, the limit of sampling 200 m depth below the pycnocline, while D. laternatus larvae (29 larvae/10m2) were found right up to the surface, both probably as a consequence mixing and secondary circulation in the eddy. Results showed that the level of the geostrophic kinetic energy flux affects the abundance and the three-dimensional distribution of mesopelagic fish larvae during the seasons of stronger stratification, indicating that areas with low geostrophic kinetic energy may be advantageous for feeding and development of mesopelagic fish larvae because of greater water column stability.

  15. Effects of Geostrophic Kinetic Energy on the Distribution of Mesopelagic Fish Larvae in the Southern Gulf of California in Summer/Fall Stratified Seasons

    PubMed Central

    Contreras-Catala, Fernando; Beier, Emilio; Godínez, Victor M.; Barton, Eric D.; Santamaría-del-Angel, Eduardo

    2016-01-01

    Effects of geostrophic kinetic energy flux on the three-dimensional distribution of fish larvae of mesopelagic species (Vinciguerria lucetia, Diogenichthys laternatus, Benthosema panamense and Triphoturus mexicanus) in the southern Gulf of California during summer and fall seasons of stronger stratification were analyzed. The greatest larval abundance was found at sampling stations in geostrophic kinetic energy-poor areas (<7.5 J/m3), where the distribution of the dominant species tended to be stratified. Larvae of V. lucetia (average abundance of 318 larvae/10m2) and B. panamense (174 larvae/10m2) were mostly located in and above the pycnocline (typically ~ 40 m depth). In contrast, larvae of D. laternatus (60 larvae/10m2) were mainly located in and below the pycnocline. On the other hand, in sampling stations from geostrophic kinetic energy-rich areas (> 21 J/m3), where mesoscale eddies were present, the larvae of the dominant species had low abundance and were spread more evenly through the water column, in spite of the water column stratification. For example, in a cyclonic eddy, V. lucetia larvae (34 larvae/10m2) extended their distribution to, at least, the limit of sampling 200 m depth below the pycnocline, while D. laternatus larvae (29 larvae/10m2) were found right up to the surface, both probably as a consequence mixing and secondary circulation in the eddy. Results showed that the level of the geostrophic kinetic energy flux affects the abundance and the three-dimensional distribution of mesopelagic fish larvae during the seasons of stronger stratification, indicating that areas with low geostrophic kinetic energy may be advantageous for feeding and development of mesopelagic fish larvae because of greater water column stability. PMID:27760185

  16. An explicit asymptotic preserving low Froude scheme for the multilayer shallow water model with density stratification

    NASA Astrophysics Data System (ADS)

    Couderc, F.; Duran, A.; Vila, J.-P.

    2017-08-01

    We present an explicit scheme for a two-dimensional multilayer shallow water model with density stratification, for general meshes and collocated variables. The proposed strategy is based on a regularized model where the transport velocity in the advective fluxes is shifted proportionally to the pressure potential gradient. Using a similar strategy for the potential forces, we show the stability of the method in the sense of a discrete dissipation of the mechanical energy, in general multilayer and non-linear frames. These results are obtained at first-order in space and time and extended using a second-order MUSCL extension in space and a Heun's method in time. With the objective of minimizing the diffusive losses in realistic contexts, sufficient conditions are exhibited on the regularizing terms to ensure the scheme's linear stability at first and second-order in time and space. The other main result stands in the consistency with respect to the asymptotics reached at small and large time scales in low Froude regimes, which governs large-scale oceanic circulation. Additionally, robustness and well-balanced results for motionless steady states are also ensured. These stability properties tend to provide a very robust and efficient approach, easy to implement and particularly well suited for large-scale simulations. Some numerical experiments are proposed to highlight the scheme efficiency: an experiment of fast gravitational modes, a smooth surface wave propagation, an initial propagating surface water elevation jump considering a non-trivial topography, and a last experiment of slow Rossby modes simulating the displacement of a baroclinic vortex subject to the Coriolis force.

  17. Structure of late summer phytoplankton community in the Firth of Lorn (Scotland) using microscopy and HPLC-CHEMTAX

    NASA Astrophysics Data System (ADS)

    Brito, Ana C.; Sá, Carolina; Mendes, Carlos R.; Brand, Tim; Dias, Ana M.; Brotas, Vanda; Davidson, Keith

    2015-12-01

    The Firth of Lorn is at the mouth of one of Scotland's largest fjordic sea lochs, Loch Linnhe. This sea loch, which is fed by a number of other inner lochs, supplies a significant flow of freshwater, which frequently causes the stratification of the water column. To investigate how environmental conditions influence the spatial distribution of phytoplankton in this region water samples were collected for phytoplankton (pigments and microscopy), and other environmental variables including nutrients. Chemotaxonomy was used to estimate the contribution of different taxonomic groups to total chlorophyll a (phytoplankton biomass index). Good agreement was obtained between chemotaxonomy and microscopy data. The highest levels of chlorophyll a (˜2.6 mg m-3) were found in the vicinity of Oban Bay, where cryptophytes, the most abundant group, dinoflagellates and other flagellates thrived in the stratified water column. Centric diatoms, mainly Chaetoceros sp. and Skeletonema costatum, were associated with NH4 and SiO2 concentrations and stratification, while pennate diatoms, mainly Cylindrotheca sp. and Nitzchia sp., were found to be associated with NO3 + NO2 and high surface mixed layer depths. Four diatom groups were identified in accordance to their surface to volume ratios, as well as their affinity to environmental parameters (nutrients) and turbulence. This study used a combination of physico-chemical data, classical microscopy methods (appropriate for large cells > 20 μm) and HPLC-CHEMTAX approaches (for large and small cells) to evaluate the distribution of phytoplankton functional groups in a fjordic coastal area.

  18. Carbon Dynamics within Cyclonic Eddies: Insights from a Biomarker Study

    PubMed Central

    Alonso-González, Iván J.; Arístegui, Javier; Lee, Cindy; Sanchez-Vidal, Anna; Calafat, Antoni; Fabrés, Joan; Sangrá, Pablo; Mason, Evan

    2013-01-01

    It is generally assumed that episodic nutrient pulses by cyclonic eddies into surface waters support a significant fraction of the primary production in subtropical low-nutrient environments in the northern hemisphere. However, contradictory results related to the influence of eddies on particulate organic carbon (POC) export have been reported. As a step toward understanding the complex mechanisms that control export of material within eddies, we present here results from a sediment trap mooring deployed within the path of cyclonic eddies generated near the Canary Islands over a 1.5-year period. We find that, during summer and autumn (when surface stratification is stronger, eddies are more intense, and a relative enrichment in CaCO3 forming organisms occurs), POC export to the deep ocean was 2–4 times higher than observed for the rest of the year. On the contrary, during winter and spring (when mixing is strongest and the seasonal phytoplankton bloom occurs), no significant enhancement of POC export associated with eddies was observed. Our biomarker results suggest that a large fraction of the material exported from surface waters during the late-winter bloom is either recycled in the mesopelagic zone or bypassed by migrant zooplankton to the deep scattering layer, where it would disaggregate to smaller particles or be excreted as dissolved organic carbon. Cyclonic eddies, however, would enhance carbon export below 1000 m depth during the summer stratification period, when eddies are more intense and frequent, highlighting the important role of eddies and their different biological communities on the regional carbon cycle. PMID:24386098

  19. Carbon dynamics within cyclonic eddies: insights from a biomarker study.

    PubMed

    Alonso-González, Iván J; Arístegui, Javier; Lee, Cindy; Sanchez-Vidal, Anna; Calafat, Antoni; Fabrés, Joan; Sangrá, Pablo; Mason, Evan

    2013-01-01

    It is generally assumed that episodic nutrient pulses by cyclonic eddies into surface waters support a significant fraction of the primary production in subtropical low-nutrient environments in the northern hemisphere. However, contradictory results related to the influence of eddies on particulate organic carbon (POC) export have been reported. As a step toward understanding the complex mechanisms that control export of material within eddies, we present here results from a sediment trap mooring deployed within the path of cyclonic eddies generated near the Canary Islands over a 1.5-year period. We find that, during summer and autumn (when surface stratification is stronger, eddies are more intense, and a relative enrichment in CaCO3 forming organisms occurs), POC export to the deep ocean was 2-4 times higher than observed for the rest of the year. On the contrary, during winter and spring (when mixing is strongest and the seasonal phytoplankton bloom occurs), no significant enhancement of POC export associated with eddies was observed. Our biomarker results suggest that a large fraction of the material exported from surface waters during the late-winter bloom is either recycled in the mesopelagic zone or bypassed by migrant zooplankton to the deep scattering layer, where it would disaggregate to smaller particles or be excreted as dissolved organic carbon. Cyclonic eddies, however, would enhance carbon export below 1000 m depth during the summer stratification period, when eddies are more intense and frequent, highlighting the important role of eddies and their different biological communities on the regional carbon cycle.

  20. Hydrographic survey in the dying Aral Sea

    NASA Astrophysics Data System (ADS)

    Zavialov, P. O.; Kostianoy, A. G.; Emelianov, S. V.; Ni, A. A.; Ishniyazov, D.; Khan, V. M.; Kudyshkin, T. V.

    2003-07-01

    We report the results of a hydrographic survey conducted in November, 2002, in the Uzbekistan part of the western basin of the dying Aral Sea. There were very few hydrographic measurements in this region since at least early 1990s. The salinity in the western deep basin of the Aral Sea varied from about 82 psu at the surface to over 94 psu at the bottom. The absolute lake surface level was about 30.5 m. Hence, the observed salinity values were much higher, and the level much lower, than expected according to earlier predictions. The density in the western basin exhibited an extremely strong stratification of ~11 kg/m3 per ~20 m in the bottom layer. The picnocline was accompanied by a temperature inversion whose magnitude was ~4°C. The observed density stratification effectively isolating the lower part of the water column from surface exchanges may be responsible for the increase of summer SSTs and evaporation rates reported in previous studies. We discovered the hydrogen sulphide contamination in the bottom layer whose upper limit was at the depth of approximately 22 m. Estimates suggest that the western basin salinization occurs not only because of the local evaporation, but also because of the assimilation of the saltier eastern basin water in the course of the interbasin exchange through the connecting channel. The satellite imagery analysis, in particular the Maximum Cross-Correlation method, suggests that the circulation pattern in the Aral Sea in its present limits is cyclonic under the eastern winds that are predominant in the region throughout the year.

  1. The Effect of Barotropic and Baroclinic Tides on Coastal Stratification and Mixing

    NASA Astrophysics Data System (ADS)

    Suanda, S. H.; Feddersen, F.; Kumar, N.

    2017-12-01

    The effects of barotropic and baroclinic tides on subtidal stratification and vertical mixing are examined with high-resolution, three-dimensional numerical simulations of the Central Californian coastal upwelling region. A base simulation with realistic atmospheric and regional-scale boundary forcing but no tides (NT) is compared to two simulations with the addition of predominantly barotropic local tides (LT) and with combined barotropic and remotely generated, baroclinic tides (WT) with ≈ 100 W m-1 onshore baroclinic energy flux. During a 10 day period of coastal upwelling when the domain volume-averaged temperature is similar in all three simulations, LT has little difference in subtidal temperature and stratification compared to NT. In contrast, the addition of remote baroclinic tides (WT) reduces the subtidal continental shelf stratification up to 50% relative to NT. Idealized simulations to isolate barotropic and baroclinic effects demonstrate that within a parameter space of typical U.S. West Coast continental shelf slopes, barotropic tidal currents, incident energy flux, and subtidal stratification, the dissipating baroclinic tide destroys stratification an order of magnitude faster than barotropic tides. In WT, the modeled vertical temperature diffusivity at the top (base) of the bottom (surface) boundary layer is increased up to 20 times relative to NT. Therefore, the width of the inner-shelf (region of surface and bottom boundary layer overlap) is increased approximately 4 times relative to NT. The change in stratification due to dissipating baroclinic tides is comparable to the magnitude of the observed seasonal cycle of stratification.

  2. Water quality of Rob Roy Reservoir and Lake Owen, Albany County, and Granite Springs and Crystal Lake Reservoirs, Laramie County, Wyoming, 1997-98

    USGS Publications Warehouse

    Ogle, Kathy Muller; Peterson, D.A.; Spillman, Bud; Padilla, Rosie

    1999-01-01

    The water quality of four reservoirs was assessed during 1997 and 1998 as a cooperative project between the Cheyenne Board of Public Utilities and the U. S. Geological Survey. The four reservoirs, Rob Roy, Lake Owen, Granite Springs, and Crystal Lake, provide approximately 75 percent of the public water supply for Cheyenne, Wyoming. Samples of water and bottom sediment were collected and analyzed for selected physical, chemical, and biological characteristics to provide data about the reservoirs. Water flows between the reservoirs through a series of pipelines and stream channels. The reservoirs differ in physical characteristics such as elevation, volume, and depth.Profiles of temperature, dissolved oxygen, specific conductance, and pH were examined. Three of the four reservoirs exhibited stratification during the summer. The profiles indicate that stratification develops in all reservoirs except Lake Owen. Stratification developed in Rob Roy, Granite Springs, and Crystal Lake Reservoirs by mid-July in 1998 and continued until September, with the thickness of the epilimnion increasing during that time. Secchi disk readings indicated Rob Roy Reservoir had the clearest water of the four reservoirs studied.The composition of the phytoplankton community was different in the upper two reservoirs from that in the lower two reservoirs. Many of the species found in Rob Roy Reservoir and Lake Owen are associated with oligotrophic, nutrient-poor conditions. In contrast, many of the species found in Granite Springs and Crystal Lake Reservoirs are associated with mesotrophic or eutrophic conditions. The total number of taxa identified also increased downstream.The chemical water type in the reservoirs was similar, but dissolved-solids concentrations were greater in the downstream reservoirs. Water in all four reservoirs was a calcium-bicarbonate type. In the fall of 1997, Rob Roy Reservoir had the lowest dissolved-solids concentration (19 milligrams per liter), whereas Crystal Lake Reservoir had the highest concentration (63 milligrams per liter). Relatively little differences in the concentrations of major-ion species were noted between samples collected near the surface and near the bottom of the same reservoir. In contrast, iron and manganese concentrations generally were higher in samples collected near the bottom of a reservoir than in near-surface samples collected from the same reservoir.Composite bottom-sediment samples from all four reservoirs contained similar concentrations of bulk constituents such as aluminum, iron, phosphorus and titanium, but varied in concentrations of trace elements. Trace-element concentrations in Rob Roy Reservoir and Lake Owen were similar to the crustal average, whereas in Granite Springs and Crystal Lake Reservoirs the concentrations were similar to granitic rocks.

  3. Influence of wind and river discharge on the vertical exchange process in the Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Hong, B.; Peng, S.

    2016-02-01

    Vertical exchange process is controlled by the buoyancy input from river discharge and the momentum input by wind forcing. This study investigates the vertical exchange process in the Pearl River Estuary by using a 3-D numerical model. The vertical exchange time (VET) is used to quantify the magnitude of vertical exchange process in response to changing local wind and river discharge. During the dry season, it only takes about 2 days for the surface layer water mass being transported to the bottom layer. During the wet season, such transport will take more than 20 days in a large portion of the main channel. The water in the slope area can be well ventilated. Linear regression of VET indicates that water column stratification can be used to estimate the VET and up to 71% of the variance can be accounted. The estimation by using river runoff can only account for about 49% of the variance. The effects of wind speed and direction are investigated separately. Neither river runoff nor the stratification can properly predict the VET during the typical wet season. Further investigations are needed to reveal the dynamics of vertical exchange process and find out other factors that influence the VET during the wet season.

  4. The dynamics of İzmir Bay under the effects of wind and thermohaline forces

    NASA Astrophysics Data System (ADS)

    Sayın, Erdem; Eronat, Canan

    2018-04-01

    The dominant circulation pattern of İzmir Bay on the Aegean Sea coast of Turkey is studied taking into consideration the influence of wind and thermohaline forces. İzmir Bay is discussed by subdividing the bay into outer, middle and inner areas. Wind is the most important driving force in the İzmir coastal area. There are also thermohaline forces due to the existence of water types of different physical properties in the bay. In contrast to the two-layer stratification during summer, a homogeneous water column exists in winter. The free surface version of the Princeton model (Killworth's 3-D general circulation model) is applied, with the input data obtained through the measurements made by the research vessel K. Piri Reis. As a result of the simulations with artificial wind, the strong consistent wind generates circulation patterns independent of the seasonal stratification in the bay. Wind-driven circulation causes cyclonic or anticyclonic movements in the middle bay where the distinct İzmir Bay Water (IBW) forms. Cyclonic movement takes place under the influence of southerly and westerly winds. On the other hand, northerly and easterly winds cause an anticyclonic movement in the middle bay. The outer and inner bay also have the wind-driven recirculation patterns expected.

  5. The 2014-2015 warming anomaly in the Southern California Current System observed by underwater gliders

    NASA Astrophysics Data System (ADS)

    Zaba, Katherine D.; Rudnick, Daniel L.

    2016-02-01

    Large-scale patterns of positive temperature anomalies persisted throughout the surface waters of the North Pacific Ocean during 2014-2015. In the Southern California Current System, measurements by our sustained network of underwater gliders reveal the coastal effects of the recent warming. Regional upper ocean temperature anomalies were greatest since the initiation of the glider network in 2006. Additional observed physical anomalies included a depressed thermocline, high stratification, and freshening; induced biological consequences included changes in the vertical distribution of chlorophyll fluorescence. Contemporaneous surface heat flux and wind strength perturbations suggest that local anomalous atmospheric forcing caused the unusual oceanic conditions.

  6. Ground-penetrating radar (GPR) responses for sub-surface salt contamination and solid waste: modeling and controlled lysimeter studies.

    PubMed

    Wijewardana, Y N S; Shilpadi, A T; Mowjood, M I M; Kawamoto, K; Galagedara, L W

    2017-02-01

    The assessment of polluted areas and municipal solid waste (MSW) sites using non-destructive geophysical methods is timely and much needed in the field of environmental monitoring and management. The objectives of this study are (i) to evaluate the ground-penetrating radar (GPR) wave responses as a result of different electrical conductivity (EC) in groundwater and (ii) to conduct MSW stratification using a controlled lysimeter and modeling approach. A GPR wave simulation was carried out using GprMax2D software, and the field test was done on two lysimeters that were filled with sand (Lysimeter-1) and MSW (Lysimeter-2). A Pulse EKKO-Pro GPR system with 200- and 500-MHz center frequency antennae was used to collect GPR field data. Amplitudes of GPR-reflected waves (sub-surface reflectors and water table) were studied under different EC levels injected to the water table. Modeling results revealed that the signal strength of the reflected wave decreases with increasing EC levels and the disappearance of the subsurface reflection and wave amplitude reaching zero at higher EC levels (when EC >0.28 S/m). Further, when the EC level was high, the plume thickness did not have a significant effect on the amplitude of the reflected wave. However, it was also found that reflected signal strength decreases with increasing plume thickness at a given EC level. 2D GPR profile images under wet conditions showed stratification of the waste layers and relative thickness, but it was difficult to resolve the waste layers under dry conditions. These results show that the GPR as a non-destructive method with a relatively larger sample volume can be used to identify highly polluted areas with inorganic contaminants in groundwater and waste stratification. The current methods of MSW dumpsite investigation are tedious, destructive, time consuming, costly, and provide only point-scale measurements. However, further research is needed to verify the results under heterogeneous aquifer conditions and complex dumpsite conditions.

  7. Improved fluid dynamics similarity, analysis and verification. Part 5: Analytical and experimental studies of thermal stratification phenomena

    NASA Technical Reports Server (NTRS)

    Winter, E. R. F.; Schoenhals, R. J.; Haug, R. I.; Libby, T. L.; Nelson, R. N.; Stevenson, W. H.

    1968-01-01

    The stratification behavior of a contained fluid subjected to transient free convection heat transfer was studied. A rectangular vessel was employed with heat transfer from two opposite walls of the vessel to the fluid. The wall temperature was increased suddenly to initiate the process and was then maintained constant throughout the transient stratification period. Thermocouples were positioned on a post at the center of the vessel. They were adjusted so that temperatures could be measured at the fluid surface and at specific depths beneath the surface. The predicted values of the surface temperature and the stratified layer thickness were found to agree reasonably well with the experimental measurements. The experiments also provided information on the transient centerline temperature distribution and the transient flow distribution.

  8. High resolution monitoring of episodic stratification events in an enclosed marine system

    NASA Astrophysics Data System (ADS)

    Sullivan, Timothy; Broszeit, Stefanie; O'Sullivan, Keith P. A.; McAllen, Rob; Davenport, John; Regan, Fiona

    2013-05-01

    While hypoxic and anoxic environments have existed throughout geological time, their frequency of occurrence in shallow coastal and estuarine areas appears to be increasing. However, few data are available on the physicochemical conditions at the boundary between anoxic and normoxic layers, including the conditions required for both formation and dissipation of stratification. Advances in autonomous environmental sensing technology have produced robust sensors capable of detailed measurements under inhospitable conditions created in such environments. In this study, an autonomous sensor approach was used to compare water column properties above and below the stratification before during and after dissipation of the stratification. Further, an investigation into the effect of the stratification on sedimentation rates of organic and inorganic matter and current speeds is reported here. Lough Hyne, a seasonally stratified temperate marine lake provided favourable conditions for this study. It was shown that temperatures dropped rapidly above the oxy-thermocline while increasing rapidly below the stratification, leading to a mixing of the complete water column. This was reflected in oxygen measurements below the stratification, which rose from anoxia to normoxic conditions over the same time period. During summer, the thermocline formed a barrier to organic matter sedimentation, reducing it significantly when present, while inorganic matter sedimentation was unaffected by the presence of thermocline. It also caused a reduction in current speeds below the thermocline.

  9. Diagram of Lake Stratification on Mars

    NASA Image and Video Library

    2017-06-01

    This diagram presents some of the processes and clues related to a long-ago lake on Mars that became stratified, with the shallow water richer in oxidants than deeper water was. The sedimentary rocks deposited within a lake in Mars' Gale Crater more than three billion years ago differ from each other in a pattern that matches what is seen in lakes on Earth. As sediment-bearing water flows into a lake, bedding thickness and particle size progressively decrease as sediment is deposited in deeper and deeper water as seen in examples of thick beds (PIA19074) from shallowest water, thin beds (PIA19075) from deeper water and even thinner beds (PIA19828) from deepest water. At sites on lower Mount Sharp, inside the crater, measurements of chemical and mineral composition by NASA's Curiosity Mars rover reveal a clear correspondence between the physical characteristics of sedimentary rock from different parts of the lake and how strongly oxidized the sediments were. Rocks with textures indicating that the sediments were deposited near the edge of a lake have more strongly oxidized composition than rocks with textures indicating sedimentation in deep water. For example, the iron mineral hematite is more oxidized than the iron mineral magnetite. An explanation for why such chemical stratification occurs in a lake is that the water closer to the surface is more exposed to oxidizing effects of oxygen in the atmosphere and ultraviolet light. On Earth, a stratified lake with a distinct boundary between oxidant-rich shallows and oxidant-poor depths provides a diversity of environments suited to different types of microbes. If Mars has ever hosted microbial live, the stratified lake at Gale Crater may have similarly provided a range of different habitats for life. https://photojournal.jpl.nasa.gov/catalog/PIA21500

  10. Water Quality and optical properties of Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, Gary L.; Hoffman, Robert L.; McIntire, C.D.; Buktenica, M.W.; Girdner, Scott

    2007-01-01

    We examine observations of key limnological properties (primarily temperature, salinity, and dissolved oxygen), measured over a 14-year period in Crater Lake, Oregon, and discuss variability in the hypolimnion on time scales of days to a decade. During some years (e.g., 1994a??1995), higher-than-average wintertime deep convection and ventilation led to the removal of significant amounts of heat and salt from the hypolimnion, while dissolved oxygen concentrations increase. In other years, such as the winter of 1996a??1997, heat and salt concentrations increase throughout the year and dissolved oxygen levels drop, indicating conditions were dominated by the background geothermal inputs and dissolved oxygen consumption by bacteria (i.e., minimal deep convection). Over the entire 14 year period, no statistically significant trend was observed in the annual hypolimnetic heat and salt content. Measurements from several thermistors moored in the hypolimnion provide new insight into the time and space scales of the deep convection events. For some events, cool water intrusions are observed sequentially, from shallower depths to deeper depths, suggesting vertical mixing or advection from above. For other events, the cooling is observed first at the deepest sensors, suggesting a thin, cold water pulse that flows along the bottom and mixes more slowly upwards into the basin. In both cases, the source waters must originate from the epilimnion. Conditions during a strong ventilation year (1994a??1995) and a weak ventilation year (1996a??1997) were compared. The results suggest the major difference between these 2 years was the evolution of the stratification in the epilimnion during the first few weeks of reverse stratification such that thermobaric instabilities were easier to form during 1995 thana?#1997. Thus, the details of surface cooling and wind-driven mixing during the early stages ofa?#reverse stratification may determine the neta?#amount of ventilation possible during a particular year.

  11. Long-Term Variability of Satellite Lake Surface Water Temperatures in the Great Lakes

    NASA Astrophysics Data System (ADS)

    Gierach, M. M.; Matsumoto, K.; Holt, B.; McKinney, P. J.; Tokos, K.

    2014-12-01

    The Great Lakes are the largest group of freshwater lakes on Earth that approximately 37 million people depend upon for fresh drinking water, food, flood and drought mitigation, and natural resources that support industry, jobs, shipping and tourism. Recent reports have stated (e.g., the National Climate Assessment) that climate change can impact and exacerbate a range of risks to the Great Lakes, including changes in the range and distribution of certain fish species, increased invasive species and harmful algal blooms, declining beach health, and lengthened commercial navigation season. In this study, we will examine the impact of climate change on the Laurentian Great Lakes through investigation of long-term lake surface water temperatures (LSWT). We will use the ATSR Reprocessing for Climate: Lake Surface Water Temperature & Ice Cover (ARC-Lake) product over the period 1995-2012 to investigate individual and interlake variability. Specifically, we will quantify the seasonal amplitude of LSWTs, the first and last appearances of the 4°C isotherm (i.e., an important identifier of the seasonal evolution of the lakes denoting winter and summer stratification), and interpret these quantities in the context of global interannual climate variability such as ENSO.

  12. What factors drive copepod community distribution in the Gulf of Gabes, Eastern Mediterranean Sea?

    PubMed

    Drira, Zaher; Bel Hassen, Malika; Ayadi, Habib; Aleya, Lotfi

    2014-02-01

    The spatial and temporal variations in copepod communities were investigated during four oceanographic cruises conducted between July 2005 and March 2007 aboard the R/V Hannibal. A close relationship was observed between the temperature, salinity, hydrographic properties and water masses characterising the Gulf of Gabes. Indeed, water thermal stratification began in May-June, and a thermocline was established at a 20-m depth, but ranged from 25 m in July to more than 30 m in September. The zooplankton community is dominated by copepods representing 69 % to 83 % of total zooplankton. Spatial and temporal variation of copepods in relation to environmental factors shows their close relationship with the hydrodynamic features of the water column. Thermal stratification in the column, established in summer, supports copepod development. In fact, copepod abundance increases gradually with rising water temperature and salinity, starting from the beginning of thermal stratification (May-June 2006) and lasting until its completion (July 2005 and September 2006). When the water column is well mixed (March 2007), copepod abundance decreased. Our finding shows that temperature and salinity seem to be the most important physical factors and thus strongly influence the taxonomic diversity and distribution of the copepod population. They are characterised by the dominance of Oithona nana, representing 75-86 % of total cyclopoid abundance. The most abundant species during the stratification period were O. nana, Acartia clausi and Stephos marsalensis in July 2005 and September 2006. However, during the mixing period, Euterpina acutifrons was more abundant, representing 21 % of the total. Unlike the copepod community, which is more abundant during the period of high stratification, phytoplankton proliferates during semi-mixed conditions.

  13. Enhancing water quality in hydropower system operations

    NASA Astrophysics Data System (ADS)

    Hayes, Donald F.; Labadie, John W.; Sanders, Thomas G.; Brown, Jackson K.

    1998-03-01

    The quality of impounded waters often degrades over time because of thermal stratification, sediment oxygen demands, and accumulation of pollutants. Consequently, reservoir releases impact water quality in tailwaters, channels, and other downstream water bodies. Low dissolved oxygen (DO) concentrations in the Cumberland River below Old Hickory dam result from stratification of upstream reservoirs and seasonally low release rates. Operational changes in upstream hydropower reservoirs may be one method to increase DO levels without substantially impacting existing project purposes. A water quality model of the upper Cumberland basin is integrated into an optimal control algorithm to evaluate water quality improvement opportunities through operational modifications. The integrated water quantity/quality model maximizes hydropower revenues, subject to various flow and headwater operational restrictions for satisfying multiple project purposes, as well as maintenance of water quality targets. Optimal daily reservoir release policies are determined for the summer drawdown period which increase DO concentrations under stratification conditions with minimal impact on hydropower production and other project purposes. Appendixes A-D available with entire article on microfiche. Order by mail from AGU, 2000 Florida Ave., N.W., Washington, DC 20009 or by phone at 800-966-2481; $2.50. Document W97-003. Payment must accompany order.

  14. Sensitivity of Rogue Waves Predictions to the Oceanic Stratification

    NASA Astrophysics Data System (ADS)

    Guo, Qiuchen; Alam, Mohammad-Reza

    2014-11-01

    Oceanic rogue waves are short-lived very large amplitude waves (a giant crest typically followed or preceded by a deep trough) that appear and disappear suddenly in the ocean causing damages to ships and offshore structures. Assuming that the state of the ocean at the present time is perfectly known, then the upcoming rogue waves can be predicted via numerically solving the equations that govern the evolution of the waves. The state of the art radar technology can now provide accurate wave height measurement over large spatial domains and when combined with advanced wave-field reconstruction techniques together render deterministic details of the current state of the ocean (i.e. surface elevation and velocity field) at any given moment of the time with a very high accuracy. The ocean water density is, however, stratified (mainly due to the salinity and temperature differences). This density stratification, with today's technology, is very difficult to be measured accurately. As a result in most predictive schemes these density variations are neglected. While the overall effect of the stratification on the average state of the ocean may not be significant, here we show that these density variations can strongly affect the prediction of oceanic rogue waves. Specifically, we consider a broadband oceanic spectrum in a two-layer density stratified fluid, and study via extensive statistical analysis the effects of strength of the stratification (difference between densities) and the depth of the thermocline on the prediction of upcoming rogue waves.

  15. Seed flotation and germination of salt marsh plants: The effects of stratification, salinity, and/or inundation regime

    USGS Publications Warehouse

    Elsey-Quirk, T.; Middleton, B.A.; Proffitt, C.E.

    2009-01-01

    We examined the effects of cold stratification and salinity on seed flotation of eight salt marsh species. Four of the eight species were tested for germination success under different stratification, salinity, and flooding conditions. Species were separated into two groups, four species received wet stratification and four dry stratification and fresh seeds of all species were tested for flotation and germination. Fresh seeds of seven out of eight species had flotation times independent of salinity, six of which had average flotation times of at least 50 d. Seeds of Spartina alterniflora and Spartina patens had the shortest flotation times, averaging 24 and 26 d, respectively. Following wet stratification, the flotation time of S. alterniflora seeds in higher salinity water (15 and 36 ppt) was reduced by over 75% and germination declined by more than 90%. Wet stratification reduced the flotation time of Distichlis spicata seeds in fresh water but increased seed germination from 2 to 16% in a fluctuating inundation regime. Fresh seeds of Iva frutescens and S. alternflora were capable of germination and therefore are non-dormant during dispersal. Fresh seeds of I. frutescens had similar germination to dry stratified seeds ranging 25-30%. Salinity reduced seed germination for all species except for S. alterniflora. A fluctuating inundation regime was important for seed germination of the low marsh species and for germination following cold stratification. The conditions that resulted in seeds sinking faster were similar to the conditions that resulted in higher germination for two of four species. ?? 2009 Elsevier B.V.

  16. Near-surface energy transfers from internal tide beams to smaller vertical scale motions

    NASA Astrophysics Data System (ADS)

    Chou, S.; Staquet, C.; Carter, G. S.; Luther, D. S.

    2016-02-01

    Mechanical energy capable of causing diapycnal mixing in the ocean is transferred to the internal wave field when barotropic tides pass over underwater topography and generate internal tides. The resulting internal tide energy is confined in vertically limited structures, or beams. As internal tide beams (ITBs) propagate through regions of non-uniform stratification in the upper ocean, wave energy can be scattered through multiple reflections and refractions, be vertically trapped, or transferred to non-tidal frequencies through different nonlinear processes. Various observations have shown that ITBs are no longer detectable in horizontal kinetic energy beyond the first surface reflection. Importantly, this implies that some of the internal tide energy no longer propagates in to the abyssal ocean and consequently will not be available to maintain the density stratification. Using the NHM, a nonlinear and nonhydrostatic model based on the MITgcm, simulations of an ITB propagating up to the sea surface are examined in order to quantify the transformation of ITB energy to other motions. We compare and contrast the transformations enabled by idealized, smoothly-varying stratification with transformations enabled by realistic stratification containing a broad-band vertical wavenumber spectrum of variations. Preliminary two-dimensional results show that scattering due to small-scale structure in realistic stratification profiles from Hawaii can lead to energy being vertically trapped near the surface. Idealized simulations of "locally" generated internal solitary waves are analyzed in terms of energy flux transfers from the ITB to solitary waves, higher harmonics, and mean flow. The amount of internal tide energy which propagates back down after near-surface reflection of the ITB in different environments is quantified.

  17. Coupling asymmetric flow-field flow fractionation and fluorescence parallel factor analysis reveals stratification of dissolved organic matter in a drinking water reservoir.

    PubMed

    Pifer, Ashley D; Miskin, Daniel R; Cousins, Sarah L; Fairey, Julian L

    2011-07-08

    Using asymmetrical flow field-flow fractionation (AF4) and fluorescence parallel factor analysis (PARAFAC), we showed physicochemical properties of chromophoric dissolved organic matter (CDOM) in the Beaver Lake Reservoir (Lowell, AR) were stratified by depth. Sampling was performed at a drinking water intake structure from May to July 2010 at three depths (3-, 10-, and 18-m) below the water surface. AF4-fractograms showed that the CDOM had diffusion coefficient peak maximums between 3.5 and 2.8 x 10⁻⁶ cm² s⁻¹, which corresponded to a molecular weight range of 680-1950 Da and a size of 1.6-2.5 nm. Fluorescence excitation-emission matrices of whole water samples and AF4-generated fractions were decomposed with a PARAFAC model into five principal components. For the whole water samples, the average total maximum fluorescence was highest for the 10-m depth samples and lowest (about 40% less) for 18-m depth samples. While humic-like fluorophores comprised the majority of the total fluorescence at each depth, a protein-like fluorophore was in the least abundance at the 10-m depth, indicating stratification of both total fluorescence and the type of fluorophores. The results present a powerful approach to investigate CDOM properties and can be extended to investigate CDOM reactivity, with particular applications in areas such as disinfection byproduct formation and control and evaluating changes in drinking water source quality driven by climate change. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS).

    PubMed

    Nyamweya, Chrispine; Desjardins, Christopher; Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May) and mixing (June-August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.

  19. Estimation of residence time in a shallow lacustrine embayment

    NASA Astrophysics Data System (ADS)

    Razmi, A. M.; Barry, D. A.; Lemmin, U.; Bakhtyar, R.

    2012-12-01

    Near-shore water quality in lacustrine bays subjected to effluent or stream discharges is affected by, amongst other things, the residence time within a given bay. Vidy Bay, located on the northern shore of Lake Geneva, Switzerland, receives discharge from a wastewater treatment plant, the Chamberonne River and a storm-water drain. The residence time of water in the bay largely depends on water exchanges with the main basin (Grand Lac) of Lake Geneva. Field investigations and modeling of the hydrodynamics of Vidy Bay have shown that currents are variable, due mainly to wind variability over the lake. However, in broad terms there are two main current patterns in the bay, (i) currents are linked to large gyres in the Grand Lac, or (ii) currents are partially independent of the Grand Lac and are controlled by small-scale gyres within the bay. Residence times in Vidy Bay were computed using the hydrodynamic model Delft3D. Since the Vidy Bay shoreline follows a shallow arc, the definition of the off-shore extent of the bay is ambiguous. Here, the largest within-bay gyre is used. Particle tracking was conducted for each of the three discharges into the bay. Model results were computed using meteorological data for 2010, and thus include the natural variability in wind patterns and seasonal stratification. An analysis of the results shows that a water parcel from the waste water outfall has a residence time ranging from hours to days. The water residence time is minimum near to the surface and maximum at the near bottom layer. The results confirmed that wind force, thermal stratification, and water depth are the main factors influencing residence time.

  20. Anoxic monimolimnia: Nutrients devious feeders or bombs ready to explode?

    NASA Astrophysics Data System (ADS)

    Gianni, Areti; Zacharias, Ierotheos

    2015-04-01

    Coastal regions are under strong human influence and its environmental impact is reflected into their water quality. Oligotrophic estuaries and coastal systems have changed in mesotrophic and/or eutrophic, shown an increase in toxic algal blooms, hypoxic/anoxic events, and massive mortalities of many aquatic and benthic organisms. In strongly stratified and productive water basins, bottom water dissolved oxygen is depleted due to the excessive organic matter decomposition in these depths. Distribution and recycling of nutrients in their water column is inextricably dependent on oxygenation and redox conditions. Bottom water anoxia accelerates PO43-, NH4+ and H2S recycling and accumulation from organic matter decomposition. The anoxic, H2S, PO43- and NH4+ rich bottom water constitutes a toxic layer, threatening the balance of the entire ecosystem. In permanently stratified water basins, storm events could result in stratification destruction and water column total mixing. The turnover brings large amounts of H2S to the surface resulting in low levels of oxygen and massive fish kills. PO43- and NH4+ are released to the interface and surface waters promoting algal blooms. Μore organic matter is produced fueling anoxia. The arising question is, whether the balance of an anoxic water ecosystem is under the threat of its hypolimnetic nutrient and sulfide load, only in the case of storm events and water column total mixing. In polymictic water basins it is clear that the accumulated, in the bottom layer, nutrients will supply surface waters, after the pycnocline overturn. Besides this mechanism of basins' water quality degradation is nowadays recognized as one of the biggest obstacles in eutrophic environments management and restoration efforts. The role of internal load, in permanently stratified water basins, is not so clear. In the present study the impact of storm events on water column stability and bottom water anoxia of meromictic coastal basins, is investigated. The importance of internal load is emerged, presenting the disturbance on the main nutrients, dissolved oxygen, hydrogen sulfide and chlorophyll distribution, caused by the total water column mixing. Additionally, the relationship between temporal nutrients variations in surface layers, of permanent anoxic coastal basins with a) changes on the physicochemical characteristics of their water column, b) changes on the bottom water phosphorus and nitrogen concentration and c) their effect on the basin's primary productivity, is sought. In order to achieve the objectives of this study, two different sets of Aitoliko basin's (western Greece) data were used. The first one includes measurements of physicochemical parameters, nutrients, chlorophyll and hydrogen sulfide, four days after a storm event and the consequent anoxic crisis in Aitoliko basin on 4th of December 2008. The second one contains respective data obtained from a biennial (May 2006-May 2008) basin's monitoring. The changes in the physical, chemical and biological characteristics, of Aitoliko basin water column, after its total mixing, highlighted the importance of the accumulated nutrients and sulfides in the bottom layer. In addition, turned out that bottom layer can supply with nutrients the surface waters, even during periods of high water column stratification. Small scale, subtle, changes in physicochemical and hydrological basin's characteristics promoted this supply, affecting both quantitative and qualitative the ecosystem's primary productivity and shifting its quality character.

  1. On Evaluating circulation and temperature stratification under changing water levels in Lake Mead with a 3D hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Li, Y.; Acharya, K.; Chen, D.; Stone, M.; Yu, Z.; Young, M.; Zhu, J.; Shafer, D. S.; Warwick, J. J.

    2009-12-01

    Sustained drought in the western United States since 2000 has led to a significant drop (about 35 meters) in the water level of Lake Mead, the largest reservoir by volume in United States. The drought combined with rapid urban development in southern Nevada and emergence of invasive species has threatened the water quality and ecological processes in Lake Mead. A three-dimensional hydrodynamic model, Environmental Fluid Dynamics Code (EFDC), was applied to investigate lake circulation and temperature stratification in parts of Lake Mead (Las Vegas Bay and Boulder Basin) under changing water levels. Besides the inflow from Las Vegas Wash and the Colorado River, the model considered atmospheric changes as well as the boundary conditions restricted by the operation of Hoover Dam. The model was calibrated and verified by using observed data including water level, velocity, and temperature from 2003 and 2005. The model was applied to study the hydrodynamic processes at water level 366.8 m (year 2000) and at water level 338.2 m (year 2008). The high-stage simulation described the pre-drought lake hydrodynamic processes while the low-stage simulation highlighted the drawdown impact on such processes. The results showed that both inflow and wind-driven mixing process played major roles in the thermal stratification and lake circulation in both cases. However, the atmospheric boundary played a more important role than inflow temperature on thermal stratification of Lake Mead during water level decline. Further, the thermal stratification regime and flow circulation pattern in shallow lake regions (e.g.., the Boulder Basin area) were most impacted. The temperature of the lake at the high-stage was more sensitive to inflow temperatures than at low-stage. Furthermore, flow velocities decreased with the decreasing water level due to reduction in wind impacts, particularly in shallow areas of the lake. Such changes in temperature and lake current due to present drought have a strong influence on contaminant and nutrient dynamics and ecosystem of the lake.

  2. Summer Stratification and Fall Overturn--In a Jar.

    ERIC Educational Resources Information Center

    Foley, Arlene F.

    1984-01-01

    Provided are procedures for a demonstration which illustrates the concept of summer stratification of lakes in the temperate zone as maintained by thermal resistance to mixing. The demonstration requires only food coloring, water, and common laboratory equipment. (JN)

  3. Reconstruction of paleoenvironmental changes based on the planktonic foraminiferal assemblages off Shimokita (Japan) in the northwestern North Pacific

    NASA Astrophysics Data System (ADS)

    Kuroyanagi, Azumi; Kawahata, Hodaka; Narita, Hisashi; Ohkushi, Ken'ichi; Aramaki, Takafumi

    2006-08-01

    Planktonic foraminifera live in the upper ocean, and their assemblages can record the surrounding environment. To reconstruct changes in water masses and the timing of flow of the Oyashio and Tsugaru currents through the Tsugaru Strait after the Last Glacial Maximum, when the Japan Sea had been almost isolated from the surrounding seas, we investigated at high resolution the planktonic foraminiferal fauna in seafloor sediments off the Shimokita (core MD01-2409: 41°33.9'N, 141°52.1'E), in the northwestern North Pacific, over the last 26,900 years. Factor analysis of the foraminiferal assemblage suggests that the water mass changed significantly as a result of the deglacial sea-level rise and opening of the straits into the Japan Sea. Mass accumulation rates of some selected foraminiferal species that inhabit characteristic environments (e.g., warm stratified water, Oyashio Current, Tsushima Current) corroborate these changes in water mass and water column structure. We also used the ratio of the dextral form to total Neogloboquadrina pachyderma as an indicator of subsurface (below the pycnocline) water temperature. We recognized five distinct periods of oceanographic change at the study site, which is just east of the Tsugaru Strait: (1) Oyashio Current affecting both surface and subsurface waters (26.9-15.7 thousand calendar years before present (cal. kyr BP)); (2) vertical mixing and subsurface warming as the Oyashio Current began to flow into the Japan Sea through the Tsugaru Strait (15.7-10.6 cal. kyr BP); (3) outflow of the Tsugaru Current from the Japan Sea into the Pacific, leading to baroclinic conditions, with the surface layer under the influence of the Tsugaru and the subsurface layers of the Oyashio Current (10.6-9.0 cal. kyr BP); (4) stratification of the water column developed as the flow of the Tsugaru Current increased (9.0-6.2 cal. kyr BP); and (5) warming of the subsurface layer, disruption of the stratification, and dominance of the Tsugaru Current in both surface and subsurface layers, similar to the present situation (6.2-1.5 cal. kyr BP). The timing of flow of the Oyashio and Tsugaru currents through the strait at the study site off Shimokita is generally compatible with the results of studies in the Japan Sea. The flow of the Tsugaru Current led to progressive warming of the waters, from the surface to the subsurface layers and from the Japan Sea side to the Pacific side of the Tsugaru Strait, beginning in 8.3-6.8 cal. kyr BP on the western side, and in 6.2 cal. kyr BP on the eastern side of the strait. By 4.8 cal. kyr BP on the western side, and by ˜ 3.4 cal. kyr BP on the eastern side of the strait, warm water prevailed in both surface and subsurface layers.

  4. Vertical patterns of ichthyoplankton at the interface between a temperate estuary and adjacent coastal waters: Seasonal relation to diel and tidal cycles

    NASA Astrophysics Data System (ADS)

    Primo, Ana Lígia; Azeiteiro, Ulisses M.; Marques, Sónia C.; Ré, Pedro; Pardal, Miguel A.

    2012-07-01

    Vertical distribution and migration pattern of ichthyoplankton assemblage in the Mondego estuary were investigated in relation to diel and tidal cycle. Summer and winter communities were sampled, at surface and bottom, over a diel cycle during spring and neap tides at a fixed station at the mouth of the estuary. Summer presented higher larvae density mainly of Pomatoschistus spp., Gobius niger and Parablennius pilicornis. Main species in winter assemblages were Pomatoschistus spp. and Sardina pilchardus. There were no differences between depth stratums across diel or tide cycle. Nevertheless, main species larval densities showed significant periodic variation associated with tide (M2) and diel (K1) cycles presenting generally, higher density at night and around low tide. Conversely, vertical patterns observed could not be related with diel or tidal cycle. Tough, main species presented some extent of vertical migration. Vertical patterns observed appear to be related to seasonal stratification and river flow, increasing amplitude during periods of less stratification and lower water currents. Present study provides a better understanding of ichthyoplankton vertical movement patterns and of small scale dynamics at the interface of two coastal European systems.

  5. Deep circulations under simple classes of stratification

    NASA Technical Reports Server (NTRS)

    Salby, Murry L.

    1989-01-01

    Deep circulations where the motion field is vertically aligned over one or more scale heights are studied under barotropic and equivalent barotropic stratifications. The study uses two-dimensional equations reduced from the three-dimensional primitive equations in spherical geometry. A mapping is established between the full primitive equations and general shallow water behavior and the correspondence between variables describing deep atmospheric motion and those of shallow water behavior is established.

  6. Hydroclimatic conditions trigger record harmful algal bloom in western Patagonia (summer 2016).

    PubMed

    León-Muñoz, Jorge; Urbina, Mauricio A; Garreaud, René; Iriarte, José Luis

    2018-01-22

    A harmful algal bloom (HAB) of the raphidophyta alga Pseudochattonella cf. verruculosa during the 2016 austral summer (February-March) killed nearly 12% of the Chilean salmon production, causing the worst mass mortality of fish and shellfish ever recorded in the coastal waters of western Patagonia. The HAB coincided with a strong El Niño event and the positive phase of the Southern Annular Mode that altered the atmospheric circulation in southern South America and the adjacent Pacific Ocean. This led to very dry conditions and higher than normal solar radiation reaching the surface. Using time series of atmospheric, hydrologic and oceanographic data we show here that an increase in surface water temperature and reduced freshwater input resulted in a weakening of the vertical stratification in the fjords and sounds of this region. This allowed the advection of more saline and nutrient-rich waters, ultimately resulting in an active harmful algal bloom in coastal southern Chile.

  7. Pan-Arctic distributions of continental runoff in the Arctic Ocean

    PubMed Central

    Fichot, Cédric G.; Kaiser, Karl; Hooker, Stanford B.; Amon, Rainer M. W.; Babin, Marcel; Bélanger, Simon; Walker, Sally A.; Benner, Ronald

    2013-01-01

    Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region. PMID:23316278

  8. Numerical solution of chemically reactive non-Newtonian fluid flow: Dual stratification

    NASA Astrophysics Data System (ADS)

    Rehman, Khalil Ur; Malik, M. Y.; Khan, Abid Ali; Zehra, Iffat; Zahri, Mostafa; Tahir, M.

    2017-12-01

    We have found that only a few attempts are available in the literature relatively to the tangent hyperbolic fluid flow induced by stretching cylindrical surfaces. In particular, temperature and concentration stratification effects have not been investigated until now with respect to the tangent hyperbolic fluid model. Therefore, we have considered the tangent hyperbolic fluid flow induced by an acutely inclined cylindrical surface in the presence of both temperature and concentration stratification effects. To be more specific, the fluid flow is attained with the no slip condition, which implies that the bulk motion of the fluid particles is the same as the stretching velocity of a cylindrical surface. Additionally, the flow field situation is manifested with heat generation, mixed convection and chemical reaction effects. The flow partial differential equations give a complete description of the present problem. Therefore, to trace out the solution, a set of suitable transformations is introduced to convert these equations into ordinary differential equations. In addition, a self-coded computational algorithm is executed to inspect the numerical solution of these reduced equations. The effect logs of the involved parameters are provided graphically. Furthermore, the variations of the physical quantities are examined and given with the aid of tables. It is observed that the fluid temperature is a decreasing function of the thermal stratification parameter and a similar trend is noticed for the concentration via the solutal stratification parameter.

  9. Observations of a tidal intrusion front in a tidal channel

    NASA Astrophysics Data System (ADS)

    Lu, Shasha; Xia, Xiaoming; Thompson, Charlie E. L.; Cao, Zhenyi; Liu, Yifei

    2017-11-01

    A visible front indicated by a surface colour change, and sometimes associated with foam or debris lines, was observed in a tidal channel during neap tide. This is an example of a tidal intrusion front occurring in the absence of sudden topographical changes or reversing flows, typically reported to be associated with such fronts. Detailed Acoustic Doppler Current Profiler and conductivity/temperature/depth measurements were taken on repeated transects both with fronts apparent and with fronts absent. The results indicated that the front occurred as a result of stratification, which was sustained by the buoyancy flux and the weak tide-induced mixing during neap ebb tide. The stronger tide-induced mixing during spring tide restrained stratification, leading to the absence of a front. The mechanism of the frontogenesis was the density gradient between the stratified water formed during neap ebb tide, and the more mixed seawater during neap flood tide; thus, the water on the landward (southwestern) side of the front was stratified, and that on the seaward side (northeastern) of the front was vertically well mixed. Gradient Richardson number estimates suggest that the flow between the stratified and mixed water was near the threshold 0.25 for shear instability. Meanwhile, the density gradient would provide an initial baroclinic contribution to velocity convergence, which is indicated by the accumulation of buoyant matter such as foam, grass, and debris into a sharply defined line along the surface. The front migrates with the flood current, with a local maximum towards the eastern side of the channel, leading to an asymmetrical shape with the eastern side of the front driven further into the Tiaozhoumen tidal channel.

  10. The Southern Ocean's role in ocean circulation and climate transients

    NASA Astrophysics Data System (ADS)

    Thompson, A. F.; Stewart, A.; Hines, S.; Adkins, J. F.

    2017-12-01

    The ventilation of deep and intermediate density classes at the surface of the Southern Ocean impacts water mass modification and the air-sea exchange of heat and trace gases, which in turn influences the global overturning circulation and Earth's climate. Zonal variability occurs along the Antarctic Circumpolar Current and the Antarctic margins related to flow-topography interactions, variations in surface boundary conditions, and exchange with northern basins. Information about these zonal variations, and their impact on mass and tracer transport, are suppressed when the overturning is depicted as a two-dimensional (depth-latitude) streamfunction. Here we present an idealized, multi-basin, time-dependent circulation model that applies residual circulation theory in the Southern Ocean and allows for zonal water mass transfer between different ocean basins. This model efficiently determines the temporal evolution of the ocean's stratification, ventilation and overturning strength in response to perturbations in the external forcing. With this model we explore the dynamics that lead to transitions in the circulation structure between multiple, isolated cells and a three-dimensional, "figure-of-eight," circulation in which traditional upper and lower cells are interleaved. The transient model is also used to support a mechanistic explanation of the hemispheric asymmetry and phase lag associated with Dansgaard-Oeschger (DO) events during the last glacial period. In particular, the 200 year lag in southern hemisphere temperatures, following a perturbation in North Atlantic deep water formation, depends critically on the migration of Southern Ocean isopycnal outcropping in response to low-latitude stratification changes. Our results provide a self-consistent dynamical framework to explain various ocean overturning transitions that have occurred over the Earth's last 100,000 years, and motivate an exploration of these mechanisms in more sophisticated climate models.

  11. The Ocean`s Thermohaline Circulation in a Fish Tank

    NASA Astrophysics Data System (ADS)

    Lavender, K.; Joyce, P.; Graziano, L.; Harris, S.; Jaroslow, G.; Lea, C.; Schell, J.; Witting, J.

    2005-12-01

    This demonstration develops intuition about density stratification, a concept critical to understanding the ocean`s thermohaline circulation. In addition, students learn how temperature and salinity affect density, how these characteristics may be density-compensating, and students gain practice in graphing and interpreting vertical profiles and temperature-salinity (T-S) diagrams. The demonstration requires a rectangular fish tank (5-10 gallons) with a plexiglass partition, preparation of three colored ''water masses'' representing surface water (warm and fresh), ''mystery'' Mediterranean Water (warm and salty), and North Atlantic Deep Water (NADW; cold and salty), a kitchen sponge, and a temperature and salinity probe. Density may be computed using an Equation of State calculator (e.g. online version at http://fermi.jhuapl.edu/denscalc.html). The larger side of the fish tank is filled halfway with NADW, then surface water is layered on top by carefully pouring it on a floating sponge. A student volunteer measures the temperature and salinity of the two water masses, while another computes the densities. Students draw vertical profiles and T-S diagrams representing the temperature, salinity, and density of the water column. The properties of the ''mystery'' water are measured and students predict what will happen when the water is poured on the opposite side of the partition and is allowed to overflow into the layered water. If the density gradients are sufficiently large, a beautiful internal wave develops as the mystery water overflows the sill and becomes intermediate Mediterranean Water. If time permits, having a student blow on the surface illustrates the limited influence of ''wind'' with depth; an internal wave may by forced by depressing the thermocline with a large, flat spoon; and pouring extra NADW on the sponge floating at the surface may illustrate deep convection.

  12. Hydrographic variability in Bahia De La Paz, B. C. S, Mexico, during the 1997 1998 El Niño

    NASA Astrophysics Data System (ADS)

    Obeso-Nieblas, M.; Shirasago, B.; Sánchez-Velasco, L.; Gaviño-Rodriguez, J. H.

    2004-03-01

    Bahía de La Paz is an integral part of the coast of the Gulf of California and is the biggest bay of the eastern side of the Baja California Peninsula. Dynamic forcing and water interchange occur between the bay and the gulf through two different openings, the main and deep North Mouth with 350-m depth and the shallow San Lorenzo Channel with an average depth of 10 m. To determine the oceanographic conditions before and during El Niño 1997-1998 in Bahia de La Paz, CTD data were collected in four surveys aboard the research yacht CICIMAR XV during July 1996, March 1997, July 1997, and March 1998. The results revealed important variations in the hydrographic structure of the bay, both in space and time. The two summers had a complete absence of the mixed layer with a sharper thermocline during summer 1996 (0.25°C/m) than in summer 1997 (0.21°C/m). Additionally, the entire water column experienced an average temperature increase from 1.5°C at the surface with a maximum of 4.2°C to 28 m and around 1°C between 100 and 350 m, showing a halocline structure in summer 1997. At the end of the winters of 1997 and 1998, a 50-m mixed layer was detected, with higher average temperatures of 2.3°C in winter 1998. The temperature differences decreased with depth and were the same at 340 m with no traces of the halocline in winter 1998. The increase of temperature observed in the study area during the periods affected by El Niño 1997-1998 resulted in a sinking of the thermocline and isotherms, showing the strongest effect of this warming (>4°C) in the surface layer to 70 m during summer 1997. The stratification increased during the El Niño and was more evident in the period of small stratification in the region (winter) as showed by the φ parameter with values of 45 J/m3 in 1998 and 29 J/m3 in 1997, whereas during the strong stratification period (summer) the difference was small, with values of 137 J/m3 in 1996 and 139 J/m3 in 1997. In periods not affected by El Niño, the Gulf of California and the Subtropical Subsurface Waters are usually present in the bay, but during this episode their presence varies in space. Additionally, Surface Equatorial Water was found in the bay, mainly at the end of winter 1998 and with some traces in summer 1997.

  13. The effects of season and sand mining activities on thermal regime and water quality in a large shallow tropical lake.

    PubMed

    Sharip, Zati; Zaki, Ahmad Taqiyuddin Ahmad

    2014-08-01

    Thermal structure and water quality in a large and shallow lake in Malaysia were studied between January 2012 and June 2013 in order to understand variations in relation to water level fluctuations and in-stream mining activities. Environmental variables, namely temperature, turbidity, dissolved oxygen, pH, electrical conductivity, chlorophyll-A and transparency, were measured using a multi-parameter probe and a Secchi disk. Measurements of environmental variables were performed at 0.1 m intervals from the surface to the bottom of the lake during the dry and wet seasons. High water level and strong solar radiation increased temperature stratification. River discharges during the wet season, and unsustainable sand mining activities led to an increased turbidity exceeding 100 NTU, and reduced transparency, which changed the temperature variation and subsequently altered the water quality pattern.

  14. Satellite detection of phytoplankton export from the mid-Atlantic Bight during the 1979 spring bloom

    NASA Technical Reports Server (NTRS)

    Walsh, J. J.; Dieterle, D. A.; Esaias, W. E.

    1986-01-01

    Analysis of Coastal Zone Color Scanner (CZCS) imagery confirms shipboard and in situ moored fluorometer observations of resuspension of near-bottom chlorophyll within surface waters (1 to 10 m) by northwesterly wind events in the mid-Atlantic Bight. As much as 8 to 16 micrograms chl/l are found during these wind events from March to May, with a seasonal increase of algal biomass until onset of stratification of the water column. Rapid sinking or downwelling apparently occurs after subsequent wind events, however, such that the predominant surface chlorophyll pattern is approx. 0.5 to 1.5 micrograms/l over the continental shelf during most of the spring bloom. Perhaps half of the chlorophyll increase observed by satellite during a wind resuspension event represents in-situ production during the 4 to 5 day interval, with the remainder attributed to accumulation of algal biomass previously produced and temporarily stored within near-bottom water. Present calculations suggest that about 10% of the primary production of the spring bloom may be exported as ungrazed phytoplankton carbon from mid-Atlantic shelf waters to those of the continental slope.

  15. Non-monotonous dependence of the ocean surface drag coefficient on the hurricane wind speed due to the fragmentation of the ocean-atmosphere interface

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yu. I.; Ermakova, O. S.; Kandaurov, A. A.; Kozlov, D. S.; Sergeev, D. A.; Zilitinkevich, S. S.

    2017-11-01

    Influence of the spray generation due to the fragmentation of the "bag-breakup" type on momentum exchange in the atmospheric boundary layer above the sea surface at hurricane winds was investigated on the basis of the analysis of the results of laboratory experiments. It was shown that aerodynamic drag is determined by the contribution of three factors: first, the drag of the "bag-breakup" canopies as obstacles; second, acceleration of the spray formed during fragmentation by the air flow; and the third factor is related to the stratification of the near-water atmospheric layer due to the presence of levitated water droplets. Combination of all three factors leads to a non-monotonous dependence of the aerodynamic drag coefficient on wind speed, which confirms the results of the field and laboratory measurements.

  16. Possible mechanism linking ocean conditions to low body weight and poor recruitment of age-0 walleye pollock (Gadus chalcogrammus) in the southeast Bering Sea during 2007

    NASA Astrophysics Data System (ADS)

    Gann, Jeanette C.; Eisner, Lisa B.; Porter, Steve; Watson, Jordan T.; Cieciel, Kristin D.; Mordy, Calvin W.; Yasumiishi, Ellen M.; Stabeno, Phyllis J.; Ladd, Carol; Heintz, Ron A.; Farley, Edward V.

    2016-12-01

    Changes to physical and chemical oceanographic structure can lead to changes in phytoplankton biomass and growth, which, in-turn, lead to variability in the amount of energy available for transfer to higher trophic levels (e.g., forage fish). In general, age-0 (juvenile) walleye pollock (Gadus chalcogrammus) have been shown to have low fitness (determined by energy density and size), in warm years compared to average or cold years in the southeastern Bering Sea. Contrary to these findings, the year 2007 was a cold year with low fitness of age-0 pollock compared to the transition year of 2006 (transitioning from warm to cold conditions) and cold years, 2008-2011. In late summer/early fall (mid-August through September), significantly lower surface silicic acid concentrations coupled with low phytoplankton production and chlorophyll a (Chl a) biomass were observed in 2007 among 2006-2012 (P<0.05). We postulate that the low silicic acid concentrations may be an indication of reduced surface nutrient flux during summer, leading to low primary productivity (PP). The nutrient replenishing shelf/slope water exchange that occurred during late October-February (2006-2007) indicates that deep-water nutrient/salinity reserves for the start of the 2007 growing season were plentiful and had similar concentrations to other years (2006-2012). The spring bloom magnitude appeared to be slightly below average, and surface silicic acid concentrations at the end of the spring bloom period in 2007 appeared similar to other years in the middle domain of the southeastern Bering Sea. However, during summer (June-August) 2007, high stratification and the low number of storm events resulted in low flux of nutrients to surface waters, indicated by the low surface silicic acid concentrations at the end of summer (mid-August through September). Surface silicic acid may be useful as an indicator of surface nutrient enrichment (and subsequent PP) during summer since other macronutrients (e.g. nitrate) are usually near or below detection limits at this time, and diatoms are generally scarce during summer. Surface silicic acid concentration was also positively associated with the size of juvenile fish (age-0 pollock weight and length). This reinforces the theory that nutrient availability and primary productivity are important to energy allocation for higher trophic levels during summer, and possibly provides links between stratification and wind mixing, surface nutrient input, PP and juvenile fish size and condition.

  17. Controls on dissolved organic matter (DOM) degradation in a headwater stream: the influence of photochemical and hydrological conditions in determining light-limitation or substrate-limitation of photo-degradation

    NASA Astrophysics Data System (ADS)

    Cory, R. M.; Harrold, K. H.; Neilson, B. T.; Kling, G. W.

