Sample records for surface waters originating

  1. On the Role of Fe2O3 Surface States for Water Splitting

    NASA Astrophysics Data System (ADS)

    Caspary Toroker, Maytal

    Understanding the chemical nature and role of electrode surface states is crucial for improved electrochemical cell operation. For iron (III) oxide (α-Fe2O3) , which is one of the most widely studied anode electrodes used for water splitting, surface states were related to the appearance of a dominant absorption peak during water splitting. The chemical origin of this signature is still unclear and this open question has provoked tremendous debate. In order to pin down the origin and role of surface states, we perform first principle calculations with density functional theory +U on several possible adsorbates at the α-Fe2O3(0001) surface. We show that the origin of the surface absorption peak could be a Fe-Otype bond that functions as an essential intermediate of water oxidation

  2. A new perspective on origin of the East Sea Intermediate Water: Observations of Argo floats

    NASA Astrophysics Data System (ADS)

    Park, JongJin; Lim, Byunghwan

    2018-01-01

    The East Sea Intermediate Water (ESIW), defined as the salinity minimum in the East Sea (hereafter ES) (Sea of Japan), is examined with respect to its overall characteristics and its low salinity origin using historical Argo float data from 1999 to 2015. Our findings suggest that the ESIW is formed in the western Japan Basin (40-42°N, 130-133°E), especially west of the North Korean front in North Korean waters, where strong negative surface wind stress curl resides in wintertime. The core ESIW near the formation site has temperatures of 3-4 °C and less than 33.98 psu salinity, warmer and fresher than that in the southern part of the ES. In order to trace the origin of the warmer and fresher water at the sea surface in winter, we analyzed the data in three different ways: (1) spatial distribution of surface water properties using monthly climatology from the Argo float data, (2) seasonal variation of heat and salt contents at the formation site, and (3) backtracking of surface drifter trajectories. Based on these analyses, it is likely that the warmer and fresher surface water properties found in the ESIW formation site are attributed to the low-salinity surface water advected from the southern part of the ES in autumn.

  3. Occurrence of pesticides and contaminants of emerging concern in surface waters: Influence of surrounding land use and evaluation of sampling methods

    USDA-ARS?s Scientific Manuscript database

    Biologically active compounds originating from agricultural, residential, and industrial sources have been detected in surface waters, which have invoked concern of their potential ecological and human health effects. Automated and grab surface water samples, passive water samples - Polar Organic Co...

  4. Origins of the Non-DLVO Force between Glass Surfaces in Aqueous Solution.

    PubMed

    Adler, Joshua J.; Rabinovich, Yakov I.; Moudgil, Brij M.

    2001-05-15

    Direct measurement of surface forces has revealed that silica surfaces seem to have a short-range repulsion that is not accounted for in classical DLVO theory. The two leading hypotheses for the origin of the non-DLVO force are (i) structuring of water at the silica interface or (ii) water penetration into the surface resulting in a gel layer. In this article, the interaction of silica surfaces will be reviewed from the perspective of the non-DLVO force origin. In an attempt to more accurately describe the behavior of silica and glass surfaces, alternative models of how surfaces with gel layers should interact are proposed. It is suggested that a lessened van der Waals attraction originating from a thin gel layer may explain both the additional stability and the coagulation behavior of silica. It is important to understand the mechanisms underlying the existence of the non-DLVO force which is likely to have a major influence on the adsorption of polymers and surfactants used to modify the silica surface for practical applications in the ceramic, mineral, and microelectronic industries. Copyright 2001 Academic Press.

  5. Water on the surface of the Moon as seen by the Moon Mineralogy Mapper: Distribution, abundance, and origins

    PubMed Central

    Li, Shuai; Milliken, Ralph E.

    2017-01-01

    A new thermal correction model and experimentally validated relationships between absorption strength and water content have been used to construct the first global quantitative maps of lunar surface water derived from the Moon Mineralogy Mapper near-infrared reflectance data. We find that OH abundance increases as a function of latitude, approaching values of ~500 to 750 parts per million (ppm). Water content also increases with the degree of space weathering, consistent with the preferential retention of water originating from solar wind implantation during agglutinate formation. Anomalously high water contents indicative of interior magmatic sources are observed in several locations, but there is no global correlation between surface composition and water content. Surface water abundance can vary by ~200 ppm over a lunar day, and the upper meter of regolith may contain a total of ~1.2 × 1014 g of water averaged over the globe. Formation and migration of water toward cold traps may thus be a continuous process on the Moon and other airless bodies. PMID:28924612

  6. Hydrology of Bishop Creek, California: An Isotopic Analysis

    Treesearch

    Michael L. Space; John W. Hess; Stanley D. Smith

    1989-01-01

    Five power generation plants along an eleven kilometer stretch divert Bishop Creek water for hydro-electric power. Stream diversion may be adversely affecting the riparian vegetation. Stable isotopic analysis is employed to determine surface water/ground-water interactions along the creek. surface water originates primarily from three headwater lakes. Discharge into...

  7. Analysing the origin of rain- and subsurface water in seasonal wetlands of north-central Namibia

    NASA Astrophysics Data System (ADS)

    Hiyama, Tetsuya; Kanamori, Hironari; Kambatuku, Jack R.; Kotani, Ayumi; Asai, Kazuyoshi; Mizuochi, Hiroki; Fujioka, Yuichiro; Iijima, Morio

    2017-03-01

    We investigated the origins of rain- and subsurface waters of north-central Namibia’s seasonal wetlands, which are critical to the region’s water and food security. The region includes the southern part of the Cuvelai system seasonal wetlands (CSSWs) of the Cuvelai Basin, a transboundary river basin covering southern Angola and northern Namibia. We analysed stable water isotopes (SWIs) of hydrogen (HDO) and oxygen (H2 18O) in rainwater, surface water and shallow groundwater. Rainwater samples were collected during every rainfall event of the rainy season from October 2013 to April 2014. The isotopic ratios of HDO (δD) and oxygen H2 18O (δ 18O) were analysed in each rainwater sample and then used to derive the annual mean value of (δD, δ 18O) in precipitation weighted by each rainfall volume. Using delta diagrams (plotting δD vs. δ 18O), we showed that the annual mean value was a good indicator for determining the origins of subsurface waters in the CSSWs. To confirm the origins of rainwater and to explain the variations in isotopic ratios, we conducted atmospheric water budget analysis using Tropical Rainfall Measuring Mission (TRMM) multi-satellite precipitation analysis (TMPA) data and ERA-Interim atmospheric reanalysis data. The results showed that around three-fourths of rainwater was derived from recycled water at local-regional scales. Satellite-observed outgoing longwave radiation (OLR) and complementary satellite data from MODerate-resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer (AMSR) series implied that the isotopic ratios in rainwater were affected by evaporation of raindrops falling from convective clouds. Consequently, integrated SWI analysis of rain-, surface and subsurface waters, together with the atmospheric water budget analysis, revealed that shallow groundwater of small wetlands in this region was very likely to be recharged from surface waters originating from local rainfall, which was temporarily pooled in small wetlands. This was also supported by tritium (3H) counting of the current rain- and subsurface waters in the region. We highly recommend that shallow groundwater not be pumped intensively to conserve surface and subsurface waters, both of which are important water resources in the region.

  8. Using fluorescent dissolved organic matter to trace and distinguish the origin of Arctic surface waters

    PubMed Central

    Gonçalves-Araujo, Rafael; Granskog, Mats A.; Bracher, Astrid; Azetsu-Scott, Kumiko; Dodd, Paul A.; Stedmon, Colin A.

    2016-01-01

    Climate change affects the Arctic with regards to permafrost thaw, sea-ice melt, alterations to the freshwater budget and increased export of terrestrial material to the Arctic Ocean. The Fram and Davis Straits represent the major gateways connecting the Arctic and Atlantic. Oceanographic surveys were performed in the Fram and Davis Straits, and on the east Greenland Shelf (EGS), in late summer 2012/2013. Meteoric (fmw), sea-ice melt, Atlantic and Pacific water fractions were determined and the fluorescence properties of dissolved organic matter (FDOM) were characterized. In Fram Strait and EGS, a robust correlation between visible wavelength fluorescence and fmw was apparent, suggesting it as a reliable tracer of polar waters. However, a pattern was observed which linked the organic matter characteristics to the origin of polar waters. At depth in Davis Strait, visible wavelength FDOM was correlated to apparent oxygen utilization (AOU) and traced deep-water DOM turnover. In surface waters FDOM characteristics could distinguish between surface waters from eastern (Atlantic + modified polar waters) and western (Canada-basin polar waters) Arctic sectors. The findings highlight the potential of designing in situ multi-channel DOM fluorometers to trace the freshwater origins and decipher water mass mixing dynamics in the region without laborious samples analyses. PMID:27667721

  9. Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks.

    PubMed

    Li, L; Wing, B A; Bui, T H; McDermott, J M; Slater, G F; Wei, S; Lacrampe-Couloume, G; Lollar, B Sherwood

    2016-10-27

    The discovery of hydrogen-rich waters preserved below the Earth's surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen originates from water-rock reactions including serpentinization and radiolytic decomposition of water induced by decay of radioactive elements in the host rocks. The origin of dissolved sulfate, however, remains unknown. Here we report, from anoxic saline fracture waters ∼2.4 km below surface in the Canadian Shield, a sulfur mass-independent fractionation signal in dissolved sulfate. We demonstrate that this sulfate most likely originates from oxidation of sulfide minerals in the Archaean host rocks through the action of dissolved oxidants (for example, HO · and H 2 O 2 ) themselves derived from radiolysis of water, thereby providing a coherent long-term mechanism capable of supplying both an essential electron donor (H 2 ) and a complementary acceptor (sulfate) for the deep biosphere.

  10. Update of the Accounting Surface Along the Lower Colorado River

    USGS Publications Warehouse

    Wiele, Stephen M.; Leake, Stanley A.; Owen-Joyce, Sandra J.; McGuire, Emmet H.

    2008-01-01

    The accounting-surface method was developed in the 1990s by the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, to identify wells outside the flood plain of the lower Colorado River that yield water that will be replaced by water from the river. This method was needed to identify which wells require an entitlement for diversion of water from the Colorado River and need to be included in accounting for consumptive use of Colorado River water as outlined in the Consolidated Decree of the United States Supreme Court in Arizona v. California. The method is based on the concept of a river aquifer and an accounting surface within the river aquifer. The study area includes the valley adjacent to the lower Colorado River and parts of some adjacent valleys in Arizona, California, Nevada, and Utah and extends from the east end of Lake Mead south to the southerly international boundary with Mexico. Contours for the original accounting surface were hand drawn based on the shape of the aquifer, water-surface elevations in the Colorado River and drainage ditches, and hydrologic judgment. This report documents an update of the original accounting surface based on updated water-surface elevations in the Colorado River and drainage ditches and the use of simple, physically based ground-water flow models to calculate the accounting surface in four areas adjacent to the free-flowing river.

  11. Dynamic Bubble Surface Tension Measurements in Northwest Atlantic Seawater

    NASA Astrophysics Data System (ADS)

    Kieber, D. J.; Long, M. S.; Keene, W. C.; Kinsey, J. D.; Frossard, A. A.; Beaupre, S. R.; Duplessis, P.; Maben, J. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    Numerous reports suggest that most organic matter (OM) associated with newly formed primary marine aerosol (PMA) originates from the sea-surface microlayer. However, surface-active OM rapidly adsorbs onto bubble surfaces in the water column and is ejected into the atmosphere when bubbles burst at the air-water interface. Here we present dynamic surface tension measurements of bubbles produced in near surface seawater from biologically productive and oligotrophic sites and in deep seawater collected from 2500 m in the northwest Atlantic. In all cases, the surface tension of bubble surfaces decreased within seconds after the bubbles were exposed to seawater. These observations demonstrate that bubble surfaces are rapidly saturated by surfactant material scavenged from seawater. Spatial and diel variability in bubble surface evolution indicate corresponding variability in surfactant concentrations and/or composition. Our results reveal that surface-active OM is found throughout the water column, and that at least some surfactants are not of recent biological origin. Our results also support the hypothesis that the surface microlayer is a minor to negligible source of OM associated with freshly produced PMA.

  12. Phoebe: A Surface Dominated by Water

    NASA Astrophysics Data System (ADS)

    Fraser, Wesley C.; Brown, Michael E.

    2018-07-01

    The Saturnian irregular satellite, Phoebe, can be broadly described as a water-rich rock. This object, which presumably originated from the same primordial population shared by the dynamically excited Kuiper Belt Objects (KBOs), has received high-resolution spectral imaging during the Cassini flyby. We present a new analysis of the Visual Infrared Mapping Spectrometer observations of Phoebe, which critically, includes a geometry correction routine that enables pixel-by-pixel mapping of visible and infrared spectral cubes directly onto the Phoebe shape model, even when an image exhibits significant trailing errors. The result of our re-analysis is a successful match of 46 images, producing spectral maps covering the majority of Phoebe’s surface, roughly a third of which is imaged by high-resolution observations (<22 km per pixel resolution). There is no spot on Phoebe’s surface that is absent of water absorption. The regions richest in water are clearly associated with the Jason and south pole impact basins. Phoebe exhibits only three spectral types, and a water–ice concentration that correlates with physical depth and visible albedo. The water-rich and water-poor regions exhibit significantly different crater size frequency distributions and different large crater morphologies. We propose that Phoebe once had a water-poor surface whose water–ice concentration was enhanced by basin-forming impacts that exposed richer subsurface layers. The range of Phoebe’s water–ice absorption spans the same range exhibited by dynamically excited KBOs. The common water–ice absorption depths and primordial origins, and the association of Phoebe’s water-rich regions with its impact basins, suggests the plausible idea that KBOs also originated with water-poor surfaces that were enhanced through stochastic collisional modification.

  13. Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks

    PubMed Central

    Li, L.; Wing, B. A.; Bui, T. H.; McDermott, J. M.; Slater, G. F.; Wei, S.; Lacrampe-Couloume, G.; Lollar, B. Sherwood

    2016-01-01

    The discovery of hydrogen-rich waters preserved below the Earth's surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen originates from water–rock reactions including serpentinization and radiolytic decomposition of water induced by decay of radioactive elements in the host rocks. The origin of dissolved sulfate, however, remains unknown. Here we report, from anoxic saline fracture waters ∼2.4 km below surface in the Canadian Shield, a sulfur mass-independent fractionation signal in dissolved sulfate. We demonstrate that this sulfate most likely originates from oxidation of sulfide minerals in the Archaean host rocks through the action of dissolved oxidants (for example, HO· and H2O2) themselves derived from radiolysis of water, thereby providing a coherent long-term mechanism capable of supplying both an essential electron donor (H2) and a complementary acceptor (sulfate) for the deep biosphere. PMID:27807346

  14. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting

    PubMed Central

    Barroso, Monica; Mesa, Camilo A.; Pendlebury, Stephanie R.; Cowan, Alexander J.; Hisatomi, Takashi; Sivula, Kevin; Grätzel, Michael; Klug, David R.; Durrant, James R.

    2012-01-01

    This paper addresses the origin of the decrease in the external electrical bias required for water photoelectrolysis with hematite photoanodes, observed following surface treatments of such electrodes. We consider two alternative surface modifications: a cobalt oxo/hydroxo-based (CoOx) overlayer, reported previously to function as an efficient water oxidation electrocatalyst, and a Ga2O3 overlayer, reported to passivate hematite surface states. Transient absorption studies of these composite electrodes under applied bias showed that the cathodic shift of the photocurrent onset observed after each of the surface modifications is accompanied by a similar cathodic shift of the appearance of long-lived hematite photoholes, due to a retardation of electron/hole recombination. The origin of the slower electron/hole recombination is assigned primarily to enhanced electron depletion in the Fe2O3 for a given applied bias. PMID:22802673

  15. Age-Orientation Relationships of Northern Hemisphere Martian Gullies and "Pasted-on" Mantling Unit: Implications for Near-Surface Water Migration in Mars' Recent History

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Lackner, C. N.

    2005-01-01

    The finding of abundant, apparently young, Martian gullies with morphologies indicative of formation by flowing fluid was surprising in that volumes of near-surface liquid water in sufficient quantities to modify the surface geology were not thought possible under current conditions. Original hypotheses on origin of gullies were mostly centered on groundwater seepage and surface runoff and melting of near-surface ground ice. More recently, melting of snow deposited in periods of higher obliquity has been proposed as a possible origin of the gullies. Tied to this hypothesis is the supposition that the "pasted-on" mantling unit observed in association with many gullies is composed of remnant snowpack. The mantling unit has distinct rounded edge on its upper boundary and exhibits features suggestive of flow noted that the uppermost part of the mantle marks where gullies begin, suggesting that the source of water for the gullies was within the mantle. The mantle is found preferentially on cold, pole-facing slopes and, where mantled and non-mantled slopes are found together, gullies are observed incised into the latter. In other cases, the mantling material lacks gullies.

  16. Evidence for primordial water in Earth's deep mantle.

    PubMed

    Hallis, Lydia J; Huss, Gary R; Nagashima, Kazuhide; Taylor, G Jeffrey; Halldórsson, Sæmundur A; Hilton, David R; Mottl, Michael J; Meech, Karen J

    2015-11-13

    The hydrogen-isotope [deuterium/hydrogen (D/H)] ratio of Earth can be used to constrain the origin of its water. However, the most accessible reservoir, Earth's oceans, may no longer represent the original (primordial) D/H ratio, owing to changes caused by water cycling between the surface and the interior. Thus, a reservoir completely isolated from surface processes is required to define Earth's original D/H signature. Here we present data for Baffin Island and Icelandic lavas, which suggest that the deep mantle has a low D/H ratio (δD more negative than -218 per mil). Such strongly negative values indicate the existence of a component within Earth's interior that inherited its D/H ratio directly from the protosolar nebula. Copyright © 2015, American Association for the Advancement of Science.

  17. Hydrogen Isotopes Record the History of the Martian Hydrosphere and Atmosphere

    NASA Technical Reports Server (NTRS)

    Usui, T.; Simon, J. I.; Jones, J. H.; Kurokawa, H.; Sato, M.; Alexander, C. M. O'D; Wang, J.

    2015-01-01

    The surface geology and geomorphology of Mars indicates that it was once warm enough to maintain a large body of liquid water on its surface, though such a warm environment might have been transient. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. This study presents insights from hydrogen isotopes for the origin and evolution of Martian water reservoirs.

  18. The negligible chondritic contribution in the lunar soils water.

    PubMed

    Stephant, Alice; Robert, François

    2014-10-21

    Recent data from Apollo samples demonstrate the presence of water in the lunar interior and at the surface, challenging previous assumption that the Moon was free of water. However, the source(s) of this water remains enigmatic. The external flux of particles and solid materials that reach the surface of the airless Moon constitute a hydrogen (H) surface reservoir that can be converted to water (or OH) during proton implantation in rocks or remobilization during magmatic events. Our original goal was thus to quantify the relative contributions to this H surface reservoir. To this end, we report NanoSIMS measurements of D/H and (7)Li/(6)Li ratios on agglutinates, volcanic glasses, and plagioclase grains from the Apollo sample collection. Clear correlations emerge between cosmogenic D and (6)Li revealing that almost all D is produced by spallation reactions both on the surface and in the interior of the grains. In grain interiors, no evidence of chondritic water has been found. This observation allows us to constrain the H isotopic ratio of hypothetical juvenile lunar water to δD ≤ -550‰. On the grain surface, the hydroxyl concentrations are significant and the D/H ratios indicate that they originate from solar wind implantation. The scattering distribution of the data around the theoretical D vs. (6)Li spallation correlation is compatible with a chondritic contribution <15%. In conclusion, (i) solar wind implantation is the major mechanism responsible for hydroxyls on the lunar surface, and (ii) the postulated chondritic lunar water is not retained in the regolith.

  19. Surface velocity divergence model of air/water interfacial gas transfer in open-channel flows

    NASA Astrophysics Data System (ADS)

    Sanjou, M.; Nezu, I.; Okamoto, T.

    2017-04-01

    Air/water interfacial gas transfer through a free surface plays a significant role in preserving and restoring water quality in creeks and rivers. However, direct measurements of the gas transfer velocity and reaeration coefficient are still difficult, and therefore a reliable prediction model needs to be developed. Varying systematically the bulk-mean velocity and water depth, laboratory flume experiments were conducted and we measured surface velocities and dissolved oxygen (DO) concentrations in open-channel flows to reveal the relationship between DO transfer velocity and surface divergence (SD). Horizontal particle image velocimetry measurements provide the time-variations of surface velocity divergence. Positive and negative regions of surface velocity divergence are transferred downstream in time, as occurs in boil phenomenon on natural river free-surfaces. The result implies that interfacial gas transfer is related to bottom-situated turbulence motion and vertical mass transfer. The original SD model focuses mainly on small-scale viscous motion, and this model strongly depends on the water depth. Therefore, we modify the SD model theoretically to accommodate the effects of the water depth on gas transfer, introducing a non-dimensional parameter that includes contributions of depth-scale large-vortex motion, such as secondary currents, to surface renewal events related to DO transport. The modified SD model proved effective and reasonable without any dependence on the bulk mean velocity and water depth, and has a larger coefficient of determination than the original SD model. Furthermore, modeling of friction velocity with the Reynolds number improves the practicality of a new formula that is expected to be used in studies of natural rivers.

  20. Origin of 1/f noise in hydration dynamics on lipid membrane surfaces

    PubMed Central

    Yamamoto, Eiji; Akimoto, Takuma; Yasui, Masato; Yasuoka, Kenji

    2015-01-01

    Water molecules on lipid membrane surfaces are known to contribute to membrane stability by connecting lipid molecules and acting as a water bridge. Although water structures and diffusivities near the membrane surfaces have been extensively studied, hydration dynamics on the surfaces has remained an open question. Here we investigate residence time statistics of water molecules on the surface of lipid membranes using all-atom molecular dynamics simulations. We show that hydration dynamics on the lipid membranes exhibits 1/f noise. Constructing a dichotomous process for the hydration dynamics, we find that residence times in each state follow a power-law with exponential cutoff and that the process can be regarded as a correlated renewal process where interoccurrence times are correlated. The results imply that the origin of the 1/f noise in hydration dynamics on the membrane surfaces is a combination of a power-law distribution with cutoff of interoccurrence times of switching events and a long-term correlation between the interoccurrence times. These results suggest that the 1/f noise attributed to the correlated renewal process may contribute to the stability of the hydration layers and lipid membranes. PMID:25743377

  1. Hydrological modeling of fecal indicator bacteria in a tropical mountain catchment

    USDA-ARS?s Scientific Manuscript database

    The occurrence of pathogen bacteria in surface waters is a threat to public health worldwide. In particular, inadequate sanitation resulting in high contamination of surface water with pathogens of fecal origin is a serious issue in developing countries such as Lao P.D.R. Despite the health implicat...

  2. Salmonella pollution in ground and surface waters. (Latest citations from Pollution abstracts). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-04-01

    The bibliography contains citations concerning the contamination of ground waters and surface waters by Salmonella bacteria. Articles discuss the occurence, survival, origin, and control of these bacteria in water sources including rivers, reservoirs, swimming pools, wastewater, aquifers, and ground water. Citations also address the use of Salmonella populations as biological indicators of pollution in aquatic systems. (Contains a minimum of 102 citations and includes a subject term index and title list.)

  3. DYNAMIC DEUTERIUM ENRICHMENT IN COMETARY WATER VIA ELEY–RIDEAL REACTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yunxi; Giapis, Konstantinos P., E-mail: giapis@cheme.caltech.edu

    2017-01-20

    The deuterium-to-hydrogen ratio (D/H) in water found in the coma of Jupiter family comet (JFC) 67P/Churyumov–Gerasimenko was reported to be (5.3 ± 0.7) × 10{sup −4}, the highest among comets and three times the value for other JFCs with an ocean-like ratio. This discrepancy suggests the diverse origins of JFCs and clouds the issue of the origin of Earth’s oceanic water. Here we demonstrate that Eley–Rideal reactions between accelerated water ions and deuterated cometary surface analogs can lead to instantaneous deuterium enrichment in water scattered from the surface. The reaction proceeds with H{sub 2}O{sup +} abstracting adsorbed D atoms, formingmore » an excited H{sub 2}DO* state, which dissociates subsequently to produce energetic HDO. Hydronium ions are also produced readily by the abstraction of H atoms, consistent with H{sub 3}O{sup +} detection and abundance in various comets. Experiments with water isotopologs and kinematic analysis on deuterated platinum surfaces confirmed the dynamic abstraction mechanism. The instantaneous fractionation process is independent of the surface temperature and may operate on the surface of cometary nuclei or dust grains, composed of deuterium-rich silicates and carbonaceous chondrites. The requisite energetic water ions have been detected in the coma of 67P in two populations. This dynamic fractionation process may temporarily increase the water D/H ratio, especially as the comet gets closer to the Sun. The magnitude of the effect depends on the water ion energy-flux and the deuterium content of the exposed cometary surfaces.« less

  4. Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems.

    PubMed

    Botta, Fabrizio; Lavison, Gwenaëlle; Couturier, Guillaume; Alliot, Fabrice; Moreau-Guigon, Elodie; Fauchon, Nils; Guery, Bénédicte; Chevreuil, Marc; Blanchoud, Hélène

    2009-09-01

    A study of glyphosate and aminomethyl phosphonic acid (AMPA) transfer in the Orge watershed (France) was carried out during 2007 and 2008. Water samples were collected in surface water, wastewater sewer, storm sewer and wastewater treatment plant (WWTP). These two molecules appeared to be the most frequently detected ones in the rivers and usually exceeded the European quality standard concentrations of 0.1microg L(-1) for drinking water. The annual glyphosate estimated load was 1.9 kg year(-1) upstream (agricultural zone) and 179.5 kg year(-1) at the catchment outlet (urban zone). This result suggests that the contamination of this basin by glyphosate is essentially from urban origin (road and railway applications). Glyphosate reached surface water prevalently through storm sewer during rainfall event. Maximum concentrations were detected in storm sewer just after a rainfall event (75-90 microg L(-1)). High concentrations of glyphosate in surface water during rainfall events reflected urban runoff impact. AMPA was always detected in the sewerage system. This molecule reached surface water mainly via WWTP effluent and also through storm sewer. Variations in concentrations of AMPA during hydrological episodes were minor compared to glyphosate variations. Our study highlights that AMPA and glyphosate origins in urban area are different. During dry period, detergent degradation seemed to be the major AMPA source in wastewater.

  5. Author Correction: North Atlantic variability and its links to European climate over the last 3000 years.

    PubMed

    Moffa-Sánchez, Paola; Hall, Ian R

    2018-02-15

    In the original version of this Article, the third sentence of the first paragraph of the "Changes in the input of polar waters into the Labrador Sea" section of the Results originally incorrectly read 'During the spring-summer months, after the winter convection has ceased in the Labrador Sea, its northwest boundary currents (the EGC and IC) support restratification of the surface ocean through lateral transport.' The correct version states 'northeast' instead of 'northwest'. The fifth sentence of the second paragraph of the same section originally incorrectly read "In contrast, in the western section of the Nordic Seas, under the presence of warm Atlantic waters of the Norwegian Current, Nps was found to calcify deeper in the water column (100-200 m), whereas in the east under the influence of the EGC polar waters it calcified closer to the surface at a similar depth as Tq 23 ." The correct version states 'eastern' instead of 'western' and 'west' instead of 'east'.The seventh sentence of the same paragraph originally incorrectly read "Small/large differences in Δδ 18 O Nps-Tq indicating increased/decreased presence of warm and salty Atlantic IC waters vs. polar EGC waters in the upper water column, respectively." The correct version starts 'Large/small' rather than 'Small/large'.These errors have been corrected in both the PDF and HTML versions of the Article.

  6. Enhancement of Water Evaporation on Solid Surfaces with Nanoscale Hydrophobic-Hydrophilic Patterns.

    PubMed

    Wan, Rongzheng; Wang, Chunlei; Lei, Xiaoling; Zhou, Guoquan; Fang, Haiping

    2015-11-06

    Using molecular dynamics simulations, we show that the evaporation of nanoscale water on hydrophobic-hydrophilic patterned surfaces is unexpectedly faster than that on any surfaces with uniform wettability. The key to this phenomenon is that, on the patterned surface, the evaporation rate from the hydrophilic region only slightly decreases due to the correspondingly increased water thickness; meanwhile, a considerable number of water molecules evaporate from the hydrophobic region despite the lack of water film. Most of the evaporated water from the hydrophobic region originates from the hydrophilic region by diffusing across the contact lines. Further analysis shows that the evaporation rate from the hydrophobic region is approximately proportional to the total length of the contact lines.

  7. Temperature Dependence of Cryogenic Ammonia-Water Ice Mixtures and Implications for Icy Satellite Surfaces

    NASA Technical Reports Server (NTRS)

    Dalton, J. B., III; Curchin, J. M.; Clark, R. N.

    2001-01-01

    Infrared spectra of ammonia-water ice mixtures reveal temperature-dependent absorption bands due to ammonia. These features, at 1.04, 2.0, and 2.25 microns, may shed light on the surface compositions of the Galilean and Saturnian satellites. Additional information is contained in the original extended abstract.

  8. Anthropogenic sources and environmentally relevant concentrations of heavy metals in surface water of a mining district in Ghana: a multivariate statistical approach.

    PubMed

    Armah, Frederick A; Obiri, Samuel; Yawson, David O; Onumah, Edward E; Yengoh, Genesis T; Afrifa, Ernest K A; Odoi, Justice O

    2010-11-01

    The levels of heavy metals in surface water and their potential origin (natural and anthropogenic) were respectively determined and analysed for the Obuasi mining area in Ghana. Using Hawth's tool an extension in ArcGIS 9.2 software, a total of 48 water sample points in Obuasi and its environs were randomly selected for study. The magnitude of As, Cu, Mn, Fe, Pb, Hg, Zn and Cd in surface water from the sampling sites were measured by flame Atomic Absorption Spectrophotometry (AAS). Water quality parameters including conductivity, pH, total dissolved solids and turbidity were also evaluated. Principal component analysis and cluster analysis, coupled with correlation coefficient analysis, were used to identify possible sources of these heavy metals. Pearson correlation coefficients among total metal concentrations and selected water properties showed a number of strong associations. The results indicate that apart from tap water, surface water in Obuasi has elevated heavy metal concentrations, especially Hg, Pb, As, Cu and Cd, which are above the Ghana Environmental Protection Agency (GEPA) and World Health Organisation (WHO) permissible levels; clearly demonstrating anthropogenic impact. The mean heavy metal concentrations in surface water divided by the corresponding background values of surface water in Obuasi decrease in the order of Cd > Cu > As > Pb > Hg > Zn > Mn > Fe. The results also showed that Cu, Mn, Cd and Fe are largely responsible for the variations in the data, explaining 72% of total variance; while Pb, As and Hg explain only 18.7% of total variance. Three main sources of these heavy metals were identified. As originates from nature (oxidation of sulphide minerals particularly arsenopyrite-FeAsS). Pb derives from water carrying drainage from towns and mine machinery maintenance yards. Cd, Zn, Fe and Mn mainly emanate from industry sources. Hg mainly originates from artisanal small-scale mining. It cannot be said that the difference in concentration of heavy metals might be attributed to difference in proximity to mining-related activities because this is inconsistent with the cluster analysis. Based on cluster analysis SN32, SN42 and SN43 all belong to group one and are spatially similar. But the maximum Cu concentration was found in SN32 while the minimum Cu concentration was found in SN42 and SN43.