    2015-07-01

    We investigated how absorption of sunlight by chromophoric dissolved organic matter (CDOM) controls the degradation and export of DOM from Imnavait Creek, a beaded stream in the Alaskan Arctic. We measured concentrations of dissolved organic carbon (DOC), as well as concentrations and characteristics of CDOM and fluorescent dissolved organic matter (FDOM), during ice-free periods of 2011-2012 in the pools of Imnavait Creek and in soil waters draining to the creek. Spatial and temporal patterns in CDOM and FDOM in Imnavait Creek were analyzed in conjunction with measures of DOM degradation by sunlight and bacteria and assessments of hydrologic residence times and in situ UV exposure. CDOM was the dominant light attenuating constituent in the UV and visible portion of the solar spectrum, with high attenuation coefficients ranging from 86 ± 12 m-1 at 305 nm to 3 ± 1 m-1 in the photosynthetically active region (PAR). High rates of light absorption and thus light attenuation by CDOM contributed to thermal stratification in the majority of pools in Imnavait Creek under low-flow conditions. In turn, thermal stratification increased the residence time of water and DOM, and resulted in a separation of water masses distinguished by contrasting UV exposure (i.e., UV attenuation by CDOM with depth resulted in bottom waters receiving less UV than surface waters). When the pools in Imnavait Creek were stratified, DOM in the pool bottom water closely resembled soil water DOM in character, while the concentration and character of DOM in surface water was reproduced by experimental photo-degradation of bottom water. These results, in combination with water column rates of DOM degradation by sunlight and bacteria, suggest that photo-degradation is the dominant process controlling DOM fate and export in Imnavait Creek. A conceptual model is presented showing how CDOM amount and lability interact with incident UV light and water residence time to determine whether photo-degradation is "light-limited" or "substrate-limited". We suggest that degradation, and thus export, of DOM in CDOM-rich streams or ponds similar to Imnavait is typically light-limited under most flow conditions.

  18. Controls on dissolved organic matter (DOM) degradation in a headwater stream: the influence of photochemical and hydrological conditions in determining light-limitation or substrate-limitation of photo-degradation

    NASA Astrophysics Data System (ADS)

    Cory, R. M.; Harrold, K. H.; Neilson, B. T.; Kling, G. W.

    2015-11-01

    We investigated how absorption of sunlight by chromophoric dissolved organic matter (CDOM) controls the degradation and export of DOM from Imnavait Creek, a beaded stream in the Alaskan Arctic. We measured concentrations of dissolved organic carbon (DOC), as well as concentrations and characteristics of CDOM and fluorescent dissolved organic matter (FDOM), during ice-free periods of 2011-2012 in the pools of Imnavait Creek and in soil waters draining to the creek. Spatial and temporal patterns in CDOM and FDOM in Imnavait Creek were analyzed in conjunction with measures of DOM degradation by sunlight and bacteria and assessments of hydrologic residence times and in situ UV exposure. CDOM was the dominant light attenuating constituent in the UV and visible portion of the solar spectrum, with high attenuation coefficients ranging from 86 ± 12 m-1 at 305 nm to 3 ± 1 m-1 in the photosynthetically active region (PAR). High rates of light absorption and thus light attenuation by CDOM contributed to thermal stratification in the majority of pools in Imnavait Creek under low-flow conditions. In turn, thermal stratification increased the residence time of water and DOM, and resulted in a separation of water masses distinguished by contrasting UV exposure (i.e., UV attenuation by CDOM with depth resulted in bottom waters receiving less UV than surface waters). When the pools in Imnavait Creek were stratified, DOM in the pool bottom water closely resembled soil water DOM in character, while the concentration and character of DOM in surface water was reproduced by experimental photo-degradation of bottom water. These results, in combination with water column rates of DOM degradation by sunlight and bacteria, suggest that photo-degradation is the dominant process controlling DOM fate and export in Imnavait Creek. A conceptual model is presented showing how CDOM amount and lability interact with incident UV light and water residence time to determine whether photo-degradation is "light-limited" or "substrate-limited". We suggest that degradation of DOM in CDOM-rich streams or ponds similar to Imnavait is typically light-limited under most flow conditions. Thus, export of DOM from this stream will be less under conditions that increase the light available for DOM photo-degradation (i.e., low flows, sunny days).

  19. Germination Conditions For Poison Ivy

    Treesearch

    Nathan M. Schiff; Kristina F. Connor; Margaret S. Devall

    2004-01-01

    Several scarification and stratification treatments were tested to optimize germination conditions for poison ivy [Toxicodendron radicans (L.) Kunst]. Fall-collected seeds soaked for 1 hour in water showed increasing germination with increasing stratification. Scarification with concentrated sulphuric acid for 30 minutes resulted in approximately 65...

  20. Utilising monitoring and modelling of estuarine environments to investigate catchment conditions responsible for stratification events in a typically well-mixed urbanised estuary

    NASA Astrophysics Data System (ADS)

    Lee, Serena B.; Birch, Gavin F.

    2012-10-01

    Estuarine health is affected by contamination from stormwater, particularly in highly-urbanised environments. For systems where catchment monitoring is insufficient, novel techniques must be employed to determine the impact of urban runoff on receiving water bodies. In the present work, estuarine monitoring and modelling were successfully employed to determine stormwater runoff volumes and establish an appropriate rainfall/runoff relationship capable of replicating fresh-water discharge due to the full range of precipitation conditions in the Sydney Estuary, Australia. Using estuary response to determine relationships between catchment rainfall and runoff is a widely applicable method and may be of assistance in the study of waterways where monitoring fluvial discharges is not practical or is beyond the capacity of management authorities. For the Sydney Estuary, the SCS-CN method replicated rainfall/runoff and was applied in numerical modelling experiments investigating the hydrodynamic characteristics affecting stratification and estuary recovery following high precipitation. Numerical modelling showed stratification in the Sydney Estuary was dominated by fresh-water discharge. Spring tides and up-estuary winds contributed to mixing and neap tides and down-estuary winds enhanced stratification.

  1. Numerical simulation of idealized front motion in neutral and stratified atmosphere with a hyperbolic system of equations

    NASA Astrophysics Data System (ADS)

    Yudin, M. S.

    2017-11-01

    In the present paper, stratification effects on surface pressure in the propagation of an atmospheric gravity current (cold front) over flat terrain are estimated with a non-hydrostatic finite-difference model of atmospheric dynamics. Artificial compressibility is introduced into the model in order to make its equations hyperbolic. For comparison with available simulation data, the physical processes under study are assumed to be adiabatic. The influence of orography is also eliminated. The front surface is explicitly described by a special equation. A time filter is used to suppress the non-physical oscillations. The results of simulations of surface pressure under neutral and stable stratification are presented. Under stable stratification the front moves faster and shows an abrupt pressure jump at the point of observation. This fact is in accordance with observations and the present-day theory of atmospheric fronts.

  2. Ichthyoplankton spatial distribution and its relation with water column stratification in fjords of southern Chile (46°48‧-50°09‧S) in austral spring 1996 and 2008

    NASA Astrophysics Data System (ADS)

    Bustos, Claudia A.; Landaeta, Mauricio F.; Balbontín, Fernando

    2011-03-01

    The occidental shore of the southern tip of South America is one of the largest estuarine ecosystems around the world. Although demersal finfish fisheries are currently in full exploitation in the area, the fjords south of 47°S have been poorly investigated. Two bio-oceanographic cruises carried out in austral spring 1996 and 2008 between 47°S and 50°09'S were utilized to investigate the spatial distribution of fish eggs and larvae. Small differences in the environmental conditions were identified in the top 200 m of the water column between years (5.3-10.5 °C and 0.7-33.9 units of salinity in October 1996; 6.3-11.5 °C and 1.2-34.2 units of salinity in November 2008). The low salinity surface layer generated a highly stable water column within the fjords (Brunt-Väisälä frequency, N>0.1 rad/s; wave period <60 s), whereas a well-mixed water column occurred in the gulfs and open channels. For both years, the ichthyoplankton analysis showed that early life stages of lightfish Maurolicus parvipinnis were dominant (>75% total eggs and >70% total larvae) and they were collected throughout the area, irrespective of the water column stratification. However, other components of the ichthyoplankton such as Falkland sprat Sprattus fuegensis, rockfish Sebastes oculatus, and hoki Macruronus magellanicus were more abundant and found in a wider range of larval sizes in less stable waters ( N<0.1 rad/s). Oceanic taxa such as myctophids ( Lampanyctodes hectoris) and gonostomatids ( Cyclothone sp.) were collected exclusively in open waters. The October 1996 observation of Engraulis ringens eggs in plankton samples corresponded to the southernmost record of early stages of this fish in the Pacific Ocean. We found a significant negative relationship between the number of larval species and N, and a significant positive relationship between the number of larval species and wave period. Therefore, only some marine fish species are capable to utilize fjords systems as spawning and nursery grounds in areas having high amounts of freshwater discharges and very high vertical stratification during austral spring season.

  3. Nearshore Fish Distributions in an Alaskan Estuary in Relation to Stratification, Temperature and Salinity

    NASA Astrophysics Data System (ADS)

    Abookire, A. A.; Piatt, J. F.; Robards, M. D.

    2000-07-01

    Fish were sampled with beach seines and small-meshed beam trawls in nearshore (<1 km) and shallow (<25 m) habitats on the southern coast of Kachemak Bay, Cook Inlet, Alaska, from June to August, 1996-1998. Fish distributions among habitats were analysed for species composition, catch-per-unit-effort (CPUE) and frequency of occurrence. Two oceanographically distinct areas of Kachemak Bay were sampled and compared: the Outer Bay and the Inner Bay. Outer Kachemak Bay is exposed and receives oceanic, upwelled water from the Gulf of Alaska, whereas the Inner Bay is more estuarine. Thermohaline properties of bottom water in the Outer and Inner Bay were essentially the same, whereas the Inner Bay water-column was stratified with warmer, less saline waters near the surface. Distribution and abundance of pelagic schooling fish corresponded with area differences in stratification, temperature and salinity. The Inner Bay supported more species and higher densities of schooling and demersal fish than the Outer Bay. Schooling fish communities sampled by beach seine differed between the Outer and Inner Bays. Juvenile and adult Pacific sand lance ( Ammodytes hexapterus), Pacific herring ( Clupea harengus pallasi), osmerids (Osmeridae) and sculpins (Cottidae) were all more abundant in the Inner Bay. Gadids (Gadidae) were the only schooling fish taxa more abundant in the Outer Bay. Thermohaline characteristics of bottom water were similar throughout Kachemak Bay. Correspondingly, bottom fish communities were similar in all areas. Relative abundances (CPUE) were not significantly different between areas for any of the five demersal fish groups: flatfishes (Pleuronectidae), ronquils (Bathymasteridae), sculpins (Cottidae), gadids (Gadidae) and pricklebacks (Stichaeidae).

  4. Nearshore fish distributions in an Alaskan estuary in relation to stratification, temperature, and salinity

    USGS Publications Warehouse

    Abookire, Alisa A.; Piatt, John F.; Robards, Martin D.

    2000-01-01

    Fish were sampled with beach seines and small-meshed beam trawls in nearshore ( < 1 km) and shallow ( < 25 m) habitats on the southern coast of Kachemak Bay, Cook Inlet, Alaska, from June to August, 1996-1998. Fish distributions among habitats were analysed for species composition, catch-per-unit-effort (CPUE) and frequency of occurrence. Two oceanographically distinct areas of Kachemak Bay were sampled and compared: the Outer Bay and the Inner Bay. Outer Kachemak Bay is exposed and receives oceanic, upwelled water from the Gulf of Alaska, whereas the Inner Bay is more estuarine. Thermohaline properties of bottom water in the Outer and Inner Bay were essentially the same, whereas the Inner Bay water-column was stratified with warmer, less saline waters near the surface. Distribution and abundance of pelagic schooling fish corresponded with area differences in stratification, temperature and salinity. The Inner Bay supported more species and higher densities of schooling and demersal fish than the Outer Bay. Schooling fish communities sampled by beach seine differed between the Outer and Inner Bays. Juvenile and adult Pacific sand lance (Ammodytes hexapterus), Pacific herring (Clupea harengus pallasi), osmerids (Osmeridae) and sculpins (Cottidae) were all more abundant in the Inner Bay. Gadids (Gadidae) were the only schooling fish taxa more abundant in the Outer Bay. Thermohaline characteristics of bottom water were similar throughout Kachemak Bay. Correspondingly, bottom fish communities were similar in all areas. Relative abundances (CPUE) were not significantly different between areas for any of the five demersal fish groups: flatfishes (Pleuronectidae), ronquils (Bathymasteridae), sculpins (Cottidae), gadids (Gadidae) and pricklebacks (Stichaeidae).

  5. Observations and analysis of a stratification-destratification event in a tropical estuary

    NASA Astrophysics Data System (ADS)

    Uncles, R. J.; Ong, J. E.; Gong, W. K.

    1990-11-01

    A data set comprising 31 continuous tidal cycles was collected in the Sungai Merbok Estuary, Malaysia, in June 1987 as part of an ecological study of nutrient fluxes from a tropical mangrove estuary. Currents, salinity and salinity stratification at a deep-channel (15 m) station near the mouth of the Merbok Estuary showed a pronounced spring-neap variability. The slow currents and weak vertical mixing at neap tides favoured the formation of a stratified water column and generated a neap-spring cycle of water column stabilization and destabilization. A strong stratification event occurred during the period of observations. This was partly driven by a modest freshwater spate which coincided with neap tides. An eddy viscosity-diffusivity model of the stratification, which assumed a constant, longitudinal salinity gradient, demonstrated a pronounced stratification-destratification cycle due to neap-spring variations in vertical mixing. Larger and more realistic stratification was modelled when the estimated, time-varying longitudinal salinity gradient was incorporated. This gradient maximized in response to the peak in freshwater runoff. The measured and modelled density-driven circulations showed qualitative similarities and were of the order of 10 cm s -1 at neap tides. The circulation was weaker during spring tides. The tidally-filtered salt transport due to vertical shear was directed up-estuary and was an order of magnitude smaller during spring tides. The results are discussed in terms of their relevance to mangrove system oceanography.

  6. Recycling irrigation reservoir stratification and implications for crop health and production.

    USDA-ARS?s Scientific Manuscript database

    Stratification is often assumed to only take place in deep water bodies. Recycling irrigation reservoirs often are shallow; however, they receive agricultural runoff containing elevated concentrations of nutrients and sediments. This study investigated the temperature, dissolved oxygen and pH charac...

  7. Design of an efficient electrolyte circulation system for the lead-acid battery

    NASA Astrophysics Data System (ADS)

    Thuerk, D.

    The design and operation of an electrolyte circulation system are described. Application of lead acid batteries to electric vehicle and other repetitive deep cycle services produces a nondesirable state in the battery cells, electrolyte stratification. This stratification is the result of acid and water generation at the electrodes during cycling. With continued cycling, the extent of the stratification increases and prevents complete charging with low percentages of overcharge. Ultimately this results in extremely short life for the battery system. The stratification problem was overcome by substantially overcharging the battery. This abusive overcharge produces gassing rates sufficient to mix the electrolyte during the end portion of the charge. Overcharge, even though it is required to eliminate stratification, produces the undesirable results related to high voltage and gassing rates.

  8. Apparatus for draining lower drywell pool water into suppresion pool in boiling water reactor

    DOEpatents

    Gluntz, Douglas M.

    1996-01-01

    An apparatus which mitigates temperature stratification in the suppression pool water caused by hot water drained into the suppression pool from the lower drywell pool. The outlet of a spillover hole formed in the inner bounding wall of the suppression pool is connected to and in flow communication with one end of piping. The inlet end of the piping is above the water level in the suppression pool. The piping is routed down the vertical downcomer duct and through a hole formed in the thin wall separating the downcomer duct from the suppression pool water. The piping discharge end preferably has an elevation at or near the bottom of the suppression pool and has a location in the horizontal plane which is removed from the point where the piping first emerges on the suppression pool side of the inner bounding wall of the suppression pool. This enables water at the surface of the lower drywell pool to flow into and be discharged at the bottom of the suppression pool.

  9. Investigating Summer Thermal Stratification in Lake Ontario

    NASA Astrophysics Data System (ADS)

    James, S. C.; Arifin, R. R.; Craig, P. M.; Hamlet, A. F.

    2017-12-01

    Seasonal temperature variations establish strong vertical density gradients (thermoclines) between the epilimnion and hypolimnion. Accurate simulation of vertical mixing and seasonal stratification of large lakes is a crucial element of the thermodynamic coupling between lakes and the atmosphere in integrated models. Time-varying thermal stratification patterns can be accurately simulated with the versatile Environmental Fluid Dynamics Code (EFDC). Lake Ontario bathymetry was interpolated onto a 2-km-resolution curvilinear grid with vertical layering using a new approach in EFDC+, the so-called "sigma-zed" coordinate system which allows the number of vertical layers to be varied based on water depth. Inflow from the Niagara River and outflow to the St. Lawrence River in conjunction with hourly meteorological data from seven local weather stations plus three-hourly data from the North American Regional Reanalysis govern the hydrodynamic and thermodynamic responses of the Lake. EFDC+'s evaporation algorithm was updated to more accurately simulate net surface heat fluxes. A new vertical mixing scheme from Vinçon-Leite that implements different eddy diffusivity formulations above and below the thermocline was compared to results from the original Mellor-Yamada vertical mixing scheme. The model was calibrated by adjusting solar-radiation absorption coefficients in addition to background horizontal and vertical mixing parameters. Model skill was evaluated by comparing measured and simulated vertical temperature profiles at shallow (20 m) and deep (180 m) locations on the Lake. These model improvements, especially the new sigma-zed vertical discretization, accurately capture thermal-stratification patterns with low root-mean-squared errors when using the Vinçon-Leite vertical mixing scheme.

  10. Rainfall-enhanced blooming in typhoon wakes

    PubMed Central

    Lin, Y.-C.; Oey, L.-Y.

    2016-01-01

    Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm. PMID:27545899

  11. Rainfall-enhanced blooming in typhoon wakes.

    PubMed

    Lin, Y-C; Oey, L-Y

    2016-08-22

    Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm.

  12. Rainfall-enhanced blooming in typhoon wakes

    NASA Astrophysics Data System (ADS)

    Lin, Y.-C.; Oey, L.-Y.

    2016-08-01

    Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm.

  13. Rainfall-enhanced blooming in typhoon wakes

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Oey, L. Y.

    2016-12-01

    Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm.

  14. The sign, magnitude and potential drivers of change in surface water extent in Canadian tundra

    NASA Astrophysics Data System (ADS)

    Carroll, Mark L.; Loboda, Tatiana V.

    2018-04-01

    The accelerated rate of warming in the Arctic has considerable implications for all components of ecosystem functioning in the High Northern Latitudes. Changes to hydrological cycle in the Arctic are particularly complex as the observed and projected warming directly impacts permafrost and leads to variable responses in surface water extent which is currently poorly characterized at the regional scale. In this study we take advantage of the 30 plus years of medium resolution (30 m) Landsat data to quantify the spatial patterns of change in the extent of water bodies in the Arctic tundra in Nunavut, Canada. Our results show a divergent pattern of change—growing surface water extent in the north-west and shrinking in the south-east—which is not a function of the overall distribution of surface water in the region. The observed changes cannot be explained by latitudinal stratification, nor is it explained by available temperature and precipitation records. However, the sign of change appears to be consistent within the boundaries of individual watersheds defined by the Canada National Hydro Network based on the random forest analysis. Using land cover maps as a proxy for ecological function we were able to link shrinking tundra water bodies to substrates with shallow soil layers (i.e. bedrock and barren landscapes) with a moderate correlation (R 2 = 0.46, p < 0.001). It has previously been reported that rising temperatures are driving a deepening of the active layer and shrinking water bodies can be associated with coarse textured soils beneath the lakes. Unlike water bodies with soil, or gravel, beneath them the water bodies that are situated on bedrock are likely cut off from ground water. Drying water bodies clustered in areas of bedrock and thin soils points to evaporation as an important driver of surface water decrease in these cases.

  15. Turbulence suppression at water density interfaces: observations under moderate wind forcing.

    NASA Astrophysics Data System (ADS)

    Marcello Falcieri, Francesco; Kanth, Lakshmi H.; Benetazzo, Alvise; Bergamasco, Andrea; Bonaldo, Davide; Barbariol, Francesco; Malačič, Vlado; Sclavo, Mauro; Carniel, Sandro

    2016-04-01

    Water column stratification has a strong influence on the behaviour of turbulence kinetic energy (TKE) dissipation rates. Density gradient interfaces, due to thermohaline characteristics and to suspended sediment concentration, can act as a barrier and significantly damp TKE. Between January 30th - February 4th 2014 (CARPET2014 oceanographic campaign on R/V URANIA) we collected the very first turbulence data in the Gulf of Trieste (a small bay located in the North-eartern part of the Adriatic Sea). Observation consisted of 38 CTD casts and 478 microstructure profiles (145 ensembles) collected with a free-falling probe (MSS90L). Among those 48 were grouped in three sets of yoyo casts, each lasting for about 12 consecutive hours. The meteorological conditions during the campaign were of moderate wind (average wind speed 10 m s-1) and heat flux (net negative heat flux ranging from 150 to 400 W m-2). The water column characteristics in the Gulf during the campaign evolved from well-mixed to stratified conditions with waters intruding from the Adriatic Sea at the bottom. Two types of water intrusions were found during yoyo casts: one coming from the Adriatic Sea northern coast (i.e. warmer, saltier and more turbid) and one coming from the open sea in front of the Po Delta (i.e. cooler, fresher and less turbid). Our observations show that under moderate wind forcing, the GOT was not completely mixed due to the interfaces created by the bottom waters intruding from the open sea. The comparison of microstructure profiles collected during well mixed and stratified conditions permitted us to highlight the effect of different stratification on TKE dissipation rates. While during well mixed condition TKE profiles are governed just by their forcing, the two intrusions showed different impacts on TKE dissipation rate profiles. The coastal one, with high turbidity, acted as a barrier to surface driven turbulence dumping it of almost two order of magnitude, while the one coming from the open sea, with low sediment concentrations and a smaller vertical density gradient, was not able to suppress downward penetration of turbulence from the surface.

  16. Surface analysis and depth profiling of corrosion products formed in lead pipes used to supply low alkalinity drinking water.

    PubMed

    Davidson, C M; Peters, N J; Britton, A; Brady, L; Gardiner, P H E; Lewis, B D

    2004-01-01

    Modern analytical techniques have been applied to investigate the nature of lead pipe corrosion products formed in pH adjusted, orthophosphate-treated, low alkalinity water, under supply conditions. Depth profiling and surface analysis have been carried out on pipe samples obtained from the water distribution system in Glasgow, Scotland, UK. X-ray diffraction spectrometry identified basic lead carbonate, lead oxide and lead phosphate as the principal components. Scanning electron microscopy/energy-dispersive x-ray spectrometry revealed the crystalline structure within the corrosion product and also showed spatial correlations existed between calcium, iron, lead, oxygen and phosphorus. Elemental profiling, conducted by means of secondary ion mass spectrometry (SIMS) and secondary neutrals mass spectrometry (SNMS) indicated that the corrosion product was not uniform with depth. However, no clear stratification was apparent. Indeed, counts obtained for carbonate, phosphate and oxide were well correlated within the depth range probed by SIMS. SNMS showed relationships existed between carbon, calcium, iron, and phosphorus within the bulk of the scale, as well as at the surface. SIMS imaging confirmed the relationship between calcium and lead and suggested there might also be an association between chloride and phosphorus.

  17. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  18. Mathematical and physical modeling of thermal stratification phenomena in steel ladles

    NASA Astrophysics Data System (ADS)

    Putan, V.; Vilceanu, L.; Socalici, A.; Putan, A.

    2018-01-01

    By means of CFD numerical modeling, a systematic analysis of the similarity between steel ladles and hot-water model regarding natural convection phenomena was studied. The key similarity criteria we found to be dependent on the dimensionless numbers Fr and βΔT. These similarity criteria suggested that hot-water models with scale in the range between 1/5 and 1/3 and using hot water with temperature of 45 °C or higher are appropriate for simulating natural convection in steel ladles. With this physical model, thermal stratification phenomena due to natural convection in steel ladles were investigated. By controlling the cooling intensity of water model to correspond to the heat loss rate of steel ladles, which is governed by Fr and βΔT, the temperature profiles measured in the water bath of the model were to deduce the extent of thermal stratification in liquid steel bath in the ladles. Comparisons between mathematically simulated temperature profiles in the prototype steel ladles and those physically simulated by scaling-up the measured temperatures profiles in the water model showed good agreement. This proved that it is feasible to use a 1/5 scale water model with 45 °C hot water to simulate natural convection in steel ladles. Therefore, besides mathematical CFD models, the physical hot-water model provided an additional means of studying fluid flow and heat transfer in steel ladles.

  19. Noninvasive risk stratification for sudden death in asymptomatic patients with Wolff-Parkinson-White syndrome.

    PubMed

    Novella, John; DeBiasi, Ralph M; Coplan, Neil L; Suri, Ranji; Keller, Seth

    2014-01-01

    Sudden cardiac death (SCD) as the first clinical manifestation of Wolff-Parkinson-White (WPW) syndrome is a well-documented, although rare occurrence. The incidence of SCD in patients with WPW ranges from 0% to 0.39% annually. Controversy exists regarding risk stratification for patients with preexcitation on surface electrocardiogram (ECG), particularly in those who are asymptomatic. This article focuses on the role of risk stratification using exercise and pharmacologic testing in patients with WPW pattern on ECG.

  20. Modeling lateral circulation and its influence on the along-channel flow in a branched estuary

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; He, Qing; Shen, Jian

    2018-02-01

    A numerical modeling study of the influence of the lateral flow on the estuarine exchange flow was conducted in the north passage of the Changjiang estuary. The lateral flows show substantial variabilities within a flood-ebb tidal cycle. The strong lateral flow occurring during flood tide is caused primarily by the unique cross-shoal flow that induces a strong northward (looking upstream) barotropic force near the surface and advects saltier water toward the northern part of the channel, resulting in a southward baroclinic force caused by the lateral density gradient. Thus, a two-layer structure of lateral flows is produced during the flood tide. The lateral flows are vigorous near the flood slack and the magnitude can exceed that of the along-channel tidal flow during that period. The strong vertical shear of the lateral flows and the salinity gradient in lateral direction generate lateral tidal straining, which are out of phase with the along-channel tidal straining. Consequently, stratification is enhanced at the early stage of the ebb tide. In contrast, strong along-channel straining is apparent during the late ebb tide. The vertical mixing disrupts the vertical density gradient, thus suppressing stratification. The impact of lateral straining on stratification during spring tide is more pronounced than that of along-channel straining during late flood and early ebb tides. The momentum balance along the estuary suggests that lateral flow can augment the residual exchange flow. The advection of lateral flows brings low-energy water from the shoal to the deep channel during the flood tide, whereas the energetic water is moved to the shoal via lateral advection during the ebb tide. The impact of lateral flow on estuarine circulation of this multiple-channel estuary is different from single-channel estuary. A model simulation by blocking the cross-shoal flow shows that the magnitudes of lateral flows and tidal straining are reduced. Moreover, the reduced lateral tidal straining results in a decrease in vertical stratification from the late flood to early ebb tides during the spring tide. By contrast, the along-channel tidal straining becomes dominant. The model results illustrate the important dynamic linkage between lateral flows and estuarine dynamics in the Changjiang estuary.

  1. Stratification of centrifuged amoeba nuclei investigated by electron microscopy

    NASA Technical Reports Server (NTRS)

    Breyer, E. P.; Daniels, E. W.

    1968-01-01

    Study establishes a relationship between radioresistance and the nucleolar stratification characteristics of various amoeba species. Two species of fresh water amoeba are studied with the electron microscope. The report discusses the nature of nucleolar layers and their possible relationship to the differences in radiosensitivity of the two amoeba species.

  2. Pleistocene Indian Monsoon Rainfall Variability

    NASA Astrophysics Data System (ADS)

    Yirgaw, D. G.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Sijingeo, A. V.; Nath, B. N.; Frank, M.

    2014-12-01

    The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea. Here we investigate proxies for fresh water input and runoff in a region of strong monsoon precipitation that is a major moisture source for the east Asian Monsoon. A sediment core obtained by the IODP vessel JOIDES Resolution and a gravity core from the Alcock Seamount complex in the Andaman Sea are used to examine the past monsoon variability on the Indian sub-continent and directly over the ocean. The current dataset covers the last glacial and deglacial but will eventually provide a Pleistocene record. We utilise the ecological habitats of G. sacculifer and N. dutertrei to investigate the freshwater-induced stratification with paired Mg/Ca and δ18O analyses to estimate seawater δ18O (δ18Osw). During the last 60 kyrs, Ba/Ca ratios and δ18Osw values generally agree well between the two cores and suggest the weakest surface runoff and monsoon during the LGM and strongest monsoon during the Holocene. The difference in δ18O between the species, interpreted as a proxy for upper ocean stratification, implies stratification developed around 37 ka and remained relatively constant during the LGM, deglacial and Holocene. To investigate monsoon variability for intervals in the past, single shell Mg/Ca and δ18O analyses have been conducted. Mg/Ca ratios from individual shells of N. dutertrei suggest relatively small changes in temperature. However, individual N. dutertrei δ18O differ greatly between the mid-Holocene and samples from the LGM and a nearby core top. The mid-Holocene individuals have a greater range and large skew towards negative values indicating greater fresh water influence.

  3. Analysis of Thermal Structure of Arctic Lakes at Local and Regional Scales Using in Situ and Multidate Landsat-8 Data

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Liu, Hongxing; Hinkel, Kenneth; Yu, Bailang; Beck, Richard; Wu, Jianping

    2017-11-01

    The Arctic coastal plain is covered with numerous thermokarst lakes. These lakes are closely linked to climate and environmental change through their heat and water budgets. We examined the intralake thermal structure at the local scale and investigated the water temperature pattern of lakes at the regional scale by utilizing extensive in situ measurements and multidate Landsat-8 remote sensing data. Our analysis indicates that the lake skin temperatures derived from satellite thermal sensors during most of the ice-free summer period effectively represent the lake bulk temperature because the lakes are typically well-mixed and without significant vertical stratification. With the relatively high-resolution Landsat-8 thermal data, we were able to quantitatively examine intralake lateral temperature differences and gradients in relation to geographical location, topography, meteorological factors, and lake morphometry for the first time. Our results suggest that wind speed and direction not only control the vertical stratification but also influences lateral differences and gradients of lake surface temperature. Wind can considerably reduce the intralake temperature gradient. Interestingly, we found that geographical location (latitude, longitude, distance to the ocean) and lake morphometry (surface size, depth, volume) not only control lake temperature regionally but also affect the lateral temperature gradient and homogeneity level within each individual lake. For the Arctic coastal plain, at regional scales, inland and southern lakes tend to have larger horizontal temperature differences and gradients compared to coastal and northern lakes. At local scales, large and shallow lakes tend to have large lateral temperature differences relative to small and deep lakes.

  4. Interannual variability of Dissolved Oxygen values around the Balearic Islands

    NASA Astrophysics Data System (ADS)

    Balbín, R.; Aparicio, A.; López-Jurado, J. L.; Flexas, M. M.

    2012-04-01

    Periodic movements of the trawl fishing fleet at Mallorca Island suggest a seasonal variability of the demersal resources, associated with hydrodynamic variability. The area where these commercial fisheries operate extends from the north to the southeast of Mallorca channel, between Mallorca and Ibiza Islands. It is thus affected by the different hydrodynamic conditions of the two sub-basins of the western Mediterranean (the Balearic and the Algerian sub-basins), with different geomorphologic and hydrodynamic characteristics. To characterize this hydrodynamic variability, hydrographic data collected around the Balearic Islands since 2001 with CTDs were analized [1]. Hydrographic parameters were processed according to the standard protocols. Dissolved oxygen (DO) was calibrated onboard using the winkler method. Temperature and salinity were used to characterize the different water masses. At the Western Mediterranean, the maximum values of DO in the water column are observed in the sur- face waters during winter (> 6.0 ml /l), when these water in contact with the atmosphere absorb large amount of oxygen, favored by low winter temperatures and notable turbulence. Later in the spring, the gradual increase of temperature, and the beginning of stratification and biological activity, lead to a decrease of oxygen concentration mainly in surface waters. During summer, these values continue to reduce in the surface mixed layer. Below it, and due to the biological activity, an increase is observed, giving rise to the absolute maximum of this parameter (> 6.5 ml /l). During autumn, the atmospheric forcing breaks the stratification producing a homogenization of surface water. At this moment, DO shows intermediate values. Below the surface waters, about 200 m, a relative maximum corresponding to the seasonal Winter Intermediate Waters (WIW) can be observed. Intermediate waters, between 400 and 600 m, reveal an oxygen minimum (4.0 ml /l) associated to the Levantine Intermediate Waters (LIW) and underneath, the Western Mediterranean Deep Waters (WMDW) show a slight increase of these values (> 4.5 ml /l). Interannual variability of DO at the Balearic and the Algerian sub-basins and in the different water masses will be presented. A systematic difference (> 0.10 ml/l) is observed at intermediate and deep waters between the oxygen con- tent in the Balearic and Algerian sub-basins. This could be explained in terms of the longer path these water masses have to cover around the Mallorca and Menorca Islands, which implies a longer residence time and consumption as a result of respiration and decay of organic matter. During some campaigns minimum DO values (≈ 3.8 ml/l) were found in this area which are smaller that the values usually reported for the Mediterranean [2, 3, 4]. Different possible causes as the influence of the Easter Mediterranean Transient, the reported increase of surface temperature or just the interannual variability, will be discussed. [1] J. L. López-Jurado, J. M. García-Lafuente, L. Cano, et al., Oceanologica acta, vol. 18, no. 2, 1995. [2] T. Packard, H. Minas, B. Coste, R. Martinez, M. Bonin, J. Gostan, P. Garfield, J. Christensen, Q. Dortch, M. Minas, et al., Deep Sea Research Part A. Oceanographic Research Papers, vol. 35, no. 7, 1988. [3] B. Manca, M. Burca, A. Giorgetti, C. Coatanoan, M. Garcia,and A. Iona, Journal of marine systems, vol. 48, no. 1-4, 2004. [4] A. Miller, "Mediterranean sea atlas of temperature, salinity, and oxygen. profiles and data from cruises of RV Atlantis and RV Chain," tech. rep., Woods Hole Oceanographic Institution, Massachusetts, 1970.

  5. Stratification at the Earth's largest hyperacidic lake and its consequences

    NASA Astrophysics Data System (ADS)

    Caudron, Corentin; Campion, Robin; Rouwet, Dmitri; Lecocq, Thomas; Capaccioni, Bruno; Syahbana, Devy; Suparjan; Purwanto, Bambang Heri; Bernard, Alain

    2017-02-01

    Volcanic lakes provide windows into the interior of volcanoes as they integrate the heat flux discharged by a magma body and condense volcanic gases. Volcanic lake temperatures and geochemical compositions therefore typically serve as warnings for resumed unrest or prior to eruptions. If acidic and hot, these lakes are usually considered to be too convective to allow any stratification within their waters. Kawah Ijen volcano, featuring the largest hyperacidic lake on Earth (volume of 27 million m3), is less homogeneous than previously thought. Hourly temperature measurements reveal the development of a stagnant layer of cold waters (<30 °C), overlying warmer and denser water (generally above 30 °C and density ∼1.083 kg/m3). Examination of 20 yrs of historical records and temporary measurements show a systematic thermal stratification during rainy seasons. The yearly rupture of stratification at the end of the rainy season causes a sudden release of dissolved gases below the cold water layer which appears to generate a lake overturn, i.e. limnic eruption, and a resonance of the lake, i.e. a seiche, highlighting a new hazard for these extreme reservoirs. A minor non-volcanic event, such as a heavy rainfall or an earthquake, may act as a trigger. The density driven overturn requires specific salinity-temperature conditions for the colder and less saline top water layer to sink into the hot saline water. Spectacular degassing occurs when the dissolved gases, progressively stored during the rainy season due to a weakened diffusion of carbon dioxide in the top layer, are suddenly released. These findings challenge the homogenization assumption at acidic lakes and stress the need to develop appropriate monitoring setups.

  6. Effects of climate change on surface-water photochemistry: a review.

    PubMed

    De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide

    2014-10-01

    Information concerning the link between surface-water photochemistry and climate is presently very scarce as only a few studies have been dedicated to the subject. On the basis of the limited knowledge that is currently available, the present inferences can be made as follows: (1) Warming can cause enhanced leaching of ionic solutes from the catchments to surface waters, including cations and more biologically labile anions such as sulphate. Preferential sulphate biodegradation followed by removal as organic sulphides in sediment could increase alkalinity, favouring the generation of the carbonate radical, CO3 (·-). However, this phenomenon would be easily offset by fluctuations of the dissolved organic carbon (DOC), which is strongly anticorrelated with CO3 (·-). Therefore, obtaining insight into DOC evolution is a key issue in understanding the link between photochemistry and climate. (2) Climate change could exacerbate water scarcity in the dry season in some regions. Fluctuations in the water column could deeply alter photochemistry that is usually favoured in shallower waters. However, the way water is lost would strongly affect the prevailing photoinduced processes. Water outflow without important changes in solute concentration would mostly favour reactions induced by the hydroxyl and carbonate radicals (·OH and CO3 (·-)). In contrast, evaporative concentration would enhance reactions mediated by singlet oxygen ((1)O2) and by the triplet states of chromophoric dissolved organic matter ((3)CDOM*). (3) In a warmer climate, the summer stratification period of lakes would last longer, thereby enhancing photochemical reactions in the epilimnion but at the same time keeping the hypolimnion water in the dark for longer periods.

  7. Do predators influence the distribution of age-0 kokanee in a Colorado Reservoir?

    USGS Publications Warehouse

    Hardiman, J.M.; Johnson, B.M.; Martinez, P.J.

    2004-01-01

    Seasonal changes in reservoir conditions such as productivity, light, and temperature create spatiotemporal variation in habitat that may segregate or aggregate predators and prey, producing implications for the distribution, growth, and survival of fishes. We used hydroacoustics to document the diel vertical distribution of age-0 kokanee Oncorhynchus nerka relative to environmental gradients at Blue Mesa Reservoir, Colorado, during May-August of 2002. Temperature, light, and zooplankton density profiles were examined relative to foraging conditions for kokanee and their primary predator, lake trout Salvelinus namaycush. Age-0 kokanee displayed large diel vertical migrations in May despite the lack of an energetic advantage before reservoir stratification. Age-0 kokanee minimized near-surface foraging at this time, perhaps to avoid predation by visual predators, such as lake trout, in the well-lit surface waters. Strong reservoir stratification in midsummer appeared to provide a thermal refuge from lake trout that the kokanee exploited. By August vertical migrations were shallow and most kokanee remained in the epilimnion throughout the day. Although the energetic implications of the late-summer strategy are unclear, it appears that kokanee were responding to changes in their predator environment. A robust model for kokanee diel vertical migration across a range of systems should include a predator avoidance component.

  8. Potential Impacts of Offshore Wind Farms on North Sea Stratification

    PubMed Central

    Carpenter, Jeffrey R.; Merckelbach, Lucas; Callies, Ulrich; Clark, Suzanna; Gaslikova, Lidia; Baschek, Burkard

    2016-01-01

    Advances in offshore wind farm (OWF) technology have recently led to their construction in coastal waters that are deep enough to be seasonally stratified. As tidal currents move past the OWF foundation structures they generate a turbulent wake that will contribute to a mixing of the stratified water column. In this study we show that the mixing generated in this way may have a significant impact on the large-scale stratification of the German Bight region of the North Sea. This region is chosen as the focus of this study since the planning of OWFs is particularly widespread. Using a combination of idealised modelling and in situ measurements, we provide order-of-magnitude estimates of two important time scales that are key to understanding the impacts of OWFs: (i) a mixing time scale, describing how long a complete mixing of the stratification takes, and (ii) an advective time scale, quantifying for how long a water parcel is expected to undergo enhanced wind farm mixing. The results are especially sensitive to both the drag coefficient and type of foundation structure, as well as the evolution of the pycnocline under enhanced mixing conditions—both of which are not well known. With these limitations in mind, the results show that OWFs could impact the large-scale stratification, but only when they occupy extensive shelf regions. They are expected to have very little impact on large-scale stratification at the current capacity in the North Sea, but the impact could be significant in future large-scale development scenarios. PMID:27513754

  9. Potential Impacts of Offshore Wind Farms on North Sea Stratification.

    PubMed

    Carpenter, Jeffrey R; Merckelbach, Lucas; Callies, Ulrich; Clark, Suzanna; Gaslikova, Lidia; Baschek, Burkard

    2016-01-01

    Advances in offshore wind farm (OWF) technology have recently led to their construction in coastal waters that are deep enough to be seasonally stratified. As tidal currents move past the OWF foundation structures they generate a turbulent wake that will contribute to a mixing of the stratified water column. In this study we show that the mixing generated in this way may have a significant impact on the large-scale stratification of the German Bight region of the North Sea. This region is chosen as the focus of this study since the planning of OWFs is particularly widespread. Using a combination of idealised modelling and in situ measurements, we provide order-of-magnitude estimates of two important time scales that are key to understanding the impacts of OWFs: (i) a mixing time scale, describing how long a complete mixing of the stratification takes, and (ii) an advective time scale, quantifying for how long a water parcel is expected to undergo enhanced wind farm mixing. The results are especially sensitive to both the drag coefficient and type of foundation structure, as well as the evolution of the pycnocline under enhanced mixing conditions-both of which are not well known. With these limitations in mind, the results show that OWFs could impact the large-scale stratification, but only when they occupy extensive shelf regions. They are expected to have very little impact on large-scale stratification at the current capacity in the North Sea, but the impact could be significant in future large-scale development scenarios.

  10. Evolution of South Atlantic density and chemical stratification across the last deglaciation

    PubMed Central

    Skinner, Luke C.; Peck, Victoria L.; Kender, Sev; Elderfield, Henry; Waelbroeck, Claire; Hodell, David A.

    2016-01-01

    Explanations of the glacial–interglacial variations in atmospheric pCO2 invoke a significant role for the deep ocean in the storage of CO2. Deep-ocean density stratification has been proposed as a mechanism to promote the storage of CO2 in the deep ocean during glacial times. A wealth of proxy data supports the presence of a “chemical divide” between intermediate and deep water in the glacial Atlantic Ocean, which indirectly points to an increase in deep-ocean density stratification. However, direct observational evidence of changes in the primary controls of ocean density stratification, i.e., temperature and salinity, remain scarce. Here, we use Mg/Ca-derived seawater temperature and salinity estimates determined from temperature-corrected δ18O measurements on the benthic foraminifer Uvigerina spp. from deep and intermediate water-depth marine sediment cores to reconstruct the changes in density of sub-Antarctic South Atlantic water masses over the last deglaciation (i.e., 22–2 ka before present). We find that a major breakdown in the physical density stratification significantly lags the breakdown of the deep-intermediate chemical divide, as indicated by the chemical tracers of benthic foraminifer δ13C and foraminifer/coral 14C. Our results indicate that chemical destratification likely resulted in the first rise in atmospheric pCO2, whereas the density destratification of the deep South Atlantic lags the second rise in atmospheric pCO2 during the late deglacial period. Our findings emphasize that the physical and chemical destratification of the ocean are not as tightly coupled as generally assumed. PMID:26729858

  11. Evolution of South Atlantic density and chemical stratification across the last deglaciation.

    PubMed

    Roberts, Jenny; Gottschalk, Julia; Skinner, Luke C; Peck, Victoria L; Kender, Sev; Elderfield, Henry; Waelbroeck, Claire; Vázquez Riveiros, Natalia; Hodell, David A

    2016-01-19

    Explanations of the glacial-interglacial variations in atmospheric pCO2 invoke a significant role for the deep ocean in the storage of CO2. Deep-ocean density stratification has been proposed as a mechanism to promote the storage of CO2 in the deep ocean during glacial times. A wealth of proxy data supports the presence of a "chemical divide" between intermediate and deep water in the glacial Atlantic Ocean, which indirectly points to an increase in deep-ocean density stratification. However, direct observational evidence of changes in the primary controls of ocean density stratification, i.e., temperature and salinity, remain scarce. Here, we use Mg/Ca-derived seawater temperature and salinity estimates determined from temperature-corrected δ(18)O measurements on the benthic foraminifer Uvigerina spp. from deep and intermediate water-depth marine sediment cores to reconstruct the changes in density of sub-Antarctic South Atlantic water masses over the last deglaciation (i.e., 22-2 ka before present). We find that a major breakdown in the physical density stratification significantly lags the breakdown of the deep-intermediate chemical divide, as indicated by the chemical tracers of benthic foraminifer δ(13)C and foraminifer/coral (14)C. Our results indicate that chemical destratification likely resulted in the first rise in atmospheric pCO2, whereas the density destratification of the deep South Atlantic lags the second rise in atmospheric pCO2 during the late deglacial period. Our findings emphasize that the physical and chemical destratification of the ocean are not as tightly coupled as generally assumed.

  12. A 2D fluid motion model of the estuarine water circulation: Physical analysis of the salinity stratification in the Sebou estuary

    NASA Astrophysics Data System (ADS)

    Haddout, Soufiane; Maslouhi, Abdellatif; Magrane, Bouchaib

    2018-02-01

    Estuaries, which are coastal bodies of water connecting the riverine and marine environment, are among the most important ecosystems in the world. Saltwater intrusion is the movement of coastal saline water into an estuary, which makes up-estuary water, that becomes salty due to the mixing of freshwater with saltwater. It has become a serious environmental problem in the Sebou estuary (Morocco) during wet and dry seasons, which have a considerable impact on residential water supply, agricultural water supply as well as urban industrial production. The variations of salt intrusion, and the vertical stratification under different river flow conditions in the Sebou estuary were investigated in this paper using a two-dimensional numerical model. The model was calibrated and verified against water level variation, and salinity variation during 2016, respectively. Additionally, the model validation process showed that the model results fit the observed data fairly well ( R2 > 0.85, NSC > 0.89 and RMSE = 0.26 m). Model results show that freshwater is a dominant influencing factor to the saltwater intrusion and controlled salinity structure, vertical stratification and length of the saltwater intrusion. Additionally, the extent of salinity intrusion depends on the balance between fresh water discharges and saltwater flow from the sea. This phenomenon can be reasonably predicted recurring to mathematical models supported by monitored data. These tools can be used to quantify how much fresh water is required to counterbalance salinity intrusion at the upstream water intakes.

  13. Physical and biogeochemical controls on polymictic behavior in Sierra Nevada stream pools

    NASA Astrophysics Data System (ADS)

    Lucas, R. G.; Conklin, M. H.; Tyler, S. W.; Suarez, F. I.; Moran, J. E.; Esser, B. K.

    2011-12-01

    We observed polymictic behavior in stream pools in a low gradient montane meadow in the southern Sierra Nevada mountains, California. Thermal stratification in stream pools has been observed in various environments; stratification generally persists where the buoyancy forces created by a variation in water density, as a function of water temperature, are able to overcome turbulent forces resulting from stream flow. Because the density gradient creates a relatively weak buoyancy force, low flow conditions are generally required in order to overcome the turbulent forces. In some studies, a cold water source in to the pool bottoms can help to increase the density gradient and perpetuate thermal stratification. Our study took place in Long Meadow, Sequoia National Park, California. Long Meadow lies in the Wolverton Creek watershed and is part of the Southern Sierra Critical Zone Observatory. The 1-4 m diameter and 1-2 m deep pools in our study stratified thermally during the day and mixed completely at night. The low gradient of the meadow provided low stream flows. Piezometers in the meadow indicated groundwater discharge into the meadow in the months during which stratification was observed. Radon 222 activity measured in the pools also indicated groundwater influx to the pool bottoms. We used Fluent, a computational fluid dynamics equation solver, to construct a model of one of the observed pools. Initially we attempted to model the physical mechanisms controlling thermal stratification in the pool including stream flow, groundwater discharge, solar radiation, wind speed, and air, stream and ground water temperatures. Ultimately we found the model best agreed with our observed pool temperatures when we considered the light attenuation coefficients as a function of the dissolve organic carbon (DOC) concentration. Elevated DOC concentrations are expected in low stream flow regimes associated with highly organic soils such as a montane meadow. DOC concentrations measured in samples collected from the meadow stream, pools, and ground water wells ranged from 3.09 to 5.25 mg/L. We used a power equation taken from the literature to vary the visible light attenuation with DOC values measured in the meadow system. Light attenuation coefficients determined from measured DOC concentrations ranged from 0.507 m-1 to 0.899 m-1. The results from our modeling efforts indicate that in low flow streams and rivers elevated concentrations of DOC can increase the potential for thermal stratification in stream pools.

  14. Meteorological drivers of hypolimnetic anoxia in a eutrophic, north temperate lake

    USGS Publications Warehouse

    Snortheim, Craig A.; Hanson, Paul C.; McMahon, Katherine D.; Read, Jordan S.; Carey, Cayelan C.; Dugan, Hilary

    2017-01-01

    Oxygen concentration is both an indicator and driver of water quality in lakes. Decreases in oxygen concentration leads to altered ecosystem function as well as harmful consequences for aquatic biota, such as fishes. The responses of oxygen dynamics in lakes to climate-related drivers, such as temperature and wind speed, are well documented for lake surface waters. However, much less is known about how the oxic environment of bottom waters, especially the timing and magnitude of anoxia in eutrophic lakes, responds to changes in climate drivers. Understanding how important ecosystem states, such as hypolimnetic anoxia, may respond to differing climate scenarios requires a model that couples physical-biological conditions and sufficiently captures the density stratification that leads to strong oxygen gradients. Here, we analyzed the effects of changes in three important meteorological drivers (air temperature, wind speed, and relative humidity) on hypolimnetic anoxia in a eutrophic, north temperate lake using the anoxic factor as an index that captures both the temporal and spatial extent of anoxia. Air temperature and relative humidity were found to have a positive correlation with anoxic factor, while wind speed had a negative correlation. Air temperature was found to have the greatest potential impact of the three drivers on the anoxic factor, followed by wind speed and then relative humidity. Across the scenarios of climate variability, variation in the simulated anoxic factor was primarily due to changes in the timing of onset and decay of stratification. Given the potential for future changes in climate, especially increases in air temperature, this study provides important insight into how these changes will alter lake water quality.

  15. Stratification on the Skagit Bay Tidal Flats

    DTIC Science & Technology

    2012-09-01

    and wind -driven currents can 11 affect the potential energy anomaly balance in estuaries and ROFIs during storms (Yang and Khangaonkar, 2009...30 3.4.1 The Potential Energy Anomaly Balance...turbulent energy is dissipated by destabilizing the fluid rather than by slowing the upper water column (Turner, 1973). Overall, stratification tends to

  16. Replacement of tritiated water from irradiated fuel storage bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo, I.; Boniface, H.; Suppiah, S.

    2015-03-15

    Recently, AECL developed a novel method to reduce tritium emissions (to groundwater) and personnel doses at the NRU (National Research Universal) reactor irradiated fuel storage bay (also known as rod or spent fuel bay) through a water swap process. The light water in the fuel bay had built up tritium that had been transferred from the heavy water moderator through normal fuel transfers. The major advantage of the thermal stratification method was that a very effective tritium reduction could be achieved by swapping a minimal volume of bay water and warm tritiated water would be skimmed off the bay surface.more » A demonstration of the method was done that involved Computational Fluid Dynamics (CFD) modeling of the swap process and a test program that showed excellent agreement with model prediction for the effective removal of almost all the tritium with a minimal water volume. Building on the successful demonstration, AECL fabricated, installed, commissioned and operated a full-scale system to perform a water swap. This full-scale water swap operation achieved a tritium removal efficiency of about 96%.« less

  17. Interpretation of Stratified Fill, Frost Depths, Water Tables, and Massive Ice within Multi-Frequency Ground-Penetrating Radar Profiles Recorded Beneath Highways in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Arcone, S. A.

    2014-12-01

    Road Radar generally refers to ground-penetrating radar (GPR) surveys intended to investigate pavement construction using pulses centered above 1 GHz. In interior Alaska thick sand and gravel grading and its frozen state by late winter generally afford up to 10 m of signal penetration at lower frequencies. Consequently, this penetration potentially allows identification of pavement issues involving frost heave and thaw settlement, while the smooth surface allows assessment of GPR performance in permafrost areas under ideal survey conditions. Here I discuss profiles using pulse center frequencies from 50 to 360 MHz, recorded over sections of the Steese and Elliott Highways within and just north of Fairbanks, respectively, and of the Tok Highway near Glennallen. Construction fill is easily recognized by its stratification; where marginally present along the Elliott it is replaced by steeply dipping horizons from the underlying schist. The frost depth and water table horizons are recognized by phase attributes of the reflected pulse, as dictated by the contrasts present in dielectric permittivity, their relative depths, and their continuity. Undulating stratification in the sand and gravel fill indicates thaw settlement, as caused by the melting of buried massive ice. The Tok section reveals the top and likely the bottom of massive ice. Generally, signal penetration is greatly reduced beneath the water table and so the highest resolution, at 360 MHz, covers all horizons. There is rare evidence of a permafrost table because it is most likely masked or nearly coincident with the water table. Permafrost penetration in frozen silts is a long-standing problem for GPR, for which I discuss a possible cause related to Maxwell-Wagner dielectric relaxation losses associated with unfrozen water.

  18. Physical and Biogeochemical Characteristics of Hypoxia in the Jinhae Bay, South Korea

    NASA Astrophysics Data System (ADS)

    Lim, J. H.; Choi, T. J.; Kwon, J. N.; Kim, Y. S.; Shim, J.; Kim, I. N.; Lee, S.

    2016-02-01

    Hypoxia (O2≤2 mg L-1 or ˜63 μmol L-1) frequently develops during the summer by combination of high biological production and strong stratification in the coastal oceans. The Jinhae Bay (JB), located in the southeast coast of Korea, is well recognized as an area of chronically seasonal hypoxia in sub-surface waters during the summer season. Rapid industrialization and intensive aquaculture systems have caused severe eutrophication more and more in the JB since 1970s. Although we have concerned `Hypoxia formation' in the JB as a socio-economic and scientific issue, we have not yet sufficient information about formation, location, and extent of hypoxia in the JB. Here, we present preliminary results from an investigation into the mechanism and extent of hypoxia in the JHB, using monthly observed hydrographic data between 2011-2014. Eutrophication was initiated in spring (March-April) due to increase in nutrient loading by river input with the beginning of water-column stratification. High primary production caused to deliver abundant fresh organic matters into the bottom waters and sediments, fueling water-column and benthic respirations. These processes mechanistically formed bottom water hypoxia in the JB. Hypoxia was perennially formed in inshore regions, but the spatial and temporal variation (i.e., increasing or decreasing) in the aerial extent/thickness of hypoxia was not obvious. However, the areal extent and frequency of suboxic-anoxic condition (O2≤0.14 mg L-1 or ˜12 μmol L-1) was likely to be increased in the JB, implying that denitrification process (i.e., NO3-→NO2-→N2O/N2) is active with high N2O (a strong green-house gas) production, though the observation was not long period.

  19. Thermal advection and stratification effects on surface winds and the low level meridional mass transport

    NASA Technical Reports Server (NTRS)

    Levy, Gad; Tiu, Felice S.

    1990-01-01

    Statistical tests are performed on the Seasat scatterometer observations to examine if and to what degree thermal advection and stratification effects manifest themselves in these remotely sensed measurements of mean wind and wind stress over the ocean. On the basis of a two layer baroclinic boundary layer model which is presented, it is shown that the thermal advection and stratification of the entire boundary layer as well as the geostrophic forcing influence the modeled near surface wind and wind stress profiles. Evidence of diurnal variation in the stratification under barotropic conditions is found in the data, with the daytime marine boundary layer being more convective than its nighttime counterpart. The temporal and spacial sampling pattern of the satellite makes it impossible to recover the full diurnal cycle, however. The observed effects of the thermal advection are shown to be statistically significant during the day (and presumed more convective) hours, causing a systematic increase in the poleward transport of mass and heat. The statistical results are in a qualitative agreement with the model simulations and cannot be reproduced in randomized control tests.

  20. Assessing sea wave and spray effects on Marine Boundary Layer structure

    NASA Astrophysics Data System (ADS)

    Stathopoulos, Christos; Galanis, George; Patlakas, Platon; Kallos, George

    2017-04-01

    Air sea interface is characterized by several mechanical and thermodynamical processes. Heat, moisture and momentum exchanges increase the complexity in modeling the atmospheric-ocean system. Near surface atmospheric levels are subject to sea surface roughness and sea spray. Sea spray fluxes can affect atmospheric stability and induce microphysical processes such as sea salt particle formation and condensation/evaporation of water in the boundary layer. Moreover, presence of sea spray can alter stratification over the ocean surface with further insertion of water vapor. This can lead to modified stability conditions and to wind profiles that deviate significantly from the logarithmic approximation. To model these effects, we introduce a fully coupled system consisting of the mesoscale atmospheric model RAMS/ICLAMS and the wave model WAM. The system encompasses schemes for ocean surface roughness, sea salt aerosols and droplet thermodynamic processes and handles sea salt as predictive quantity. Numerical experiments using the developed atmospheric-ocean system are performed over the Atlantic and Mediterranean shoreline. Emphasis is given to the quantification of the improvement obtained in the description of the marine boundary layer, particularly in its lower part as well as in wave characteristics.

  1. Acoustics Reveals the Presence of a Macrozooplankton Biocline in the Bay of Biscay in Response to Hydrological Conditions and Predator-Prey Relationships

    PubMed Central

    Lezama-Ochoa, Ainhoa; Irigoien, Xabier; Chaigneau, Alexis; Quiroz, Zaida; Lebourges-Dhaussy, Anne; Bertrand, Arnaud

    2014-01-01

    Bifrequency acoustic data, hydrological measurements and satellite data were used to study the vertical distribution of macrozooplankton in the Bay of Biscay in relation to the hydrological conditions and fish distribution during spring 2009. The most noticeable result was the observation of a ‘biocline’ during the day i.e., the interface where zooplankton biomass changes more rapidly with depth than it does in the layers above or below. The biocline separated the surface layer, almost devoid of macrozooplankton, from the macrozooplankton-rich deeper layers. It is a specific vertical feature which ties in with the classic diel vertical migration pattern. Spatiotemporal correlations between macrozooplankton and environmental variables (photic depth, thermohaline vertical structure, stratification index and chlorophyll-a) indicate that no single factor explains the macrozooplankton vertical distribution. Rather a set of factors, the respective influence of which varies from region to region depending on the habitat characteristics and the progress of the spring stratification, jointly influence the distribution. In this context, the macrozooplankton biocline is potentially a biophysical response to the search for a particular depth range where light attenuation, thermohaline vertical structure and stratification conditions together provide a suitable alternative to the need for expending energy in reaching deeper water without the risk of being eaten. PMID:24505374

  2. Decay of deep water convection in CMIP5 GCMs in the North Atlantic and Southern Ocean in the 21st century

    NASA Astrophysics Data System (ADS)

    Molodtsov, S.; Anis, A.; Marinov, I.; Cabre, A.

    2016-12-01

    Contemporary changes in the climate system due to anthropogenic activity have already resulted in unprecedented melting rates of the polar ice caps. This in turn may have a significant impact on the thermohaline circulation in the future. The freshening of the surface waters increases stable stratification in regions of deep water formation, eventually triggering a weakening and, ultimately, may bring to a cessation of deep convection in these regions. Here we present comparatively an analysis of the response of deep convective processes in the North Atlantic (NA) and Southern Ocean (SO) to anthropogenic forcing using output from the latest generation of Earth System Models (ESM), part of the CMIP5 intercomparison. Our findings indicate an attenuation of deep convection by the end of the 21st century from ESM simulations under representative concentration pathways (RCP) 8.5 scenario when compared to the years under historical scenario in both NA and SO. The average depth of the mixed layer in the regions studied during March/September, the months with maximum mixed layer depths in the NA/SO, respectively, was found to decrease dramatically by the end of the 21st century. Furthermore, the increase in stratification and decrease in mixed layer depths, resulting in the decay of deep convection, leads to accumulation of excess heat, previously released during the convection events, in the ocean interior in both regions.

  3. Impact of an intense water column mixing (0-1500 m) on prokaryotic diversity and activities during an open-ocean convection event in the NW Mediterranean Sea.

    PubMed

    Severin, Tatiana; Sauret, Caroline; Boutrif, Mehdi; Duhaut, Thomas; Kessouri, Fayçal; Oriol, Louise; Caparros, Jocelyne; Pujo-Pay, Mireille; Durrieu de Madron, Xavier; Garel, Marc; Tamburini, Christian; Conan, Pascal; Ghiglione, Jean-François

    2016-12-01

    Open-ocean convection is a fundamental process for thermohaline circulation and biogeochemical cycles that causes spectacular mixing of the water column. Here, we tested how much the depth-stratified prokaryotic communities were influenced by such an event, and also by the following re-stratification. The deep convection event (0-1500 m) that occurred in winter 2010-2011 in the NW Mediterranean Sea resulted in a homogenization of the prokaryotic communities over the entire convective cell, resulting in the predominance of typical surface Bacteria, such as Oceanospirillale and Flavobacteriales. Statistical analysis together with numerical simulation of vertical homogenization evidenced that physical turbulence only was not enough to explain the new distribution of the communities, but acted in synergy with other parameters such as exported particulate and dissolved organic matters. The convection also stimulated prokaryotic abundance (+21%) and heterotrophic production (+43%) over the 0-1500 m convective cell, and resulted in a decline of cell-specific extracellular enzymatic activities (-67%), thus suggesting an intensification of the labile organic matter turnover during the event. The rapid re-stratification of the prokaryotic diversity and activities in the intermediate layer 5 days after the intense mixing indicated a marked resilience of the communities, apart from the residual deep mixed water patch. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Contrasting Drainage and Stratification in Horizontal Vs Vertical Micellar Foam Films

    NASA Astrophysics Data System (ADS)

    Wojcik, Ewelina; Yilixiati, Subinuer; Zhang, Yiran; Sharma, Vivek

    Understanding and controlling the drainage kinetics of thin films is an important problem that underlies the stability, lifetime and rheology of foams and emulsions. In foam films formed with micellar solutions, the surfactant is present as interfacially-adsorbed layer at both liquid-air interfaces, as well as in bulk as self-assembled supramolecular structures called micelles. Ultrathin micellar films exhibit stratification due to confinement-induced structuring and layering of micelles. Stratification in micellar foam films is manifested as stepwise thinning over time, and it leads to the coexistence of flat domains with discretely different thicknesses. In this contribution we use Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols to visualize and analyze thickness transitions and variations associated with stratification in micellar foam films made with sodium dodecyl sulfate (SDS). We contrast the drainage and stratification dynamics in horizontal and vertical foam films, and investigate the role played by gravitational, viscous, interfacial and surface forces.

  5. An Intrathermocline Eddy and a tropical cyclone in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Gordon, Arnold L.; Shroyer, Emily; Murty, V. S. N.

    2017-04-01

    The Bay of Bengal, subjected to monsoonal forcing and tropical cyclones, displays a complex field of ocean eddies. On 5 December 2013 a sub-surface vortex or Intrathermocline Eddy (ITE) composed of water characteristic of the Andaman Sea was observed within the thermocline of the western Bay of Bengal. We propose that the ITE was the product of Tropical Cyclone Lehar interaction on 27 November 2013 with a westward propagating surface eddy from the eastern Bay of Bengal. While Lehar’s interaction with the ocean initially removes heat from the upper layers of the eddy, air-sea flux is limited as the deeper portions of the eddy was subducted into the stratified thermocline, inhibiting further interaction with the atmosphere. The ITE core from 30 to 150 m is thus isolated from local air-sea fluxes by strong stratification at the mixed layer base, and its periphery is stable to shear instability, suggestive of longevity and the ability to carry water far distances with minimal modification.

  6. An Intrathermocline Eddy and a tropical cyclone in the Bay of Bengal.

    PubMed

    Gordon, Arnold L; Shroyer, Emily; Murty, V S N

    2017-04-12

    The Bay of Bengal, subjected to monsoonal forcing and tropical cyclones, displays a complex field of ocean eddies. On 5 December 2013 a sub-surface vortex or Intrathermocline Eddy (ITE) composed of water characteristic of the Andaman Sea was observed within the thermocline of the western Bay of Bengal. We propose that the ITE was the product of Tropical Cyclone Lehar interaction on 27 November 2013 with a westward propagating surface eddy from the eastern Bay of Bengal. While Lehar's interaction with the ocean initially removes heat from the upper layers of the eddy, air-sea flux is limited as the deeper portions of the eddy was subducted into the stratified thermocline, inhibiting further interaction with the atmosphere. The ITE core from 30 to 150 m is thus isolated from local air-sea fluxes by strong stratification at the mixed layer base, and its periphery is stable to shear instability, suggestive of longevity and the ability to carry water far distances with minimal modification.

  7. An Intrathermocline Eddy and a tropical cyclone in the Bay of Bengal

    PubMed Central

    Gordon, Arnold L.; Shroyer, Emily; Murty, V. S. N.

    2017-01-01

    The Bay of Bengal, subjected to monsoonal forcing and tropical cyclones, displays a complex field of ocean eddies. On 5 December 2013 a sub-surface vortex or Intrathermocline Eddy (ITE) composed of water characteristic of the Andaman Sea was observed within the thermocline of the western Bay of Bengal. We propose that the ITE was the product of Tropical Cyclone Lehar interaction on 27 November 2013 with a westward propagating surface eddy from the eastern Bay of Bengal. While Lehar’s interaction with the ocean initially removes heat from the upper layers of the eddy, air-sea flux is limited as the deeper portions of the eddy was subducted into the stratified thermocline, inhibiting further interaction with the atmosphere. The ITE core from 30 to 150 m is thus isolated from local air-sea fluxes by strong stratification at the mixed layer base, and its periphery is stable to shear instability, suggestive of longevity and the ability to carry water far distances with minimal modification. PMID:28401909

  8. Connections between the growth of Arctica islandica and phytoplankton dynamics on the Faroe Shelf

    NASA Astrophysics Data System (ADS)

    Bonitz, Fabian; Andersson, Carin; Trofimova, Tamara

    2017-04-01

    In this study we use molluscan sclerochronological techniques in order to obtain closer insights into environmental and ecological dynamics of Faroe Shelf waters. The Faroe Shelf represents a special ecosystem with rich benthic and neritic communities, which also have great importance for many economically relevant fish stocks. Thus, a better understanding of seasonal and year-to-year phytoplankton and stratification dynamics would be useful because they also have implications for higher trophic levels. The water masses of the Faroe Shelf are fairly homogenous and isolated from off-shelf waters but at a certain depth, which is referred to as transition zone, seasonal stratification and horizontal exchange occur. Systematic observations and phytoplankton dynamic investigations have only been performed during the last 29 years but longer records are missing. Thus, we use the growth increment variability in long-lived Arctica islandica shells from the transition zone of the eastern Faroe Shelf to evaluate its potential to estimate on-shelf phytoplankton and stratification dynamics since previous studies have shown that the growth of A. islandica is highly dependent on food availability. We have built a shell-based master-chronology reaching back to the 17th century. Comparisons between the growth indices of our chronology and fluorescence data reveal significant positive relationships. In combination with an index that accounts for stratification even stronger correlations are obtained. This indicates that the growth of A. islandica is largely influenced by a combination of how much phytoplankton is produced and how much actually reaches the bottom, i.e. how well-mixed the water column is. Further significant positive correlations can also be found between the growth indices and other primary productivity data from the Faroe Shelf. In conclusion, our results suggest that the growth indices can be related to year-to-year changes in phytoplankton production and stratification on the Faroe Shelf and may allow past reconstructions of phytoplankton production.

  9. Air- ice-snow interaction in the Northern Hemisphere under different stability conditions

    NASA Astrophysics Data System (ADS)

    Repina, Irina; Chechin, Dmitry; Artamonov, Arseny

    2013-04-01

    The traditional parameterizations of the atmospheric boundary layer are based on similarity theory and the coefficients of turbulent transfer, describing the atmospheric-surface interaction and the diffusion of impurities in the operational models of air pollution, weather forecasting and climate change. Major drawbacks of these parameterizations is that they are not applicable for the extreme conditions of stratification and currents over complex surfaces (such as sea ice, marginal ice zone or stormy sea). These problem could not be overcome within the framework of classical theory, i.e, by rectifying similarity functions or through the introduction of amendments to the traditional turbulent closure schemes. Lack of knowledge on the structure of the surface air layer and the exchange of momentum, heat and moisture between the rippling water surface and the atmosphere at different atmospheric stratifications is at present the major obstacle which impede proper functioning of the operational global and regional weather prediction models and expert models of climate and climate change. This is especially important for the polar regions, where in winter time the development of strong stable boundary layer in the presence of polynyas and leads usually occur. Experimental studies of atmosphere-ice-snow interaction under different stability conditions are presented. Strong stable and unstable conditions are discussed. Parametrizations of turbulent heat and gas exchange at the atmosphere ocean interface are developed. The dependence of the exchange coefficients and aerodynamic roughness on the atmospheric stratification over the snow and ice surface is experimentally confirmed. The drag coefficient is reduced with increasing stability. The behavior of the roughness parameter is simple. This result was obtained in the Arctic from the measurements over hummocked surface. The value of the roughness in the Arctic is much less than that observed over the snow in the middle and even high latitudes of the Northern Hemisphere because the stable conditions above Arctic ice field dominate. Under such conditions the air flow over the uneven surface behaves in the way it does over the even one. This happens because depressions between ridges are filled with heavier air up to the height of irreguralities. As a result, the air moves at the level of ridges without entering depressions. Increased heat and mass transfer over polynyas and leads through self-organization of turbulent convection is found. The work was sponsored by RFBR grants and funded by the Government of the Russian Federation grants.

  10. Stratification of living organisms in ballast tanks: how do organism concentrations vary as ballast water is discharged?

    PubMed

    First, Matthew R; Robbins-Wamsley, Stephanie H; Riley, Scott C; Moser, Cameron S; Smith, George E; Tamburri, Mario N; Drake, Lisa A

    2013-05-07

    Vertical migrations of living organisms and settling of particle-attached organisms lead to uneven distributions of biota at different depths in the water column. In ballast tanks, heterogeneity could lead to different population estimates depending on the portion of the discharge sampled. For example, concentrations of organisms exceeding a discharge standard may not be detected if sampling occurs during periods of the discharge when concentrations are low. To determine the degree of stratification, water from ballast tanks was sampled at two experimental facilities as the tanks were drained after water was held for 1 or 5 days. Living organisms ≥50 μm were counted in discrete segments of the drain (e.g., the first 20 min of the drain operation, the second 20 min interval, etc.), thus representing different strata in the tank. In 1 and 5 day trials at both facilities, concentrations of organisms varied among drain segments, and the patterns of stratification varied among replicate trials. From numerical simulations, the optimal sampling strategy for stratified tanks is to collect multiple time-integrated samples spaced relatively evenly throughout the discharge event.

  11. Inference of the boundary layer structure over the oceans from satellite infrared measurements

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Dalu, G.; Lo, R.; Nath, N. R.

    1980-01-01

    Remote infrared spectral measurements in the 8-13 micron m window region, at a resolution about 3 cm/1, contain useful information about the water vapor and temperature stratification of the atmosphere within the first few kilometers above the water surface. Two pieces of information are retrieved from the spectral measurements: precipitable water vapor in the atmosphere, from the depth of the line structure between 8 and 9 micron m due to water vapor lines; and sea surface temperature, from the variation of brightness temperature between 11 and 13 micron m. Together, these two pieces of information can signify either the presence of a deep moist convective layer or the prevalence of stable conditions, such as caused by temperature inversions, which inhibit moist convection. A simple infrared radiative transfer model of the 9 micron m water vapor lines was developed to validate the method. With the help of this model and the Nimbus 4 infrared interferometer spectrometer data, a gross picture of the planetary boundary layer for different seasons over the global oceans is deduced. The important regions of the trade wind inversion and the intertropical convergence zones over all the oceans are clearly identified with this method. The derived information is in reasonable agreement with some observed climatological patterns over the oceans.

  12. Interaction of lateral baroclinic forcing and turbulence in an estuary

    USGS Publications Warehouse

    Lacy, J.R.; Stacey, M.T.; Burau, J.R.; Monismith, Stephen G.

    2003-01-01

    Observations of density and velocity in a channel in northern San Francisco Bay show that the onset of vertical density stratification during flood tides is controlled by the balance between the cross-channel baroclinic pressure gradient and vertical mixing due to turbulence. Profiles of velocity, salinity, temperature, and suspended sediment concentration were measured in transects across Suisun Cutoff, in northern San Francisco Bay, on two days over the 12.5-hour tidal cycle. During flood tides an axial density front developed between fresher water flowing from the shallows of Grizzly Bay into the northern side of Suisun Cutoff and saltier water flowing up the channel. North of the front, transverse currents were driven by the lateral salinity gradient, with a top-to-bottom velocity difference greater than 30 cm/s. South of the front, the secondary circulation was weak, and along-channel velocities were greater than to the north. The gradient Richardson number shows that stratification was stable north of the front, while the water column was turbulently mixed south of the front. Time-series measurements of velocity and salinity demonstrate that the front develops during each tidal cycle. In estuaries, longitudinal dynamics predict less stratification during flood than ebb tides. These data show that stratification can develop during flood tides due to a lateral baroclinic pressure gradient in estuaries with complex bathymetry.

  13. Low reservoir ages for the surface ocean from mid-Holocene Florida corals

    USGS Publications Warehouse

    Druffel, E.R.M.; Robinson, L.F.; Griffin, S.; Halley, R.B.; Southon, J.R.; Adkins, J.F.

    2008-01-01

    The 14C reservoir age of the surface ocean was determined for two Holocene periods (4908-4955 and 3008-3066 calendar (cal) B.P.) using U/Th-dated corals from Biscayne National Park, Florida, United States. We found that the average reservoir ages for these two time periods (294 ?? 33 and 291 ?? 27 years, respectively) were lower than the average value between A.D. 1600 and 1900 (390 ?? 60 years) from corals. It appears that the surface ocean was closer to isotopic equilibrium with CO2 in the atmosphere during these two time periods than it was during recent times. Seasonal ??18O measurements from the younger coral are similar to modern values, suggesting that mixing with open ocean waters was indeed occurring during this coral's lifetime. Likely explanations for the lower reservoir age include increased stratification of the surface ocean or increased ??14C values of subsurface waters that mix into the surface. Our results imply that a more correct reservoir age correction for radiocarbon measurements of marine samples in this location from the time periods ???3040 and ???4930 cal years B.P. is ???292 ?? 30 years, less than the canonical value of 404 ?? 20 years. Copyright 2008 by the American Geophysical Union.

  14. Dissolved inorganic phosphorus, dissolved iron, and Trichodesmium in the oligotrophic South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Jingfeng; Chung, Shi-Wei; Wen, Liang-Saw; Liu, Kon-Kee; Chen, Yuh-Ling Lee; Chen, Houng-Yung; Karl, David M.

    2003-03-01

    Dissolved inorganic phosphorus (DIP) concentrations in the oligotrophic surface waters of the South China Sea decrease from ˜20 nM in March 2000 to ˜5 nM in July 2000, in response to seasonal water column stratification. These minimum DIP concentrations are one order of magnitude higher than those in the P-limited, iron-replete stratified surface waters of the western North Atlantic, suggesting that the ecosystem in the South China Sea may be limited by bioavailable nitrogen or some trace nutrient rather than DIP. Nutrient enrichment experiments using either nitrate, phosphate or both indicate that nitrogen limits the net growth of phytoplankton in the South China Sea, at least during March and July 2000. The fixed nitrogen limitation may result from the excess phosphate (N:P<16) transported into the South China Sea from the North Pacific relative to microbial population needs, or from iron control of nitrogen fixation. The iron-limited nitrogen fixation hypothesis is supported by the observation of low population densities of Trichodesmium spp. (<48 × 103 trichomes/m3), the putative N2 fixing cyanobacterium, and with low concentrations of dissolved iron (˜0.2-0.3 nM) in the South China Sea surface water. Our results suggest that nitrogen fixation can be limited by available iron even in regions with a high rate of atmospheric dust deposition such as in the South China Sea.

  15. High resolution modeling of dense water formation in the north-western Mediterranean during winter 2012-2013: Processes and budget

    NASA Astrophysics Data System (ADS)

    Estournel, Claude; Testor, Pierre; Damien, Pierre; D'Ortenzio, Fabrizio; Marsaleix, Patrick; Conan, Pascal; Kessouri, Faycal; Durrieu de Madron, Xavier; Coppola, Laurent; Lellouche, Jean-Michel; Belamari, Sophie; Mortier, Laurent; Ulses, Caroline; Bouin, Marie-Noelle; Prieur, Louis

    2016-07-01

    The evolution of the stratification of the north-western Mediterranean between summer 2012 and the end of winter 2013 was simulated and compared with different sets of observations. A summer cruise and profiler observations were used to improve the initial conditions of the simulation. This improvement was crucial to simulate winter convection. Variations of some parameters involved in air - sea exchanges (wind, coefficient of transfer used in the latent heat flux formulation, and constant additive heat flux) showed that the characteristics of water masses and the volume of dense water formed during convection cannot be simply related to the time-integrated buoyancy budget over the autumn - winter period. The volume of dense water formed in winter was estimated to be about 50,000 km3 with a density anomaly larger than 29.113 kg m-3. The effect of advection and air/sea fluxes on the heat and salt budget of the convection zone was quantified during the preconditioning phase and the mixing period. Destratification of the surface layer in autumn occurs through an interaction of surface and Ekman buoyancy fluxes associated with displacements of the North Balearic front bounding the convection zone to the south. During winter convection, advection stratifies the convection zone: from December to March, the absolute value of advection represents 58 % of the effect of surface buoyancy fluxes.

  16. [Summer Greenhouse Gases Exchange Flux Across Water-air Interface in Three Water Reservoirs Located in Different Geologic Setting in Guangxi, China].

    PubMed

    Li, Jian-hong; Pu, Jun-bing; Sun, Ping-an; Yuan, Dao-xian; Liu, Wen; Zhang, Tao; Mo, Xue

    2015-11-01

    Due to special hydrogeochemical characteristics of calcium-rich, alkaline and DIC-rich ( dissolved inorganic carbon) environment controlled by the weathering products from carbonate rock, the exchange characteristics, processes and controlling factors of greenhouse gas (CO2 and CH4) across water-air interface in karst water reservoir show obvious differences from those of non-karst water reservoir. Three water reservoirs (Dalongdong reservoir-karst reservoir, Wulixia reservoir--semi karst reservoir, Si'anjiang reservoir-non-karst reservoir) located in different geologic setting in Guangxi Zhuang Autonomous Region, China were chosen to reveal characteristics and controlling factors of greenhouse gas exchange flux across water-air interface. Two common approaches, floating chamber (FC) and thin boundary layer models (TBL), were employed to research and contrast greenhouse gas exchange flux across water-air interface from three reservoirs. The results showed that: (1) surface-layer water in reservoir area and discharging water under dam in Dalongdong water reservoir were the source of atmospheric CO2 and CH4. Surface-layer water in reservoir area in Wulixia water reservoir was the sink of atmospheric CO2 and the source of atmospheric CH4, while discharging water under dam was the source of atmospheric CO2 and CH4. Surface-layer water in Si'anjiang water reservoir was the sink of atmospheric CO2 and source of atmospheric CH4. (2) CO2 and CH4 effluxes in discharging water under dam were much more than those in surface-layer water in reservoir area regardless of karst reservoir or non karst reservoir. Accordingly, more attention should be paid to the CO2 and CH4 emission from discharging water under dam. (3) In the absence of submerged soil organic matters and plants, the difference of CH4 effluxes between karst groundwater-fed reservoir ( Dalongdong water reservoir) and non-karst area ( Wulixia water reservoir and Si'anjiang water reservoir) was less. However, CO2 efflux in karst groundwater-fed reservoir was much higher than that of reservoir in non-karst area due to groundwater of DIC-rich input from karst aquifer and thermal stratification.

  17. What Determines Water Temperature Dynamics in the San Francisco Bay-Delta System?

    NASA Astrophysics Data System (ADS)

    Vroom, J.; van der Wegen, M.; Martyr-Koller, R. C.; Lucas, L. V.

    2017-11-01

    Water temperature is an important factor determining estuarine species habitat conditions. Water temperature is mainly governed by advection (e.g., from rivers) and atmospheric exchange processes varying strongly over time (day-night, seasonally) and the spatial domain. On a long time scale, climate change will impact water temperature in estuarine systems due to changes in river flow regimes, air temperature, and sea level rise. To determine which factors govern estuarine water temperature and its sensitivity to changes in its forcing, we developed a process-based numerical model (Delft3D Flexible Mesh) and applied it to a well-monitored estuarine system (the San Francisco Estuary) for validation. The process-based approach allows for detailed process description and a physics-based analysis of governing processes. The model was calibrated for water year 2011 and incorporated 3-D hydrodynamics, salinity intrusion, water temperature dynamics, and atmospheric coupling. Results show significant skill in reproducing temperature observations on daily, seasonal, and yearly time scales. In North San Francisco Bay, thermal stratification is present, enhanced by salinity stratification. The temperature of the upstream, fresh water Delta area is captured well in 2-D mode, although locally—on a small scale—vertical processes (e.g., stratification) may be important. The impact of upstream river temperature and discharge and atmospheric forcing on water temperatures differs throughout the Delta, possibly depending on dispersion and residence times. Our modeling effort provides a sound basis for future modeling studies including climate change impact on water temperature and associated ecological modeling, e.g., clam and fish habitat and phytoplankton dynamics.

  18. Feasibility study of a swept frequency electromagnetic probe (SWEEP) using inductive coupling for the determination of subsurface conductivity of the earth and water prospecting in arid regions

    NASA Technical Reports Server (NTRS)

    Latorraca, G. A.; Bannister, L. H.

    1974-01-01

    Techniques developed for electromagnetic probing of the lunar interior, and techniques developed for the generation of high power audio frequencies were combined to make practical a magnetic inductive coupling system for the rapid measurement of ground conductivity profiles which are helpful when prospecting for the presence and quality of subsurface water. A system which involves the measurement of the direction, intensity, and time phase of the magnetic field observed near the surface of the earth at a distance from a horizontal coil energized so as to create a field that penetrates the earth was designed and studied to deduce the conductivity and stratification of the subsurface. Theoretical studies and a rudimentary experiment in an arid region showed that the approach is conceptually valid and that this geophysical prospecting technique can be developed for the economical exploration of subterranean water resources.

  19. A study on distribution of chlorophyll-a in the coastal waters of Anzali Port, south Caspian Sea

    NASA Astrophysics Data System (ADS)

    Jamshidi, S.; Abu Bakar, N. Bin

    2011-02-01

    Phytoplankton as chlorophyll-containing organisms is the first step of production in most marine processes and food chains. Nutrient enhancement in the seawater due to the discharge of agricultural, industrial, and urban wastes threatens the Caspian Sea environment. Increasing concentrations of chlorophyll-a in seawater, in reaction to the elevation of nutrient supply can have severely damaging effects on the marine environment of the Caspian. In this research, seasonal variability of the chlorophyll-a concentrations in the western part of the southern coastal waters of the Caspian Sea near Iranian coast was examined using field observations. The data showed that the most chlorophyll-a was found below the sea surface. The thermal stratification in water column and outflow of the Anzali Lagoon affect the chlorophyll-a concentrations in the region. Concentrations of chlorophyll-a were recorded in midsummer in a range of 0.2-3.4 mg m-3.

  20. Molecular tools for investigating microbial community structure and function in oxygen-deficient marine waters.

    PubMed

    Hawley, Alyse K; Kheirandish, Sam; Mueller, Andreas; Leung, Hilary T C; Norbeck, Angela D; Brewer, Heather M; Pasa-Tolic, Ljiljana; Hallam, Steven J

    2013-01-01

    Water column oxygen (O2)-deficiency shapes food-web structure by progressively directing nutrients and energy away from higher trophic levels into microbial community metabolism resulting in fixed nitrogen loss and greenhouse gas production. Although respiratory O2 consumption during organic matter degradation is a natural outcome of a productive surface ocean, global-warming-induced stratification intensifies this process leading to oxygen minimum zone (OMZ) expansion. Here, we describe useful tools for detection and quantification of potential key microbial players and processes in OMZ community metabolism including quantitative polymerase chain reaction primers targeting Marine Group I Thaumarchaeota, SUP05, Arctic96BD-19, and SAR324 small-subunit ribosomal RNA genes and protein extraction methods from OMZ waters compatible with high-resolution mass spectrometry for profiling microbial community structure and functional dynamics. © 2013 Elsevier Inc. All rights reserved.

  1. New York harbor water-quality survey, 1988-1990. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosnan, T.M.

    1991-08-27

    Fifty two stations were monitored over twelve weeks of each of the summers of 1988 through 1990 to provide the 79th, 80th, and 81st Annual Summer Water Quality Surveys of New York Harbor. Coliform bacteria continue to exhibit significant long-term improvements throughout the harbor due to water pollution control plant construction and upgrades. Only 4% of stations were out of compliance with coliform standards in 1990, with exceedances confined to waterways heavily impacted by combined sewer overflows (CSO's). In 1990, average summer dissolved oxygen (DO) met state standards at 94% of surface, and 85% of bottom sites; however many sitesmore » contravened DO standards at least once. While average DO compliance in 1990 was significantly better than any time since at least 1986, 1988 and 1989 were noticeably worse, particularly in waterways prone to phytoplankton blooms and density stratification. Nutrient and chlorophyll a concentrations displayed spatial trends.« less

  2. Proceedings of the 2nd Columbia River Basalt Symposium: Maar volcanoes

    NASA Technical Reports Server (NTRS)

    Waters, A. C.; Fisher, R. V.

    1971-01-01

    Examination of maar-type volcanic cones, including tuff rings, from more than 40 localities in western North America indicates that water had access to volcano orifices during their activity. The most convincing evidence is the abundance of sideromelane (chilled basaltic glass) or its palagonitic decomposition products in the ejecta. Moreover, the volcanoes which were examined erupted in basins that either contained surface water, or else they grew above highly permeable aquifers at shallow dept. Characteristic features of maar ejecta are continuous thin beds, undulations and antidunes characteristic of base surge stratification, abundant accretionary lapilli or mud-armored rock particles, bedding sags that show soft sediment deformation, and in the subaqueous parts of the maar ramparts, great piles of subtly graded thin lenses of hyaloclastic debris.

  3. Using hydrochemical data and modelling to enhance the knowledge of groundwater flow and quality in an alluvial aquifer of Zagreb, Croatia.

    PubMed

    Marković, Tamara; Brkić, Željka; Larva, Ozren

    2013-08-01

    The Zagreb alluvial aquifer system is located in the southwest of the Pannonian Basin in the Sava Valley in Croatia. It is composed of Quaternary unconsolidated deposits and is highly utilised, primarily as a water supply for the more than one million inhabitants of the capital city of Croatia. To determine the origin and dynamics of the groundwater and to enhance the knowledge of groundwater flow and the interactions between the groundwater and surface water, extensive hydrogeological and hydrochemical investigations have been completed. The groundwater levels monitored in nested observation wells and the lithological profile indicate that the aquifer is a single hydrogeologic unit, but the geochemical characteristics of the aquifer indicate stratification. The weathering of carbonate and silicate minerals has an important role in groundwater chemistry, especially in the area where old meanders of the Sava River existed. Groundwater quality was observed to be better in the deeper parts of the aquifer than in the shallower parts. Furthermore, deterioration of the groundwater quality was observed in the area under the influence of the landfill. The stable isotopic composition of all sampled waters indicates meteoric origin. NETPATH-WIN was used to calculate the mixing proportions between initial waters (water from the Sava River and groundwater from "regional" flow) in the final water (groundwater sampled from observation wells). According to the results, the mixing proportions of "regional" flow and the river water depend on hydrological conditions, the duration of certain hydrological conditions and the vicinity of the Sava River. Moreover, although the aquifer system behaves as a single hydrogeologic unit from a hydraulic point of view, it still clearly demonstrates geochemical stratification, which could be a decisive factor in future utilisation strategies for the aquifer system. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Lake Challa (Mt. Kilimanjaro) sediments as recorder of present and past seasonality in equatorial East Africa

    NASA Astrophysics Data System (ADS)

    Kristen, I.; Wolff, C.; Schettler, G.; Dulski, P.; Naumann, R.; Haug, G. H.; Blaauw, M.; Verschuren, D.

    2008-12-01

    In discussions on the impact of global warming on moisture balance and human water resources, natural archives of past hydrological variability in tropical regions are attracting increasing attention. The EuroCLIMATE project CHALLACEA studies the sediment archive of Lake Challa, a 4.5 km² and ~94 m deep crater lake located on the lower eastern slope of Mt. Kilimanjaro with the aim to produce a continuous, high-resolution and multi-proxy reconstruction of past temperature and moisture-balance variability in equatorial East Africa over the past 25,000 years. Lake Challa is a freshwater lake with a water budget controlled mostly by sub-surface in- and outflow and lake-surface evaporation. Accordingly, microscopic thin-section investigation of sediment composition reveals an overall dominance of autochthonous components (diatom frustules, calcite, and organic matter). First results from an ongoing sediment trap study point to distinct seasonality in sediment input: calcite and organic matter accumulate during the warm southern hemisphere summer months (November - March), whereas the principal diatom blooms occur during the cool and windy period between June and October. Here we present the results of physical and chemical investigations of the lake water column between September 1999 and November 2007, which document the concomitant seasonal changes in lake mixing/stratification and related element cycling. High-resolution μXRF profiles of these elements in the laminated sediments of Lake Challa thus also show marked seasonal cycles, as well as longer-term variability. In particular, variability in the Mn/Fe ratio along the top 15 cm of the sediment record is interpreted to reflect changes in lake stratification during the last ~100 years. This proxy record is evaluated in comparison with records of historical weather variability in East Africa, and of potentially influencing parameters such as the El Niño Southern Oscillation and the Indian Ocean Dipole. Eventually these exercises may contribute to high-resolution reconstruction of tropical East African climate variability over the last 25,000 years.

  5. The Bay of Bengal : an ideal laboratory for studying salinity

    NASA Astrophysics Data System (ADS)

    Vialard, jerome; Lengaigne, Matthieu; Akhil, Valiya; Chaitanya, Akurathi; Krishna-Mohan, Krishna; D'Ovidio, Francesco; Keerthi, Madhavan; Benshila, Rachid; Durand, Fabien; Papa, Fabrice; Suresh, Iyappan; Neetu, Singh

    2017-04-01

    The Bay of Bengal combines several unique features that make it an excellent laboratory to study the variability of salinity and its potential effects on the oceanic circulation and climate. This basin receives very large quantities of freshwater in association to the southwest monsoon, either directly from rain or indirectly through the runoffs of the Ganges-Brahmaputra and Irrawaddy. This large quantity of freshwater in a small, semi enclosed basin results in some of the lowest sea surface salinities (SSS) and strongest near-surface haline stratification in the tropical band. The strong monsoon winds also drive an energetic circulation, which exports the excess water received during the monsoon and results in strong horizontal salinity gradients. In this talk, I will summarize several studies of the Bay of Bengal salinity variability and its impacts undertaken in the context of an Indo-French collaboration. In situ data collected along the coast by fishermen and model results show that the intense, coastally-trapped East India Coastal Current (EICC) transports the very fresh water near the Ganges-Brahmaputra river mouth along the eastern Bay of Bengal rim to create a narrow, very fresh "river in the sea" after the southwest monsoon. The salinity-induced pressure gradient contributes to almost 50% of the EICC intensity and sustains mesoscale eddy generation through its effect on horizontal current shears and baroclinic gradients. Oceanic eddies play a strong role in exporting this fresh water from the coast to the basin interior. This "river in the sea" has a strong interannual variability related to the EICC remote modulation by the Indian Ocean Dipole (a regional climate mode). I will also discuss the potential effect of haline stratification on the regional climate through its influence on the upper ocean budget. Finally, I will briefly discuss the performance of remote-sensing for observing SSS in the Bay of Bengal.

  6. Review of factors affecting recovery of freshwater stored in saline aquifers

    USGS Publications Warehouse

    Merritt, Michael L.

    1989-01-01

    A simulation analysis reported previously, and summarized herein, identified the effects of various geohydrologic and operational factors on recoverability of the injected water. Buoyancy stratification, downgradient advection, and hydrodynamic dispersion are the principal natural processes that reduce the amount of injected water that can be recovered. Buoyancy stratification is shown to depend on injection-zone permeability and the density contrast between injected and saline native water. Downgradient advection occurs as a result of natural or induced hydraulic gradients in the aquifer. Hydrodynamic dispersion reduces recovery efficiency by mixing some of the injected water with native saline aquifer water. In computer simulations, the relation of recovery efficiency to volume injected and its improvement during successive injection-recovery cycles was shown to depend on changes in the degree of hydrodynamic dispersion that occurs. Additional aspects of the subject are discussed.

  7. The effect of thermal stratification on microbial community diversity and structure in a temperate reservoir

    NASA Astrophysics Data System (ADS)

    Qu, Jiangqi; Jia, Chengxia; Zhao, Meng; Li, Wentong; Liu, Pan; Yang, Mu; Zhang, Qingjing

    2018-02-01

    Miyun reservoir is a typical temperate deep reservoir located in the northeast of Beijing, China. In order to explore the effect of thermal stratification on microbial community diversity, structure and its influencing environmental factors, stratified sampling at three sites was conducted during the summer period. Field observations indicate that the water temperature and dissolved oxygen concentrations dropped to 11.9 °C and 1.57 mg/L, respectively, leading to the development of anoxia in the hypolimnetic layer. The Illumina Miseq sequencing results showed that microbial communities from different thermal stratification showed obvious differences, the highest microbial diversity and richness in the hypolimnion samples. RDA ordination analysis suggested that the microbial communities in the epilimnion and metalimnion were mainly affected by water temperature, pH and dissolved oxygen, while total nitrogen was the key environmental factor which shaped the microbial structure in hypolimnion.

  8. Storage Capacity and Water Quality of Lake Ngardok, Babeldaob Island, Republic of Palau, 1996-98

    USGS Publications Warehouse

    Yeung, Chiu Wang; Wong, Michael F.

    1999-01-01

    A bathymetric survey conducted during March and April, 1996, determined the total storage capacity Lake Ngardok to be between 90 and 168 acre-feet. Elevation-surface area and elevation-capacity curves summarizing the current relations among elevation, surface area, and storage capacity were created from the bathymetric map. Rainfall and lake-elevation data collected from April 1996 to March 1998 indicated that lake levels correlated to rainfall values with lake elevation rising rapidly in response to heavy rainfall and then returning to normal levels within a few days. Mean lake elevation for the 22 month period of data was 59.5 feet which gives a mean storage capacity of 107 acre-feet and a mean surface area of 24.1 acre. A floating mat of reeds, which covered 58 percent of the lake surface area at the time of the bathymetric survey, makes true storage capacity difficult to estimate. Water-quality sampling during April 1996 and November 1997 indicated that no U.S. Environmental Protection Agency primary drinking-water standards were violated for analyzed organic and inorganic compounds and radionuclides. With suitable biological treatment, the lake water could be used for drinking-water purposes. Temperature and dissolved oxygen measurements indicated that Lake Ngardok is stratified. Given that air temperature on Palau exhibits little seasonal variation, it is likely that this pattern of stratification is persistent. As a result, complete mixing of the lake is probably rare. Near anaerobic conditions exist at the lake bottom. Low dissolved oxygen (3.2 milligrams per liter) measured at the outflow indicated that water flowing past the outflow was from the deep oxygen-depleted depths of the lake.

  9. Fate of polycyclic aromatic hydrocarbons from the North Pacific to the Arctic: Field measurements and fugacity model simulation.

    PubMed

    Ke, Hongwei; Chen, Mian; Liu, Mengyang; Chen, Meng; Duan, Mengshan; Huang, Peng; Hong, Jiajun; Lin, Yan; Cheng, Shayen; Wang, Xuran; Huang, Mengxue; Cai, Minggang

    2017-10-01

    Polycyclic aromatic hydrocarbons (PAHs) have accumulated ubiquitously inArctic environments, where re-volatilization of certain organic pollutants as a result of climate change has been observed. To investigate the fate of semivolatile organic compounds in the Arctic, dissolved PAHs in the surface seawaters from the temperate Pacific Ocean to the Arctic Ocean, as well as a water column in the Arctic Ocean, were collected during the 4th Chinese National Arctic Research Expedition in summer 2010. The total concentrations of seven dissolved PAHs in surface water ranged from 1.0 to 5.1 ng L -1 , decreasing with increasing latitude. The vertical profile of PAHs in the Arctic Ocean was generally characteristic of surface enrichment and depth depletion, which emphasized the role of vertical water stratification and particle settling processes. A level III fugacity model was developed in the Bering Sea under steady state assumption. Model results quantitatively simulated the transfer processes and fate of PAHs in the air and water compartments, and highlighted a summer air-to-sea flux of PAHs in the Bering Sea, which meant that the ocean served as a sink for PAHs, at least in summer. Acenaphthylene and acenaphthene reached equilibrium in air-water diffusive exchange, and any perturbation, such as a rise in temperature, might lead to disequilibrium and remobilize these compounds from their Arctic reservoirs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A Two-Timescale Response to Ozone Depletion: Importance of the Background State

    NASA Astrophysics Data System (ADS)

    Seviour, W.; Waugh, D.; Gnanadesikan, A.

    2015-12-01

    It has been recently suggested that the response of Southern Ocean sea-ice extent to stratospheric ozone depletion is time-dependent; that the ocean surface initially cools due to enhanced northward Ekman drift caused by a poleward shift in the eddy-driven jet, and then warms after some time due to upwelling of warm waters from below the mixed layer. It is therefore possible that ozone depletion could act to favor a short-term increase in sea-ice extent. However, many uncertainties remain in understanding this mechanism, with different models showing widely differing time-scales and magnitudes of the response. Here, we analyze an ensemble of coupled model simulations with a step-function ozone perturbation. The two-timescale response is present with an approximately 30 year initial cooling period. The response is further shown to be highly dependent upon the background ocean temperature and salinity stratification, which is influenced by both natural internal variability and the isopycnal eddy mixing parameterization. It is suggested that the majority of inter-model differences in the Southern Ocean response to ozone depletion is caused by differences in stratification.

  11. Covariance of biophysical data with digital topograpic and land use maps over the FIFE site

    NASA Technical Reports Server (NTRS)

    Davis, F. W.; Schimel, D. S.; Friedl, M. A.; Michaelsen, J. C.; Kittel, T. G. F.; Dubayah, R.; Dozier, J.

    1992-01-01

    This paper discusses the biophysical stratification of the FIFE site, implementation of the stratification utilizing geographic information system methods, and validation of the stratification with respect to field measurements of biomass, Bowen ratio, soil moisture, and the greenness vegetation index (GVI) derived from TM satellite data. Maps of burning and topographic position were significantly associated with variation in GVI, biomass, and Bowen ratio. The stratified design did not significantly alter the estimated site-wide means for surface climate parameters but accounted for between 25 and 45 percent of the sample variance depending on the variable.

  12. Variability of stratification according to operation of the tidal power plant in Lake Sihwa, South Korea.

    NASA Astrophysics Data System (ADS)

    Woo, S. B.; Song, J. I.; Jang, T. H.; Park, C. J.; Kwon, H. K.

    2017-12-01

    Artificial forcing according to operation of the tidal power plant (TPP) affects the physical environmental changes near the power plant. Strong turbulence by generation is expected to change the stratification structure of the Lake Sihwa inside. In order to examine the stratification changes by the power plant operation, ship bottom mounted observation were performed for 13 hours using an acoustic Doppler current profiler (ADCP) and Conductivity-Temperature-Depth (CTD) in Lake Sihwa at near TPP. The strong stratification in Sihwa Lake is maintained before TPP operation. The absence of external forces and freshwater inflow from the land forms the stratification in the Lake. Strong winds in a stratification statement lead to two-layer circulation. After wind event, multi-layer velocity structure is formed which lasted for approximately 4 h. After TPP operation, the jet flow was observed in entire water column at the beginning of the power generation. Vortex is formed by strong jet flow and maintained throughout during power generation period. Strong turbulence flow is generated by the turbine blades, enhancing vertical mixing. External forces, which dominantly affect Lake Sihwa, have changed from the wind to the turbulent flow. The stratification was extinguished by strong turbulent flow and becomes fully-mixed state. Changes in stratification structure are expected to affect material transport and ecological environment change continuously.

  13. Planktonic events may cause polymictic-dimictic regime shifts in temperate lakes

    PubMed Central

    Shatwell, Tom; Adrian, Rita; Kirillin, Georgiy

    2016-01-01

    Water transparency affects the thermal structure of lakes, and within certain lake depth ranges, it can determine whether a lake mixes regularly (polymictic regime) or stratifies continuously (dimictic regime) from spring through summer. Phytoplankton biomass can influence transparency but the effect of its seasonal pattern on stratification is unknown. Therefore we analysed long term field data from two lakes of similar depth, transparency and climate but one polymictic and one dimictic, and simulated a conceptual lake with a hydrodynamic model. Transparency in the study lakes was typically low during spring and summer blooms and high in between during the clear water phase (CWP), caused when zooplankton graze the spring bloom. The effect of variability of transparency on thermal structure was stronger at intermediate transparency and stronger during a critical window in spring when the rate of lake warming is highest. Whereas the spring bloom strengthened stratification in spring, the CWP weakened it in summer. The presence or absence of the CWP influenced stratification duration and under some conditions determined the mixing regime. Therefore seasonal plankton dynamics, including biotic interactions that suppress the CWP, can influence lake temperatures, stratification duration, and potentially also the mixing regime. PMID:27074883

  14. Planktonic events may cause polymictic-dimictic regime shifts in temperate lakes.

    PubMed

    Shatwell, Tom; Adrian, Rita; Kirillin, Georgiy

    2016-04-14

    Water transparency affects the thermal structure of lakes, and within certain lake depth ranges, it can determine whether a lake mixes regularly (polymictic regime) or stratifies continuously (dimictic regime) from spring through summer. Phytoplankton biomass can influence transparency but the effect of its seasonal pattern on stratification is unknown. Therefore we analysed long term field data from two lakes of similar depth, transparency and climate but one polymictic and one dimictic, and simulated a conceptual lake with a hydrodynamic model. Transparency in the study lakes was typically low during spring and summer blooms and high in between during the clear water phase (CWP), caused when zooplankton graze the spring bloom. The effect of variability of transparency on thermal structure was stronger at intermediate transparency and stronger during a critical window in spring when the rate of lake warming is highest. Whereas the spring bloom strengthened stratification in spring, the CWP weakened it in summer. The presence or absence of the CWP influenced stratification duration and under some conditions determined the mixing regime. Therefore seasonal plankton dynamics, including biotic interactions that suppress the CWP, can influence lake temperatures, stratification duration, and potentially also the mixing regime.

  15. Numerical study of a thermally stratified flow of a tangent hyperbolic fluid induced by a stretching cylindrical surface

    NASA Astrophysics Data System (ADS)

    Ur Rehman, Khali; Ali Khan, Abid; Malik, M. Y.; Hussain, Arif

    2017-09-01

    The effects of temperature stratification on a tangent hyperbolic fluid flow over a stretching cylindrical surface are studied. The fluid flow is achieved by taking the no-slip condition into account. The mathematical modelling of the physical problem yields a nonlinear set of partial differential equations. These obtained partial differential equations are converted in terms of ordinary differential equations. Numerical investigation is done to identify the effects of the involved physical parameters on the dimensionless velocity and temperature profiles. In the presence of temperature stratification it is noticed that the curvature parameter makes both the fluid velocity and fluid temperature increase. In addition, positive variations in the thermal stratification parameter produce retardation with respect to the fluid flow, as a result the fluid temperature drops. The skin friction coefficient shows a decreasing nature for increasing value of both power law index and Weissenberg number, whereas the local Nusselt number is an increasing function of the Prandtl number, but opposite trends are found with respect to the thermal stratification parameter. The obtained results are validated by making a comparison with the existing literature which brings support to the presently developed model.

  16. Large eddy simulation model for wind-driven sea circulation in coastal areas

    NASA Astrophysics Data System (ADS)

    Petronio, A.; Roman, F.; Nasello, C.; Armenio, V.

    2013-12-01

    In the present paper a state-of-the-art large eddy simulation model (LES-COAST), suited for the analysis of water circulation and mixing in closed or semi-closed areas, is presented and applied to the study of the hydrodynamic characteristics of the Muggia bay, the industrial harbor of the city of Trieste, Italy. The model solves the non-hydrostatic, unsteady Navier-Stokes equations, under the Boussinesq approximation for temperature and salinity buoyancy effects, using a novel, two-eddy viscosity Smagorinsky model for the closure of the subgrid-scale momentum fluxes. The model employs: a simple and effective technique to take into account wind-stress inhomogeneity related to the blocking effect of emerged structures, which, in turn, can drive local-scale, short-term pollutant dispersion; a new nesting procedure to reconstruct instantaneous, turbulent velocity components, temperature and salinity at the open boundaries of the domain using data coming from large-scale circulation models (LCM). Validation tests have shown that the model reproduces field measurement satisfactorily. The analysis of water circulation and mixing in the Muggia bay has been carried out under three typical breeze conditions. Water circulation has been shown to behave as in typical semi-closed basins, with an upper layer moving along the wind direction (apart from the anti-cyclonic veering associated with the Coriolis force) and a bottom layer, thicker and slower than the upper one, moving along the opposite direction. The study has shown that water vertical mixing in the bay is inhibited by a large level of stable stratification, mainly associated with vertical variation in salinity and, to a minor extent, with temperature variation along the water column. More intense mixing, quantified by sub-critical values of the gradient Richardson number, is present in near-coastal regions where upwelling/downwelling phenomena occur. The analysis of instantaneous fields has detected the presence of large cross-sectional eddies spanning the whole water column and contributing to vertical mixing, associated with the presence of sub-surface horizontal turbulent structures. Analysis of water renewal within the bay shows that, under the typical breeze regimes considered in the study, the residence time of water in the bay is of the order of a few days. Finally, vertical eddy viscosity has been calculated and shown to vary by a couple of orders of magnitude along the water column, with larger values near the bottom surface where density stratification is smaller.

  17. The use of an aeration system to prevent thermal stratification of a freshwater impoundment and its effect on downstream fish assemblages.

    PubMed

    Miles, N G; West, R J

    2011-03-01

    Warm-water riverine fish assemblages were investigated downstream of an impoundment before and after thermal stratification and the associated cold-water pollution was prevented using an aeration system. Temperatures below the dam significantly increased after installation of the aeration system and this correlated with an increased abundance and greater number of species downstream. Overall, aeration appeared to be beneficial for both the lake (upstream) and the downstream riverine environments. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  18. The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink.

    PubMed

    Abelmann, Andrea; Gersonde, Rainer; Knorr, Gregor; Zhang, Xu; Chapligin, Bernhard; Maier, Edith; Esper, Oliver; Friedrichsen, Hans; Lohmann, Gerrit; Meyer, Hanno; Tiedemann, Ralf

    2015-09-18

    Reduced surface-deep ocean exchange and enhanced nutrient consumption by phytoplankton in the Southern Ocean have been linked to lower glacial atmospheric CO2. However, identification of the biological and physical conditions involved and the related processes remains incomplete. Here we specify Southern Ocean surface-subsurface contrasts using a new tool, the combined oxygen and silicon isotope measurement of diatom and radiolarian opal, in combination with numerical simulations. Our data do not indicate a permanent glacial halocline related to melt water from icebergs. Corroborated by numerical simulations, we find that glacial surface stratification was variable and linked to seasonal sea-ice changes. During glacial spring-summer, the mixed layer was relatively shallow, while deeper mixing occurred during fall-winter, allowing for surface-ocean refueling with nutrients from the deep reservoir, which was potentially richer in nutrients than today. This generated specific carbon and opal export regimes turning the glacial seasonal sea-ice zone into a carbon sink.

  19. Browning of Adirondack, NY Lakes: Rates and Effects

    NASA Astrophysics Data System (ADS)

    Driscoll, C. T.; Mota, Y.; Fakhraei, H.; Todorova, S.; Leach, T.; Rose, K. C.; O'Donnell, S.

    2017-12-01

    Browning, or increases in the concentrations of dissolved organic matter (DOM), is an intriguing recent phenomenon occurring in northern freshwaters. It is hypothesized that browning is a watershed response to decreases in acid deposition, although changing in climate may also contribute. The Adirondack region of NY is experiencing marked increases in lake concentrations of dissolved organic carbon (DOC), with 29 out of 48 lakes in the Adirondack Long-Term Monitoring (ALTM) program showing significant increases and two exhibiting decreases since 1992. Increases in DOC is altering the acid base status of Adirondack lakes largely due increases in DOM with strongly acidic functional groups. DOM mobilization limits increases in acid neutralizing capacity that can be achieved in recovery of surface waters from acid deposition. A subset of ALTM lakes also appear to be experiencing changes in their physical characteristics during the summer stratification period, consistent with increases in DOM and browning. Of 28 lakes monitored for water column profiles since 1994: 8 are showing declines in thermocline depth (5 significant, p<0.05); all are exhibiting increases in epilimnetic temperature (9 significant); 26 are experiencing increases in the difference between epilimnetic and hypolimnetic temperatures (6 significant); and 17 are experiencing decreases in hypolimnetic dissolved oxygen concentrations (6 significant decreases, 1 increase). These changes may be a manifestation of increases in the attenuation of light associated with increases in DOM, increasing the intensity and duration of thermal stratification.

  20. Fresh Water Content Variability in the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Proshutinsky, Andrey

    2003-01-01

    Arctic Ocean model simulations have revealed that the Arctic Ocean has a basin wide oscillation with cyclonic and anticyclonic circulation anomalies (Arctic Ocean Oscillation; AOO) which has a prominent decadal variability. This study explores how the simulated AOO affects the Arctic Ocean stratification and its relationship to the sea ice cover variations. The simulation uses the Princeton Ocean Model coupled to sea ice. The surface forcing is based on NCEP-NCAR Reanalysis and its climatology, of which the latter is used to force the model spin-up phase. Our focus is to investigate the competition between ocean dynamics and ice formation/melt on the Arctic basin-wide fresh water balance. We find that changes in the Atlantic water inflow can explain almost all of the simulated fresh water anomalies in the main Arctic basin. The Atlantic water inflow anomalies are an essential part of AOO, which is the wind driven barotropic response to the Arctic Oscillation (AO). The baroclinic response to AO, such as Ekman pumping in the Beaufort Gyre, and ice meldfreeze anomalies in response to AO are less significant considering the whole Arctic fresh water balance.

  1. The summer hydrographic structure of the Hanna Shoal region on the northeastern Chukchi Sea shelf: 2011-2013

    NASA Astrophysics Data System (ADS)

    Weingartner, Thomas; Fang, Ying-Chih; Winsor, Peter; Dobbins, Elizabeth; Potter, Rachel; Statscewich, Hank; Mudge, Todd; Irving, Brita; Sousa, Leandra; Borg, Keath

    2017-10-01

    We used shipboard and towed CTD, current meter, and satellite-tracked drifter data to examine the hydrographic structure in the northeastern Chukchi Sea in August-September of 2011, 2012, and 2013. In all years the densest winter water was around and east of Hanna Shoal. In 2012 and 2013, a 15 m deep layer of cold, dilute meltwater overlaid the dense water north of the shelf region between 71.2 and 71.5°N. A front extends from the southwest side of Hanna Shoal toward the head of Barrow Canyon, separated meltwaters from warmer, saltier Bering Sea Summer Waters to the south. Stratification was stronger and the surface density variances in the meso- and sub-mesoscale range were higher north of the front than to the south. No meltwater or surface fronts were present in 2011 due to a very early ice retreat. Differences in summer ice cover may be due to differences in the amount of grounded ice atop Hanna Shoal associated with the previous winter's regional ice drift. Along the north side of Hanna Shoal the model-predicted clockwise barotropic flow carrying waters from the western side of the Shoal appears to converge with a counterclockwise, baroclinic flow on the northeast side. The baroclinic tendency is confined to the upper 30 m and can include waters transported from the shelfbreak. The inferred zonal convergence implies that north of the Shoal: a) near-surface waters are a mixture of waters from the western and eastern Chukchi Sea and b) the cross-isobath pressure gradient collapses thereby facilitating leakage of upper layer waters northward across the shelf.

  2. Measuring Density Stratification and Understanding its Impact on Sediment Transport in Fine-grained Rivers, Based on Observations from the Lower Yellow River, China

    NASA Astrophysics Data System (ADS)

    Moodie, A. J.; Nittrouer, J. A.; Ma, H.; Lamb, M. P.; Carlson, B.; Kineke, G. C.; Parker, G.

    2017-12-01

    High concentrations of suspended sediment in channelized fluid flow produces density stratification that can alter the turbulent flow structure, thus limiting fluid momentum redistribution and affecting sediment transport capacity. A low channel-bed slope and large flow depth are hypothesized to be additional important factors contributing to density stratification. However, there are limited observations of density stratification in large rivers, especially those that carry significant fluxes of mud, and so the conditions leading to the development of density stratification are poorly constrained. The Yellow River, China, is a fine-grained and low-sloping river that maintains some of the highest suspended sediment concentrations in large rivers worldwide, making it an ideal natural laboratory for studying density stratification and its impact on sediment transport. Suspended sediment samples from the lower Yellow River, collected over a range of discharge conditions, produced sediment concentration profiles that are used in conjunction with velocity profiles to determine the threshold shear velocity for density stratification effects to develop. Comparing measured and predicted concentration and velocity profiles demonstrates that, there is no significant density stratification for base flow conditions; however, above a shear velocity value of 0.05 m/s, there is a progressive offset between the measured and predicted profiles, indicating that density stratification is increasingly important with higher shear stress values. The analyses further indicate that sediment entrainment from the bed and sediment diffusivity within the water column are significantly impacted by density stratification, suggesting that shear stress and sediment transport rates are inhibited by the development of density stratification. Near-bed concentration measurements are used to assess a stress-to-entrainment relationship, accounting for density stratification. These measurements are being used to refine relations for sediment entrainment and sediment flux in sandy and muddy, lowland rivers and deltas.

  3. Advances in Satellite Microwave Precipitation Retrieval Algorithms Over Land

    NASA Astrophysics Data System (ADS)

    Wang, N. Y.; You, Y.; Ferraro, R. R.

    2015-12-01

    Precipitation plays a key role in the earth's climate system, particularly in the aspect of its water and energy balance. Satellite microwave (MW) observations of precipitation provide a viable mean to achieve global measurement of precipitation with sufficient sampling density and accuracy. However, accurate precipitation information over land from satellite MW is a challenging problem. The Goddard Profiling Algorithm (GPROF) algorithm for the Global Precipitation Measurement (GPM) is built around the Bayesian formulation (Evans et al., 1995; Kummerow et al., 1996). GPROF uses the likelihood function and the prior probability distribution function to calculate the expected value of precipitation rate, given the observed brightness temperatures. It is particularly convenient to draw samples from a prior PDF from a predefined database of observations or models. GPROF algorithm does not search all database entries but only the subset thought to correspond to the actual observation. The GPM GPROF V1 database focuses on stratification by surface emissivity class, land surface temperature and total precipitable water. However, there is much uncertainty as to what is the optimal information needed to subset the database for different conditions. To this end, we conduct a database stratification study of using National Mosaic and Multi-Sensor Quantitative Precipitation Estimation, Special Sensor Microwave Imager/Sounder (SSMIS) and Advanced Technology Microwave Sounder (ATMS) and reanalysis data from Modern-Era Retrospective Analysis for Research and Applications (MERRA). Our database study (You et al., 2015) shows that environmental factors such as surface elevation, relative humidity, and storm vertical structure and height, and ice thickness can help in stratifying a single large database to smaller and more homogeneous subsets, in which the surface condition and precipitation vertical profiles are similar. It is found that the probability of detection (POD) increases about 8% and 12% by using stratified databases for rainfall and snowfall detection, respectively. In addition, by considering the relative humidity at lower troposphere and the vertical velocity at 700 hPa in the precipitation detection process, the POD for snowfall detection is further increased by 20.4% from 56.0% to 76.4%.

  4. Habitat use, vertical and horizontal behaviour of Atlantic bluefin tuna (Thunnus thynnus) in the Northwestern Mediterranean Sea in relation to oceanographic conditions

    NASA Astrophysics Data System (ADS)

    Bauer, Robert Klaus; Fromentin, Jean-Marc; Demarcq, Hervé; Bonhommeau, Sylvain

    2017-07-01

    We investigated the habitat utilization, vertical and horizontal behaviour of Atlantic bluefin tuna Thunnus thynnus (ABFT) in relation to oceanographic conditions in the northwestern Mediterranean Sea, based on 36 pop-up archival tags and different environmental data sets. Tags were deployed on early mature ABFT (127-255 cm) between July and November in 2007-2014, on the shelf area off Marseille, France. The data obtained from these tags provided 1643 daily summaries of ABFT vertical behaviour over 8 years of tag deployment. Based on a hierarchical clustering of this data, we could identify four principle daily vertical behaviour types, representing surface (≦ 10 m) and subsurface (10-100 m) orientation, moderate (50-200 m) and deep (≧ 200 m) diving behaviour. These vertical behaviour types showed seasonal variations with partly opposing trends in their frequencies. Accordingly, ABFT were more surface orientated during summer, while moderate diving behaviour was more common during winter. Depth time series data further revealed inverted day-night patterns for both of these periods. Tagged ABFT frequented the surface waters more regularly during daytime and deeper waters during the night in summer, while the opposite pattern was found in winter. Seasonal changes in the vertical behaviour of ABFT were accompanied by simultaneous changes in environmental conditions (SST, chla, thermal stratification). Accordingly, surface orientation and moderate diving behaviour appeared to be triggered by the thermal stratification of the water column, though less pronounced than previously reported for ABFT in the North Atlantic, probably indicating adaptive vertical behaviour related to the availability of epipelagic food resources (anchovies and sardines). Deep diving behaviour was particularly frequent during months of high biological productivity (February-May), although one recovered tag showed periodic and unusual long spike dives during summer-autumn, in relation to thermal fronts. Regional effects on the vertical behaviour of ABFT were identified through GAMs, with surface orientation being particularly pronounced in the Gulf of Lions, highlighting its suitability for an ongoing annual aerial survey program to estimate ABFT abundance in this region. In addition, increased levels of mesoscale activity/productivity (e.g. related to oceanic fronts) were detected in an area regularly utilized by ABFT, south of the Gulf of Lions, underlining its attractiveness as foraging ground. Kernel densities of geolocation estimates showed a seasonal shift in the horizontal distribution of ABFT from this "high-use" area towards the Gulf of Lions during summer, probably linked to the enhanced availability of epipelagic food resources at this time.

  5. Geosphere-Biosphere Interactions in Bio-Activity Volcanic Lakes: Evidences from Hule and Rìo Cuarto (Costa Rica)

    PubMed Central

    Cabassi, Jacopo; Tassi, Franco; Mapelli, Francesca; Borin, Sara; Calabrese, Sergio; Rouwet, Dmitri; Chiodini, Giovanni; Marasco, Ramona; Chouaia, Bessem; Avino, Rosario; Vaselli, Orlando; Pecoraino, Giovannella; Capecchiacci, Francesco; Bicocchi, Gabriele; Caliro, Stefano; Ramirez, Carlos; Mora-Amador, Raul

    2014-01-01

    Hule and Río Cuarto are maar lakes located 11 and 18 km N of Poás volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemical processes occur in these meromictic lakes. Although the two lakes host different bacterial and archaeal phylogenetic groups, water and gas chemistry in both lakes is controlled by the same prokaryotic functions, especially regarding the CO2-CH4 cycle. Addition of hydrothermal CO2 through the bottom of the lakes plays a fundamental priming role in developing a stable water stratification and fuelling anoxic bacterial and archaeal populations. Methanogens and methane oxidizers as well as autotrophic and heterotrophic aerobic bacteria responsible of organic carbon recycling resulted to be stratified with depth and strictly related to the chemical-physical conditions and availability of free oxygen, affecting both the CO2 and CH4 chemical concentrations and their isotopic compositions along the water column. Hule and Río Cuarto lakes were demonstrated to contain a CO2 (CH4, N2)-rich gas reservoir mainly controlled by the interactions occurring between geosphere and biosphere. Thus, we introduced the term of bio-activity volcanic lakes to distinguish these lakes, which have analogues worldwide (e.g. Kivu: D.R.C.-Rwanda; Albano, Monticchio and Averno: Italy; Pavin: France) from volcanic lakes only characterized by geogenic CO2 reservoir such as Nyos and Monoun (Cameroon). PMID:25058537

  6. Density-stratified flow events in Great Salt Lake, Utah, USA: implications for mercury and salinity cycling

    USGS Publications Warehouse

    Naftz, David L.; Carling, Gregory T.; Angeroth, Cory; Freeman, Michael; Rowland, Ryan; Pazmiño, Eddy

    2014-01-01

    Density stratification in saline and hypersaline water bodies from throughout the world can have large impacts on the internal cycling and loading of salinity, nutrients, and trace elements. High temporal resolution hydroacoustic and physical/chemical data were collected at two sites in Great Salt Lake (GSL), a saline lake in the western USA, to understand how density stratification may influence salinity and mercury (Hg) distributions. The first study site was in a causeway breach where saline water from GSL exchanges with less saline water from a flow restricted bay. Near-surface-specific conductance values measured in water at the breach displayed a good relationship with both flow and wind direction. No diurnal variations in the concentration of dissolved (total and MeHg loadings was observed during periods of elevated salinity. The second study site was located on the bottom of GSL where movement of a high-salinity water layer, referred to as the deep brine layer (DBL), is restricted to a naturally occurring 1.5-km-wide “spillway” structure. During selected time periods in April/May, 2012, wind-induced flow reversals in a railroad causeway breach, separating Gunnison and Gilbert Bays, were coupled with high-velocity flow pulses (up to 55 cm/s) in the DBL at the spillway site. These flow pulses were likely driven by a pressure response of highly saline water from Gunnison Bay flowing into the north basin of Gilbert Bay. Short-term flow reversal events measured at the railroad causeway breach have the ability to move measurable amounts of salt and Hg from Gunnison Bay into the DBL. Future disturbance to the steady state conditions currently imposed by the railroad causeway infrastructure could result in changes to the existing chemical balance between Gunnison and Gilbert Bays. Monitoring instruments were installed at six additional sites in the DBL during October 2012 to assess impacts from any future modifications to the railroad causeway.

  7. Geosphere-biosphere interactions in bio-activity volcanic lakes: evidences from Hule and Rìo Cuarto (Costa Rica).

    PubMed

    Cabassi, Jacopo; Tassi, Franco; Mapelli, Francesca; Borin, Sara; Calabrese, Sergio; Rouwet, Dmitri; Chiodini, Giovanni; Marasco, Ramona; Chouaia, Bessem; Avino, Rosario; Vaselli, Orlando; Pecoraino, Giovannella; Capecchiacci, Francesco; Bicocchi, Gabriele; Caliro, Stefano; Ramirez, Carlos; Mora-Amador, Raul

    2014-01-01

    Hule and Río Cuarto are maar lakes located 11 and 18 km N of Poás volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemical processes occur in these meromictic lakes. Although the two lakes host different bacterial and archaeal phylogenetic groups, water and gas chemistry in both lakes is controlled by the same prokaryotic functions, especially regarding the CO2-CH4 cycle. Addition of hydrothermal CO2 through the bottom of the lakes plays a fundamental priming role in developing a stable water stratification and fuelling anoxic bacterial and archaeal populations. Methanogens and methane oxidizers as well as autotrophic and heterotrophic aerobic bacteria responsible of organic carbon recycling resulted to be stratified with depth and strictly related to the chemical-physical conditions and availability of free oxygen, affecting both the CO2 and CH4 chemical concentrations and their isotopic compositions along the water column. Hule and Río Cuarto lakes were demonstrated to contain a CO2 (CH4, N2)-rich gas reservoir mainly controlled by the interactions occurring between geosphere and biosphere. Thus, we introduced the term of bio-activity volcanic lakes to distinguish these lakes, which have analogues worldwide (e.g. Kivu: D.R.C.-Rwanda; Albano, Monticchio and Averno: Italy; Pavin: France) from volcanic lakes only characterized by geogenic CO2 reservoir such as Nyos and Monoun (Cameroon).

  8. Surface-water radon-222 distribution along the west-central Florida shelf

    USGS Publications Warehouse

    Smith, C.G.; Robbins, L.L.

    2012-01-01

    In February 2009 and August 2009, the spatial distribution of radon-222 in surface water was mapped along the west-central Florida shelf as collaboration between the Response of Florida Shelf Ecosystems to Climate Change project and a U.S. Geological Survey Mendenhall Research Fellowship project. This report summarizes the surface distribution of radon-222 from two cruises and evaluates potential physical controls on radon-222 fluxes. Radon-222 is an inert gas produced overwhelmingly in sediment and has a short half-life of 3.8 days; activities in surface water ranged between 30 and 170 becquerels per cubic meter. Overall, radon-222 activities were enriched in nearshore surface waters relative to offshore waters. Dilution in offshore waters is expected to be the cause of the low offshore activities. While thermal stratification of the water column during the August survey may explain higher radon-222 activities relative to the February survey, radon-222 activity and integrated surface-water inventories decreased exponentially from the shoreline during both cruises. By estimating radon-222 evasion by wind from nearby buoy data and accounting for internal production from dissolved radium-226, its radiogenic long-lived parent, a simple one-dimensional model was implemented to determine the role that offshore mixing, benthic influx, and decay have on the distribution of excess radon-222 inventories along the west Florida shelf. For multiple statistically based boundary condition scenarios (first quartile, median, third quartile, and maximum radon-222 inshore of 5 kilometers), the cross-shelf mixing rates and average nearshore submarine groundwater discharge (SGD) rates varied from 100.38 to 10-3.4 square kilometers per day and 0.00 to 1.70 centimeters per day, respectively. This dataset and modeling provide the first attempt to assess cross-shelf mixing and SGD on such a large spatial scale. Such estimates help scale up SGD rates that are often made at 1- to 10-meter resolution to a coarser but more regionally applicable scale of 1- to 10-kilometer resolution. More stringent analyses and model evaluation are required, but results and analyses presented in this report provide the foundation for conducting a more rigorous statistical assessment.