  9. Isotopy of the hydrosphere

    NASA Astrophysics Data System (ADS)

    Ferronskii, V. I.; Poliakov, V. A.

    This book is concerned with the natural relations regarding the distribution of the stable isotopes of hydrogen and oxygen in the hydrosphere, taking into account the most important problems with respect to the dynamics and the origin of waters. The solution of these problems on an isotopic basis is considered. The physicochemical principles of isotope separation are discussed along with the isotopic composition of atmospheric moisture, the isotopic composition of surface continental waters, the hydrogen and oxygen isotopic composition of minerals of magmatic and metamorphic rocks and fluid inclusions, the isotopic composition of groundwaters of modern volcanic regions, and the origin of the earth's hydrosphere in the light of isotopic, cosmochemical, and theoretical studies. Attention is also given to the separation of hydrogen and oxygen isotopes of waters in the underground cycle, the isotopic composition of the deep-formation waters of sedimentary basins, the relationship between surface and ground waters, and the groundwater residence time in an aquifer.

  10. Physicochemical properties of crystalline silica dusts and their possible implication in various biological responses.

    PubMed

    Fubini, B; Bolis, V; Cavenago, A; Volante, M

    1995-01-01

    The effect of grinding, heating, and etching was investigated on polymorphs of silicon dioxide exhibiting different biological responses. Diatomaceous earths were converted into cristobalite at 1000 degrees C. Dusts obtained by grinding crystalline minerals exhibited different micromorphology and a propensity to originate surface radicals which decrease in the sequence cristobalite --> quartz --> coesite --> stishovite. The production of surface radicals was suppressed by grinding in the presence of water. Thermal treatments selectively quenched the radicals and decreased surface hydrophilicity. Quartz treated with aluminum lactate exhibited higher surface acidity when compared with pure quartz, with a reduction in fibrogenicity. Etching by hydrofluoric acid smoothed the particles with loss of specific surface. Adsorption of water on three cristobalite dusts of different origin (ground mineral, ex-diatomite, heated quartz) indicated a loss in heated quartz (1300 degrees C) that was relatable to the corresponding reduction in fibrogenicity.

  11. A photoautotrophic source for lycopane in marine water columns

    NASA Technical Reports Server (NTRS)

    Wakeham, Stuart G.; Freeman, Katherine H.; Pease, Tamara K.; Hayes, J. M.

    1993-01-01

    Suspended particulate matter and recent sediments from diverse oceanic sites have been investigated for their contents of lycopane. Lycopane was present in all samples, including both oxic and anoxic water column and sediments. The highest concentrations in the water column were found in surface waters of the central Pacific gyre (1.5 ng/L) and in the anoxic waters of the Cariaco Trench (1.1 ng/L) and the Black Sea (0.3 ng/L). Vertical concentration profiles suggest that lycopane is probably algal in origin. Moreover, biogeochemical conditions in anoxic zones apparently result in a secondary production of lycopane from an as yet unidentified precursor. Compound-specific carbon isotopic analyses have been carried out on lycopane from water column and sediment samples. Isotopic compositions of lycopane range between -23.6 and -32.9 percent and are consistent with a photoautotrophic origin. We postulate that some lycopane is produced in surface waters of the ocean, while additional lycopane is produced in anoxic zones by anaerobic microbial action on an algal precursor.

  12. A Improved and Highly Effective Seabed Surface Sand Sampling Device

    NASA Astrophysics Data System (ADS)

    Liu, Ying

    2017-04-01

    In marine geology research, it is necessary to obtain a sufficient quantity of seabed surface samples, while also ensuring that the samples are in their original state. Currently, there are a number of seabed surface sampling devices available, but it is very difficult to obtain sand samples using ordinary seabed surface sampling devices, whereas machine-controlled seabed surface sampling devices are unable to dive into deeper regions of water. To obtain larger quantities of samples in their original states, many researchers have tried to improve seabed surface sampling devices, but these efforts have generally produced ambiguous results. To resolve the aforementioned issue, we have designed an improved and highly effective seabed surface sand sampling device, which incorporates the strengths of a variety of sampling devices; it is capable of diving into deeper water regions to obtain sand samples, and is also suited for use in streams, rivers, lakes and seas with varying levels of flow velocities and depth.

  13. A modification of the finite-difference model for simulation of two dimensional ground-water flow to include surface-ground water relationships

    USGS Publications Warehouse

    Ozbilgin, M.M.; Dickerman, D.C.

    1984-01-01

    The two-dimensional finite-difference model for simulation of groundwater flow was modified to enable simulation of surface-water/groundwater interactions during periods of low streamflow. Changes were made to the program code in order to calculate surface-water heads for, and flow either to or from, contiguous surface-water bodies; and to allow for more convenient data input. Methods of data input and output were modified and entries (RSORT and HDRIVER) were added to the COEF and CHECKI subroutines to calculate surface-water heads. A new subroutine CALC was added to the program which initiates surface-water calculations. If CALC is not specified as a simulation option, the program runs the original version. The subroutines which solve the ground-water flow equations were not changed. Recharge, evapotranspiration, surface-water inflow, number of wells, pumping rate, and pumping duration can be varied for any time period. The Manning formula was used to relate stream depth and discharge in surface-water streams. Interactions between surface water and ground water are represented by the leakage term in the ground-water flow and surface-water mass balance equations. Documentation includes a flow chart, data deck instructions, input data, output summary, and program listing. Numerical results from the modified program are in good agreement with published analytical results. (USGS)

  14. Life on Mars

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    Although the Viking results may indicate that Mars has no life today, the possibility exists that Mars may hold the best record of the events that led to the origin of life. There is direct geomorphological evidence that in the past Mars had large amounts of liquid water on its surface. Atmospheric models would suggest that this early period of hydrological activity was due to the presence of a thick atmosphere and the resulting warmer temperatures. From a biological perspective the existence of liquid water, by itself motivates the question of the origin of life on Mars. From studies of the Earth's earliest biosphere we know that by 3.5 Gyr. ago, life had originated on Earth and reached a fair degree of biological sophistication. Surface activity and erosion on Earth make it difficult to trace the history of life before the 3.5 Gyr timeframe. If Mars did maintain a clement environment for longer than it took for life to originate on Earth, then the question of the origin of life on Mars follows naturally.

  15. Use of major ion and stable isotope geochemistry to delineate natural and anthropogenic sources of nitrate and sulfate in the Kettle River Basin, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Harker, Leslie; Hutcheon, Ian; Mayer, Bernhard

    2015-11-01

    The Kettle River Basin in South central British Columbia (Canada) is under increasing anthropogenic pressures affecting both water quantity and quality of surface waters and aquifers. We investigated water quality and sources and processes influencing NO3- and SO42- in the Kettle River Basin using a combination of chemical and isotopic techniques. The dominant water type in the Kettle River Basin is Ca-HCO3 with surface waters having total dissolved solids (TDS) concentrations of < 115 mg/L and groundwaters having TDS values of up to 572 mg/L. Based on δ15NNO3andδ18ONO3 values and concentration data, NO3- in surface waters originates primarily from natural soil nitrification processes, with additional influences from anthropogenic activities, such as waste water effluents at sampling locations downstream from population centres. The source of NO3- in groundwater was predominantly nitrification of soil organic matter, although nitrate in a few groundwater samples originated from anthropogenic sources, including manure or septic systems. The dominant source of SO42- in surface water and groundwater samples was the natural oxidation of sulfide minerals. With increasing distance downstream, surface water δ18OSO4 values increase beyond the range of oxidation of sulfide minerals and into the range of soil and atmospheric-derived SO42- that is in part derived from anthropogenic emissions. Hence, we conclude that recent anthropogenic impacts have affected water quality only marginally at only few sites in the Kettle River Basin. The presented data will serve as an excellent baseline against which future impacts can be assessed.

  16. Hydrophilic directional slippery rough surfaces for water harvesting

    PubMed Central

    Sun, Nan; Nielsen, Steven O.; Wang, Jing

    2018-01-01

    Multifunctional surfaces that are favorable for both droplet nucleation and removal are highly desirable for water harvesting applications but are rare. Inspired by the unique functions of pitcher plants and rice leaves, we present a hydrophilic directional slippery rough surface (SRS) that is capable of rapidly nucleating and removing water droplets. Our surfaces consist of nanotextured directional microgrooves in which the nanotextures alone are infused with hydrophilic liquid lubricant. We have shown through molecular dynamics simulations that the physical origin of the efficient droplet nucleation is attributed to the hydrophilic surface functional groups, whereas the rapid droplet removal is due to the significantly reduced droplet pinning of the directional surface structures and slippery interface. We have further demonstrated that the SRS, owing to its large surface area, hydrophilic slippery interface, and directional liquid repellency, outperforms conventional liquid-repellent surfaces in water harvesting applications. PMID:29670942

  17. Moulding technique demonstrates the contribution of surface geometry to the super-hydrophobic properties of the surface of a water strider.

    PubMed

    Goodwyn, Pablo Perez; De Souza, Emerson; Fujisaki, Kenji; Gorb, Stanislav

    2008-05-01

    Water striders (Insecta, Heteroptera, Gerridae) have a complex three-dimensional waterproof hairy cover which renders them super-hydrophobic. This paper experimentally demonstrates for the first time the mechanism of the super-hydrophobicity of the cuticle of water striders. The complex two-level microstructure of the surface, including the smallest microtrichia (200-300 nm wide, 7-9 microm long), was successfully replicated using a two-step moulding technique. The mould surface exhibited super-hydrophobic properties similar to the original insect surface. The average water contact angle (CA) of the mould was 164.7 degrees , whereas the CA of the flat polymer was about 92 degrees . These results show that (i) in water striders, the topography of the surface plays a dominant role in super-hydrophobicity, (ii) very low surface energy bulk material (typically smaller than 0.020 N m(-1)) is not necessary to achieve super-hydrophobicity; and (3) the two-step moulding technique may be used to mimic quite complex biological functional surfaces.

  18. Why the water bridge does not collapse

    NASA Astrophysics Data System (ADS)

    Aerov, Artem A.

    2011-09-01

    In 2007 an interesting phenomenon was discovered [J. Phys. DJPAPBE0022-372710.1088/0022-3727/40/19/052 40, 6112 (2007)]: a horizontal thread of water, the so-called water bridge, hangs in a horizontal electrostatic field. A different explanation of the water bridge stability is proposed herein: the force supporting it is the surface tension of water, while the role of the electric field is to not allow the water bridge to reduce its surface energy by breaking into separate drops. It is proven that electrostatic field is not the origin of the tension holding the bridge.

  19. PERFORMANCE OF RETENTION PONDS AND CONSTRUCTED WETLANDS FOR ATTENUATING BACTERIAL STRESSORS

    EPA Science Inventory

    Microbial contamination from fecal origins in stormwater runoff poses a risk to human health through the consumption of drinking water and recreational and bathing contact with surface waters. Indicator bacteria serve as the regulatory meter by which water quality is measured and...

  20. Is Europa's Subsurface Water Ocean Warm?

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.; Ekholm, A. G.; Showman, A. P.; Lorenz, R. D.

    2002-01-01

    Europa's subsurface water ocean may be warm: that is, at the temperature of water's maximum density. This provides a natural explanation of chaos melt-through events and leads to a correct estimate of the age of its surface. Additional information is contained in the original extended abstract.

  1. The preparation of polytrifluorochloroethylene (PCTFE) micro-particles and application on treating bearing steel surfaces to improve the lubrication effect for copper-graphite (Cu/C)

    NASA Astrophysics Data System (ADS)

    Lu, Hailin; Zhang, Pengpeng; Ren, Shanshan; Guo, Junde; Li, Xing; Dong, Guangneng

    2018-01-01

    Contact mechanical seal is a normal technology applied on middle axis of liquid rocket turbo pump, and the kinetic and static seal rings contact low temperature rocket propellant. Copper-graphite (Cu/C) composite as an excellent self-lubrication material was widely used in aerospace industry, this study took Cu/C as ball and bearing steel as disk to investigate the tribology properties, and distilled water were used to simulate the lox tribology performances. This study prepared polytrifluorochloroethylene (PCTFE) micro-particles which were coated on the oxide surfaces of bearing steel disk at temperature of 150 °C. The tribology results showed that the oxide surfaces treated with micro PCTFE particles have lower fiction coefficient and lower wear rate than original disk in water, and the wear morphology revealed that the treated surfaces obviously had less Cu/C composite transfer film than original disk. Meanwhile SEM, EDS, XRD, XPS and light microscope etc revealed that PCTFE micro-particles could associate with the oxide surfaces and caused higher water contact angle, due to the properties of the fluorine-containing composite may cause the good lubrication effect in water. Thus this technology shows great potential to enhance tribological performances for aerospace industry on a large scale.

  2. Tracing wastewater effluents in surface and groundwaters: a couple approach with organic/inorganic tracers and isotopes

    NASA Astrophysics Data System (ADS)

    Petelet-Giraud, Emmanuelle; Baran, Nicole; Soulier, Coralie

    2017-04-01

    In the context of land use change, the origins of contamination of water resources are often multiple, including for a single chemical element or molecule. For instance, excess of nitrates in both surface and groundwater can originate from agricultural practices and wastewater effluents. The discrimination of the origins and vectors of contamination in the environment is both an environmental and societal issue in order to define an integrated water resources management at the catchment or water body scale by implementing appropriate measures to effectively struggle against pollution. The objective of this study is to define a methodology for the identification of a "domestic wastewater" contamination within surface waters and groundwater. An ideal tracer should be conservative, persistent in the different water compartments, present in quantity above the detection limit and originate from a single type of pollution source. There is, however, no ideal tracer in the strict sense. Indeed, even chloride which is present in quantity in wastewater, and which behaves conservatively in the environment, is not an univocal tracer of wastewater, as it may come from atmospheric inputs, from the dissolution of evaporitic rocks, from the salting of roads or from fertilizers. To overcome this limitation, in this study, we propose a multi-tracer approach (chemical and isotopic) to identify and validate the relevance of foreseen tracers. Among the relevant tracers of wastewater, the following may be used for their intrinsic or combined discriminant power: 1) organic effluent tracers: nitrogen contents and isotopic ratios of nitrogen and oxygen of nitrates; 2) tracer of detergents: boron contents and boron isotopes; 3) pharmaceuticals tracers: e.g. carbamazepine, ibuprofen, paracetamol, gadolinium anomaly; 4) life-style tracers: e.g. caffeine. The originality of the study relies on small capacities wastewater treatment plants without tertiary treatment process. Results on a catchment impacted both by diffuse agricultural pollution and punctual wastewater inputs are presented. Investigations concern wastewater effluents resulting from different type of treatment plants, surface and groundwater. Potential combination of suitable tracers is discussed.

  3. Recurring slope lineae in equatorial regions of Mars

    USGS Publications Warehouse

    McEwen, Alfred S.; Dundas, Colin M.; Mattson, Sarah S.; Toigo, Anthony D.; Ojha, Lujendra; Wray, James J.; Chojnacki, Matthew; Byrne, Shane; Murchie, Scott L.; Thomas, Nicolas

    2014-01-01

    The presence of liquid water is a requirement of habitability on a planet. Possible indicators of liquid surface water on Mars include intermittent flow-like features observed on sloping terrains. These recurring slope lineae are narrow, dark markings on steep slopes that appear and incrementally lengthen during warm seasons on low-albedo surfaces. The lineae fade in cooler seasons and recur over multiple Mars years. Recurring slope lineae were initially reported to appear and lengthen at mid-latitudes in the late southern spring and summer and are more common on equator-facing slopes where and when the peak surface temperatures are higher. Here we report extensive activity of recurring slope lineae in equatorial regions of Mars, particularly in the deep canyons of Valles Marineris, from analysis of data acquired by the Mars Reconnaissance Orbiter. We observe the lineae to be most active in seasons when the slopes often face the sun. Expected peak temperatures suggest that activity may not depend solely on temperature. Although the origin of the recurring slope lineae remains an open question, our observations are consistent with intermittent flow of briny water. Such an origin suggests surprisingly abundant liquid water in some near-surface equatorial regions of Mars.

  4. Characterization of the Martian surface deposits by the Mars Pathfinder rover, Sojourner.

    NASA Astrophysics Data System (ADS)

    Matijevic, J. R.; Crisp, J.; Bickler, D. B.; Banes, R. S.; Cooper, B. K.; Eisen, H. J.; Gensler, J.; Haldemann, A.; Hartman, F.; Jewett, K. A.; Matthies, L. H.; Laubach, S. L.; Mishkin, A. H.; Morrison, J. C.; Nguyen, T. T.; Sirota, A. R.; Stone, H. W.; Stride, S.; Sword, L. F.; Tarsala, J. A.; Thompson, A. D.; Wallace, M. T.; Welch, R.; Wellman, E.; Wilcox, B. H.; Ferguson, D.; Jenkins, P.; Kolecki, J.; Landis, G. A.; Wilt, D.; Rover Team

    1997-12-01

    The Mars Pathfinder rover discovered pebbles on the surface and in rocks that may be sedimentary - not volcanic - in origin. Surface pebbles may have been rounded by Ares flood waters or liberated by weathering of sedimentary rocks called conglomerates. Conglomerates imply that water existed elsewhere and earlier than the Ares flood. Most soil-like deposits are similar to moderately dense soils on Earth. Small amounts of dust are currently settling from the atmosphere.

  5. USEPA CAPSTONE REPORT: DISINFECTION

    EPA Science Inventory

    Wet-weather flow (WWF), including combined-sewer overflow (CSO), sanitary-sewer overflow, and stormwater (SW) is a significant contributor of microbial contamination to surface water and ground water. Contamination with human-origin fecal coliform (FC) is of great concern for san...

  6. Hydrogeochemical processes and isotopes analysis. Study case: "La Línea Tunnel", Colombia

    NASA Astrophysics Data System (ADS)

    Piña, Adriana; Donado, Leonardo; Cramer, Thomas

    2017-04-01

    Hydrogeochemical and stable isotopes analyses have been widely used to identify recharge and discharge zones, flowpaths, type, origin and age of water, chemical processes between minerals and groundwater as well as effects caused by anthropogenic or natural pollution. In this paper we analyze the interactions between groundwater and surface water using as laboratory the tunnels located at the La Línea Massif in the Cordillera Central of the Colombian Andes. The massif is formed by two igneous-metamorphic fractured complexes (Cajamarca and Quebradagrande group) plus andesithic porphyry rocks from the tertiary period. There, eight main fault zones related to surface creeks were identified and main inflows inside the tunnels were reported. 60 water samples were collected in surface and inside the tunnel in fault zones in two different years, 2010 and 2015. To classify water samples, a multivariate statistical analysis combining Factor Analysis (FA) with Hierarchical Cluster Analysis (HCA) was performed. Then, analyses of the major chemical elements and water isotopes (18O, 2H and 3H) were used to define the origin of dissolved components and to analyse the evolution in time. Most samples were classified as bicarbonate calcite water or bicarbonate magnesium water type. Isotopic analyses show a characteristic behavior for east and west watershed and each geologic group. According to the FA and HCA, obtained factors and clusters are first related to the location of the samples (surface or tunnel samples) followed by the geology. Surface samples behave according to the Colombian meteoric line as inflows related to permeable faults while less permeable faults show hydrothermal processes. Finally, water evolution in time shows a decrease of pH, conductivity and Mg2+ related to silicate weathering or precipitation/dissolution processes that affect the spacing in fractures and consequently, the hydraulic properties.

  7. Modeling streamflow in a snow-dominated forest watershed using the Water Erosion Prediction Project (WEPP) model

    USDA-ARS?s Scientific Manuscript database

    The Water Erosion Prediction Project (WEPP) model was originally developed for hillslope and small watershed applications. The model simulates complex interactive processes influencing erosion, such as surface runoff, soil-water changes, vegetation growth and senescence, and snow accumulation and me...

  8. Simultaneous concentration of bovine viruses and agricultural zoonotic bacteria from water using sodocalcic glass wool filters

    USDA-ARS?s Scientific Manuscript database

    Infiltration and runoff from manured agricultural fields can result in livestock pathogens reaching groundwater and surface waters. Here, we measured the effectiveness of glass wool filters to simultaneously concentrate enteric viruses and bacteria of bovine origin from water. The recovery efficienc...

  9. PERCHLORATE ENVIRONMENTAL CONTAMINATION: TOXICOLOGICAL REVIEW AND RISK CHARACTERIZATION (EXTERNAL REVIEW DRAFT) 2002

    EPA Science Inventory

    Perchlorate (ClO4-) is an anion that originates as a contaminant in ground water and surface waters when the salts of ammonium, potassium, magnesium, or sodium dissolve in water. One major source of contamination is the manufacture or improper disposal of ammonium perchlorate th...

  10. The Dynamic Surface Tension of Water

    PubMed Central

    2017-01-01

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m–1) than under equilibrium conditions (∼72 mN m–1) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments. PMID:28301160

  11. The Dynamic Surface Tension of Water.

    PubMed

    Hauner, Ines M; Deblais, Antoine; Beattie, James K; Kellay, Hamid; Bonn, Daniel

    2017-04-06

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m -1 ) than under equilibrium conditions (∼72 mN m -1 ) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.

  12. Odor Events in Surface and Treated Water: The Case of 1,3-Dioxane Related Compounds.

    PubMed

    Quintana, Jordi; Vegué, Lídia; Martín-Alonso, Jordi; Paraira, Miquel; Boleda, M Rosa; Ventura, Francesc

    2016-01-05

    A study has been carried out to identify the origin of the odorous compounds at trace levels detected in surface waters and in Barcelona's tap water (NE Spain) which caused consumer complaints. The malodorous compounds were 2,5,5-trimethyl-1,3-dioxane (TMD) and 2-ethyl-5,5-dimethyl-1,3-dioxane (2EDD) which impart a distinctive sickening or olive-oil odor to drinking water at low ng/L levels. Flavor profile analysis (FPA) or threshold odor number (TON) were used for organoleptic purposes. Levels up to 749 ng/L for TMD and 658 ng/L for 2EDD were measured at the entrance of the drinking water treatment plant. Three wastewater treatment plants (WWTPs) using industrial byproducts coming from resin manufacturing plants to promote codigestion were found to be the origin of the event. Corrective measures were applied, including the prohibition to use these byproducts for codigestion in the WWTPs involved. A similar event was already recorded in the same area 20 years ago.

  13. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water.

    PubMed

    Yang, Ji; Cao, Limei; Guo, Rui; Jia, Jinping

    2010-12-15

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m(2)g(-1), the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Development of a Model for the Heat Release Rate of Wood. A Status Report.

    DTIC Science & Technology

    1985-05-01

    K) *contraction factor L effective heat of gasification (kJ/kg) (positive) Lv latent heat of vaporization of water (kJ/kg) (positive) m mass (kg) M...designates the slice bounded by the rear surface 0 ambient or original *0 oxygen R radiation rel release S front surface of specimen Vol volatiles ix w water ...calorimeter. Along the other pathway, char is formed with the release of water and other volatiles having low heats of combustion. The effective heat of

  15. Chernobyl radioactivity found in mid-water sediment interceptors in the N. Pacific and Bering Sea

    NASA Astrophysics Data System (ADS)

    Kusakabe, M.; Ku, T.-L.; Harada, K.; Taguchi, K.; Tsunogai, S.

    1988-01-01

    Fission-product nuclides 134Cs, 137Cs and 103Ru originated from the Chernobyl accident have been detected in sediment traps deployed at mid-water depths ranging from 110 to 780 m in the N. Pacific and the Bering Sea. The detected radioactivities, originally associated with fine airborne particles, have apparently been incorporated into much larger aggregates of predominantly biogenic material formed in the surface ocean, and transferred downward through the water column with velocities of the order of 100 m/day.

  16. Dynamic molecular oxygen production in cometary comae.

    PubMed

    Yao, Yunxi; Giapis, Konstantinos P

    2017-05-08

    Abundant molecular oxygen was discovered in the coma of comet 67P/Churyumov-Gerasimenko. Its origin was ascribed to primordial gaseous O 2 incorporated into the nucleus during the comet's formation. This thesis was put forward after discounting several O 2 production mechanisms in comets, including photolysis and radiolysis of water, solar wind-surface interactions and gas-phase collisions. Here we report an original Eley-Rideal reaction mechanism, which permits direct O 2 formation in single collisions of energetic water ions with oxidized cometary surface analogues. The reaction proceeds by H 2 O + abstracting a surface O-atom, then forming an excited precursor state, which dissociates to produce O 2 - . Subsequent photo-detachment leads to molecular O 2 , whose presence in the coma may thus be linked directly to water molecules and their interaction with the solar wind. This abiotic O 2 production mechanism is consistent with reported trends in the 67P coma and raises awareness of the role of energetic negative ions in comets.

  17. Dynamic molecular oxygen production in cometary comae

    NASA Astrophysics Data System (ADS)

    Yao, Yunxi; Giapis, Konstantinos P.

    2017-05-01

    Abundant molecular oxygen was discovered in the coma of comet 67P/Churyumov-Gerasimenko. Its origin was ascribed to primordial gaseous O2 incorporated into the nucleus during the comet's formation. This thesis was put forward after discounting several O2 production mechanisms in comets, including photolysis and radiolysis of water, solar wind-surface interactions and gas-phase collisions. Here we report an original Eley-Rideal reaction mechanism, which permits direct O2 formation in single collisions of energetic water ions with oxidized cometary surface analogues. The reaction proceeds by H2O+ abstracting a surface O-atom, then forming an excited precursor state, which dissociates to produce O2-. Subsequent photo-detachment leads to molecular O2, whose presence in the coma may thus be linked directly to water molecules and their interaction with the solar wind. This abiotic O2 production mechanism is consistent with reported trends in the 67P coma and raises awareness of the role of energetic negative ions in comets.

  18. May cause environmental damage the diversion of the Danube in the Szigetköz area, Hungary?

    NASA Astrophysics Data System (ADS)

    Novak, Brigitta

    2009-04-01

    Summary The floodplain area between the main channel of Danube and its branch river Mosoni-Duna is called the Szigetköz. This wetland area has special flora and fauna, and it is a natural protection area. Underneath of the Szigetköz, there are a thick (several hundreds meters) sedimentary sequence, the so called Kisalföld Quaternary Aquifer. This aquifer system is fed by the surface river system of Danube and supplies excellent quality drinking water for several hundred thousands of people in Hungary and Slovakia. The Szigetköz Monitoring Network was established in 1991 to describe the environmental effects of the Bős-Nagymaros Dam System, which was partly built in 1992 on the Slovakian part of the Danube. The dam diverts three-quarter of the Danube runoff to a 40 km long artificial concrete channel north of the original river bed. The effect of this diversion is spectacular on the wetland area. Water level in the meandering channels have decreased significantly, part of the wetland area frequently becomes dry. The natural flow pattern has disappeared. As a consequence, the channel characteristics of the river network, therefore the flow pattern, the quantity and quality of surface and subsurface water on the upper region of the Danube have significantly changed. The aim of our research is to describe the relationship between surface water and groundwater and considering the variable geology of the area, to describe trends in chemistry and to find the possible reasons for extreme values. Also to detect possible connection between the extreme values and the changes in flow pattern caused by the human intervention. Water sample pairs from surface water and shallow and deeper ground water were taken in every season at 18 locations. To sample shallow ground-water 1,5 m long, screened metal probes were derived into the sediment at the possible nearest point to the surface water. On the field pH, temperature, dissolved oxygen, specific conductivity, and in the wells redox potential were measured. Samples were taken for further laboratory analyses (major and trace components, nitrate. The chemical parameters of surface and subsurface water show seasonal changes, due to the changes of temperature, of precipitation, of biological and microbiological activity. At the monitoring points along the main channel the surface and subsurface water is closely related, and the velocity of groundwater can be calculated by the seasonal periodical dislocation. At the monitoring points on the north-western part of the study area (point 1), subsurface water replenished by the rivers, and water level in the probes follow the surface water level changes with short shift. Practically water quality is the same in the probe as in the surface. It is the same on the south-eastern part of the study area, where the diverted channel rejoins to the original river channel (point 10). The middle section (at points 4 and 5) of the study area, water level in the probes is higher than surface water level. Also concentrations of some chemical components are higher in the subsurface water here. These components are typically the results of water - sediment interaction. Based on these observations, the study area can be differentiated by the hydrochemical composition for losing and gaining sections. At the monitoring points along the meandering sub-branch system, water in the probes is reductive, the connection between surface and subsurface water is week, furthermore at some point is non-existent. At some points surface water has slow flow, or it is even stagnant. This means reductive environments, and high concentrations of some components, especially at the monitoring points of 31 and 41. For example, concentrations of ammonium, sulphate, phosphate, magnesium, iron, manganese are extremely high in the shallow groundwater. Originally the Danube supplied fresh, oxygen-rich water to the area, while nowadays at these locations surface water and subsurface water almost has no connection, and these sections of river bed already turned muddy, and organic material accumulated in the sediment, which further increase the rate of reduction and decrease the flow rate. The extreme values, and values not following the trend in the time series of chemical parameters can be explained only by further detailed examination. On the whole, it is unambiguously clear, since the diversion of Danube the water replenishment of the meandering sub-branch system is poorer, causing unfavourable changes in water chemistry both in surface and subsurface water. Other research teams of the monitoring system, studying ecology, have found that the water regulation has major adverse effects on the biology as well. The typical floodplain vegetation is changing toward species tolerating dryness. In the water flora and fauna alters gradually as well, due to the changing chemical characteristic of water and the decreasing flow. Considering that the abiotic environment react slower than the biotic to the anthropologic influence, we do not have a clear view how the water quality will deteriorate on the long run. Furthermore, the changes in flora and fauna have already caused changes in water chemistry, and these changes will persist causing a slow but continuous diversion from the original, natural values. In Szigetköz area, the decreased flow and the deteriorating quality of surface water will endanger the important subsurface drinking water aquifer on the long-term.