  9. Long-term trends in a Dimictic Lake

    USGS Publications Warehouse

    Robertson, Dale M.; Hsieh, Yi-Fang; Lathrop, Richard C; Wu, Chin H; Magee, Madeline; Hamilton, David P.

    2016-01-01

     The one-dimensional hydrodynamic ice model, DYRESM-WQ-I, was modified to simulate ice cover and thermal structure of dimictic Lake Mendota, Wisconsin, USA, over a continuous 104-year period (1911–2014). The model results were then used to examine the drivers of changes in ice cover and water temperature, focusing on the responses to shifts in air temperature, wind speed, and water clarity at multiyear timescales. Observations of the drivers include a change in the trend of warming air temperatures from 0.081 °C per decade before 1981 to 0.334 °C per decade thereafter, as well as a shift in mean wind speed from 4.44 m s−1 before 1994 to 3.74 m s−1 thereafter. Observations show that Lake Mendota has experienced significant changes in ice cover: later ice-on date(9.0 days later per century), earlier ice-off date (12.3 days per century), decreasing ice cover duration (21.3 days per century), while model simulations indicate a change in maximum ice thickness (12.7 cm decrease per century). Model simulations also show changes in the lake thermal regime of earlier stratification onset (12.3 days per century), later fall turnover (14.6 days per century), longer stratification duration (26.8 days per century), and decreasing summer hypolimnetic temperatures (−1.4 °C per century). Correlation analysis of lake variables and driving variables revealed ice cover variables, stratification onset, epilimnetic temperature, and hypolimnetic temperature were most closely correlated with air temperature, whereas freeze-over water temperature, hypolimnetic heating, and fall turnover date were more closely correlated with wind speed. Each lake variable (i.e., ice-on and ice-off dates, ice cover duration, maximum ice thickness, freeze-over water temperature, stratification onset, fall turnover date, stratification duration, epilimnion temperature, hypolimnion temperature, and hypolimnetic heating) was averaged for the three periods (1911–1980, 1981–1993, and 1994–2014) delineated by abrupt changes in air temperature and wind speed. Average summer hypolimnetic temperature and fall turnover date exhibit significant differences between the third period and the first two periods. Changes in ice cover (ice-on and ice-off dates, ice cover duration, and maximum ice thickness) exhibit an abrupt change after 1994, which was related in part to the warm El Niño winter of 1997–1998. Under-ice water temperature, freeze-over water temperature, hypolimnetic temperature, fall turnover date, and stratification duration demonstrate a significant difference in the third period (1994–2014), when air temperature was warmest and wind speeds decreased rather abruptly. The trends in ice cover and water temperature demonstrate responses to both long-term and abrupt changes in meteorological conditions that can be complemented with numerical modeling to better understand how these variables will respond in a future climate.

  10. South Asian summer monsoon variability during the last ˜54 kyrs inferred from surface water salinity and river runoff proxies

    NASA Astrophysics Data System (ADS)

    Gebregiorgis, D.; Hathorne, E. C.; Sijinkumar, A. V.; Nath, B. Nagender; Nürnberg, D.; Frank, M.

    2016-04-01

    The past variability of the South Asian Monsoon is mostly known from records of wind strength over the Arabian Sea while high-resolution paleorecords from regions of strong monsoon precipitation are still lacking. Here, we present records of past monsoon variability obtained from sediment core SK 168/GC-1, which was collected at the Alcock Seamount complex in the Andaman Sea. We utilize the ecological habitats of different planktic foraminiferal species to reconstruct freshwater-induced stratification based on paired Mg/Ca and δ18O analyses and to estimate seawater δ18O (δ18Osw). The difference between surface and thermocline temperatures (ΔT) and δ18Osw (Δδ18Osw) is used to investigate changes in upper ocean stratification. Additionally, Ba/Ca in G. sacculifer tests is used as a direct proxy for riverine runoff and sea surface salinity (SSS) changes related to monsoon precipitation on land. Our Δδ18Osw time series reveals that upper ocean salinity stratification did not change significantly throughout the last glacial suggesting little influence of NH insolation changes. The strongest increase in temperature gradients between the mixed layer and the thermocline is recorded for the mid-Holocene and indicate the presence of a significantly shallower thermocline. In line with previous work, the δ18Osw and Ba/Ca records demonstrate that monsoon climate during the LGM was characterized by a significantly weaker southwest monsoon circulation and strongly reduced runoff. Based on our data the South Asian Summer Monsoon (SAM) over the Irrawaddyy strengthened gradually after the LGM beginning at ∼18 ka. This is some 3 kyrs before an increase of the Ba/Ca record from the Arabian Sea and indicates that South Asian Monsoon climate dynamics are more complex than the simple N-S displacement of the ITCZ as generally described for other regions. Minimum δ18Osw values recorded during the mid-Holocene are in phase with Ba/Ca marking a stronger monsoon precipitation, which is consistent with model simulations.

  11. Alpine glacier-fed turbid lakes are discontinuous cold polymictic rather than dimictic

    PubMed Central

    Peter, Hannes; Sommaruga, Ruben

    2017-01-01

    Abstract Glacier retreat as a consequence of climate change influences freshwater ecosystems in manifold ways, yet the physical and chemical bases of these effects are poorly studied. Here, we characterize how water temperature differs between alpine lakes with and without direct glacier influence on seasonal and diurnal timescales. Using high temporal resolution monitoring of temperature in 4 lakes located in a catchment influenced by glacier retreat, we reported unexpectedly high surface temperatures, even in proglacial lakes located 2600 m a.s.l. Cold glacier meltwater and low nighttime air temperatures caused a distinct diurnal pattern of water temperature in the water column of glacier-influenced lakes. Precipitation onto glacier surfaces apparently leads to rapid cooling of the glacier-fed lakes and disrupts the thermal stratification with several mixing events during the summer. Taken together, these mechanisms contribute to the unique seasonal and diurnal dynamics of glacier-influenced lakes that contrast with the typical dimictic pattern of clear alpine lakes and represent an example of discontinuous cold polymictic lake type. This work contributes to the basic description of how climate and meteorology affect the physical properties of an increasingly common lake type. PMID:28690780

  12. Numerical modeling of an estuary: A comprehensive skill assessment

    USGS Publications Warehouse

    Warner, J.C.; Geyer, W.R.; Lerczak, J.A.

    2005-01-01

    Numerical simulations of the Hudson River estuary using a terrain-following, three-dimensional model (Regional Ocean Modeling System (ROMS)) are compared with an extensive set of time series and spatially resolved measurements over a 43 day period with large variations in tidal forcing and river discharge. The model is particularly effective at reproducing the observed temporal variations in both the salinity and current structure, including tidal, spring neap, and river discharge-induced variability. Large observed variations in stratification between neap and spring tides are captured qualitatively and quantitatively by the model. The observed structure and variations of the longitudinal salinity gradient are also well reproduced. The most notable discrepancy between the model and the data is in the vertical salinity structure. While the surface-to-bottom salinity difference is well reproduced, the stratification in the model tends to extend all the way to the water surface, whereas the observations indicate a distinct pycnocline and a surface mixed layer. Because the southern boundary coindition is located near the mouth the estuary, the salinity within the domain is particularly sensitive to the specification of salinity at the boundary. A boundary condition for the horizontal salinity gradient, based on the local value of salinity, is developed to incorporate physical processes beyond the open boundary not resolved by the model. Model results are sensitive to the specification of the bottom roughness length and vertical stability functions, insofar as they influence the intensity of vertical mixing. The results only varied slightly between different turbulence closure methods of k-??, k-??, and k-kl. Copyright 2005 by the American Geophysical Union.

  13. Cyanobacterial blooms in stratified and destratified eutrophic reservoirs in semi-arid region of Brazil.

    PubMed

    Dantas, Enio W; Moura, Ariadne N; Bittencourt-Oliveira, Maria do Carmo

    2011-12-01

    This study investigated the dynamics of cyanobacteria in two deep, eutrophic reservoirs in a semi-arid region of Brazil during periods of stratification and destratification. Four collections were carried out at each reservoir at two depths at three-month intervals. The following abiotic variables were analyzed: water temperature, dissolved oxygen, pH, turbidity, water transparency, total phosphorus, total dissolved phosphorus, orthophosphate and total nitrogen. Phytoplankton density was quantified for the determination of the biomass of cyanobacteria. The data were analyzed using CCA. Higher mean phytoplankton biomass values (29.8 mm(3).L(-1)) occurred in the period of thermal stratification. A greater similarity in the phytoplankton communities also occurred in this period and was related to the development of cyanobacteria, mainly Cylindrospermopsis raciborskii (>3.9 mm(3).L(-1)). During the period of thermal destratification, this species co-dominated the environment with Planktothrix agardhii, Geitlerinema amphibium, Microcystis aeruginosa and Merismopedia tenuissima, as well as with diatoms and phytoflagellates. Environmental instability and competition among algae hindered the establishment of blooms more during the mixture period than during the stratification period. Thermal changes in the water column caused by climatologic events altered other physiochemical conditions of the water, leading to changes in the composition and biomass of the cyanobacterial community in tropical reservoirs.

  14. Reservoir-development impacts on surface-water quantity and quality in the Yampa River basin, Colorado and Wyoming

    USGS Publications Warehouse

    Adams, D. Briane; Bauer, Daniel P.; Dale, Robert H.; Steele, Timothy Doak

    1983-01-01

    Development of coal resources and associated economy is accelerating in the Yampa River basin in northwestern Colorado and south-central Wyoming. Increased use of the water resources of the area will have a direct impact on their quantity and quality. As part of 18 surface-water projects, 35 reservoirs have been proposed with a combined total storage of 2.18 million acre-feet, 41% greater than the mean annual outflow from the basin. Three computer models were used to demonstrate methods of evaluating future impacts of reservoir development in the Yampa River basin. Four different reservoir configurations were used to simulate the effects of different degrees of proposed reservoir development. A multireservoir-flow model included both within-basin and transmountain diversions. Simulations indicated that in many cases diversion amounts would not be available for either type of diversion. A corresponding frequency analysis of reservoir storage levels indicated that most reservoirs would be operating with small percentages of total capacities and generally with less than 20% of conservation-pool volumes. Simulations using a dissolved-solids model indicated that extensive reservoir development could increase average annual concentrations at most locations. Simulations using a single-reservoir model indicated no significant occurrence of water-temperature stratification in most reservoirs due to limited reservoir storage. (USGS)

  15. Numerical modeling of thermal regime in inland water bodies with field measurement data

    NASA Astrophysics Data System (ADS)

    Gladskikh, D.; Sergeev, D.; Baydakov, G.; Soustova, I.; Troitskaya, Yu.

    2018-01-01

    Modification of the program complex LAKE, which is intended to compute the thermal regimes of inland water bodies, and the results of its validation in accordance with the parameters of lake part of Gorky water reservoir are reviewed in the research. The modification caused changing the procedure of input temperature profile assignment and parameterization of surface stress on air-water boundary in accordance with the consideration of wind influence on mixing process. Also the innovation consists in combined methods of gathering meteorological parameters from files of global meteorological reanalysis and data of hydrometeorological station. Temperature profiles carried out with CTD-probe during expeditions in the period 2014-2017 were used for validation of the model. The comparison between the real data and the numerical results and its assessment based on time and temperature dependences in control points, correspondence of the forms of the profiles and standard deviation for all performed realizations are provided. It is demonstrated that the model reproduces the results of field measurement data for all observed conditions and seasons. The numerical results for the regimes with strong mixing are in the best quantitative and qualitative agreement with the real profiles. The accuracy of the forecast for the ones with strong stratification near the surface is lower but all specificities of the forms are correctly reproduced.

  16. Three dimensional heat transport modeling in Vossoroca reservoir

    NASA Astrophysics Data System (ADS)

    Arcie Polli, Bruna; Yoshioka Bernardo, Julio Werner; Hilgert, Stephan; Bleninger, Tobias

    2017-04-01

    Freshwater reservoirs are used for many purposes as hydropower generation, water supply and irrigation. In Brazil, according to the National Energy Balance of 2013, hydropower energy corresponds to 70.1% of the Brazilian demand. Superficial waters (which include rivers, lakes and reservoirs) are the most used source for drinking water supply - 56% of the municipalities use superficial waters as a source of water. The last two years have shown that the Brazilian water and electricity supply is highly vulnerable and that improved management is urgently needed. The construction of reservoirs affects physical, chemical and biological characteristics of the water body, e.g. stratification, temperature, residence time and turbulence reduction. Some water quality issues related to reservoirs are eutrophication, greenhouse gas emission to the atmosphere and dissolved oxygen depletion in the hypolimnion. The understanding of the physical processes in the water body is fundamental to reservoir management. Lakes and reservoirs may present a seasonal behavior and stratify due to hydrological and meteorological conditions, and especially its vertical distribution may be related to water quality. Stratification can control heat and dissolved substances transport. It has been also reported the importance of horizontal temperature gradients, e.g. inflows and its density and processes of mass transfer from shallow to deeper regions of the reservoir, that also may impact water quality. Three dimensional modeling of the heat transport in lakes and reservoirs is an important tool to the understanding and management of these systems. It is possible to estimate periods of large vertical temperature gradients, inhibiting vertical transport and horizontal gradients, which could be responsible for horizontal transport of heat and substances (e.g. differential cooling or inflows). Vossoroca reservoir was constructed in 1949 by the impoundment of São João River and is located near to Curitiba - Brazil. It is monomictic and its function is to regulate the flow to Chaminé hydropower plant. Vossoroca is monitored since 2012. Temperature is measured with seven temperature sensors in the deepest region of the reservoir and meteorological data is measured on a station close to the reservoir. The objective of this work is the 3D modeling of heat transport in Vossoroca reservoir with Delft3D. Temperature gradients between surface and bottom of Vossoroca reservoir during summer may reach 10°C, with surface temperatures around 25°C. Vossoroca is mixed during winter, with temperatures around 15°C. Based on these results, the position of the oxycline can be reconstructed. This information may lead to an adapted reservoir management, minimizing the potential effects to the downstream ecosystem, which normally can be strongly affected by the exposure to oxygen depleted water.

  17. Exceptional summer warming leads to contrasting outcomes for methane cycling in small Arctic lakes of Greenland

    NASA Astrophysics Data System (ADS)

    Cadieux, Sarah B.; White, Jeffrey R.; Pratt, Lisa M.

    2017-02-01

    In thermally stratified lakes, the greatest annual methane emissions typically occur during thermal overturn events. In July of 2012, Greenland experienced significant warming that resulted in substantial melting of the Greenland Ice Sheet and enhanced runoff events. This unusual climate phenomenon provided an opportunity to examine the effects of short-term natural heating on lake thermal structure and methane dynamics and compare these observations with those from the following year, when temperatures were normal. Here, we focus on methane concentrations within the water column of five adjacent small lakes on the ice-free margin of southwestern Greenland under open-water and ice-covered conditions from 2012-2014. Enhanced warming of the epilimnion in the lakes under open-water conditions in 2012 led to strong thermal stability and the development of anoxic hypolimnia in each of the lakes. As a result, during open-water conditions, mean dissolved methane concentrations in the water column were significantly (p < 0.0001) greater in 2012 than in 2013. In all of the lakes, mean methane concentrations under ice-covered conditions were significantly (p < 0.0001) greater than under open-water conditions, suggesting spring overturn is currently the largest annual methane flux to the atmosphere. As the climate continues to warm, shorter ice cover durations are expected, which may reduce the winter inventory of methane and lead to a decrease in total methane flux during ice melt. Under open-water conditions, greater heat income and warming of lake surface waters will lead to increased thermal stratification and hypolimnetic anoxia, which will consequently result in increased water column inventories of methane. This stored methane will be susceptible to emissions during fall overturn, which may result in a shift in greatest annual efflux of methane from spring melt to fall overturn. The results of this study suggest that interannual variation in ground-level air temperatures may be the primary driver of changes in methane dynamics because it controls both the duration of ice cover and the strength of thermal stratification.

  18. Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China.

    PubMed

    Wang, Sheng; Qian, Xin; Han, Bo-Ping; Luo, Lian-Cong; Hamilton, David P

    2012-05-15

    Thermal regime is strongly associated with hydrodynamics in water, and it plays an important role in the dynamics of water quality and ecosystem succession of stratified reservoirs. Changes in both climate and hydrological conditions can modify thermal regimes. Liuxihe Reservoir (23°45'50″N; 113°46'52″E) is a large, stratified and deep reservoir in Guangdong Province, located at the Tropic of Cancer of southern China. The reservoir is a warm monomictic water body with a long period of summer stratification and a short period of mixing in winter. The vertical distribution of suspended particulate material and nutrients are influenced strongly by the thermal structure and the associated flow fields. The hypolimnion becomes anoxic in the stratified period, increasing the release of nutrients from the bottom sediments. Fifty-one years of climate and reservoir operational observations are used here to show the marked changes in local climate and reservoir operational schemes. The data show increasing air temperature and more violent oscillations in inflow volumes in the last decade, while the inter-annual water level fluctuations tend to be more moderate. To quantify the effects of changes in climate and hydrological conditions on thermal structure, we used a numerical simulation model to create scenarios incorporating different air temperatures, inflow volumes, and water levels. The simulations indicate that water column stability, the duration of the mixing period, and surface and outflow temperatures are influenced by both natural factors and by anthropogenic factors such as climate change and reservoir operation schemes. Under continuous warming and more stable storage in recent years, the simulations indicate greater water column stability and increased duration of stratification, while irregular large discharge events may reduce stability and lead to early mixing in autumn. Our results strongly suggest that more attention should be focused on water quality in years of extreme climate variation and hydrological conditions, and selective withdrawal of deep water may provide an efficient means to reduce internal loading in warm years. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Lake Hickory, North Carolina; analysis of ambient conditions and simulation of hydrodynamics, constituent transport, and water-quality characteristics, 1993-94

    USGS Publications Warehouse

    Bales, J.D.; Giorgino, M.J.

    1998-01-01

    From January 1993 through March 1994, circulation patterns and water- quality characteristics in Lake Hickory varied seasonally and were strongly influenced by inflows from Rhodhiss Dam. The upper, riverine portion of Lake Hickory was unstratified during much of the study period. Downstream from the headwaters to Oxford Dam, Lake Hickory thermally stratified during the summer of 1993. During stratification, releases from Rhodhiss Dam plunged beneath the warmer surface waters of Lake Hickory and moved through the reservoir as interflow. During fall and winter, Lake Hickory was characterized by alternating periods of mixing and weak stratification. Water-quality conditions in the headwaters of Lake Hickory were largely driven by conditions in water being released from Rhodhiss Dam. In general, water clarity increased, and concentrations of suspended solids, phosphorus, and summertime chlorophyll a decreased in a downstream direction from the headwaters of Lake Hickory to Oxford Dam. Two chlorophyll a samples from the upper portion of Lake Hickory exceeded the North Carolina water-quality standard of 40 micrograms per liter during the investigation. Downstream from the headwaters, dissolved oxygen was rapidly depleted from Lake Hickory bottom waters beginning in May 1993, and anoxic conditions persisted in the hypolimnion throughout the summer. During summer stratification, concentrations of nitrite plus nitrate, ammonia, and orthophosphate were low in the epilimnion, but concentrations of ammonia near the bottom of the reservoir increased as the hypolimnion became anoxic. Concentrations of fecal coliform bacteria exceeded 200 colonies per 100 milliliters in only one of 60 samples collected from Lake Hickory. In contrast, concentrations of fecal coliform bacteria exceeded 200 colonies per 100 milliliters in 40 percent of samples collected from the Upper Little River, and in 60 percent of samples collected from the Middle Little River, two tributaries to Lake Hickory. Load estimates for the period April 1993 through March 1994 indicated that releases from Rhodhiss Dam accounted for most of the suspended solids, nitrogen, and phosphorus entering the headwaters of Lake Hickory. Loads of nitrogen and phosphorus from point-source discharges were potentially important, but loads of suspended solids from these discharges were insignificant relative to other sources. The CE-QUAL-W2 model was applied to Lake Hickory from the U.S. Highway 321 bridge to Oxford Dam?a distance of 22 kilometers?and was calibrated by using data collected from April 1993 through March 1994. During the simulation period, measured water levels varied a total of 1.14 meters, and water temperatures ranged from 4 to 31 degrees Celsius. The calibrated model provided good agreement between measured and simulated water levels at Oxford Dam. Likewise, simulated water temperatures were generally within 1 degree Celsius of measured values; however, water temperatures were oversimulated for the fall of 1993. Simulated dissolved oxygen concentrations generally agreed with measurements; however, the model tended to oversimulate dissolved oxygen concentrations during the late summer and early fall. There was good agreement between simulated and measured frequency of occurrence of dissolved oxygen concentrations less than 4 milligrams per liter. Simulations of tracer dye releases demonstrated the effects of stratification on dilution and rate of transport in Lake Hickory. Simulations were made of the effects of changes in nutrient loads from inflows and from bottom sediments. A simulated 30-percent reduction in inflow concentrations of orthophosphate, ammonia, and nitrate at the U.S. Highway 321 bridge delayed the initial springtime pulse of algal growth by about 2 weeks, but had little effect on dissolved oxygen concentrations. Likewise, a reduction in the release rate of orthophosphate and ammonia from bottom sediments had very little effect on simulated algae

  20. Influence of a water regulation event on the age of Yellow River water in the Bohai

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Wang, Haiyan; Guo, Xinyu; Liu, Zhe; Gao, Huiwang; Zhang, Guiling

    2017-10-01

    Abrupt changes in freshwater inputs from large rivers usually imply regime shifts in coastal water environments. The influence of a water regulation event on the age of the Yellow River water in the Bohai was modeled using constituent-oriented age and residence time theory to better understand the change in the environmental function of the hydrodynamic field owing to human activities. The water ages in Laizhou Bay, the central basin, and the Bohai strait are sensitive to water regulation. The surface ages in those areas can decrease by about 300 days, particularly in July, and the age stratification is also strengthened. A water regulation event can result in declines in the water age in early July ahead of declines in the water age under climatological conditions (without the regulation event) by about 1 and 5 months in the central basin and Laizhou Bay, respectively. The change in the coastal circulation due to the water regulation event is the primary reason for the change in the Yellow River water age. The high Yellow River flow rate can enhance the density flow and, therefore, reduce the age of the Yellow River water. The subsequent impact of a single water regulation event can last about 1.0 to 4.0 years in different subregions.

  1. Diversity and community structure of marine microbes around the Benham Rise underwater plateau, northeastern Philippines.

    PubMed

    Gajigan, Andrian P; Yñiguez, Aletta T; Villanoy, Cesar L; San Diego-McGlone, Maria Lourdes; Jacinto, Gil S; Conaco, Cecilia

    2018-01-01

    Microbes are central to the structuring and functioning of marine ecosystems. Given the remarkable diversity of the ocean microbiome, uncovering marine microbial taxa remains a fundamental challenge in microbial ecology. However, there has been little effort, thus far, to describe the diversity of marine microorganisms in the region of high marine biodiversity around the Philippines. Here, we present data on the taxonomic diversity of bacteria and archaea in Benham Rise, Philippines, Western Pacific Ocean, using 16S V4 rRNA gene sequencing. The major bacterial and archaeal phyla identified in the Benham Rise are Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Marinimicrobia, Thaumarchaeota and, Euryarchaeota. The upper mesopelagic layer exhibited greater microbial diversity and richness compared to surface waters. Vertical zonation of the microbial community is evident and may be attributed to physical stratification of the water column acting as a dispersal barrier. Canonical Correspondence Analysis (CCA) recapitulated previously known associations of taxa and physicochemical parameters in the environment, such as the association of oligotrophic clades with low nutrient surface water and deep water clades that have the capacity to oxidize ammonia or nitrite at the upper mesopelagic layer. These findings provide foundational information on the diversity of marine microbes in Philippine waters. Further studies are warranted to gain a more comprehensive picture of microbial diversity within the region.

  2. Diversity and community structure of marine microbes around the Benham Rise underwater plateau, northeastern Philippines

    PubMed Central

    Gajigan, Andrian P.; Yñiguez, Aletta T.; Villanoy, Cesar L.; San Diego-McGlone, Maria Lourdes; Jacinto, Gil S.

    2018-01-01

    Microbes are central to the structuring and functioning of marine ecosystems. Given the remarkable diversity of the ocean microbiome, uncovering marine microbial taxa remains a fundamental challenge in microbial ecology. However, there has been little effort, thus far, to describe the diversity of marine microorganisms in the region of high marine biodiversity around the Philippines. Here, we present data on the taxonomic diversity of bacteria and archaea in Benham Rise, Philippines, Western Pacific Ocean, using 16S V4 rRNA gene sequencing. The major bacterial and archaeal phyla identified in the Benham Rise are Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Marinimicrobia, Thaumarchaeota and, Euryarchaeota. The upper mesopelagic layer exhibited greater microbial diversity and richness compared to surface waters. Vertical zonation of the microbial community is evident and may be attributed to physical stratification of the water column acting as a dispersal barrier. Canonical Correspondence Analysis (CCA) recapitulated previously known associations of taxa and physicochemical parameters in the environment, such as the association of oligotrophic clades with low nutrient surface water and deep water clades that have the capacity to oxidize ammonia or nitrite at the upper mesopelagic layer. These findings provide foundational information on the diversity of marine microbes in Philippine waters. Further studies are warranted to gain a more comprehensive picture of microbial diversity within the region. PMID:29785352

  3. Sea surface salinity of the Eocene Arctic Azolla event using innovative isotope modeling

    NASA Astrophysics Data System (ADS)

    Speelman, E. N.; Sewall, J. O.; Noone, D.; Huber, M.; Sinninghe Damste, J. S.; Reichart, G. J.

    2009-04-01

    With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions regarding Eocene conditions facilitating these blooms arose. Our present research focuses on constraining the actual salinity of, and water sources for, the Eocene Arctic basin through the application of stable water isotope tracers. Precipitation pathways potentially strongly affect the final isotopic composition of water entering the Arctic Basin. Therefore we use the Community Atmosphere Model (CAM3), developed by NCAR, combined with a recently developed integrated isotope tracer code to reconstruct the isotopic composition of global Eocene precipitation and run-off patterns. We further addressed the sensitivity of the modeled hydrological cycle to changes in boundary conditions, such as pCO2, sea surface temperatures (SSTs) and sea ice formation. In this way it is possible to assess the effect of uncertainties in proxy estimates of these parameters. Overall, results of all runs with Eocene boundary conditions, including Eocene topography, bathymetry, vegetation patterns, TEX86 derived SSTs and pCO2 estimates, show the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. Enriched, precipitation weighted, isotopic values of around -120‰ are reported for the Arctic region. Combining new results obtained from compound specific isotope analyses (δD) on terrestrially derived n-alkanes extracted from Eocene sediments, and model outcomes make it possible to verify climate reconstructions for the middle Eocene Arctic. Furthermore, recently, characteristic long-chain mid-chain ω20 hydroxy wax constituents of Azolla were found in ACEX sediments. δD values of these C32 - C36 diols provide insight into the isotopic composition of the Eocene Arctic surface water. As the isotopic signature of the runoff entering the Arctic is modelled, and the final isotopic composition of the surface waters can be deduced from the isotopic composition of the diols, we can calculate the degree of mixing between freshwater (isotopically light) and seawater (isotopically heavy) in the surface waters. This way we quantify Eocene Arctic surface water salinity, which in turn will shed light on the degree of (seasonal) mixing and stratification.

  4. Continental Shelf Embayments of the Eastern Margin of the Philippines; Lamon Bay Stratification & Circulation

    DTIC Science & Technology

    2012-09-30

    Philippines; Lamon Bay Stratification & Circulation Arnold L. Gordon Lamont-Doherty Earth Observatory 61 Route 9W Palisades , NY 10964-8000...AND ADDRESS(ES) Lamont-Doherty Earth Observatory,61 Route 9W, Palisades ,NY,10964-8000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...recirculation cell has retreated northward. 7 Figure 5. Solid arrows denote stronger flow, with clear T/S source water signal. LB02 Kuroshio

  5. Effects of ecological engineered oxygenation on the bacterial community structure in an anoxic fjord in western Sweden

    PubMed Central

    Forth, Michael; Liljebladh, Bengt; Stigebrandt, Anders; Hall, Per O J; Treusch, Alexander H

    2015-01-01

    Oxygen-depleted bodies of water are becoming increasingly common in marine ecosystems. Solutions to reverse this trend are needed and under development, for example, by the Baltic deep-water OXygenation (BOX) project. In the framework of this project, the Swedish Byfjord was chosen for a pilot study, investigating the effects of an engineered oxygenation on long-term anoxic bottom waters. The strong stratification of the water column of the Byfjord was broken up by pumping surface water into the deeper layers, triggering several inflows of oxygen-rich water and increasing oxygen levels in the lower water column and the benthic zone up to 110 μmol l−1.We used molecular ecologic methods to study changes in bacterial community structure in response to the oxygenation in the Byfjord. Water column samples from before, during and after the oxygenation as well as from two nearby control fjords were analyzed. Our results showed a strong shift in bacterial community composition when the bottom water in the Byfjord became oxic. Initially dominant indicator species for oxygen minimum zones such as members of the SUP05 clade declined in abundance during the oxygenation event and nearly vanished after the oxygenation was accomplished. In contrast, aerobic species like SAR11 that initially were restricted to surface waters could later be detected deep into the water column. Overall, the bacterial community in the formerly anoxic bottom waters changed to a community structure similar to those found in oxic waters, showing that an engineered oxygenation of a large body of anoxic marine water is possible and emulates that of a natural oxygenation event. PMID:25238400

  6. Effects of ecological engineered oxygenation on the bacterial community structure in an anoxic fjord in western Sweden.

    PubMed

    Forth, Michael; Liljebladh, Bengt; Stigebrandt, Anders; Hall, Per O J; Treusch, Alexander H

    2015-03-01

    Oxygen-depleted bodies of water are becoming increasingly common in marine ecosystems. Solutions to reverse this trend are needed and under development, for example, by the Baltic deep-water OXygenation (BOX) project. In the framework of this project, the Swedish Byfjord was chosen for a pilot study, investigating the effects of an engineered oxygenation on long-term anoxic bottom waters. The strong stratification of the water column of the Byfjord was broken up by pumping surface water into the deeper layers, triggering several inflows of oxygen-rich water and increasing oxygen levels in the lower water column and the benthic zone up to 110 μmol l(-1).We used molecular ecologic methods to study changes in bacterial community structure in response to the oxygenation in the Byfjord. Water column samples from before, during and after the oxygenation as well as from two nearby control fjords were analyzed. Our results showed a strong shift in bacterial community composition when the bottom water in the Byfjord became oxic. Initially dominant indicator species for oxygen minimum zones such as members of the SUP05 clade declined in abundance during the oxygenation event and nearly vanished after the oxygenation was accomplished. In contrast, aerobic species like SAR11 that initially were restricted to surface waters could later be detected deep into the water column. Overall, the bacterial community in the formerly anoxic bottom waters changed to a community structure similar to those found in oxic waters, showing that an engineered oxygenation of a large body of anoxic marine water is possible and emulates that of a natural oxygenation event.

  7. Tracking composition of microbial communities for simultaneous nitrification and denitrification in polyurethane foam.

    PubMed

    Chen, Yuan; Wang, Li; Ma, Fang; Yang, Ji-xian; Qiu, Shan

    2014-01-01

    The process of simultaneous nitrification and denitrification (SND) of immobilized microorganisms in polyurethane form is discussed. The effect of different positions within the polyurethane carrier on microbial community response for the SND process is investigated by a combination of denaturing gradient gel electrophoresis profiles of the 16S rRNA gene V3 region and scanning electron microscopy. Results show that polyurethane, which consists of a unique porous structure, is an ideal platform for biofilm stratification of aerobe, anaerobe and facultative microorganisms in regard to the SND process. The community structure diversity response to different positions was distinct. The distributions of various functional microbes, detected from the surface aerobic stratification to the interior anaerobic stratification of polyurethane, were mainly nitrifying and denitrifying bacteria. Meanwhile aerobic denitrifying bacteria such as Paracoccus sp., Agrobacterium rubi and Ochrobactrum sp. were also adhered to the interior and surface of polyurethane. The SND process occurring on polyurethane foam was carried out by two independent processes: nitrogen removal and aerobic denitrification.

  8. Thermal, chemical, and optical properties of Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, G.L.; Hoffman, R.L.; McIntire, D.C.; Buktenica, M.W.; Girdner, S.F.

    2007-01-01

    Crater Lake covers the floor of the Mount Mazama caldera that formed 7700 years ago. The lake has a surface area of 53 km2 and a maximum depth of 594 m. There is no outlet stream and surface inflow is limited to small streams and springs. Owing to its great volume and heat, the lake is not covered by snow and ice in winter unlike other lakes in the Cascade Range. The lake is isothermal in winter except for a slight increase in temperature in the deep lake from hyperadiabatic processes and inflow of hydrothermal fluids. During winter and spring the water column mixes to a depth of about 200-250 m from wind energy and convection. Circulation of the deep lake occurs periodically in winter and spring when cold, near-surface waters sink to the lake bottom; a process that results in the upwelling of nutrients, especially nitrate-N, into the upper strata of the lake. Thermal stratification occurs in late summer and fall. The maximum thickness of the epilimnion is about 20 m and the metalimnion extends to a depth of about 100 m. Thus, most of the lake volume is a cold hypolimnion. The year-round near-bottom temperature is about 3.5??C. Overall, hydrothermal fluids define and temporally maintain the basic water quality characteristics of the lake (e.g., pH, alkalinity and conductivity). Total phosphorus and orthophosphate-P concentrations are fairly uniform throughout the water column, where as total Kjeldahl-N and ammonia-N are highest in concentration in the upper lake. Concentrations of nitrate-N increase with depth below 200 m. No long-term changes in water quality have been detected. Secchi disk (20-cm) clarity varied seasonally and annually, but was typically highest in June and lowest in August. During the current study, August Secchi disk clarity readings averaged about 30 m. The maximum individual clarity reading was 41.5 m in June 1997. The lowest reading was 18.1 m in July 1995. From 1896 (white-dinner plate) to 2003, the average August Secchi disk reading was about 30 m. No long-term changes in the Secchi disk clarity were observed. Average turbidity of the water column (2-550 m) between June and September from 1991 to 2000 as measured by a transmissometer ranged between 88.8% and 90.7%. The depth of 1% of the incident solar radiation during thermal stratification varied annually between 80 m and 100 m. Both of these measurements provided additional evidence about the exceptional clarity of Crater Lake. ?? 2007 Springer Science+Business Media B.V.

  9. A synthesis of the environmental response of the North and South Atlantic Sub-Tropical Gyres during two decades of AMT

    NASA Astrophysics Data System (ADS)

    Aiken, Jim; Brewin, Robert J. W.; Dufois, Francois; Polimene, Luca; Hardman-Mountford, Nick J.; Jackson, Thomas; Loveday, Ben; Hoya, Silvana Mallor; Dall'Olmo, Giorgio; Stephens, John; Hirata, Takafumi

    2017-11-01

    Anthropogenically-induced global warming is expected to decrease primary productivity in the subtropical oceans by strengthening stratification of the water column and reducing the flux of nutrients from deep-waters to the sunlit surface layers. Identification of such changes is hindered by a paucity of long-term, spatially-resolved, biological time-series data at the basin scale. This paper exploits Atlantic Meridional Transect (AMT) data on physical and biogeochemical properties (1995-2014) in synergy with a wide range of remote-sensing (RS) observations from ocean colour, Sea Surface Temperature (SST), Sea Surface Salinity (SSS) and altimetry (surface currents), combined with different modelling approaches (both empirical and a coupled 1-D Ecosystem model), to produce a synthesis of the seasonal functioning of the North and South Atlantic Sub-Tropical Gyres (STGs), and assess their response to longer-term changes in climate. We explore definitive characteristics of the STGs using data of physical (SST, SSS and peripheral current systems) and biogeochemical variables (chlorophyll and nitrate), with inherent criteria (permanent thermal stratification and oligotrophy), and define the gyre boundary from a sharp gradient in these physical and biogeochemical properties. From RS data, the seasonal cycles for the period 1998-2012 show significant relationships between physical properties (SST and PAR) and gyre area. In contrast to expectations, the surface layer chlorophyll concentration from RS data (CHL) shows an upward trend for the mean values in both subtropical gyres. Furthermore, trends in physical properties (SST, PAR, gyre area) differ between the North and South STGs, suggesting the processes responsible for an upward trend in CHL may vary between gyres. There are significant anomalies in CHL and SST that are associated with El Niño events. These conclusions are drawn cautiously considering the short length of the time-series (1998-2012), emphasising the need to sustain spatially-extensive surveys such as AMT and integrate such observations with models, autonomous observations and RS data, to help address fundamental questions about how our planet is responding to climate change. A small number of dedicated AMT cruises in the keystone months of January and July would complement our understanding of seasonal cycles in the STGs.

  10. Salty Anomalies Forced by Central American Gap Winds: Aquarius Observations

    NASA Astrophysics Data System (ADS)

    Grodsky, S. A.; Carton, J.; Bentamy, A.

    2014-12-01

    Although upwelling normally doesn't have direct impact on the sea surface salinity (SSS), we present observational evidence of upwelling-induced SSS patterns off the Pacific Central American coast. This area is characterized by stable near-surface salinity stratification that is produced by the mixed layer dilution by local rainfall. Here the fresh and warm mixed layer is periodically disrupted by the gap wind-induced uplifts of colder and saltier water. Aquarius SSS data capture these high SSS events. In boreal winter when the intense gap winds are frequent, two tongues of anomalously salty water develop off the Gulfs of Tehuantepec and Papagayo. During that season the average SSS in the meridionally oriented Tehuantepec tongue is about 0.4 psu saltier than background SSS. The zonally elongated Papagayo tongue stands out even more strongly, being 1 to 2 psu saltier than SSS in the neighboring Panama Bight. The spatial locations and orientations of these salty tongues closely correspond to the locations and orientations of the cool SST tongues suggesting they have similar governing mechanisms.

  11. Paleoceanography of marine isotope stage 31 (ca. 1.07 Ma) in the Labrador Sea based on palynological, microfaunal and isotopic data

    NASA Astrophysics Data System (ADS)

    Aubry, Aurelie; de Vernal, Anne; Hillaire-Marcel, Claude

    2014-05-01

    We have documented the paleoceanography of marine isotope stage (MIS) 31 (ca. 1.07 Ma) at IODP Site 1305 off southwest Greenland in the Labrador Sea, based on dinocyst and foraminifer populations in addition to isotopic measurements in planktonic foraminiferal shells. The planktonic foraminifer assemblages are dominated by the mesopelagic species Neogloboquadrina pachyderma sinistral (Nps). Current interpretations of Nps dominance would thus point to a polar type environment. However, dinocyst assemblages are dominated by Operculodinium centrocarpum, Nematosphaeropsis labyrinthus and Bitectatodinium tepikiense, which rather indicate temperate-subpolar environnement conditions in the photic zone. Assuming that Nps ecological requirements were unchanged, reconciling the two observations lead to hypothesize a strong stratification of the surface water layer over a subsurface water mass, with Nps ocupying the pycnocline in between. We tentatively applied the modern analogue technique (MAT) to reconstruct surface water conditions from the dinocyst assemblages. Good analogues are found in the modern dinocyst database (n=1492), notably along the southeast Canadian margins and northwest European margins. They indicate a low salinity in the surface waters (32-34.5), a large seasonal amplitude of temperatures with cool winters (3-6° C) and mild summer (10-15° C). Stable isotope measurements in Nps point to δ18O ranging 1.5-2.2o throughout most of the interval, thus significantly lower than those measured during the Holocene (>2.2o at this very site. Benthic isotopic values (~3.2o are in accordance with the global stack of Lisiecki and Raymo (Paleoceanography, 2005). This suggests the presence of relatively warm water intermediate mass in between the bottom and surface water masses. The isotopic, micropaleontological and dinocyst results together show that conditions were unfavorable for convection and intermediate or deep water formation in the Labrador Sea during this interval.

  12. Analysis on the Upwelling of the Anoxic Water Mass in Inner Tokyo Bay

    NASA Astrophysics Data System (ADS)

    Kitahara, Kouichi; Wada, Akira; Kawanaga, Mitsuhito; Fukuoka, Ippei; Takano, Tairyu

    In the period of strong density stratification from early summer through early fall, the supply of oxygen from the sea surface to the deeper water is cut off. At the same time, organic matter decomposes near the ocean bottom, so that the anoxic water mass forms. In inner Tokyo Bay, when a northeasterly wind(directed from the inner bay toward the mouth of the bay)blows, the anoxic water mass upwells(an “Aoshio” occurs). In some cases fishes and shellfish die along the coast. Based on the report of results of continuous observations of water temperature, salinity and dissolved oxygen content presented by Fukuoka et al, 2005, here we have used an improved fluid flow model to carry out 3-dimensional calculations of the water level, water temperature, salinity and flow distributions. The computational results have reproduced the observational results well. The calculations showed that upwelling of the anoxic water mass that forms during the stratified period is not only affected by the continuously blowing northeasterly wind, but also by a continuous southwesterly wind that blew several days previously. Surface water blown against the coast by this continuous southwesterly wind is pushed downward; the calculations reproduced the process by which the rising force of this previously downwelled surface water also affects the phenomenon of anoxia. Furthermore, we presented the results of time dependent analysis of quantities relevant to water quality, including dissolved oxygen, which is closely related to the Aoshio, using the flow and diffusion model and a primary ecological model during the stratified ocean period, the sinking period and the upwelling period. We have compared the computed results to the results of continuous observations of dissolved oxygen during occurrence of an Aoshio in 1992 at observation point D-2, and confirmed that this model is an appropriate one to describe this phenomenon.

  13. Climate Change Impacts on US Water Quality using two Models: HAWQS and US Basins

    EPA Science Inventory

    Climate change and freshwater quality are well-linked. Changes in climate result in changes in streamflow and rising water temperatures, which impact biochemical reaction rates and increase stratification in lakes and reservoirs. Using two water quality modeling systems (the Hydr...

  14. Characterizing the distribution of particles in urban stormwater: advancements through improved sampling technology

    USGS Publications Warehouse

    Selbig, William R.

    2014-01-01

    A new sample collection system was developed to improve the representation of sediment in stormwater by integrating the entire water column. The depth-integrated sampler arm (DISA) was able to mitigate sediment stratification bias in storm water, thereby improving the characterization of particle size distribution from urban source areas. Collector streets had the lowest median particle diameter of 8 μm, followed by parking lots, arterial streets, feeder streets, and residential and mixed land use (32, 43, 50, 80 and 95 μm, respectively). Results from this study suggest there is no single distribution of particles that can be applied uniformly to runoff in urban environments; however, integrating more of the entire water column during the sample collection can address some of the shortcomings of a fixed-point sampler by reducing variability and bias caused by the stratification of solids in a water column.

  15. Surface wind mixing in the Regional Ocean Modeling System (ROMS)

    NASA Astrophysics Data System (ADS)

    Robertson, Robin; Hartlipp, Paul

    2017-12-01

    Mixing at the ocean surface is key for atmosphere-ocean interactions and the distribution of heat, energy, and gases in the upper ocean. Winds are the primary force for surface mixing. To properly simulate upper ocean dynamics and the flux of these quantities within the upper ocean, models must reproduce mixing in the upper ocean. To evaluate the performance of the Regional Ocean Modeling System (ROMS) in replicating the surface mixing, the results of four different vertical mixing parameterizations were compared against observations, using the surface mixed layer depth, the temperature fields, and observed diffusivities for comparisons. The vertical mixing parameterizations investigated were Mellor- Yamada 2.5 level turbulent closure (MY), Large- McWilliams- Doney Kpp (LMD), Nakanishi- Niino (NN), and the generic length scale (GLS) schemes. This was done for one temperate site in deep water in the Eastern Pacific and three shallow water sites in the Baltic Sea. The model reproduced the surface mixed layer depth reasonably well for all sites; however, the temperature fields were reproduced well for the deep site, but not for the shallow Baltic Sea sites. In the Baltic Sea, the models overmixed the water column after a few days. Vertical temperature diffusivities were higher than those observed and did not show the temporal fluctuations present in the observations. The best performance was by NN and MY; however, MY became unstable in two of the shallow simulations with high winds. The performance of GLS nearly as good as NN and MY. LMD had the poorest performance as it generated temperature diffusivities that were too high and induced too much mixing. Further observational comparisons are needed to evaluate the effects of different stratification and wind conditions and the limitations on the vertical mixing parameterizations.

  16. The Effect of an Isogrid on Cryogenic Propellant Behavior and Thermal Stratification

    NASA Technical Reports Server (NTRS)

    Oliveira, Justin; Kirk, Daniel R.; Chintalapati, Sunil; Schallhorn, Paul A.; Piquero, Jorge L.; Campbell, Mike; Chase, Sukhdeep

    2007-01-01

    All models for thermal stratification available in the presentation are derived using smooth, flat plate laminar and turbulent boundary layer models. This study examines the effect of isogrid (roughness elements) on the surface of internal tank walls to mimic the effects of weight-saving isogrid, which is located on the inside of many rocket propellant tanks. Computational Fluid Dynamics (CFD) is used to study the momentum and thermal boundary layer thickness for free convection flows over a wall with generic roughness elements. This presentation makes no mention of actual isogrid sizes or of any specific tank geometry. The magnitude of thermal stratification is compared for smooth and isogrid-lined walls.

  17. Vertical Stratification Engineering for Organic Bulk-Heterojunction Devices.

    PubMed

    Huang, Liqiang; Wang, Gang; Zhou, Weihua; Fu, Boyi; Cheng, Xiaofang; Zhang, Lifu; Yuan, Zhibo; Xiong, Sixing; Zhang, Lin; Xie, Yuanpeng; Zhang, Andong; Zhang, Youdi; Ma, Wei; Li, Weiwei; Zhou, Yinhua; Reichmanis, Elsa; Chen, Yiwang

    2018-05-22

    High-efficiency organic solar cells (OSCs) can be produced through optimization of component molecular design, coupled with interfacial engineering and control of active layer morphology. However, vertical stratification of the bulk-heterojunction (BHJ), a spontaneous activity that occurs during the drying process, remains an intricate problem yet to be solved. Routes toward regulating the vertical separation profile and evaluating the effects on the final device should be explored to further enhance the performance of OSCs. Herein, we establish a connection between the material surface energy, absorption, and vertical stratification, which can then be linked to photovoltaic conversion characteristics. Through assessing the performance of temporary, artificial vertically stratified layers created by the sequential casting of the individual components to form a multilayered structure, optimal vertical stratification can be achieved. Adjusting the surface energy offset between the substrate results in donor and acceptor stabilization of that stratified layer. Further, a trade-off between the photocurrent generated in the visible region and the amount of donor or acceptor in close proximity to the electrode was observed. Modification of the substrate surface energy was achieved using self-assembled small molecules (SASM), which, in turn, directly impacted the polymer donor to acceptor ratio at the interface. Using three different donor polymers in conjunction with two alternative acceptors in an inverted organic solar cell architecture, the concentration of polymer donor molecules at the ITO (indium tin oxide)/BHJ interface could be increased relative to the acceptor. Appropriate selection of SASM facilitated a synchronized enhancement in external quantum efficiency and power conversion efficiencies over 10.5%.

  18. A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2.0): Model description and test in a boreal ecosystem in Eastern North America

    NASA Astrophysics Data System (ADS)

    Govind, Ajit; Chen, Jing Ming; Margolis, Hank; Ju, Weimin; Sonnentag, Oliver; Giasson, Marc-André

    2009-04-01

    SummaryA spatially explicit, process-based hydro-ecological model, BEPS-TerrainLab V2.0, was developed to improve the representation of ecophysiological, hydro-ecological and biogeochemical processes of boreal ecosystems in a tightly coupled manner. Several processes unique to boreal ecosystems were implemented including the sub-surface lateral water fluxes, stratification of vegetation into distinct layers for explicit ecophysiological representation, inclusion of novel spatial upscaling strategies and biogeochemical processes. To account for preferential water fluxes common in humid boreal ecosystems, a novel scheme was introduced based on laboratory analyses. Leaf-scale ecophysiological processes were upscaled to canopy-scale by explicitly considering leaf physiological conditions as affected by light and water stress. The modified model was tested with 2 years of continuous measurements taken at the Eastern Old Black Spruce Site of the Fluxnet-Canada Research Network located in a humid boreal watershed in eastern Canada. Comparison of the simulated and measured ET, water-table depth (WTD), volumetric soil water content (VSWC) and gross primary productivity (GPP) revealed that BEPS-TerrainLab V2.0 simulates hydro-ecological processes with reasonable accuracy. The model was able to explain 83% of the ET, 92% of the GPP variability and 72% of the WTD dynamics. The model suggests that in humid ecosystems such as eastern North American boreal watersheds, topographically driven sub-surface baseflow is the main mechanism of soil water partitioning which significantly affects the local-scale hydrological conditions.

  19. A Two-Timescale Response of the Southern Ocean to Ozone Depletion: Importance of the Background State

    NASA Astrophysics Data System (ADS)

    Seviour, W.; Waugh, D.; Gnanadesikan, A.

    2016-02-01

    It has been recently suggested that the response of Southern Ocean sea-ice extent to stratospheric ozone depletion is time-dependent; that the ocean surface initially cools due to enhanced northward Ekman drift caused by a poleward shift in the eddy-driven jet, and then warms after some time due to upwelling of warm waters from below the mixed layer. It is therefore possible that ozone depletion could act to favor a short-term increase in sea-ice extent. However, many uncertainties remain in understanding this mechanism, with different models showing widely differing time-scales and magnitudes of the response. Here, we analyze an ensemble of coupled model simulations with a step-function ozone perturbation. The two-timescale response is present with an approximately 30 year initial cooling period. The response is further shown to be highly dependent upon the background ocean temperature and salinity stratification, which is influenced by both natural internal variability and the isopycnal eddy mixing parameterization. It is suggested that the majority of inter-model differences in the Southern Ocean response to ozone depletion are caused by differences in stratification.

  20. Role of Southern Ocean stratification in glacial atmospheric CO2 reduction

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Oka, A.

    2014-12-01

    Paleoclimate proxy data at the glacial period shows high salinity of more than 37.0 psu in the deep South Atlantic. At the same time, data also indicate that the residence time of the water mass was more than 3000 years. These data implies that the stratification by salinity was stronger in the deep Southern Ocean (SO) in the Last Glacial Maximum (LGM). Previous studies using Ocean General Circulation Model (OGCM) fail to explain the low glacial atmospheric carbon dioxide (CO2) concentration at LGM. The reproducibility of salinity and water mass age is considered insufficient in these OGCMs, which may in turn affect the reproducibility of the atmospheric CO2concentration. In coarse-resolution OGCMs, The deep water is formed by unrealistic open-ocean deep convection in the SO. Considering these facts, we guessed previous studies using OGCM underestimated the salinity and water mass age at LGM. This study investigate the role of the enhanced stratification in the glacial SO on the variation of atmospheric CO2 concentration by using OGCM. In order to reproduce the recorded salinity of the deep water, relaxation of salinity toward value of recorded data is introduced in our OGCM simulations. It was found that deep water formation in East Antarctica is required for explaining the high salinity in the South Atlantic. In contrast, it is difficult to explain the glacial water mass age, even if we assume the situation vertical mixing is very weak in the SO. Contrary to previous estimate, the high salinity of the deep SO resulted in increase of Antarctic Bottom water (AABW) flow and decrease the residence time of carbon in the deep ocean, which increased atmospheric CO2 concentration. On the other hand, the weakening of the vertical mixing in the SO contributed to increase the vertical gradient of dissolved inorganic carbon (DIC), which decreased atmospheric CO2 concentration. Adding the contribution of the enhanced stratification in the glacial SO, we obtained larger reduction in atmospheric CO2 concentration than previous studies. However, we still fail to explain the full amplitude of recorded glacial reduction of atmospheric CO2 concentration. The carbonate compensation process, which is not incorporated in our simulations, might be required for further reduction in atmospheric CO2 concentration.

  1. The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change

    NASA Astrophysics Data System (ADS)

    Watson, Andrew J.; Naveira Garabato, Alberto C.

    2006-02-01

    Decreased ventilation of the Southern Ocean in glacial time is implicated in most explanations of lower glacial atmospheric CO2. Today, the deep (>2000 m) ocean south of the Polar Front is rapidly ventilated from below, with the interaction of deep currents with topography driving high mixing rates well up into the water column. We show from a buoyancy budget that mixing rates are high in all the deep waters of the Southern Ocean. Between the surface and ~2000 m depth, water is upwelled by a residual meridional overturning that is directly linked to buoyancy fluxes through the ocean surface. Combined with the rapid deep mixing, this upwelling serves to return deep water to the surface on a short time scale. We propose two new mechanisms by which, in glacial time, the deep Southern Ocean may have been more isolated from the surface. Firstly, the deep ocean appears to have been more stratified because of denser bottom water resulting from intense sea ice formation near Antarctica. The greater stratification would have slowed the deep mixing. Secondly, subzero atmospheric temperatures may have meant that the present-day buoyancy flux from the atmosphere to the ocean surface was reduced or reversed. This in turn would have reduced or eliminated the upwelling (contrary to a common assumption, upwelling is not solely a function of the wind stress but is coupled to the air-sea buoyancy flux too). The observed very close link between Antarctic temperatures and atmospheric CO2 could then be explained as a natural consequence of the connection between the air-sea buoyancy flux and upwelling in the Southern Ocean, if slower ventilation of the Southern Ocean led to lower atmospheric CO2. Here we use a box model, similar to those of previous authors, to show that weaker mixing and reduced upwelling in the Southern Ocean can explain the low glacial atmospheric CO2 in such a formulation.

  2. Methane excess production in oxygen-rich polar water and a model of cellular conditions for this paradox

    NASA Astrophysics Data System (ADS)

    Damm, E.; Thoms, S.; Beszczynska-Möller, A.; Nöthig, E. M.; Kattner, G.

    2015-09-01

    Summer sea ice cover in the Arctic Ocean has undergone a reduction in the last decade exposing the sea surface to unforeseen environmental changes. Melting sea ice increases water stratification and induces nutrient limitation, which is also known to play a crucial role in methane formation in oxygenated surface water. We report on an excess of methane in the marginal ice zone in the western Fram Strait. Our study is based on measurements of oxygen, methane, DMSP, nitrate and phosphate concentrations as well as on phytoplankton composition and light transmission, conducted along the 79°N oceanographic transect, in the western part of the Fram Strait and in Northeast Water Polynya region off Greenland. Between the eastern Fram Strait, where Atlantic water enters from the south and the western Fram Strait, where Polar water enters from the north, different nutrient limitations occurred and consequently different bloom conditions were established. Ongoing sea ice melting enhances the environmental differences between both water masses and initiates regenerated production in the western Fram Strait. We show that in this region methane is in situ produced while DMSP (dimethylsulfoniopropionate) released from sea ice may serve as a precursor for the methane formation. The methane production occured despite high oxygen concentrations in this water masses. As the metabolic activity (respiration) of unicellular organisms explains the presence of anaerobic conditions in the cellular environment we present a theoretical model which explains the maintenance of anaerobic conditions for methane formation inside bacterial cells, despite enhanced oxygen concentrations in the environment.

  3. Guidance for Subaqueous Dredged Material Capping.

    DTIC Science & Technology

    1998-06-01

    from Ambrose Channel , over the contaminated sediments. At least two intermediate sur- veys and additional capping were required before capping was...organisms to a given bioturbation depth; reducing contami- nant flux rates to achieve specific sediment, pore water, or water column target...bathymetry, bottom slopes, cur- rents, water depths, water column density stratification, erosion/accretion trends, proximity to navigation channels

  4. Vertical stratification of soil water storage and release dynamics in Pacific Northwest coniferous forests.

    Treesearch

    J.M. Warren; F.C. Meinzer; J.R. Brooks; J.C. Domec

    2005-01-01

    We characterized vertical variation in the seasonal release of stored soil moisture in old-growth ponderosa pine (OG-PP, xeric), and young and old-growth Douglas-fir (Y-DF, OG-DF, mesic) forests to evaluate changes in water availability for root uptake. Soil water potential (ψ) and volumetric water content (θ...

  5. An efficient modeling method for thermal stratification simulation in a BWR suppression pool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haihua Zhao; Ling Zou; Hongbin Zhang

    2012-09-01

    The suppression pool in a BWR plant not only is the major heat sink within the containment system, but also provides major emergency cooling water for the reactor core. In several accident scenarios, such as LOCA and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; and the pool temperature distribution also affects the NPSHa (Available Net Positive Suction Head) and therefore the performance of the pump which draws cooling water back to the core. Current safetymore » analysis codes use 0-D lumped parameter methods to calculate the energy and mass balance in the pool and therefore have large uncertainty in prediction of scenarios in which stratification and mixing are important. While 3-D CFD methods can be used to analyze realistic 3D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, therefore long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by 1-D transient partial differential equations and substructures such as free or wall jets are modeled with 1-D integral models. This allows very large reductions in computational effort compared to 3-D CFD modeling. The POOLEX experiments at Finland, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, are used for validation. GOTHIC lumped parameter models are used to obtain boundary conditions for BMIX++ code and CFD simulations. Comparison between the BMIX++, GOTHIC, and CFD calculations against the POOLEX experimental data is discussed in detail.« less

  6. Interannual variability in the magnitude and timing of the spring bloom in the Oyashio region

    NASA Astrophysics Data System (ADS)

    Okamoto, Suguru; Hirawake, Toru; Saitoh, Sei-Ichi

    2010-09-01

    Inter-annual variability in the magnitude and timing of the spring bloom was investigated for the Oyashio region (40 °-48 °N, 143 °E-152 °E) using 10 years (from 1998 to 2007) of satellite ocean-color data. Geostrophic currents were examined using satellite altimeter data. Early spring blooms (>1.5 mg m -3) occurred in early April 2001 and late March 2002. The 2001 bloom continued for one month. Late blooms occurred from mid-May 1999, early June 2004 and late April 2006, continuing for about 1 month, 8 days and 16 days, respectively. A strong bloom (4.7 mg m -3) also occurred in mid-April 1998; however, it terminated in early May. We classified the Oyashio region based on the pattern of temporal variation of Chl- a concentr ation from March to June. The spatio-temporal variability in Chl- a concentr ation during spring was different among years. The area where Chl- a concentr ation was highest in April was more extensive in 2001, 2002 and 2006 than usual. In 1999, the area where Chl- a concentr ation was highest in May was the widest among the 10 years. Mesoscale eddies and currents with high velocity were frequently observed in the area of high Chl- a concentr ation east of Hokkaido, propagating Coastal Oyashio Water of low salinity and low density into the oceanic region. That strengthened stratification in the surface layer. We suggest that this seaward transfer of coastal water could be one of the important factors for phytoplankton distribution in two ways: (1) horizontal advection of water with high Chl- a concentr ation and (2) enhancement of stratification in the oceanic region.

  7. A theoretical study of topographic effects on coastal upwelling and cross-shore exchange

    NASA Astrophysics Data System (ADS)

    Song, Y. Tony; Chao, Yi

    The effects of topographic variations on coastal upwelling and cross-shore exchange are examined with a theoretical, continuously stratified, three-dimensional coastal ocean model. The model takes into account topographic variations in both alongshore and cross-shore directions and allows analytical solutions with an Ekman surface layer that faithfully represents the physical nature of the coastal upwelling system. Theoretical solutions with any analytical form of alongshore-varying topography can be solved based on the perturbation method of Killworth [J. Phys. Oceanogr. 8 (1978) 188]. Analyses of the model solutions lead to the following conclusions: The variation of upwelling fronts and currents is shown to be caused by the combined effect of topography and stratification. Topographic variation causes uneven upwelling distribution and leads to density variation, which results in a varying horizontal pressure gradient field that causes the meandering currents. The variation index is dependent upon a bilinear function of their physical parameters--the ratio of the topographic variation depth to the total depth and Burger's number of stratification. Cross-shore slope is found to play a role in maintaining the meandering structure of the alongshore currents. The anticyclonic circulations can further induce downwelling on the offshore side of the current, while the cyclonic circulations enhance upwelling and form upwelling centers on the inshore side of the current. Alongshore topography does not change the total upwelled water, i.e., the total Ekman pumping is conserved. However, it increases cross-exchange of water masses by transporting inshore (offshore) water near topographic features far offshore (inshore) from the mean position of the front. The applicability and limitations of the theory are also discussed.

  8. Water-column cooling and sea surface salinity increase in the upwelling region off central-south Chile driven by a poleward displacement of the South Pacific High

    NASA Astrophysics Data System (ADS)

    Schneider, Wolfgang; Donoso, David; Garcés-Vargas, José; Escribano, Rubén

    2017-02-01

    Here we present results of direct observations of seawater temperature and salinity over the continental shelf off central-south Chile that shows an unprecedented cooling of the entire water column and an increase in upper layer salinity during 2002 to 2013. We provide evidence that this phenomenon is related to the intensification but mostly to a recent southward displacement of the South Pacific High over the same period, from 2007 on. This in turn has accelerated alongshore, equatorward, subtropical coastal upwelling favorable winds, particularly during winter, injecting colder water from below into the upper water column. Consequently, the environmental conditions on the shelf off central-south Chile shifted from a warmer (fresher) to a cooler (saltier) phase; water column temperature dropped from 11.7 °C (2003-2006) to 11.3 °C (2007-2012) and upper layer salinity rose by 0.25; water column stratification gradually decreased. The biological impacts of such abrupt cooling are apparently already happening in this coastal ecosystem, as recent evidence shows substantial changes in the plankton community and negative trends in zooplankton biomass over the same period.

  9. Wind and tidal forcing of a buoyant plume, Mobile Bay, Alabama

    USGS Publications Warehouse

    Stumpf, R.P.; Gelfenbaum, G.; Pennock, J.R.