  19. Orientation-dependent hydration structures at yttria-stabilized cubic zirconia surfaces

    DOE PAGES

    Hou, Binyang; Kim, Seunghyun; Kim, Taeho; ...

    2016-11-30

    Water interaction with surfaces is very important and plays key roles in many natural and technological processes. Because the experimental challenges that arise when studying the interaction water with specific crystalline surfaces, most studies on metal oxides have focused on powder samples, which averaged the interaction over different crystalline surfaces. As a result, studies on the crystal orientation-dependent interaction of water with metal oxides are rarely available in the literature. In this work, water adsorption at 8 mol % yttria-stabilized cubic single crystal zirconia (100) and (111) surfaces was studied in terms of interfacial hydration structures using high resolution X-raymore » reflectivity measurements. The interfacial electron density profiles derived from the structure factor analysis of the measured data show the existence of multiple layers of adsorbed water with additional peculiar metal adsorption near the oxide surfaces.Surface relaxation, depletion, and interaction between the adsorbed layers and bulk water are found to vary greatly between the two surfaces and are also different when compared to the previously studied (110) surface. The fractional ratio between chemisorbed and physisorbed water species were also quantitatively estimated, which turned out to vary dramatically from surface to surface. Finally, the result gives us a unique opportunity to reconsider the simplified 2:1 relation between chemisorption and physisorption, originally proposed by Morimoto et al. based on the adsorption isotherms of water on powder metal oxide samples.« less

  20. Replication of cicada wing's nano-patterns by hot embossing and UV nanoimprinting.

    PubMed

    Hong, Sung-Hoon; Hwang, Jaeyeon; Lee, Heon

    2009-09-23

    The hydrophobicity of the cicada wing originates from its naturally occurring, surface nano-structure. The nano-structure of the cicada wing consists of an array of nano-sized pillars, 100 nm in diameter and 300 nm in height. In this study, the nano-structure of the cicada wing was successfully duplicated by using hot embossing lithography and UV nanoimprint lithography (NIL). The diameter and pitch of replication were the same as those of the original cicada wing and the height was a little smaller than that of the original master. The transmittance of the hot embossed PVC film was increased by 2-6% compared with that of the bare PVC film. The hydrophobicity was measured by water contact angle measurements. The water contact angle of the replica, made of UV cured polymer, was 132 degrees +/- 2 degrees , which was slightly lower than that of the original cicada wing (138 degrees +/- 2 degrees ), but much higher than that of the UV cured polymer surface without any nano-sized pillars (86 degrees ).

  1. Understanding the origin and evolution of water in the Moon through lunar sample studies

    PubMed Central

    Anand, Mahesh; Tartèse, Romain; Barnes, Jessica J.

    2014-01-01

    A paradigm shift has recently occurred in our knowledge and understanding of water in the lunar interior. This has transpired principally through continued analysis of returned lunar samples using modern analytical instrumentation. While these recent studies have undoubtedly measured indigenous water in lunar samples they have also highlighted our current limitations and some future challenges that need to be overcome in order to fully understand the origin, distribution and evolution of water in the lunar interior. Another exciting recent development in the field of lunar science has been the unambiguous detection of water or water ice on the surface of the Moon through instruments flown on a number of orbiting spacecraft missions. Considered together, sample-based studies and those from orbit strongly suggest that the Moon is not an anhydrous planetary body, as previously believed. New observations and measurements support the possibility of a wet lunar interior and the presence of distinct reservoirs of water on the lunar surface. Furthermore, an approach combining measurements of water abundance in lunar samples and its hydrogen isotopic composition has proved to be of vital importance to fingerprint and elucidate processes and source(s) involved in giving rise to the lunar water inventory. A number of sources are likely to have contributed to the water inventory of the Moon ranging from primordial water to meteorite-derived water ice through to the water formed during the reaction of solar wind hydrogen with the lunar soil. Perhaps two of the most striking findings from these recent studies are the revelation that at least some portions of the lunar interior are as water-rich as some Mid-Ocean Ridge Basalt source regions on Earth and that the water in the Earth and the Moon probably share a common origin. PMID:25114308

  2. Chlorine stress mediates microbial surface attachment in drinking water systems.

    PubMed

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  3. Permian paleoclimate data from fluid inclusions in halite

    USGS Publications Warehouse

    Benison, K.C.; Goldstein, R.H.

    1999-01-01

    This study has yielded surface water paleotemperatures from primary fluid inclusions in mid Permian Nippewalla Group halite from western Kansas. A 'cooling nucleation' method is used to generate vapor bubbles in originally all-liquid primary inclusions. Then, surface water paleotemperatures are obtained by measuring temperatures of homogenization to liquid. Homogenization temperatures ranged from 21??C to 50??C and are consistent along individual fluid inclusion assemblages, indicating that the fluid inclusions have not been altered by thermal reequilibration. Homogenization temperatures show a range of up to 26??C from base to top of individual cloudy chevron growth bands. Petrographic and fluid inclusion evidence indicate that no significant pressure correction is needed for the homogenization temperature data. We interpret these homogenization temperatures to represent shallow surface water paleotemperatures. The range in temperatures from base to top of single chevron bands may reflect daily temperatures variations. These Permian surface water temperatures fall within the same range as some modern evaporative surface waters, suggesting that this Permian environment may have been relatively similar to its modern counterparts. Shallow surface water temperatures in evaporative settings correspond closely to local air temperatures. Therefore, the Permian surface water temperatures determined in this study may be considered proxies for local Permian air temperatures.

  4. Preparation of Water-Repellent Glass by Sol-Gel Process Using Perfluoroalkylsilane and Tetraethoxysilane.

    PubMed

    Jeong, Hye-Jeong; Kim, Dong-Kwon; Lee, Soo-Bok; Kwon, Soo-Han; Kadono, Kohei

    2001-03-01

    Coating films on glass substrate were prepared by sol-gel process using alkoxide solutions containing perfluoroalkylsilane (PFAS) and tetraethoxysilane (TEOS). The physical properties of the coating films were characterized by SEM, FT-IR, and XRD. And their surface properties were investigated by measuring contact angles and atomic compositions. Transparent coating films with smooth surface and uniform thickness could be obtained. The contact angles of the coating films for water and methylene iodide are extremely high, at 118 degrees and 97 degrees, respectively, and their surface free energies are about 9.7 dyn/cm. It was found that the water-repellent glass prepared is very hydrophobic and exhibits excellent water-repellency. Hydrophobic perfluoroalkyl groups are preferentially enriched to the outermost layer at the coating film-air interface, and two layers probably exist in the coating film. The upper layer oriented toward the air is composed of mainly perfluoroalkyl groups originating from PFAS, and the lower layer is composed of mainly -OSiO- groups originating from TEOS. The heat treatment after drying step cannot influence the surface enrichment of the perfluoroalkyl group. The hydrolysis reaction should be more completely done before the dip coating step to obtain lower surface free energy. The burning temperature should be less than 300 degrees C because the perfluoroalkyl group begins to decompose from this temperature. Copyright 2001 Academic Press.

  5. 25th ANNUAL NATIONAL CONFERENCE ON MANAGING ENVIRONMENTAL QUALITY SYSTEMS

    EPA Science Inventory

    The model results may help landscape ecologists produce indicators of surface water condition, such that unique combinations of these indicators can be used to infer the potential cause(s) and origin(s) of non-point pollution, which may lead to eutrophication in aquatic ecosystem...

  6. Salinity minima, water masses and surface circulation in the Eastern Tropical Pacific off Mexico and surrounding areas

    NASA Astrophysics Data System (ADS)

    Portela, Esther; Beier, Emilio; Godínez, Victor; Castro, Rubén; Desmond Barton, Eric

    2016-04-01

    The seasonal variations of the water masses and their interactions are analyzed in the Tropical Pacific off Mexico (TPOM) and four contiguous areas of on the basis of new extensive hydrographic database. The regional water masses intervals are redefined in terms of Absolute Salinity (SA) in g kg-1 and Conservative Temperature (Θ) according to TEOS - 10. The California Current System Water (CCSW) mass is introduced as an improved description of the former California Current Water (CCW) together with the Subarctic Water (SAW) to describe better the characteristics of the components of the California Current System. Hydrographic data, Precipitation-Evaporation balance and geostrophic currents were used to investigate the origin and seasonality of two salinity minima in the area. The shallow salinity minimum of around 33.5 g kg-1 originated in the California Current System and became saltier but less dense water as it traveled to the southeast. It can be identified as a mixture of CCSW and tropical waters. The surface salinity minimum of 32 - 33 g kg-1 was seen as a sharp surface feature in the TPOM from August to November. It was produced by the arrival of tropical waters from the south in combination with the net precipitation in the area during these months. This result provides new evidence of the presence of the poleward-flowing Mexican Coastal Current and, for the first time, of its seasonal pattern of variation.

  7. Antifouling Cellulose Hybrid Biomembrane for Effective Oil/Water Separation.

    PubMed

    Kollarigowda, Ravichandran H; Abraham, Sinoj; Montemagno, Carlo D

    2017-09-06

    Oil/water separation has been of great interest worldwide because of the increasingly serious environmental pollution caused by the abundant discharge of industrial wastewater, oil spill accidents, and odors. Here, we describe simple and economical superhydrophobic hybrid membranes for effective oil/water separation. Eco-friendly, antifouling membranes were fabricated for oil/water separation, waste particle filtration, the blocking of thiol-based odor materials, etc., by using a cellulose membrane (CM) filter. The CM was modified from its original superhydrophilic nature into a superhydrophobic surface via a reversible addition-fragmentation chain transfer technique. The block copolymer poly{[3-(trimethoxysilyl)propyl acrylate]-block-myrcene} was synthesized using a "grafting-from" approach on the CM. The surface contact angle that we obtained was >160°, and absorption tests of several organic contaminants (oils and solvents) exhibited superior levels of extractive activity and excellent reusability. These properties rendered this membrane a promising surface for oil/water separation. Interestingly, myrcene blocks thiol (through "-ene-" chemistry) contaminants, thereby bestowing a pleasant odor to polluted water by acting as an antifouling material. We exploited the structural properties of cellulose networks and simple chemical manipulations to fabricate an original material that proved to be effective in separating water from organic and nano/microparticulate contaminants. These characteristics allowed our material to effectively separate water from oily/particulate phases as well as embed antifouling materials for water purification, thus making it an appropriate absorber for chemical processes and environmental protection.

  8. South Atlantic circulation in a world ocean model

    NASA Astrophysics Data System (ADS)

    England, Matthew H.; Garçon, Véronique C.

    1994-09-01

    The circulation in the South Atlantic Ocean has been simulated within a global ocean general circulation model. Preliminary analysis of the modelled ocean circulation in the region indicates a rather close agreement of the simulated upper ocean flows with conventional notions of the large-scale geostrophic currents in the region. The modelled South Atlantic Ocean witnesses the return flow and export of North Atlantic Deep Water (NADW) at its northern boundary, the inflow of a rather barotropic Antarctic Circumpolar Current (ACC) through the Drake Passage, and the inflow of warm saline Agulhas water around the Cape of Good Hope. The Agulhas leakage amounts to 8.7 Sv, within recent estimates of the mass transport shed westward at the Agulhas retroflection. Topographic steering of the ACC dominates the structure of flow in the circumpolar ocean. The Benguela Current is seen to be fed by a mixture of saline Indian Ocean water (originating from the Agulhas Current) and fresher Subantarctic surface water (originating in the ACC). The Benguela Current is seen to modify its flow and fate with depth; near the surface it flows north-westwards bifurcating most of its transport northward into the North Atlantic Ocean (for ultimate replacement of North Atlantic surface waters lost to the NADW conveyor). Deeper in the water column, more of the Benguela Current is destined to return with the Brazil Current, though northward flows are still generated where the Benguela Current extension encounters the coast of South America. At intermediate levels, these northward currents trace the flow of Antarctic Intermediate Water (AAIW) equatorward, though even more AAIW is seen to recirculate poleward in the subtropical gyre. In spite of the model's rather coarse resolution, some subtle features of the Brazil-Malvinas Confluence are simulated rather well, including the latitude at which the two currents meet. Conceptual diagrams of the recirculation and interocean exchange of thermocline, intermediate and deep waters are constructed from an analysis of flows bound between isothermal and isobaric surfaces. This analysis shows how the return path of NADW is partitioned between a cold water route through the Drake Passage (6.5 Sv), a warm water route involving the Agulhas Current sheeding thermocline water westward (2.5 Sv), and a recirculation of intermediate water originating in the Indian Ocean (1.6 Sv).

  9. Origins and bioavailability of dissolved organic matter in groundwater

    USGS Publications Warehouse

    Shen, Yuan; Chapelle, Francis H.; Strom, Eric W.; Benner, Ronald

    2015-01-01

    Dissolved organic matter (DOM) in groundwater influences water quality and fuels microbial metabolism, but its origins, bioavailability and chemical composition are poorly understood. The origins and concentrations of dissolved organic carbon (DOC) and bioavailable DOM were monitored during a long-term (2-year) study of groundwater in a fractured-rock aquifer in the Carolina slate belt. Surface precipitation was significantly correlated with groundwater concentrations of DOC, bioavailable DOM and chromophoric DOM, indicating strong hydrological connections between surface and ground waters. The physicochemical and biological processes shaping the concentrations and compositions of DOM during its passage through the soil column to the saturated zone are conceptualized in the regional chromatography model. The model provides a framework for linking hydrology with the processes affecting the transformation, remineralization and microbial production of DOM during passage through the soil column. Lignin-derived phenols were relatively depleted in groundwater DOM indicating substantial removal in the unsaturated zone, and optical properties of chromophoric DOM indicated lower molecular weight DOM in groundwater relative to surface water. The prevalence of glycine, γ-aminobutyric acid, and d-enantiomers of amino acids indicated the DOM was highly diagenetically altered. Bioassay experiments were used to establish DOC-normalized yields of amino acids as molecular indicators of DOM bioavailability in groundwater. A relatively small fraction (8 ± 4 %) of DOC in groundwater was bioavailable. The relatively high yields of specific d-enantiomers of amino acids indicated a substantial fraction (15–34 %) of groundwater DOC was of bacterial origin.

  10. Quantitatively identifying the roles of interfacial water and solid surface in governing peptide adsorption.

    PubMed

    Xu, Zhijun; Yang, Xiao; Wei, Qichao; Zhao, Weilong; Cui, Beiliang; Yang, Xiaoning; Sahai, Nita

    2018-06-11

    Understanding the molecular mechanism of protein adsorption on solids is critical to their applications in materials synthesis and tissue engineering. Though the water phase at the surface/water interface has been recognized as three types: free water in the bulk region, intermediate water phase and surface-bound water layers adjacent to the surface, the roles of the water and surface in determining the protein adsorption are not clearly identified, particularly at the quantitative level. Herein, we provide a methodology involving the combination of microsecond strengthen sampling simulation and force integration to quantitatively characterize the water-induced contribution and the peptide-surface interactions into the adsorption free energy. Using hydroxyapatite and graphene surfaces as examples, we demonstrate how the distinct interfacial features dominate the delicate force balance between these two thermodynamics parameters, leading to surface preference/resistance to peptide adsorption. Specifically, the water layer provides sustained repelling force against peptide adsorption, as indicated by a monotonic increase in the water-induced free energy profile, whereas the contribution to the free energy from the surface effect is thermodynamically favorable, thus acting as the dominant driving force for peptide adsorptions. More importantly, the revealed adsorption mechanism is critically dictated by the distribution of water phase at the solid/water interface, which plays a crucial role in establishing the force balance between the interactions of the peptide with the water layer and the surface. For the HAP surface, the charged peptide exhibits strong binding affinity to the surface, which is ascribed to the controlling contribution of peptide-surface interaction in the intermediate water phase and the surface-bound water layers are observed as the origin of bioresistance of solid surfaces towards the adsorption of charge-neutral peptides. The preferred peptide adsorption on the graphene, however, is dominated by the surface-induced component at the water layers adjacent to the surface. Our results further elucidate that the intermediate water phase significantly shortens the effective range of the surface dispersion force to guide the diffusion of the peptide to the interface, in sharp contrast to the observation in interfacial systems involving the strong water-surface interaction.

  11. GCM Simulation of the Large-scale North American Monsoon Including Water Vapor Tracer Diagnostics

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Walker, Gregory; Schubert, Siegfried D.; Sud, Yogesh; Atlas, Robert M. (Technical Monitor)

    2001-01-01

    The geographic sources of water for the large-scale North American monsoon in a GCM are diagnosed using passive constituent tracers of regional water'sources (Water Vapor Tracers, WVT). The NASA Data Assimilation Office Finite Volume (FV) GCM was used to produce a 10-year simulation (1984 through 1993) including observed sea surface temperature. Regional and global WVT sources were defined to delineate the surface origin of water for precipitation in and around the North American i'vionsoon. The evolution of the mean annual cycle and the interannual variations of the monsoonal circulation will be discussed. Of special concern are the relative contributions of the local source (precipitation recycling) and remote sources of water vapor to the annual cycle and the interannual variation of warm season precipitation. The relationships between soil water, surface evaporation, precipitation and precipitation recycling will be evaluated.

  12. GCM Simulation of the Large-Scale North American Monsoon Including Water Vapor Tracer Diagnostics

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Walker, Gregory; Schubert, Siegfried D.; Sud, Yogesh; Atlas, Robert M. (Technical Monitor)

    2002-01-01

    The geographic sources of water for the large scale North American monsoon in a GCM (General Circulation Model) are diagnosed using passive constituent tracers of regional water sources (Water Vapor Tracers, WVT). The NASA Data Assimilation Office Finite Volume (FV) GCM was used to produce a 10-year simulation (1984 through 1993) including observed sea surface temperature. Regional and global WVT sources were defined to delineate the surface origin of water for precipitation in and around the North American Monsoon. The evolution of the mean annual cycle and the interannual variations of the monsoonal circulation will be discussed. Of special concern are the relative contributions of the local source (precipitation recycling) and remote sources of water vapor to the annual cycle and the interannual variation of monsoonal precipitation. The relationships between soil water, surface evaporation, precipitation and precipitation recycling will be evaluated.

  13. Characterization of Surface Water and Groundwater Quality in the Lower Tano River Basin Using Statistical and Isotopic Approach.

    NASA Astrophysics Data System (ADS)

    Edjah, Adwoba; Stenni, Barbara; Cozzi, Giulio; Turetta, Clara; Dreossi, Giuliano; Tetteh Akiti, Thomas; Yidana, Sandow

    2017-04-01

    Adwoba Kua- Manza Edjaha, Barbara Stennib,c,Giuliano Dreossib, Giulio Cozzic, Clara Turetta c,T.T Akitid ,Sandow Yidanae a,eDepartment of Earth Science, University of Ghana Legon, Ghana West Africa bDepartment of Enviromental Sciences, Informatics and Statistics, Ca Foscari University of Venice, Italy cInstitute for the Dynamics of Environmental Processes, CNR, Venice, Italy dDepartment of Nuclear Application and Techniques, Graduate School of Nuclear and Allied Sciences University of Ghana Legon This research is part of a PhD research work "Hydrogeological Assessment of the Lower Tano river basin for sustainable economic usage, Ghana, West - Africa". In this study, the researcher investigated surface water and groundwater quality in the Lower Tano river basin. This assessment was based on some selected sampling sites associated with mining activities, and the development of oil and gas. Statistical approach was applied to characterize the quality of surface water and groundwater. Also, water stable isotopes, which is a natural tracer of the hydrological cycle was used to investigate the origin of groundwater recharge in the basin. The study revealed that Pb and Ni values of the surface water and groundwater samples exceeded the WHO standards for drinking water. In addition, water quality index (WQI), based on physicochemical parameters(EC, TDS, pH) and major ions(Ca2+, Na+, Mg2+, HCO3-,NO3-, CL-, SO42-, K+) exhibited good quality water for 60% of the sampled surface water and groundwater. Other statistical techniques, such as Heavy metal pollution index (HPI), degree of contamination (Cd), and heavy metal evaluation index (HEI), based on trace element parameters in the water samples, reveal that 90% of the surface water and groundwater samples belong to high level of pollution. Principal component analysis (PCA) also suggests that the water quality in the basin is likely affected by rock - water interaction and anthropogenic activities (sea water intrusion). This was confirm by further statistical analysis (cluster analysis and correlation matrix) of the water quality parameters. Spatial distribution of water quality parameters, trace elements and the results obtained from the statistical analysis was determined by geographical information system (GIS). In addition, the isotopic analysis of the sampled surface water and groundwater revealed that most of the surface water and groundwater were of meteoric origin with little or no isotopic variations. It is expected that outcomes of this research will form a baseline for making appropriate decision on water quality management by decision makers in the Lower Tano river Basin. Keywords: Water stable isotopes, Trace elements, Multivariate statistics, Evaluation indices, Lower Tano river basin.

  14. Resource protection and resource management of drinking water-reservoirs in Thuringia--a prerequisite for high drinking-water quality.

    PubMed

    Willmitzer, H

    2000-01-01

    In face of widespread pollution of surface waters, strategies must be developed for the use of surface waters which protect the high quality standards of drinking water, starting with the catchment area via the reservoir to the consumer. As a rule, priority is given to the avoidance of contaminants directly at their point of origin. Water protection is always cheaper than expensive water-body restoration and water treatment. Complementary to the generally practised technical methods of raw water treatment with all their associated problems of energy input requirements, costs, and waste products, there is an increasing number of environmentally sound treatment technologies which use ecological principles as a basis to support the self-cleaning properties of flowing and dammed waters.

  15. Urban and agricultural contribution of annual loads of glyphosate and AMPA towards surface waters at the Orge River catchment scale (France)

    NASA Astrophysics Data System (ADS)

    Botta, Fabrizio; Chevreuil, Marc; Blanchoud, Hélène

    2010-05-01

    The general use of pesticides in the Orge Basin, located in the southern part of the Paris suburb (France), is damaging surface water quality. Consequently, an increase in the water supply costs is registered by the water supply agencies that are situated downstream the Orge confluence with the Seine River. In this catchment, high uses of glyphosate are registered for fallow fields (upstream part) and for roadway weed control (downstream part). The proportion of glyphosate coming from these two zones was not well known, along with the double source of its metabolite AMPA originated from the degradation of some detergent phosphonates. The aim of this work was firstly to identify the potential sources of glyphosate and AMPA in urban sectors (such as sewerage system inputs) and in agricultural areas and to quantify the origins of urban pesticides pathways towards surface waters at the basin scale. The new approach of this project was to collect information at three different scales to establish a first step of modeling. At the basin scale, 1 year of surface water monitoring at the outlet of the Orge River was useful to establish the inputs towards the Seine River. At the urban catchment scale, the investigations have permitted to record glyphosate and AMPA loads transferred by storm waters and by wastewaters. Loads were estimated during and out of application calendar, in different hydrological conditions such as rainfall with high intensity or dry conditions. Impact of WWTP on surface water was also demonstrated. The third phase of this work was the interpretation of agricultural inputs from two different agricultural catchments of the Orge River. The results showed the impact of urban uses of glyphosate upon the Orge River contamination with annual loads from 100 times higher from the urban zone than from the agricultural one. Storm sewers were recognized to be the main way for glyphosate transfer towards surface waters. A budget of glyphosate and AMPA inputs and exported amounts was carried out at the River scale. Different origins (agricultural zones, urban areas and wastewater treatment plants) were assessed to determine the contribution of each usage. These investigations showed the high impact of storm waters and wastewaters upon the Orge River contamination (90%), whereas the agricultural zone contributed to only 10 % of the glyphosate contamination of the River. Glyphosate contaminates the river by direct flow of rainfall sewers towards surface waters. AMPA in the Orge river originates from both degradation of glyphosate in agricultural soils (29%) and from urban sewers (79%). Glyphosate amount transferred via overflows between sewers is the main source (more than 95%) in wastewaters during application period and rainfall events, but represents only 50% of the annual load in wastewaters that reach treatment plants (WWTP). AMPA, always detected in wastewaters and WWTP, is partly related to domestic wastewaters (18 to 23% of the total load). A difference between glyphosate and AMPA load inputs in the Orge River and outputs load at the outlet was registered: Glyphosate load is decreasing downstream as AMPA is increasing, suggesting a degradation of glyphosate into the river. The rule of sediments could have a significant influence of the dynamic transport of glyphosate. The results of the budget calculation are supported by a strong and logical data collection, coupled with detailed spatial information and consciousness of estimation accuracy. Keywords: Catchment, glyphosate, AMPA, inputs, budget

  16. Why a mosquito leg possesses superior load-bearing capacity on water: Experimentals

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Qing; Liu, Jian-Lin; Wu, Cheng-Wei

    2016-04-01

    Mosquitoes possess the striking ability to walk on water because each of their legs has a huge water supporting force (WSF) that is 23 times their body weight. Aiming at a full understanding of the origins of this extremely large force, in this study, we concentrate on two aspects of it: the intrinsic properties of the leg surface and the active control of the initial stepping angle of the whole leg. Using a measurement system that we developed ourselves, the WSFs for the original leg samples are compared with those whose surface wax and microstructures have been removed and with those of a different stiffness. The results show that leg flexibility plays a dominant role over surface wax and microstructures on the leg surface in creating the supporting force. Moreover, we discuss the dependence relationship between the maximum WSF and the initial stepping angle, which indicates that the mosquito can regulate this angle to increase or decrease the WSF during landing or takeoff. These findings are helpful for uncovering the locomotion mechanism of aquatic insects and for providing inspiration for the design of microfluids, miniature boats, biomimetic robots, and microsensors.

  17. Geochemical Composition of Surface Water in the Mineralized Lom Basin, East Cameroon: Natural and Anthropogenic Sources.

    NASA Astrophysics Data System (ADS)

    Mimba, M. E.; Ohba, T.; Nguemhe Fils, S. C.; Wirmvem, M. J.

    2016-12-01

    Thousands of people in East Cameroon depend on surface water for consumption and domestic purposes. The Lom basin, north of the region, is heavily mineralized especially in gold owing to its regional geological setting. Although research has been done regarding the rock type, age, formation history and reconnaissance gold surveys, surface water investigation in the area has received limited attention. Thus, this study appraises the first regional hydrogeochemical program for environmental assessment of the mineralized Lom basin. Fifty-two representative stream water samples were collected under base flow conditions and analysed for major cations (Ca2+, Mg2+, Na+, K+ ), major anions (HCO3-, F-, Cl-, NO2-, NO3-, Br-, PO43-, SO42- ) and stable isotopes (δD and δ18O). Calcium and HCO3- were the dominant ions. The chemical facies were CaHCO3 and NaHCO3 indicating surface water draining igneous/metamorphic rocks in hot and humid equatorial climate, resulting in the discordant dissolution of primary silicate minerals. From the isotopic evaluation, the stream water is of meteoric origin, shows negligible evaporation effect and has a common recharge source. The major ion geochemistry demonstrated the potential to discriminate between natural and anthropogenic origins. Distribution trends of Ca2+, Mg2+, Na+, K+, HCO3- and SO42- showed a correlation with the lithology and the occurrence of sulphide minerals associated with hydrothermal gold mineralization in the area. The distribution patterns of NO3- and Cl- reflect pollution from settlement. Overall, the chemistry of stream water in the Lom basin is mainly controlled by rock weathering compared to anthropogenic influence. Surface water quality is easily influenced by anthropogenic activities, and stream sediment collects effectively trace metals resulting from such activities. Hence, geochemical mapping incorporating stream water and stream sediment is of considerable value in future investigations within the Lom basin.

  18. The possibility of life on Mars during a water-rich past

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Mancinelli, R. L.; Stoker, C. R.; Wharton, R. A., Jr.

    1992-01-01

    Geomorphological evidence for past liquid water on Mars implies an early, warmer, epoch. In this review we compare this early warm environment to the first Gyr of Earth's history, the time within which we know life originated. We consider the key question about early Mars from the biological standpoint. How long was liquid water present? The range of answers encompasses the time interval for the origin of life on Earth. We use studies of early life on Earth as a guide, albeit a limited one, to the possible forms of evidence for past life on Mars. Presumptive evidence for microbial life on early Earth are stromatolites, layered deposits produced by microorganisms binding and trapping sediment. A search for fossils might be fruitful at sites on Mars that contained standing bodies of water over long periods of time. The ice-covered lakes of the dry valleys of Antarctica may provide analogs to the ultimate lakes on Mars as the surface pressure fell with a concomitant decrease in surface temperatures.

  19. Closed depression topography Harps soil, revisited

    USDA-ARS?s Scientific Manuscript database

    Accumulation of carbonates around depressions indicates past or present water and solute flow paths out and up from the depressions. The purpose of this study was to determine the pattern of surface carbonates in relation to landscape parameters, depressions, and original Harps map units. Surface ca...

  20. Origin of the Valley Networks On Mars: A Hydrological Perspective

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.

    2000-01-01

    The geomorphology of the Martian valley networks is examined from a hydrological perspective for their compatibility with an origin by rainfall, globally higher heat flow, and localized hydrothermal systems. Comparison of morphology and spatial distribution of valleys on geologic surfaces with terrestrial fluvial valleys suggests that most Martian valleys are probably not indicative of a rainfall origin, nor are they indicative of formation by an early global uniformly higher heat flow. In general, valleys are not uniformly distributed within geologic surface units as are terrestrial fluvial valleys. Valleys tend to form either as isolated systems or in clusters on a geologic surface unit leaving large expanses of the unit virtually untouched by erosion. With the exception of fluvial valleys on some volcanoes, most Martian valleys exhibit a sapping morphology and do not appear to have formed along with those that exhibit a runoff morphology. In contrast, terrestrial sapping valleys form from and along with runoff valleys. The isolated or clustered distribution of valleys suggests localized water sources were important in drainage development. Persistent ground-water outflow driven by localized, but vigorous hydrothermal circulation associated with magmatism, volcanism, impacts, or tectonism is, however, consistent with valley morphology and distribution. Snowfall from sublimating ice-covered lakes or seas may have provided an atmospheric water source for the formation of some valleys in regions where the surface is easily eroded and where localized geothermal/hydrothermal activity is sufficient to melt accumulated snowpacks.

  1. The composition and origin of the C, P, and D asteroids - Water as a tracer of thermal evolution in the outer belt

    NASA Technical Reports Server (NTRS)

    Jones, Thomas D.; Lebofsky, Larry A.; Lewis, John S.; Marley, Mark S.

    1990-01-01

    A telescopic and laboratory investigation of water distribution among low albedo asteroids in the outer belt, using the 3-micron reflectance absorption of molecular H2O and structural OH ions (coincident with the 3-micron spectral signature of meteorite and asteroid hydrated silicates) shows that 66 percent of the C-class asteroids in the sample have hydrated silicate surfaces. In conjunction with the apparently anhydrous P and D surfaces, this pronounced hydration difference between C-class asteroids and the more distant P and D classes points to an original outer belt asteroid composition of anhydrous silicates, water ice, and complex organic material. Early solar-wind induction heating of protoasteroids, declining in intensity with distance from the sun, is conjectured to have produced the observed diminution of hydrated silicate abundance.

  2. Bacterial community diversity and variation in spray water sources and the tomato fruit surface.

    PubMed

    Telias, Adriana; White, James R; Pahl, Donna M; Ottesen, Andrea R; Walsh, Christopher S

    2011-04-21

    Tomato (Solanum lycopersicum) consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water) when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an important step forward towards the development of science-based metrics for Good Agricultural Practices.

  3. Adsorption of water at the SrO surface of ruthenates

    NASA Astrophysics Data System (ADS)

    Halwidl, Daniel; Stöger, Bernhard; Mayr-Schmölzer, Wernfried; Pavelec, Jiri; Fobes, David; Peng, Jin; Mao, Zhiqiang; Parkinson, Gareth S.; Schmid, Michael; Mittendorfer, Florian; Redinger, Josef; Diebold, Ulrike

    2016-04-01

    Although perovskite oxides hold promise in applications ranging from solid oxide fuel cells to catalysts, their surface chemistry is poorly understood at the molecular level. Here we follow the formation of the first monolayer of water at the (001) surfaces of Srn+1RunO3n+1 (n = 1, 2) using low-temperature scanning tunnelling microscopy, X-ray photoelectron spectroscopy, and density functional theory. These layered perovskites cleave between neighbouring SrO planes, yielding almost ideal, rocksalt-like surfaces. An adsorbed monomer dissociates and forms a pair of hydroxide ions. The OH stemming from the original molecule stays trapped at Sr-Sr bridge positions, circling the surface OH with a measured activation energy of 187 +/- 10 meV. At higher coverage, dimers of dissociated water assemble into one-dimensional chains and form a percolating network where water adsorbs molecularly in the gaps. Our work shows the limitations of applying surface chemistry concepts derived for binary rocksalt oxides to perovskites.

  4. The hydrophilic-to-hydrophobic transition in glassy silica is driven by the atomic topology of its surface

    NASA Astrophysics Data System (ADS)

    Yu, Yingtian; Krishnan, N. M. Anoop; Smedskjaer, Morten M.; Sant, Gaurav; Bauchy, Mathieu

    2018-02-01

    The surface reactivity and hydrophilicity of silicate materials are key properties for various industrial applications. However, the structural origin of their affinity for water remains unclear. Here, based on reactive molecular dynamics simulations of a series of artificial glassy silica surfaces annealed at various temperatures and subsequently exposed to water, we show that silica exhibits a hydrophilic-to-hydrophobic transition driven by its silanol surface density. By applying topological constraint theory, we show that the surface reactivity and hydrophilic/hydrophobic character of silica are controlled by the atomic topology of its surface. This suggests that novel silicate materials with tailored reactivity and hydrophilicity could be developed through the topological nanoengineering of their surface.

  5. Linking hyporheic flow and nitrogen cycling near the Willamette River - A large river in Oregon, USA

    USGS Publications Warehouse

    Hinkle, S.R.; Duff, J.H.; Triska, F.J.; Laenen, A.; Gates, E.B.; Bencala, K.E.; Wentz, D.A.; Silva, S.R.

    2001-01-01

    Several approaches were used to characterize ground water/surface water interactions near the Willamette River - A large (ninth order) river in Oregon, USA. A series of potentiometric surface maps demonstrated the presence of highly dynamic hydraulic gradients between rivers and the adjacent aquifer. Hyporheic zone gradients extended on the order of hundreds of meters. River gains and losses at the river stretch scale (tens of kilometers) were consistent with fluxes implied by the potentiometric surface maps, and apparently reflect regional ground water/surface water interactions. Gains and losses of up to 5-10% of streamflow were observed at this scale. On the river reach scale (1-2 km), gains and losses on the order of 5% of streamflow were interpreted as representing primarily local hyporheic exchange. Isotopic and chemical data collected from shallow hyporheic zone wells demonstrated interaction between regional ground water and river water. The origin of sampled hyporheic zone water ranged from a mixture dominated by regional ground water to water containing 100% river water. The common assumption that ground and river water mix primarily in the river channel is not applicable in this system. Isotopic and chemical data also indicated that significant (nearly complete) vegetative nitrate uptake and/or nitrate reduction occurred in water from 4 of 12 hyporheic zone sites. In these cases, it was primarily nitrate transported to the hyporheic zone in regional ground water that was removed from solution. Isotopes of water and nitrate indicated that hyporheic zone water sampled at two sites was composed of water originating as river water and demonstrated that significant vegetative nitrate uptake and nitrate reduction occurred along these hyporheic zone flowpaths. Thus, the hyporheic zone may, in some instances, serve to remove nitrate from river water. Additional investigations with chemical tools and microbial enzyme assays were conducted at one hyporheic site. A strong vertical redox gradient was observed, with nitrate-limited denitrification potential in deeper sediment and both nitrification and denitrification potential in shallower sediment. Since nitrogen cycling is strongly affected by redox conditions, nitrogen cycling in the hyporheic zone of this large-river system likely is affected by dynamics of ground water/surface water interactions that control fluxes of nitrogen and other redox species to hyporheic zone sediment.

  6. Origin and fate of particulate and dissolved organic matter in a naturally iron-fertilized region of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Tremblay, L.; Caparros, J.; Leblanc, K.; Obernosterer, I.

    2014-10-01

    Natural iron fertilization of high-nutrient low-chlorophyll (HNLC) waters induces annually occurring spring phytoplankton blooms off Kerguelen Islands (Southern Ocean). To examine the origin and fate of particulate and dissolved organic matter (POM and DOM), D- and L-amino acids (AA) were quantified at bloom and HNLC stations. Total hydrolysable AA accounted for 21-25% of surface particulate organic carbon (%POCAA) at the bloom sites, but for 10% at the HNLC site. A marked decrease in %POCAA with depth was observed at the most productive stations leading to values between 3 and 5% below 300 m depth. AA contributed to only 0.9-4.4% of dissolved organic carbon (%DOCAA) at all stations. The only consistent vertical trend was observed at the most productive station (A3-2) where %DOCAA decreased from ∼2% in the surface waters to 0.9% near 300 m. These AA yields and other markers revealed that POM and DOM were more rapidly altered or mineralized at the bloom sites compared to the HNLC site. Different molecular markers indicated that POM mostly originated from diatoms and bacteria. The estimated average proportion of POM from intact phytoplankton cells in surface waters was 45% at the bloom station A3-2, but 14% at the HNLC site. Estimates based on D-AA yields indicated that ∼15% of POM and ∼30% of DOM was of bacterial origin (cells and cell fragments) at all stations. Surprisingly, the DOM in HNLC waters appeared less altered than the DOM from the bloom, had slightly higher dissolved AA concentrations, and showed no sign of alteration within the water column. Unfavorable conditions for bacterial degradation in HNLC regions can explain these findings. In contrast, large inputs of labile organic molecules and iron, likely stimulate the degradation of organic matter (priming effect) and the production of more recalcitrant DOM (microbial carbon pump) during iron-fertilized blooms.

  7. Hydrology and water quality of the Edwards Aquifer associated with Barton Springs in the Austin area, Texas

    USGS Publications Warehouse

    Slade, Raymond M.; Dorsey, Michael E.; Stewart, Sheree L.

    1986-01-01

    Water-quality data for 1979-83 are available for each creek that recharges the aquifer, from Barton Springs, and for 38 wells. Water quality from Barton Springs and the wells is better than the creeks providing surface recharge, which have fecal-bacteria values as high as 100,000 colonies per 100 milliliters. Significant densities of fecal bacteria have been found in water from Barton Springs. Significant concentrations of nitrate nitrogen, fecal-group bacteria, and fluoride have been identified in samples from wells. Fluoride originates in the aquifers that underlie the Edwards aquifer. Nitrate nitrogen and fecal-group bacteria originate in residential developments and cattle ranches located in the area.

  8. Recent variability in the Atlantic water intrusion and water masses in Kongsfjorden, an Arctic fjord

    NASA Astrophysics Data System (ADS)

    Divya, David T.; Krishnan, K. P.

    2017-03-01

    The present study reports high inter-annual variability in the water masses and in the intrusion of Atlantic origin waters in Kongsfjorden from 2000 to 2013 using both the historical (2000-2010 summers) and recent CTD measurements (2011-2013 summer/fall). An earlier intrusion of Atlantic Water (AW) into Kongsfjorden was observed in the contemporary years. An overall summertime subsurface warming is evident from the maximum September AW temperature in 2011 (4.8 °C), 2012 (5.8 °C) and 2013 (7 °C). The combination of a compensating surface flow to the subsurface intrusion of AW and the strong southeasterly surface winds during the peak summer, resulted in a corresponding net outflow of the surface fresh water layer from Kongsfjorden. This led to the decreased freshwater volume inside the fjord during 2013 (1 km3) compared to 2011 (3.1 km3) and 2012 (2.3 km3).

  9. Synoptic thermal and oceanographic parameter distributions in the New York Bight Apex

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Bahn, G. S.; Thomas, J. P.

    1981-01-01

    Concurrent surface water measurements made from a moving oceanographic research vessel were used to calibrate and interpret remotely sensed data collected over a plume in the New York Bight Apex on 23 June 1977. Multiple regression techniques were used to develop equations to map synoptic distributions of chlorophyll a and total suspended matter in the remotely sensed scene. Thermal (which did not have surface calibration values) and water quality parameter distributions indicated a cold mass of water in the Bight Apex with an overflowing nutrient-rich warm water plume that originated in the Sandy Hook Bay and flowed south near the New Jersey shoreline. Data analysis indicates that remotely sensed data may be particularly useful for studying physical and biological processes in the top several metres of surface water at plume boundaries.

  10. Replication of cicada wing's nano-patterns by hot embossing and UV nanoimprinting

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Hoon; Hwang, Jaeyeon; Lee, Heon

    2009-09-01

    The hydrophobicity of the cicada wing originates from its naturally occurring, surface nano-structure. The nano-structure of the cicada wing consists of an array of nano-sized pillars, 100 nm in diameter and 300 nm in height. In this study, the nano-structure of the cicada wing was successfully duplicated by using hot embossing lithography and UV nanoimprint lithography (NIL). The diameter and pitch of replication were the same as those of the original cicada wing and the height was a little smaller than that of the original master. The transmittance of the hot embossed PVC film was increased by 2-6% compared with that of the bare PVC film. The hydrophobicity was measured by water contact angle measurements. The water contact angle of the replica, made of UV cured polymer, was 132° ± 2°, which was slightly lower than that of the original cicada wing (138° ± 2°), but much higher than that of the UV cured polymer surface without any nano-sized pillars (86°).

  11. Water availability and subsidence in California's Central Valley

    USGS Publications Warehouse

    Faunt, Claudia C.; Sneed, Michelle

    2015-01-01

    California’s Central Valley covers about 52,000 square kilometers (km2) and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the broad alluvial filled structural trough, with an estimated value exceeding $20 billion per year (Faunt 2009) (Figure 1). Central Valley agriculture depends on state and federal water systems that divert surface water, predominantly originating from Sierra Nevada snowmelt, to agricultural fields. Because the valley is semi-arid and the availability of surface water varies substantially from year to year, season to season, and from north to south, agriculture, as it grew, developed a reliance on groundwater for irrigation.

  12. [Book review] Politics and water resources

    USGS Publications Warehouse

    Leopold, Luna Bergere

    1964-01-01

    Arizona is a state in which development has proceeded sufficiently rapidly relative to the available water supply that its water problems are as acute as those of nearly any other state in the Union. Owing to the fact that, in the past, the principal use of water was for irrigation, and that the areas where the water has been utilized were geographically separated from the mountain zones where the water originated, surface water resources were developed fairly early in the state’s history.

  13. On the attempts to measure water (and other volatiles) directly at the surface of a comet

    PubMed Central

    Sheridan, S.; Morgan, G. H.; Barber, S. J.; Morse, A. D.

    2017-01-01

    The Ptolemy instrument on the Philae lander (of the Rosetta space mission) was able to make measurements of the major volatiles, water, carbon monoxide and carbon dioxide, directly at the surface of comet 67P/Churyumov–Gerasimenko. We give some background to the mission and highlight those instruments that have already given insights into the notion of water in comets, and which will continue to do so as more results are either acquired or more fully interpreted. On the basis of our results, we show how comets may in fact be heterogeneous over their surface, and how surface measurements can be used in a quest to comprehend the daily cycles of processes that affect the evolution of comets. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’. PMID:28416724

  14. On the attempts to measure water (and other volatiles) directly at the surface of a comet

    NASA Astrophysics Data System (ADS)

    Wright, I. P.; Sheridan, S.; Morgan, G. H.; Barber, S. J.; Morse, A. D.

    2017-04-01

    The Ptolemy instrument on the Philae lander (of the Rosetta space mission) was able to make measurements of the major volatiles, water, carbon monoxide and carbon dioxide, directly at the surface of comet 67P/Churyumov-Gerasimenko. We give some background to the mission and highlight those instruments that have already given insights into the notion of water in comets, and which will continue to do so as more results are either acquired or more fully interpreted. On the basis of our results, we show how comets may in fact be heterogeneous over their surface, and how surface measurements can be used in a quest to comprehend the daily cycles of processes that affect the evolution of comets. This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.

  15. Fatigue testing of a NiTi rotary instrument. Part 2: Fractographic analysis.

    PubMed

    Cheung, G S P; Darvell, B W

    2007-08-01

    To examine the topographic features of the fracture surface of a NiTi instrument after fatigue failure, and to correlate the measurements of some features with the cyclic load. A total of 212 ProFile rotary instruments were subjected to a rotational-bending test at various curvatures until broken. The fracture surface of all fragments was examined by SEM to identify the crack origins. The crack radius, i.e. extent of the fatigue-crack growth towards the centroid of the cross-section, was also measured, and correlated with the strain amplitude for each instrument. All fracture surfaces revealed the presence of one or more crack origins, a region occupied by microscopic striations, and an area with microscopic dimples. The number of specimens showing multiple crack origins was significantly greater in the group fatigued under water than in air (P < 0.05). A linear relationship between the reciprocal of the square root of the crack radius and the strain amplitude was discernible (P < 0.001), the slopes of which were not significantly different for instruments fatigued in air and water. The fractographic appearance of NiTi engine-files that had failed because of fatigue is typical of that for other metals. The fatigue behaviour of NiTi instruments is adversely affected by water, not only for the low-cycle fatigue life, but also the number of crack origins. There appears to be a critical extent of crack propagation for various strain amplitudes leading to final rupture (akin to the Griffith's criterion for brittle materials).

  16. Comprehensive analysis of the origin of giant jellyfish near Qinhuangdao in summer

    NASA Astrophysics Data System (ADS)

    Wu, Lingjuan; Wu, Xiaofen; Bai, Tao

    2017-09-01

    A massive bloom of the giant jellyfish Nemopilema nomurai occurred in waters offQinhuangdao, a port city in Hebei Province, in July 2013. However, jellyfish larvae were not found in this location during the previous winter and spring. To determine the possible origin of the giant jellyfish medusa in the Bohai Sea, we developed a backward particle-tracking model and a series of numerical simulations were conducted by using the hydrodynamic, three-dimensional Regional Ocean Modeling System (ROMS) results. The simulated results showed that passive particles, representing jellyfish medusae, released in surface waters at different dates during the summer had consistent trajectories. Particles released at the sea surface on August 1 and 15 could be traced back to the center of the Bohai Sea and to waters between Feiyan Shoal and the new Huanghe (Yellow) River estuary. Particles released on July 1 and 15 could also be traced back to the center of the Bohai Sea and to waters between Feiyan Shoal and only to Zhuangxi tide station. However, none of the particles released in the middle and bottom water layers could be traced back to those areas. Based on the results of the numerical simulations, the distribution characteristics of seafloor sediments, and observational data for giant jellyfish in the region, we suggest that waters between Feiyan Shoal and the new Huanghe River estuary are the likely origin of giant jellyfish observed near Qinhuangdao in summer.

  17. Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of industrial effluents originated from different industrial activities.

    PubMed

    Pathiratne, Asoka; Hemachandra, Chamini K; De Silva, Nimal

    2015-12-01

    Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of treated effluents originated from four types of industrial activities (two textile industries, three rubber based industries, two common treatment plants of industrial zones, and two water treatment plants) was assessed. Physico-chemical parameters including the heavy metal/metalloid levels of the effluents varied depending on the industry profile, but most of the measured parameters in the effluents were within the specified tolerance limits of Sri Lankan environmental regulations for discharge of industrial effluents into inland surface waters. In the A. cepa test system, the undiluted effluents induced statistically significant root growth retardation, mitosis depression, and chromosomal aberrations in root meristematic cells in most cases in comparison to the dilution water and upstream water signifying effluent induced cytotoxicity and genotoxicity. Ethyl methane sulphonate (a mutagen, positive control) and all the effluents under 1:8 dilution significantly induced total chromosomal aberrations in root meristematic cells in comparison to the dilution water and upstream water indicating inadequacy of expected 1:8 dilutions in the receiving waters for curtailing genotoxic impacts. The results support the use of a practically feasible A. cepa test system for rapid screening of cytotoxicity and genotoxicity of diverse industrial effluents discharging into inland surface waters.

  18. Origin and spatial-temporal distribution of faecal bacteria in a bay of Lake Geneva, Switzerland.

    PubMed

    Poté, John; Goldscheider, Nico; Haller, Laurence; Zopfi, Jakob; Khajehnouri, Fereidoun; Wildi, Walter

    2009-07-01

    The origin and distribution of microbial contamination in Lake Geneva's most polluted bay were assessed using faecal indicator bacteria (FIB). The lake is used as drinking water, for recreation and fishing. During 1 year, water samples were taken at 23 points in the bay and three contamination sources: a wastewater treatment plant (WWTP), a river and a storm water outlet. Analyses included Escherichia coli, enterococci (ENT), total coliforms (TC), and heterotrophic plate counts (HPC). E. coli input flux rates from the WWTP can reach 2.5 x 10(10) CFU/s; those from the river are one to three orders of magnitude lower. Different pathogenic Salmonella serotypes were identified in water from these sources. FIB levels in the bay are highly variable. Results demonstrate that (1) the WWTP outlet at 30 m depth impacts near-surface water quality during holomixis in winter; (2) when the lake is stratified, the effluent water is generally trapped below the thermocline; (3) during major floods, upwelling across the thermocline may occur; (4) the river permanently contributes to contamination, mainly near the river mouth and during floods, when the storm water outlet contributes additionally; (5) the lowest FIB levels in the near-surface water occur during low-flow periods in the bathing season.

  19. A Improved Seabed Surface Sand Sampling Device

    NASA Astrophysics Data System (ADS)

    Luo, X.

    2017-12-01

    In marine geology research it is necessary to obtain a suf fcient quantity of seabed surface samples, while also en- suring that the samples are in their original state. Currently,there are a number of seabed surface sampling devices available, but we fnd it is very diffcult to obtain sand samples using these devices, particularly when dealing with fne sand. Machine-controlled seabed surface sampling devices are also available, but generally unable to dive into deeper regions of water. To obtain larger quantities of seabed surface sand samples in their original states, many researchers have tried to improve upon sampling devices,but these efforts have generally produced ambiguous results, in our opinion.To resolve this issue, we have designed an improved andhighly effective seabed surface sand sampling device that incorporates the strengths of a variety of sampling devices. It is capable of diving into deepwater to obtain fne sand samples and is also suited for use in streams, rivers, lakes and seas with varying levels of depth (up to 100 m). This device can be used for geological mapping, underwater prospecting, geological engineering and ecological, environmental studies in both marine and terrestrial waters.

  20. Effect of surface charge density on the affinity of oxide nanoparticles for the vapor-water interface.

    PubMed

    Brown, Matthew A; Duyckaerts, Nicolas; Redondo, Amaia Beloqui; Jordan, Inga; Nolting, Frithjof; Kleibert, Armin; Ammann, Markus; Wörner, Hans Jakob; van Bokhoven, Jeroen A; Abbas, Zareen

    2013-04-23

    Using in-situ X-ray photoelectron spectroscopy at the vapor-water interface, the affinity of nanometer-sized silica colloids to adsorb at the interface is shown to depend on colloid surface charge density. In aqueous suspensions at pH 10 corrected Debye-Hückel theory for surface complexation calculations predict that smaller silica colloids have increased negative surface charge density that originates from enhanced screening of deprotonated silanol groups (≡Si-O(-)) by counterions in the condensed ion layer. The increased negative surface charge density results in an electrostatic repulsion from the vapor-water interface that is seen to a lesser extent for larger particles that have a reduced charge density in the XPS measurements. We compare the results and interpretation of the in-situ XPS and corrected Debye-Hückel theory for surface complexation calculations with traditional surface tension measurements. Our results show that controlling the surface charge density of colloid particles can regulate their adsorption to the interface between two dielectrics.

  1. Distribution and risk assessment of banned and other current-use pesticides in surface and groundwaters consumed in an agricultural catchment dominated by cocoa crops in the Ankobra Basin, Ghana.

    PubMed

    Affum, Andrews Obeng; Acquaah, Samuel Osafo; Osae, Shiloh Dede; Kwaansa-Ansah, Edward Ebow

    2018-08-15

    The existence of pesticides, such as organochlorine pesticides, parathion-ethyl, methamidophos which is banned globally and some current-use non-banned pesticides of organophosphorus and synthetic pyrethroids in freshwater sources is an ecological and public health concern in many countries, including Ghana. Prompted by this concern, the exposure levels and risk assessment of these pesticides to humans and non-target organisms via groundwater and surface water sources in an agricultural catchment dominated by cocoa crops in the Ankobra Basin, Ghana, were investigated. The individual concentrations of the banned pesticides in the surface water and groundwater samples varied from < LOD to 0.110 μg/L and < LOD to 0.055 μg/L, respectively, while the concentrations of the non-banned pesticides ranged from < LOD to 0.925 μg/L and < LOD to 2 μg/L, respectively. The mean concentrations of chlorpyrifos, cypermethrin, p,p'-DDT and pirimiphos-methyl in some water sources exceeded the EU limit of 0.1 μg/L. Some surface water sources were more contaminated with DDTs, endrin, dieldrin, methoxychlor, chlorpyrifos, and HCH isomers than were freshwater sources in river basins in some countries of the world. Chlorpyrifos, p,p'-DDT and methoxychlor were ubiquitous in both water sources. The hydrochemical and compositional profiles of the pesticides indicate that water-exchange and secondary porosities in the bedrock likely contributed to the occurrence of the pesticides in the water sources. The pesticides were of low risk to humans that consume the water, but considering the US EPA safe limit for carcinogenic effects of 10 -6 , the high levels of DDTs, β-HCH, and dieldrin in some of the surface water and groundwater sources may cause cancer in children or infants. The toxicity of pesticide mixtures to surface water non-target organisms decreased in the order of fish > Daphnia magna > algae. The pesticides in the water sources were anthropogenic in origin and recently used. DDT and HCH in the water were of technical-grade origin. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Martian stepped-delta formation by rapid water release.

    PubMed

    Kraal, Erin R; van Dijk, Maurits; Postma, George; Kleinhans, Maarten G

    2008-02-21

    Deltas and alluvial fans preserved on the surface of Mars provide an important record of surface water flow. Understanding how surface water flow could have produced the observed morphology is fundamental to understanding the history of water on Mars. To date, morphological studies have provided only minimum time estimates for the longevity of martian hydrologic events, which range from decades to millions of years. Here we use sand flume studies to show that the distinct morphology of martian stepped (terraced) deltas could only have originated from a single basin-filling event on a timescale of tens of years. Stepped deltas therefore provide a minimum and maximum constraint on the duration and magnitude of some surface flows on Mars. We estimate that the amount of water required to fill the basin and deposit the delta is comparable to the amount of water discharged by large terrestrial rivers, such as the Mississippi. The massive discharge, short timescale, and the associated short canyon lengths favour the hypothesis that stepped fans are terraced delta deposits draped over an alluvial fan and formed by water released suddenly from subsurface storage.

  3. Optical properties of chromophoric dissolved organic matter (CDOM) in surface and pore waters adjacent to an oil well in a southern California salt marsh.

    PubMed

    Bowen, Jennifer C; Clark, Catherine D; Keller, Jason K; De Bruyn, Warren J

    2017-01-15

    Chromophoric dissolved organic matter (CDOM) optical properties were measured in surface and pore waters as a function of depth and distance from an oil well in a southern California salt marsh. Higher fluorescence and absorbances in pore vs. surface waters suggest soil pore water is a reservoir of CDOM in the marsh. Protein-like fluorophores in pore waters at distinct depths corresponded to variations in sulfate depletion and Fe(II) concentrations from anaerobic microbial activity. These variations were supported by fluorescence indexes and are consistent with differences in optical molecular weight and aromaticity indicators. Fluorescence indices were consistent with autochthonous material of aquatic origin in surface waters, with more terrestrial, humified allochthonous material in deeper pore waters. CDOM optical properties were consistent with significantly enhanced microbial activity in regions closest to the oil well, along with a three-dimensional excitation/emission matrix fluorescence spectrum peak attributable to oil, suggesting anaerobic microbial degradation of oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Surface modification of paper on a continuous atmospheric-pressure-plasma system

    NASA Astrophysics Data System (ADS)

    Cruz-Barba, Luis Emilio

    Plasma technologies for the continuous modification of materials in atmospheric-pressure-plasma conditions were used to evaluate the surface modification of paper under different plasma conditions. The generation of hydrophobic layers was used to characterize the efficiency of the originally designed system for future application in the paper industry. Generation of hydrophobic layers was carried out by deposition of thin layers from fluorine containing gases, as well as cross-linking of pre-deposited thin layers of hydrophobic materials, such as fluoropolymers and silicones, in a continuous system plasma reactor (CSPR). Physical and chemical characterization of these layers was carried out by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), contact angle goniometry, and water absorption evaluations. Pure gaseous CF4 and a CF4/CH4 mixture were used to deposit fluorinated layers, rendering paper surfaces with low to moderate relative surface atomic contents of fluorine (2.5 to 16.3%). Morphological characterization revealed that the deposition consists of small clusters of fluorinated species scattered on the surface. Contact angle evaluations (50°--70°) indicated a reduction in the water affinity of the paper. Thin layers of fluoropolymer pre-deposited on paper surfaces were cross-linked in the presence of CF4, CF4/CH4, and NH 3 plasmas. All of the gases proved to be effective for the cross-linking under different conditions. These cross-linked layers were determined to maintain the original polymer structure, consisting mainly of CF2-CF 2 and small quantities of CFx. Surface characterization by AFM indicated lower roughness values compared to the untreated additive-free paper (45.1 vs 67.1 nm). Paper samples treated by this approach showed a highly hydrophobic character with up to 160° contact angles, and water absorption was reduced by as much as 61.6%. Silicone layers were cross-linked in the presence of argon and oxygen plasmas. Characterization of the silicone-coated paper indicated, as in the case of fluoropolymers, the retention of the original chemical structure. Surface roughness values (AFM) were in the range of 11.8 to 18.2 nm, evidence of a very smooth surface. High hydrophobicity levels were reached, as shown by contact angles of up to 126°, and water absorption showed a maximum reduction of 76.8%.

  5. Understanding the origin and evolution of water in the Moon through lunar sample studies.

    PubMed

    Anand, Mahesh; Tartèse, Romain; Barnes, Jessica J

    2014-09-13

    A paradigm shift has recently occurred in our knowledge and understanding of water in the lunar interior. This has transpired principally through continued analysis of returned lunar samples using modern analytical instrumentation. While these recent studies have undoubtedly measured indigenous water in lunar samples they have also highlighted our current limitations and some future challenges that need to be overcome in order to fully understand the origin, distribution and evolution of water in the lunar interior. Another exciting recent development in the field of lunar science has been the unambiguous detection of water or water ice on the surface of the Moon through instruments flown on a number of orbiting spacecraft missions. Considered together, sample-based studies and those from orbit strongly suggest that the Moon is not an anhydrous planetary body, as previously believed. New observations and measurements support the possibility of a wet lunar interior and the presence of distinct reservoirs of water on the lunar surface. Furthermore, an approach combining measurements of water abundance in lunar samples and its hydrogen isotopic composition has proved to be of vital importance to fingerprint and elucidate processes and source(s) involved in giving rise to the lunar water inventory. A number of sources are likely to have contributed to the water inventory of the Moon ranging from primordial water to meteorite-derived water ice through to the water formed during the reaction of solar wind hydrogen with the lunar soil. Perhaps two of the most striking findings from these recent studies are the revelation that at least some portions of the lunar interior are as water-rich as some Mid-Ocean Ridge Basalt source regions on Earth and that the water in the Earth and the Moon probably share a common origin. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Water-resistant sunscreens for skin protection: an in vivo approach to the two sources of sunscreen failure to maintain UV protection on consumer skin.

    PubMed

    Puccetti, G

    2015-12-01

    The water resistance of sunscreen products has taken more importance for the UV protection of consumers involved in water activities and sports. The present work introduces a new in vivo approach to measure the water resistance of sunscreens on the actual skin of subjects, which can be easily applied to salt, chlorine and tap waters. The stress sources of sunscreen films on skin originate from two phenomena: high surface tension stress as the skin transits through the air/water interface and water diffusion into the film immersed in bulk water. The water resistance of sunscreen products is measured on the forearms of subjects by means of a new layered water bath approach that physically separates both stresses. Tape strips are subsequently taken and analysed for UV-A and UV-B optical densities via (1) imaging for remaining filters and (2) in vitro SPF absorption spectra. Water-resistant sunscreens generally perform well when immersed in bulk water even subjected to agitation, but they show a wide range of performances when considering their behaviour at the air/water interface. The differences are more pronounced in salt water than tap water. The results confirm 2 stress origins in sunscreen exposure to water: interfacial surface tension and bulk water diffusion. Polymers bring improvements to the resistance of sunscreens to bulk water but show wide latitude in performances when subject to the water surface tension stress. Globally, a higher loss of filters is observed in the UV-A than in the UV-B, which is attributed to more UV-A filter loss or degradation and thus resulting in a decreased protection in the UV-A. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  7. Wintertime re-ventilation of the East Greenland Current's Atlantic-origin Overflow Water in the western Iceland Sea

    NASA Astrophysics Data System (ADS)

    Våge, Kjetil; Håvik, Lisbeth; Papritz, Lukas; Spall, Michael; Moore, Kent

    2017-04-01

    The Deep Western Boundary Current constitutes the lower limb of the Atlantic Meridional Overturning Circulation, and, as such, is a crucial component of the Earth's climate system. The largest and densest contribution to the current stems from the overflow plume that passes through Denmark Strait. A main source of Denmark Strait Overflow Water (DSOW) is the East Greenland Current (EGC). The DSOW transported by the EGC originates from the Atlantic inflow into the Nordic Seas. This is then transformed into Atlantic-origin Overflow Water while progressing northward through the eastern part of the Nordic Seas. Here we show, using measurements from autonomous gliders deployed from fall 2015 to spring 2016, that the Atlantic-origin Overflow Water transported toward Denmark Strait by the EGC was re-ventilated while transiting the western Iceland Sea in winter. In summer, this region is characterized by an upper layer of cold, fresh Polar Surface Water that is thought to prevent convection. But in fall and winter this fresh water mass is diverted toward the Greenland shelf by enhanced northerly winds, which results in a water column that is preconditioned for convection. Severe heat loss from the ocean to the atmosphere offshore of the ice edge subsequently causes the formation of deep mixed layers. This further transforms the Atlantic-origin Overflow Water and impacts the properties of the DSOW, and hence the deepest and densest component of the lower limb of the Atlantic Meridional Overturning Circulation.