    1993-01-01

    AVHRR satellite imagery and in situ observations were combined to study the motion of a buoyant plume at the mouth of Mobile Bay, Alabama. The plume extended up to 30 km from shore, with a thickness of about 1 m. The inner plume, which was 3-8 m thick, moved between the Bay and inner shelf in response to tidal forcing. The tidal prism could be identified through the movement of plume waters between satellite images. The plume responded rapidly to alongshore wind, with sections of the plume moving at speeds of more than 70 cm s-1, about 11% of the wind speed. The plume moved predominantly in the direction of the wind with a weak Ekman drift. The enhanced speed of the plume relative to normal surface drift is probably due to the strong stratification in the plume, which limits the transfer of momentum into the underlying ambient waters. ?? 1993.

  10. A survey of the summer coccolithophore community in the western Barents Sea

    NASA Astrophysics Data System (ADS)

    Giraudeau, Jacques; Hulot, Vivien; Hanquiez, Vincent; Devaux, Ludovic; Howa, Hélène; Garlan, Thierry

    2016-06-01

    The Barents Sea is particularly vulnerable to large-scale hydro-climatic changes associated with the polar amplification of climate change. Key oceanographical variables in this region are the seasonal development of sea-ice and the location and strength of physico-chemical gradients in the surface and subsurface water layers induced by the convergence of Arctic- and Atlantic-derived water masses. Remote sensing imagery have highlighted the increasing success of calcifying haptophytes (coccolithophores) in the summer phytoplankton production of the Barents Sea over the last 20 years, as a response to an overall larger contribution of Atlantic waters to surface and sub-surface waters, as well as to enhanced sea-ice melt-induced summer stratification of the photic layer. The present study provides a first thorough description of coccolithophore standing stocks and diversity over the shelf and slope of the western Barents Sea from two sets of surface and water column samples collected during August-September 2014 from northern Norway to southern Svalbard. The abundance and composition of coccolithophore cells and skeletal remains (coccoliths) are discussed in view of the physical-chemical-biological status of the surface waters and water column based on in-situ (temperature, salinity, fluorescence) and shore-based (microscope enumerations, chemotaxonomy) measurements, as well as satellite-derived data (Chl a and particulate inorganic carbon contents). The coccolithophore population is characterized by a low species diversity and the overwhelming dominance of Emiliania huxleyi. Coccolithophores are abundant both within the well stratified, Norwegian coastal water - influenced shallow mixed layer off northern Norway, as well as within well-mixed cool Atlantic water in close vicinity of the Polar Front. Bloom concentrations with standing stocks larger than 4 million cells/l are recorded in the latter area north of 75°N. Our limited set of chemotaxonomic data suggests that coccolithophores contribute substantially (ca. 20% of the total Chl a) to the summer phytoplankton community which is made essentially of small-sized algal groups. Excluding the bloom area, coccolith calcite accounts for an average of 20% to the bulk particulate inorganic carbon content in the surface waters, and explains to some extent the satellite-derived spatial distribution of this parameter. Deep water living coccolithophore species thriving below the pycnocline as well as populations present in well-mixed cool Atlantic water are rapidly transferred to depth in the form of intact coccospheres down to at least 200 m. High amplitude internal waves which, according to our observations, affect a wide range of water depth up to the lower photic zone, might strengthen the vertical transfer of this sinking population.

  11. Surface heating and patchiness in the coastal ocean off central California during a wind relaxation event

    NASA Technical Reports Server (NTRS)

    Ramp, Steven R.; Garwood, Roland W.; Snow, Richard L.; Davis, Curtiss O.

    1991-01-01

    The difference between the temperature of the ocean at 4-cm and 2-m depth was continuously monitored during a cruise to the coastal transition zone off Point Arena, California, during June 1987. The two temperatures were coincident most of the time but diverged during one nearshore leg of the cruise where large temperature differences of up to 4.7 C were observed between the 4-cm and 2-m sensors, in areas which were separated by regions where the two temperatures were coincident as usual. The spatial scale of this 'patchy' thermal structure was about 5-10 km. A mixed layer model (Garwood, 1977) was used to simulate the near surface stratification when forced by the observed wind stress, surface heating, and optical clarity of the water. The model produced a thin strongly stratified surface layer at stations where exceptionally high turbidity was observed but did not produce such features otherwise. This simple model could not explain the horizontal patchiness in the thermal structure, which was likely due to patchiness in the near-surface chlorophyll distributions or to submesoscale variability of the surface wind stress.

  12. The long-term variability of chemical structure of deep-water basins of the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Serebrennikova, Ekaterina

    2017-04-01

    The Caspian Sea is a unique water object: the biggest lake on Earth, so large that it actually functions as a sea, but totally isolated from the World Ocean and extremely responsive to the climatic changes. The Caspian Sea is characterized by periodical large-scale sea level oscillations - it is one of the manifestations of multidecadal climatic fluctuations on East European Plain. In order to monitor the environmental conditions staff of the Laboratory of Hydrochemistry of Russian Federal Research Institution of Fisheries and Oceanography (FSBSI "VNIRO") in collaboration with other russian scientific institutions conducts annual research cruises to the Caspian Sea. For the last 40 years natural and anthropogenic climatic changes caused a stable stratification of the water column in both Caspian basins and the nourishment depletion of the photic layer, created and annually aggravated by the biological pump. The data, collected in annual expeditions since 1995, shows the progressing hypoxia below the depth of 400 meters and the formation of hydrogen sulfidic contamination in bottom waters. The cumulative effect of natural variability and extremely intensive anthropogenic stress creates a very depressing environment for all the aquatics, from phytoplankton to unique commercial species. In the last 20 years the level of the Caspian Sea has lowered for 2,5 meters. This is a result of changes in the water balance of the Caspian Sea, that includes the decrease of freshwater income. In long-term perspective this leads to an increase in surface water density and in winter convection depth. However up until 2016 the stratification of the water column stayed stable, so the deep waters were isolated form the atmosphere. Annual monitoring since 1995 has shown gradual oxygen depletion and intensive accumulation of biogenic elements. In 2016 concentrations of phosphate and nitrate were the highest ever registered for the Caspian Sea. The analysis of the research conducted in last 4 years shows the increasing possibility of major change in the hydrological and chemical structure of the waters in both Caspian deep-water basins. In June 2016 oxygenated waters were registered at the bottom of the Middle Caspian Basin for the first time in the last 20 years. This allows us to conclude, that in winter 2015-2016 the environmental conditions created surface water, dense enough to reach the bottom of the basin cascading the continental slope. Based on data, collected over the last century, the sea level, critical for the major winter convection to occur, was calculated, and in 2015 the level of the Caspian Sea has reached this mark. If the sea level lowering continues we can expect an intensive convective deep-water ventilation caused by winter cascading. This can lead to fundamental shift in nourishment enriching mechanisms of the photic layer that can boost the primary production and have positive repercussions throughout all the food chains in Caspian ecosystem.

  13. Understanding how physical-biological coupling influences harmful algal blooms, low oxygen and fish kills in the Sea of Oman and the Western Arabian Sea.

    PubMed

    Harrison, Paul J; Piontkovski, Sergey; Al-Hashmi, Khalid

    2017-01-15

    In the last decade, green Noctiluca scintillans with its symbiont and other dinoflagellates such as Cochlodinium polykrikoides, Prorocentrum micans and Scrippsiella trochoidea have become the dominant HABs, partially replacing the previously dominant diatoms and red Noctiluca scintillans, especially during the northeast monsoon. Fish kills in the Sea of Oman are linked to a slow seasonal decline in oxygen concentration from January to November, probably due to the decomposition of a series of algal blooms and the deep, low oxygen waters periodically impinging the Omani shelf. In the western Arabian Sea, cyclonic eddies upwell low oxygen, nutrient-rich water and the subsequent algal bloom decays and lowers the oxygen further and leads to fish kills. Warming of the surface waters by 1.2°C over the last 5 decades has increased stratification and resulted in a shoaling of the oxycline. This has increased the probability and frequency of upwelling low oxygen water and subsequent fish kills. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The Río de la Plata estuary response to wind variability in synoptic time scale: Salinity fields and salt wedge structure

    NASA Astrophysics Data System (ADS)

    Meccia, V. L.; Simionato, C. G.; Guerrero, R. A.

    2009-04-01

    The Río de la Plata estuary is located in the eastern coast of southern South America, approximately at 35° S. It has a northwest to southeast oriented funnel shape approximately 300 km long that narrows from 220 km at its mouth to 40 km at its upper end. With a mean discharge of 25,000 m3 s-1 and a drainage area of 3.5 × 106 km2 it ranks fourth and fifth worldwide in freshwater discharge and drainage area, respectively. The interaction between estuarine and shelf waters originates an intense and active salinity front which plays an important role in the flow dynamics and the distribution of properties on the shelf. As a result of the constant displacement of the surface front and the steadiness of the bottom front whose location is controlled by the bathymetry, a time-variable salt wedge structure is observed in the estuary during most of the year. In this work, Estuary, Coastal and Ocean Model (ECOM) was applied to study the processes associated to the salinity fields and the salt wedge structure in the Río de la Plata estuary. It was found that salinity fields in the Río de la Plata rapidly respond -order of 3 days- to wind variability. Therefore, the traditional conceptual scheme that considers seasonal variability as the main feature of the salinity field in this estuary does not longer hold and conditions classically though as characteristic of ‘winter' or ‘summer' can take place during any season with high variability. The estuary response to wind variability can be explained in terms of four characteristic patterns associated to winds that blow with dominant components perpendicular and parallel to the estuary axis. Northeasterly winds produce a southwestward retraction of the surface salinity front. The results are consistent with upwelling motion along the Uruguayan coast under this wind direction. Southwesterly winds produce a northward displacement of the surface salinity front towards the Uruguayan coast and, according to our simulations, a downwelling motion in that region. In both cases, upwelling or downwelling result of the perpendicular to the coast Ekman transport in that region. Northwesterly winds produce net outflow of surface continental waters and inflow of bottom shelf waters resulting in an intensification of the vertical stratification along the salinity front. Finally, southeasterly winds produce a net inflow of surface continental waters and outflow of bottom shelf waters and, therefore, a weakening of the stratification along the salinity front. Salinity data available in the estuary have the limitations of their low spatial and temporal resolution, which limit the possibility of extracting the same patters found in the numerical simulations. Nevertheless an attempt to validate the former conclusions from historic CTD observations was done with successful results. A similar response to upstream/downstream winds has been observed in other estuaries. But, the enormous breadth of the Río de la Plata allows for the occurrence of another wind-forced mode of circulation related to cross-river winds in which lateral currents dominate. In fact, in what concerns circulation, the Río de la Plata behaves more as a semienclosed basin than as a typical estuary. Wind conditions necessary to break down the salt wedge structure and the persistence of the signal after a disruptive event were also studied. Stratification is completely destroyed by strong -approximately 13 m s-1- or persistent -around 3 days for 10 m s-1 intensity- southeasterly winds. Nevertheless this kind of events is not frequent in the region. Moreover, stratification completely recovers in a relatively short period of time -between 10 and 15 days- after the strong wind relaxation. Consequently, even though the salt wedge structure is a consequence of the large discharge and the bathymetry, its existence is favored by prevailing winds. Results presented in this work have important implications in biology. The strong picnocline of the Río de la Plata estuary is connected to plankton retention and accumulation, including eggs of certain species that spawn and nurse in the estuary. This way, retentive properties of the system can be altered during a disruptive event exposing larvae to abrupt changes in salinity conditions. Nevertheless, these events can occur few times along the year and besides the system can relatively quickly reconstruct the vertical halocline. As a result the salt wedge structure is presented along most part of the year. This implies that significant mixing events producing exchanges of water, sediments, nutrients and other properties between the estuary and the open ocean are limited to occur only under strong or persistent southeasterly winds. The Río de la Plata estuary would show strong retentive features favoring biota to retain eggs and larvae, but also favoring pollutant accumulation.

  15. Effect of Sampling Depth on Air-Sea CO2 Flux Estimates in River-Stratified Arctic Coastal Waters

    NASA Astrophysics Data System (ADS)

    Miller, L. A.; Papakyriakou, T. N.

    2015-12-01

    In summer-time Arctic coastal waters that are strongly influenced by river run-off, extreme stratification severely limits wind mixing, making it difficult to effectively sample the surface 'mixed layer', which can be as shallow as 1 m, from a ship. During two expeditions in southwestern Hudson Bay, off the Nelson, Hayes, and Churchill River estuaries, we confirmed that sampling depth has a strong impact on estimates of 'surface' pCO2 and calculated air-sea CO2 fluxes. We determined pCO2 in samples collected from 5 m, using a typical underway system on the ship's seawater supply; from the 'surface' rosette bottle, which was generally between 1 and 3 m; and using a niskin bottle deployed at 1 m and just below the surface from a small boat away from the ship. Our samples confirmed that the error in pCO2 derived from typical ship-board versus small-boat sampling at a single station could be nearly 90 μatm, leading to errors in the calculated air-sea CO2 flux of more than 0.1 mmol/(m2s). Attempting to extrapolate such fluxes over the 6,000,000 km2 area of the Arctic shelves would generate an error approaching a gigamol CO2/s. Averaging the station data over a cruise still resulted in an error of nearly 50% in the total flux estimate. Our results have implications not only for the design and execution of expedition-based sampling, but also for placement of in-situ sensors. Particularly in polar waters, sensors are usually deployed on moorings, well below the surface, to avoid damage and destruction from drifting ice. However, to obtain accurate information on air-sea fluxes in these areas, it is necessary to deploy sensors on ice-capable buoys that can position the sensors in true 'surface' waters.

  16. AMOC sensitivity to surface buoyancy fluxes: Stronger ocean meridional heat transport with a weaker volume transport?

    NASA Astrophysics Data System (ADS)

    Sévellec, Florian; Fedorov, Alexey V.

    2016-09-01

    Oceanic northward heat transport is commonly assumed to be positively correlated with the Atlantic meridional overturning circulation (AMOC). For example, in numerical "water-hosing" experiments, imposing anomalous freshwater fluxes in the northern Atlantic leads to a slow-down of the AMOC and the corresponding reduction of oceanic northward heat transport. Here, we study the sensitivity of the ocean heat and volume transports to surface heat and freshwater fluxes using a generalized stability analysis. For the sensitivity to surface freshwater fluxes, we find that, while the direct relationship between the AMOC volume and heat transports holds on shorter time scales, it can reverse on timescales longer than 500 years or so. That is, depending on the model surface boundary conditions, reduction in the AMOC volume transport can potentially lead to a stronger heat transport on long timescales, resulting from the gradual increase in ocean thermal stratification. We discuss the implications of these results for the problem of steady state (statistical equilibrium) in ocean and climate GCM as well as paleoclimate problems including millennial climate variability.

  17. AMOC sensitivity to surface buoyancy fluxes: Stronger ocean meridional heat transport with a weaker volume transport?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevellec, Florian; Fedorov, Alexey V.

    Oceanic northward heat transport is commonly assumed to be positively correlated with the Atlantic meridional overturning circulation (AMOC). For example, in numerical "water-hosing" experiments, imposing anomalous freshwater fluxes in the northern Atlantic leads to a slow-down of the AMOC and the corresponding reduction of oceanic northward heat transport. Here, we study the sensitivity of the ocean heat and volume transports to surface heat and freshwater fluxes using a generalized stability analysis. For the sensitivity to surface freshwater fluxes, we find that, while the direct relationship between the AMOC volume and heat transports holds on shorter time scales, it can reversemore » on timescales longer than 500 years or so. That is, depending on the model surface boundary conditions, reduction in the AMOC volume transport can potentially lead to a stronger heat transport on long timescales, resulting from the gradual increase in ocean thermal stratification. Finally, we discuss the implications of these results for the problem of steady state (statistical equilibrium) in ocean and climate GCM as well as paleoclimate problems including millennial climate variability.« less

  18. Upper Ocean Response to the Atmospheric Cold Pools Associated With the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Pei, Suyang; Shinoda, Toshiaki; Soloviev, Alexander; Lien, Ren-Chieh

    2018-05-01

    Atmospheric cold pools are frequently observed during the Madden-Julian Oscillation events and play an important role in the development and organization of large-scale convection. They are generally associated with heavy precipitation and strong winds, inducing large air-sea fluxes and significant sea surface temperature (SST) fluctuations. This study provides a first detailed investigation of the upper ocean response to the strong cold pools associated with the Madden-Julian Oscillation, based on the analysis of in situ data collected during the Dynamics of the Madden-Julian Oscillation (DYNAMO) field campaign and one-dimensional ocean model simulations validated by the data. During strong cold pools, SST drops rapidly due to the atmospheric cooling in a shoaled mixed layer caused by the enhanced near-surface salinity stratification generated by heavy precipitation. Significant contribution also comes from the component of surface heat flux produced by the cold rain temperature. After the period of heavy rain, while net surface cooling remains, SST gradually recovers due to the enhanced entrainment of warmer waters below the mixed layer.

  19. AMOC sensitivity to surface buoyancy fluxes: Stronger ocean meridional heat transport with a weaker volume transport?

    DOE PAGES

    Sevellec, Florian; Fedorov, Alexey V.

    2016-01-04

    Oceanic northward heat transport is commonly assumed to be positively correlated with the Atlantic meridional overturning circulation (AMOC). For example, in numerical "water-hosing" experiments, imposing anomalous freshwater fluxes in the northern Atlantic leads to a slow-down of the AMOC and the corresponding reduction of oceanic northward heat transport. Here, we study the sensitivity of the ocean heat and volume transports to surface heat and freshwater fluxes using a generalized stability analysis. For the sensitivity to surface freshwater fluxes, we find that, while the direct relationship between the AMOC volume and heat transports holds on shorter time scales, it can reversemore » on timescales longer than 500 years or so. That is, depending on the model surface boundary conditions, reduction in the AMOC volume transport can potentially lead to a stronger heat transport on long timescales, resulting from the gradual increase in ocean thermal stratification. Finally, we discuss the implications of these results for the problem of steady state (statistical equilibrium) in ocean and climate GCM as well as paleoclimate problems including millennial climate variability.« less

  20. Temperature and oxygen in Missouri reservoirs

    USGS Publications Warehouse

    Jones, John R.; Knowlton, Matthew F.; Obrecht, Daniel V.; Graham, Jennifer L.

    2011-01-01

    Vertical profiles of water temperature (n = 7193) and dissolved oxygen (n = 6516) were collected from 235 Missouri reservoirs during 1989–2007; most data were collected during May–August and provide a regional summary of summer conditions. Collectively, surface water temperature ranged from a mean of ~22 C in May to 28 C in July, and individual summer maxima typically were 28–32 C. Most (~95%) reservoirs stably stratify by mid-May, but few are deep enough to have hypolimnia with near-uniform temperatures. Among stratified reservoirs, maximum effective length and maximum depth accounted for 75% of the variation in mixed depth and thermocline depth. Ephemeral, near-surface thermoclines occurred in 39% of summer profiles and were most frequent in small, turbid reservoirs. Isotherms below the mixed layer deepen during stratification, and the water column is >20 C by August in all but the deepest reservoirs. Most reservoirs showed incipient dissolved oxygen (DO) depletion by mid-May, and by August, 80% of profiles had DO minima of 50% of variation in DO below the mixed layer during summer. Warm summer temperatures and widespread low DO often limit available fish habitat in Missouri reservoirs and compress warm-water fish communities into subsurface layers that exceed their thermal preferences. This study provides a regional baseline of reservoir temperature and oxygen conditions useful for future evaluations of eutrophication and the effects of a warming climate.

  1. A large CO2 sink enhanced by eutrophication in a tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil)

    NASA Astrophysics Data System (ADS)

    Cotovicz, L. C., Jr.; Knoppers, B. A.; Brandini, N.; Costa Santos, S. J.; Abril, G.

    2015-03-01

    In contrast to its small surface area, the coastal zone plays a disproportionate role in the global carbon cycle. Carbon production, transformation, emission and burial rates at the land-ocean interface are still poorly known, especially in tropical regions. Surface water pCO2 and ancillary parameters were monitored during nine field campaigns between April 2013 and April 2014 in Guanabara Bay, a tropical eutrophic to hypertrophic semi-enclosed estuarine embayment surrounded by the city of Rio de Janeiro, SE-Brazil. Water pCO2 varied between 22 and 3715 ppmv in the Bay showing spatial, diurnal and seasonal trends that mirrored those of dissolved oxygen (DO) and Chlorophyll a (Chl a). Marked pCO2 undersaturation was prevalent in the shallow, confined and thermally stratified waters of the upper bay, whereas pCO2 oversaturation was restricted to sites close to the small river mouths and small sewage channels, which covered only 10% of the bay's area. Substantial daily variations in pCO2 (up to 395 ppmv between dawn and dusk) were also registered and could be integrated temporally and spatially for the establishment of net diurnal, seasonal and annual CO2 fluxes. In contrast to other estuaries worldwide, Guanabara Bay behaved as a net sink of atmospheric CO2, a property enhanced by the concomitant effects of strong radiation intensity, thermal stratification, and high availability of nutrients, which promotes phytoplankton development and net autotrophy. In the inner part of the bay, the calculated annual CO2 sink (-19.6 mol C m2 yr-1) matched the organic carbon burial in the sediments reported in the literature. The carbon sink and autotrophy of Guanabara Bay was driven by planktonic primary production promoted by eutrophication, and by its typology of marine embayment lacking the classical extended estuarine mixing zone, in contrast to river-dominated estuarine systems, which are generally net heterotrophic and CO2 emitters. Our results show that global CO2 budgetary assertions still lack information on tropical estuarine embayments and lagoons, which are affected by thermal stratification and eutrophication and behave specifically with respect to atmospheric CO2.

  2. A strong CO2 sink enhanced by eutrophication in a tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil)

    NASA Astrophysics Data System (ADS)

    Cotovicz, L. C., Jr.; Knoppers, B. A.; Brandini, N.; Costa Santos, S. J.; Abril, G.

    2015-10-01

    In contrast to its small surface area, the coastal zone plays a disproportionate role in the global carbon cycle. Carbon production, transformation, emission and burial rates at the land-ocean interface are significant at the global scale but still poorly known, especially in tropical regions. Surface water pCO2 and ancillary parameters were monitored during nine field campaigns between April 2013 and April 2014 in Guanabara Bay, a tropical eutrophic to hypertrophic semi-enclosed estuarine embayment surrounded by the city of Rio de Janeiro, southeast Brazil. Water pCO2 varied between 22 and 3715 ppmv in the bay, showing spatial, diurnal and seasonal trends that mirrored those of dissolved oxygen (DO) and chlorophyll a (Chl a). Marked pCO2 undersaturation was prevalent in the shallow, confined and thermally stratified waters of the upper bay, whereas pCO2 oversaturation was restricted to sites close to the small river mouths and small sewage channels, which covered only 10 % of the bay's area. Substantial daily variations in pCO2 (up to 395 ppmv between dawn and dusk) were also registered and could be integrated temporally and spatially for the establishment of net diurnal, seasonal and annual CO2 fluxes. In contrast to other estuaries worldwide, Guanabara Bay behaved as a net sink of atmospheric CO2, a property enhanced by the concomitant effects of strong radiation intensity, thermal stratification, and high availability of nutrients, which promotes phytoplankton development and net autotrophy. The calculated CO2 fluxes for Guanabara Bay ranged between -9.6 and -18.3 mol C m-2 yr-1, of the same order of magnitude as the organic carbon burial and organic carbon inputs from the watershed. The positive and high net community production (52.1 mol C m-2 yr-1) confirms the high carbon production in the bay. This autotrophic metabolism is apparently enhanced by eutrophication. Our results show that global CO2 budgetary assertions still lack information on tropical, marine-dominated estuarine systems, which are affected by thermal stratification and eutrophication and behave specifically with respect to atmospheric CO2.

  3. The use of multilevel sampling techniques for determining shallow aquifer nitrate profiles.

    PubMed

    Lasagna, Manuela; De Luca, Domenico Antonio

    2016-10-01

    Nitrate is a worldwide pollutant in aquifers. Shallow aquifer nitrate concentrations generally display vertical stratification, with a maximum concentration immediately below the water level. The concentration then gradually decreases with depth. Different techniques can be used to highlight this stratification. The paper aims at comparing the advantages and limitations of three open hole multilevel sampling techniques (packer system, dialysis membrane samplers and bailer), chosen on the base of a literary review, to highlight a nitrate vertical stratification under the assumption of (sub)horizontal flow in the aquifer. The sampling systems were employed at three different times of the year in a shallow aquifer piezometer in northern Italy. The optimal purge time, equilibration time and water volume losses during the time in the piezometer were evaluated. Multilevel techniques highlighted a similar vertical nitrate stratification, present throughout the year. Indeed, nitrate concentrations generally decreased with depth downwards, but with significantly different levels in the sampling campaigns. Moreover, the sampling techniques produced different degrees of accuracy. More specifically, the dialysis membrane samplers provided the most accurate hydrochemical profile of the shallow aquifer and they appear to be necessary when the objective is to detect the discontinuities in the nitrate profile. Bailer and packer system showed the same nitrate profile with little differences of concentration. However, the bailer resulted much more easier to use.

  4. Short-term thermal stratification and partial overturning events in a warm polymictic reservoir: effects on distribution of phytoplankton community.

    PubMed

    Santos, R M; Saggio, A A; Silva, T L R; Negreiros, N F; Rocha, O

    2015-01-01

    In lentic freshwater ecosystems, patterns of thermal stratification play a considerable part in determining the population dynamics of phytoplankton. In this study we investigated how these thermal patterns and the associated hydrodynamic processes affect the vertical distribution of phytoplankton during two consecutive diel cycles in a warm polymictic urban reservoir in the metropolitan region of São Paulo, Brazil. Water samples were taken and physical, chemical and biological data collected at half-meter intervals of depth along a water column at a fixed site, every 3 hours throughout the 48-hour period. Two events of stratification, followed by deepening of the thermocline occurred during the study period and led to changes in the vertical distribution of phytoplankton populations. Aphanocapsa delicatissima Nägeli was the single dominant species throughout the 48-hour period. In the second diel cycle, the density gradient induced by temperature differences avoided the sedimentation of Mougeotia sp. C. Agardh to the deepest layers. On the other hand, Pseudanabaena galeata Böcher remained in the 4.0-5.5 m deep layer. The thermal structure of the water was directly affected by two meteorological factors: air temperature and wind speed. Changes in the cell density and vertical distribution of the phytoplankton were controlled by the thermal and hydrodynamic events.

  5. 4DVAR data Assimilation with the Regional Ocean Modeling System (ROMS): Impact on the Water Mass Distributions in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Lee, Joon-Ho; Kim, Taekyun; Pang, Ig-Chan; Moon, Jae-Hong

    2018-04-01

    In this study, we evaluate the performance of the recently developed incremental strong constraint 4-dimensional variational (4DVAR) data assimilation applied to the Yellow Sea (YS) using the Regional Ocean Modeling System (ROMS). Two assimilation experiments are compared: assimilating remote-sensed sea surface temperature (SST) and both the SST and in-situ profiles measured by shipboard CTD casts into a regional ocean modeling from January to December of 2011. By comparing the two assimilation experiments against a free-run without data assimilation, we investigate how the assimilation affects the hydrographic structures in the YS. Results indicate that the SST assimilation notably improves the model behavior at the surface when compared to the nonassimilative free-run. The SST assimilation also has an impact on the subsurface water structure in the eastern YS; however, the improvement is seasonally dependent, that is, the correction becomes more effective in winter than in summer. This is due to a strong stratification in summer that prevents the assimilation of SST from affecting the subsurface temperature. A significant improvement to the subsurface temperature is made when the in-situ profiles of temperature and salinity are assimilated, forming a tongue-shaped YS bottom cold water from the YS toward the southwestern seas of Jeju Island.

  6. Performance optimization of CO 2 heat pump water heater

    DOE PAGES

    Nawaz, Kashif; Shen, Bo; Elatar, Ahmed; ...

    2017-10-14

    A preliminary analysis was conducted to analyze the performance of a heat pump water heater (HPWH) that uses CO 2 as the refrigerant. A model to predict the performance was developed and calibrated based on the experimental data for an existing HPWH using a CO 2 refrigerant. The calibrated model was then used to run a parametric analysis in which factors such as water supply temperature, water circulation rate, tank stratification, and condenser configuration were considered. The performance of a commercial CO 2 system was compared with that of a similar system using R-134a as the refrigerant. It was foundmore » that CO 2 HPWH performance was comparable to that of an R-134a HPWH, more so for a separated gas cooler configuration. For comparable performance, the compressor size and the tube-in-tube heat exchanger (condenser/gas cooler) size were compared for CO 2- and R-134a-based systems. Finally, the impact of the water circulation rate on the water temperature stratification in the tank, an essential requirement for higher performance for CO 2 HPWH systems was also investigated.« less

  7. Performance optimization of CO 2 heat pump water heater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawaz, Kashif; Shen, Bo; Elatar, Ahmed

    A preliminary analysis was conducted to analyze the performance of a heat pump water heater (HPWH) that uses CO 2 as the refrigerant. A model to predict the performance was developed and calibrated based on the experimental data for an existing HPWH using a CO 2 refrigerant. The calibrated model was then used to run a parametric analysis in which factors such as water supply temperature, water circulation rate, tank stratification, and condenser configuration were considered. The performance of a commercial CO 2 system was compared with that of a similar system using R-134a as the refrigerant. It was foundmore » that CO 2 HPWH performance was comparable to that of an R-134a HPWH, more so for a separated gas cooler configuration. For comparable performance, the compressor size and the tube-in-tube heat exchanger (condenser/gas cooler) size were compared for CO 2- and R-134a-based systems. Finally, the impact of the water circulation rate on the water temperature stratification in the tank, an essential requirement for higher performance for CO 2 HPWH systems was also investigated.« less

  8. Diffuse CO2 fluxes from Santiago and Congro volcanic lakes (São Miguel, Azores archipelago)

    NASA Astrophysics Data System (ADS)

    Andrade, César; Cruz, José; Viveiros, Fátima; Branco, Rafael

    2017-04-01

    Diffuse CO2 degassing occurring in Santiago and Congro lakes, both located in depressions associated to maars from São Miguel Island (Azores, Portugal), was studied through detailed flux measurements. Four sampling campaigns were developed between 2013 and 2016 in each water body, split by the cold and wet seasons. São Miguel has an area of 744.6 km2, being the largest island of the archipelago. The geology of the island is dominated by three quiescent central volcanoes (Sete Cidades, Fogo and Furnas), linked by volcanic fissural zones (Picos and Congro Fissural Volcanic systems). The oldest volcanic systems of the island are located in its eastern part (Povoação-Nordeste). Santiago lake, with a surface area of 0.26 km2 and a depth of 30.5 m, is located inside a maar crater in the Sete Cidades volcano at an altitude of 355 m. The watershed of the lake has an area of 0.97 km2 and a surface flow estimated as 1.54x10 m3/a. A total of 1612 CO2 flux measurements using the accumulation chamber method were made at Santiago lake, 253 in the first campaign (November 2013), and 462, 475 and 422 in the three other campaigns, respectively, in April 2014, September 2016 and December 2016. The total CO2 flux estimated for this lake varies between 0.4 t d-1 and 0.59 t d-1, for the surveys performed, respectively, in November 2013 and September 2016; higher CO2 outputs of 1.57 and 5.87 t d-1 were calculated for the surveys carried out in April 2014 and December 2016. These higher CO2 emissions were associated with a period without water column stratification. Similarly to Santiago lake, Congro lake is located inside a maar, in the Congro Fissural Volcanic system, and has a surface area of 0.04 km2 with 18.5 m depth and a storage of about 2.4x105 m3/a. The lake, located at an altitude of 420 m, is fed by a watershed with an area of 0.33 km2 and a runoff estimated as about 8x104 m3/a. In Congro lake a total of 713 CO2 flux measurements were performed during four surveys from November 2013 to February 2016. The CO2 flux output was estimated as ranging between 0.06 t d-1 and 0.31 t d-1; the lower CO2 emission occurred in July 2015 and should reflect the stratification of the water column that prevents the CO2 flux release at the lake surface. Considering both volcanic lakes, the mean CO2 emissions, standardized per area, in the cold season were ˜14.9 t km-2 d-1 and ˜7.1 t km-2 d-1, respectively, for Santiago and Congro lakes. During summer period, CO2 emissions were lower in both lakes (˜1.9 t km-2 d-1 and ˜4.1 t km-2 d-1 for Santiago and Congro, correspondingly), what is explained by the lake stratification. Due to the organic processes that occur in the lakes, the CO2 emission is mostly associated to a biogenic origin, but a volcanic influence cannot be excluded and further research using carbon isotopic data is crucial to discriminate the CO2 sources. Key words: volcanic lakes, CO2 flux, maars, São Miguel Island

  9. X-band Electron Paramagnetic Resonance Investigation of Stable Organic Radicals Present under Cold Stratification in 'Fuji' Apple Seeds.

    PubMed

    Nakagawa, Kouichi; Matsumoto, Kazuhiro; Chaiserm, Nattakan; Priprem, Aroonsri

    2017-01-01

    We investigated stable organic radicals formed in response to cold stratification in 'Fuji' apple seeds using X-band (9 GHz) electron paramagnetic resonance (EPR) technique. This technique primarily detected two paramagnetic species in each seed. These two different radical species were assigned as a stable organic radical and Mn 2+ species based on the g values and hyperfine components. Signal from the stable radicals was noted at a g value of about 2.00 and was strong and relatively stable. Significant radical intensity changes were observed in apple seeds on refrigeration along with water supplementation. The strongest radical intensity and a very weak Mn 2+ signal were also observed for the seeds kept in moisture-containing sand in a refrigerator. Noninvasive EPR of the radicals present in each seed revealed that the stable radicals were located primarily in the seed coat. These results indicate that the significant radical intensity changes in apple seeds under refrigeration for at least 90 days followed by water supplementation for one week, can be related to cold stratification of the seeds.

  10. Calculation of Local Stress and Fatigue Resistance due to Thermal Stratification on Pressurized Surge Line Pipe

    NASA Astrophysics Data System (ADS)

    Bandriyana, B.; Utaja

    2010-06-01

    Thermal stratification introduces thermal shock effect which results in local stress and fatique problems that must be considered in the design of nuclear power plant components. Local stress and fatique calculation were performed on the Pressurize Surge Line piping system of the Pressurize Water Reactor of the Nuclear Power Plant. Analysis was done on the operating temperature between 177 to 343° C and the operating pressure of 16 MPa (160 Bar). The stagnant and transient condition with two kinds of stratification model has been evaluated by the two dimensional finite elements method using the ANSYS program. Evaluation of fatigue resistance is developed based on the maximum local stress using the ASME standard Code formula. Maximum stress of 427 MPa occurred at the upper side of the top half of hot fluid pipe stratification model in the transient case condition. The evaluation of the fatigue resistance is performed on 500 operating cycles in the life time of 40 years and giving the usage value of 0,64 which met to the design requirement for class 1 of nuclear component. The out surge transient were the most significant case in the localized effects due to thermal stratification.

  11. Onset and demise of Cretaceous oceanic anoxic events: The coupling of surface and bottom oceanic processes in two pelagic basins of the western Tethys

    NASA Astrophysics Data System (ADS)

    Gambacorta, G.; Bersezio, R.; Weissert, H.; Erba, E.

    2016-06-01

    The upper Albian-lower Turonian pelagic successions of the Tethys record processes acting during the onset, core, and recovery from perturbed conditions across oceanic anoxic event (OAE) 1d, OAE 2, and the mid-Cenomanian event I (MCE I) relative to intervening intervals. Five sections from Umbria-Marche and Belluno Basins (Italy) were analyzed at high resolution to assess processes in surface and deep waters. Recurrent facies stacking patterns (SP) and their associations record periods of bottom current activity coupled with surface changes in trophic level. Climate changes appear to have been influential on deep circulation dynamics. Under greenhouse conditions, vigorous bottom currents were arguably induced by warm and dense saline deep waters originated on tropical shelves in the Tethys and/or proto-Atlantic Ocean. Tractive facies postdating intermittent anoxia during OAE 1d and in the interval bracketed by MCE I and OAE 2 are indicative of feeble bottom currents, though capable of disrupting stratification and replenish deep water with oxygen. The major warming at the onset of OAE 2 might have enhanced the formation of warm salty waters, possibly producing local hiatuses at the base of the Bonarelli Level and winnowing at the seafloor. Hiatuses detected at the top of the Bonarelli Level possibly resulted from most effective bottom currents during the early Turonian thermal maximum. Times of minimal sediment displacement correlate with cooler climatic conditions and testify a different mechanism of deep water formation, as further suggested by a color change to reddish lithologies of the post-OAE 1d and post-OAE 2 intervals.

  12. Large-scale climatic effects on traditional Hawaiian fishpond aquaculture

    PubMed Central

    McCoy, Daniel; McManus, Margaret A.; Kotubetey, Keliʻiahonui; Kawelo, Angela Hiʻilei; Young, Charles; D’Andrea, Brandon; Ruttenberg, Kathleen C.

    2017-01-01

    Aquaculture accounts for almost one-half of global fish consumption. Understanding the regional impact of climate fluctuations on aquaculture production thus is critical for the sustainability of this crucial food resource. The objective of this work was to understand the role of climate fluctuations and climate change in subtropical coastal estuarine environments within the context of aquaculture practices in Heʻeia Fishpond, Oʻahu Island, Hawaiʻi. To the best of our knowledge, this was the first study of climate effects on traditional aquaculture systems in the Hawaiian Islands. Data from adjacent weather stations were analyzed together with in situ water quality instrument deployments spanning a 12-year period (November 2004 –November 2016). We found correlations between two periods with extremely high fish mortality at Heʻeia Fishpond (May and October 2009) and slackening trade winds in the week preceding each mortality event, as well as surface water temperatures elevated 2–3°C higher than the background periods (March-December 2009). We posit that the lack of trade wind-driven surface water mixing enhanced surface heating and stratification of the water column, leading to hypoxic conditions and stress on fish populations, which had limited ability to move within net pen enclosures. Elevated water temperature and interruption of trade winds previously have been linked to the onset of El Niño in Hawaiʻi. Our results provide empirical evidence regarding El Niño effects on the coastal ocean, which can inform resource management efforts about potential impact of climate variation on aquaculture production. Finally, we provide recommendations for reducing the impact of warming events on fishponds, as these events are predicted to increase in magnitude and frequency as a consequence of global warming. PMID:29145446

  13. Large-scale climatic effects on traditional Hawaiian fishpond aquaculture.

    PubMed

    McCoy, Daniel; McManus, Margaret A; Kotubetey, Keliʻiahonui; Kawelo, Angela Hiʻilei; Young, Charles; D'Andrea, Brandon; Ruttenberg, Kathleen C; Alegado, Rosanna ʻAnolani

    2017-01-01

    Aquaculture accounts for almost one-half of global fish consumption. Understanding the regional impact of climate fluctuations on aquaculture production thus is critical for the sustainability of this crucial food resource. The objective of this work was to understand the role of climate fluctuations and climate change in subtropical coastal estuarine environments within the context of aquaculture practices in He'eia Fishpond, O'ahu Island, Hawai'i. To the best of our knowledge, this was the first study of climate effects on traditional aquaculture systems in the Hawaiian Islands. Data from adjacent weather stations were analyzed together with in situ water quality instrument deployments spanning a 12-year period (November 2004 -November 2016). We found correlations between two periods with extremely high fish mortality at He'eia Fishpond (May and October 2009) and slackening trade winds in the week preceding each mortality event, as well as surface water temperatures elevated 2-3°C higher than the background periods (March-December 2009). We posit that the lack of trade wind-driven surface water mixing enhanced surface heating and stratification of the water column, leading to hypoxic conditions and stress on fish populations, which had limited ability to move within net pen enclosures. Elevated water temperature and interruption of trade winds previously have been linked to the onset of El Niño in Hawai'i. Our results provide empirical evidence regarding El Niño effects on the coastal ocean, which can inform resource management efforts about potential impact of climate variation on aquaculture production. Finally, we provide recommendations for reducing the impact of warming events on fishponds, as these events are predicted to increase in magnitude and frequency as a consequence of global warming.

  14. Laboratory Experiments Investigating Glacier Submarine Melt Rates and Circulation in an East Greenland Fjord

    NASA Astrophysics Data System (ADS)

    Cenedese, C.

    2014-12-01

    Idealized laboratory experiments investigate the glacier-ocean boundary dynamics near a vertical 'glacier' (i.e. no floating ice tongue) in a two-layer stratified fluid, similar to Sermilik Fjord where Helheim Glacier terminates. In summer, the discharge of surface runoff at the base of the glacier (subglacial discharge) intensifies the circulation near the glacier and increases the melt rate with respect to that in winter. In the laboratory, the effect of subglacial discharge is simulated by introducing fresh water at melting temperatures from either point or line sources at the base of an ice block representing the glacier. The circulation pattern observed both with and without subglacial discharge resembles those observed in previous studies. The buoyant plume of cold meltwater and subglacial discharge water entrains ambient water and rises vertically until it finds either the interface between the two layers or the free surface. The results suggest that the meltwater deposits within the interior of the water column and not entirely at the free surface, as confirmed by field observations. The submarine melt rate increases with the subglacial discharge rate. Furthermore, the same subglacial discharge causes greater submarine melting if it exits from a point source rather than from a line source. When the subglacial discharge exits from two point sources, two buoyant plumes are formed which rise vertically and interact. The results suggest that the distance between the two subglacial discharges influences the entrainment in the plumes and consequently the amount of submarine melting and the final location of the meltwater within the water column. Hence, the distribution and number of sources of subglacial discharge may play an important role in glacial melt rates and fjord stratification and circulation. Support was given by NSF project OCE-113008.

  15. Internal Waves and Wave Attractors in Enceladus' Subsurface Ocean

    NASA Astrophysics Data System (ADS)

    van Oers, A. M.; Maas, L. R.; Vermeersen, B. L. A.

    2016-12-01

    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. In 2013, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. Numerical simulations show the persistence of wave attractors for a range of ocean shapes and stratifications. The intensification of the wave field near the location of the surface reflections of wave attractors has been numerically and experimentally confirmed. We measured the forces a wave attractor exerts on a solid surface, near a reflection point. These reflection points would correspond to the location of the tiger stripes. Combining experiments and numerical simulations we conclude that (1) wave attractors can exist in Enceladus' subsurface sea, (2) their shape can be matched to the tiger stripes, (3) the wave attractors cause a localized force at the water-ice boundaries, (4) this force could have been large enough to contribute to fracturing the ice and (5) the wave attractors localize energy (and particles) and cause dissipation along its path, helping explain Enceladus' enigmatic heat output at the tiger stripes.

  16. Ionic Size Effects: Generalized Boltzmann Distributions, Counterion Stratification, and Modified Debye Length.

    PubMed

    Liu, Bo; Liu, Pei; Xu, Zhenli; Zhou, Shenggao

    2013-10-01

    Near a charged surface, counterions of different valences and sizes cluster; and their concentration profiles stratify. At a distance from such a surface larger than the Debye length, the electric field is screened by counterions. Recent studies by a variational mean-field approach that includes ionic size effects and by Monte Carlo simulations both suggest that the counterion stratification is determined by the ionic valence-to-volume ratios. Central in the mean-field approach is a free-energy functional of ionic concentrations in which the ionic size effects are included through the entropic effect of solvent molecules. The corresponding equilibrium conditions define the generalized Boltzmann distributions relating the ionic concentrations to the electrostatic potential. This paper presents a detailed analysis and numerical calculations of such a free-energy functional to understand the dependence of the ionic charge density on the electrostatic potential through the generalized Boltzmann distributions, the role of ionic valence-to-volume ratios in the counterion stratification, and the modification of Debye length due to the effect of ionic sizes.

  17. Ionic Size Effects: Generalized Boltzmann Distributions, Counterion Stratification, and Modified Debye Length

    PubMed Central

    Liu, Bo; Liu, Pei; Xu, Zhenli; Zhou, Shenggao

    2013-01-01

    Near a charged surface, counterions of different valences and sizes cluster; and their concentration profiles stratify. At a distance from such a surface larger than the Debye length, the electric field is screened by counterions. Recent studies by a variational mean-field approach that includes ionic size effects and by Monte Carlo simulations both suggest that the counterion stratification is determined by the ionic valence-to-volume ratios. Central in the mean-field approach is a free-energy functional of ionic concentrations in which the ionic size effects are included through the entropic effect of solvent molecules. The corresponding equilibrium conditions define the generalized Boltzmann distributions relating the ionic concentrations to the electrostatic potential. This paper presents a detailed analysis and numerical calculations of such a free-energy functional to understand the dependence of the ionic charge density on the electrostatic potential through the generalized Boltzmann distributions, the role of ionic valence-to-volume ratios in the counterion stratification, and the modification of Debye length due to the effect of ionic sizes. PMID:24465094

  18. Limnological study of Lake Shastina, Siskiyou County, California

    USGS Publications Warehouse

    Dong, Alex E.; Beatty, Kenneth W.; Averett, Robert C.

    1974-01-01

    Lake Shastina provides water for irrigation in Shasta Valley, as well as recreation. Presently, its shoreline is being developed for summer homes. Surface water constituted more than 90 percent of the approximately 50,000 acre-foot (62-cubic hectometre) inflow to Lake Shastina in the 1972 water year. Controlled outflow is via the Montague Main Canal; however, leakage from the lake through volcanic rocks to the northwest was estimated to be greater than the measured outflow. Appreciable annual changes in the quantity of water in storage in the lake are related mainly to variations in annual inflow.From June through August the lake was thermally stratified. In the spring and summer the epilimnion was often supersaturated with oxygen, while at the same time the hypolimnion was undersaturated and 'often devoid of dissolved oxygen. Vertical stratification of carbon dioxide, carbonate, bicarbonate, hydrogen ion, nitrogen, and phosphorus was also recorded during the spring and summer. Orthophosphate, total phosphorus, and total nitrogen concentrations (organic, ammonium, and nitrate) were highest in the hypolimnion during the period of thermal stratification.Ten-inch (25-centimetre) core samples from the reservoir bottom were chemically analyzed at 0.8-inch (2-centimetre) intervals. The concentrations ranged from 6.3 to 28.9 milligrams per gram of iron, 0.07 to 0.43 milligrams per gram of manganese, 0.4 to 2.7 milligrams per gram of organic nitrogen plus ammonium, and 0.06 to 1.3 milligrams per gram of total phosphorus. Organic matter in the cores ranged from 4 to 14 percent.Green algae and diatoms were the dominant algal types, reaching maximum concentrations of about 7 and 30 million cells per litre, respectively. These phytoplankton occurred near the surface during thermally stratified periods, but were distributed at greater depths during nonthermally stratified periods. Blue-green algae were present only in the spring samples, and reached a maximum concentration of about 5 million cells per litre.Zooplankton numbers were greatest in March, July, and September, with lesser concentrations in June. Three major zooplankton groups, Cladocera, Copepoda, and Rotifera, were present. The major groups of benthic organisms were Oligochaeta, Chironomidae, and Chaoborus, with numbers ranging from 3350, 890, and 8450 per square metre, respectively.A discussion on algal control is included.

  19. Domain and nanoridge growth kinetics in stratifying foam films

    NASA Astrophysics Data System (ADS)

    Zhang, Yiran; Sharma, Vivek

    Ultrathin films exhibit stratification due to confinement-induced structuring and layering of small molecules in simple fluids, and of supramolecular structures like micelles, lipid layers and nanoparticles in complex fluids. Stratification proceeds by the formation and growth of thinner domains at the expense of surrounding thicker film, and results in formation of nanoscopic terraces and mesas within a film. The detailed mechanisms underlying stratification are still under debate, and are resolved in this contribution by addressing long-standing experimental and theoretical challenges. Thickness variations in stratifying films are visualized and analyzed using interferometry, digital imaging and optical microscopy (IDIOM) protocols, with unprecedented high spatial (thickness <100 nm, lateral 500 nm) and temporal resolution (<1 ms). Using IDIOM protocols we developed recently, we characterize the shape and the growth dynamics of nanoridges that flank the expanding domains in micellar thin films. We show that topographical changes including nanoridge growth, and the overall stratification dynamics, can be described quantitatively by nonlinear thin film equation, amended with supramolecular oscillatory surface forces.

  20. Evaluating lake stratification and temporal trends by using near-continuous water-quality data from automated profiling systems for water years 2005-09, Lake Mead, Arizona and Nevada

    USGS Publications Warehouse

    Veley, Ronald J.; Moran, Michael J.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service and Southern Nevada Water Authority, collected near-continuous depth-dependent water-quality data at Lake Mead, Arizona and Nevada, as part of a multi-agency monitoring network maintained to provide resource managers with basic data and to gain a better understanding of the hydrodynamics of the lake. Water-quality data-collection stations on Lake Mead were located in shallow water (less than 20 meters) at Las Vegas Bay (Site 3) and Overton Arm, and in deep water (greater than 20 meters) near Sentinel Island and at Virgin and Temple Basins. At each station, near-continual depth-dependent water-quality data were collected from October 2004 through September 2009. The data were collected by using automatic profiling systems equipped with multiparameter water-quality sondes. The sondes had sensors for temperature, specific conductance, dissolved oxygen, pH, turbidity, and depth. Data were collected every 6 hours at 2-meter depth intervals (for shallow-water stations) or 5-meter depth intervals (for deep-water stations) beginning at 1 meter below water surface. Data were analyzed to determine water-quality conditions related to stratification of the lake and temporal trends in water-quality parameters. Three water-quality parameters were the main focus of these analyses: temperature, specific conductance, and dissolved oxygen. Statistical temporal-trend analyses were performed for a single depth at shallow-water stations [Las Vegas Bay (Site 3) and Overton Arm] and for thermally-stratified lake layers at deep-water stations (Sentinel Island and Virgin Basin). The limited period of data collection at the Temple Basin station prevented the application of statistical trend analysis. During the summer months, thermal stratification was not observed at shallow-water stations, nor were major maxima or minima observed for specific-conductance or dissolved-oxygen profiles. A clearly-defined thermocline and well-defined maxima and minima in specific-conductance and dissolved-oxygen profiles were observed at deep-water stations during the summer months. Specific-conductance maxima were likely the result of inflow of water from either the Las Vegas Wash or Muddy/Virgin Rivers or both, while the minima were likely the result of inflow of water from the Colorado River. Maxima and minima for dissolved oxygen were likely the result of primary productivity blooms and their subsequent decay. Temporal-trend analyses indicated that specific conductance decreased at all stations over the period of record, except for Las Vegas Bay (Site 3), where specific conductance increased. Temperature also decreased over the period of record at deep-water stations for certain lake layers. Decreasing temperature and specific conductance at deep-water stations is the result of decreasing values in these parameters in water coming from the Colorado River. Quagga mussels (Dreissena rostriformis bugensis), however, could play a role in trends of decreasing specific conductance through incorporation of calcite in their shells. Trends of decreasing turbidity and pH at deep-water stations support the hypothesis that quagga mussels could be having an effect on the physical properties and water chemistry of Lake Mead. Unlike other stations, Las Vegas Bay (Site 3) had increasing specific conductance and is interpreted as the result of lowering lake levels decreasing the volume of lake water available for mixing and dilution of the high-conductance water coming from Las Vegas Wash. Dissolved oxygen increased over the period of record in some lake layers at the deep-water stations. Increasing dissolved oxygen at deep-water stations is believed to result, in part, from a reduction of phosphorus entering Lake Mead and the concomitant reduction of biological oxygen demand.

  1. On the Subsurface Chlorophyll Maximum layer in the Black Sea Romanian shelf waters

    NASA Astrophysics Data System (ADS)

    Vasiliu, Dan; Gomoiu, Marian-Traian; Secrieru, Dan; Caraus, Ioan; Balan, Sorin

    2013-04-01

    By analyzing data recorded in 38 sampling stations (bottom depths between 16 and 200 m) covering the entire Romanian shelf, from the Danube's mouths to the southern part of the coast, the authors study Subsurface Chlorophyll Maximum (SCM) from May 2009 to April 2011. Chlorophyll a (Chla), seawater temperature, salinity, sigma T, dissolved oxygen, ph, beam attenuation, were measured over the water column depth with the CTD probe and averaged over 1-db intervals (about 1 m depth). Nutrients and phytoplankton qualitative and quantitative parameters were recorded from different depths according to water masses stratification (inscribed in the research protocol of the cruise). In late winter/early spring, due to strong mixing processes of water masses, SCM was not observed in the Black Sea shelf waters. In spring (May), the Danube's increased discharges, characteristic to that period, strongly affected the vertical distribution of Chla, particularly in the area of the Danube's direct influence, where Chla reached maximum in the surface layer (19.76 - 30.39 µg.l-1). In the deeper sampling stations, a relatively weak SCM (Chla within 0.77 - 1.21 µg.l-1) was observed, mainly at the lower limit of the euphotic zone (between 30 and 40 m depths). Here, the position and magnitude of SCM seemed to be controlled mainly by the light conditions; the seasonal thermocline was not well contoured yet. In the warm season, once the stratification becomes stronger, the magnitude of SCM increased (Chla varies between 1.45 - 2.12 µg.l-1). The SCM was well pronounced below the upper boundary of thermocline, at depths between 20 and 25 m, where the dissolved oxygen concentrations have also reached the highest values (>10 mg.l-1 O2), thus suggesting strong photosynthetic processes, where both nutrient and light conditions are favorable. A particular situation was found in July 2010, when abnormally high discharges from the Danube led to a well pronounced SCM (3.23 - 6.87 µg.l-1 Chla) above thermocline (within 8 - 12 m depths) in the shallow waters, the nutrients being not limitative factors. Keywords Chlorophyll a, Subsurface Chlorophyll Maximum layer, the Black Sea, the Danube

  2. Development of a depth-integrated sample arm (DISA) to reduce solids stratification bias in stormwater sampling

    USGS Publications Warehouse

    Selbig, William R.; ,; Roger T. Bannerman,

    2011-01-01

    A new depth-integrated sample arm (DISA) was developed to improve the representation of solids in stormwater, both organic and inorganic, by collecting a water quality sample from multiple points in the water column. Data from this study demonstrate the idea of vertical stratification of solids in storm sewer runoff. Concentrations of suspended sediment in runoff were statistically greater using a fixed rather than multipoint collection system. Median suspended sediment concentrations measured at the fixed location (near the pipe invert) were approximately double those collected using the DISA. In general, concentrations and size distributions of suspended sediment decreased with increasing vertical distance from the storm sewer invert. Coarser particles tended to dominate the distribution of solids near the storm sewer invert as discharge increased. In contrast to concentration and particle size, organic material, to some extent, was distributed homogenously throughout the water column, likely the result of its low specific density, which allows for thorough mixing in less turbulent water.

  3. Development of a depth-integrated sample arm to reduce solids stratification bias in stormwater sampling.

    PubMed

    Selbig, William R; Bannerman, Roger T

    2011-04-01

    A new depth-integrated sample arm (DISA) was developed to improve the representation of solids in stormwater, both organic and inorganic, by collecting a water quality sample from multiple points in the water column. Data from this study demonstrate the idea of vertical stratification of solids in storm sewer runoff. Concentrations of suspended sediment in runoff were statistically greater using a fixed rather than multipoint collection system. Median suspended sediment concentrations measured at the fixed location (near the pipe invert) were approximately double those collected using the DISA. In general, concentrations and size distributions of suspended sediment decreased with increasing vertical distance from the storm sewer invert. Coarser particles tended to dominate the distribution of solids near the storm sewer invert as discharge increased. In contrast to concentration and particle size, organic material, to some extent, was distributed homogenously throughout the water column, likely the result of its low specific density, which allows for thorough mixing in less turbulent water.

  4. Development of a depth-integrated sample arm to reduce solids stratification bias in stormwater sampling

    USGS Publications Warehouse

    Selbig, W.R.; Bannerman, R.T.

    2011-01-01

    A new depth-integrated sample arm (DISA) was developed to improve the representation of solids in stormwater, both organic and inorganic, by collecting a water quality sample from multiple points in the water column. Data from this study demonstrate the idea of vertical stratification of solids in storm sewer runoff. Concentrations of suspended sediment in runoff were statistically greater using a fixed rather than multipoint collection system. Median suspended sediment concentrations measured at the fixed location (near the pipe invert) were approximately double those collected using the DISA. In general, concentrations and size distributions of suspended sediment decreased with increasing vertical distance from the storm sewer invert. Coarser particles tended to dominate the distribution of solids near the storm sewer invert as discharge increased. In contrast to concentration and particle size, organic material, to some extent, was distributed homogenously throughout the water column, likely the result of its low specific density, which allows for thorough mixing in less turbulent water. ?? 2010 Publishing Technology.

  5. Understanding the destabilizing role for surface tension in planar shear flows in terms of wave interaction

    NASA Astrophysics Data System (ADS)

    Biancofiore, L.; Heifetz, E.; Hoepffner, J.; Gallaire, F.

    2017-10-01

    Both surface tension and buoyancy force in stable stratification act to restore perturbed interfaces back to their initial positions. Hence, both are intuitively considered as stabilizing agents. Nevertheless, the Taylor-Caulfield instability is a counterexample in which the presence of buoyancy forces in stable stratification destabilize shear flows. An explanation for this instability lies in the fact that stable stratification supports the existence of gravity waves. When two vertically separated gravity waves propagate horizontally against the shear, they may become phase locked and amplify each other to form a resonance instability. Surface tension is similar to buoyancy but its restoring mechanism is more efficient at small wavelengths. Here, we show how a modification of the Taylor-Caulfield configuration, including two interfaces between three stably stratified immiscible fluids, supports interfacial capillary gravity whose interaction yields resonance instability. Furthermore, when the three fluids have the same density, an instability arises solely due to a pure counterpropagating capillary wave resonance. The linear stability analysis predicts a maximum growth rate of the pure capillary wave instability for an intermediate value of surface tension corresponding to We-1=5 , where We denotes the Weber number. We perform direct numerical nonlinear simulation of this flow and find nonlinear destabilization when 2 ≤We-1≤10 , in good agreement with the linear stability analysis. The instability is present also when viscosity is introduced, although it is gradually damped and eventually quenched.

  6. Temperature inverted haloclines provide winter warm-water refugia for manatees in southwest Florida

    USGS Publications Warehouse

    Stith, Bradley M.; Reid, James P.; Langtimm, Catherine A.; Swain, Eric D.; Doyle, Terry J.; Slone, Daniel H.; Decker, Jeremy D.; Soderqvist, Lars E.

    2010-01-01

    Florida manatees (Trichechus manatus latirostris) overwintering in the Ten Thousand Islands and western Everglades have no access to power plants or major artesian springs that provide warm-water refugia in other parts of Florida. Instead, hundreds of manatees aggregate at artificial canals, basins, and natural deep water sites that act as passive thermal refugia (PTR). Monitoring at two canal sites revealed temperature inverted haloclines, which provided warm salty bottom layers that generally remained above temperatures considered adverse for manatees. At the largest PTR, the warmer bottom layer disappeared unless significant salt stratification was maintained by upstream freshwater inflow over a persistent tidal wedge. A detailed three-dimensional hydrology model showed that salinity stratification inhibited vertical convection induced by atmospheric cooling. Management or creation of temperature inverted haloclines may be a feasible and desirable option for resource managers to provide passive thermal refugia for manatees and other temperature sensitive aquatic species.

  7. Observations of turbulence in a partially stratified estuary

    USGS Publications Warehouse

    Stagey, M.T.; Monismith, Stephen G.; Burau, J.R.

    1999-01-01

    The authors present a field study of estuarine turbulence in which profiles of Reynolds stresses were directly measured using an ADCP throughout a 25-h tidal day. The dataset that is discussed quantifies turbulent mixing for a water column in northern San Francisco Bay that experiences a sequence of states that includes a weak ebb and flood that are stratified, followed by a strong, and eventually unstratified, ebb and flood. These measurements show that energetic turbulence is confined to a bottom mixed layer by the overlying stratification. Examination of individual Reynolds stress profiles along with profiles of Richardson number and turbulent Froude number shows that the water column can be divided into regions based on the relative importance of buoyancy effects. Using the measured turbulence production rate P, the dissipation rate e. is estimated. The observed turbulence had values of e/vN2 > 20 all of the time and e/vN2 > 200 most of the time, suggesting that the observed motions were buoyancy affected turbulence rather than internal waves. However, at times, turbulent Froude numbers in much of the upper-water column were less than one, indicating important stratification effects. Taken as a whole, the data show that stratification affects the turbulent velocity variance q2 most severely; that is, observed reductions in u'w' are largely associated with small values of q2 rather than with a dramatic reduction in the efficiency with which turbulent motions produce momentum fluxes. Finally, the dataset is compared to predictions made using the popular Mellor-Yamada level 2.5 closure. These comparisons show that the model tends to underestimate the turbulent kinetic energy in regions of strong stratification where the turbulence is strongly inhomogeneous and to overestimate the turbulent kinetic energy in weakly stratified regions. The length scale does not appear to compensate for these errors, and, as a result, similar errors are seen in the eddy viscosity predictions. It is hypothesized that the underestimation of q2 is due to an inaccurate parameterization of turbulence self-transport from the near-bed region to the overlying stratification. ?? 1999 American Meteorological Society.

  8. Subglacial discharge-driven renewal of tidewater glacier fjords

    NASA Astrophysics Data System (ADS)

    Carroll, Dustin; Sutherland, David A.; Shroyer, Emily L.; Nash, Jonathan D.; Catania, Ginny A.; Stearns, Leigh A.

    2017-08-01

    The classic model of fjord renewal is complicated by tidewater glacier fjords, where submarine melt and subglacial discharge provide substantial buoyancy forcing at depth. Here we use a suite of idealized, high-resolution numerical ocean simulations to investigate how fjord circulation driven by subglacial plumes, tides, and wind stress depends on fjord width, grounding line depth, and sill height. We find that the depth of the grounding line compared to the sill is a primary control on plume-driven renewal of basin waters. In wide fjords the plume exhibits strong lateral recirculation, increasing the dilution and residence time of glacially-modified waters. Rapid drawdown of basin waters by the subglacial plume in narrow fjords allows for shelf waters to cascade deep into the basin; wide fjords result in a thin, boundary current of shelf waters that flow toward the terminus slightly below sill depth. Wind forcing amplifies the plume-driven exchange flow; however, wind-induced vertical mixing is limited to near-surface waters. Tidal mixing over the sill increases in-fjord transport of deep shelf waters and erodes basin stratification above the sill depth. These results underscore the first-order importances of fjord-glacier geometry in controlling circulation in tidewater glacier fjords and, thus, ocean heat transport to the ice.

  9. Tide- and rainfall-induced variations of physical and chemical parameters in a mangrove-depleted estuary of East Hainan (South China Sea).