  8. Chemistry of water collected from an unventilated drift, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Marshall, B.D.; Oliver, T.A.; Peterman, Z.E.

    2007-01-01

    Water samples (referred to as puddle water samples) were collected from the surfaces of a conveyor belt and plastic sheeting in the unventilated portion of the Enhanced Characterization of the Repository Block (ECRB) Cross Drift in 2003 and 2005 at Yucca Mountain, Nevada. The chemistry of these puddle water samples is very different than that of pore water samples from borehole cores in the same region of the Cross Drift or than seepage water samples collected from the Exploratory Studies Facility tunnel in 2005. The origin of the puddle water is condensation on surfaces of introduced materials and its chemistry is dominated by components of the introduced materials. Large CO2 concentrations may be indicative of localized chemical conditions induced by biologic activity. ?? 2007 Materials Research Society.

  9. Determination of Protein Surface Hydration by Systematic Charge Mutations

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Jia, Menghui; Qin, Yangzhong; Wang, Dihao; Pan, Haifeng; Wang, Lijuan; Xu, Jianhua; Zhong, Dongping; Dongping Zhong Collaboration; Jianhua Xu Collaboration

    Protein surface hydration is critical to its structural stability, flexibility, dynamics and function. Recent observations of surface solvation on picosecond time scales have evoked debate on the origin of such relatively slow motions, from hydration water or protein charged sidechains, especially with molecular dynamics simulations. Here, we used a unique nuclease with a single tryptophan as a local probe and systematically mutated neighboring three charged residues to differentiate the contributions from hydration water and charged sidechains. By mutations of alternative one and two and all three charged residues, we observed slight increases in the total tryptophan Stokes shifts with less neighboring charged residue(s) and found insensitivity of charged sidechains to the relaxation patterns. The dynamics is correlated with hydration water relaxation with the slowest time in a dense charged environment and the fastest time at a hydrophobic site. On such picosecond time scales, the protein surface motion is restricted. The total Stokes shifts are dominantly from hydration water relaxation and the slow dynamics is from water-driven relaxation, coupled with local protein fluctuations.

  10. Enhancement on the Surface Hydrophobicity and Oleophobicity of an Organosilicon Film by Conformity Deposition and Surface Fluorination Etching.

    PubMed

    Xu, Zheng-Wen; Zhang, Yu-Kai; Chen, Tai-Hong; Chang, Jin-How; Lee, Tsung-Hsin; Li, Pei-Yu; Liu, Day-Shan

    2018-06-26

    In this work, the surface morphology of a hydrophobic organosilicon film was modified as it was deposited onto a silver seed layer with nanoparticles. The surface hydrophobicity evaluated by the water contact angle was significantly increased from 100° to 128° originating from the surface of the organosilicon film becoming roughened, and was deeply relevant to the Ag seed layer conform deposition. In addition, the organosilicon film became surface oleophobic and the surface hydrophobicity was improved due to the formation of the inactive C-F chemical on the surface after the carbon tetrafluoride glow discharge etching. The surface hydrophobicity and oleophobicity of the organosilicon film could be further optimized with water and oleic contact angles of about 138° and 61°, respectively, after an adequate fluorination etching.

  11. Water resources of Big Horn County, Wyoming

    USGS Publications Warehouse

    Plafcan, Maria; Cassidy, Earl W.; Smalley, Myron L.

    1993-01-01

    Groundwater in unconsolidated aquifers is the most reliable and accessible source of potable water in Big Horn County, Wyoming. Well yields generally ranged from 25 to 200 gal/min; however, yields of 1600 gal/min are reported from wells in the gravel, pediment, and fan deposits. Bedrock aquifers that yield the most abundant water supplies are the Tensleep Sandstone, Madison Limestone, Bighorn Dolomite, and Flathead Sandstone. The aquifers with the most potential for development as a water supply, predominately composed of sandstone, are the Lance, Mesaverde, and Frontier Formations.The Madison Limestone, the Darby Formation, and the Bighorn Dolomite form the Madison Bighorn aquifer. Reported yields from the aquifer ranged from 40 to 14,000 gal/min. Flowing wells from the Madison-Bighorn aquifer had shut-in pressures ranging from 41 to 212 pounds per square inch (95 to 490 feet above land surface).Shut-in pressures from flowing wells in bedrock indicate declines, from the time the wells were completed to 1988, as much as 390 feet. Flows have also decreased over time. Water samples from wells completed in unconsolidated aquifers have concentrations of dissolved solids less than 2,000 mg/L (milligrams per liter). Water from unconsolidated aquifers are classified as a calcium sulfate type, a sodium sulfate type, and sodium-calcium sulfate type. Water samples from wells completed in aquifers in Paleozoic and Precambrian rocks had median concentrations of dissolved solids ranging from 111 to 275 mg/L. Water samples from wells in Tertiary and Cretaceous rocks had a median concentration of dissolved solids ranging from 1,107 to 3,320 mg/L. Water types for these aquifers were usually sodium sulfate.Perennial streams originate in the mountains and ephemeral streams originate in the Bighorn Basin. Irrigation return-flow to streams maintains perennial flow in what would otherwise be ephemeral streams. Streams that originate in the Bighorn Basin have specific conductance values generally greater than 1,000 mg/L, whereas streams that originate in the Bighorn Mountains have specific conductance values generally less than 1,000 mg/L. The predominant dissolved constituents are calcium or sodium and bicarbonate or sulfate.Concentrations of pesticides detected in surface-water samples were less than the U.S. Environmental Protection Agency (USHPA) maximum contaminant levels. The detected concentrations of pesticides in streambed material in the organochlorine insecticide class ranged from 0.1 to 8.0 micrograms per kilogram. Pesticides detected in ground-water samples included dicamba and picloram at a concentration of 0.40 jig/L (micrograms per liter), atrazines (0.40 jig/L), aldicarb sulfone (1.44 |ig/L), aldicarb sulfoxide (0.52 |ig/L), and malathion (0.02 jig/L). Analyses of ground-water samples for radionuclides indicate that concentrations from four municipal wells exceeded the maximum contaminant level established by the USEPA. Of these four wells, concentrations in water samples from the municipal well at Frannie consistently exceeded the USEPA maximum contaminant level for dissolved gross alpha activity of 15 pCi/L (picocuries per liter) and radium-226 plus radium-228 (5 pCi/L). The source of the radioactivity is postulated to be the Madison Limestone.Surface water accounts for 96 percent and ground water accounts for 4 percent of total offstream water use in Big Horn County, Wyoming. Irrigation is the largest offstream use of both surface and ground water. About 99 percent of offstream surface water and 55 percent of ground water is used for irrigation. Eighty-two percent of the water used for irrigation is consumed, which includes a 37-percent conveyance loss and 45 percent consumed by the irrigated crops. Ground water supplies 89 percent of water used for domestic purposes and about 16 percent of water used for public supplies, which shows that ground water is a primary domestic water supply in rural areas where public supplies are not available.

  12. Molecular insight into nanoscale water films dewetting on modified silica surfaces.

    PubMed

    Zhang, Jun; Li, Wen; Yan, Youguo; Wang, Yefei; Liu, Bing; Shen, Yue; Chen, Haixiang; Liu, Liang

    2015-01-07

    In this work, molecular dynamics simulations are adopted to investigate the microscopic dewetting mechanism of nanoscale water films on methylated silica surfaces. The simulation results show that the dewetting process is divided into two stages: the appearance of dry patches and the quick contraction of the water film. First, the appearance of dry patches is due to the fluctuation in the film thickness originating from capillary wave instability. Second, for the fast contraction of water film, the unsaturated electrostatic and hydrogen bond interactions among water molecules are the driving forces, which induce the quick contraction of the water film. Finally, the effect of film thickness on water films dewetting is studied. Research results suggest that upon increasing the water film thickness from 6 to 8 Å, the final dewetting patterns experience separate droplets and striation-shaped structures, respectively. But upon further increasing the water film thickness, the water film is stable and there are no dry patches. The microscopic dewetting behaviors of water films on methylated silica surfaces discussed here are helpful in understanding many phenomena in scientific and industrial processes better.

  13. Mola Topography Supports Drape-Folding Models for Polygonal Terrain of Utopia Planitia, Mars

    NASA Technical Reports Server (NTRS)

    McGill, George E.; Buczkowski, D. L.

    2002-01-01

    One of the most important questions we ask about Mars is whether or not there have ever been large bodies of standing water on the surface. The polygonal terrains of Utopia and Acidalia Planitiae are located in the lowest parts of the northern lowlands, the most logical places for water to pond and sediments to accumulate. Showing that polygonal terrain is sedimentary in origin would represent strong evidence in favor of a northern ocean. A number of hypotheses for the origin of the giant martian polygons have been proposed, from the cooling of lava to frost wedging to the desiccation of wet sediments, but Pechman showed that none of these familiar processes could be scaled up to martian dimensions. Two models for polygon origin attempt to explain the scale of the martian polygons by postulating drape folding of a cover material, either sedimentary or volcanic, over an uneven, buried surface. The drape folding would produce bending stresses in the surface layers that increase the probability of Fracturing over drape anticlines and suppress the probability of fracturing over drape synclines. However, both models require an additional source of extensional strain to produce the total strain needed to produce the observed troughs.

  14. Occurrence and potential health risk of Cryptosporidium and Giardia in different water catchments in Belgium.

    PubMed

    Ehsan, Amimul; Geurden, Thomas; Casaert, Stijn; Paulussen, Jef; De Coster, Lut; Schoemaker, Toon; Chalmers, Rachel; Grit, Grietje; Vercruysse, Jozef; Claerebout, Edwin

    2015-02-01

    Human wastewater and livestock can contribute to contamination of surface water with Cryptosporidium and Giardia. In countries where a substantial proportion of drinking water is produced from surface water, e.g., Belgium, this poses a constant threat on drinking water safety. Our objective was to monitor the presence of Cryptosporidium and Giardia in different water catchment sites in Belgium and to discriminate between (oo)cysts from human or animal origin using genotyping. Monthly samples were collected from raw water and purified drinking water at four catchment sites. Cryptosporidium and Giardia were detected using USEPA method 1623 and positive samples were genotyped. No contamination was found in purified water at any site. In three catchments, only low numbers of (oo)cysts were recovered from raw water samples (<1/liter), but raw water samples from one catchment site were frequently contaminated with Giardia (92 %) and Cryptosporidium (96 %), especially in winter and spring. Genotyping of Giardia in 38 water samples identified the presence of Giardia duodenalis assemblage AI, AII, BIV, BIV-like, and E. Cryptosporidium andersoni, Cryptosporidium suis, Cryptosporidium horse genotype, Cryptosporidium parvum, and Cryptosporidium hominis were detected. The genotyping results suggest that agriculture may be a more important source of surface water contamination than human waste in this catchment. In catchment sites with contaminated surface water, such as the Blankaart, continuous monitoring of treated water for the presence of Cryptosporidium and Giardia would be justified and (point) sources of surface water contamination should be identified.

  15. 1DTempPro V2: new features for inferring groundwater/surface-water exchange

    USGS Publications Warehouse

    Koch, Franklin W.; Voytek, Emily B.; Day-Lewis, Frederick D.; Healy, Richard W.; Briggs, Martin A.; Lane, John W.; Werkema, Dale D.

    2016-01-01

    A new version of the computer program 1DTempPro extends the original code to include new capabilities for (1) automated parameter estimation, (2) layer heterogeneity, and (3) time-varying specific discharge. The code serves as an interface to the U.S. Geological Survey model VS2DH and supports analysis of vertical one-dimensional temperature profiles under saturated flow conditions to assess groundwater/surface-water exchange and estimate hydraulic conductivity for cases where hydraulic head is known.

  16. Descriptive Characteristics of Surface Water Quality in Hong Kong by a Self-Organising Map

    PubMed Central

    An, Yan; Zou, Zhihong; Li, Ranran

    2016-01-01

    In this study, principal component analysis (PCA) and a self-organising map (SOM) were used to analyse a complex dataset obtained from the river water monitoring stations in the Tolo Harbor and Channel Water Control Zone (Hong Kong), covering the period of 2009–2011. PCA was initially applied to identify the principal components (PCs) among the nonlinear and complex surface water quality parameters. SOM followed PCA, and was implemented to analyze the complex relationships and behaviors of the parameters. The results reveal that PCA reduced the multidimensional parameters to four significant PCs which are combinations of the original ones. The positive and inverse relationships of the parameters were shown explicitly by pattern analysis in the component planes. It was found that PCA and SOM are efficient tools to capture and analyze the behavior of multivariable, complex, and nonlinear related surface water quality data. PMID:26761018

  17. Descriptive Characteristics of Surface Water Quality in Hong Kong by a Self-Organising Map.

    PubMed

    An, Yan; Zou, Zhihong; Li, Ranran

    2016-01-08

    In this study, principal component analysis (PCA) and a self-organising map (SOM) were used to analyse a complex dataset obtained from the river water monitoring stations in the Tolo Harbor and Channel Water Control Zone (Hong Kong), covering the period of 2009-2011. PCA was initially applied to identify the principal components (PCs) among the nonlinear and complex surface water quality parameters. SOM followed PCA, and was implemented to analyze the complex relationships and behaviors of the parameters. The results reveal that PCA reduced the multidimensional parameters to four significant PCs which are combinations of the original ones. The positive and inverse relationships of the parameters were shown explicitly by pattern analysis in the component planes. It was found that PCA and SOM are efficient tools to capture and analyze the behavior of multivariable, complex, and nonlinear related surface water quality data.

  18. Spatio-temporal image-based parametric water surface reconstruction: a novel methodology based on refraction

    NASA Astrophysics Data System (ADS)

    Engelen, L.; Creëlle, S.; Schindfessel, L.; De Mulder, T.

    2018-03-01

    This paper presents a low-cost and easy-to-implement image-based reconstruction technique for laboratory experiments, which results in a temporal description of the water surface topography. The distortion due to refraction of a known pattern, located below the water surface, is used to fit a low parameter surface model that describes the time-dependent and three-dimensional surface variation. Instead of finding the optimal water depth for characteristic points on the surface, the deformation of the entire pattern is compared to its original shape. This avoids the need for feature tracking adopted in similar techniques, which improves the robustness to suboptimal optical conditions and small-scale, high-frequency surface perturbations. Experimental validation, by comparison with water depth measurements using a level gauge and pressure sensor, proves sub-millimetre accuracy for smooth and steady surface shapes. Although such accuracy cannot be achieved in case of highly dynamic surface phenomena, the low-frequency and large-scale free surface oscillations can still be measured with a temporal and spatial resolution mostly limited by the available optical set-up. The technique is initially intended for periodic surface phenomena, but the results presented in this paper indicate that also irregular surface shapes can robustly be reconstructed. Therefore, the presented technique is a promising tool for other research applications that require non-intrusive, low-cost surface measurements while maintaining visual access to the water below the surface. The latter ensures that the suggested surface reconstruction is compatible with simultaneous image-based velocity measurements, enabling a detailed study of the flow.

  19. Serological responses to Cryptosporidium antigens in inhabitants of Hungary using conventionally filtered surface water and riverbank filtered drinking water.

    PubMed

    Farkas, K; Plutzer, J; Moltchanova, E; Török, A; Varró, M J; Domokos, K; Frost, F; Hunter, P R

    2015-10-01

    In this study the putative protective seroprevalence (PPS) of IgG antibodies to the 27-kDa and 15/17-kDa Cryptosporidium antigens in sera of healthy participants who were and were not exposed to Cryptosporidium oocysts via surface water-derived drinking water was compared. The participants completed a questionnaire regarding risk factors that have been shown to be associated with infection. The PPS was significantly greater (49-61%) in settlements where the drinking water originated from surface water, than in the control city where riverbank filtration was used (21% and 23%). Logistic regression analysis on the risk factors showed an association between bathing/swimming in outdoor pools and antibody responses to the 15/17-kDa antigen complex. Hence the elevated responses were most likely due to the use of contaminated water. Results indicate that waterborne Cryptosporidium infections occur more frequently than reported but may derive from multiple sources.

  20. Water resources of Clallam County, Washington; Phase I report

    USGS Publications Warehouse

    Drost, B.W.

    1983-01-01

    An inventory of the water resources of Clallam County, Washington, showed that sufficient water is available to supply all present demands. Domestic water supplies can be obtained from wells drilled 100 ft or less into glacial and alluvial deposits; in areas underlain by bedrock, wells more than 100 ft deep can generally supply one home per well. Surface water is abundant, and is the source for most public water systems. Extreme low flows were observed only in small drainage basins in bedrock in the mountainous interior and along parts of the coastline in the Strait of Juan de Fuca. The quality of ground and surface waters is generally excellent. In coastal areas, some wells may yield water with large concentrations of chloride and dissolved solids. A quarter of the wells tested had excessive concentrations of iron and (or) manganese. High values of turbidity, color, and coliform bacteria are widespread surface water problems, but standard filtering and chlorination treatment make the water suitable for public supplies. High concentrations of coliform bacteria apparently originate naturally in soils. High ammonia concentration observed at one site is probably caused by sewage disposal practices. (USGS)

  1. Effects of molecular weight of natural organic matter on cadmium mobility in soil environments and its carbon isotope characteristics.

    PubMed

    Mahara, Y; Kubota, T; Wakayama, R; Nakano-Ohta, T; Nakamura, T

    2007-11-15

    We investigated the role of natural organic matter in cadmium mobility in soil environments. We collected the dissolved organic matter from two different types of natural waters: pond surface water, which is oxic, and deep anoxic groundwater. The collected organic matter was fractionated into four groups with molecular weights (unit: Da (Daltons)) of <1 x 10(3), 1-10 x 10(3), 10-100 x 10(3), and >100 x 10(3). The organic matter source was land plants, based on the carbon isotope ratios (delta(13)C/(12)C). The organic matter in surface water originated from presently growing land plants, based on (14)C dating, but the organic matter in deep groundwater originated from land plants that grew approximately 4000 years ago. However, some carbon was supplied by the high-molecular-weight fraction of humic substances in soil or sediments. Cadmium interacted in a system of siliceous sand, fractionated organic matter, and water. The lowest molecular weight fraction of organic matter (<1 x 10(3)) bound more cadmium than did the higher molecular weight fractions. Organic matter in deep groundwater was more strongly bound to cadmium than was organic matter in surface water. The binding behaviours of organic matter with cadmium depended on concentration, age, molecular weight, and degradation conditions of the organic matter in natural waters. Consequently, the dissolved, low-molecular-weight fraction in organic matter strongly influences cadmium migration and mobility in the environment.

  2. Quantifying the role of forested lands in providing surface drinking water supply for Puerto Rico

    Treesearch

    Erika Cohen; Ge Sun; Liangxia Zhang; Peter Caldwell; Suzanne Krieger

    2017-01-01

    The Forest Service, U.S. Department of Agriculture published a General Technical Report (GTR-SRS-197) in 2014 that quantified the role that water originating on National Forest System lands contributed to the drinking water supply and determined what population and communities were being served in the 13 Southern States of Region 8 of the Forest Service. The...

  3. REMEDIATION OF MTBE - CONTAMINATED WATER: STUDIES ON THE DEGRADATION OF MTBE INTERMEDIATES USING THE FENTON'S REAGENT

    EPA Science Inventory

    The recent findings of unusual oncentrations of MTBE in groundwater aquifers and surface waters [1] originated most probably from the leaking of underground storage gasoline tanks [2[ has led to a series of judicial and legislative actions, especially in the state of California w...

  4. PERCHLORATE ENVIRONMENTAL CONTAMINATION: TOXICOLOGICAL REVIEW AND RISK CHARACTERIZATION BASED ON EMERGING INFORMATION (EXTERNAL REVIEW DRAFT) 1998

    EPA Science Inventory

    Perchlorate (ClO4-) is an anion that originates as a contaminant in ground water and surface waters from the dissolution of ammonium, potassium, magnesium, or sodium salts. Because perchlorate is nonlabile kinetically (i.e., the reduction of the central chlorine atom occurs extre...

  5. [Occurrence of bacteria of the Yersinia genus in surface water].

    PubMed

    Krogulska, B; Maleszewska, J

    1992-01-01

    The aim of the study was determination of the frequency of occurrence of Yersinia genus bacteria in surface waters polluted to various degrees with bacteria of the coliform and of fecal coli. For detection of Yersinia rods the previously elaborated medium Endo MLCe and the membrane filter method were applied. Samples of 42 surface waters were examined, including 26 from rivers and 16 from lakes, ponds and clay-pits. On the basis of sanitary bacteriological analysis 16 surface waters were classified to class I purity, 10 to class II, the remaining ones to class III or beyond classification. Yersinia rods were detected in 15 water bodies that is 35.7% of the examined waters. A total of 27 Yersinia strains were identified with dominance of Y. intermedia (14 strains) and Y. enterocolitica (10 strains). Three strains represented by the species Yersinia frederiksenii. Most of the Y. enterocolitica strains belonged to biotype 1, the particular strains being represented by various serotypes. Hence their different origin may be concluded. The pathogenic serotypes 0:3 and 0:9 of Yersinia enterocolitica were not detected.

  6. Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper

    USGS Publications Warehouse

    Lopes, R.M.C.; Mitchell, K.L.; Stofan, E.R.; Lunine, J.I.; Lorenz, R.; Paganelli, F.; Kirk, R.L.; Wood, C.A.; Wall, S.D.; Robshaw, L.E.; Fortes, A.D.; Neish, Catherine D.; Radebaugh, J.; Reffet, E.; Ostro, S.J.; Elachi, C.; Allison, M.D.; Anderson, Y.; Boehmer, R.; Boubin, G.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Janssen, M.A.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.O.; Ori, G.; Orosei, R.; Picardi, G.; Posa, F.; Roth, L.E.; Seu, R.; Shaffer, S.; Soderblom, L.A.; Stiles, B.; Vetrella, S.; West, R.D.; Wye, L.; Zebker, H.A.

    2007-01-01

    The Cassini Titan Radar Mapper obtained Synthetic Aperture Radar images of Titan's surface during four fly-bys during the mission's first year. These images show that Titan's surface is very complex geologically, showing evidence of major planetary geologic processes, including cryovolcanism. This paper discusses the variety of cryovolcanic features identified from SAR images, their possible origin, and their geologic context. The features which we identify as cryovolcanic in origin include a large (180 km diameter) volcanic construct (dome or shield), several extensive flows, and three calderas which appear to be the source of flows. The composition of the cryomagma on Titan is still unknown, but constraints on rheological properties can be estimated using flow thickness. Rheological properties of one flow were estimated and appear inconsistent with ammonia-water slurries, and possibly more consistent with ammonia-water-methanol slurries. The extent of cryovolcanism on Titan is still not known, as only a small fraction of the surface has been imaged at sufficient resolution. Energetic considerations suggest that cryovolcanism may have been a dominant process in the resurfacing of Titan. ?? 2006 Elsevier Inc.

  7. Red-shifting and blue-shifting OH groups on metal oxide surfaces - towards a unified picture.

    PubMed

    Kebede, Getachew G; Mitev, Pavlin D; Briels, Wim J; Hermansson, Kersti

    2018-05-09

    We analyse the OH vibrational signatures of 56 structurally unique water molecules and 34 structurally unique hydroxide ions in thin water films on MgO(001) and CaO(001), using DFT-generated anharmonic potential energy surfaces. We find that the OH stretching frequencies of intact water molecules on the surface are always downshifted with respect to the gas-phase species while the OH- groups are either upshifted or downshifted. Despite these differences, the main characteristics of the frequency shifts for all three types of surface OH groups (OHw, OsH and OHf) can be accounted for by one unified expression involving the in situ electric field from the surrounding environment, and the gas-phase molecular properties of the vibrating species (H2O or OH-). The origin behind the different red- and blueshift behaviour can be traced back to the fact that the molecular dipole moment of a gas-phase water molecule increases when an OH bond is stretched, but the opposite is true for the hydroxide ion. We propose that familiarity with the relations presented here will help surface scientists in the interpretation of vibrational OH spectra for thin water films on ionic crystal surfaces.

  8. Analysis of pesticides in surface water, stemflow, and throughfall in an agricultural area in South Georgia, USA.

    PubMed

    Glinski, Donna A; Purucker, S Thomas; Van Meter, Robin J; Black, Marsha C; Henderson, W Matthew

    2018-06-18

    To study spray drift contributions to non-targeted habitats, pesticide concentrations in stemflow (water flowing down the trunk of a tree during a rain event), throughfall (water from tree canopy only), and surface water in an agriculturally impacted wetland area near Tifton, Georgia, USA were measured (2015-2016). Agricultural fields and sampling locations were on the University of Georgia's Gibbs Research Farm, Tifton, GA. Samples were screened for more than 160 pesticides, and cumulatively, 32 different pesticides were detected across matrices. Data indicate that herbicides and fungicides were present in all types of environmental samples analyzed while insecticides were only detected in surface water samples. The highest pesticide concentration observed was 10.50 μg/L of metolachlor in an August 2015 surface water sample. Metolachlor, tebuconazole, and fipronil were the most frequently detected herbicide, fungicide, and insecticide, respectively, regardless of sample origin. The most frequently detected pesticide in surface water and stemflow samples was metolachlor (0.09-10.5 μg/L), however, the most commonly detected pesticide in throughfall samples was biphenyl (0.02-0.07 μg/L). These data help determine the importance of indirect chemical exposures to non-targeted habitats by assessing inputs from stemflow and throughfall into surface waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Optimum Number of Anchored Clathrate Water and Its Instantaneous Fluctuations Dictate Ice Plane Recognition Specificities of Insect Antifreeze Protein.

    PubMed

    Chakraborty, Sandipan; Jana, Biman

    2018-03-29

    Ice recognition by antifreeze proteins (AFPs) is a subject of topical interest. Among several classes of AFPs, insect AFPs are hyperactive presumably due to their ability to adsorb on basal plane. However, the origin of the basal plane binding specificity is not clearly known. Present work aims to provide atomistic insight into the origin of basal plane recognition by an insect antifreeze protein. Free energy calculations reveal that the order of binding affinity of the AFP toward different ice planes is basal plane > prism plane > pyramidal plane. Critical insight reveals that the observed plane specificity is strongly correlated with the number and their instantaneous fluctuations of clathrate water forming hydrogen bonds with both ice binding surface (IBS) of AFP and ice surface, thus anchoring AFP to the ice surface. On basal plane, anchored clathrate water array is highly stable due to exact match in the periodicity of oxygen atom repeat distances of the ice surface and the threonine repeat distances at the IBS. The stability of anchored clathrate water array progressively decreases upon prism and pyramidal plane adsorption due to mismatch between the threonine ladder and oxygen atom repeat distance. Further analysis reveals that hydration around the methyl side-chains of threonine residues becomes highly significant at low temperature which stabilizes the anchored clathrate water array and dual hydrogen-bonding is a consequence of this stability. Structural insight gained from this study paves the way for rational designing of highly potent antifreeze-mimetic with potential industrial applications.

  10. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  11. UV-Resistant and Thermally Stable Superhydrophobic CeO2 Nanotubes with High Water Adhesion.

    PubMed

    Li, Xue-Ping; Sun, Ya-Li; Xu, Yao-Yi; Chao, Zi-Sheng

    2018-06-03

    A novel type of sticky superhydrophobic cerium dioxide (CeO 2 ) nanotube material is prepared by hydrothermal treatment without any chemical modification. A water droplet on the material surface shows a static water contact angle of about 157° but the water droplet is pinned on the material surface even when the material surface is turned upside down. Interestingly, the as-prepared CeO 2 nanotube material displays durable superhydrophobicity and enhanced adhesion to water under ultraviolet (UV) light irradiation. Importantly, this change in water adhesion can be reversed by heat treatment to restore the original adhesive value of 20 µL. Further, the maximum volume of the water droplet adhered on the material surface of CeO 2 nanotubes can be regulated without loss of superhydrophobicity during the heating treatment/UV-irradiation cycling. Meanwhile, the superhydrophobic CeO 2 nanotube material shows remarkable thermal stability even at temperatures as high as 450 °C, long-term durability in chemical environment, and air-storage and good resistance to oily contaminant. Finally, the potential application in no-loss water transportation of this sticky superhydrophobic CeO 2 material is demonstrated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Water Absorption Behavior of Hemp Hurds Composites

    PubMed Central

    Stevulova, Nadezda; Cigasova, Julia; Purcz, Pavol; Schwarzova, Ivana; Kacik, Frantisek; Geffert, Anton

    2015-01-01

    In this paper, water sorption behavior of 28 days hardened composites based on hemp hurds and inorganic binder was studied. Two kinds of absorption tests on dried cube specimens in deionized water bath at laboratory temperature were performed. Short-term (after one hour water immersion) and long-term (up to 180 days) water absorption tests were carried out to study their durability. Short-term water sorption behavior of original hemp hurds composites depends on mean particle length of hemp and on binder nature. The comparative study of long-term water sorption behavior of composites reinforced with original and chemically modified hemp hurds in three reagents confirmed that surface treatment of filler influences sorption process. Based on evaluation of sorption curves using a model for composites based on natural fibers, diffusion of water molecules in composite reinforced with original and chemically modified hemp hurds is anomalous in terms of the Fickian behavior. The most significant decrease in hydrophility of hemp hurds was found in case of hemp hurds modified by NaOH and it relates to change in the chemical composition of hemp hurds, especially to a decrease in average degree of cellulose polymerization as well as hemicellulose content.

  13. Radium Isotope Ratios as Tracers for Estimating the Influence of Changjiang Outflow Water to the Adjacent Seas

    NASA Astrophysics Data System (ADS)

    Kim, K.; Kim, S.

    2006-12-01

    In order to understand the influence of Changjiang (Yangtze River) outflow water to the adjacent seas during rainy and draught seasons, we studied the origin and mixing of surface water masses in the East China Sea and the South Sea of Korea. We used Ra-228/Ra-226 activity ratio and salinity as two conservative tracers in three end-members: Changjiang water (CW); Yellow Sea water (YSW); and Kuroshio water (KW). Radium isotopes in each 300-liter of surface water samples were extracted by passing through manganese-fiber cartridges, dissolved in hydroxylamine hydrochloride solution, coprecipitated as barium sulfate, dried and measured by gamma-ray spectroscopy. Results show that surface water of the East China Sea includes all three end-member waters during the rainy season, in the order of KW (50-80%), YSW (20-50%) and CW (5-15%). Surface water of the South Sea of Korea, however, includes a little fraction of, or almost no, CW in drought season. These are the preliminary results from an ongoing 6-year project ending in 2009 which aims to predict the influence of heavily polluted Changjiang outflow water to the adjacent seas after the completion of the gigantic Three Gorges (Sanxia) Dam.

  14. Bacterial community diversity and variation in spray water sources and the tomato fruit surface

    PubMed Central

    2011-01-01

    Background Tomato (Solanum lycopersicum) consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water) when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. Results The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Conclusions Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an important step forward towards the development of science-based metrics for Good Agricultural Practices. PMID:21510867

  15. Water Mass Classification on a Highly Variable Arctic Shelf Region: Origin of Laptev Sea Water Masses and Implications for the Nutrient Budget

    NASA Astrophysics Data System (ADS)

    Bauch, D.; Cherniavskaia, E.

    2018-03-01

    Large gradients and inter annual variations on the Laptev Sea shelf prevent the use of uniform property ranges for a classification of major water masses. The central Laptev Sea is dominated by predominantly marine waters, locally formed polynya waters and riverine summer surface waters. Marine waters enter the central Laptev Sea from the northwestern Laptev Sea shelf and originate from the Kara Sea or the Arctic Ocean halocline. Local polynya waters are formed in the Laptev Sea coastal polynyas. Riverine summer surface waters are formed from Lena river discharge and local melt. We use a principal component analysis (PCA) in order to assess the distribution and importance of water masses within the Laptev Sea. This mathematical method is applied to hydro-chemical summer data sets from the Laptev Sea from five years and allows to define water types based on objective and statistically significant criteria. We argue that the PCA-derived water types are consistent with the Laptev Sea hydrography and indeed represent the major water masses on the central Laptev Sea shelf. Budgets estimated for the thus defined major Laptev Sea water masses indicate that freshwater inflow from the western Laptev Sea is about half or in the same order of magnitude as freshwater stored in locally formed polynya waters. Imported water dominates the nutrient budget in the central Laptev Sea; and only in years with enhanced local polynya activity is the nutrient budget of the locally formed water in the same order as imported nutrients.

  16. Water-quality assessment of the eastern Iowa basins- nitrogen, phosphorus, suspended sediment, and organic carbon in surface water, 1996-98

    USGS Publications Warehouse

    Becher, Kent D.; Kalkhoff, Stephen J.; Schnoebelen, Douglas J.; Barnes, Kimberlee K.; Miller, Von E.

    2001-01-01

    Synoptic samples collected during low and high base flow had nitrogen, phosphorus, and organic-carbon concentrations that varied spatially and seasonally. Comparisons of water-quality data from six basic-fixed sampling sites and 19 other synoptic sites suggest that the water-quality data from basic-fixed sampling sites were representative of the entire study unit during periods of low and high base flow when most streamflow originates from ground water.

  17. Replication of surface nano-structure of the wing of dragonfly ( Pantala Flavescens) using nano-molding and UV nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Cho, Joong-Yeon; Kim, Gyutae; Kim, Sungwook; Lee, Heon

    2013-07-01

    The hydrophobicity of a dragonfly's wing originates from the naturally occurring nano-structure on its surface. The nano-structure on a dragonfly's wing consists of an array of nano-sized pillars, 100 nm in diameter. We re-create this hydrophobicity on various substrates, such as Si, glass, curved acrylic polymer, and flexible PET film, by replicating the nano-structure using UV curable nano-imprint lithography (NIL) and PDMS molding. The success of the nano-structure duplication was confirmed using scanning electron microscopy (SEM). The hydrophobicity was measured by water-based contact angle measurements. The water contact angle of the replica made of UV cured polymer was 135° ± 2°, which was slightly lower than that of the original dragonfly's wing (145° ± 2°), but much higher than that of the UV cured polymer surface without any nano-sized pillars (80°). The hydrophobicity was further improved by applying a coating of Teflon-like material.

  18. Wear-resistant and electromagnetic absorbing behaviors of oleic acid post-modified ferrite-filled epoxy resin composite coating

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2015-03-01

    The post-modified Mn-Zn ferrite was prepared by grafting oleic acid on the surface of Mn-Zn ferrite to inhibit magnetic nanoparticle aggregation. Fourier Transform Infrared (FT-IR) spectroscopy was used to characterize the particle surfaces. The friction and electromagnetic absorbing properties of a thin coating fabricated by dispersing ferrite into epoxy resin (EP) were investigated. The roughness of the coating and water contact angle were measured using the VEECO and water contact angle meter. Friction tests were conducted using a stainless-steel bearing ball and a Rockwell diamond tip, respectively. The complex permittivity and complex permeability of the composite coating were studied in the low frequency (10 MHz-1.5 GHz). Surface modified ferrites are found to improve magnetic particles dispersion in EP resulting in significant compatibility between inorganic and organic materials. Results also indicate that modified ferrite/EP coatings have a lower roughness average value and higher water contact angle than original ferrite/EP coatings. The enhanced tribological properties of the modified ferrite/EP coatings can be seen from the increased coefficient value. The composite coatings with modified ferrite are observed to exhibit better reflection loss compared with the coatings with original ferrite.

  19. The occurrence and distribution of a group of organic micropollutants in Mexico City's water sources.

    PubMed

    Félix-Cañedo, Thania E; Durán-Álvarez, Juan C; Jiménez-Cisneros, Blanca

    2013-06-01

    The occurrence and distribution of a group of 17 organic micropollutants in surface and groundwater sources from Mexico City was determined. Water samples were taken from 7 wells, 4 dams and 15 tanks where surface and groundwater are mixed and stored before distribution. Results evidenced the occurrence of seven of the target compounds in groundwater: salicylic acid, diclofenac, di-2-ethylhexylphthalate (DEHP), butylbenzylphthalate (BBP), triclosan, bisphenol A (BPA) and 4-nonylphenol (4-NP). In surface water, 11 target pollutants were detected: same found in groundwater as well as naproxen, ibuprofen, ketoprofen and gemfibrozil. In groundwater, concentration ranges of salicylic acid, 4-NP and DEHP, the most frequently found compounds, were 1-464, 1-47 and 19-232 ng/L, respectively; while in surface water, these ranges were 29-309, 89-655 and 75-2,282 ng/L, respectively. Eleven target compounds were detected in mixed water. Concentrations in mixed water were higher than those determined in groundwater but lower than the detected in surface water. Different to that found in ground and surface water, the pesticide 2,4-D was found in mixed water, indicating that some pollutants can reach areas where they are not originally present in the local water sources. Concentration of the organic micropollutants found in this study showed similar to lower to those reported in water sources from developed countries. This study provides information that enriches the state of the art on the occurrence of organic micropollutants in water sources worldwide, notably in megacities of developing countries. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Investigating Deliquescence of Mars-like Soils from the Atacama Desert and Implications for Liquid Water Near the Martian Surface

    NASA Astrophysics Data System (ADS)

    Van Alstyne, A. M.; Tolbert, M. A.; Gough, R. V.; Primm, K.

    2017-12-01

    Recent images obtained from orbiters have shown that the Martian surface is more dynamic than previously thought. These images, showing dark features that resemble flowing water near the surface, have called into question the habitability of the Mars today. Recurring slope lineae (RSL), or the dark features seen in these images, are characterized as narrow, dark streaks that form and grow in the warm season, fade in the cold season, and recur seasonally. It is widely hypothesized that the movement of liquid water near the surface is what causes the appearance of RSL. However, the origin of the water and the potential for water to be stable near the surface is a question of great debate. Here, we investigate the potential for stable or metastable liquid water via deliquescence and efflorescence. The deliquescent properties of salts from the Atacama Desert, a popular terrestrial analog for Martian environments, were investigated using a Raman microscope outfitted with an environmental cell. The salts were put under Mars-relevant conditions and spectra were obtained to determine the presence or absence of liquid phases. The appearance of liquid phases under Mars-relevant conditions would demonstrate that liquid water could be available to cause or play a role in the formations of RSL.

  1. Characteristics of Chernobyl-derived radionuclides in particulate form in surface waters in the exclusion zone around the Chernobyl Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Matsunaga, Takeshi; Ueno, Takashi; Amano, Hikaru; Tkatchenko, Y.; Kovalyov, A.; Watanabe, Miki; Onuma, Yoshikazu

    1998-12-01

    The distribution of Chernobyl-derived radionuclides in river and lake water bodies at 6-40 km from the Chernobyl Nuclear Power Plant was studied. Current levels of radionuclides (Cesium-137, Strontium-90, Plutonium, Americium and Curium isotopes) in water bodies and their relation to the ground contamination are presented. The investigation of the radionuclide composition of aqueous and ground contamination revealed that radionuclides on suspended solids (particulate form) originate mainly from the erosion of the contaminated surface soil layer in the zone. Apparent distribution ratios between particulate and dissolved forms are compared to known distribution coefficients.

  2. Deflection of natural oil droplets through the water column in deep-water environments: The case of the Lower Congo Basin

    NASA Astrophysics Data System (ADS)

    Jatiault, Romain; Dhont, Damien; Loncke, Lies; de Madron, Xavier Durrieu; Dubucq, Dominique; Channelliere, Claire; Bourrin, François

    2018-06-01

    Numerous recurrent seep sites were identified in the deep-water environment of the Lower Congo Basin from the analysis of an extensive dataset of satellite-based synthetic-aperture radar images. The integration of current data was used to link natural oil slicks with active seep-related seafloor features. Acoustic Doppler current profiler measurements across the water column provided an efficient means to evaluate the horizontal deflection of oil droplets rising through the water column. Eulerian propagation model based on a range of potential ascension velocities helped to approximate the path for rising oil plume through the water column using two complementary methods. The first method consisted in simulating the reversed trajectory of oil droplets between sea-surface oil slick locations observed during current measurements and seep-related seafloor features while considering a range of ascension velocities. The second method compared the spatial spreading of natural oil slicks from 21 years of satellite monitoring observations for water depths ranging from 1200 to 2700 m against the modeled deflections during the current measurement period. The mapped oil slick origins are restricted to a 2.5 km radius circle from associated seep-related seafloor features. The two methods converge towards a range of ascension velocities for oil droplets through the water column, estimated between 3 and 8 cm s-1. The low deflection values validate that the sub-vertical projection of the average surface area of oil slicks at the sea surface can be used to identify the origin of expelled hydrocarbon from the seafloor, which expresses as specific seafloor disturbances (i.e. pockmarks or mounds) known to expel fluids.

  3. Water quality in the eastern Iowa basins, Iowa and Minnesota, 1996-98

    USGS Publications Warehouse

    Kalkhoff, Stephen J.; Barnes, Kimberlee K.; Becher, Kent D.; Savoca, Mark E.; Schnoebelen, Douglas J.; Sadorf, Eric M.; Porter, Stephen D.; Sullivan, Daniel J.

    2000-01-01

    The water quality in rivers and streams and in selected aquifers in eastern Iowa and part of southern Minnesota is described and illustrated. Major ions, nitrogen and other nutrients, and pesticides and some of their breakdown compounds were analyzed in both surface and ground water. Biological communities that included fish, invertebrates, and algae, were described in relation to stream water quality. Volatile organic compounds that originate from fuels, solvent, and industry were analyzed from ground-water samples. Agricultural and urban land-use effects on shallow ground-water compared and contrasted.

  4. Origin and fate of particulate and dissolved organic matter in a naturally iron-fertilized region of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Tremblay, L.; Caparros, J.; Leblanc, K.; Obernosterer, I.

    2015-01-01

    Natural iron fertilization of high-nutrient low-chlorophyll (HNLC) waters induces annually occurring spring phytoplankton blooms off the Kerguelen Islands (Southern Ocean). To examine the origin and fate of particulate and dissolved organic matter (POM and DOM), D- and L-amino acids (AA) were quantified at bloom and HNLC stations. Total hydrolyzable AA accounted for 21-25% of surface particulate organic carbon (%POCAA) at the bloom sites, but for 10% at the HNLC site. A marked decrease in %POCAA with depth was observed at the most productive stations leading to values between 3 and 5% below 300 m depth. AA contributed to only 0.9-4.4% of dissolved organic carbon (%DOCAA) at all stations. The only consistent vertical trend was observed at the most productive station (A3-2) where %DOCAA decreased from ~ 2% in the surface waters to 0.9% near 300 m. These AA yields revealed that POM and DOM were more rapidly altered or mineralized at the bloom sites compared to the HNLC site. Alteration state was also assessed by trends in C / N ratio, %D-AA and degradation index. Different molecular markers indicated that POM mostly originated from diatoms and bacteria. The estimated average proportion of POM from intact phytoplankton cells in surface waters was 45% at the bloom station A3-2, but 14% at the HNLC site. Estimates based on D-AA yields indicated that ~ 15% of POM and ~ 30% of DOM was of bacterial origin (cells and cell fragments) at all stations. Surprisingly, the DOM in HNLC waters appeared less altered than the DOM from the bloom, had slightly higher dissolved AA concentrations, and showed no sign of alteration within the water column. Unfavorable conditions for bacterial degradation in HNLC regions can explain these findings. In contrast, large inputs of labile organic molecules and iron likely stimulate the degradation of organic matter (priming effect) and the production of more recalcitrant DOM (microbial carbon pump) during iron-fertilized blooms.

  5. Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water

    USDA-ARS?s Scientific Manuscript database

    Much of the NO3 in the riverine surface waters of the upper Mississippi River basin originates from artificially drained agricultural land used for corn (Zea mays L.) and soybean (Glycine max [L.] Merr.) production. Cover crops grown between maturity and planting of these crops are one approach to r...

  6. An airborne laser fluorosensor for the detection of oil on water

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Hickman, G. D.

    1973-01-01

    The successful operation of an airborne laser fluorosensor system is reported that makes it possible to detect and map surface oil, either of natural-seepage or spill origin, on large bodies of water. Preliminary results indicate that the sensitivity of the instrument exceeds that of conventional passive remote sensors currently available for oil spill detection.

  7. New streams and springs after the 2014 Mw6.0 South Napa earthquake.

    PubMed

    Wang, Chi-Yuen; Manga, Michael

    2015-07-09

    Many streams and springs, which were dry or nearly dry before the 2014 Mw6.0 South Napa earthquake, started to flow after the earthquake. A United States Geological Survey stream gauge also registered a coseismic increase in discharge. Public interest was heightened by a state of extreme drought in California. Since the new flows were not contaminated by pre-existing surface water, their composition allowed unambiguous identification of their origin. Following the earthquake we repeatedly surveyed the new flows, collecting data to test hypotheses about their origin. We show that the new flows originated from groundwater in nearby mountains released by the earthquake. The estimated total amount of new water is ∼ 10(6) m(3), about 1/40 of the annual water use in the Napa-Sonoma area. Our model also makes a testable prediction of a post-seismic decrease of seismic velocity in the shallow crust of the affected region.

  8. Surface Structure of TiO2 Rutile (011) Exposed to Liquid Water

    PubMed Central

    2017-01-01

    The rutile TiO2(011) surface exhibits a (2 × 1) reconstruction when prepared by standard techniques in ultrahigh vacuum (UHV). Here we report that a restructuring occurs upon exposing the surface to liquid water at room temperature. The experiment was performed in a dedicated UHV system, equipped for direct and clean transfer of samples between UHV and liquid environment. After exposure to liquid water, an overlayer with a (2 × 1) symmetry was observed containing two dissociated water molecules per unit cell. The two OH groups yield an apparent “c(2 × 1)” symmetry in scanning tunneling microscopy (STM) images. On the basis of STM analysis and density functional theory (DFT) calculations, this overlayer is attributed to dissociated water on top of the unreconstructed (1 × 1) surface. Investigation of possible adsorption structures and analysis of the domain boundaries in this structure provide strong evidence that the original (2 × 1) reconstruction is lifted. Unlike the (2 × 1) reconstruction, the (1 × 1) surface has an appropriate density and symmetry of adsorption sites. The possibility of contaminant-induced restructuring was excluded based on X-ray photoelectron spectroscopy (XPS) and low-energy He+ ion scattering (LEIS) measurements. PMID:29285204

  9. Anomalously low dielectric constant of confined water.

    PubMed

    Fumagalli, L; Esfandiar, A; Fabregas, R; Hu, S; Ares, P; Janardanan, A; Yang, Q; Radha, B; Taniguchi, T; Watanabe, K; Gomila, G; Novoselov, K S; Geim, A K

    2018-06-22

    The dielectric constant ε of interfacial water has been predicted to be smaller than that of bulk water (ε ≈ 80) because the rotational freedom of water dipoles is expected to decrease near surfaces, yet experimental evidence is lacking. We report local capacitance measurements for water confined between two atomically flat walls separated by various distances down to 1 nanometer. Our experiments reveal the presence of an interfacial layer with vanishingly small polarization such that its out-of-plane ε is only ~2. The electrically dead layer is found to be two to three molecules thick. These results provide much-needed feedback for theories describing water-mediated surface interactions and the behavior of interfacial water, and show a way to investigate the dielectric properties of other fluids and solids under extreme confinement. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Activated carbon oxygen content influence on water and surfactant adsorption.

    PubMed

    Pendleton, Phillip; Wu, Sophie Hua; Badalyan, Alexander

    2002-02-15

    This research investigates the adsorption properties of three activated carbons (AC) derived from coconut, coal, and wood origin. Each carbon demonstrates different levels of resistance to 2 M NaOH treatment. The coconut AC offers the greatest and wood AC the least resistance. The influence of base treatment is mapped in terms of its effects on specific surface area, micropore volume, water adsorption, and dodecanoic acid adsorption from both water and 2 M NaOH solution. A linear relationship exists between the number of water molecules adsorbed at the B-point of the water adsorption isotherm and the oxygen content determined from elemental analysis. Surfactant adsorption isotherms from water and 2 M NaOH indicate that the AC oxygen content effects a greater dependence on affinity for surfactant than specific surface area and micropore volume. We show a linear relationship between the plateau amount of surfactant adsorbed and the AC oxygen content in both water and NaOH phases. The higher the AC oxygen content, the lower the amount of surfactant adsorbed. In contrast, no obvious relationship could be drawn between the surfactant amount adsorbed and the surface area.

  11. Annual subsurface transport of a red tide dinoflagellate to its bloom area: Water circulation patterns and organism distributions in the Chesapeake Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, M.A.; Seliger, H.H.

    1978-03-01

    An annual, long range, subsurface transport of Prorocentrum mariae-lebouriae, from the mouth of the Chesapeake Bay to its bloom area in the upper bay, a distance of 240 km, is described and completely documented. Prorocentrum in surface outflowing waters at the mouth of the bay is recruited in late winter into more dense inflowing coastal waters. Strong stratification produced by late winter--early spring surface runoff results in the development of a stable pycnocline. Prorocentrum, now in northward-flowing bottom waters, is retained in these bottom waters. It accumulates in a subsurface concentration maximum below the pycnocline and is transported northward tomore » reach its bloom area in the Patapsco River and north of the Bay Bridge by late spring. The rapidly decreasing depth of the upper bay causes the pycnocline to rise, mixing the previously light-limited Prorocentrum and its nutrient-rich bottom waters to the surface, where rapid growth ensues. Once the dinoflagellate is in surface waters, positive phototaxis, combined with both wind- and tide-driven surface convergences, produce dense surface patches or red tides. Prorocentrum is effectively retained in the bay until late winter by sequential inoculation into the tributary estuaries on the western shore, which exchange relatively slowly with bay waters. By late winter the annual cycle is complete. Prorocentrum is again in surface waters at the mouth of the bay where it is reintroduced into northward-flowing bottom waters. The mechanisms described provide a key to understanding the origins of subsurface chlorophyll maxima and the delivery of toxic dinoflagellates to coastal bloom areas.« less

  12. Recurring Slope Lineae (RSL) and Future Exploration of Mars and Europa

    NASA Astrophysics Data System (ADS)

    McEwen, Alfred S.

    2014-11-01

    Recurring slope lineae (RSL) are narrow (<5 m), dark markings on steep (25°-40°) slopes that incrementally grow during warm seasons over low-albedo surfaces, fade when inactive, and recur over multiple Mars years. RSL often follow small gullies, but no topographic changes (with one exception) have been detected via 30 cm/pixel images from MRO/HiRISE. Mid-latitude RSL appear and lengthen in the late spring through summer favoring equator-facing slopes. RSL also occur in equatorial regions of Mars, especially in the deep canyons of Valles Marineris; some of these lineae are over 1 km long, again usually following pristine gullies. The fans on which many RSL terminate have distinctive color and spectral properties, but lack water absorption bands in MRO/CRISM. RSL are active at places with peak surface temperatures >250 K, but we do not know what time of day they are active. Laboratory experiments show that water or brines darken basaltic soils but produce weak water absorption bands after partial dehydration during the low-humidity middle afternoon conditions when MRO observes. The primary question is whether RSL are really due to water at or near the surface. All observations can be explained in this way, and no entirely dry model has been offered, but there is no direct detection of water. If they are due to water, where does the water come from and how is it replenished each year? Multiple hypotheses exist. RSL may be evidence for seepage of water today, and may mark the most promising sites to search for extraterrestrial life. There are 2 key unknowns: (1) Does the water originate from the subsurface where microbes would be protected from radiation, or does it have an atmospheric origin and is only skin deep? (2) Is the water too salty for life as we know it? RSL occur on steep, rocky slopes on which landing is dangerous, but several concepts for surface exploration of RSL were presented in http://www.lpi.usra.edu/meetings/marsconcepts2012/. Landing in RSL sites will require additional expenses for planetary protection. For these reasons, it is important to learn as much as possible about RSL from orbital observations.

  13. Suppression of ENSO in a coupled model without water vapor feedback

    NASA Astrophysics Data System (ADS)

    Hall, A.; Manabe, S.

    We examine 800-year time series of internally generated variability in both a coupled ocean-atmosphere model where water vapor anomalies are not allowed to interact with longwave radiation and one where they are. The ENSO-like phenomenon in the experiment without water vapor feedback is drastically suppressed both in amplitude and geographic extent relative to the experiment with water vapor feedback. Surprisingly, the reduced amplitude of ENSO-related sea surface temperature anomalies in the model without water vapor feedback cannot be attributed to greater longwave damping of sea surface temperature. (Differences between the two experiments in radiative feedback due to clouds counterbalance almost perfectly the differences in radiative feedback due to water vapor.) Rather, the interaction between water vapor anomalies and longwave radiation affects the ENSO-like phenomenon through its influence on the vertical structure of radiative heating: Because of the changes in water vapor associated with it, a given warm equatorial Pacific sea surface temperature anomaly is associated with a radiative heating profile that is much more gravitationally unstable when water vapor feedback is present. The warm sea surface temperature anomaly therefore results in more convection in the experiment with water vapor feedback. The increased convection, in turn, is related to a larger westerly wind-stress anomaly, which creates a larger decrease in upwelling of cold water, thereby enhancing the magnitude of the original warm sea surface temperature anomaly. In this manner, the interaction between water vapor anomalies and longwave radiation magnifies the air-sea interactions at the heart of the ENSO phenomenon; without this interaction, the coupling between sea surface temperature and wind stress is effectively reduced, resulting in smaller amplitude ENSO episodes with a more limited geographical extent.

  14. Assessing More than a Decade of Alaska/yukon, High Elevation, Glacier Ice/rock Landslides

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.; Angeli, K.

    2017-12-01

    On September 14, 2005, an estimated 5.0x106 m3 of rock, glacier ice, and snow fell from below the summit of 3,236-m-high Mt. Steller, Alaska, onto a tributary of Bering Glacier. Next day photography of the slide and source area suggested that meltwater played a significant role in its origin. Aerial photography and space-based electro-optical imagery collected for months following the event recorded continuing evidence of meltwater flowing from the head-scarp region and continued ice and snow melt. We investigated five similar glacier ice-rock landslides. These originated from the north face of Mt. Steller in late 2005-early 2006, the south side of Waxell Ridge in late 2005-early 2006, Mt. Steele on July 24, 2007, Mt. Lituya on June 11, 2012, and Mt. La Perouse on February 16, 2014. None was triggered by a seismic event. Four were detected based on seismic events they generated. All source areas exhibited failed hanging glaciers and/or failed perennial snowfields. Five had detectable glacier hydrologic features (moulins, conduits, and collapsed englacial stream channels) in near-summit failed ice and snow margins. Four displayed fresh concave bedrock failure surfaces. All originated at locations where mean annual temperatures were below freezing. Our observations support water triggering each event. We propose that abnormally warm summer temperatures or extreme winter precipitation produced unusual volumes of water which saturated summit snow and ice and/or filled summit glacier channels and conduits with liquid water. Water reached the frozen water/bedrock interface, destabilizing the contact. Fresh concave bedrock failure surfaces suggest that glacier beds were adhering to steep bedrock surfaces composed of a mélange of freeze/thaw shattered rock held together by interstitial ice. When the mass of saturated glacier ice failed, the bedrock mélange also failed, exposing fresh bedrock scarp depressions and generating the observed gravel-dominated slide debris.

  15. Sources of dissolved salts in the central Murray Basin, Australia

    USGS Publications Warehouse

    Jones, B.F.; Hanor, J.S.; Evans, W.R.

    1994-01-01

    Large areas of the Australian continent contain scattered saline lakes underlain by shallow saline groundwaters of regional extent and debated origin. The normative salt composition of subsurface pore fluids extracted by squeezing cores collected during deep drilling at Piangil West 2 in the central Murray Basin in southeastern Australia, and of surface and shallow subsurface brines produced by subaerial evaporation in the nearby Lake Tyrrell systems, helps constrain interpretation of the origin of dissolved solutes in the groundwaters of this part of the continent. Although regional sedimentation in the Murray Basin has been dominantly continental except for a marine transgression in Oligocene-Pliocene time, most of the solutes in saline surface and subsurface waters in the central Murray Basin have a distinctly marine character. Some of the Tyrrell waters, to the southwest of Piangil West 2, show the increase in NaCl and decrease in sulfate salts expected with evaporative concentration and gypsum precipitation in an ephemeral saline lake or playa environment. The salt norms for most of the subsurface saline waters at Piangil West 2 are compatible with the dilution of variably fractionated marine bitterns slightly depleted in sodium salts, similar to the more evolved brines at Lake Tyrrell, which have recharged downward after evaporation at the surface and then dissolved a variable amount of gypsum at depth. Apparently over the last 0.5 Ma significant quantities of marine salt have been blown into the Murray Basin as aerosols which have subsequently been leached into shallow regional groundwater systems basin-wide, and have been transported laterally into areas of large evaporative loss in the central part of the basin. This origin for the solutes helps explain why the isotopic compositions of most of the subsurface saline waters at Piangil West 2 have a strong meteoric signature, whereas the dissolved salts in these waters appear similar to a marine assemblage. ?? 1994.

  16. Molecular origins of fluorocarbon hydrophobicity

    PubMed Central

    Dalvi, Vishwanath H.; Rossky, Peter J.

    2010-01-01

    We have undertaken atomistic molecular simulations to systematically determine the structural contributions to the hydrophobicity of fluorinated solutes and surfaces compared to the corresponding hydrocarbon, yielding a unified explanation for these phenomena. We have transformed a short chain alkane, n-octane, to n-perfluorooctane in stages. The free-energy changes and the entropic components calculated for each transformation stage yield considerable insight into the relevant physics. To evaluate the effect of a surface, we have also conducted contact-angle simulations of water on self-assembled monolayers of hydrocarbon and fluorocarbon thiols. Our results, which are consistent with experimental observations, indicate that the hydrophobicity of the fluorocarbon, whether the interaction with water is as solute or as surface, is due to its “fatness.” In solution, the extra work of cavity formation to accommodate a fluorocarbon, compared to a hydrocarbon, is not offset by enhanced energetic interactions with water. The enhanced hydrophobicity of fluorinated surfaces arises because fluorocarbons pack less densely on surfaces leading to poorer van der Waals interactions with water. We find that interaction of water with a hydrophobic solute/surface is primarily a function of van der Waals interactions and is substantially independent of electrostatic interactions. This independence is primarily due to the strong tendency of water at room temperature to maintain its hydrogen bonding network structure at an interface lacking hydrophilic sites. PMID:20643968

  17. Eastern South Pacific water mass geometry during the last glacial-interglacial transition

    NASA Astrophysics Data System (ADS)

    De Pol-Holz, R.; Reyes, D.; Mohtadi, M.

    2012-12-01

    The eastern South Pacific is characterized today by a complex thermocline structure where large salinity and oxygen changes as a function of depth coexist. Surface waters from tropical origin float on top of subantarctic fresher water (the so-called 'shallow salinity minimum of the eastern south Pacific'), which in turn, flow above aged equatorial and deeper recently ventilated Antarctic Intermediate waters. Little is known however about the water mass geometry changes that could have occurred during the last glacial maximum boundary conditions (about 20,000 years before the present), despite this information being critical for the assessment of potential mechanisms that have been proposed as explanations for the deglacial onset of low oxygen conditions in the area and the atmospheric CO2 increase during the same time. Here we present benthic and planktonic foraminifera stable isotope and radiocarbon data from a set of sediment cores from the Chilean continental margin covering a large -yet still limited- geographical area and depth range. Sedimentations rates were relatively high (>10 cm/kyr) precluding major caveats from bioturbation in all of our archives. The distribution of δ13C of ΣCO2 shows the presence of a very depleted (δ13C < -1‰ V-PDB) water mass overlaying more recently ventilated waters at intermediate depths as indicated by thermocline foraminifer dwellers being more depleted in 13C than the benthic species. The origin of this depleted end-member is probably upwelling from the Southern Ocean as expressed by the radiocarbon content and the large reservoir effect associated with the last glacial maximum and the beginning of the deglaciation along the margin. Our data suggest that the Tropical waters that today bath the lower latitude cores was displaced by surface waters of southern origin and therefore in line with the evidence of a latitudinal shift of the frontal systems.