    PubMed

    Krumme, Uwe; Herbeck, Lucia S; Wang, Tianci

    2012-12-01

    The estuarine dynamics favoring the coexistence of mangroves, seagrass and corals at small river mouths are often poorly understood. We characterize the tidal, day/night and rainfall-induced short-term dynamics in salinity, pH, dissolved oxygen (DO), chlorophyll a (chl a), total suspended matter (TSM), water transparency, surface currents and dissolved nutrients (NO(x)(-), NH(4)(+), PO(4)(3)(-), Si(OH)(4)) of the Wenchang/Wenjiao Estuary (East Hainan, tropical China). Samples were taken at three fixed sites along the estuary during 24 h spring tide cycles in different seasons. Salinity, DO, water transparency and pH generally increased seawards while nutrients decreased. All parameters varied with the tidal cycle, partially in interaction with the diel cycle. Nutrients, chl a and TSM usually fluctuated inversely with water level. Stratification was strong. Inflowing bottom water was of higher salinity, DO and pH and lower temperature and nutrient concentrations than the surface water. Tidal mixing provided regular ventilation of the estuary and limited eutrophication effects of nutrients from aquaculture, agriculture and urban effluents. Under dry weather conditions, the brackish-water lagoon functioned as a sink of nutrients due to efficient uptake by phytoplankton. Presently, the runoff from common intense rains in the watershed affects the estuary with little time delay due to terrestrial deforestation, channelization and loss of mangrove area. The frequency, strength and duration of intermittent estuarization of the back-reef areas have likely increased in the past and deteriorate present seagrass and coral health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Simulation of hydrodynamics, temperature, and dissolved oxygen in Table Rock Lake, Missouri, 1996-1997

    USGS Publications Warehouse

    Green, W. Reed; Galloway, Joel M.; Richards, Joseph M.; Wesolowski, Edwin A.

    2003-01-01

    Outflow from Table Rock Lake and other White River reservoirs support a cold-water trout fishery of substantial economic yield in south-central Missouri and north-central Arkansas. The Missouri Department of Conservation has requested an increase in existing minimum flows through the Table Rock Lake Dam from the U.S. Army Corps of Engineers to increase the quality of fishable waters downstream in Lake Taneycomo. Information is needed to assess the effect of increased minimum flows on temperature and dissolved- oxygen concentrations of reservoir water and the outflow. A two-dimensional, laterally averaged, hydrodynamic, temperature, and dissolved-oxygen model, CE-QUAL-W2, was developed and calibrated for Table Rock Lake, located in Missouri, north of the Arkansas-Missouri State line. The model simulates water-surface elevation, heat transport, and dissolved-oxygen dynamics. The model was developed to assess the effects of proposed increases in minimum flow from about 4.4 cubic meters per second (the existing minimum flow) to 11.3 cubic meters per second (the increased minimum flow). Simulations included assessing the effect of (1) increased minimum flows and (2) increased minimum flows with increased water-surface elevations in Table Rock Lake, on outflow temperatures and dissolved-oxygen concentrations. In both minimum flow scenarios, water temperature appeared to stay the same or increase slightly (less than 0.37 ?C) and dissolved oxygen appeared to decrease slightly (less than 0.78 mg/L) in the outflow during the thermal stratification season. However, differences between the minimum flow scenarios for water temperature and dissolved- oxygen concentration and the calibrated model were similar to the differences between measured and simulated water-column profile values.

  11. Turbulence and pollutant transport in urban street canyons under stable stratification: a large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Li, X.

    2014-12-01

    Thermal stratification of the atmospheric surface layer has strong impact on the land-atmosphere exchange of turbulent, heat, and pollutant fluxes. Few studies have been carried out for the interaction of the weakly to moderately stable stratified atmosphere and the urban canopy. This study performs a large-eddy simulation of a modeled street canyon within a weakly to moderately stable atmosphere boundary layer. To better resolve the smaller eddy size resulted from the stable stratification, a higher spatial and temporal resolution is used. The detailed flow structure and turbulence inside the street canyon are analyzed. The relationship of pollutant dispersion and Richardson number of the atmosphere is investigated. Differences between these characteristics and those under neutral and unstable atmosphere boundary layer are emphasized.

  12. In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars.

    PubMed

    Squyres, S W; Grotzinger, J P; Arvidson, R E; Bell, J F; Calvin, W; Christensen, P R; Clark, B C; Crisp, J A; Farrand, W H; Herkenhoff, K E; Johnson, J R; Klingelhöfer, G; Knoll, A H; McLennan, S M; McSween, H Y; Morris, R V; Rice, J W; Rieder, R; Soderblom, L A

    2004-12-03

    Sedimentary rocks at Eagle crater in Meridiani Planum are composed of fine-grained siliciclastic materials derived from weathering of basaltic rocks, sulfate minerals (including magnesium sulfate and jarosite) that constitute several tens of percent of the rock by weight, and hematite. Cross-stratification observed in rock outcrops indicates eolian and aqueous transport. Diagenetic features include hematite-rich concretions and crystal-mold vugs. We interpret the rocks to be a mixture of chemical and siliciclastic sediments with a complex diagenetic history. The environmental conditions that they record include episodic inundation by shallow surface water, evaporation, and desiccation. The geologic record at Meridiani Planum suggests that conditions were suitable for biological activity for a period of time in martian history.

  13. Summary of the physical oceanography of the Pacific Northwest Coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purdy, D.F.

    The technical report summarizes current information on the physical oceanography of the Pacific Coast of Washington and Oregon, including information on currents, water mass characteristics, vertical stratification and mixing, upwelling, and waves. A general outline of the California current system is given, including the California and Davidson surface currents, the California and Washington undercurrents, and shelf currents. Conditions affecting local and nearshore currents, considered important in the event of an oil spill, are discussed. A summary of wave data is included from several sources including the Corps of Engineers WIS (Wave Information Study), based on meteorological information, and the Mineralsmore » Management Service's Coastal Wave Statistical Data Base (CWSDB), based on high quality data from a system of buoys.« less

  14. Rain Rate from IMERG as a Predictor for Salinity Stratification in the Upper Meter of the Ocean during SPURS-2 Rain Events

    NASA Astrophysics Data System (ADS)

    Thompson, E. J.; Asher, W.; Drushka, K.; Schanze, J. J.; Jessup, A. T.; Clark, D.

    2016-12-01

    Rain can produce a lens of fresher and generally colder, less dense water at the ocean surface. These stable surface layers concentrate heat, freshwater, and momentum into a thin layer and reduce the exchange of these properties between the surface layer and deeper water, which can impact regional freshwater storage and air-sea fluxes of heat and moisture. Although in situ observations have shown that fresh lenses are common in the presence of rain, attempts to correlate the magnitude and lifetime of the surface freshening with rain rate using field data have not produced a definitive relationship. The reasons for this are most likely that in situ rain rate measurements represent the freshwater flux to the ocean surface at a single point in space and time, whereas the fresh lens is the result of the integrated rainfall over time and space, convoluted with the evolution of the fresh lens. Therefore, it is possible that integrated, upstream rainfall estimates might provide a better correlate for the presence of fresh lenses than in situ measurements at a point. This hindcast study seeks to determine the utility of NASA GPM IMERG satellite measurements of rain relative to in situ collocated rain measurements in predicting the occurrence and duration of 0-1 m freshwater stabilization of the ocean. Vertical gradients of temperature, salinity, and density between the surface and at most a few meters were measured using towed profilers and underway sampling during the 2016 SPURS-2 experiment conducted in the tropical east Pacific Ocean. Local wind speed was also measured and taken into account. These measurements were used to determine whether local or integrated upstream precipitation metrics could better predict the occurrence of rain-generated lenses of fresher water at the ocean surface and whether the strength and duration of rain events was correlated with the observed lifetime of fresh lenses.

  15. Marine bacterioplankton community turnover within seasonally hypoxic waters of a subtropical sound: Devil's Hole, Bermuda.

    PubMed

    Parsons, Rachel J; Nelson, Craig E; Carlson, Craig A; Denman, Carmen C; Andersson, Andreas J; Kledzik, Andrew L; Vergin, Kevin L; McNally, Sean P; Treusch, Alexander H; Giovannoni, Stephen J

    2015-10-01

    Understanding bacterioplankton community dynamics in coastal hypoxic environments is relevant to global biogeochemistry because coastal hypoxia is increasing worldwide. The temporal dynamics of bacterioplankton communities were analysed throughout the illuminated water column of Devil's Hole, Bermuda during the 6-week annual transition from a strongly stratified water column with suboxic and high-pCO2 bottom waters to a fully mixed and ventilated state during 2008. A suite of culture-independent methods provided a quantitative spatiotemporal characterization of bacterioplankton community changes, including both direct counts and rRNA gene sequencing. During stratification, the surface waters were dominated by the SAR11 clade of Alphaproteobacteria and the cyanobacterium Synechococcus. In the suboxic bottom waters, cells from the order Chlorobiales prevailed, with gene sequences indicating members of the genera Chlorobium and Prosthecochloris--anoxygenic photoautotrophs that utilize sulfide as a source of electrons for photosynthesis. Transitional zones of hypoxia also exhibited elevated levels of methane- and sulfur-oxidizing bacteria relative to the overlying waters. The abundance of both Thaumarcheota and Euryarcheota were elevated in the suboxic bottom waters (> 10(9) cells l(-1)). Following convective mixing, the entire water column returned to a community typical of oxygenated waters, with Euryarcheota only averaging 5% of cells, and Chlorobiales and Thaumarcheota absent. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Quasi-Geostrophic Diagnosis of Mixed-Layer Dynamics Embedded in a Mesoscale Turbulent Field

    NASA Astrophysics Data System (ADS)

    Chavanne, C. P.; Klein, P.

    2016-02-01

    A new quasi-geostrophic model has been developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasi-geostrophic framework considered before since it takes into account the stratification within the surface mixed-layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant-stratification layers : a finite-thickness surface layer (or the mixed-layer) and an infinitely-deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal-wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive-equation numerical simulation. Correlation between simulated and diagnosed vertical velocities are significantly improved in the mixed-layer for the new model compared to the classical surface quasi-geostrophic model, reaching 0.9 near the surface.

  17. Seasonal changes in the chemistry and biology of a meromictic lake (Big Soda Lake, Nevada, U.S.A.)

    USGS Publications Warehouse

    Cloern, J.E.; Cole, B.E.; Oremland, R.S.

    1983-01-01

    Big Soda Lake is an alkaline, saline lake with a permanent chemocline at 34.5 m and a mixolimnion that undergoes seasonal changes in temperature structure. During the period of thermal stratification, from summer through fall, the epilimnion has low concentrations of dissolved inorganic nutrients (N, Si) and CH4, and low biomass of phytoplankton (chlorophyll a ca. 1 mgm -3). Dissolved oxygen disappears near the compensation depth for algal photosynthesis (ca. 20 m). Surface water is transparent so that light is present in the anoxic hypolimnion, and a dense plate of purple sulfur photosynthetic bacteria (Ectothiorhodospira vacuolata) is present just below 20 m (Bchl a ca. 200 mgm-3). Concentrations of N H4+, Si, and CH4 are higher in the hypolimnion than in the epilimnion. As the mixolimnion becomes isothermal in winter, oxygen is mixed down to 28 m. Nutrients (NH4+, Si) and CH4 are released from the hypolimnion and mix to the surface, and a diatom bloom develops in the upper 20 m (chlorophyll a > 40 mgm-3). The deeper mixing of oxygen and enhanced light attenuation by phytoplankton uncouple the anoxic zone and photic zone, and the plate of photosynthetic bacteria disappears (Bchl a ca.10mgm-3). Hence, seasonal changes in temperature distribution and mixing create conditions such that the primary producer community is alternately dominated by phytoplankton and photosynthetic bacteria: the phytoplankton may be nutrient-limited during periods of stratification and the photosynthetic bacteria are light-limited during periods of mixing. ?? 1983 Dr W. Junk Publishers.

  18. Seasonality and vertical structure of microbial communities in an ocean gyre.

    PubMed

    Treusch, Alexander H; Vergin, Kevin L; Finlay, Liam A; Donatz, Michael G; Burton, Robert M; Carlson, Craig A; Giovannoni, Stephen J

    2009-10-01

    Vertical, seasonal and geographical patterns in ocean microbial communities have been observed in many studies, but the resolution of community dynamics has been limited by the scope of data sets, which are seldom up to the task of illuminating the highly structured and rhythmic patterns of change found in ocean ecosystems. We studied vertical and temporal patterns in the microbial community composition in a set of 412 samples collected from the upper 300 m of the water column in the northwestern Sargasso Sea, on cruises between 1991 and 2004. The region sampled spans the extent of deep winter mixing and the transition between the euphotic and the upper mesopelagic zones, where most carbon fixation and reoxidation occurs. A bioinformatic pipeline was developed to de-noise, normalize and align terminal restriction fragment length polymorphism (T-RFLP) data from three restriction enzymes and link T-RFLP peaks to microbial clades. Non-metric multidimensional scaling statistics resolved three microbial communities with distinctive composition during seasonal stratification: a surface community in the region of lowest nutrients, a deep chlorophyll maximum community and an upper mesopelagic community. A fourth microbial community was associated with annual spring blooms of eukaryotic phytoplankton that occur in the northwestern Sargasso Sea as a consequence of winter convective mixing that entrains nutrients to the surface. Many bacterial clades bloomed in seasonal patterns that shifted with the progression of stratification. These richly detailed patterns of community change suggest that highly specialized adaptations and interactions govern the success of microbial populations in the oligotrophic ocean.

  19. One-dimensional simulation of stratification and dissolved oxygen in McCook Reservoir, Illinois

    USGS Publications Warehouse

    Robertson, Dale M.

    2000-01-01

    As part of the Chicagoland Underflow Plan/Tunnel and Reservoir Plan, the U.S. Army Corps of Engineers, Chicago District, plans to build McCook Reservoir.a flood-control reservoir to store combined stormwater and raw sewage (combined sewage). To prevent the combined sewage in the reservoir from becoming anoxic and producing hydrogen sulfide gas, a coarse-bubble aeration system will be designed and installed on the basis of results from CUP 0-D, a zero-dimensional model, and MAC3D, a three-dimensional model. Two inherent assumptions in the application of MAC3D are that density stratification in the simulated water body is minimal or not present and that surface heat transfers are unimportant and, therefore, may be neglected. To test these assumptions, the previously tested, one-dimensional Dynamic Lake Model (DLM) was used to simulate changes in temperature and dissolved oxygen in the reservoir after a 1-in-100-year event. Results from model simulations indicate that the assumptions made in MAC3D application are valid as long as the aeration system, with an air-flow rate of 1.2 cubic meters per second or more, is operated while the combined sewage is stored in the reservoir. Results also indicate that the high biochemical oxygen demand of the combined sewage will quickly consume the dissolved oxygen stored in the reservoir and the dissolved oxygen transferred through the surface of the reservoir; therefore, oxygen must be supplied by either the rising bubbles of the aeration system (a process not incorporated in DLM) or some other technique to prevent anoxia.

  20. Rapid fluctuations in flow and water-column properties in Asan Bay, Guam: implications for selective resilience of coral reefs in warming seas

    USGS Publications Warehouse

    Storlazzi, Curt D.; Field, Michael E.; Cheriton, Olivia M.; Presto, M.K.; Logan, J.B.

    2013-01-01

    Hydrodynamics and water-column properties were investigated off west-central Guam from July 2007 through January 2008. Rapid fluctuations, on time scales of 10s of min, in currents, temperature, salinity, and acoustic backscatter were observed to occur on sub-diurnal frequencies along more than 2 km of the fore reef but not at the reef crest. During periods characterized by higher sea-surface temperatures (SSTs), weaker wind forcing, smaller ocean surface waves, and greater thermal stratification, rapid decreases in temperature and concurrent rapid increases in salinity and acoustic backscatter coincided with onshore-directed near-bed currents and offshore-directed near-surface currents. During the study, these cool-water events, on average, lasted 2.3 h and decreased the water temperature 0.57 °C, increased the salinity 0.25 PSU, and were two orders of magnitude more prevalent during the summer season than the winter. During the summer season when the average satellite-derived SST anomaly was +0.63 °C, these cooling events, on average, lowered the temperature 1.14 °C along the fore reef but only 0.11 °C along the reef crest. The rapid shifts appear to be the result of internal tidal bores pumping cooler, more saline, higher-backscatter oceanic water from depths >50 m over cross-shore distances of 100 s of m into the warmer, less saline waters at depths of 20 m and shallower. Such internal bores appear to have the potential to buffer shallow coral reefs from predicted increases in SSTs by bringing cool, offshore water to shallow coral environments. These cooling internal bores may also provide additional benefits to offset stress such as supplying food to thermally stressed corals, reducing stress due to ultraviolet radiation and/or low salinity, and delivering coral larvae from deeper reefs not impacted by surface thermal stress. Thus, the presence of internal bores might be an important factor locally in the resilience of select coral reefs facing increased thermal stress.

  1. Rapid fluctuations in flow and water-column properties in Asan Bay, Guam: implications for selective resilience of coral reefs in warming seas

    NASA Astrophysics Data System (ADS)

    Storlazzi, C. D.; Field, M. E.; Cheriton, O. M.; Presto, M. K.; Logan, J. B.

    2013-12-01

    Hydrodynamics and water-column properties were investigated off west-central Guam from July 2007 through January 2008. Rapid fluctuations, on time scales of 10s of min, in currents, temperature, salinity, and acoustic backscatter were observed to occur on sub-diurnal frequencies along more than 2 km of the fore reef but not at the reef crest. During periods characterized by higher sea-surface temperatures (SSTs), weaker wind forcing, smaller ocean surface waves, and greater thermal stratification, rapid decreases in temperature and concurrent rapid increases in salinity and acoustic backscatter coincided with onshore-directed near-bed currents and offshore-directed near-surface currents. During the study, these cool-water events, on average, lasted 2.3 h and decreased the water temperature 0.57 °C, increased the salinity 0.25 PSU, and were two orders of magnitude more prevalent during the summer season than the winter. During the summer season when the average satellite-derived SST anomaly was +0.63 °C, these cooling events, on average, lowered the temperature 1.14 °C along the fore reef but only 0.11 °C along the reef crest. The rapid shifts appear to be the result of internal tidal bores pumping cooler, more saline, higher-backscatter oceanic water from depths >50 m over cross-shore distances of 100 s of m into the warmer, less saline waters at depths of 20 m and shallower. Such internal bores appear to have the potential to buffer shallow coral reefs from predicted increases in SSTs by bringing cool, offshore water to shallow coral environments. These cooling internal bores may also provide additional benefits to offset stress such as supplying food to thermally stressed corals, reducing stress due to ultraviolet radiation and/or low salinity, and delivering coral larvae from deeper reefs not impacted by surface thermal stress. Thus, the presence of internal bores might be an important factor locally in the resilience of select coral reefs facing increased thermal stress.

  2. ASSESSING UV IRRADIANCE IN CARIBBEAN REEF CORAL AND DNA DAMAGE IN THEIR CORAL AND ZOOXANTHELLAE

    EPA Science Inventory

    UV penetration into the water near coral reefs may be increasing as a consequence of global climate change. Calm waters associated with ENSO conditions can enhance stratification that increases the amount of photobleaching of chromophoric dissolved organic matter (CDOM) in surfa...

  3. A new map of global ecological land units—An ecophysiographic stratification approach

    USGS Publications Warehouse

    Sayre, Roger; Dangermond, Jack; Frye, Charlie; Vaughan, Randy; Aniello, Peter; Breyer, Sean P.; Cribbs, Douglas; Hopkins, Dabney; Nauman, Richard; Derrenbacher, William; Wright, Dawn J.; Brown, Clint; Convis, Charles; Smith, Jonathan H.; Benson, Laurence; Van Sistine, Darren; Warner, Harumi; Cress, Jill Janene; Danielson, Jeffrey J.; Hamann, Sharon L.; Cecere, Thomas; Reddy, Ashwan D.; Burton, Devon; Grosse, Andrea; True, Diane; Metzger, Marc; Hartmann, Jens; Moosdorf, Nils; Durr, Hans; Paganini, Marc; Defourny, Pierre; Arino, Olivier; Maynard, Simone; Anderson, Mark; Comer, Patrick

    2014-01-01

    In response to the need and an intergovernmental commission for a high resolution and data-derived global ecosystem map, land surface elements of global ecological pattern were characterized in an ecophysiographic stratification of the planet. The stratification produced 3,923 terrestrial ecological land units (ELUs) at a base resolution of 250 meters. The ELUs were derived from data on land surface features in a three step approach. The first step involved acquiring or developing four global raster datalayers representing the primary components of ecosystem structure: bioclimate, landform, lithology, and land cover. These datasets generally represent the most accurate, current, globally comprehensive, and finest spatial and thematic resolution data available for each of the four inputs. The second step involved a spatial combination of the four inputs into a single, new integrated raster dataset where every cell represents a combination of values from the bioclimate, landforms, lithology, and land cover datalayers. This foundational global raster datalayer, called ecological facets (EFs), contains 47,650 unique combinations of the four inputs. The third step involved an aggregation of the EFs into the 3,923 ELUs. This subdivision of the Earth’s surface into relatively fine, ecological land areas is designed to be useful for various types of ecosystem research and management applications, including assessments of climate change impacts to ecosystems, economic and non-economic valuation of ecosystem services, and conservation planning.

  4. Evaluate the urban effect on summer convective precipitation by coupling a urban canopy model with a Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Liu, S.; Xue, Y.; Oleson, K. W.

    2013-12-01

    One of the most significant urbanization in the world occurred in Great Beijing Area of China during the past several decades. The land use and land cover changes modifies the land surface physical characteristics, including the anthropogenic heat and thermo-dynamic conduction. All of those play important roles in the urban regional climate changes. We developed a single layer urban canopy module based on the Community Land Surface Model Urban Module (CLMU). We have made further improvements in the urban module: the energy balances on the five surface conditions are considered separately: building roof, sun side and shade side wall, pervious and impervious land surface. Over each surface, a method to calculate sky view factor (SVF) is developed based on the physically process while most urban models simply provide an empirical value; A new scheme for calculating the latent heat flux is applied on both wall and impervious land; anthropogenic heat is considered in terms of industrial production, domestic wastes, vehicle and air condition. All of these developments improve the accuracy of surface energy balance processing in urban area. The urban effect on summer convective precipitation under the unstable atmospheric condition in the Great Beijing Area was investigated by simulating a heavy rainfall event in July 21st 2012. In this storm, strong meso-scale convective complexes (MCC) brought precipitation of averagely 164 mm within 6 hours, which is the record of past 60 years in the region. Numerical simulating experiment was set up by coupling MCLMU with WRF. Several condition/blank control cases were also set up. The horizontal resolution in all simulations was 2 km. While all of the control results drastically underestimate the urban precipitation, the result of WRF-MCLMU is much closer to the observation though still underestimated. More sensitive experiments gave a preliminary conclusion of how the urban canopy physics processing affects the local precipitation: the existence of large area of impervious surfaces restrain the surface evaporation and latent heat flux in urban while the anthropogenic heat and enhanced sensible heat flux warm up the lower atmospheric layer and strengthen the vertical stratification instability; In this storm event, the water supply of the MCC was thought to be sufficient, thus the instability of the vertical stratification was the key factor for precipitation.

  5. Solar radiative heating of fiber-optic cables used to monitor temperatures in water

    NASA Astrophysics Data System (ADS)

    Neilson, Bethany T.; Hatch, Christine E.; Ban, Heng; Tyler, Scott W.

    2010-08-01

    In recent years, applications of distributed temperature sensing (DTS) have increased in number and diversity. Because fiber-optic cables used for DTS are typically sheathed in dark UV-resistant materials, the question arises as to how shortwave solar radiation penetrating a water column influences the accuracy of absolute DTS-derived temperatures in aquatic applications. To quantify these effects, we completed a modeling effort that accounts for the effects of radiation and convection on a submersed cable to predict when solar heating may be important. Results indicate that for cables installed at shallow depths in clear, low-velocity water bodies, measurable heating of the cable is likely during peak solar radiation. However, at higher velocities, increased turbidity and/or greater depths, the effects of solar heating are immeasurable. A field study illustrated the effects of solar radiation by installing two types of fiber-optic cable at multiple water depths (from 0.05 to 0.8 m) in the center and along the sidewall of a trapezoidal canal. Thermistors were installed at similar depths and shielded from solar radiation to record absolute water temperatures. During peak radiation, thermistor data showed small temperature differences (˜0.003°C-0.04°C) between depths suggesting minor thermal stratification in the canal center. DTS data from cables at these same depths show differences of 0.01°C-0.17°C. The DTS differences cannot be explained by stratification alone and are likely evidence of additional heating from solar radiation. Sidewall thermistor strings also recorded stratification. However, corresponding DTS data suggested that bed conduction overwhelmed the effects of solar radiation.

  6. Physical processes in a coupled bay-estuary coastal system: Whitsand Bay and Plymouth Sound

    NASA Astrophysics Data System (ADS)

    Uncles, R. J.; Stephens, J. A.; Harris, C.

    2015-09-01

    Whitsand Bay and Plymouth Sound are located in the southwest of England. The Bay and Sound are separated by the ∼2-3 km-wide Rame Peninsula and connected by ∼10-20 m-deep English Channel waters. Results are presented from measurements of waves and currents, drogue tracking, surveys of salinity, temperature and turbidity during stratified and unstratified conditions, and bed sediment surveys. 2D and 3D hydrodynamic models are used to explore the generation of tidally- and wind-driven residual currents, flow separation and the formation of the Rame eddy, and the coupling between the Bay and the Sound. Tidal currents flow around the Rame Peninsula from the Sound to the Bay between approximately 3 h before to 2 h after low water and form a transport path between them that conveys lower salinity, higher turbidity waters from the Sound to the Bay. These waters are then transported into the Bay as part of the Bay-mouth limb of the Rame eddy and subsequently conveyed to the near-shore, east-going limb and re-circulated back towards Rame Head. The Simpson-Hunter stratification parameter indicates that much of the Sound and Bay are likely to stratify thermally during summer months. Temperature stratification in both is pronounced during summer and is largely determined by coastal, deeper-water stratification offshore. Small tidal stresses in the Bay are unable to move bed sediment of the observed sizes. However, the Bay and Sound are subjected to large waves that are capable of driving a substantial bed-load sediment transport. Measurements show relatively low levels of turbidity, but these respond rapidly to, and have a strong correlation with, wave height.

  7. Glacial ocean circulation and stratification explained by reduced atmospheric temperature

    NASA Astrophysics Data System (ADS)

    Jansen, Malte F.

    2017-01-01

    Earth’s climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.

  8. Glacial ocean circulation and stratification explained by reduced atmospheric temperature

    PubMed Central

    Jansen, Malte F.

    2017-01-01

    Earth’s climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5–10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage. PMID:27994158

  9. Glacial ocean circulation and stratification explained by reduced atmospheric temperature.

    PubMed

    Jansen, Malte F

    2017-01-03

    Earth's climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.

  10. Three-Dimensional Stratification of Bacterial Biofilm Populations in a Moving Bed Biofilm Reactor for Nitritation-Anammox

    PubMed Central

    Almstrand, Robert; Persson, Frank; Daims, Holger; Ekenberg, Maria; Christensson, Magnus; Wilén, Britt-Marie; Sörensson, Fred; Hermansson, Malte

    2014-01-01

    Moving bed biofilm reactors (MBBRs) are increasingly used for nitrogen removal with nitritation-anaerobic ammonium oxidation (anammox) processes in wastewater treatment. Carriers provide protected surfaces where ammonia oxidizing bacteria (AOB) and anammox bacteria form complex biofilms. However, the knowledge about the organization of microbial communities in MBBR biofilms is sparse. We used new cryosectioning and imaging methods for fluorescence in situ hybridization (FISH) to study the structure of biofilms retrieved from carriers in a nitritation-anammox MBBR. The dimensions of the carrier compartments and the biofilm cryosections after FISH showed good correlation, indicating little disturbance of biofilm samples by the treatment. FISH showed that Nitrosomonas europaea/eutropha-related cells dominated the AOB and Candidatus Brocadia fulgida-related cells dominated the anammox guild. New carriers were initially colonized by AOB, followed by anammox bacteria proliferating in the deeper biofilm layers, probably in anaerobic microhabitats created by AOB activity. Mature biofilms showed a pronounced three-dimensional stratification where AOB dominated closer to the biofilm-water interface, whereas anammox were dominant deeper into the carrier space and towards the walls. Our results suggest that current mathematical models may be oversimplifying these three-dimensional systems and unless the multidimensionality of these systems is considered, models may result in suboptimal design of MBBR carriers. PMID:24481066

  11. Ramp Creek and Harrodsburg Limestones: A shoaling-upward sequence with storm-produced features in southern Indiana, U.S.A.. Carbonate petrology seminar, Indiana University

    NASA Astrophysics Data System (ADS)

    1987-05-01

    Most previously described examples of storm-produced stratification have been reported from siliciclastic rocks. However, such features should also be common in carbonate rocks. The Mississippian (Valmeyeran) Ramp Creek and Harrodsburg Limestones, deposited on the east margin of the Illinois Basin on top of the Borden Delta, contain storm-produced features. The dolomitic, geode-bearing Ramp Creek Limestone contains muddying-upward sequences, commonly with scoured bases overlain by grainstones, packstones, wackestones, and burrowed mudstones. These sequences are similar to hummocky sequences formed by storm waves below fair-weather wave base. The middle portion of the section including the upper Ramp Creek and lower Harrodsburg Limestones contains dolomitized mud lenses of uncertain origin. They may have formed by the baffling effect of bryozoans and/or unpreserved algae. The Harrodsburg is gradational with the Ramp Creek and consists predominantly of grainstones and packstones deposited in shallower water. Low-angle cross-stratification and truncation surfaces suggest a foreshore depositional environment for the Harrodsburg. Neither formation contains any indication of supratidal deposition as has been previously suggested. Open marine conditions during deposition of both formations are indicated by the fauna which includes crinoids, bryozoans, brachiopods, corals, ostracods, echinoids, trilobites, molluscs, fish (sharks), and trace fossils.

  12. Hydraulic effects in a radiative atmosphere with ionization

    NASA Astrophysics Data System (ADS)

    Bhat, P.; Brandenburg, A.

    2016-03-01

    Context. In his 1978 paper, Eugene Parker postulated the need for hydraulic downward motion to explain magnetic flux concentrations at the solar surface. A similar process has also recently been seen in simplified (e.g., isothermal) models of flux concentrations from the negative effective magnetic pressure instability (NEMPI). Aims: We study the effects of partial ionization near the radiative surface on the formation of these magnetic flux concentrations. Methods: We first obtain one-dimensional (1D) equilibrium solutions using either a Kramers-like opacity or the H- opacity. The resulting atmospheres are then used as initial conditions in two-dimensional (2D) models where flows are driven by an imposed gradient force that resembles a localized negative pressure in the form of a blob. To isolate the effects of partial ionization and radiation, we ignore turbulence and convection. Results: Because of partial ionization, an unstable stratification always forms near the surface. We show that the extrema in the specific entropy profiles correspond to the extrema in the degree of ionization. In the 2D models without partial ionization, strong flux concentrations form just above the height where the blob is placed. Interestingly, in models with partial ionization, such flux concentrations always form at the surface well above the blob. This is due to the corresponding negative gradient in specific entropy. Owing to the absence of turbulence, the downflows reach transonic speeds. Conclusions: We demonstrate that, together with density stratification, the imposed source of negative pressure drives the formation of flux concentrations. We find that the inclusion of partial ionization affects the entropy profile dramatically, causing strong flux concentrations to form closer to the surface. We speculate that turbulence effects are needed to limit the strength of flux concentrations and homogenize the specific entropy to a stratification that is close to marginal.

  13. Wintertime vertical variations in particulate matter (PM) and precursor concentrations in the San Joaquin Valley during the California Regional Coarse PM/Fine PM Air Quality Study.

    PubMed

    Brown, Steven G; Roberts, Paul T; McCarthy, Michael C; Lurmann, Frederick W; Hyslop, Nicole P

    2006-09-01

    Air quality monitoring was conducted at a rural site with a tower in the middle of California's San Joaquin Valley (SJV) and at elevated sites in the foothills and mountains surrounding the SJV for the California Regional PM10/ PM2.5 Air Quality Study. Measurements at the surface and n a tower at 90 m were collected in Angiola, CA, from December 2000 through February 2001 and included hourly black carbon (BC), particle counts from optical particle counters, nitric oxide, ozone, temperature, relative humidity, wind speed, and direction. Boundary site measurements were made primarily using 24-hr integrated particulate matter (PM) samples. These measurements were used to understand the vertical variations of PM and PM precursors, the effect of stratification in the winter on concentrations and chemistry aloft and at the surface, and the impact of aloft-versus-surface transport on PM concentrations. Vertical variations of concentrations differed among individual species. The stratification may be important to atmospheric chemistry processes, particularly nighttime nitrate formation aloft, because NO2 appeared to be oxidized by ozone in the stratified aloft layer. Additionally, increases in accumulation-mode particle concentrations in the aloft layer during a fine PM (PM2.5) episode corresponded with increases in aloft nitrate, demonstrating the likelihood of an aloft nighttime nitrate formation mechanism. Evidence of local transport at the surface and regional transport aloft was found; transport processes also varied among the species. The distribution of BC appeared to be regional, and BC was often uniformly mixed vertically. Overall, the combination of time-resolved tower and surface measurements provided important insight into PM stratification, formation, and transport.

  14. An Improved Heat Budget Estimation Including Bottom Effects for General Ocean Circulation Models

    NASA Technical Reports Server (NTRS)

    Carder, Kendall; Warrior, Hari; Otis, Daniel; Chen, R. F.

    2001-01-01

    This paper studies the effects of the underwater light field on heat-budget calculations of general ocean circulation models for shallow waters. The presence of a bottom significantly alters the estimated heat budget in shallow waters, which affects the corresponding thermal stratification and hence modifies the circulation. Based on the data collected during the COBOP field experiment near the Bahamas, we have used a one-dimensional turbulence closure model to show the influence of the bottom reflection and absorption on the sea surface temperature field. The water depth has an almost one-to-one correlation with the temperature rise. Effects of varying the bottom albedo by replacing the sea grass bed with a coral sand bottom, also has an appreciable effect on the heat budget of the shallow regions. We believe that the differences in the heat budget for the shallow areas will have an influence on the local circulation processes and especially on the evaporative and long-wave heat losses for these areas. The ultimate effects on humidity and cloudiness of the region are expected to be significant as well.

  15. Lake Number, a quantitative indicator of mixing used to estimate changes in dissolved oxygen

    USGS Publications Warehouse

    Robertson, Dale M.; Imberger, Jorg

    1994-01-01

    Lake Number, LN, values are shown to be quantitative indicators of deep mixing in lakes and reservoirs that can be used to estimate changes in deep water dissolved oxygen (DO) concentrations. LN is a dimensionless parameter defined as the ratio of the moments about the center of volume of the water body, of the stabilizing force of gravity associated with density stratification to the destabilizing forces supplied by wind, cooling, inflow, outflow, and other artificial mixing devices. To demonstrate the universality of this parameter, LN values are used to describe the extent of deep mixing and are compared with changes in DO concentrations in three reservoirs in Australia and four lakes in the U.S.A., which vary in productivity and mixing regimes. A simple model is developed which relates changes in LN values, i.e., the extent of mixing, to changes in near bottom DO concentrations. After calibrating the model for a specific system, it is possible to use real-time LN values, calculated using water temperature profiles and surface wind velocities, to estimate changes in DO concentrations (assuming unchanged trophic conditions).

  16. Observed variability in the upper layers at the Equator, 90°E in the Indian Ocean during 2001-2008, 1: zonal currents

    NASA Astrophysics Data System (ADS)

    Rao, R. R.; Horii, T.; Masumoto, Y.; Mizuno, K.

    2017-08-01

    The observed variability of zonal currents (ZC) at the Equator, 90°E shows a strong seasonal cycle in the near-surface 40-350 m water column with periodic east-west reversals most pronounced at semiannual frequency. Superposed on this, a strong intraseasonal variability of 30-90 day periodicity is also prominently seen in the near-surface layer (40-80 m) almost throughout the year with the only exception of February-March. An eastward flowing equatorial undercurrent (EUC) is present in the depth range of 80-160 m during March-April and October-November. The observed intraseasonal variability in the near-surface layer is primarily determined by the equatorial zonal westerly wind bursts (WWBs) through local frictional coupling between the zonal flow in the surface layer and surface zonal winds and shows large interannual variability. The eastward flowing EUC maintained by the ZPG set up by the east-west slope of the thermocline remotely controlled by the zonal wind (ZW) and zonally propagating wave fields also shows significant interannual variability. This observed variability on interannual time scales appears to be controlled by the corresponding variability in the alongshore winds off the Somalia coast during the preceding boreal winter, the ZW field along the equator, and the associated zonally propagating Kelvin and Rossby waves. The salinity induced vertical stratification observed in the near-surface layer through barrier layer thickness (BLT) effects also shows a significant influence on the ZC field on intraseasonal time scale. Interestingly, among all the 8 years (2001-2008), relatively weaker annual cycle is seen in both ZC in the 40-350 m water column and boreal spring sea surface temperature (SST) only during 2001 and 2008 along the equator caused through propagating wave dynamics.

  17. Trichodesmium blooms and warm-core ocean surface features in the Arabian Sea and the Bay of Bengal.

    PubMed

    Jyothibabu, R; Karnan, C; Jagadeesan, L; Arunpandi, N; Pandiarajan, R S; Muraleedharan, K R; Balachandran, K K

    2017-08-15

    Trichodesmium is a bloom-forming, diazotrophic, non-heterocystous cyanobacteria widely distributed in the warmer oceans, and their bloom is considered a 'biological indication' of stratification and nitrogen limitation in the ocean surface layer. In the first part of this paper, based on the retrospective analyses of the ocean surface mesoscale features associated with 59 Trichodesmium bloom incidences recorded in the past, 32 from the Arabian Sea and the Bay of Bengal, and 27 from the rest of the world, we have showed that warm-core features have an inducing effect on bloom formation. In the second part, we have considered the environmental preferences of Trichodesmium bloom based on laboratory and field studies across the globe, and proposed a view about how warm-core features could provide an inducing pre-requisite condition for the bloom formation in the Arabian Sea and the Bay of Bengal. Proposed that the subsurface waters of warm-core features maintain more likely chances for the conducive nutrient and light conditions required for the triggering of the blooms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Ocean stratification reduces melt rates at the grounding zone of the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Begeman, C. B.; Tulaczyk, S. M.; Marsh, O.; Mikucki, J.; Stanton, T. P.; Hodson, T. O.; Siegfried, M. R.; Powell, R. D.; Christianson, K. A.; King, M. A.

    2017-12-01

    Ocean-driven melting of ice shelves is often invoked as the primary mechanism for triggering ice loss from Antarctica. However, due to the difficulty in accessing the sub-ice-shelf ocean cavity, the relationship between ice-shelf melt rates and ocean conditions is poorly understood, particularly near the transition from grounded to floating ice, known as the grounding zone. Here we present the first borehole oceanographic observations from the grounding zone of Antarctica's largest ice shelf. Contrary to predictions that tidal currents near grounding zones should mix the water column, driving high ice-shelf melt rates, we find a stratified sub-ice-shelf water column. The vertical salinity gradient dominates stratification over a weakly unstable vertical temperature gradient; thus, stratification takes the form of a double-diffusive staircase. These conditions limit vertical heat fluxes and lead to low melt rates in the ice-shelf grounding zone. While modern grounding zone melt rates may presently be overestimated in models that assume efficient tidal mixing, the high sensitivity of double-diffusive staircases to ocean freshening and warming suggests future melt rates may be underestimated, biasing projections of global sea-level rise.

  19. Drivers of deep-water renewal events observed over 13 years in the South Basin of Lake Baikal

    NASA Astrophysics Data System (ADS)

    Tsimitri, Chrysanthi; Rockel, Burkhardt; Wüest, Alfred; Budnev, Nikolay M.; Sturm, Michael; Schmid, Martin

    2015-03-01

    Lake Baikal, with a depth of 1637 m, is characterized by deep-water intrusions that bridge the near-surface layer to the hypolimnion. These episodic events transfer heat and oxygen over large vertical scales and maintain the permanent temperature stratified deep-water status of the lake. Here we evaluate a series of intrusion events that reached the bottom of the lake in terms of the stratification and the wind conditions under which they occurred and provide a new insight into the triggering mechanisms. We make use of long-term temperature and current meter data (2000-2013) recorded in the South Basin of the lake combined with wind data produced with a regional downscaling of the global NCEP-RA1 reanalysis product. A total of 13 events were observed during which near-surface cold water reached the bottom of the South Basin at 1350 m depth. We found that the triggering mechanism of the events is related to the time of the year that they take place. We categorized the events in three groups: (1) winter events, observed shortly before the complete ice cover of the lake that are triggered by Ekman coastal downwelling, (2) under-ice events, and (3) spring events, that show no correlation to the wind conditions and are possibly connected to the increased spring outflow of the Selenga River. This article was corrected on 18 MAR 2015. See the end of the full text for details.

  20. Stratification and salt-wedge in the Seomjin river estuary under the idealized tidal influence

    NASA Astrophysics Data System (ADS)

    Hwang, Jin Hwan; Jang, Dongmin; Kim, Yong Hoon

    2017-12-01

    Advection, straining, and vertical mixing play primary roles in the process of estuarine stratification. Estuaries can be classified as salt-wedge, partially-mixed or well-mixed depending on the vertical density structure determined by the balancing of advection, mixing and straining. In particular, straining plays a major role in the stratification of the estuarine water body along the estuarine channel. Also, the behavior of a salt wedge with a halocline shape in a stratified channel can be controlled by the competition between straining and mixing induced by buoyancy from the riverine source and tidal forcing. The present study uses Finite Volume Coastal Ocean Model (FVCOM) to show that straining and vertical mixing play major roles in controlling along-channel flow and stratification structures in the Seomjin river estuary (SRE) under idealized conditions. The Potential Energy Anomaly (PEA) dynamic equation quantifies the governing processes thereby enabling the determination of the stratification type. By comparing terms in the equation, we examined how the relative strengths of straining and mixing alter the stratification types in the SRE due to changes in river discharge and the depth resulting from dredging activities. SRE under idealized tidal forcing tends to be partially-mixed based on an analysis of the balance between terms and the vertical structure of salinity, and the morphological and hydrological change in SRE results in the shift of stratification type. While the depth affects the mixing, the freshwater discharge mainly controls the straining, and the balance between mixing and straining determines the final state of the stratification in an estuarine channel. As a result, the development and location of a salt wedge along the channel in a partially mixed and highly stratified condition is also determined by the ratio of straining to mixing. Finally, our findings confirm that the contributions of mixing and straining can be assessed by using the conventional non-dimensional parameters with respect to salt-wedge behavior.

  1. Lateral-delivered organic matter boosts hadal bacterial abundance in the Mariana Trench: A hypothesis

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Liu, H.; Lu, F.; Zou, L.; Tian, J.

    2017-12-01

    Hadal trenches are part of the least investigated biosphere on Earth due to the great challenge of sampling. Limited studies on microbiology by far have suggested that the hadalsphere hosts a heterotrophic microbial community that is likely fed by organic matter from surface-sinking biomass or re-suspended and laterally transported sediments. The uniqueness of trench environment and its potential role in global carbon sequestration entitle a detailed study on microbial-driven carbon cycle of the trench system. In this study, we conducted a vertical sampling of the microbial community and measured the environmental factors from the epipelagic zone down to the hadal zone at the Mariana Trench. 16S rRNA gene composition showed high stratification at the first 1000 meters below surface (mbs) but a nearly uniformed microbial community composition was observed at the abyssopelagic and the hadalpelagic water columns. The deep-sea bacteria were generally chemoheterotrophs and the majority of them were similar to those present at the ocean surface, suggesting influence of epipelagic primary production on deep sea bacterial communication at the trench location. Several deep-sea-enriched but surface-depleted bacteria could be characterized by potential degraders of polysaccharides and n-alkanes. Therefore, recalcitrant hydrocarbons or carbohydrates are likely important carbon sources supporting the deep-sea biosphere. In spite of consistent community composition, a remarkable increase in biomass of small-sized microbial aggregates was detected at 8727 mbs. Enhanced CDOM proportions in the trench imply intensified microbial activity in hadal water compared to the above water column, which agree with the notion of possible extra carbon input from lateral transportation of slope material. These observations extend our understanding in carbon cycle driven by metabolically diverse microorganisms at the trench and may shed light on the complexity of hadal biogeochemistry.

  2. Enhanced deep ocean ventilation and oxygenation with global warming

    NASA Astrophysics Data System (ADS)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  3. Vegetation monitoring and classification using NOAA/AVHRR satellite data

    NASA Technical Reports Server (NTRS)

    Greegor, D. H., Jr.; Norwine, J. R.

    1983-01-01

    A vegetation gradient model, based on a new surface hydrologic index and NOAA/AVHRR meteorological satellite data, has been analyzed along a 1300 km east-west transect across the state of Texas. The model was developed to test the potential usefulness of such low-resolution data for vegetation stratification and monitoring. Normalized Difference values (ratio of AVHRR bands 1 and 2, considered to be an index of greenness) were determined and evaluated against climatological and vegetation characteristics at 50 sample locations (regular intervals of 0.25 deg longitude) along the transect on five days in 1980. Statistical treatment of the data indicate that a multivariate model incorporating satellite-measured spectral greenness values and a surface hydrologic factor offer promise as a new technique for regional-scale vegetation stratification and monitoring.

  4. Salinity stratification of the Mediterranean Sea during the Messinian crisis: A first model analysis

    NASA Astrophysics Data System (ADS)

    Simon, Dirk; Meijer, Paul Th.

    2017-12-01

    In the late Miocene, a thick and complex sequence of evaporites was deposited in the Mediterranean Sea during an interruption of normal marine sedimentation known as the Messinian Salinity Crisis. Because the related deposits are mostly hidden from scrutiny in the deep basin, correlation between onshore and offshore sediments is difficult, hampering the development of a comprehensive stratigraphic model. Since the various facies correspond to different salinities of the basin waters, it would help to have physics-based understanding of the spatial distribution of salt concentration. Here, we focus on modelling salinity as a function of depth, i.e., on the stratification of the water column. A box model is set up that includes a simple representation of a haline overturning circulation and of mixing. It is forced by Atlantic exchange and evaporative loss and is used to systematically explore the degree of stratification that results under a wide range of combinations of parameter values. The model demonstrates counterintuitive behaviour close to the saturation of halite. For parameter values that may well be realistic for the Messinian, we show that a significantly stratified Mediterranean water column can be established. In this case, Atlantic connectivity is limited but may be closer to modern magnitudes than previously thought. In addition, a slowing of Mediterranean overturning and a larger deep-water formation region (both in comparison to the present day) are required. Under these conditions, we would expect a longer duration of halite deposition than currently considered in the MSC stratigraphic consensus model.

  5. The impact of road salt runoff on methanogens and other lacustrine prokaryotes

    NASA Astrophysics Data System (ADS)

    Sprague, E.; Dupuis, D.; Koretsky, C.; Docherty, K. M.

    2017-12-01

    Road salt deicers are widely used in regions that experience icy winters. The resulting saline runoff can negatively impact freshwater lake ecosystems. Saline runoff can cause density stratification, resulting in persistently anoxic hypolimnia. This may result in a shift in the structure of the hypolimnetic prokaryotic community, with potential increases in anaerobic and halotolerant taxa. Specifically, anoxia creates a habitat suitable for the proliferation of obligately anaerobic Archaeal methanogens. As a result, more persistent and expanded anoxic zones due to road salt runoff have the potential to increase hypolimnetic methane concentrations. If a portion of this methane is released to the atmosphere, it could be a currently uncharacterized contributor to atmospheric greenhouse gas emissions. This study examines two urban, eutrophic lakes with significant road salt influx and one rural, eutrophic lake with little road salt influx. All three lakes are located in southwest Michigan. Samples were taken from the water column at every meter at the deepest part of each lake, with a sample from the sediment-water interface, in May, August, and November 2016 and February 2017. The V4 and V5 hypervariable regions of the 16S rRNA gene in Bacteria and Archaea were amplified and sequenced using an Illumina MiSeq approach. Abundance of the mcrA gene, a marker for Archaeal methyl coenzyme A reductase, was quantified using qPCR. Water column methane levels, sediment methane production, water surface methane flux and a suite of supporting geochemical parameters were measured to determine changes in redox stratification in each lake and across seasons. Results indicate significant changes in the 16S rRNA-based community associated with depth, season, salinity and lake. Cyanobacteria, Actinobacteria, and Proteobacteria were among the phyla with the highest overall relative abundance. Sediment samples had more copies of the mcrA gene than the water column samples. In most seasons, hypolimnia in the urban lakes had 550 to 900 µM more methane and epilimnia had small but consistently higher concentrations of methane than the rural lake. These results indicate that road salt contamination can directly and indirectly affect prokaryotic communities and has the potential to increase methane release from lakes.

  6. The Effects of Glacial and Oceanic Advection on Spatial Patterns of Freshwater Contents and Temperatures of Small Fjords and Major Basins in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Gay, S. M., III

    2016-02-01

    Using spatial principal component (PC) analysis, the variation in freshwater contents and temperatures in the upper 100m are quantified for small fjords and primary basins within Prince William Sound, Alaska. Two EOF modes explain over 90% of the variance in the freshwater content anomalies (FWCA) giving the total magnitude and vertical structure of the FWCAs respectively. Large, positive PC amplitudes (PCAs) of modes 1 and 2 indicate stratification from surface freshening, shown also by negative surface salinity anomalies, whereas positive FWCA PCAs in conjunction with negative mode 2 amplitudes infer higher subsurface freshening due to either vertical mixing or advection. In contrast, basins with negative mode 1 amplitudes are typically salty to slightly brackish, but the mode 2 PCAs determine if the FWC is concentrated near the surface or mixed deeper in the water column. The vertical structure of the temperature anomalies (TA) is more complicated, and at least three EOF modes are required to explain over 90% of the variance. The reasons for this include differences in solar heating (i.e. local climates) modulated by cold alpine runoff and advection of cold, brackish surface and subsurface glacial water. Fjords and major basins influenced by the latter exhibit large, positive mode 1 amplitudes of FWCA and negative mode 1 and 2 PCAs of TA and FWCA respectively. In certain fjords, however, advection of glacial water into the outer basins enhances the total FWC, whereas other fjords exhibit atypically low FWC due to unusual topographic features of the watersheds and inner basins. This combination of factors leads to generally poor correlations between average FWC and watershed to fjord surface area ratios or hydrology. With exception of a few sites, gradients in FWC between the small fjords and major basins are relatively weak. Thus the main driver of baroclinic flow in northern and western PWS is cold, brackish surface and subsurface water propagating from large tidewater glacial fjords. The glacial water has a marked affect on the dynamic topography, which shows southerly baroclinic-geostrophic flows within the western sound. At Montague Strait and Hinchinbrook Entrance inflows may occur from either fresh or salty conditions; low water density of the latter being shown by negative (positive) FWCA (TA) PCAs respectively.

  7. Late summer zoogeography of the northern Bering and Chukchi seas

    NASA Astrophysics Data System (ADS)

    Sigler, Michael F.; Mueter, Franz J.; Bluhm, Bodil A.; Busby, Morgan S.; Cokelet, Edward D.; Danielson, Seth L.; Robertis, Alex De; Eisner, Lisa B.; Farley, Edward V.; Iken, Katrin; Kuletz, Kathy J.; Lauth, Robert R.; Logerwell, Elizabeth A.; Pinchuk, Alexei I.

    2017-01-01

    Ocean currents, water masses, and seasonal sea ice formation contribute to determining relationships among the biota of the Bering and Chukchi seas. The Bering Sea communicates with the Chukchi Sea via northward advection of water, nutrients, organic matter, and plankton through Bering Strait. We used data from concurrent surveys of zooplankton, pelagic fishes and jellyfish, epibenthic fishes and invertebrates, and seabirds to identify faunal distribution patterns and environmental factors that are related to these faunal distributions within the US portions of the Chukchi Sea shelf and Bering Sea shelf north of Nunivak Island. Regional differences in late summer (August-September) distributions of biota largely reflected the underlying hydrography. Depth, temperature, salinity, stratification, and chlorophyll a, but less so sediment-related or nutrient-related factors, were related to the distributions of the assemblages (zooplankton: depth, salinity, stratification; pelagic fishes and jellyfish: depth, stratification, chlorophyll a; epibenthic fishes and invertebrates: depth, temperature, salinity; seabirds: temperature, salinity, stratification). These six environmental factors that most influenced distributions of zooplankton, pelagic fishes/jellyfish, epibenthic fishes and invertebrate, and seabird assemblages likely can be simplified to three factors reflecting bottom depth, water mass, and their stratification and productivity (which are tightly linked in the study region). The assemblages were principally structured from nearshore to offshore and from south to north. The nearshore to offshore contrast usually was stronger in the south, where the enormous discharge of the Yukon River is more apparent and extends farther offshore, influencing zooplankton, pelagic fish/jellyfish, and seabird assemblages. Some assemblages overlapped spatially (e.g., seabird and zooplankton), indicating shared influential environmental factors or trophic linkages among assemblages. The gradients in assemblage composition were gradual for epibenthic taxa, abrupt for zooplankton taxa, and intermediate for pelagic fish/jellyfish and seabird taxa, implying that zooplankton assemblage structure is most strongly tied to water mass, epibenthic least, with the other two taxa intermediates. Three communities (i.e., cross-assemblage groupings) emerged based on maps of ordination axes and core use areas by taxa; one associated with Alaska Coastal Water (warmer, fresher, nutrient depauperate), second associated with Chirikov Basin and the southern Chukchi Sea (colder, saltier, nutrient rich), and third associated with the northern Chukchi shelf (colder and saltier but not as nutrient rich). Gradients in species composition occurred both within and between these communities. The Chirikov Basin/southern Chukchi Sea community was characterized by distinct zooplankton and seabird taxa, but was not strongly associated with distinct pelagic or epibenthic fish and invertebrate taxa. Although comprehensive data were only available for a single year and annual variation may affect the generality of our results, our comprehensive ecosystem survey approach yielded new insights into the ecological relationships (specifically, gradients in assemblage composition and identification of communities) of this Arctic region.

  8. Environmental and Cultural Impact. Proposed Tennessee Colony Reservoir, Trinity River, Texas. Volume II. Appendices A, B and C.

    DTIC Science & Technology

    1972-01-01

    in a considerable increase in the water salinity . Density stratification of the water is possible, the denser saline water forming the lower water...layer in the lake basin which causes anaerobic, toxic conditions. Salinity causes also an increase in flocculation and sedi- mentation of clay minerals...increased salin - ity of the lake water. Excessive water seepage in the fault zone intersecting the northern most part of the reservoir will probably

  9. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean.

    PubMed

    Heimbürger, Lars-Eric; Sonke, Jeroen E; Cossa, Daniel; Point, David; Lagane, Christelle; Laffont, Laure; Galfond, Benjamin T; Nicolaus, Marcel; Rabe, Benjamin; van der Loeff, Michiel Rutgers

    2015-05-20

    Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79 °N). Here we present the first central Arctic Ocean (79-90 °N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81-85 °N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150-200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production.

  10. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean

    PubMed Central

    Heimbürger, Lars-Eric; Sonke, Jeroen E.; Cossa, Daniel; Point, David; Lagane, Christelle; Laffont, Laure; Galfond, Benjamin T.; Nicolaus, Marcel; Rabe, Benjamin; van der Loeff, Michiel Rutgers

    2015-01-01

    Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79°N). Here we present the first central Arctic Ocean (79–90°N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81–85°N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150–200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production. PMID:25993348

  11. Late Pliocene cooling, sea ice and the establishment of a Ross Sea polynya: Geochemical and diatom assemblage constraints from McMurdo Sound, Antarctica

    NASA Astrophysics Data System (ADS)

    Riesselman, C.; Dunbar, R. B.; Sjunneskog, C. M.; Mucciarone, D. A.; Winter, D.; Olney, M.; Tuzzi, E.; McKay, R. M.; Scherer, R. P.

    2010-12-01

    The marine sediment cores collected by the Antarctic Geological Drilling (ANDRILL) Program from sites beneath the McMurdo Ice Shelf (MIS; Core AND-1B) and in Southern McMurdo Sound (SMS; Core AND-2A) represent the most complete record to date of Neogene climate evolution proximal to the Antarctic continent. Diatom-rich lithologic units alternate with glacial sediments throughout the Pliocene and early Pleistocene of AND-1B; each diatom-rich unit within this oscillating record has distinctive geochemical and diatom assemblage characteristics and most are interpreted to preserve single interglacial intervals of 40-thousand-year glacial/interglacial cycles. Though the dramatic Pliocene glacial/interglacial oscillations recorded at the MIS site are absent in the shallower SMS record, AND-2A preserves a single diverse late Pliocene diatom assemblage, providing an additional constraint on Ross Sea Pliocene climate. Here, we focus on the reconstruction of sea surface conditions from four discrete AND-1B interglacial units deposited ~3.2, 3.0, 2.9, and 2.6 Ma. Diatom assemblages record the onset of Plio-Pleistocene cooling in the Ross Sea at 3.2 Ma, intensifying at 3.0 Ma, and suggest spring blooms in a surface ocean seasonally stratified by sea ice melt. Following the initial cooling, an increase in warm-water species at 2.9 and 2.6 Ma records a temporary late Pliocene reversal in the cooling trend. The Pliocene diatom-bearing interval in AND-2A is equivalent to the 2.6 Ma diatomite, providing further evidence for late Pliocene reversion to warmer open ocean conditions. Cooling resumes in the early Pleistocene, but sea-ice related diatoms, which dominate late Pleistocene and recent Antarctic sediments, are present only as minor components throughout the ANDRILL records. Sedimentary δ13C and δ15N in the AND-1B diatomite units provide additional insights into Pliocene evolution of sea ice, stratification, and primary productivity. For AND-1B diatomite units younger than 3.2 Ma, δ13C and δ15N vary in phase, the amplitude of δ13C fluctuations increases progressively up section, and peak interglacial δ15N trends toward more positive values, reflecting increasing variability in surface-water stratification within individual glacial minima. During the peaks of Late Pliocene glacial minima, negative δ13C values likely indicate enhanced wind mixing and summer polynya formation over AND-1B, while more positive values during the start and end of glacial minima indicate increased stratification due to sea ice melt or reduced wind stress. In sequence, these units offer a unique perspective on the changing character of the interglacial environment in the Ross Embayment spanning the transition from the mid-Pliocene climatic optimum into modern cold-polar conditions.

  12. Turbulent properties of oceanic near-surface stable boundary layers subject to wind, fresh water, and thermal forcing.

    NASA Astrophysics Data System (ADS)

    St. Laurent, Louis; Clayson, Carol Anne

    2015-04-01

    The near-surface oceanic boundary layer is generally regarded as convectively unstable due to the effects of wind, evaporation, and cooling. However, stable conditions also occur often, when rain or low-winds and diurnal warming provide buoyancy to a thin surface layer. These conditions are prevalent in the tropical and subtropical latitude bands, and are underrepresented in model simulations. Here, we evaluate cases of oceanic stable boundary layers and their turbulent processes using a combination of measurements and process modeling. We focus on the temperature, salinity and density changes with depth from the surface to the upper thermocline, subject to the influence of turbulent processes causing mixing. The stabilizing effects of freshwater from rain as contrasted to conditions of high solar radiation and low winds will be shown, with observations providing surprising new insights into upper ocean mixing in these regimes. Previous observations of freshwater lenses have demonstrated a maximum of dissipation near the bottom of the stable layer; our observations provide a first demonstration of a similar maximum near the bottom of the solar heating-induced stable layer and a fresh-water induced barrier layer. Examples are drawn from recent studies in the tropical Atlantic and Indian oceans, where ocean gliders equipped with microstructure sensors were used to measure high resolution hydrographic properties and turbulence levels. The limitations of current mixing models will be demonstrated. Our findings suggest that parameterizations of near-surface mixing rates during stable stratification and low-wind conditions require considerable revision, in the direction of larger diffusivities.

  13. Seaglider surveys at Ocean Station Papa: Diagnosis of upper-ocean heat and salt balances using least squares with inequality constraints

    NASA Astrophysics Data System (ADS)

    Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.

    2017-06-01

    Heat and salt balances in the upper 200 m are examined using data from Seaglider spatial surveys June 2008 to January 2010 surrounding a NOAA surface mooring at Ocean Station Papa (OSP; 50°N, 145°W). A least-squares approach is applied to repeat Seaglider survey and moored measurements to solve for unknown or uncertain monthly three-dimensional circulation and vertical diffusivity. Within the surface boundary layer, the estimated heat and salt balances are dominated throughout the surveys by turbulent flux, vertical advection, and for heat, radiative absorption. When vertically integrated balances are considered, an estimated upwelling of cool water balances the net surface input of heat, while the corresponding large import of salt across the halocline due to upwelling and diffusion is balanced by surface moisture input and horizontal import of fresh water. Measurement of horizontal gradients allows the estimation of unresolved vertical terms over more than one annual cycle; diffusivity in the upper-ocean transition layer decreases rapidly to the depth of the maximum near-surface stratification in all months, with weak seasonal modulation in the rate of decrease and profile amplitude. Vertical velocity is estimated to be on average upward but with important monthly variations. Results support and expand existing evidence concerning the importance of horizontal advection in the balances of heat and salt in the Gulf of Alaska, highlight time and depth variability in difficult-to-measure vertical transports in the upper ocean, and suggest avenues of further study in future observational work at OSP.

  14. Glacial - interglacial changes of northwest Pacific stratification, inferred from deep and shallow living radiolarians

    NASA Astrophysics Data System (ADS)

    Hays, J. D.

    2009-12-01

    Shallow (0-200m) and deep (200 to1000m) living radiolarian flux is used to measure past production from within discrete intervals of the ocean’s water column. Deep-living faunas can also be used as proxies for export production, for they remineralize it and respond geographically and temporally to varying export. Few members of the mesopelagic community leave a fossil record, but of those that do, radiolarians are the most abundant and diverse group. In northwest Pacific late Pleistocene (glacial) sediments, deep-living radiolarian flux dominates over shallow-living flux, but the reverse is true in Holocene sediments, with the dramatic dominance change occurring across the Pleistocene-Holocene boundary. Changing primary productivity can’t cause these flux changes, for shallow-living faunas have access to the same carbon flux as do deep-living faunas, but rather they signal a major reorganization of the radiolarian fauna within the water column and suggest greater glacial than Holocene carbon export. In the Holocene world-ocean, the only region where deep-living radiolarian flux dominates over shallow-living flux is in the Sea of Okhotsk, suggesting environmental similarities between this sea and the northwest Pacific. In winter, cold Siberian air chills the upper hundred meters of the Sea of Okhotsk, promoting the spread of vast sea ice fields. High productivity in a thin (10-15m) summer mixed layer depletes nutrients Between 15 and about 150m exists a layer of cold (-1 to 0 degrees C.) intermediate water, within which radiolarian concentrations are low, but these concentrations increase between 200 and 500m in warmer intermediate water (Nimmergut and Abelmann, 2002). This radiolarian stratification results in greater deep- than shallow-living radiolarian flux to the sea floor. A similar water structure in the glacial northwest Pacific is the probable cause of similar flux patterns between the glacial northwest Pacific and Holocene Sea of Okhotsk. If so then cold glacial northwest Pacific intermediate water promoted the southward spread of sea ice. This inference is supported by the near coincidence of the southern limit of deep-living species dominated glacial sediments and extensive ice rafting. It also explains nutrient depleted glacial northwest Pacific surface waters inferred from isotopic data.