  18. Effects of protein conformational motions in the native form and non-uniform distribution of electrostatic interaction sites on interfacial water

    NASA Astrophysics Data System (ADS)

    Pal, Somedatta; Bandyopadhyay, Sanjoy

    2013-07-01

    Protein-water interactions and their influence on surrounding water is a long-standing problem. Despite its importance, the origin of differential water behavior at the protein surface is still elusive. We have performed molecular simulations of the protein barstar in aqueous medium. Efforts have been made to explore how the conformational motions of the protein segments in the native form and the heterogeneous electrostatic interactions with the polar and charged groups of the protein affect the interfacial water properties. The calculations reveal that reduced dimension of the hydration layer on freezing the protein's degrees of freedom does not modify the heterogeneous water distributions around the protein. However, turning off the protein-water electrostatic contribution leads to non-preferential near-uniform water arrangements at the surface. It is further shown that with protein-water electrostatic interactions turned on, the local structuring of water molecules around the segments are correlated with their degree of exposure to the solvent.

  19. An Ocean Tale of Two Climates: Modern and Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Ferrari, R. M.

    2014-12-01

    In the present climate, the ocean below 2 km is mainly filled by waters sinking into the abyss around Antarctica and in the North Atlantic. Paleo proxies indicate that waters of North Atlantic origin were instead absent below 2 km at the Last Glacial Maximum (LGM), resulting in an expansion of the volume occupied by Antarctic origin waters. I will argue that this rearrangement of deep water masses is dynamically connected to the expansion of summer sea ice around Antarctica. A simple theory will be introduced to suggest that these deep waters only came to the surface under summer sea ice, which insulated them from atmospheric forcing, and were weakly mixed with overlying waters, thus being able to store carbon for long times. I will show that this unappreciated link between the expansion of sea ice and the appearance of a voluminous and insulated water mass appear to be crucial in explaining the ocean's role in regulating atmospheric carbon dioxide on glacial-interglacial timescales.

  20. Water dynamics in protein hydration shells: the molecular origins of the dynamical perturbation.

    PubMed

    Fogarty, Aoife C; Laage, Damien

    2014-07-17

    Protein hydration shell dynamics play an important role in biochemical processes including protein folding, enzyme function, and molecular recognition. We present here a comparison of the reorientation dynamics of individual water molecules within the hydration shell of a series of globular proteins: acetylcholinesterase, subtilisin Carlsberg, lysozyme, and ubiquitin. Molecular dynamics simulations and analytical models are used to access site-resolved information on hydration shell dynamics and to elucidate the molecular origins of the dynamical perturbation of hydration shell water relative to bulk water. We show that all four proteins have very similar hydration shell dynamics, despite their wide range of sizes and functions, and differing secondary structures. We demonstrate that this arises from the similar local surface topology and surface chemical composition of the four proteins, and that such local factors alone are sufficient to rationalize the hydration shell dynamics. We propose that these conclusions can be generalized to a wide range of globular proteins. We also show that protein conformational fluctuations induce a dynamical heterogeneity within the hydration layer. We finally address the effect of confinement on hydration shell dynamics via a site-resolved analysis and connect our results to experiments via the calculation of two-dimensional infrared spectra.

  1. Water Dynamics in Protein Hydration Shells: The Molecular Origins of the Dynamical Perturbation

    PubMed Central

    2014-01-01

    Protein hydration shell dynamics play an important role in biochemical processes including protein folding, enzyme function, and molecular recognition. We present here a comparison of the reorientation dynamics of individual water molecules within the hydration shell of a series of globular proteins: acetylcholinesterase, subtilisin Carlsberg, lysozyme, and ubiquitin. Molecular dynamics simulations and analytical models are used to access site-resolved information on hydration shell dynamics and to elucidate the molecular origins of the dynamical perturbation of hydration shell water relative to bulk water. We show that all four proteins have very similar hydration shell dynamics, despite their wide range of sizes and functions, and differing secondary structures. We demonstrate that this arises from the similar local surface topology and surface chemical composition of the four proteins, and that such local factors alone are sufficient to rationalize the hydration shell dynamics. We propose that these conclusions can be generalized to a wide range of globular proteins. We also show that protein conformational fluctuations induce a dynamical heterogeneity within the hydration layer. We finally address the effect of confinement on hydration shell dynamics via a site-resolved analysis and connect our results to experiments via the calculation of two-dimensional infrared spectra. PMID:24479585

  2. Water Ice Clouds in the Martian Atmosphere: A View from MGS TES

    NASA Technical Reports Server (NTRS)

    Hale, A. S.; Tamppari, L. K.; Christensen, P. R.; Smith, M. D.; Bass, Deborah; Qu, Zheng; Pearl, J. C.

    2005-01-01

    We use the method of Tamppari et al. to map water ice clouds in the Martian atmosphere. This technique was originally developed to analyze the broadband Viking IRTM channels and we have now applied it to the TES data. To do this, the TES spectra are convolved to the IRTM bandshapes and spatial resolutions, enabling use of the same processing techniques as were used in Tamppari et al.. This retrieval technique relies on using the temperature difference recorded in the 20 micron and 11 micron IRTM bands (or IRTM convolved TES bands) to map cold water ice clouds above the warmer Martian surface. Careful removal of surface contributions to the observed radiance is therefore necessary, and we have used both older Viking-derived basemaps of the surface emissivity and albedo, and new MGS derived basemaps in order the explore any possible differences on cloud retrieval due to differences in surface contribution removal. These results will be presented in our poster. Our previous work has concentrated primarily on comparing MGS TES to Viking data; that work saw that large-scale cloud features, such as the aphelion cloud belt, are quite repeatable from year to year, though small scale behavior shows some variation. Comparison of Viking and MGS era cloud maps will be presented in our poster. In the current stage of our study, we have concentrated our efforts on close analysis of water ice cloud behavior in the northern summer of the three MGS mapping years on relatively small spatial scales, and present our results below. Additional information is included in the original extended abstract.

  3. Chemical evolution on Titan: comparisons to the prebiotic earth.

    PubMed

    Clarke, D W; Ferris, J P

    1997-06-01

    Models for the origin of Titan's atmosphere, the processing of the atmosphere and surface and its exobiological role are reviewed. Titan has gained widespread acceptance in the origin of life field as a model for the types of evolutionary processes that could have occurred on prebiotic Earth. Both Titan and Earth possess significant atmospheres (> or = 1 atm) composed mainly of molecular nitrogen with smaller amounts of more reactive species. Both of these atmospheres are processed primarily by solar ultraviolet light with high energy particles interactions contributing to a lesser extent. The products of these reactions condense or are dissolved in other atmospheric species (aerosols/clouds) and fall to the surface. There these products may have been further processed on Titan and the primitive Earth by impacting comets and meteorites. While the low temperatures on Titan (approximately 72-180 K) preclude the presence of permanent liquid water on the surface, it has been suggested that tectonic activity or impacts by meteors and comets could produce liquid water pools on the surface for thousands of years. Hydrolysis and oligomerization reactions in these pools might form chemicals of prebiological significance. Other direct comparisons between the conditions on present day Titan and those proposed for prebiotic Earth are also presented.

  4. Electrodialysis and nanofiltration of surface water for subsequent use as infiltration water.

    PubMed

    Van der Bruggen, B; Milis, R; Vandecasteele, C; Bielen, P; Van San, E; Huysman, K

    2003-09-01

    In order to achieve stable groundwater levels, an equilibrium between the use of groundwater for drinking water production and natural or artificial groundwater recharge by infiltration is needed. Local governments usually require that the composition of the water used for artificial recharge is similar to the surface water that is naturally present in the specific recharge area. In this paper, electrodialysis (ED) and nanofiltration were evaluated as possible treatment technologies for surface water from a canal in Flanders, the North of Belgium, in view of infiltration at critical places on heathlands. Both methods were evaluated on the basis of a comparison between the water composition after treatment and the composition of local surface waters. The treatment generally consists of a tuning of pH and the removal of contaminants originating from industrial and agricultural activity, e.g., nitrates and pesticides. Further evaluation of the influence of the composition of the water on the characteristics of the artificial recharge, however, was not envisaged. In a case study of water from the canal Schoten-Dessel, satisfactory concentration reductions of Cl(-), SO(4)(2-), NO(3)(-), HCO(3)(-), Na(+), Mg(2+), K(+) and Ca(2+) were obtained by ultrafiltration pretreatment followed by ED. Nanofiltration with UTC-20, N30F, Desal 51 HL, UTC-60 and Desal 5 DL membranes resulted in an insufficient removal level, especially for the monovalent ions.

  5. A New Scheme for Considering Soil Water-Heat Transport Coupling Based on Community Land Model: Model Description and Preliminary Validation

    NASA Astrophysics Data System (ADS)

    Wang, Chenghai; Yang, Kai

    2018-04-01

    Land surface models (LSMs) have developed significantly over the past few decades, with the result that most LSMs can generally reproduce the characteristics of the land surface. However, LSMs fail to reproduce some details of soil water and heat transport during seasonal transition periods because they neglect the effects of interactions between water movement and heat transfer in the soil. Such effects are critical for a complete understanding of water-heat transport within a soil thermohydraulic regime. In this study, a fully coupled water-heat transport scheme (FCS) is incorporated into the Community Land Model (version 4.5) to replaces its original isothermal scheme, which is more complete in theory. Observational data from five sites are used to validate the performance of the FCS. The simulation results at both single-point and global scale show that the FCS improved the simulation of soil moisture and temperature. FCS better reproduced the characteristics of drier and colder surface layers in arid regions by considering the diffusion of soil water vapor, which is a nonnegligible process in soil, especially for soil surface layers, while its effects in cold regions are generally inverse. It also accounted for the sensible heat fluxes caused by liquid water flow, which can contribute to heat transfer in both surface and deep layers. The FCS affects the estimation of surface sensible heat (SH) and latent heat (LH) and provides the details of soil heat and water transportation, which benefits to understand the inner physical process of soil water-heat migration.

  6. Photogeneration of hydrogen from water by a robust dye-sensitized photocathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, B.; Das, A. K.; Marquard, S.

    2016-11-15

    We report here on a novel photocathode with a “donor-dye-catalyst” assembly structure for water reduction. The photoelectrocatalytic performance of the photocathode under mild conditions, with a photocurrent of -56 μA/cm2 and a Faradaic yield of 53%, is superior relative to other reported photocathodes with surface attached molecular catalysts. Detailed electron transfer analyses, based on transient absorption measurements, show that the successful application of this photocathode originates mainly from the slow back electron transfer following light excitation. The results also demonstrate that addition of the long-chain assembly to the macro-mesoporous electrode surface plays a fundamental role in providing sufficient catalyst formore » water reduction.« less

  7. Development of a classical force field for the oxidized Si surface: application to hydrophilic wafer bonding.

    PubMed

    Cole, Daniel J; Payne, Mike C; Csányi, Gábor; Spearing, S Mark; Colombi Ciacchi, Lucio

    2007-11-28

    We have developed a classical two- and three-body interaction potential to simulate the hydroxylated, natively oxidized Si surface in contact with water solutions, based on the combination and extension of the Stillinger-Weber potential and of a potential originally developed to simulate SiO(2) polymorphs. The potential parameters are chosen to reproduce the structure, charge distribution, tensile surface stress, and interactions with single water molecules of a natively oxidized Si surface model previously obtained by means of accurate density functional theory simulations. We have applied the potential to the case of hydrophilic silicon wafer bonding at room temperature, revealing maximum room temperature work of adhesion values for natively oxidized and amorphous silica surfaces of 97 and 90 mJm(2), respectively, at a water adsorption coverage of approximately 1 ML. The difference arises from the stronger interaction of the natively oxidized surface with liquid water, resulting in a higher heat of immersion (203 vs 166 mJm(2)), and may be explained in terms of the more pronounced water structuring close to the surface in alternating layers of larger and smaller densities with respect to the liquid bulk. The computed force-displacement bonding curves may be a useful input for cohesive zone models where both the topographic details of the surfaces and the dependence of the attractive force on the initial surface separation and wetting can be taken into account.

  8. Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater.

    PubMed

    Tran, Ngoc Han; Gin, Karina Yew-Hoong; Ngo, Huu Hao

    2015-12-15

    The quality of surface waters/groundwater of a geographical region can be affected by anthropogenic activities, land use patterns and fecal pollution sources from humans and animals. Therefore, the development of an efficient fecal pollution source tracking toolbox for identifying the origin of the fecal pollution sources in surface waters/groundwater is especially helpful for improving management efforts and remediation actions of water resources in a more cost-effective and efficient manner. This review summarizes the updated knowledge on the use of fecal pollution source tracking markers for detecting, evaluating and characterizing fecal pollution sources in receiving surface waters and groundwater. The suitability of using chemical markers (i.e. fecal sterols, fluorescent whitening agents, pharmaceuticals and personal care products, and artificial sweeteners) and/or microbial markers (e.g. F+RNA coliphages, enteric viruses, and host-specific anaerobic bacterial 16S rDNA genetic markers) for tracking fecal pollution sources in receiving water bodies is discussed. In addition, this review also provides a comprehensive approach, which is based on the detection ratios (DR), detection frequencies (DF), and fate of potential microbial and chemical markers. DR and DF are considered as the key criteria for selecting appropriate markers for identifying and evaluating the impacts of fecal contamination in surface waters/groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Unusual Sediment Transportation Processes Under Low Pressure Environments and Implications For Gullies and Recurring Slope Lineae (RSL)

    NASA Astrophysics Data System (ADS)

    Raack, J.; Herny, C.; Conway, S. J.; Balme, M. R.; Carpy, S.; Patel, M.

    2017-12-01

    Recently and presently active mass wasting features such as gullies and recurring slope lineae (RSL) are common on the surface of Mars, but their origin and triggering mechanisms are under intense debate. While several active mass wasting features have been linked to sublimation of CO2ice, dry granular flows (avalanches), or a combination of both effects, others have been more closely linked to liquid water or briny outflows (e.g. for RSL). However, liquid water on the surface of Mars is unstable under present-day low pressures and surface temperatures. Nevertheless, numerical modeling and remote sensing data have shown that maximum surface temperatures can exceed the frost point of water and that liquid water could exist on the surface of actual Mars in a transient state. But to explain the observed spatial extent of RSL and recent modification of gullies, it is estimated that relatively large amounts of liquid water are necessary. It is proving challenging to generate such quantities from the atmosphere. In this contribution we explore the potential effects of boiling water (boiling occurs at martian pressures slightly above the frost point of 273 K) on sediment transport. We will present the outcomes of a series of experiments under low surface and water temperatures (between 278 and 297 K, analogous to surface temperatures observed near RSL) and low pressures (between 8 and 11 mbar). We simulate sediment transport by boiling liquid water over a sloping bed of unconsolidated sediment. Our results reveal a suite of unusual and very reactive sediment transportation processes, which are not produced under terrestrial pressures. We will discuss the impact of these unusual sediment transport processes on estimates of water budgets for active mass wasting processes.

  10. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards.

    PubMed

    Comanns, Philipp; Effertz, Christian; Hischen, Florian; Staudt, Konrad; Böhme, Wolfgang; Baumgartner, Werner

    2011-01-01

    Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus), the Arabian toadhead agama (Phrynocephalus arabicus) and the Texas horned lizard (Phrynosoma cornutum). All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive - and for Phrynosoma directed - transport of water.

  11. Surface and microstructure modifications of Ti-6Al-4V titanium alloy cutting by a water jet/high power laser converging coupling

    NASA Astrophysics Data System (ADS)

    Weiss, Laurent; Tazibt, Abdel; Aillerie, Michel; Tidu, Albert

    2018-01-01

    The metallurgical evolution of the Ti-6Al-4V samples is analyzed after an appropriate cutting using a converging water jet/high power laser system. New surface microstructures are obtained on the cutting edge as a result of thermo-mechanical effects of such hybrid fluid-jet-laser tool on the targeted material. The laser beam allows to melt and the water-jet to cool down and to evacuate the material upstream according to a controlled cutting process. The experimental results have shown that a rutile layer can be generated on the surface near the cutting zone. The recorded metallurgical effect is attributed to the chemical reaction between water molecules and titanium, where the laser thermal energy brought onto the surface plays the role of reaction activator. The width of the oxidized zone was found proportional to the cutting speed. During the reaction, hydrogen gas H2 is formed and is absorbed by the metal. The hydrogen atoms trapped into the alloy change the metastable phase formation developing pure β circular grains as a skin at the kerf surface. This result is original so it would lead to innovative converging laser water jet process that could be used to increase the material properties especially for surface treatment, a key value of surface engineering and manufacturing chains.

  12. Surface Water in Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.

    2003-01-01

    Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.

  13. Water and Life on Mars

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Mars appears to be cold dry and dead world. However there is good evidence that early in its history it had liquid water, more active volcanism, and a thicker atmosphere. Mars had this earth-like environment over three and a half billion years ago, during the same time that life appeared on Earth. The main question in the exploration of Mars then is the search for a independent origin of life on that planet. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Although the Viking results may indicate that Mars has no life today, there is direct geomorphological evidence that, in the past, Mars had large amounts of liquid water on its surface - possibly due to a thicker atmosphere. From a biological perspective the existence of liquid water, by itself motivates the question of the origin of life on Mars. One of the martian meteorites dates back to this early period and may contain evidence consistent with life. From studies of the Earth's earliest biosphere we know that by 3.5 Gyr. ago, life had originated on Earth and reached a fair degree of biological sophistication. Surface activity and erosion on Earth make it difficult to trace the history of life before the 3.5 Gyr timeframe. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils.

  14. Prokaryotic responses to hydrostatic pressure in the ocean--a review.

    PubMed

    Tamburini, Christian; Boutrif, Mehdi; Garel, Marc; Colwell, Rita R; Deming, Jody W

    2013-05-01

    Effects of hydrostatic pressure on pure cultures of prokaryotes have been studied extensively but impacts at the community level in the ocean are less well defined. Here we consider hydrostatic pressure effects on natural communities containing both unadapted (piezosensitive) prokaryotes originating from surface water and adapted (including piezophilic) prokaryotes from the deep sea. Results from experiments mimicking pressure changes experienced by particle-associated prokaryotes during their descent through the water column show that rates of degradation of organic matter (OM) by surface-originating microorganisms decrease with sinking. Analysis of a much larger data set shows that, under stratified conditions, deep-sea communities adapt to in situ conditions of high pressure, low temperature and low OM. Measurements made using decompressed samples and atmospheric pressure thus underestimate in situ activity. Exceptions leading to overestimates can be attributed to deep mixing events, large influxes of surface particles, or provision of excessive OM during experimentation. The sediment-water interface, where sinking particles accumulate, will be populated by a mixture of piezosensitive, piezotolerant and piezophilic prokaryotes, with piezophilic activity prevailing deeper within sediment. A schematic representation of how pressure shapes prokaryotic communities in the ocean is provided, allowing a reasonably accurate interpretation of the available activity measurements. © 2013 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Past, present, and future life on Mars

    NASA Technical Reports Server (NTRS)

    McKay, C. P.

    1998-01-01

    Although the Viking results indicated that the surface of Mars is dry and lifeless, there is direct geomorphological evidence that Mars had large amounts of liquid water on its surface in the past. From a biological perspective the existence of liquid water, by itself, motivates the question of the origin of life on Mars. One of the martian meteorites dates back to this early period and may contain evidence consistent with life. The Mars environment 3.5 to 4.0 Gyr ago was comparable to that on the Earth at this time in that both contained liquid water. Life had originated on Earth and reached a fair degree of biological sophistication by 3.5 Gyr ago. To determine if life similarly arose on Mars may require extensive robotic exploration and ultimately human exploration. Intensive exploration of Mars will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research station can obtain its life support requirements directly from the martian environment enabling a high degree of self-sufficiency. In the longer term, it is possible that in the future we might restore a habitable climate on Mars, returning it to the life-bearing state it may have enjoyed early in its history.

  16. Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres.

    PubMed

    De Sanctis, M C; Ammannito, E; Raponi, A; Marchi, S; McCord, T B; McSween, H Y; Capaccioni, F; Capria, M T; Carrozzo, F G; Ciarniello, M; Longobardo, A; Tosi, F; Fonte, S; Formisano, M; Frigeri, A; Giardino, M; Magni, G; Palomba, E; Turrini, D; Zambon, F; Combe, J-P; Feldman, W; Jaumann, R; McFadden, L A; Pieters, C M; Prettyman, T; Toplis, M; Raymond, C A; Russell, C T

    2015-12-10

    Studies of the dwarf planet (1) Ceres using ground-based and orbiting telescopes have concluded that its closest meteoritic analogues are the volatile-rich CI and CM carbonaceous chondrites. Water in clay minerals, ammoniated phyllosilicates, or a mixture of Mg(OH)2 (brucite), Mg2CO3 and iron-rich serpentine have all been proposed to exist on the surface. In particular, brucite has been suggested from analysis of the mid-infrared spectrum of Ceres. But the lack of spectral data across telluric absorption bands in the wavelength region 2.5 to 2.9 micrometres--where the OH stretching vibration and the H2O bending overtone are found--has precluded definitive identifications. In addition, water vapour around Ceres has recently been reported, possibly originating from localized sources. Here we report spectra of Ceres from 0.4 to 5 micrometres acquired at distances from ~82,000 to 4,300 kilometres from the surface. Our measurements indicate widespread ammoniated phyllosilicates across the surface, but no detectable water ice. Ammonia, accreted either as organic matter or as ice, may have reacted with phyllosilicates on Ceres during differentiation. This suggests that material from the outer Solar System was incorporated into Ceres, either during its formation at great heliocentric distance or by incorporation of material transported into the main asteroid belt.

  17. Past, present, and future life on Mars.

    PubMed

    McKay, C P

    1998-05-01

    Although the Viking results indicated that the surface of Mars is dry and lifeless, there is direct geomorphological evidence that Mars had large amounts of liquid water on its surface in the past. From a biological perspective the existence of liquid water, by itself, motivates the question of the origin of life on Mars. One of the martian meteorites dates back to this early period and may contain evidence consistent with life. The Mars environment 3.5 to 4.0 Gyr ago was comparable to that on the Earth at this time in that both contained liquid water. Life had originated on Earth and reached a fair degree of biological sophistication by 3.5 Gyr ago. To determine if life similarly arose on Mars may require extensive robotic exploration and ultimately human exploration. Intensive exploration of Mars will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research station can obtain its life support requirements directly from the martian environment enabling a high degree of self-sufficiency. In the longer term, it is possible that in the future we might restore a habitable climate on Mars, returning it to the life-bearing state it may have enjoyed early in its history.

  18. Facile hydrophobicity/hydrophilicity modification of SMP surface based on metal constrained cracking

    NASA Astrophysics Data System (ADS)

    Han, Yu; Li, Peng; Zhao, Liangyu; Wang, Wenxin; Leng, Jinsong; Jin, Peng

    2015-04-01

    This study demonstrates an easy way to change surface characteristics, the water contact angle on styrene based shape memory polymer (SMP) surface alters before and after cracking formation and recovery. The contact angle of water on the original SMP surface is about 85 degree, after coating with Al and then kneading from side face at glass transition temperature Tg, cracking appeared both on Al film and SMP; cooling down and removing the Al film, cracks remain on SMP surface while the contact angle reduced to about 25 degree. When reheated above Tg, the cracks disappeared, and the contact angle go back to about 85 degree. The thin Al film bonded on SMP surface was coated by spurting, that constrains the deformation of SMP. Heating above Tg, there are complex interactions between soft SMP and hard metal film under kneading. The thin metal film cracked first with the considerable deformation of soft polymer, whereafter, the polymer was ripped by the metal cracks thus polymer cracked as well. Cracks on SMP can be fixed cooling down Tg, while reheated, cracks shrinking and the SMP recovers to its original smooth surface. Surface topography changed dramatically while chemical composition showed no change during the deformation and recovery cycle, as presented by SEM and EDS. Furthermore, the wetting cycle is repeatable. This facile method can be easily extended to the hydropobicity/hydrophilicity modification of other stimuli-responsive polymers and put forward many potential applications, such as microfluidic switching and molecule capture and release.

  19. Hydrologic connectivity of geographically isolated wetlands to surface water systems

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Ameli, A.

    2016-12-01

    Hydrologic connectivity of wetlands is poorly characterized and understood. Our inability to quantify this connectivity compromises our understanding of the potential impacts of land use (e.g., wetland drainage) and climate changes on watershed structure, function and water supplies. We develop a computationally efficient physically-based subsurface-surface hydrological model to map both the subsurface and surface hydrologic connectivity of geographically isolated wetlands (i.e., wetlands without surface outlets) and explore the time and length variations in these connections to a river within the Prairie Pothole Region of North America. Despite a high density of geographically isolated wetlands, modeled connections show that these wetlands are not hydrologically isolated. Hydrologic subsurface connectivity differs significantly from surface connectivity in terms of timing and length of connections. Slow subsurface connections between wetlands and the downstream river originate from wetlands throughout the watershed, whereas fast surface connections were limited to large events and originate from wetlands located near the river. Results also suggest that prioritization of protection of wetlands that relies on shortest distance of wetland to the river or surface connections alone can lead to unintended consequences in terms of loss of attending wetland ecosystem functions, services and their benefits to society. This modeling approach provides first ever insight on the nature of geographically isolated wetland subsurface and surface hydrological connections to rivers, and can provide guidance on the development of watershed management and conservation plans (e.g., wetlands drainage/restoration) under different climate and land management scenarios.

  20. A new technique for surface and shallow subsurface paleobarometry using fluid inclusions: An example from the Upper Ordovician Viola Formation, Kansas, USA

    USGS Publications Warehouse

    Newell, K.D.; Goldstein, R.H.

    1999-01-01

    This research illustrates a new approach for paleobarometry employing heterogeneously entrapped fluid inclusions to determine timing and depth of diagenesis. Heterogeneously entrapped fluid inclusions (gas + water) in vug-filling quartz from the Upper Ordovician Viola Formation in the Midcontinent of the United States were analyzed for their internal pressure with a fluid-inclusion crushing stage. The free gas in fluid inclusions was entrapped at near-surface temperature, as indicated by the presence of all-liquid fluid inclusions and fluid inclusions with low homogenization temperatures ( <40??C). Crushing the crystal and measuring the change in bubble size determines the pressure of entrapment directly. Heterogeneous trapping is indicated by widely varying L:V ratios, from all-liquid to vapor-rich. Gas bubbles in most fluid inclusions analyzed expanded upon release to atmospheric pressure, but some collapsed. A mode of 1.5 to 2.0 atm internal pressure was indicated by the crushing runs, but pressures up to 42.9 atm were recorded. Quartz precipitation and associated fluid-inclusion entrapment therefore occurred over a wide depth-range, but principally at depths of approximately 10 m. Crushing runs done in kerosene confirmed the presence of hydrocarbon gases in most of these inclusions, and bulk analyses of gases in the quartz by quadrupole mass spectrometer revealed methane, ethane, and atmospheric gases. The hydrocarbon gases may have originated in deeper thermogenically mature sedimentary strata, and then leaked to the near-surface where they were entrapped in the precipitating quartz cement. Freezing data indicate an event of quartz precipitation from fluids of marine-fresh water intermediate salinity and other events of precipitation from more saline fluids. Considering the determined pressures, the precipitating fluids probably originated at surfaces of subaerial exposure (unconformities) and surfaces of evaporite precipitation in the overlying Silurian strata. Thus, saline inclusions most likely originated from sinking of saline surface waters during Silurian time. Lower-salinity fluids record fluxes of meteoric water during development of unconformities in the Silurian. This type of paleobarometric study may have application in many other sedimentary systems, provided low-temperature and heterogeneous entrapment of an immiscible gas phase can be demonstrated for the fluid-inclusion assemblages studied.

  1. Biofouling on polymeric heat exchanger surfaces with E. coli and native biofilms.

    PubMed

    Pohl, S; Madzgalla, M; Manz, W; Bart, H J

    2015-01-01

    The biofouling affinity of different polymeric surfaces (polypropylene, polysulfone, polyethylene terephthalate, and polyether ether ketone) in comparison to stainless steel (SS) was studied for the model bacterium Escherichia coli K12 DSM 498 and native biofilms originating from Rhine water. The biofilm mass deposited on the polymer surfaces was minimized by several magnitudes compared to SS. The cell count and the accumulated biomass of E. coli on the polymer surfaces showed an opposing linear trend. The promising low biofilm formation on the polymers is attributed to the combination of inherent surface properties (roughness, surface energy and hydrophobicity) when compared to SS. The fouling characteristics of E. coli biofilms show good conformity with the more complex native biofilms investigated. The results can be utilized for the development of new polymer heat exchangers when using untreated river water as coolant or for other processes needing antifouling materials.

  2. Origin of bending in uncoated microcantilever - Surface topography?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakshmoji, K.; Prabakar, K.; Tripura Sundari, S., E-mail: sundari@igcar.gov.in

    2014-01-27

    We provide direct experimental evidence to show that difference in surface topography on opposite sides of an uncoated microcantilever induces bending, upon exposure to water molecules. Examination on opposite sides of the microcantilever by atomic force microscopy reveals the presence of localized surface features on one side, which renders the induced stress non-uniform. Further, the root mean square inclination angle characterizing the surface topography shows a difference of 73° between the opposite sides. The absence of deflection in another uncoated microcantilever having similar surface topography confirms that in former microcantilever bending is indeed induced by differences in surface topography.

  3. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China.

    PubMed

    Zhang, Lifei; Dong, Liang; Ren, Lijun; Shi, Shuangxin; Zhou, Li; Zhang, Ting; Huang, Yeru

    2012-01-01

    The pollution from polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs) in the surface water of the rapidly urbanized Yangtze River Delta region was investigated. Fourteen surface water samples were collected in June 2010. Water samples were liquid-liquid extracted using methylene chloride and analyzed by gas chromatography-mass spectrometry. Concentrations of PAHs and PAEs ranged 12.9-638.1 ng/L and 61-28550 ng/L, respectively. Fluoranthene, naphthalene, pyrene, phenanthrene, di-2-ethylhexyl phthalate, and di-n-butyl phthalate were the most abundant compounds in the samples. The water samples were moderately polluted with benzo[a]pyrene according to China's environmental quality standard for surface water. The two highest concentrations of PAHs and PAEs occurred in samples from Taihu Lake, Wuxi City and the western section of Yangchenghu Lake. Potential sources of pollution at S7 were petroleum combustion and the plastics industry, and at Yangchenghu Lake were petroleum combustion and domestic waste. Pollution in samples from the Beijing-Hangzhou Grand Canal originated from diesel engines. There were no obvious sources of pollution for the other water samples. These results can be used as reference levels for future monitoring programs of pollution from PAHs and PAEs.