  15. Vertical and temporal dynamics of cyanobacteria in the Carpina potable water reservoir in northeastern Brazil.

    PubMed

    Moura, A N; Dantas, E W; Oliveira, H S B; Bittencourt-Oliveira, M C

    2011-05-01

    This study analysed vertical and temporal variations of cyanobacteria in a potable water supply in northeastern Brazil. Samples were collected from four reservoir depths in the four months; September and December 2007; and March and June 2008. The water samples for the determination of nutrients and cyanobacteria were collected using a horizontal van Dorn bottle. The samples were preserved in 4% formaldehyde for taxonomic analysis using an optical microscope, and water aliquots were preserved in acetic Lugol solution for determination of density using an inverted microscope. High water temperatures, alkaline pH, low transparency, high phosphorous content and limited nitrogen content were found throughout the study. Dissolved oxygen stratification occurred throughout the study period whereas temperature stratification occurred in all sampling months, with the exception of June. No significant vertical differences were recorded for turbidity or total and dissolved forms of nutrients. There were high levels of biomass arising from Planktothrix agardhii, Cylindrospermopsis raciborskii, Geitlerinema amphibium and Pseudanabaena catenata. The study demonstrates that, in a tropical eutrophic environment with high temperatures throughout the water column, perennial multi-species cyanobacterial blooms, formed by species capable of regulating their position in the water column (those that have gas vesicles for buoyancy), are dominant in the photic and aphotic strata.

  16. VERTICAL STRATIFICATION OF SOIL WATER STORAGE AND RELEASE DYNAMICS IN PACIFIC NORTHWEST CONIFEROUS FORESTS

    EPA Science Inventory

    abstract for journal article We characterized vertical variation in the seasonal depletion of stored soil moisture in old-growth ponderosa pine (OG-PP, xeric), and young and old-growth Douglas-fir (Y-DF, OG-DF, mesic) forests to evaluate changes in water availability for root up...

  17. Double hydrophilic block copolymer controlled growth and self-assembly of CaCO3 multilayered structures at the air/water interface.

    PubMed

    Gao, Yun-Xiang; Yu, Shu-Hong; Guo, Xiao-Hui

    2006-07-04

    Double hydrophilic block copolymers PEG-b-PEI-linear with different PEI block lengths have been examined for CaCO3 mineralization at the air/water interface. The results demonstrated that either PEI length or the solution acidity had a significant influence on the morphogenesis of vaterite crystals at the air/water interface. A possible mechanism for the stratification of CaCO3 vaterite crystals has been proposed. Increasing either PEI length or the initial pH value of the solution will decrease the density of the PEG block anchored on the binding interface and result in exposing more space as binding interface to solution and favoring the subnucleation and stratification growth on the polymer-CaCO3 interface. In contrast, higher density of PEG blocks will stabilize the growing crystals more efficiently and inhibit subnucleation on the polymer-CaCO3 interface, and thus prevent the formation of stratified structures. This study provides an example that it is possible to access morphogenesis of calcium carbonate structures by a combination of a block copolymer with the air/water interface.

  18. Sea Ice and Hydrographic Variability in the Northwest North Atlantic

    NASA Astrophysics Data System (ADS)

    Fenty, I. G.; Heimbach, P.; Wunsch, C. I.

    2010-12-01

    Sea ice anomalies in the Northwest North Atlantic's Labrador Sea are of climatic interest because of known and hypothesized feedbacks with hydrographic anomalies, deep convection/mode water formation, and Northern Hemisphere atmospheric patterns. As greenhouse gas concentrations increase, hydrographic anomalies formed in the Arctic Ocean associated with warming will propagate into the Labrador Sea via the Fram Strait/West Greenland Current and the Canadian Archipelago/Baffin Island Current. Therefore, understanding the dynamical response of sea ice in the basin to hydrographic anomalies is essential for the prediction and interpretation of future high-latitude climate change. Historically, efforts to quantify the link between the observed sea ice and hydrographic variability in the region has been limited due to in situ observation paucity and technical challenges associated with synthesizing ocean and sea ice observations with numerical models. To elaborate the relationship between sea ice and ocean variability, we create three one-year (1992-1993, 1996-1997, 2003-2004) three-dimensional time-varying reconstructions of the ocean and sea ice state in Labrador Sea and Baffin Bay. The reconstructions are syntheses of a regional coupled 32 km ocean-sea ice model with a suite of contemporary in situ and satellite hydrographic and ice data using the adjoint method. The model and data are made consistent, in a least-squares sense, by iteratively adjusting several model control variables (e.g., ocean initial and lateral boundary conditions and the atmospheric state) to minimize an uncertainty-weighted model-data misfit cost function. The reconstructions reveal that the ice pack attains a state of quasi-equilibrium in mid-March (the annual sea ice maximum) in which the total ice-covered area reaches a steady state -ice production and dynamical divergence along the coasts balances dynamical convergence and melt along the pack’s seaward edge. Sea ice advected to the marginal ice zone is mainly ablated via large sustained turbulent ocean enthalpy fluxes. The sensible heat required for these sustained fluxes is drawn from a reservoir of warm subsurface waters of subtropical origin entrained into the mixed layer via convective mixing. Analysis of ocean surface buoyancy fluxes during the period preceding quasi-equilibrium reveals that low-salinity upper ocean anomalies are required for ice to advance seaward of the Arctic Water/Irminger Water thermohaline front in the northern Labrador Sea. Anomalous low-salinity waters inhibit mixed layer deepening, shielding the advancing ice pack from the subsurface heat reservoir, and are conducive to a positive surface stratification enhancement feedback from ice meltwater release. Interestingly, the climatological location of the front coincides with the minimum observed wintertime ice extent; positive ice extent anomalies may require hydrographic preconditioning. If true, the export of low-salinity anomalies from melting Arctic ice associated with future warming may be predicted to lead positive ice extent anomalies in Labrador Sea via the positive surface stratification enhancement mechanism feedback outlined above.

  19. Mean hydrography on the continental shelf from 26 repeat glider deployments along Southeastern Australia

    NASA Astrophysics Data System (ADS)

    Schaeffer, Amandine; Roughan, Moninya; Austin, Tim; Everett, Jason D.; Griffin, David; Hollings, Ben; King, Edward; Mantovanelli, Alessandra; Milburn, Stuart; Pasquer, Benedicte; Pattiaratchi, Charitha; Robertson, Robin; Stanley, Dennis; Suthers, Iain; White, Dana

    2016-08-01

    Since 2008, 26 glider missions have been undertaken along the continental shelf of southeastern Australia. Typically these missions have spanned the continental shelf on the inshore edge of the East Australian Current from 29.5-33.5°S. This comprehensive dataset of over 33,600 CTD profiles from the surface to within 10 m of the bottom in water depths ranging 25-200 m provides new and unprecedented high resolution observations of the properties of the continental shelf waters adjacent to a western boundary current, straddling the region where it separates from the coast. The region is both physically and biologically significant, and is also in a hotspot of ocean warming. We present gridded mean fields for temperature, salinity and density, but also dissolved oxygen and chlorophyll-a fluorescence indicative of phytoplankton biomass. This data will be invaluable for understanding shelf stratification, circulation, biophysical and bio-geochemical interactions, as well as for the validation of high-resolution ocean models or serving as teaching material.

  20. Submesoscale Rossby waves on the Antarctic circumpolar current.

    PubMed

    Taylor, John R; Bachman, Scott; Stamper, Megan; Hosegood, Phil; Adams, Katherine; Sallee, Jean-Baptiste; Torres, Ricardo

    2018-03-01

    The eastward-flowing Antarctic circumpolar current (ACC) plays a central role in the global ocean overturning circulation and facilitates the exchange of water between the ocean surface and interior. Submesoscale eddies and fronts with scales between 1 and 10 km are regularly observed in the upper ocean and are associated with strong vertical circulations and enhanced stratification. Despite their importance in other locations, comparatively little is known about submesoscales in the Southern Ocean. We present results from new observations, models, and theories showing that submesoscales are qualitatively changed by the strong jet associated with the ACC in the Scotia Sea, east of Drake Passage. Growing submesoscale disturbances develop along a dense filament and are transformed into submesoscale Rossby waves, which propagate upstream relative to the eastward jet. Unlike their counterparts in slower currents, the submesoscale Rossby waves do not destroy the underlying frontal structure. The development of submesoscale instabilities leads to strong net subduction of water associated with a dense outcropping filament, and later, the submesoscale Rossby waves are associated with intense vertical circulations.

  1. Mean hydrography on the continental shelf from 26 repeat glider deployments along Southeastern Australia.

    PubMed

    Schaeffer, Amandine; Roughan, Moninya; Austin, Tim; Everett, Jason D; Griffin, David; Hollings, Ben; King, Edward; Mantovanelli, Alessandra; Milburn, Stuart; Pasquer, Benedicte; Pattiaratchi, Charitha; Robertson, Robin; Stanley, Dennis; Suthers, Iain; White, Dana

    2016-08-30

    Since 2008, 26 glider missions have been undertaken along the continental shelf of southeastern Australia. Typically these missions have spanned the continental shelf on the inshore edge of the East Australian Current from 29.5-33.5°S. This comprehensive dataset of over 33,600 CTD profiles from the surface to within 10 m of the bottom in water depths ranging 25-200 m provides new and unprecedented high resolution observations of the properties of the continental shelf waters adjacent to a western boundary current, straddling the region where it separates from the coast. The region is both physically and biologically significant, and is also in a hotspot of ocean warming. We present gridded mean fields for temperature, salinity and density, but also dissolved oxygen and chlorophyll-a fluorescence indicative of phytoplankton biomass. This data will be invaluable for understanding shelf stratification, circulation, biophysical and bio-geochemical interactions, as well as for the validation of high-resolution ocean models or serving as teaching material.

  2. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Weiwei; Randerson, James T.; Moore, J. Keith

    We examine climate change impacts on net primary production (NPP) and export production (sinking particulate flux; EP) with simulations from nine Earth system models (ESMs) performed in the framework of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Global NPP and EP are reduced by the end of the century for the intense warming scenario of Representative Concentration Pathway (RCP) 8.5. Relative to the 1990s, NPP in the 2090s is reduced by 2–16% and EP by 7–18%. The models with the largest increases in stratification (and largest relative declines in NPP and EP) also show the largest positivemore » biases in stratification for the contemporary period, suggesting overestimation of climate change impacts on NPP and EP. All of the CMIP5 models show an increase in stratification in response to surface–ocean warming and freshening, which is accompanied by decreases in surface nutrients, NPP and EP. There is considerable variability across the models in the magnitudes of NPP, EP, surface nutrient concentrations and their perturbations by climate change. The negative response of NPP and EP to increasing stratification reflects primarily a bottom-up control, as upward nutrient flux declines at the global scale. Models with dynamic phytoplankton community structure show larger declines in EP than in NPP. This pattern is driven by phytoplankton community composition shifts, with reductions in productivity by large phytoplankton as smaller phytoplankton (which export less efficiently) are favored under the increasing nutrient stress. Thus, the projections of the NPP response to climate change are critically dependent on the simulated phytoplankton community structure, the efficiency of the biological pump and the resulting levels of regenerated production, which vary widely across the models. In conclusion, community structure is represented simply in the CMIP5 models, and should be expanded to better capture the spatial patterns and climate-driven changes in export efficiency.« less

  3. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models

    DOE PAGES

    Fu, Weiwei; Randerson, James T.; Moore, J. Keith

    2016-09-16

    We examine climate change impacts on net primary production (NPP) and export production (sinking particulate flux; EP) with simulations from nine Earth system models (ESMs) performed in the framework of the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Global NPP and EP are reduced by the end of the century for the intense warming scenario of Representative Concentration Pathway (RCP) 8.5. Relative to the 1990s, NPP in the 2090s is reduced by 2–16% and EP by 7–18%. The models with the largest increases in stratification (and largest relative declines in NPP and EP) also show the largest positivemore » biases in stratification for the contemporary period, suggesting overestimation of climate change impacts on NPP and EP. All of the CMIP5 models show an increase in stratification in response to surface–ocean warming and freshening, which is accompanied by decreases in surface nutrients, NPP and EP. There is considerable variability across the models in the magnitudes of NPP, EP, surface nutrient concentrations and their perturbations by climate change. The negative response of NPP and EP to increasing stratification reflects primarily a bottom-up control, as upward nutrient flux declines at the global scale. Models with dynamic phytoplankton community structure show larger declines in EP than in NPP. This pattern is driven by phytoplankton community composition shifts, with reductions in productivity by large phytoplankton as smaller phytoplankton (which export less efficiently) are favored under the increasing nutrient stress. Thus, the projections of the NPP response to climate change are critically dependent on the simulated phytoplankton community structure, the efficiency of the biological pump and the resulting levels of regenerated production, which vary widely across the models. In conclusion, community structure is represented simply in the CMIP5 models, and should be expanded to better capture the spatial patterns and climate-driven changes in export efficiency.« less

  4. Coralline algal Barium as indicator for 20th century northwestern North Atlantic surface ocean freshwater variability

    PubMed Central

    Hetzinger, S.; Halfar, J.; Zack, T.; Mecking, J. V.; Kunz, B. E.; Jacob, D. E.; Adey, W. H.

    2013-01-01

    During the past decades climate and freshwater dynamics in the northwestern North Atlantic have undergone major changes. Large-scale freshening episodes, related to polar freshwater pulses, have had a strong influence on ocean variability in this climatically important region. However, little is known about variability before 1950, mainly due to the lack of long-term high-resolution marine proxy archives. Here we present the first multidecadal-length records of annually resolved Ba/Ca variations from Northwest Atlantic coralline algae. We observe positive relationships between algal Ba/Ca ratios from two Newfoundland sites and salinity observations back to 1950. Both records capture episodical multi-year freshening events during the 20th century. Variability in algal Ba/Ca is sensitive to freshwater-induced changes in upper ocean stratification, which affect the transport of cold, Ba-enriched deep waters onto the shelf (highly stratified equals less Ba/Ca). Algal Ba/Ca ratios therefore may serve as a new resource for reconstructing past surface ocean freshwater changes. PMID:23636135

  5. Coralline algal barium as indicator for 20th century northwestern North Atlantic surface ocean freshwater variability.

    PubMed

    Hetzinger, S; Halfar, J; Zack, T; Mecking, J V; Kunz, B E; Jacob, D E; Adey, W H

    2013-01-01

    During the past decades climate and freshwater dynamics in the northwestern North Atlantic have undergone major changes. Large-scale freshening episodes, related to polar freshwater pulses, have had a strong influence on ocean variability in this climatically important region. However, little is known about variability before 1950, mainly due to the lack of long-term high-resolution marine proxy archives. Here we present the first multidecadal-length records of annually resolved Ba/Ca variations from Northwest Atlantic coralline algae. We observe positive relationships between algal Ba/Ca ratios from two Newfoundland sites and salinity observations back to 1950. Both records capture episodical multi-year freshening events during the 20th century. Variability in algal Ba/Ca is sensitive to freshwater-induced changes in upper ocean stratification, which affect the transport of cold, Ba-enriched deep waters onto the shelf (highly stratified equals less Ba/Ca). Algal Ba/Ca ratios therefore may serve as a new resource for reconstructing past surface ocean freshwater changes.

  6. The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink

    PubMed Central

    Abelmann, Andrea; Gersonde, Rainer; Knorr, Gregor; Zhang, Xu; Chapligin, Bernhard; Maier, Edith; Esper, Oliver; Friedrichsen, Hans; Lohmann, Gerrit; Meyer, Hanno; Tiedemann, Ralf

    2015-01-01

    Reduced surface–deep ocean exchange and enhanced nutrient consumption by phytoplankton in the Southern Ocean have been linked to lower glacial atmospheric CO2. However, identification of the biological and physical conditions involved and the related processes remains incomplete. Here we specify Southern Ocean surface–subsurface contrasts using a new tool, the combined oxygen and silicon isotope measurement of diatom and radiolarian opal, in combination with numerical simulations. Our data do not indicate a permanent glacial halocline related to melt water from icebergs. Corroborated by numerical simulations, we find that glacial surface stratification was variable and linked to seasonal sea-ice changes. During glacial spring–summer, the mixed layer was relatively shallow, while deeper mixing occurred during fall–winter, allowing for surface-ocean refueling with nutrients from the deep reservoir, which was potentially richer in nutrients than today. This generated specific carbon and opal export regimes turning the glacial seasonal sea-ice zone into a carbon sink. PMID:26382319

  7. Biogeochemistry of Lakes in Western Papua, Indonesia - First Results of a Pilot Study.

    NASA Astrophysics Data System (ADS)

    Kallmeyer, J.; Nomosatryo, S.; Henny, C.; Kopalit, H.

    2016-12-01

    Despite years of exploration for mineral and hydrocarbon resources, the lakes of Western Papua have received very little attention from a limnogeologic perspective. In some cases not even the maximum water depth of the lakes is published. The only research carried out so far focused on the fish and invertebrate fauna of the lakes, because the macrofauna of Papuan Lakes is significantly different from other islands of western Indonesia. Most lakes harbor numerous endemic species. We carried out a first limnogeologic pilot campaign in spring 2016 to measure water column profiles and take short (max 80 cm long) sediment cores.Lake Sentani is seated in Mesozoic mafic bedrock and consists of four separate basins with maximum water depths of 30 to 40 m. Three basins are connected by shallow sills and one by a natural canal. Although all four basins share almost identical surface water chemistry and exhibit sub- to anoxic bottom waters, each basin has its distinct water column stratification and sediment geochemistry. Despite its coastal location and minimal elevation we could not identify an influx of seawater into the lake. Lake Ayamaru is located further inland on a densely forested karstified carbonate platform. The lake level has dropped significantly in recent years due to water loss into the karst, further reduction of open water surface is caused by massive growth of Pistia. Currently the lake has a maximum depth of around 2 m. Its sediment is mainly composed of carbonate minerals and methane saturated. Due to the carbonate bedrock the lake is highly alkaline (up to 20 meq/L) despite its very low salinity. The initial analyses show that these lakes offer unique biogeochemical conditions that require further in-depth studies.Our research will expand to lakes Anggi Giji and Anggi Gida, which are at almost 2000 m elevation. They have maximum depths of around 200 m and much colder surface waters (12-20°C) compared to the other two lakes that have about 30°C throughout the year.

  8. Ecosystem services and urban heat riskscape moderation: water, green spaces, and social inequality in Phoenix, USA.

    PubMed

    Jenerette, G Darrel; Harlan, Sharon L; Stefanov, William L; Martin, Chris A

    2011-10-01

    Urban ecosystems are subjected to high temperatures--extreme heat events, chronically hot weather, or both-through interactions between local and global climate processes. Urban vegetation may provide a cooling ecosystem service, although many knowledge gaps exist in the biophysical and social dynamics of using this service to reduce climate extremes. To better understand patterns of urban vegetated cooling, the potential water requirements to supply these services, and differential access to these services between residential neighborhoods, we evaluated three decades (1970-2000) of land surface characteristics and residential segregation by income in the Phoenix, Arizona, USA metropolitan region. We developed an ecosystem service trade-offs approach to assess the urban heat riskscape, defined as the spatial variation in risk exposure and potential human vulnerability to extreme heat. In this region, vegetation provided nearly a 25 degrees C surface cooling compared to bare soil on low-humidity summer days; the magnitude of this service was strongly coupled to air temperature and vapor pressure deficits. To estimate the water loss associated with land-surface cooling, we applied a surface energy balance model. Our initial estimates suggest 2.7 mm/d of water may be used in supplying cooling ecosystem services in the Phoenix region on a summer day. The availability and corresponding resource use requirements of these ecosystem services had a strongly positive relationship with neighborhood income in the year 2000. However, economic stratification in access to services is a recent development: no vegetation-income relationship was observed in 1970, and a clear trend of increasing correlation was evident through 2000. To alleviate neighborhood inequality in risks from extreme heat through increased vegetation and evaporative cooling, large increases in regional water use would be required. Together, these results suggest the need for a systems evaluation of the benefits, costs, spatial structure, and temporal trajectory for the use of ecosystem services to moderate climate extremes. Increasing vegetation is one strategy for moderating regional climate changes in urban areas and simultaneously providing multiple ecosystem services. However, vegetation has economic, water, and social equity implications that vary dramatically across neighborhoods and need to be managed through informed environmental policies.

  9. The dependence of sea surface slope on atmospheric stability and swell conditions

    NASA Technical Reports Server (NTRS)

    Hwang, Paul A.; Shemdin, Omar H.

    1988-01-01

    A tower-mounted optical device is used to measure the two-orthogonal components of the sea surface slope. The results indicate that an unstable stratification at the air-sea interface tends to enhance the surface roughness. The presence of a long ocean swell system steers the primary direction of shortwave propagation away from wind direction, and may increase or reduce the mean square slope of the sea surface.

  10. Estimating future temperature maxima in lakes across the United States using a surrogate modeling approach

    PubMed Central

    Zi, Tan; Schmidt, Michelle; Johnson, Thomas E.; Nover, Daniel M.; Clark, Christopher M.

    2017-01-01

    A warming climate increases thermal inputs to lakes with potential implications for water quality and aquatic ecosystems. In a previous study, we used a dynamic water column temperature and mixing simulation model to simulate chronic (7-day average) maximum temperatures under a range of potential future climate projections at selected sites representative of different U.S. regions. Here, to extend results to lakes where dynamic models have not been developed, we apply a novel machine learning approach that uses Gaussian Process regression to describe the model response surface as a function of simplified lake characteristics (depth, surface area, water clarity) and climate forcing (winter and summer air temperatures and potential evapotranspiration). We use this approach to extrapolate predictions from the simulation model to the statistical sample of U.S. lakes in the National Lakes Assessment (NLA) database. Results provide a national-scale scoping assessment of the potential thermal risk to lake water quality and ecosystems across the U.S. We suggest a small fraction of lakes will experience less risk of summer thermal stress events due to changes in stratification and mixing dynamics, but most will experience increases. The percentage of lakes in the NLA with simulated 7-day average maximum water temperatures in excess of 30°C is projected to increase from less than 2% to approximately 22% by the end of the 21st century, which could significantly reduce the number of lakes that can support cold water fisheries. Site-specific analysis of the full range of factors that influence thermal profiles in individual lakes is needed to develop appropriate adaptation strategies. PMID:29121058

  11. Vertical stratification of bacterial communities driven by multiple environmental factors in the waters (0-5000 m) off the Galician coast (NW Iberian margin)

    NASA Astrophysics Data System (ADS)

    Dobal-Amador, Vladimir; Nieto-Cid, Mar; Guerrero-Feijoo, Elisa; Hernando-Morales, Victor; Teira, Eva; Varela-Rozados, Marta M.

    2016-08-01

    The processes mediated by microbial planktonic communities occur along the entire water column, yet the microbial activity and composition have been studied mainly in surface waters. This research examined the vertical variation in bacterial abundance, activity and community composition and structure from surface down to 5000 m depth following a longitudinal transect off the Galician coast (NW Iberian margin, from 43°N, 9°W to 43°N, 15°W). Community activity and composition changed with depth. The leucine incorporation rates decreased from the euphotic layer to the bathypelagic waters by three orders of magnitude, whereas prokaryotic abundance decreased only by one order of magnitude. The relative abundance of SAR11 and Alteromonas, determined by catalyzed reported deposition fluorescence in situ hybridization (CARD-FISH), decreased with depth. Meanwhile, the contribution of SAR 202 and SAR324 was significantly higher in the deeper layers (i.e. NEADW, North East Atlantic Deep Water and LDW, Lower Deep Water) than in the euphotic zone. Bacterial community structure, assessed by Automated Ribosomal Intergenic Spacer Analysis (ARISA), was depth-specific. A distance based linear model (DistLM) revealed that the variability found in bacterial community structure was mainly explained by temperature nitrate, phosphate, dissolved organic matter (DOM) fluorescence, prokaryotic abundance, leucine incorporation and to a lesser extent salinity, oxygen, CDOM absorbance and dissolved organic carbon concentration. Our results displayed a bacterial community structure shaped not only by depth-related physicochemical features but also by DOM quality, indicating that different prokaryotic taxa have the potential to metabolize particular DOM sources.

  12. Modelling element distributions in the atmospheres of magnetic Ap stars

    NASA Astrophysics Data System (ADS)

    Alecian, G.; Stift, M. J.

    2007-11-01

    Context: In recent papers convincing evidence has been presented for chemical stratification in Ap star atmospheres, and surface abundance maps have been shown to correlate with the magnetic field direction. Radiatively driven diffusion, which is known to be sensitive to the magnetic field strength and direction, is among the processes responsible for these inhomogeneities. Aims: Here we explore the hypothesis that equilibrium stratifications - such that the diffusive particle flux is close to zero throughout the atmosphere - can, in a number of cases, explain the observed abundance maps and vertical distributions of the various elements. Methods: An iterative scheme adjusts the abundances in such a way as to achieve either zero particle flux or zero effective acceleration throughout the atmosphere, taking strength and direction of the magnetic field into account. Results: The investigation of equilibrium stratifications in stellar atmospheres with temperatures from 8500 to 12 000 K and fields up to 10 kG reveals considerable variations in the vertical distribution of the 5 elements studied (Mg, Si, Ca, Ti, Fe), often with zones of large over- or under-abundances and with indications of other competing processes (such as mass loss). Horizontal magnetic fields can be very efficient in helping the accumulation of elements in higher layers. Conclusions: A comparison between our calculations and the vertical abundance profiles and surface maps derived by magnetic Doppler imaging reveals that equilibrium stratifications are in a number of cases consistent with the main trends inferred from observed spectra. However, it is not clear whether such equilibrium solutions will ever be reached during the evolution of an Ap star.

  13. Intrabreed Stratification Related to Divergent Selection Regimes in Purebred Dogs May Affect the Interpretation of Genetic Association Studies

    PubMed Central

    Chang, Melanie L.; Yokoyama, Jennifer S.; Branson, Nick; Dyer, Donna J.; Hitte, Christophe; Overall, Karen L.

    2009-01-01

    Until recently, canine genetic research has not focused on population structure within breeds, which may confound the results of case–control studies by introducing spurious correlations between phenotype and genotype that reflect population history. Intrabreed structure may exist when geographical origin or divergent selection regimes influence the choices of potential mates for breeding dogs. We present evidence for intrabreed stratification from a genome-wide marker survey in a sample of unrelated dogs. We genotyped 76 Border Collies, 49 Australian Shepherds, 17 German Shepherd Dogs, and 17 Portuguese Water Dogs for our primary analyses using Affymetrix Canine v2.0 single-nucleotide polymorphism (SNP) arrays. Subsets of autosomal markers were examined using clustering algorithms to facilitate assignment of individuals to populations and estimation of the number of populations represented in the sample. SNPs passing stringent quality control filters were employed for explicitly phylogenetic analyses reconstructing relationships between individuals using maximum parsimony and Bayesian methods. We used simulation studies to explore the possible effects of intrabreed stratification on genome-wide association studies. These analyses demonstrate significant stratification in at least one of our primary breeds of interest, the Border Collie. Demographic and pedigree data suggest that this population substructure may result from geographic isolation or divergent selection regimes practiced by breeders with different breeding program goals. Simulation studies indicate that such stratification could result in false discovery rates significant enough to confound genome-wide association analyses. Intrabreed stratification should be accounted for when designing and interpreting the results of case–control association studies using purebred dogs.

  14. Numerical simulations of the stratified oceanic bottom boundary layer

    NASA Astrophysics Data System (ADS)

    Taylor, John R.

    Numerical simulations are used to consider several problems relevant to the turbulent oceanic bottom boundary layer. In the first study, stratified open channel flow is considered with thermal boundary conditions chosen to approximate a shallow sea. Specifically, a constant heat flux is applied at the free surface and the lower wall is assumed to be adiabatic. When the surface heat flux is strong, turbulent upwellings of low speed fluid from near the lower wall are inhibited by the stable stratification. Subsequent studies consider a stratified bottom Ekman layer over a non-sloping lower wall. The influence of the free surface is removed by using an open boundary condition at the top of the computational domain. Particular attention is paid to the influence of the outer layer stratification on the boundary layer structure. When the density field is initialized with a linear profile, a turbulent mixed layer forms near the wall, which is separated from the outer layer by a strongly stable pycnocline. It is found that the bottom stress is not strongly affected by the outer layer stratification. However, stratification reduces turbulent transport to the outer layer and strongly limits the boundary layer height. The mean shear at the top of the boundary layer is enhanced when the outer layer is stratified, and this shear is strong enough to cause intermittent instabilities above the pycnocline. Turbulence-generated internal gravity waves are observed in the outer layer with a relatively narrow frequency range. An explanation for frequency content of these waves is proposed, starting with an observed broad-banded turbulent spectrum and invoking linear viscous decay to explain the preferential damping of low and high frequency waves. During the course of this work, an open-source computational fluid dynamics code has been developed with a number of advanced features including scalar advection, subgrid-scale models for large-eddy simulation, and distributed memory parallelism.

  15. Investigating Satellite Microwave observations of Precipitation in Different Climate Regimes

    NASA Astrophysics Data System (ADS)

    Wang, N.; Ferraro, R. R.

    2013-12-01

    Microwave satellite remote sensing of precipitation over land is a challenging problem due to the highly variable land surface emissivity, which, if not properly accounted for, can be much greater than the precipitation signal itself, especially in light rain/snow conditions. Additionally, surfaces such as arid land, deserts and snow cover have brightness temperature characteristics similar to precipitation Ongoing work by GPM microwave radiometer team is constructing databases through a variety of means, however, there is much uncertainty as to what is the optimal information needed for the wide array of sensors in the GPM constellation, including examination of regional conditions. The original data sets will focus on stratification by emissivity class, surface temperature and total perceptible water. We'll perform sensitivity studies to determine the potential role of ancillary data (e.g., land surface temperature, snow cover/water equivalent, etc.) to improve precipitation estimation over land in different climate regimes, including rain and snow. In other words, what information outside of the radiances can help describe the background and subsequent departures from it that are active precipitating regions? It is likely that this information will be a function of the various precipitation regimes. Statistical methods such as Principal Component Analysis (PCA) will be utilized in this task. Databases from a variety of sources are being constructed. They include existing satellite microwave measurements of precipitating and non-precipitating conditions, ground radar precipitation rate estimates, surface emissivity climatology from satellites, surface temperature and TPW from NWP reanalysis. Results from the analysis of these databases with respect to the microwave precipitation sensitivity to the variety of environmental conditions in different climate regimes will be discussed.

  16. Evaluation of mercury cycling and hypolimnetic oxygenation in mercury-impacted seasonally stratified reservoirs in the Guadalupe River watershed, California

    NASA Astrophysics Data System (ADS)

    McCord, Stephen A.; Beutel, Marc W.; Dent, Stephen R.; Schladow, S. G.

    2016-10-01

    Surface water reservoirs trap inorganic mercury delivered from their watersheds, create conditions that convert inorganic mercury to highly toxic methylmercury (MeHg), and host sportfish in which MeHg bioaccumulates. The Santa Clara Valley Water District (District) actively manages and monitors four mercury-impaired reservoirs that help to serve communities in South San Francisco Bay, California. The Guadalupe River watershed, which contains three of those reservoirs, also includes the New Almaden mercury-mining district, the largest historic mercury producer in North America. Monthly vertical profiles of field measurements and grab samples in years 2011-2013 portray annual cycling of density stratification, dissolved oxygen (DO), and MeHg. Monitoring results highlight the role that hypolimnetic hypoxia plays in MeHg distribution in the water column, as well as the consistent, tight coupling between MeHg in ecological compartments (water, zooplankton, and bass) across the four reservoirs. Following the 2011-2013 monitoring period, the District designed and installed hypolimnetic oxygenation systems (HOS) in the four reservoirs in an effort to repress MeHg buildup in bottom waters and attain regulatory targets for MeHg in water and fish tissue. Initial HOS operation in Calero Reservoir in 2014 enhanced bottom water DO and depressed hypolimnetic buildup of MeHg, but did not substantially decrease mercury levels in zooplankton or small fish.

  17. Mixotrophy in the Marine Plankton

    NASA Astrophysics Data System (ADS)

    Stoecker, Diane K.; Hansen, Per Juel; Caron, David A.; Mitra, Aditee

    2017-01-01

    Mixotrophs are important components of the bacterioplankton, phytoplankton, microzooplankton, and (sometimes) zooplankton in coastal and oceanic waters. Bacterivory among the phytoplankton may be important for alleviating inorganic nutrient stress and may increase primary production in oligotrophic waters. Mixotrophic phytoflagellates and dinoflagellates are often dominant components of the plankton during seasonal stratification. Many of the microzooplankton grazers, including ciliates and Rhizaria, are mixotrophic owing to their retention of functional algal organelles or maintenance of algal endosymbionts. Phototrophy among the microzooplankton may increase gross growth efficiency and carbon transfer through the microzooplankton to higher trophic levels. Characteristic assemblages of mixotrophs are associated with warm, temperate, and cold seas and with stratification, fronts, and upwelling zones. Modeling has indicated that mixotrophy has a profound impact on marine planktonic ecosystems and may enhance primary production, biomass transfer to higher trophic levels, and the functioning of the biological carbon pump.

  18. [Study on influence factors of seed germination and seeding growth of Lonicera macranthoides].

    PubMed

    Xu, Jin; Zhang, Ying; Cui, Guang-Lin; She, Yue-Hui; Li, Long-Yun

    2016-01-01

    In order to improve reproductive efficiency and quality standard, the influence factors of seed germination and seeding growth of Lonicera macranthoides werew studied. The fruit and seed morphological characteristics of L. macranthoides were observed, the seed water absorbing capacity was determined, and different wet sand stratification time, temperature and germination bed treatment were set up. The effects of the parameters on seed germination and seedling growth were analysed. There was no obstacles of water absorption on L. macranthoides seed, quantity for 22 h water absorption was close to saturation. In the first 80 d, with the increase of the stratification time, seed initial germination time was shortened, germination rate and germination potential was improved. Stratification for 100 d, germination rate decreased. At 15 ℃, seed germination and seedling growth indicators were the best. The seedling cotyledon width in light was significantly higher than that in dark. Seeds on the top of paper and top of sand germination rate, germination potential, and germination index was significantly higher than that of other germination bed and mildew rate is low. The optimal conditions of seeds germination test was stratified in 4 ℃ wet sand for 80 d, 15 ℃ illuminate culture on the top of paper or top of sand. The first seeding counting time was the 4th day after beginning the test, the final time was the 23th day. The germination potential statistical time was the 13th day after beginning the test. Copyright© by the Chinese Pharmaceutical Association.

  19. A new offshore transport mechanism for shoreline-released tracer induced by transient rip currents and stratification

    NASA Astrophysics Data System (ADS)

    Kumar, Nirnimesh; Feddersen, Falk

    2017-03-01

    Offshore transport from the shoreline across the inner shelf of early-stage larvae and pathogens is poorly understood yet is critical for understanding larval fate and dilution of polluted shoreline water. With a novel coupling of a transient rip current (TRC) generating surf zone model and an ocean circulation model, we show that transient rip currents ejected onto a stratified inner shelf induce a new, previously unconsidered offshore transport pathway. For incident waves and stratification typical for Southern California in the fall, this mechanism subducts surf zone-origin tracers and transports them at least 800 m offshore at 1.2 km/d analogous to subduction at ocean fronts. This mechanism requires both TRCs and stratification. As TRCs are ubiquitous and the inner shelf is often stratified, this mechanism may have an important role in exporting early-stage larvae, pathogens, or other tracers onto the shelf.

  20. Climate modulates internal wave activity in the Northern South China Sea

    NASA Astrophysics Data System (ADS)

    DeCarlo, Thomas M.; Karnauskas, Kristopher B.; Davis, Kristen A.; Wong, George T. F.

    2015-02-01

    Internal waves (IWs) generated in the Luzon Strait propagate into the Northern South China Sea (NSCS), enhancing biological productivity and affecting coral reefs by modulating nutrient concentrations and temperature. Here we use a state-of-the-art ocean data assimilation system to reconstruct water column stratification in the Luzon Strait as a proxy for IW activity in the NSCS and diagnose mechanisms for its variability. Interannual variability of stratification is driven by intrusions of the Kuroshio Current into the Luzon Strait and freshwater fluxes associated with the El Niño-Southern Oscillation. Warming in the upper 100 m of the ocean caused a trend of increasing IW activity since 1900, consistent with global climate model experiments that show stratification in the Luzon Strait increases in response to radiative forcing. IW activity is expected to increase in the NSCS through the 21st century, with implications for mitigating climate change impacts on coastal ecosystems.

  1. Role of fish distribution on estimates of standing crop in a cooling reservoir

    USGS Publications Warehouse

    Barwick, D. Hugh

    1984-01-01

    Estimates of fish standing crop from coves in Keowee Reservoir, South Carolina, were obtained in May and August for 3 consecutive years. Estimates were significantly higher in May than in August for most of the major species of fish collected, suggesting that considerable numbers of fish had migrated from the coves by August. This change in fish distribution may have resulted from the operation of a 2,580-megawatt nuclear power plant which altered reservoir stratification. Because fish distribution is sensitive to conditions of reservoir stratification, and because power plants often alter reservoir stratification, annual cove sampling in August may not be sufficient to produce comparable estimates of fish standing crop on which to assess the impact of power plant operations on fish populations. Comparable estimates of fish standing crop can probably be obtained from cooling reservoirs by collecting annual samples at similar water temperatures and concentrations of dissolved oxygen.

  2. Simulation of annual plankton productivity cycle in the Black Sea by a one-dimensional physical-biological model

    NASA Astrophysics Data System (ADS)

    Oguz, Temel; Ducklow, Hugh; Malanotte-Rizzoli, Paola; Tugrul, Suleyman; Nezlin, Nikolai P.; Unluata, Umit

    1996-07-01

    The annual cycle of the plankton dynamics in the central Black Sea is studied by a one-dimensional vertically resolved physical-biological upper ocean model, coupled with the Mellor-Yamada level 2.5 turbulence closure scheme. The biological model involves interactions between the inorganic nitrogen (nitrate, ammonium), phytoplankton and herbivorous zooplankton biomasses, and detritus. Given a knowledge of physical forcing, the model simulates main observed seasonal and vertical characteristic features, in particular, formation of the cold intermediate water mass and yearly evolution of the upper layer stratification, the annual cycle of production with the fall and the spring blooms, and the subsurface phytoplankton maximum layer in summer, as well as realistic patterns of particulate organic carbon and nitrogen. The computed seasonal cycles of the chlorophyll and primary production distributions over the euphotic layer compare reasonably well with the data. Initiation of the spring bloom is shown to be critically dependent on the water column stability. It commences as soon as the convective mixing process weakens and before the seasonal stratification of surface waters begins to develop. It is followed by a weaker phytoplankton production at the time of establishment of the seasonal thermocline in April. While summer nutrient concentrations in the mixed layer are low enough to limit production, the layer between the thermocline and the base of the euphotic zone provides sufficient light and nutrient to support subsurface phytoplankton development. The autumn bloom takes place sometime between October and December depending on environmental conditions. In the case of weaker grazing pressure to control the growth rate, the autumn bloom shifts to December-January and emerges as the winter bloom, or, in some cases, is connected with the spring bloom to form one unified continuous bloom structure during the January-March period. These bloom structures are similar to the year-to-year variabilities present in the data.

  3. Microbial diversity from chlorophyll maximum, oxygen minimum and bottom zones in the southwestern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Medina-Silva, Renata; de Oliveira, Rafael R.; Pivel, Maria A. G.; Borges, Luiz G. A.; Simão, Taiz L. L.; Pereira, Leandro M.; Trindade, Fernanda J.; Augustin, Adolpho H.; Valdez, Fernanda P.; Eizirik, Eduardo; Utz, Laura R. P.; Groposo, Claudia; Miller, Dennis J.; Viana, Adriano R.; Ketzer, João M. M.; Giongo, Adriana

    2018-02-01

    Conspicuous physicochemical vertical stratification in the deep sea is one of the main forces driving microbial diversity in the oceans. Oxygen and sunlight availability are key factors promoting microbial diversity throughout the water column. Ocean currents also play a major role in the physicochemical stratification, carrying oxygen down to deeper zones as well as moving deeper water masses up towards shallower depths. Water samples within a 50-km radius in a pockmark location of the southwestern Atlantic Ocean were collected and the prokaryotic communities from different water depths - chlorophyll maximum, oxygen minimum and deep-sea bottom (down to 1355 m) - were described. At phylum level, Proteobacteria were the most frequent in all water depths, Cyanobacteria were statistically more frequent in chlorophyll maximum zone, while Thaumarchaeota were significantly more abundant in both oxygen minimum and bottom waters. The most frequent microorganism in the chlorophyll maximum and oxygen minimum zones was a Pelagibacteraceae operational taxonomic unit (OTU). At the bottom, the most abundant genus was the archaeon Nitrosopumilus. Beta diversity analysis of the 16S rRNA gene sequencing data uncovered in this study shows high spatial heterogeneity among water zones communities. Our data brings important contribution for the characterisation of oceanic microbial diversity, as it consists of the first description of prokaryotic communities occurring in different oceanic water zones in the southwestern Atlantic Ocean.

  4. Causes of salinization of the Gulf of Taganrog

    NASA Astrophysics Data System (ADS)

    Matishov, G. G.; Grigorenko, K. S.

    2017-11-01

    Using the database of automatic hydrometeorological stations, installed in the Don RIver delta and Taganrog Bay seashore, the sources of the anomalois scale water negative surge and salinization of the Azov Sea under conditions of low river flow in 2015-2016 are studied. The new schemes of stratification and advection of salty sea waters in the Don River mouth under different weather conditions, water discharge and levels are given.

  5. Modeling hydrodynamics, water temperature, and water quality in the Klamath River upstream of Keno Dam, Oregon, 2006-09

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Asbill, Jessica R.; Wellman, Roy E.; Stewart, Marc A.; Johnston, Matthew W.; Sogutlugil, I. Ertugrul

    2011-01-01

    A hydrodynamic, water temperature, and water-quality model was constructed for a 20-mile reach of the Klamath River downstream of Upper Klamath Lake, from Link River to Keno Dam, for calendar years 2006-09. The two-dimensional, laterally averaged model CE-QUAL-W2 was used to simulate water velocity, ice cover, water temperature, specific conductance, dissolved and suspended solids, dissolved oxygen, total nitrogen, ammonia, nitrate, total phosphorus, orthophosphate, dissolved and particulate organic matter, and three algal groups. The Link-Keno model successfully simulated the most important spatial and temporal patterns in the measured data for this 4-year time period. The model calibration process provided critical insights into water-quality processes and the nature of those inputs and processes that drive water quality in this reach. The model was used not only to reproduce and better understand water-quality conditions that occurred in 2006-09, but also to test several load-reduction scenarios that have implications for future water-resources management in the river basin. The model construction and calibration process provided results concerning water quality and transport in the Link-Keno reach of the Klamath River, ranging from interesting circulation patterns in the Lake Ewauna area to the nature and importance of organic matter and algae. These insights and results include: * Modeled segment-average water velocities ranged from near 0.0 to 3.0 ft/s in 2006 through 2009. Travel time through the model reach was about 4 days at 2,000 ft3/s and 12 days at 700 ft3/s flow. Flow direction was aligned with the upstream-downstream channel axis for most of the Link-Keno reach, except for Lake Ewauna. Wind effects were pronounced at Lake Ewauna during low-flow conditions, often with circulation in the form of a gyre that rotated in a clockwise direction when winds were towards the southeast and in a counterclockwise direction when winds were towards the northwest. * Water temperatures ranged from near freezing in winter to near 30 degrees C at some locations and periods in summer; seasonal water temperature patterns were similar at the inflow and outflow. Although vertical temperature stratification was not present at most times and locations, weak stratification could persist for periods up to 1-2 weeks, especially in the downstream parts of the reach. Thermal stratification was important in controlling vertical variations in water quality. * The specific conductance, and thus density, of tributaries within the reach usually was higher than that of the river itself, so that inflows tended to sink below the river surface. This was especially notable for inflows from the Klamath Straits Drain, which tended to sink to the bottom of the Klamath River at its confluence and not mix vertically for several miles downstream. * The model was able to capture most of the seasonal changes in the algal population by modeling that population with three algal groups: blue-green algae, diatoms, and other algae. The blooms of blue-green algae, consisting mostly of Aphanizomenon flos aquae that entered from Upper Klamath Lake, were dominant, dwarfing the populations of the other two algae groups in summer. A large part of the blue-green algae population that entered this reach from upstream tended to settle out, die, and decompose, especially in the upper part of the Link-Keno reach. Diatoms reached a maximum in spring and other algae in midsummer. * Organic matter, occurring in both dissolved and particulate forms, was critical to the water quality of this reach of the Klamath River, and was strongly tied to nutrient and dissolved-oxygen dynamics. Dissolved and particulate organic matter were subdivided into labile (quickly decaying) and refractory (slowing decaying) groups for modeling purposes. The particulate matter in summer, consisting largely of dead blue-green algae, decayed quickly. Consequently, this particulate matt

  6. Evaluation of internal loading and water level changes: implications for phosphorus, algal production, and nuisance blooms in Kabetogama Lake, Voyageurs National Park, Minnesota

    USGS Publications Warehouse

    Christensen, Victoria G.; Maki, Ryan P.; Kiesling, Richard L.

    2013-01-01

    Hydrologic manipulations have the potential to exacerbate or remediate eutrophication in productive reservoirs. Dam operations at Kabetogama Lake, Minnesota, were modified in 2000 to restore a more natural water regime and improve water quality. The US Geological Survey and National Park Service evaluated nutrient, algae, and nuisance bloom data in relation to changes in Kabetogama Lake water levels. Comparison of the results of this study to previous studies indicates that chlorophyll a concentrations have decreased, whereas total phosphorus (TP) concentrations have not changed significantly since 2000. Water and sediment quality data were collected at Voyageurs National Park during 2008–2009 to assess internal phosphorus loading and determine whether loading is a factor affecting TP concentrations and algal productivity. Kabetogama Lake often was mixed vertically, except for occasional stratification measured in certain areas, including Lost Bay in the northeastern part of Kabetogama Lake. Stratification, higher bottom water and sediment nutrient concentrations than in other parts of the lake, and phosphorus release rates estimated from sediment core incubations indicated that Lost Bay is one of several areas that may be contributing to internal loading. Internal loading of TP is a concern because increased TP may cause excessive algal growth including potentially toxic cyanobacteria.

  7. Physical and chemical consequences of artificially deepened thermocline in a small humic lake - a paired whole-lake climate change experiment

    NASA Astrophysics Data System (ADS)

    Forsius, M.; Saloranta, T.; Arvola, L.; Salo, S.; Verta, M.; Ala-Opas, P.; Rask, M.; Vuorenmaa, J.

    2010-05-01

    Climate change with higher air temperatures and changes in cloud cover, radiation and wind speed alters the heat balance and stratification patterns of lakes. A paired whole-lake thermocline manipulation experiment of a small (0.047 km2) shallow dystrophic lake (Halsjärvi) was carried out in southern Finland. A thermodynamic model (MyLake) was used for both predicting the impacts of climate change scenarios and for determining the manipulation target of the experiment. The model simulations assuming several climate change scenarios indicated large increases in the whole-lake monthly mean temperature (+1.4-4.4 °C in April-October for the A2 scenario), and shortening of the length of the ice covered period by 56-89 days. The thermocline manipulation resulted in large changes in the thermodynamic properties of the lake, and those were rather well consistent with the simulated future increases in the heat content during the summer-autumn season. The manipulation also resulted in changes in the oxygen stratification, and the expansion of the oxic water layer increased the spatial extent of the sediment surface oxic-anoxic interfaces. The experiment also affected several other chemical constituents; concentrations of TotN, NH4 and organic carbon showed a statistically significant decrease, likely due to both unusual hydrological conditions during the experiment period and increased decomposition and sedimentation. Changes in mercury processes and in the aquatic food web were also introduced. In comparison with the results of a similar whole-lake manipulation experiment in a deep, oligotrophic, clear-watered lake in Norway, it is evident that shallow dystrophic lakes, common in the boreal region, are more sensitive to physical perturbations. This means that projected climate change may strongly modify their physical and chemical conditions in the future.

  8. Calculating Freshwater Input from Iceberg Melt in Greenlandic Fjords by Combining In Situ Observations of Iceberg Movement with High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Sulak, D. J.; Sutherland, D.; Stearns, L. A.; Hamilton, G. S.

    2015-12-01

    Understanding fjord circulation in Greenland's outlet glacial fjords is crucial to explaining recent temporal and spatial variability in glacier dynamics, as well as freshwater transport on the continental shelf. The fjords are commonly assumed to exhibit a plume driven circulation that draws in warmer and saltier Atlantic-origin water toward the glacier at depth. Freshwater input at glacier termini directly drives this circulation and significantly influences water column stratification, which indirectly feeds back on the plume driven circulation. Previous work has focused on freshwater inputs from surface runoff and submarine melting, but the contribution from iceberg melt, a potentially important freshwater source, has not been quantified. Here, we develop a new technique combining in situ observations of movement from iceberg-mounted GPS units with multispectral satellite imagery from Landsat 8. The combination of datasets allows us to examine the details of iceberg movement and quantify mean residence times in a given fjord. We then use common melt rate parameterizations to estimate freshwater input for a given iceberg, utilizing novel satellite-derived iceberg distributions to scale up to a fjord-wide freshwater contribution. We apply this technique to Rink Isbræ and Kangerlussuup Sermia in west Greenland, and Helheim Glacier in southeast Greenland. The analysis can be rapidly expanded to look at other systems as well as seasonal and interannual changes in how icebergs affect the circulation and stratification of Greenland's outlet glacial fjords. Ultimately, this work will lead to a more complete understanding of the wide range of factors that control the observed regional variability in Greenland's glaciers.

  9. POST-DREISSENID INCREASES IN TRANSPARENCY DURING SUMMER STRATIFICATION IN THE OFFSHORE WATERS OF LAKE ONTARIO: IS A REDUCTION IN WHITING EVENTS THE CAUSE?

    EPA Science Inventory

    This recent publication uses data from EPA's long-term Great Lakes monitoring programs and data from Environment Canada to investigate Dreissenid impacts on calcium concentrations and summer water clarity in Lake Ontario. Since the dreissenid invasion of the lower Great Lakes, c...

  10. Optical Models for Remote Sensing of Colored Dissolved Organic Matter Absorption and Salinity in New England, Middle Atlantic and Gulf Coast Estuaries USA

    EPA Science Inventory

    In estuarine and nearshore ecosystems, salinity levels, along with temperature, control water column stratification, the types and locations of plants and animals, and the flocculation of particles. Salinity is also a key factor when monitoring water quality variables (e.g., diss...

  11. Influence of thermal stratification and slip conditions on stagnation point flow towards variable thicked Riga plate

    NASA Astrophysics Data System (ADS)

    Anjum, A.; Mir, N. A.; Farooq, M.; Khan, M. Ijaz; Hayat, T.

    2018-06-01

    This article addresses thermally stratified stagnation point flow of viscous fluid induced by a non-linear variable thicked Riga plate. Velocity and thermal slip effects are incorporated to disclose the flow analysis. Solar thermal radiation phenomenon is implemented to address the characteristics of heat transfer. Variations of different physical parameters on the horizontal velocity and temperature distributions are described through graphs. Graphical interpretations of skin friction coefficient (drag force at the surface) and Nusselt number (rate of heat transfer) are also addressed. Modified Hartman number and thermal stratification parameter result in reduction of temperature distribution.

  12. An inversion of the estuarine circulation by sluice water discharge and its impact on suspended sediment transport

    NASA Astrophysics Data System (ADS)

    Schulz, Kirstin; Gerkema, Theo

    2018-01-01

    The Wadden Sea is characterized by a complex topography of branching channels and intertidal flats, in which the interplay between fresh water discharges, wind forcing and the tidal current causes sediment transport rates and direction to be highly variable in space and time. During three field campaigns, indications of a negative estuarine circulation have been found in a channel adjacent to the coast in the Western Dutch Wadden Sea. Contrary to the classical picture of estuarine circulation, a periodic density stratification was observed that builds up during flood and breaks down during ebb. This can be related to a large freshwater source at the mouth of the channel, the sluice in Kornwerderzand. In this study, observations of this phenomenon are presented, and with the help of a numerical model the different drivers for residual suspended matter transport in this area, namely tidal asymmetries in the current velocity and the above mentioned periodic stratification, are investigated. It is found that the residual current in the area of interest points in ebb direction, caused by both the elongated ebb flow phase and the periodic stratification. On the contrary, the stronger flood currents cause a transport of suspended matter in flood direction. This transport is counteracted and therefore diminished by the effects of the sluice discharge.

  13. [Study on physiological and germination characteristics of Tulipa edulis seed].

    PubMed

    Wu, Zhengjun; Zhu, Zaibiao; Guo, Qiaosheng; Ma, Hongliang; Xu, Hongjian; Miao, Yuanyuan

    2012-03-01

    Current study was conducted to investigate the seed physiological characteristics of Tulipa edulis and improve germination rate. Anatomical characteristics was observed. Seed water absorption curve was tested by soaking method. Dynamic of embryo development and germination rate as well as germination index under different conditions were recorded. And the biological test of cabbage seed was used for detecting the germination inhibitors. The embryo rate of newly matured seeds was about 10%, and there was no obstacle of water absorption on testa of T. edulis. The optimum method for embryo development was exposure to 300 mg x L(-1) gibberellin solution for 24 hours, and stratification at 25 degrees C for 70 days followed by stratification at 5 degrees C for 40 days. The germintion rate and germination index of dormancy-broken seeds under the dark environment at 10 degrees C and 15 degrees C were significantly higher than those under other conditions. Additionally, there were some germination inhibitory substances in dry seeds. The seed of T. edulis can be classified as having complex morphophysiological dormancy, and the morphological embryo dormancy played a leading role. Warm and cold stratification resulted in a fast dormancy breaking effect, and a high germination rate more than 90% could be obtained under the optimum conditions.

  14. High efficiency stratification of apple cultivar Ligol seed dormancy by phytohormones, heat shock and pulsed radio frequency.

    PubMed

    Grzesik, Mieczysław; Górnik, Krzysztof; Janas, Regina; Lewandowki, Mariusz; Romanowska-Duda, Zdzislawa; Duijn, Bert van

    2017-12-01

    The aim of the study was to improve the effect of stratification of apple "Ligol" seeds by application of selected compounds, phytohormones, and physical methods For this purpose the seeds were stratified at 3°C in distilled water or in the presence of potassium nitrate (KNO 3 ), ethephon (ET), carbon monoxide (CO), hydrogen peroxide (H 2 O 2 ), a mixture of KNO 3 , ET, CO, H 2 O 2 , gibberellins (GA 3 ), 6-benzylaminopurine (BAP), jasmonic acid (JA), salicylic acid (SA) and a mixture of SA, GA 3 , BAP, JA, nitric oxide (NO), hydrogen chloride (HCL). Arranged protocols included various durations and combinations of selected compounds and phytohormones as well as laser and red light, heat shock - 2h heat shock (45°C) and Pulsed Radio Frequency (PRF) were investigated by germination tests and the activity of selected enzymes, gas exchange and index of chlorophyll in leaves. The obtained results showed the possibility to shorten more effectively the time of the apple 'Ligol' dormancy removal by treatments of the stratified seeds at 3°C with different biological and physical methods Selected compounds and phytohormones acted collectively as a regulatory complex controlling the course of release from dormancy. Physical methods (PRF and heat shock) additionally contributed to dormancy breakage. Duration of phytohormones or compounds impacts during stratification should be prolonged to minimum 7days to assure more balanced conditions of the regulatory complex for the acceleration of dormancy a removal. The most beneficial results were obtained after seed stratification for 7days on filter paper moistened in KNO 3 +Etephon+CO+H 2 O 2 at 3°C, and then on filter paper moistened in phytohormones (GA 3 +BAP+JA) till the end of seed germination (3°C). The application of this protocol could be a very useful tool in a shortening the apple breeding cycle since the period of removing dormancy was reduced by 38days in comparison to stratified in water. PRF has also the additive role in breaking dormancy of apple 'Ligol' seed. Positive effects of compounds and phytohormones applied during stratification remarkably accelerated the growth of developed from them seedlings. Further research is needed to optimize stratification methods with appropriate contents and concentrations of compounds and phytohormones combined with PRF exposure. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Role of stratification on internal waves over the continental shelf in the Bay of Bengal : A case study

    NASA Astrophysics Data System (ADS)

    Pradhan, H. K.; Rao, A. D.; Sharma, M. J.

    2013-12-01

    Internal waves (IWs) in a continuously stratified medium may propagate vertically as well as horizontally in the continental shelf. The surface layer of the Bay of Bengal exhibit intricate stratification owing to the differential distribution of freshwaters. In the current study, occurance of low-frequency IWs during two different occasions (i) late winter monsoon (February, 2007) (ii) post-monsoon (October, 2006) is studied. MITgcm is configured on a regional scale with variable curvilinear grid on the western shelf of Bay of Bengal to study the maximum energy associated with IWs during spring-tide. The local stratification and sharp varying topography along the coast makes it a potential region for generation/propagation of IWs. Modified ETOPO2 bathymetry and high resolution temperature and salinity data from WOA09 is used along with QuikSCAT daily winds. Real-time tides are introduced as forcing to the model by including additional terms in the momenteum equations. The simulations of the tidal elevations are validated with the tide gauge data. It is found that amplitudes of the IWs vary significantly from spring to neap tide. Spectral analysis of the temperature oscillations reveals the IWs of semi-diurnal frequency are dominant over the region followed by diurnal component. Observations of amplitude and phase of IWs are used for model validation collected during field work from 18-20 October 2006 and 21-23 February 2007 offshore of Visakhapatnam. The IW energy computed from both observations and simulations are reasonably in good agreement. It is also noticed that the energy intensity modulates during a complete tidal cycle bearing the maximum at spring tide and is nearly six times as compared to that of the neap tide period. It is interesting to further examine how the IW energy generates/propagates over the shelf/slope topography in the presence of variable straification. The maximum energy associated with low-frequency IWs is computed across the depth during spring tide off Visakhapatnam and Pardeep. The simulations indicate that the maximum IW energy is confined to the continental shelf edge inferring that IWs activity is at its peak over the region. A comparison of the computed energy is made along the bottom topography off Visakhapatnam and Paradeep during Feb 2007 and Oct 2006 respectively. The energy is further intruded about 7km and 9km off Visakhapatnam and Paradeep respectively towards the coast during Oct 2006 as aganist that of Feb 2007. This is attributed to the fact that the presence of staratified waters are closer to the coast in Oct 2006 compared to Feb 2007 as the stratification supports the IW activity. In the case of Feb 2007, the maximum IW energy is dampened sharply, and the rationale is two-fold. The first one is less stratification of the coastal waters and secondly is the presence of seasonal temperature inversion near the coast. These two factors are primarily responsible for the sharp decline of the energy over this region.

  16. Numerical modeling of flows and pollutant dispersion within and above urban street canyons under unstable thermal stratification by large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Chan, Ming-Chung; Liu, Chun-Ho

    2013-04-01

    Recently, with the ever increasing urban areas in developing countries, the problem of air pollution due to vehicular exhaust arouses the concern of different groups of people. Understanding how different factors, such as urban morphology, meteorological conditions and human activities, affect the characteristics of street canyon ventilation, pollutant dispersion above urban areas and pollutant re-entrainment from the shear layer can help us improve air pollution control strategies. Among the factors mentioned above, thermal stratification is a significant one determining the pollutant transport behaviors in certain situation, e.g. when the urban surface is heated by strong solar radiation, which, however, is still not widely explored. The objective of this study is to gain an in-depth understanding of the effects of unstable thermal stratification on the flows and pollutant dispersion within and above urban street canyons through numerical modeling using large-eddy simulation (LES). In this study, LES equipped with one-equation subgrid-scale (SGS) model is employed to model the flows and pollutant dispersion within and above two-dimensional (2D) urban street canyons (flanked by idealized buildings, which are square solid bars in these models) under different intensities of unstable thermal stratifications. Three building-height-to-street-width (aspect) ratios, 0.5, 1 and 2, are included in this study as a representation of different building densities. The prevailing wind flow above the urban canopy is driven by background pressure gradient, which is perpendicular to the street axis, while the condition of unstable thermal stratification is induced by applying a higher uniform temperature on the no-slip urban surface. The relative importance between stratification and background wind is characterized by the Richardson number, with zero value as a neutral case and negative value as an unstable case. The buoyancy force is modeled by Boussinesq approximation and the intensity of stratification is controlled by the gravitational acceleration. The urban characteristic is modeled by periodic boundary conditions at the domain inlet-outlet and spanwise extent, so as to simulate the infinitely long and wide urban area. Pollutant dispersion is modeled by scalar transport with the pollutant area source on the ground of the first street canyon and by open boundary condition at the domain outlet. The numerical models are solved with incremental time steps until it reaches the pseudo steady-state. Afterwards, a set of data is collected for each model such that the temporal averages of mean and fluctuating field variables do not vary significantly if more time steps are included. It is found that the ventilation performance is improved and the plume dispersion in shear layer is enhanced when the stratification is more unstable. The mean flows, turbulent transports of pollutant and momentum, pollutant concentration fields in different unstable stratifications will be discussed with profile and contour plots. The ventilation performance of a street canyon evaluated by air exchange rate (ACH) and pollutant exchange rate (PCH) at roof level and the plume dispersion characterized by the mean plume height and dispersion coefficient in shear layer will also be discussed.

  17. Eruptive style and construction of shallow marine mafic tuff cones in the Narakay Volcanic Complex (Proterozoic, Hornby Bay Group, Northwest Territories, Canada)

    NASA Astrophysics Data System (ADS)

    Ross, Gerald M.

    1986-03-01

    The Early Proterozoic (1663 Ma) Narakay Volcanic Complex, exposed in Great Bear Lake (Northwest Territories, Canada), is a bimodal suite of basalt and rhyolite erupted in a continental setting and consisting largely of pyroclastic rocks interlayered with shallow marine sedimentary rocks of the Hornby Bay Group. Mafic pyroclastic rocks consist of lapilli tuff, tuff, tuff breccia and agglomerate that represent the remnants of small subaerial tuff cones (0.5 to 2 km in diameter) that in most cases have subsided into the volcanic conduit. Stratification styles, sedimentary structures and grain morphologies in pyroclastic rocks reflect variations in the water:magma ratio during eruptions and have been used to help elucidate eruptive mechanisms and reconstruct volcanic edifices. Basaltic pyroclasts are commonly bounded by fracture surfaces and are morphologically similar to modern pyroclasts produced by thermal quench fragmentation or steam-blast disruption of magma. Most fragments have low vesicularity and scoria is only locally abundant which indicates that eruptive energy was supplied mostly by water—melt interaction rather than exsolution of magmatic gases. Cored bombs and lapilli, fusiform bombs, and pyroclasts similar in texture to those of Strombolian cinder and agglutinate spatter, are uncommon but are stratigraphically widespread and imply the occurrence of Strombolian eruptions, presumably when water access to the vent was impeded. Massive bedding is typical of the tuffs and, in addition to the poorly sorted ash-rich nature of the tuffs, implies deposition from water- and/or steam-rich hydrovolcanic eruption clouds and cypressoid jets by airfall and dense pyroclastic flows. Uncommon well-stratified and sorted ash and lapilli tuff record airfall and pyroclastic flow(?) deposition from eruption clouds rich in magmatic gases. Base surge deposits are uncommon and occur only in the subaerial portion of a sequence of tuffs inferred to record the progradation of a cone-margin surge platform into standing water. Few of the tuff cone deposits display a systematic vertical sequence of stratification styles, structures and grain morphologies. This indicates that either the eruptive style varied irregularly between hydrovolcanic and Strombolian and/or that pyroclasts of different origin were mixed during eruptions.

  18. Temperature record and sapropel formation during the late Pliocene in central Mediterranean: a multi-proxy approach

    NASA Astrophysics Data System (ADS)

    Plancq, Julien; Grossi, Vincent; Huguet, Carme; Pittet, Bernard; Rosell-Mele, Antoni; Mattioli, Emanuela

    2014-05-01

    The late Pliocene (Piacenzian; 3.6-2.6 Myr) in the Mediterranean region is characterized by the deposition of organic-rich sedimentary layers named sapropels. Sapropel formation has been related to the strengthening of the precessionally-controlled African monsoon, triggering enhanced primary productivity and/or improved organic matter preservation. However, the relative importance of surface-ocean productivity versus deep-water preservation for sapropel formation remains a long standing debate among the science community. Here, we used a multi-proxy approach to characterize long-term environmental conditions and to discuss sapropel formation during the late Pliocene at Punta Grande/Punta Piccola sections (southwest Sicily). Sea and air temperatures were reconstructed using all the lipid biomarker-based temperature proxies currently available: the alkenone unsaturation index (UK'37), the tetraether index (TEX86), the Long-chain Diol Index (LDI), and the degree of methylation/cyclization of branched tetraether (MBT/CBT). Results show that sea-surface temperatures (SSTs) were relatively stable throughout the late Pliocene, but that consistent increases are recorded in most sapropel layers. SST record was then compared with variations in total organic carbon proportions, lipid biomarkers contents and nannofossil assemblages. Based on these observations, two mechanisms of formation can be inferred for each sapropel. A first series of sapropels is likely due to a better preservation of organic matter, due to the development of a thermohaline stratification of the water column and to oxygen depleted bottom waters. The second series of sapropels is more likely due to enhanced primary productivity in a non-stratified water column.

  19. Physical Mechanisms of Rapid Lake Warming

    NASA Astrophysics Data System (ADS)

    Lenters, J. D.

    2016-12-01

    Recent studies have shown significant warming of inland water bodies around the world. Many lakes are warming more rapidly than the ambient surface air temperature, and this is counter to what is often expected based on the lake surface energy balance. A host of reasons have been proposed to explain these discrepancies, including changes in the onset of summer stratification, significant loss of ice cover, and concomitant changes in winter air temperature and/or summer cloud cover. A review of the literature suggests that no single physical mechanism is primarily responsible for the majority of these changes, but rather that the large heterogeneity in regional climate trends and lake geomorphometry results in a host of potential physical drivers. In this study, we discuss the variety of mechanisms that have been proposed to explain rapid lake warming and offer an assessment of the physical plausibility for each potential contributor. Lake Superior is presented as a case study to illustrate the "perfect storm" of factors that can cause a deep, dimictic lake to warm at rate that exceeds the rate of global air temperature warming by nearly an order of magnitude. In particular, we use a simple mixed-layer model to show that spatially variable trends in Lake Superior surface water temperature are determined, to first order, by variations in bathymetry and winter air temperature. Summer atmospheric conditions are often of less significance, and winter ice cover may simply be a correlate. The results highlight the importance of considering the full range of factors that can lead to trends in lake surface temperature, and that conventional wisdom may often not be the best guide.

  20. Mobile Bay river plume mixing in the inner shelf

    NASA Astrophysics Data System (ADS)

    Parra, S. M.; Book, J. W.; Warner, S. J.; Moum, J.

    2017-12-01

    The microtidal region (0.5 m spring tides) of the inner shelf outside Mobile Bay presented a complex circulation pattern driven by the pulsed river discharge and winds. Currents, salinity, temperature, and turbulence profiles were measured for up to three weeks in April 2016 at six moorings outside Mobile Bay. Currents varied between locations and with depth. During neap and spring tides the currents were reliably >0.4 and <0.4 m/s, respectively. The outflow from Mobile Bay generated a complex density circulation, where two to three layers were normally present. Multiple density layers included a thicker brackish middle layer (5-10 m thickness), and a salty bottom layer (5-10 m thickness), with a thin ( 1-3 m) freshwater surface layer found intermittently. The multilayer currents were strongest at neap tides (>0.5 m/s) and toward deeper waters, concurrent with the strongest stratification. The possible flow drivers considered include tides, winds, inertial oscillations, waves, and stratification. Turbulent kinetic energy production and dissipation were calculated with multiple methods using data from bottom-mounted, upward-looking acoustic Doppler current profilers sampling at 1 Hz, and using data from line-moored chi-pod turbulent temperature microstructure instruments sampling at 100 Hz. This work explores different forcing mechanisms involved in modulating the circulation and turbulence in a multi-layered pulsed-river inner shelf region in the Gulf of Mexico.

  1. Problems related to water quality and algal control in Lopez Reservoir, San Luis Obispo County, California

    USGS Publications Warehouse

    Fuller, Richard H.; Averett, Robert C.; Hines, Walter G.

    1975-01-01

    A study to determine the present enrichment status of Liopez Reservoir in San Luis Obispo county, California, and to evaluate copper sulfate algal treatment found that stratification in the reservoir regulates nutrient release and that algal control has been ineffective. Nuisance algal blooms, particularly from March to June, have been a problem in the warm multipurpose reservoir since it was initially filled following intense storms in 1968-69. The cyanophyte Anabaena unispora has been dominant; cospecies are the diatoms Stephanodiscus astraea and Cyclotella operculata, and the chlorophytes Pediastrum deplex and Sphaerocystis schroeteri. During an A. unispora bloom in May 1972 the total lake surface cell count was nearly 100,000 cells/ml. Thermal stratification from late spring through autumn results in oxygen deficiency in the hypolimnion and metalimnion caused by bacterial oxidation of organic detritus. The anaerobic conditions favor chemical reduction of organic matter, which constitute 10-14% of the sediment. As algae die, sink to the bottom, and decompose, nutrients are released to the hypolimnion , and with the autumn overturn are spread to the epilimnion. Algal blooms not only hamper recreation, but through depletion of dissolved oxygen in the epilimnion may have caused periodic fishkills. Copper sulfate mixed with sodium citrate and applied at 1.10-1.73 lbs/acre has not significantly reduced algal growth; a method for determining correct dosage is presented. (Lynch-Wisconsin)

  2. Climate change impacts on lake thermal dynamics and ecosystem vulnerabilities

    USGS Publications Warehouse

    Sahoo, G. B; Forrest, A. L; Schladow, S. G ;; Reuter, J. E; Coats, R.; Dettinger, Michael

    2016-01-01

    Using water column temperature records collected since 1968, we analyzed the impacts of climate change on thermal properties, stability intensity, length of stratification, and deep mixing dynamics of Lake Tahoe using a modified stability index (SI). This new SI is easier to produce and is a more informative measure of deep lake stability than commonly used stability indices. The annual average SI increased at 16.62 kg/m2/decade although the summer (May–October) average SI increased at a higher rate (25.42 kg/m2/decade) during the period 1968–2014. This resulted in the lengthening of the stratification season by approximately 24 d. We simulated the lake thermal structure over a future 100 yr period using a lake hydrodynamic model driven by statistically downscaled outputs of the Geophysical Fluid Dynamics Laboratory Model (GFDL) for two different green house gas emission scenarios (the A2 in which greenhouse-gas emissions increase rapidly throughout the 21st Century, and the B1 in which emissions slow and then level off by the late 21st Century). The results suggest a continuation and intensification of the already observed trends. The length of stratification duration and the annual average lake stability are projected to increase by 38 d and 12 d and 30.25 kg/m2/decade and 8.66 kg/m2/decade, respectively for GFDLA2 and GFDLB1, respectively during 2014–2098. The consequences of this change bear the hallmarks of climate change induced lake warming and possible exacerbation of existing water quality, quantity and ecosystem changes. The developed methodology could be extended and applied to other lakes as a tool to predict changes in stratification and mixing dynamics.

  3. Changing climate in the Lake Superior region: a case study of the June 2012 flood and its effects on the western-lake water column

    NASA Astrophysics Data System (ADS)

    Minor, E. C.; Forsman, B.; Guildford, S. J.

    2013-12-01

    In Lake Superior, the world's largest freshwater lake by area, we are seeing annual surface-water temperature increases outpacing those of the overlying atmosphere. We are also seeing ever earlier onsets of water-column stratification (in data sets from the mid-1980s to the present). In Minnesota, including the Lake Superior watershed, precipitation patterns are also shifting toward fewer and more extreme storm events, such as the June 2012 solstice flood, which impacted the western Lake Superior basin. We are interested in how such climatological changes will affect nutrient and carbon biogeochemistry in Lake Superior. The lake is currently an oligotrophic system exhibiting light limitation of primary production in winter and spring, with summer primary production generally limited by phosphorus and sometimes co-limited by iron. Analyses in the western arm of Lake Superior showed that the June 2012 flood brought large amounts of sediment and colored dissolved organic matter (CDOM) from the watershed into the lake. There was initially a ~50-fold spike in the total phosphorus concentrations (and a 5 fold spike in soluble reactive phosphorus) in flood-impacted waters. This disappeared rapidly, in large part due to sediment settling and did not lead to an increase in chlorophyll concentrations at monitored sampling sites. Instead, lake phytoplankton appeared light limited by a surface lens of warm water enriched in CDOM that persisted for over a month after the flood event itself. Our observations highlight the need for continuing research on these complex in-lake processes in order to make accurate predictions about longer term impacts of these large episodic inputs in CDOM, sediment, and nutrient loading.

  4. In-Lake Processes Offset Increased Terrestrial Inputs of Dissolved Organic Carbon and Color to Lakes

    PubMed Central

    Köhler, Stephan J.; Kothawala, Dolly; Futter, Martyn N.; Liungman, Olof; Tranvik, Lars

    2013-01-01

    Increased color in surface waters, or browning, can alter lake ecological function, lake thermal stratification and pose difficulties for drinking water treatment. Mechanisms suggested to cause browning include increased dissolved organic carbon (DOC) and iron concentrations, as well as a shift to more colored DOC. While browning of surface waters is widespread and well documented, little is known about why some lakes resist it. Here, we present a comprehensive study of Mälaren, the third largest lake in Sweden. In Mälaren, the vast majority of water and DOC enters a western lake basin, and after approximately 2.8 years, drains from an eastern basin. Despite 40 years of increased terrestrial inputs of colored substances to western lake basins, the eastern basin has resisted browning over this time period. Here we find the half-life of iron was far shorter (0.6 years) than colored organic matter (A420 ; 1.7 years) and DOC as a whole (6.1 years). We found changes in filtered iron concentrations relate strongly to the observed loss of color in the western basins. In addition, we observed a substantial shift from colored DOC of terrestrial origin, to less colored autochthonous sources, with a substantial decrease in aromaticity (-17%) across the lake. We suggest that rapid losses of iron and colored DOC caused the limited browning observed in eastern lake basins. Across a wider dataset of 69 Swedish lakes, we observed greatest browning in acidic lakes with shorter retention times (< 1.5 years). These findings suggest that water residence time, along with iron, pH and colored DOC may be of central importance when modeling and projecting changes in brownification on broader spatial scales. PMID:23976946

  5. Diatoms as a paleoproductivity proxy in the NW Iberian coastal upwelling system (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Zúñiga, Diana; Santos, Celia; Froján, María; Salgueiro, Emilia; Rufino, Marta M.; De la Granda, Francisco; Figueiras, Francisco G.; Castro, Carmen G.; Abrantes, Fátima

    2017-03-01

    The objective of the current work is to improve our understanding of how water column diatom's abundance and assemblage composition is seasonally transferred from the photic zone to seafloor sediments. To address this, we used a dataset derived from water column, sediment trap and surface sediment samples recovered in the NW Iberian coastal upwelling system. Diatom fluxes (2.2 (±5.6) 106 valves m-2 d-1) represented the majority of the siliceous microorganisms sinking out from the photic zone during all studied years and showed seasonal variability. Contrasting results between water column and sediment trap diatom abundances were found during downwelling periods, as shown by the unexpectedly high diatom export signals when diatom-derived primary production achieved their minimum levels. They were principally related to surface sediment remobilization and intense Minho and Douro river discharge that constitute an additional source of particulate matter to the inner continental shelf. In fact, contributions of allochthonous particles to the sinking material were confirmed by the significant increase of both benthic and freshwater diatoms in the sediment trap assemblage. In contrast, we found that most of the living diatom species blooming during highly productive upwelling periods were dissolved during sinking, and only those resistant to dissolution and the Chaetoceros and Leptocylindrus spp. resting spores were susceptible to being exported and buried. Furthermore, Chaetoceros spp. dominate during spring-early summer, when persistent northerly winds lead to the upwelling of nutrient-rich waters on the shelf, while Leptocylindrus spp. appear associated with late-summer upwelling relaxation, characterized by water column stratification and nutrient depletion. These findings evidence that the contributions of these diatom genera to the sediment's total marine diatom assemblage should allow for the reconstruction of different past upwelling regimes.

  6. How does the Redi parameter for mesoscale mixing impact global climate in an Earth System Model?

    NASA Astrophysics Data System (ADS)

    Pradal, Marie-Aude; Gnanadesikan, Anand

    2014-09-01

    A coupled climate model is used to examine the impact of an increase in the mixing due to mesoscale eddies on the global climate system. A sixfold increase in the Redi mixing coefficient ARedi, which is within the admissible range of variation, has the overall effect of warming the global-mean surface air and sea surface temperatures by more than 1°C. Locally, sea surface temperatures increase by up to 7°C in the North Pacific and by up to 4°C in the Southern Ocean, with corresponding impacts on the ice concentration and ice extent in polar regions. However, it is not clear that the changes in heat transport from tropics to poles associated with changing this coefficient are primarily responsible for these changes. We found that the changes in the transport of heat are often much smaller than changes in long-wave trapping and short-wave absorption. Additionally, changes in the advective and diffusive transport of heat toward the poles often oppose each other. However, we note that the poleward transport of salt increases near the surface as ARedi increases. We suggest a causal chain in which enhanced eddy stirring leads to increased high-latitude surface salinity reducing salt stratification and water column stability and enhancing convection, triggering two feedback loops. In one, deeper convection prevents sea ice formation, which decreases albedo, which increases SW absorption, further increasing SST and decreasing sea ice formation. In the other, increased SST and reduced sea ice allow for more water vapor in the atmosphere, trapping long-wave radiation. Destratifying the polar regions is thus a potential way in which changes in ocean circulation might warm the planet.

  7. Inclusion of surface gravity wave effects in vertical mixing parameterizations with application to Chesapeake Bay, USA

    NASA Astrophysics Data System (ADS)

    Fisher, A. W.; Sanford, L. P.; Scully, M. E.; Suttles, S. E.

    2016-02-01

    Enhancement of wind-driven mixing by Langmuir turbulence (LT) may have important implications for exchanges of mass and momentum in estuarine and coastal waters, but the transient nature of LT and observational constraints make quantifying its impact on vertical exchange difficult. Recent studies have shown that wind events can be of first order importance to circulation and mixing in estuaries, prompting this investigation into the ability of second-moment turbulence closure schemes to model wind-wave enhanced mixing in an estuarine environment. An instrumented turbulence tower was deployed in middle reaches of Chesapeake Bay in 2013 and collected observations of coherent structures consistent with LT that occurred under regions of breaking waves. Wave and turbulence measurements collected from a vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of TKE, dissipation, turbulent length scale, and the surface wave field. Direct measurements of air-sea momentum and sensible heat fluxes were collected by a co-located ultrasonic anemometer deployed 3m above the water surface. Analyses of the data indicate that the combined presence of breaking waves and LT significantly influences air-sea momentum transfer, enhancing vertical mixing and acting to align stress in the surface mixed layer in the direction of Lagrangian shear. Here these observations are compared to the predictions of commonly used second-moment turbulence closures schemes, modified to account for the influence of wave breaking and LT. LT parameterizations are evaluated under neutrally stratified conditions and buoyancy damping parameterizations are evaluated under stably stratified conditions. We compare predicted turbulent quantities to observations for a variety of wind, wave, and stratification conditions. The effects of fetch-limited wave growth, surface buoyancy flux, and tidal distortion on wave mixing parameterizations will also be discussed.

  8. A Compact L-band Radiometer for High Resolution sUAS-based Imaging of Soil Moisture and Surface Salinity Variations

    NASA Astrophysics Data System (ADS)

    Gasiewski, A. J.; Stachura, M.; Dai, E.; Elston, J.; McIntyre, E.; Leuski, V.

    2014-12-01

    Due to the long electrical wavelengths required along with practical aperture size limitations the scaling of passive microwave remote sensing of soil moisture and salinity from spaceborne low-resolution (~10-100 km) applications to high resolution (~10-1000 m) applications requires use of low flying aerial vehicles. This presentation summarizes the status of a project to develop a commercial small Unmanned Aerial System (sUAS) hosting a microwave radiometer for mapping of soil moisture in precision agriculture and sea surface salinity studies. The project is based on the Tempest electric-powered UAS and a compact L-band (1400-1427 MHz) radiometer developed specifically for extremely small and lightweight aerial platforms or man-portable, tractor, or tower-based applications. Notable in this combination are a highly integrated sUAS/radiometer antenna design and use of both the upwelling emitted signal from the surface and downwelling cold space signal for precise calibration using a unique lobe-differencing correlating radiometer architecture. The system achieves a spatial resolution comparable to the altitude of the UAS above the surface while referencing upwelling measurements to the constant and well-known background temperature of cold space. The radiometer has been tested using analog correlation detection, although future builds will include infrared, near-infrared, and visible (red) sensors for surface temperature and vegetation biomass correction and digital sampling for radio frequency interference mitigation. This NASA-sponsored project is being developed for commercial application in cropland water management (for example, high-value shallow root-zone crops), landslide risk assessment, NASA SMAP satellite validation, and NASA Aquarius salinity stratification studies. The system will ultimately be capable of observing salinity events caused by coastal glacier and estuary fresh water outflow plumes and open ocean rainfall events.

  9. Resonant Tidal Excitation of Internal Waves in the Earth's Fluid Core

    NASA Technical Reports Server (NTRS)

    Tyler, Robert H.; Kuang, Weijia

    2014-01-01

    It has long been speculated that there is a stably stratified layer below the core-mantle boundary, and two recent studies have improved the constraints on the parameters describing this stratification. Here we consider the dynamical implications of this layer using a simplified model. We first show that the stratification in this surface layer has sensitive control over the rate at which tidal energy is transferred to the core. We then show that when the stratification parameters from the recent studies are used in this model, a resonant configuration arrives whereby tidal forces perform elevated rates of work in exciting core flow. Specifically, the internal wave speed derived from the two independent studies (150 and 155 m/s) are in remarkable agreement with the speed (152 m/s) required for excitation of the primary normal mode of oscillation as calculated from full solutions of the Laplace Tidal Equations applied to a reduced-gravity idealized model representing the stratified layer. In evaluating this agreement it is noteworthy that the idealized model assumed may be regarded as the most reduced representation of the stratified dynamics of the layer, in that there are no non-essential dynamical terms in the governing equations assumed. While it is certainly possible that a more realistic treatment may require additional dynamical terms or coupling, it is also clear that this reduced representation includes no freedom for coercing the correlation described. This suggests that one must accept either (1) that tidal forces resonantly excite core flow and this is predicted by a simple model or (2) that either the independent estimates or the dynamical model does not accurately portray the core surface layer and there has simply been an unlikely coincidence between three estimates of a stratification parameter which would otherwise have a broad plausible range.

  10. Turbulent entrainment in a strongly stratified barrier layer

    NASA Astrophysics Data System (ADS)

    Pham, H. T.; Sarkar, S.

    2017-06-01

    Large-eddy simulation (LES) is used to investigate how turbulence in the wind-driven ocean mixed layer erodes the stratification of barrier layers. The model consists of a stratified Ekman layer that is driven by a surface wind. Simulations at a wide range of N0/f are performed to quantify the effect of turbulence and stratification on the entrainment rate. Here, N0 is the buoyancy frequency in the barrier layer and f is the Coriolis parameter. The evolution of the mixed layer follows two stages: a rapid initial deepening and a late-time growth at a considerably slower rate. During the first stage, the mixed layer thickens to the depth that is proportional to u∗/fN0 where u∗ is the frictional velocity. During the second stage, the turbulence in the mixed layer continues to deepen further into the barrier layer, and the turbulent length scale is shown to scale with u∗/N0, independent of f. The late-time entrainment rate E follows the law of E=0.035Ri∗-1/2 where Ri∗ is the Richardson number. The exponent of -1/2 is identical but the coefficient of 0.035 is much smaller relative to the value of 2-3/2 for the nonrotating boundary layer. Simulations using the KPP model (version applicable to this simple case without additional effects of Langmuir turbulence or surface buoyancy flux) also yield the entrainment scaling of E∝Ri∗-1/2; however, the proportionality coefficient varies with the stratification. The structure of the Ekman current is examined to illustrate the strong effect of stratification in the limit of large N0/f.

  11. The ecohydrology of water limited landscapes

    NASA Astrophysics Data System (ADS)

    Huxman, T. E.

    2011-12-01

    Developing a mechanistic understanding of the coupling of ecological and hydrological systems is crucial for understanding the land-surface response of large areas of the globe to changes in climate. The distribution of biodiversity, the quantity and quality of streamflow, the biogeochemistry that constrains vegetation cover and production, and the stability of soil systems in watersheds are all functions of water-life coupling. Many key ecosystem services are governed by the dynamics of near-surface hydrology and biological feedbacks on the landscape occur through plant influence over available soil moisture. Thus, ecohydrology has tremendous potential to contribute to a predictive framework for understanding earth system dynamics. Despite the importance of such couplings and water as a major limiting resource in ecosystems throughout the globe, ecology still struggles with a mechanistic understanding of how changes in rainfall affect the biology of plants and microbes, or how changes in plant communities affect hydrological dynamics in watersheds. Part of the problem comes from our lack of understanding of how plants effectively partition available water among individuals in communities and how that modifies the physical environment, affecting additional resource availability and the passage of water along other hydrological pathways. The partitioning of evapotranspiration between transpiration by plants and evaporation from the soil surface is key to interrelated ecological, hydrological, and atmospheric processes and likely varies with vegetation structure and atmospheric dynamics. In addition, the vertical stratification of autotrophic and heterotrophic components in the soil profile, and the speed at which each respond to increased water, exert strong control over the carbon cycle. The magnitude of biosphere-atmosphere carbon exchange depends on the time-depth-distribution of soil moisture, a fundamental consequence of local precipitation pulse characteristics, soil texture and plant functional type. The transport of metabolic products within plants and their differential activation result in non-intuitive patterns of exchange associated with the major drivers creating problems with the scaling of physiological processes of individual plants to ecosystems. Such dynamics, along with hysteretic behavior creates challenges for measurement, evaluation, modeling and predicting ecosystem behavior. New frameworks and conceptual approaches to modeling ecosystem metabolism and the role of water are helping to describe the consequences of precipitation variability and change.

  12. The amplifying influence of increased ocean stratification on a future year without a summer.

    PubMed

    Fasullo, J T; Tomas, R; Stevenson, S; Otto-Bliesner, B; Brady, E; Wahl, E

    2017-10-31

    In 1816, the coldest summer of the past two centuries was observed over northeastern North America and western Europe. This so-called Year Without a Summer (YWAS) has been widely attributed to the 1815 eruption of Indonesia's Mt. Tambora and was concurrent with agricultural failures and famines worldwide. To understand the potential impacts of a similar future eruption, a thorough physical understanding of the YWAS is crucial. Climate model simulations of both the 1815 Tambora eruption and a hypothetical analogous future eruption are examined, the latter occurring in 2085 assuming a business-as-usual climate scenario. Here, we show that the 1815 eruption drove strong responses in both the ocean and cryosphere that were fundamental to driving the YWAS. Through modulation of ocean stratification and near-surface winds, global warming contributes to an amplified surface climate response. Limitations in using major volcanic eruptions as a constraint on cloud feedbacks are also found.

  13. Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium.

    PubMed

    Vaezi, Alec; Bauer, Christoph; Vasioukhin, Valeri; Fuchs, Elaine

    2002-09-01

    To enable stratification and barrier function, the epidermis must permit self-renewal while maintaining adhesive connections. By generating K14-GFP-actin mice to monitor actin dynamics in cultured primary keratinocytes, we uncovered a role for the actin cytoskeleton in establishing cellular organization. During epidermal sheet formation, a polarized network of nascent intercellular junctions and radial actin cables assemble in the apical plane of the monolayer. These actin fibers anchor to a central actin-myosin network, creating a tension-based plane of cytoskeleton across the apical surface of the sheet. Movement of the sheet surface relative to its base expands the zone of intercellular overlap, catalyzing new sites for nascent intercellular junctions. This polarized cytoskeleton is dependent upon alpha-catenin, Rho, and Rock, and its regulation may be important for wound healing and/or stratification, where coordinated tissue movements are involved.

  14. Stably Stratified Atmospheric Boundary Layers

    NASA Astrophysics Data System (ADS)

    Mahrt, L.

    2014-01-01

    Atmospheric boundary layers with weak stratification are relatively well described by similarity theory and numerical models for stationary horizontally homogeneous conditions. With common strong stratification, similarity theory becomes unreliable. The turbulence structure and interactions with the mean flow and small-scale nonturbulent motions assume a variety of scenarios. The turbulence is intermittent and may no longer fully satisfy the usual conditions for the definition of turbulence. Nonturbulent motions include wave-like motions and solitary modes, two-dimensional vortical modes, microfronts, intermittent drainage flows, and a host of more complex structures. The main source of turbulence may not be at the surface, but rather may result from shear above the surface inversion. The turbulence is typically not in equilibrium with the nonturbulent motions, sometimes preventing the formation of an inertial subrange. New observational and analysis techniques are expected to advance our understanding of the very stable boundary layer.

  15. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere.

    PubMed

    Gorski, Galen; Strong, Courtenay; Good, Stephen P; Bares, Ryan; Ehleringer, James R; Bowen, Gabriel J

    2015-03-17

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry.

  16. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere

    PubMed Central

    Gorski, Galen; Strong, Courtenay; Good, Stephen P.; Bares, Ryan; Ehleringer, James R.; Bowen, Gabriel J.

    2015-01-01

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry. PMID:25733906

  17. Dissolved methane in the residual basins of the Aral Sea

    NASA Astrophysics Data System (ADS)

    Izhitskaya, Elena; Zavialov, Peter; Egorov, Alexander

    2017-04-01

    The state of the Aral Sea has changed significantly since the second half of the 20th century. Due to the level decline the present-day sea consists of the several water bodies: the Large Aral Sea, the Small Aral Sea and Lake Tshchebas. Water balance peculiarities of each basin caused the differences in physical, chemical and biological structure of the ecosystem. Severe salinization of the Large Aral resulted in the increase of water stratification and formation of the anoxic conditions in the bottom layer. According to the field survey of 2002 [Zavialov et al., 2003; Friedrich, Oberhansli, 2004], hydrogen sulfide was detected in the bottom layer of the Large Aral Sea for the first time. Methane formation is the next reaction after sulfate reduction within process of sequential oxidation of organic matter [Break, 1974]. Thus, methane is an important indicator of biogeochemical processes in natural water environments. Besides due to high greenhouse activity of methane study of its emission to the atmosphere is essential for solution of climatological problems [Bazhin, 2000]. The presented study aims to the evaluation of methane dissolved in waters of the Aral region. Measurements of the gas concentration were carried out on surface and vertical profiles, as well as on point stations in 2012, 2013, 2015 and 2016 years in different parts of the sea. Water samples were analyzed by the head-space method with further gas chromatographic determination of methane concentration [Bolshakov, Egorov, 1987]. According to the obtained data, dissolved methane content in the surface waters of the residual basins of the Aral Sea ranges from 12 to 234 nM/l. One of the main results of the research is detection of intensive methane increase in the lower water layer of the Large Aral to 17014 nM/l in central part and to 147316 nM/l in the Chernyshev Bay.

  18. Changes in Bottom Water Physical Properties Above the Mid-Atlantic Ridge Flank in the Brazil Basin

    NASA Astrophysics Data System (ADS)

    Zhao, Jian; Thurnherr, Andreas M.

    2018-01-01

    Warming of abyssal waters in recent decades has been widely documented around the global ocean. Here repeat hydrographic data collected in 1997 and 2014 near a deep fracture zone canyon in the eastern Brazil Basin are used to quantify the long-term change. Significant changes are found in the Antarctic Bottom Water (AABW) within the canyon. The AABW in 2014 was warmer (0.08 ± 0.06°C), saltier (0.01 ± 0.005), and less dense (0.005 ± 0.004 kg m-3) than in 1997. In contrast, the change in the North Atlantic Deep Water has complicated spatial structure and is almost indistinguishable from zero at 95% confidence. The resulting divergence in vertical displacement of the isopycnals modifies the local density stratification. At its peak, the local squared buoyancy frequency (N2) near the canyon is reduced by about 20% from 1997 to 2014. Similar reduction is found in the basinwide averaged profiles over the Mid-Atlantic Ridge flank along 25°W in years 1989, 2005, and 2014. The observed changes in density stratification have important implications for internal tide generation and dissipation.

  19. Bioenergetic evaluation of diel vertical migration by bull trout (Salvelinus confluentus) in a thermally stratified reservoir

    USGS Publications Warehouse

    Eckmann, Madeleine; Dunham, Jason B.; Connor, Edward J.; Welch, Carmen A.

    2018-01-01

    Many species living in deeper lentic ecosystems exhibit daily movements that cycle through the water column, generally referred to as diel vertical migration (DVM). In this study, we applied bioenergetics modelling to evaluate growth as a hypothesis to explain DVM by bull trout (Salvelinus confluentus) in a thermally stratified reservoir (Ross Lake, WA, USA) during the peak of thermal stratification in July and August. Bioenergetics model parameters were derived from observed vertical distributions of temperature, prey and bull trout. Field sampling confirmed that bull trout prey almost exclusively on recently introduced redside shiner (Richardsonius balteatus). Model predictions revealed that deeper (>25 m) DVMs commonly exhibited by bull trout during peak thermal stratification cannot be explained by maximising growth. Survival, another common explanation for DVM, may have influenced bull trout depth use, but observations suggest there may be additional drivers of DVM. We propose these deeper summertime excursions may be partly explained by an alternative hypothesis: the importance of colder water for gametogenesis. In Ross Lake, reliance of bull trout on warm water prey (redside shiner) for consumption and growth poses a potential trade-off with the need for colder water for gametogenesis.

  20. Variable but persistent coexistence of Prochlorococcus ecotypes along temperature gradients in the ocean's surface mixed layer.

    PubMed

    Chandler, Jeremy W; Lin, Yajuan; Gainer, P Jackson; Post, Anton F; Johnson, Zackary I; Zinser, Erik R

    2016-04-01

    The vast majority of the phytoplankton communities in surface mixed layer of the oligotrophic ocean are numerically dominated by one of two ecotypes of Prochlorococcus, eMIT9312 or eMED4. In this study, we surveyed large latitudinal transects in the Atlantic and Pacific Ocean to determine if these ecotypes discretely partition the surface mixed layer niche, or if populations exist as a continuum along key environmental gradients, particularly temperature. Transitions of dominance occurred at approximately 19-21°C, with the eMED4 ecotype dominating the colder, and eMIT9312 ecotype dominating the warmer regions. Within these zones of regional dominance, however, the minority ecotype was not competed to extinction. Rather, a robust log-linear relationship between ecotype ratio and temperature characterized this stabilized coexistence: for every 2.5°C increase in temperature, the eMIT9312:eMED4 ratio increased by an order of magnitude. This relationship was observed in both quantitative polymerase chain reaction and in pyrosequencing assays. Water column stratification also contributed to the ecotype ratio along the basin-scale transects, but to a lesser extent. Finally, instances where the ratio of the eMED4 and eMIT9312 abundances did not correlate well with temperature were identified. Such occurrences are likely due to changes in water temperatures outpacing changes in community structure. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Competition for spectral irradiance between epilimnetic optically active dissolved and suspended matter and phytoplankton in the metalimnion. Consequences for limnology and chemistry.

    PubMed

    Bracchini, Luca; Dattilo, Arduino Massimo; Falcucci, Margherita; Hull, Vincent; Tognazzi, Antonio; Rossi, Claudio; Loiselle, Steven Arthur

    2011-06-01

    In deep lakes, water column stratification isolates the surface water from the deeper bottom layers, creating a three dimensional differentiation of the chemical, physical, biological and optical characteristics of the waters. Chromophoric dissolved organic matter (CDOM) and total suspended solids (TSS) play an important role in the attenuation of ultraviolet and photosynthetically active radiation. In the present analysis of spectral irradiance, we show that the wavelength composition of the metalimnetic visible irradiance was influenced by epilimnetic spatial distribution of CDOM. We found a low occurrence of blue-green photons in the metalimnion where epilimnetic concentrations of CDOM are high. In this field study, the spatial variation of the spectral irradiance in the metalimnion correlates with the observed metalimnetic concentrations of chlorophyll a as well as chlorophyll a : chlorophyll b/c ratios. Dissolved oxygen, pH, and nutrients trends suggest that chlorophyll a concentrations were representative of the phytoplankton biomass and primary production. Thus, metalimnetic changes of spectral irradiance may have a direct impact on primary production and an indirect effect on the spatial trends of pH, dissolved oxygen, and inorganic nutrients in the metalimnion.

  2. Horizontal convection with mechanical stirring

    NASA Astrophysics Data System (ADS)

    Griffiths, Ross; Stewart, Kial; Hughes, Graham

    2012-11-01

    The effects of turbulent mixing on convective circulation forced by a horizontal gradient of buoyancy at the surface is examined using laboratory experiments in which a salt flux is introduced at the surface, at one end of a box, and a freshwater buoyancy condition is applied over the rest of the surface. Horizontal rods are oscillated and yo-yoed continuously through the water column, providing a diffusivity that can be calibrated. The convection reaches a stationary state having zero net salt flux. We find that for small stirring rates the small but finite volume flux from the dense source is significant and a virtual source correction is required to take this into account. The density stratification and overturning volume transport are consistent with a theoretical model for high Rayleigh numbers: the transport ψ increases with diffusivity κ (ψg ~ gκ 1 / 4) . The results show that vertical mixing in the boundary layer is important, particularly in setting the density of the interior and the overturning rate. However, interior mixing is unimportant, which raises an interesting question over whether abyssal mixing rates in the ocean play any significant role in setting the abyssal ocean density or the transport in the Meridional Overturning Circulation.

  3. Mixed Layer Heat and Fresh Water Balance in North Bay of Bengal (18N, 90E) Using a Seaglider and Mooring

    NASA Astrophysics Data System (ADS)

    Thangaprakash, V. P.; Girishkumar, M. S.; S, S.; Chaudhuri, D.; Sureshkumar, N.; Ravichandran, M.; Sengupta, D.; Weller, R. A.

    2016-02-01

    The Bay of Bengal (BoB) receives the large quantity of freshwater by excess precipitation over evaporation and runoff. This large freshwater flux into the BoB leads to strong haline stratification in the near surface layer, which have significant impact on the evolution of near thermo-haline structure and air-sea interactions process in those areas. However, lack of systematic measurements of observations, the factors that are modulating near mixed layer salinity and temperature in these freshwater pool in the northern BoB is not yet understood clearly. Under OMM - ASIRI (Ocean mixing and monsoon - Air sea interaction regional initiatives in the Northern Indian Ocean) programme, 3 month repeated hydrographic survey using seaglider in a butterfly (or bowtie) track centered around a mooring in the North Bay of Bengal (18N, 89E) equipped with near surface ASIMET sensors and subsurface temperature and salinity measurements, which provides unprecedental data source to quantify the relative contribution of different process on the evolution of near surface thermo-haline field through mixed layer heat and salt budget. The results of the analysis will be presented.

  4. Primary Productivity Regime and Nutrient Removal in the Danube Estuary

    NASA Astrophysics Data System (ADS)

    Humborg, C.

    1997-11-01

    The primary productivity regime, as well as the distribution of dissolved inorganic nutrients and particulate organic matter in the Danube estuary, were investigated during several cruises at different discharge regimes of the Danube River. The shallowness of the upper surface layer due to insignificant tidal mixing and strong stratification of the Danube estuary, as well as the high nutrient concentrations, are favourable for elevated primary production. The incident light levels at the bottom of the upper surface layer of the water column (0·5-3·0 m) were generally higher than 20% of the surface irradiance. Elevated chlorophyll (Chl) aconcentrations with maxima at mid salinities were found during each survey. Within the upper mixed layer estimated primary production of 0·2-4·4 g m-2day-1is very high compared with estuaries of other major world rivers. Mixing diagrams of dissolved inorganic nutrients reveal removal of significant quantities of nutrients during estuarine mixing. These observations were consistent with the distribution of particular organic matter, which was negatively correlated to the nutrient distribution during each survey. C:Chl aratios, as well as the elevated estimated production, indicate that biological transformation processes govern the nutrient distribution in this estuary.

  5. Examining Differences in Arctic and Antarctic Sea Ice Change

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Rigor, I. G.; Clemente-Colon, P.; Neumann, G.; Li, P.

    2015-12-01

    The paradox of the rapid reduction of Arctic sea ice versus the stability (or slight increase) of Antarctic sea ice remains a challenge in the cryospheric science research community. Here we start by reviewing a number of explanations that have been suggested by different researchers and authors. One suggestion is that stratospheric ozone depletion may affect atmospheric circulation and wind patterns such as the Southern Annular Mode, and thereby sustaining the Antarctic sea ice cover. The reduction of salinity and density in the near-surface layer may weaken the convective mixing of cold and warmer waters, and thus maintaining regions of no warming around the Antarctic. A decrease in sea ice growth may reduce salt rejection and upper-ocean density to enhance thermohalocline stratification, and thus supporting Antarctic sea ice production. Melt water from Antarctic ice shelves collects in a cool and fresh surface layer to shield the surface ocean from the warmer deeper waters, and thus leading to an expansion of Antarctic sea ice. Also, wind effects may positively contribute to Antarctic sea ice growth. Moreover, Antarctica lacks of additional heat sources such as warm river discharge to melt sea ice as opposed to the case in the Arctic. Despite of these suggested explanations, factors that can consistently and persistently maintains the stability of sea ice still need to be identified for the Antarctic, which are opposed to factors that help accelerate sea ice loss in the Arctic. In this respect, using decadal observations from multiple satellite datasets, we examine differences in sea ice properties and distributions, together with dynamic and thermodynamic processes and interactions with land, ocean, and atmosphere, causing differences in Arctic and Antarctic sea ice change to contribute to resolving the Arctic-Antarctic sea ice paradox.

  6. Picophytoplankton variability: Influence of winter convective mixing and advection in the northeastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Bemal, Suchandan; Anil, Arga Chandrashekar; Shankar, D.; Remya, R.; Roy, Rajdeep

    2018-04-01

    The deepening of mixed layer and ensuing changes in optical and physicochemical properties of euphotic zone can influence phytoplankton community dynamics in the northeastern Arabian Sea during winter monsoon. The response of picophytoplankton community to such changes during winter convective mixing is not well understood. Herein, we have compared variations in the picophytoplankton community structure during early (November-December 2012), peak (end-January 2014) and late (mid-February 2015) winter monsoon from three separate cruises in the southern northeastern Arabian Sea. The higher Synechococcus abundance owing to entrainment of nutrients in mixed layer was observed during peak winter monsoon, while the concomitant changes in nitrate concentration, light and oxygen environment restricted Prochlorococcus growth resulting in lower abundance during the same period. This highlights the diverse responses of picophytoplankton groups to physicochemical changes of water column during winter convective mixing. The divinyl chlorophyll b/a ratio (marker for Prochlorococcus ecotypes) indicated prevalence of one low-light adapted ecotype (sensitive to light shock) in sub-surface water, one high-light adapted ecotype in surface water during early winter monsoon and both disappeared during intense mixing period in peak winter monsoon. Subsequently, a distinct low-light adapted ecotype, capable to tolerate light shock, was noticed during late winter monsoon and we argue that this ecotype is introduced to southern northeastern Arabian Sea through advection from north by sub-surface circulation. The total picophytoplankton biomass available to microbial loop is restored during late winter monsoon, when stratification begins, with a higher abundance of Synechococcus and the re-occurrence of Prochlorococcus population in the region. These inferences indicate that variability in picophytoplankton community structure and their contribution to the microbial loop are driven by convective mixing and advection, which in turn influence ecosystem functioning and trophodynamics of the southern northeastern Arabian Sea.

  7. Stratification of a closed region containing two buoyancy sources

    NASA Astrophysics Data System (ADS)

    Thompson, Andrew; Linden, Paul

    2005-11-01

    Many closed systems such as lakes, ocean basins, rooms etc. have inputs of buoyancy at different levels. We address the question of how the resulting stratification depends on the location of these sources. For example a lake is heated and cooled at the surface, while for a room cool air may be applied at the ceiling but the heat source may be a person standing on the floor. We present an experimental study of convection in a finite box in which we systematically vary the vertical location of two well-separated, constant buoyancy sources. We specifically consider the case of a dense source and a light source so that there is no net buoyancy flux into the tank. We study the development of the large-time stratification in the tank, which falls between one of two limits. When the location of the dense source is significantly higher than the light source, the fluid is well mixed and the system remains largely unstratified. When the location of the light source is significantly higher than the dense source, a two- layer stratification develops. We find that the circulation pattern is dominated by counter-flowing shear layers (Wong, Griffiths & Hughes, 2001), whose number and strength are strongly influenced by the buoyancy source locations. The shear layers are the primary means of communication between the plumes and thus play a large role in the resulting stratification. We support our findings with a simple numerical model.

  8. Contrasting taxonomic stratification of microbial communities in two hypersaline meromictic lakes

    PubMed Central

    Andrei, Adrian-Ştefan; Robeson, Michael S; Baricz, Andreea; Coman, Cristian; Muntean, Vasile; Ionescu, Artur; Etiope, Giuseppe; Alexe, Mircea; Sicora, Cosmin Ionel; Podar, Mircea; Banciu, Horia Leonard

    2015-01-01

    Hypersaline meromictic lakes are extreme environments in which water stratification is associated with powerful physicochemical gradients and high salt concentrations. Furthermore, their physical stability coupled with vertical water column partitioning makes them important research model systems in microbial niche differentiation and biogeochemical cycling. Here, we compare the prokaryotic assemblages from Ursu and Fara Fund hypersaline meromictic lakes (Transylvanian Basin, Romania) in relation to their limnological factors and infer their role in elemental cycling by matching taxa to known taxon-specific biogeochemical functions. To assess the composition and structure of prokaryotic communities and the environmental factors that structure them, deep-coverage small subunit (SSU) ribosomal RNA (rDNA) amplicon sequencing, community domain-specific quantitative PCR and physicochemical analyses were performed on samples collected along depth profiles. The analyses showed that the lakes harbored multiple and diverse prokaryotic communities whose distribution mirrored the water stratification patterns. Ursu Lake was found to be dominated by Bacteria and to have a greater prokaryotic diversity than Fara Fund Lake that harbored an increased cell density and was populated mostly by Archaea within oxic strata. In spite of their contrasting diversity, the microbial populations indigenous to each lake pointed to similar physiological functions within carbon degradation and sulfate reduction. Furthermore, the taxonomy results coupled with methane detection and its stable C isotope composition indicated the presence of a yet-undescribed methanogenic group in the lakes' hypersaline monimolimnion. In addition, ultrasmall uncultivated archaeal lineages were detected in the chemocline of Fara Fund Lake, where the recently proposed Nanohaloarchaeota phylum was found to thrive. PMID:25932617

  9. Origin of Amazon mudbanks along the northeastern coast of South America

    USGS Publications Warehouse

    Allison, M.A.; Lee, M.T.; Ogston, A.S.; Aller, R.C.

    2000-01-01

    Seismic profiles, sediment cores, and water column measurements were collected along the northeastern coast of Brazil to examine the origin of mudbanks in the Amazon coastal mud belt. These 10-60-km-long, shore-attached features previously had been observed to migrate along the 1200 km coast of the Guianas in response to wave forcing. CHIRP (3.5 kHz) seismic profiles of the shoreface and inner shelf located two mudbanks updrift of the previous eastern limit in French Guiana. 210Pb geochronology shows that these two banks are migrating to the northwest over a relict mud surface in 5-20 m water depth. The mudbanks are 3-4 m thick and are translating over a modern shoreface mud wedge deposited by previous mudbank passage in < 5 m water depth. Initial mudbank development is taking place on the intertidal and shallow subtidal mudflats at Cabo Cassipore, associated with an alongshore-accreting clinoform feature. Sediment trapping in this area is controlled by the nearshore presence of strong water column stratification produced by the enormous Amazon freshwater discharge on the shelf and by proximity to the Cassipore River estuary. Seasonal and decadal periods of sediment supply and starvation in this area likely are controlled by variations in northwest trade wind intensity. (C) 2000 Elsevier Science B.V.

  10. Vertical and Tidal Variability of the Floc Size Distribution in a Partially Mixed, Low Turbidity, Anthropogenically Altered Geum River Estuary, Korea

    NASA Astrophysics Data System (ADS)

    Lee, G. H.; Figueroa, S. M.; Shin, H. J.

    2016-12-01

    After the construction of the Geum River Estuary dam in 1994, current velocities and water turbidity decreased while the rate of mud deposition doubled, causing the water to become increasingly shallower. To better understand the sediment transport processes in the estuary, profiles of current speed, salinity, and the in-situ floc size distribution were measured during the wet season over three spring tidal cycles in the inner estuary. Although the primary particle size distribution (PPSD) was bimodal clay and coarse silt, the in-situ floc size distribution was observed to be unimodal during conditions promoting flocculation, with a mode (400 um) almost an order of magnitude larger than the coarse silt mode of the PPSD. Sediment resuspension and deflocculation were observed throughout the water column during flood while rapid flocculation and settling were observed in the surface water during calmer slack tides. During ebb, a halocline developed due to tidal straining which trapped macroflocs and created a mid-depth maximum in median floc size. These observations imply periodic stratification is important for floc dynamics even during spring tides and suggests that asymmetry in flocculation during the short term (tidal cycle) could be an important factor in the long term sediment deposition in Geum River Estuary.

  11. Anthropogenic climate change has altered primary productivity in Lake Superior

    PubMed Central

    O'Beirne, M. D.; Werne, J. P.; Hecky, R. E.; Johnson, T. C.; Katsev, S.; Reavie, E. D.

    2017-01-01

    Anthropogenic climate change has the potential to alter many facets of Earth's freshwater resources, especially lacustrine ecosystems. The effects of anthropogenic changes in Lake Superior, which is Earth's largest freshwater lake by area, are not well documented (spatially or temporally) and predicted future states in response to climate change vary. Here we show that Lake Superior experienced a slow, steady increase in production throughout the Holocene using (paleo)productivity proxies in lacustrine sediments to reconstruct past changes in primary production. Furthermore, data from the last century indicate a rapid increase in primary production, which we attribute to increasing surface water temperatures and longer seasonal stratification related to longer ice-free periods in Lake Superior due to anthropogenic climate warming. These observations demonstrate that anthropogenic effects have become a prominent influence on one of Earth's largest, most pristine lacustrine ecosystems. PMID:28598413

  12. The Southern Ocean's role in carbon exchange during the last deglaciation.

    PubMed

    Burke, Andrea; Robinson, Laura F

    2012-02-03

    Changes in the upwelling and degassing of carbon from the Southern Ocean form one of the leading hypotheses for the cause of glacial-interglacial changes in atmospheric carbon dioxide. We present a 25,000-year-long Southern Ocean radiocarbon record reconstructed from deep-sea corals, which shows radiocarbon-depleted waters during the glacial period and through the early deglaciation. This depletion and associated deep stratification disappeared by ~14.6 ka (thousand years ago), consistent with the transfer of carbon from the deep ocean to the surface ocean and atmosphere via a Southern Ocean ventilation event. Given this evidence for carbon exchange in the Southern Ocean, we show that existing deep-ocean radiocarbon records from the glacial period are sufficiently depleted to explain the ~190 per mil drop in atmospheric radiocarbon between ~17 and 14.5 ka.

  13. Anthropogenic climate change has altered primary productivity in Lake Superior.

    PubMed

    O'Beirne, M D; Werne, J P; Hecky, R E; Johnson, T C; Katsev, S; Reavie, E D

    2017-06-09

    Anthropogenic climate change has the potential to alter many facets of Earth's freshwater resources, especially lacustrine ecosystems. The effects of anthropogenic changes in Lake Superior, which is Earth's largest freshwater lake by area, are not well documented (spatially or temporally) and predicted future states in response to climate change vary. Here we show that Lake Superior experienced a slow, steady increase in production throughout the Holocene using (paleo)productivity proxies in lacustrine sediments to reconstruct past changes in primary production. Furthermore, data from the last century indicate a rapid increase in primary production, which we attribute to increasing surface water temperatures and longer seasonal stratification related to longer ice-free periods in Lake Superior due to anthropogenic climate warming. These observations demonstrate that anthropogenic effects have become a prominent influence on one of Earth's largest, most pristine lacustrine ecosystems.

  14. A TABULAR PRESENTATION OF THE SURFACE BOUNDARY LAYER MODELS OF WEBB, BUSINGER, AND PANOFSKY.

    DTIC Science & Technology

    methods. The models are presented in tabular form in terms of diabatic wind influence function , the gradient stability ratio and a universal function that corrects for thermal stratification in unstable air. (Author)

  15. Geochemistry of organic carbon and trace elements in boreal stratified lakes during different seasons

    NASA Astrophysics Data System (ADS)

    Moreva, O. Y.; Pokrovsky, O. S.; Shirokova, L. S.; Viers, J.

    2008-12-01

    Our knowledge of chemical fluxes in the system rock-soils-rivers-ocean of boreal and glacial landscapes is limited by the least studied part, i.e., the river water transformation between the lake and the river systems. Dissolved organic carbon (DOC), nutrients, major and trace elements are being leached from soil profile to the river but subjected to chemical transformation in the lakes due to phytoplankton and bacterial activity. As a result, many lakes in boreal regions are quite different in chemical composition compared to surrounding rivers and demonstrate important chemical stratification. The main processes responsible for chemical stratification in lakes are considered to be i) diffusion fluxes from the sediment to the bottom water accompanied by sulfate reduction and methanogenesis in the sediments and ii) dissolution/mineralization of precipitating organic matter (mineral fraction, detritus, plankton pellets) in the bottom layer horizons under anoxic conditions. Up to present time, distinguishing between two processes remains difficult. This paper is aimed at filling this gap via detailed geochemical analysis of DOC and trace elements in the water column profiles of three typical stratified lakes of Arkhangelsk region in Kenozersky National Parc (64° N) in winter (glacial) and in summer period. Concentration of most trace elements (Li, B, Al, Ti, V, Cr, Ni, Co, Zn, As, Rb, Sr, Y, Zr, Mo, Sb, Ba, REEs, Th, U) are not subjected to strong variations along the water column, despite the presence of strong or partial redox stratification. Apparently, these elements are not significantly controlled by production/mineralization processes and redox phenomena in the water column, or the influence of these processes is not pronounced under the control by the allochtonous river water input. In particularly, the stability of titanium and aluminum concentration along the depth profile and their independence of iron behavior suggest the important control by dissolved organic matter. Therefore, organo-ferric colloids controlling petrogenic elements speciation in soil and river waters are being replaced by autochthonous organic colloids in the lake system. The same observation is true for some heavy metals such as nickel, copper and zinc, whereas cobalt, as limiting component, is being strongly removed from the photic zone or it is coprecipitating with manganese hydroxide. Results of the present work allow quantitative evaluation of the role of redox processes in the bottom horizons and organic detritus degradation in the creation of chemical stratification of small lakes with high DOC concentration. Further insights on geochemical migration of trace elements in lakes require : i) study of colloidal speciation using in-situ dialysis; ii) monitoring the annual and seasonal dynamics of redox processes and TE concentration variation along the profile; iii) quantitative assessment of bacterial degradation of suspended OM and Mn and Fe redox reactions along the depth profile; iv) setting the sedimentary traps for evaluation of suspended material fluxes, and, v) thorough study of chemical composition of interstitial pore waters.

  16. A numerical study of diurnally varying surface temperature on flow patterns and pollutant dispersion in street canyons

    NASA Astrophysics Data System (ADS)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-03-01

    The impacts of the diurnal variation of surface temperature on street canyon flow pattern and pollutant dispersion are investigated based on a two-dimensional street canyon model under different thermal stratifications. Uneven distributed street temperature conditions and a user-defined wall function representing the heat transfer between the air and the street canyon are integrated into the current numerical model. The prediction accuracy of this model is successfully validated against a published wind tunnel experiment. Then, a series of numerical simulations representing four time scenarios (Morning, Afternoon, Noon and Night) are performed at different Bulk Richardson number (Rb). The results demonstrate that uneven distributed street temperature conditions significantly alters street canyon flow structure and pollutant dispersion characteristics compared with conventional uniform street temperature assumption, especially for the morning event. Moreover, air flow patterns and pollutant dispersion are greatly influenced by diurnal variation of surface temperature under unstable stratification conditions. Furthermore, the residual pollutant in near-ground-zone decreases as Rb increases in noon, afternoon and night events under all studied stability conditions.

  17. Summer microbial community composition governed by upper-ocean stratification and nutrient availability in northern Marguerite Bay, Antarctica

    NASA Astrophysics Data System (ADS)

    Rozema, Patrick D.; Biggs, Tristan; Sprong, Pim A. A.; Buma, Anita G. J.; Venables, Hugh J.; Evans, Claire; Meredith, Michael P.; Bolhuis, Henk

    2017-05-01

    The Western Antarctic Peninsula warmed significantly during the second half of the twentieth century, with a concurrent retreat of the majority of its glaciers, and marked changes in the sea-ice field. These changes may affect summertime upper-ocean stratification, and thereby the seasonal dynamics of phytoplankton and bacteria. In the present study, we examined coastal Antarctic microbial community dynamics by pigment analysis and applying molecular tools, and analysed various environmental parameters to identify the most important environmental drivers. Sampling focussed on the austral summer of 2009-2010 at the Rothera oceanographic and biological Time Series (RaTS) site in northern Marguerite bay, Antarctica. The Antarctic summer was characterized by a salinity decrease (measured at 15 m depth) coinciding with increased meteoric water fraction. Maximum Chl-a values of 35 μg l-1 were observed during midsummer and mainly comprised of diatoms. Microbial community fingerprinting revealed four distinct periods in phytoplankton succession during the summer while bacteria showed a delayed response to the phytoplankton community. Non-metric multidimensional scaling analyses showed that phytoplankton community dynamics were mainly directed by temperature, mixed layer depth and wind speed. Both high and low N/P ratios might have influenced phytoplankton biomass accumulation. The bacterioplankton community composition was mainly governed by Chl-a, suggesting a link to phytoplankton community changes. High-throughput 16S and 18S rRNA amplicon sequencing revealed stable eukaryotic and bacterial communities with regards to observed species, yet varying temporal relative contributions. Eukaryotic sequences were dominated by pennate diatoms in December followed by polar centric diatoms in January and February. Our results imply that the reduction of mixed layer depth during summer, caused by meltwater-related surface stratification, promotes a succession in diatoms rather than in nanophytoflagellates in northern Marguerite Bay, which may favour higher trophic levels.

  18. Reconstructing palaeo-environmental conditions in the Baltic: A multi-proxy comparison from IODP Site M0059 (Little Belt)

    NASA Astrophysics Data System (ADS)

    Kotthoff, Ulrich; Andrén, Thomas; Bauersachs, Thorsten; Fanget, Anne-Sophie; Granoszewski, Wojciech; Groeneveld, Jeroen; Krupinski, Nadine; Peyron, Odile; Stepanova, Anna; Cotterill, Carol

    2015-04-01

    Some of the largest marine environmental impacts from ongoing global climate change are occurring in continental shelf seas and enclosed basins, including severe oxygen depletion, intensifying stratification, and increasing temperatures. In order to predict future changes in water mass conditions, it is essential to reconstruct how these conditions have changed in the past. The brackish Baltic Sea is one of the largest semi-enclosed basins worldwide, and hence provides a unique opportunity to analyse past changes. IODP Expedition 347 recovered a unique set of long sediment cores from the Baltic Sea Basin which allow new high-resolution reconstructions. The application of existing and development of new proxies in such a setting is complicated, as environmental changes often occur on much faster time scales with much larger variations. Therefore, we present a comparison of commonly used proxies to reconstruct palaeoecosystems, -temperatures, and -salinity from IODP Site M0059 in the Little Belt. The age model for Site M0059 is based on 14C dating and biostratigraphic correlation with neighbouring terrestrial pollen records. The aim of our study is to reconstruct the development of the terrestrial and marine ecosystems in the research area and the related environmental conditions, and to identify potential limitations for specific proxies. Pollen is used as proxy for vegetation development in the hinterland of the southern Baltic Sea and as land/air-temperature proxies. By comparison with dinoflagellate cysts and green algae remains from the same samples, a direct land-sea comparison is provided. The application of the modern analogues technique to pollen assemblages has previously yielded precise results for late Pleistocene and Holocene datasets including specific information on seasonality, but pollen-based reconstructions for Northern Europe may be hampered by plant migration effects. Chironomid remains are used where possible as indicators for surface water conditions during the warm season. Analyses of palynomorphs and chironomids are complemented with the analysis of lipid palaeothermometers, such as TEX86 and the long chain diol index (LDI), which both allow reconstructing variation in sea surface temperatures (SST) of the Baltic Sea. In addition, the MBT/CBT proxy is used to infer past changes in mean annual air temperatures (MAAT) and the diol index (DI) to determine variation in salinity of the Baltic Sea's surface waters over the investigated time period. The low salinity (25 psu) of the Little Belt is a potential limitation for several of the used proxies, which could lead to under-estimation of paleo-temperatures. To quantitatively and qualitatively estimate the impact of salinity, δ18O measurements (monospecific) and faunal assemblage analyses are performed on benthic foraminifera as well as ostracod faunal assemblages, which are especially sensitive to bottom water salinity changes. The results of this inter-comparison study will be useful for the reconstruction of gradients between different settings, e.g. how water column stratification developed, possibly if and how changes in seasonality occurred, and to identify the circumstances under which specific proxies may be affected by secondary impacts.

  19. Spatio-temporal spawning and larval dynamics of a zebra mussel (Dreissena polymorpha) population in a North Texas Reservoir: implications for invasions in the southern United States

    USGS Publications Warehouse

    Churchill, Christopher John

    2013-01-01

    Zebra mussels were first observed in Texas in 2009 in a reservoir (Lake Texoma) on the Texas-Oklahoma border. In 2012, an established population was found in a near-by reservoir, Ray Roberts Lake, and in June 2013, settled mussels were detected in a third north Texas reservoir, Lake Lewisville. An established population was detected in Belton Lake in September 2013. With the exception of Louisiana, these occurrences in Texas mark the current southern extent of the range of this species in the United States. Previous studies indicate that zebra mussel populations could be affected by environmental conditions, especially increased temperatures and extreme droughts, which are characteristic of surface waters of the southern and southwestern United States. Data collected during the first three years (2010–12) of a long-term monitoring program were analyzed to determine if spatio-temporal zebra mussel spawning and larval dynamics were related to physicochemical water properties in Lake Texoma. Reproductive output of the local population was significantly related to water temperature and lake elevation. Estimated mean date of first spawn in Lake Texoma was approximately 1.5 months earlier and peak veliger densities were observed two months earlier than in Lake Erie. Annual maximum veliger density declined significantly during the study period (p < 0.0001). A population crash occurred as a result of thermal stress and variability of lake elevation. In summer 2011, water temperatures peaked at 34.3°C and lake elevation declined to the lowest level recorded during the previous 18 years, which resulted in desiccation of substantial numbers of settled mussels in littoral zones. Veliger spatial distributions were associated with physicochemical stratification characteristics. Veligers were observed in the deepest oxygenated water after lake stratification, which occurred in late spring. Results of this study indicate environmental conditions can influence variability of population sizes and spatial distributions of zebra mussels along the current southern frontier of their geographic range. Although the future population size trajectory and geographic range are uncertain, increased temperatures and intermittent, extreme droughts likely will affect spatio-temporal dynamics of established populations if zebra mussels spread farther into the southern and southwestern United States.

  20. Physico-chemical conditions for plankton in Lake Timsah, a saline lake on the Suez Canal

    NASA Astrophysics Data System (ADS)

    El-Serehy, H. A. H.; Sleigh, M. A.

    1992-02-01

    Lake Timsah receives high salinity water from the Suez Canal, mainly from the south, and freshwater from a Nile canal and other sources, producing a salinity stratification with surface salinities of 20-40‰ and over 40‰ in deeper water. Water temperature at a depth of 50-70 cm fell to below 20 °C in winter and rose to above 30 °C in summer; oxygen concentration at the same depth ranged between 6-10 mg l -1 and the pH was 8·1-8·3, and at mid-day this water was supersaturated with oxygen through 6-8 months of the year. The main chemical nutrients reached their highest levels in winter (December-February) and their lowest levels in summer (May-August), silicate varying between 1-7 μ M, phosphate between 0·1 and 0·8 μ M and nitrate between 4-10 μ M; nitrite varied in a more complex manner, usually between 0·25 and 0·4 μ M. The atomic ratio of N/P was generally well above the Redfield ratio level, except for a few months in midwinter. These nutrient concentrations are high in comparison with those of unpolluted seas of the region, but are typical of the more eutrophic coastal waters in most parts of the world.

Top