  4. Surface Electrochemical Modification of a Nickel Substrate to Prepare a NiFe-based Electrode for Water Oxidation.

    PubMed

    Guo, Dingyi; Qi, Jing; Zhang, Wei; Cao, Rui

    2017-01-20

    The slow kinetics of water oxidation greatly jeopardizes the efficiency of water electrolysis for H 2 production. Developing highly active water oxidation electrodes with affordable fabrication costs is thus of great importance. Herein, a Ni II Fe III surface species on Ni metal substrate was generated by electrochemical modification of Ni in a ferrous solution by a fast, simple, and cost-effective procedure. In the prepared Ni II Fe III catalyst film, Fe III was incorporated uniformly through controlled oxidation of Fe II cations on the electrode surface. The catalytically active Ni II originated from the Ni foam substrate, which ensured the close contact between the catalyst and the support toward improved charge-transfer efficiency. The as-prepared electrode exhibited high activity and long-term stability for electrocatalytic water oxidation. The overpotentials required to reach water oxidation current densities of 50, 100, and 500 mA cm -2 are 276, 290, and 329 mV, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 43 CFR 3836.23 - How do I petition for deferment of assessment work?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... nature of the land, including topography, vegetation, surface water, and existing roads, over which you... request a deferment must sign: (1) The petition you submit to BLM; and (2) The original notice you record...

  6. 43 CFR 3836.23 - How do I petition for deferment of assessment work?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... nature of the land, including topography, vegetation, surface water, and existing roads, over which you... request a deferment must sign: (1) The petition you submit to BLM; and (2) The original notice you record...

  7. 43 CFR 3836.23 - How do I petition for deferment of assessment work?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... nature of the land, including topography, vegetation, surface water, and existing roads, over which you... request a deferment must sign: (1) The petition you submit to BLM; and (2) The original notice you record...

  8. 43 CFR 3836.23 - How do I petition for deferment of assessment work?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... nature of the land, including topography, vegetation, surface water, and existing roads, over which you... request a deferment must sign: (1) The petition you submit to BLM; and (2) The original notice you record...

  9. Adsorption of water vapour and the specific surface area of arctic zone soils (Spitsbergen)

    NASA Astrophysics Data System (ADS)

    Cieśla, Jolanta; Sokołowska, Zofia; Witkowska-Walczak, Barbara; Skic, Kamil

    2018-01-01

    Water vapour/nitrogen adsorption were investigated and calculated the specific surface areas of arctic-zone soil samples (Turbic Cryosols) originating from different micro-relief forms (mud boils, cell forms and sorted circles) and from different depths. For the characterisation of the isotherms obtained for arctic soils, the Brunauer-Emmet-Teller model was then compared with the two other models (Aranovich-Donohue and Guggenheim-Anderson-de Boer) which were developed from Brunauer-Emmet-Teller. Specific surface area was calculated using the Brunauer-Emmet-Teller model at p p0-1 range of 0.05-0.35 for the water vapour desorption and nitrogen adsorption isotherms. The values of total specific surface area were the highest in Cryosols on mud boils, lower on cell forms, and the lowest on sorted circles. Such tendency was observed for the results obtained by both the water vapour and nitrogen adsorption. The differences in the values of specific surface area at two investigated layers were small. High determination coefficients were obtained for relationships between the specific surface areas and contents of clay and silt fraction in Cryosols. No statistically significant correlation between the total carbon amount and the values of specific surface area in Cryosols has been found.

  10. Nitrogen fixation on early Mars and other terrestrial planets: experimental demonstration of abiotic fixation reactions to nitrite and nitrate.

    PubMed

    Summers, David P; Khare, Bishun

    2007-04-01

    Understanding the abiotic fixation of nitrogen is critical to understanding planetary evolution and the potential origin of life on terrestrial planets. Nitrogen, an essential biochemical element, is certainly necessary for life as we know it to arise. The loss of atmospheric nitrogen can result in an incapacity to sustain liquid water and impact planetary habitability and hydrological processes that shape the surface. However, our current understanding of how such fixation may occur is almost entirely theoretical. This work experimentally examines the chemistry, in both gas and aqueous phases, that would occur from the formation of NO and CO by the shock heating of a model carbon dioxide/nitrogen atmosphere such as is currently thought to exist on early terrestrial planets. The results show that two pathways exist for the abiotic fixation of nitrogen from the atmosphere into the crust: one via HNO and another via NO(2). Fixation via HNO, which requires liquid water, could represent fixation on a planet with liquid water (and hence would also be a source of nitrogen for the origin of life). The pathway via NO(2) does not require liquid water and shows that fixation could occur even when liquid water has been lost from a planet's surface (for example, continuing to remove nitrogen through NO(2) reaction with ice, adsorbed water, etc.).

  11. Analysis of absorption and spreading of moisturizer on the microscopic region of the skin surface with near-infrared imaging.

    PubMed

    Arimoto, H; Yanai, M; Egawa, M

    2016-11-01

    Near-infrared (NIR) light with high water absorption enables us to visualize the water content distribution appeared in the superficial skin layer. The light penetration depth with the wavelength of 1920 nm is almost 100 μm from the skin surface. Thus, the water distribution in the stratum corneum can be effectively imaged by detecting the wavelength band around 1920 nm. The aim of this article was to measure the time-lapse behavior of the tiny droplet of the moisturizer spreading on the skin surface by imaging in 1920 nm wavelength band for investigating the correlation with the traditional index of the skin condition such as the water content and transepidermal water loss (TEWL). Experiment is performed with three moisturizer products and seven volunteer subjects. The NIR image is acquired by an originally designed imaging scope equipped with the white light of the strong brightness [super continuum (SC) light], the bandpass filter with the center wavelength of 1920 nm, and the NIR image sensor. A tiny droplet of the moisturizer is put on the surface of the skin and the time-lapse images are saved. Each acquired image is analyzed from a view point of the droplet area and elapsed time for absorption into the skin. The water content and TEWL of all subjects are measured by the conventional electrical method for investigating the relationship with the measured droplet dynamics parameters. Elapsed time for moisturizer droplet to be absorbed into the skin, the droplet area just before absorption for three moisturizer products, skin water contents, and TEWL for seven subjects were measured and correlation coefficients for each parameters were calculated. It was found that the skin with higher water contents or lower TEWL absorbed the moisturizer faster and spreads moisturizer wider. Also absorption and spreading speed depend on moisturizer property (moisturizing or fresh) which is originated from the moisturizer constituents. The correlation values between the moisturizer dynamics on the skin surface and the traditional index of the skin property were clarified. It was found that the skin with the high water content or low TEWL absorbs the moisturizer droplet fast. The spreading area depends not only on the skin property but on the constituents of the moisturizers. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. On the origin of saline soils at Blackspring Ridge, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Stein, Richard; Schwartz, Franklin W.

    1990-09-01

    Problems of soil salinity occur at Blackspring Ridge, Alberta, in four different settings. The most seriously affected area is at the base of the ridge where salinity appears as severe salt crusting on the surface, salt-tolerant vegetation, and areas of poor or no crop production. Blackspring Ridge is a structural bedrock high that is underlain by Upper Cretaceous sediment of the Horseshoe Canyon Formation. Bedrock is overlain by fluvial, glacial, lacustrine, and aeolian sediment. Piezometric data indicate that groundwater is recharged on and along the upper flanks of Blackspring Ridge and discharges in southern parts of a lacustrine plain that surrounds the ridge. Hydraulic conductivity data, water-level fluctuations, stable isotopes, and hydrochemical data indicate that the fractured near-surface bedrock and overlying thin-drift sediment constitute a zone of active groundwater flow within which salts are generated and transported. Water discharging from this shallow system evaporates and forms saline areas at the base of the ridge. The most seriously affected areas on the lacustrine plain coincide with places where the water table is less than 1.5m from the ground surface. A high water table occurs locally because of the changing topology of geologic units, and lows in the topographic surface that focus groundwater and surface water flows. Some proportion of the shallow groundwater salinized by evaporation is also transported down the flow system where it mixes with unevaporated water. Surface water, from snowmelt and precipitation events, dissolves salt that was deposited at the surface by evaporating groundwater and redistributes the salt to areas of lower elevation.

  13. Load-bearing ability of the mosquito tarsus on water surfaces arising from its flexibility

    NASA Astrophysics Data System (ADS)

    Kong, X. Q.; Liu, J. L.; Zhang, W. J.; Qu, Y. D.

    2015-03-01

    Mosquitoes possess a remarkable ability to stand effortlessly and walk freely on water surfaces because their six legs provide a large force to support the body weight. This study is focused on the role of the tarsus (the distal segment of the mosquito leg) because it was observed that normally only the tarsi make contact with water. The maximum value of the supporting force of the tarsus (6 mm long) in contact with water is estimated as 492 ± 5 μN, nearly 20 times the body weight of the mosquito, whereas the value for the whole leg (11 mm) is about 23 times the body weight. We demonstrate that the huge force provided by the tarsus originates from its flexibility, which ensures that the leg does not easily pierce the water. Adjustment of the initial stepping angle of the tarsus assists the mosquito to control the supporting force. These findings help to illustrate how mosquitoes stand or walk on water with only their tarsi in nearly horizontal contact with the water surface. Besides enhancing our understanding of mechanisms underlying "walking on water" by semi-aquatic insects, these investigations could provide inspiration for the biomimetic design of miniature robotics.

  14. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    A United Launch Alliance Atlas V rocket is reflected in the water as it rolls out of the Vertical Integration Facility on its way to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  15. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    NASA Astrophysics Data System (ADS)

    Yu, Liang; Rozemeijer, Joachim; van Breukelen, Boris M.; Ouboter, Maarten; van der Vlugt, Corné; Broers, Hans Peter

    2018-01-01

    The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN), total phosphorus (TP), NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban-agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs) in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of organic matter in subsurface sediments coupled to sulfate reduction and possibly methanogenesis. The large loads of nutrient-rich groundwater seepage into the deepest polders indirectly affect surface water quality in the surrounding area, because excess water from the deep polders is pumped out and used to supply water to the surrounding infiltrating polders in dry periods. The study shows the importance of the connection between groundwater and surface water nutrient chemistry in the greater Amsterdam area. We expect that taking account of groundwater-surface water interaction is also important in other subsiding and urbanising deltas around the world, where water is managed intensively in order to enable agricultural productivity and achieve water-sustainable cities.

  16. SELMA mission: revealing the origin of lunar water

    NASA Astrophysics Data System (ADS)

    Barabash, Stas; Selma Team

    2013-04-01

    We propose a very low cost lunar mission to cover a poorly investigated inter-disciplinary area in the lunar science. The mission SELMA (Surface, Environment, and Lunar Magnetic Anomalies) investigates the interaction of the neutral and plasma environment with the lunar surface and the impact of this interaction on the surface composition, in the first hand, on the presence of water. The mission focuses on the fundamental question: What is the origin of the water in the lunar soil? The mission also addresses the questions: What are the lunar exosphere content and composition and how does the exosphere interact with the surface? How do the lunar magnetic anomalies interact with the solar wind and affect the surface? SELMA investigates the origin of the water in the lunar soil via simultaneous measurements of the OH/H2O abundance in the soil, the proton flux deposited to the surface, and transient changes in the exospheric gas content and composition. The water content in the surface is mapped via measurements of the 2700 - 3300 nm OH/H2O/ice absorption lines. The proton flux at the surface is measured remotely via backscattered hydrogen flux (energetic neutral atoms, ENAs). The exospheric gas content and composition and possible transient changes due to micrometeoroid influx or outgassing are monitored by a neutral gas mass spectrometer. Little is known about the tenuous lunar exosphere, its composition, structure, and relation to the plasma environment. The reasons for the present poor knowledge of the lunar exosphere is the difficulty of observations due to the low number densities, and the complexity of models due to the multiplicity of the mechanisms responsible for the input and loss of exospheric species. To investigate the lunar exosphere SELMA is equipped with state-of-the-art time-of-flight neutral gas mass spectrometer with unprecedented sensitivity and mass resolution. The Moon does not have a global magnetic field but possesses local magnetizations. The magnetizations interact with the solar wind plasma creating highly variable mini-magnetospheres affecting, through an as yet unknown mechanism, the surface visible albedo. The electrodynamical interaction is very complex being one of the fundamental solar wind interactions in the solar system. SELMA studies how the magnetic anomaly interact with the solar wind and surface via simultaneous measurements of 3D ion and electron distribution functions, the local magnetic field, solar wind flux variations on the surface through ENA imaging of the backscattered hydrogen flux, imaging in the visible range, and measuring the surface IR spectrum. The SELMA results will be of critical importance for the interpretation of data from Mercury to be collected by the ESA BepiColombo mission in 2020 - 2022. To address its scientific objectives SELMA carries a highly focused suite of instruments including an IR spectrometer, an ENA telescope, an ion and electron spectrometer, a neutral gas mass spectrometer, a magnetometer, and a visible camera. SELMA is a spinning platform to be inserted on a low maintenance quasi-frozen polar orbit of 30 km x 216 km by a dedicated launch and a solid state fuel kick stage. SELMA was proposed to ESA as a candidate for the S-class mission.

  17. Diazotroph Diversity in the Sea Ice, Melt Ponds, and Surface Waters of the Eurasian Basin of the Central Arctic Ocean.

    PubMed

    Fernández-Méndez, Mar; Turk-Kubo, Kendra A; Buttigieg, Pier L; Rapp, Josephine Z; Krumpen, Thomas; Zehr, Jonathan P; Boetius, Antje

    2016-01-01

    The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing toward a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77°N. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed.

  18. Diazotroph Diversity in the Sea Ice, Melt Ponds, and Surface Waters of the Eurasian Basin of the Central Arctic Ocean

    PubMed Central

    Fernández-Méndez, Mar; Turk-Kubo, Kendra A.; Buttigieg, Pier L.; Rapp, Josephine Z.; Krumpen, Thomas; Zehr, Jonathan P.; Boetius, Antje

    2016-01-01

    The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing toward a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77°N. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed. PMID:27933047

  19. Biodegradation of hydrocarbon mixtures in surface waters at environmentally relevant levels - Effect of inoculum origin on kinetics and sequence of degradation.

    PubMed

    Birch, Heidi; Hammershøj, Rikke; Comber, Mike; Mayer, Philipp

    2017-10-01

    Biodegradation is a dominant removal process for many organic pollutants, and biodegradation tests serve as tools for assessing their environmental fate within regulatory risk assessment. In simulation tests, the inoculum is not standardized, varying in microbial quantity and quality, thereby potentially impacting the observed biodegradation kinetics. In this study we investigated the effect of inoculum origin on the biodegradation kinetics of hydrocarbons for five inocula from surface waters varying in urbanization and thus expected pre-exposure to petroleum hydrocarbons. A new biodegradation method for testing mixtures of hydrophobic chemicals at trace concentrations was demonstrated: Aqueous solutions containing 9 hydrocarbons were generated by passive dosing and diluted with surface water resulting in test systems containing native microorganisms exposed to test substances at ng-μg/L levels. Automated Headspace Solid Phase Microextraction coupled to GC-MS was applied directly to these test systems to determine substrate depletion relative to abiotic controls. Lag phases were generally less than 8 days. First order rate constants were within one order of magnitude for each hydrocarbon in four of the five waters but lower in water from a rural lake. The sequence of degradation between the 9 hydrocarbons showed similar patterns in the five waters indicating the potential for using selected hydrocarbons for benchmarking between biodegradation tests. Degradation half-times were shorter than or within one order of magnitude of BioHCwin predictions for 8 of 9 hydrocarbons. These results showed that location choice is important for biodegradation kinetics and can provide a relevant input to aquatic exposure and fate models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A Novel Strategy to Eliminate the Influence of Water Adsorption on Quartz Surfaces on Piezoelectric Dynamometers

    PubMed Central

    Jia, Zhenyuan; Jin, Lei; Liu, Wei; Ren, Zongjin

    2016-01-01

    Piezoelectric dynamometers are out of use in high humidity. Experimental results showed that piezoelectric coefficients measured by the force-induced charges method initially fluctuated in a small range and then was unstable, and they could not be measured at high relative humidity (RH). The traditional shielding method-insulation paste was not quiet convenient, and it even added the weight of piezoelectric dynamometers. In this paper, a novel strategy that eliminates the influence of water adsorption with quartz surfaces on piezoelectric dynamometers was proposed. First, a water-quartz model was developed to analyze the origin of the RH effect. In the model, water vapor, which was adsorbed by the quartz sheet side surface, was considered. Second, equivalent sheet resistor of the side surface was researched, while the relationship of the three R’s (Roughness, RH, and Resistor) was respectively discussed based on the adsorption mechanism. Finally, fluorination technology was skillfully adapted to each surface of quartz sheets to shield the water vapor. The experiment verified the fluorination strategy and made piezoelectric dynamometers work in high humidity up to 90%RH successfully. The results showed that the presented model above was reasonable. In addition, these observations also drew some useful insights to change the structure of piezoelectric dynamometers and improve the properties. PMID:27399719

  1. Intermolecular and interfacial forces: Elucidating molecular mechanisms using chemical force microscopy

    NASA Astrophysics Data System (ADS)

    Ashby, Paul David

    Investigation into the origin of forces dates to the early Greeks. Yet, only in recent decades have techniques for elucidating the molecular origin of forces been developed. Specifically, Chemical Force Microscopy uses the high precision and nanometer scale probe of Atomic Force Microscopy to measure molecular and interfacial interactions. This thesis presents the development of many novel Chemical Force Microscopy techniques for measuring equilibrium and time-dependant force profiles of molecular interactions, which led to a greater understanding of the origin of interfacial forces in solution. In chapter 2, Magnetic Feedback Chemical Force Microscopy stiffens the cantilever for measuring force profiles between self-assembled monolayer (SAM) surfaces. Hydroxyl and carboxyl terminated SAMs produce long-range interactions that extend one or three nanometers into the solvent, respectively. In chapter 3, an ultra low noise AFM is produced through multiple modifications to the optical deflection detection system and signal processing electronics. In chapter 4, Brownian Force Profile Reconstruction is developed for accurate measurement of steep attractive interactions. Molecular ordering is observed for OMCTS, 1-nonanol, and water near flat surfaces. The molecular ordering of the solvent produces structural or solvation forces, providing insight into the orientation and possible solidification of the confined solvent. Seven molecular layers of OMCTS are observed but the oil remains fluid to the last layer. 1-nonanol strongly orders near the surface and becomes quasi-crystalline with four layers. Water is oriented by the surface and symmetry requires two layers of water (3.7 A) to be removed simultaneously. In chapter 5, electronic control of the cantilever Q (Q-control) is used to obtain the highest imaging sensitivity. In chapter 6, Energy Dissipation Chemical Force Microscopy is developed to investigate the time dependence and dissipative characteristics of SAM interfacial interactions in solution. Long-range adhesive forces for hydroxyl and carboxyl terminated SAM surfaces arise from solvent, not ionic, interactions. Exclusion of the solvent and contact between the SAM surfaces leads to rearrangement of the SAM headgroups. The isolation of the chemical and physical interfacial properties from the topography by Energy Dissipation Chemical Force Microscopy produces a new quantitative high-sensitivity imaging mode.

  2. Global water cycle and the coevolution of the Earth's interior and surface environment.

    PubMed

    Korenaga, Jun; Planavsky, Noah J; Evans, David A D

    2017-05-28

    The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth's history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3-4.5×10 14  g yr -1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  3. Global water cycle and the coevolution of the Earth’s interior and surface environment

    PubMed Central

    Planavsky, Noah J.; Evans, David A. D.

    2017-01-01

    The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth’s history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3−4.5×1014 g yr−1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’. PMID:28416728

  4. Groundwater flow and hydrogeochemical evolution in the Jianghan Plain, central China

    NASA Astrophysics Data System (ADS)

    Gan, Yiqun; Zhao, Ke; Deng, Yamin; Liang, Xing; Ma, Teng; Wang, Yanxin

    2018-05-01

    Hydrogeochemical analysis and multivariate statistics were applied to identify flow patterns and major processes controlling the hydrogeochemistry of groundwater in the Jianghan Plain, which is located in central Yangtze River Basin (central China) and characterized by intensive surface-water/groundwater interaction. Although HCO3-Ca-(Mg) type water predominated in the study area, the 457 (21 surface water and 436 groundwater) samples were effectively classified into five clusters by hierarchical cluster analysis. The hydrochemical variations among these clusters were governed by three factors from factor analysis. Major components (e.g., Ca, Mg and HCO3) in surface water and groundwater originated from carbonate and silicate weathering (factor 1). Redox conditions (factor 2) influenced the geogenic Fe and As contamination in shallow confined groundwater. Anthropogenic activities (factor 3) primarily caused high levels of Cl and SO4 in surface water and phreatic groundwater. Furthermore, the factor score 1 of samples in the shallow confined aquifer gradually increased along the flow paths. This study demonstrates that enhanced information on hydrochemistry in complex groundwater flow systems, by multivariate statistical methods, improves the understanding of groundwater flow and hydrogeochemical evolution due to natural and anthropogenic impacts.

  5. Surface conditions of Nitinol wires, tubing, and as-cast alloys. The effect of chemical etching, aging in boiling water, and heat treatment.

    PubMed

    Shabalovskaya, S A; Anderegg, J; Laab, F; Thiel, P A; Rondelli, G

    2003-04-15

    The surface conditions of Nitinol wires and tubing were evaluated with the use of X-ray photoelectron spectroscopy, high-resolution Auger spectroscopy, electron backscattering, and scanning-electron microscopy. Samples were studied in the as-received state as well as after chemical etching, aging in boiling water, and heat treatment, and compared to a mechanically polished 600-grit-finish Nitinol surface treated similarly. General regularities in surface behavior induced by the examined surface treatments are similar for wires, tubing, and studied as-cast alloy, though certain differences in surface Ni concentration were observed. Nitinol wires and tubing from various suppliers demonstrated great variability in Ni surface concentration (0.5-15 at.%) and Ti/Ni ratio (0.4-35). The wires in the as-received state, with the exception of those with a black oxide originating in the processing procedure, revealed nickel and titanium on the surface in both elemental and oxidized states, indicating a nonpassive surface. Shape-setting heat treatment at 500 degrees C for 15 min resulted in tremendous increase in the surface Ni concentration and complete Ni oxidation. Preliminary chemical etching and boiling in water successfully prevented surface enrichment in Ni, initially resulting from heat treatment. A stoichiometric uniformly amorphous TiO(2) oxide generated during chemical etching and aging in boiling water was reconstructed at 700 degrees C, revealing rutile structure. Copyright 2003 Wiley Periodicals, Inc.

  6. ADSORPTION CHARACTERISTICS OF PERCHLORATE IN SOILS

    EPA Science Inventory

    Perchlorate(CI04) is an oxyanion that originates as a contaminant in ground and surface waters from the dissolution of ammonium, potassium, magnesium or sodium salts. Perchlorate is mainly used in solid rocket fuels, explosives, and military batteries. Because of its potential ha...

  7. Recalibration and predictive reliability of a solute-transport model of an irrigated stream-aquifer system

    USGS Publications Warehouse

    Person, M.; Konikow, Leonard F.

    1986-01-01

    A solute-transport model of an irrigated stream-aquifer system was recalibrated because of discrepancies between prior predictions of ground-water salinity trends during 1971-1982 and the observed outcome in February 1982. The original model was calibrated with a 1-year record of data collected during 1971-1972 in an 18-km reach of the Arkansas River Valley in southeastern Colorado. The model is improved by incorporating additional hydrologic processes (salt transport through the unsaturated zone) and through reexamination of the reliability of some input data (regression relationship used to estimate salinity from specific conductance data). Extended simulations using the recalibrated model are made to investigate the usefulness of the model for predicting long-term trends of salinity and water levels within the study area. Predicted ground-water levels during 1971-1982 are in good agreement with the observed, indicating that the original 1971-1972 study period was sufficient to calibrate the flow model. However, long-term simulations using the recalibrated model based on recycling the 1971-1972 data alone yield an average ground-water salinity for 1982 that is too low by about 10%. Simulations that incorporate observed surface-water salinity variations yield better results, in that the calculated average ground-water salinity for 1982 is within 3% of the observed value. Statistical analysis of temporal salinity variations of the applied surface water indicates that at least a 4-year sampling period is needed to accurately calibrate the transport model. ?? 1986.

  8. Sub-15 femtosecond laser-induced nanostructures emerging on Si(100) surfaces immersed in water: analysis of structural phases

    NASA Astrophysics Data System (ADS)

    Straub, M.; Schüle, M.; Afshar, M.; Feili, D.; Seidel, H.; König, K.

    2014-04-01

    Nanoscale periodic rifts and subwavelength ripples as well as randomly nanoporous surface structures were generated on Si(100) surfaces immersed in water by tightly focused high-repetition rate sub-15 femtosecond sub-nanojoule pulsed Ti:sapphire laser light. Subsequent to laser processing, silicon oxide nanoparticles, which originated from a reaction of ablated silicon with water and aggregated on the exposed areas, were etched off by hydrofluoric acid. The structural phases of the three types of silicon nanostructures were investigated by transmission electron microscopy diffraction images recorded on focused ion beam sections. On nanorift patterns, which were produced at radiant exposure extremely close to the ablation threshold, only the ideal Si-I phase at its original bulk orientation was observed. Electron diffraction micrographs of periodic ripples, which were generated at slightly higher radiant exposure, revealed a compression of Si-I in the vertical direction by 6 %, which is attributed to recoil pressure acting during ablation. However, transitions to the high-pressure phase Si-II, which implies compression in the same direction at pressures in excess of 10 GPa, to the metastable phases Si-III or Si-IV that arise from Si-II on pressure relief or to other high-pressure phases (Si-V-Si-XII) were not observed. The nanoporous surfaces featured Si-I material with grains of resolidified silicon occurring at lattice orientations different from the bulk. Characteristic orientational relationships as well as small-angle grain boundaries reflected the rapid crystal growth on the substrate.

  9. A miniature Marine Aerosol Reference Tank (miniMART) as a compact breaking wave analogue

    NASA Astrophysics Data System (ADS)

    Stokes, M. Dale; Deane, Grant; Collins, Douglas B.; Cappa, Christopher; Bertram, Timothy; Dommer, Abigail; Schill, Steven; Forestieri, Sara; Survilo, Mathew

    2016-09-01

    In order to understand the processes governing the production of marine aerosols, repeatable, controlled methods for their generation are required. A new system, the miniature Marine Aerosol Reference Tank (miniMART), has been designed after the success of the original MART system, to approximate a small oceanic spilling breaker by producing an evolving bubble plume and surface foam patch. The smaller tank utilizes an intermittently plunging jet of water produced by a rotating water wheel, into an approximately 6 L reservoir to simulate bubble plume and foam formation and generate aerosols. This system produces bubble plumes characteristic of small whitecaps without the large external pump inherent in the original MART design. Without the pump it is possible to easily culture delicate planktonic and microbial communities in the bulk water during experiments while continuously producing aerosols for study. However, due to the reduced volume and smaller plunging jet, the absolute numbers of particles generated are approximately an order of magnitude less than in the original MART design.

  10. New streams and springs after the 2014 Mw6.0 South Napa earthquake

    PubMed Central

    Wang, Chi-Yuen; Manga, Michael

    2015-01-01

    Many streams and springs, which were dry or nearly dry before the 2014 Mw6.0 South Napa earthquake, started to flow after the earthquake. A United States Geological Survey stream gauge also registered a coseismic increase in discharge. Public interest was heightened by a state of extreme drought in California. Since the new flows were not contaminated by pre-existing surface water, their composition allowed unambiguous identification of their origin. Following the earthquake we repeatedly surveyed the new flows, collecting data to test hypotheses about their origin. We show that the new flows originated from groundwater in nearby mountains released by the earthquake. The estimated total amount of new water is ∼106 m3, about 1/40 of the annual water use in the Napa–Sonoma area. Our model also makes a testable prediction of a post-seismic decrease of seismic velocity in the shallow crust of the affected region. PMID:26158898

  11. Analysis of Surface Water Pollution Accidents in China: Characteristics and Lessons for Risk Management

    NASA Astrophysics Data System (ADS)

    Yao, Hong; Zhang, Tongzhu; Liu, Bo; Lu, Feng; Fang, Shurong; You, Zhen

    2016-04-01

    Understanding historical accidents is important for accident prevention and risk mitigation; however, there are no public databases of pollution accidents in China, and no detailed information regarding such incidents is readily available. Thus, 653 representative cases of surface water pollution accidents in China were identified and described as a function of time, location, materials involved, origin, and causes. The severity and other features of the accidents, frequency and quantities of chemicals involved, frequency and number of people poisoned, frequency and number of people affected, frequency and time for which pollution lasted, and frequency and length of pollution zone were effectively used to value and estimate the accumulated probabilities. The probabilities of occurrences of various types based on origin and causes were also summarized based on these observations. The following conclusions can be drawn from these analyses: (1) There was a high proportion of accidents involving multi-district boundary regions and drinking water crises, indicating that more attention should be paid to environmental risk prevention and the mitigation of such incidents. (2) A high proportion of accidents originated from small-sized chemical plants, indicating that these types of enterprises should be considered during policy making. (3) The most common cause (49.8 % of the total) was intentional acts (illegal discharge); accordingly, efforts to increase environmental consciousness in China should be enhanced.

  12. Analysis of Surface Water Pollution Accidents in China: Characteristics and Lessons for Risk Management.

    PubMed

    Yao, Hong; Zhang, Tongzhu; Liu, Bo; Lu, Feng; Fang, Shurong; You, Zhen

    2016-04-01

    Understanding historical accidents is important for accident prevention and risk mitigation; however, there are no public databases of pollution accidents in China, and no detailed information regarding such incidents is readily available. Thus, 653 representative cases of surface water pollution accidents in China were identified and described as a function of time, location, materials involved, origin, and causes. The severity and other features of the accidents, frequency and quantities of chemicals involved, frequency and number of people poisoned, frequency and number of people affected, frequency and time for which pollution lasted, and frequency and length of pollution zone were effectively used to value and estimate the accumulated probabilities. The probabilities of occurrences of various types based on origin and causes were also summarized based on these observations. The following conclusions can be drawn from these analyses: (1) There was a high proportion of accidents involving multi-district boundary regions and drinking water crises, indicating that more attention should be paid to environmental risk prevention and the mitigation of such incidents. (2) A high proportion of accidents originated from small-sized chemical plants, indicating that these types of enterprises should be considered during policy making. (3) The most common cause (49.8% of the total) was intentional acts (illegal discharge); accordingly, efforts to increase environmental consciousness in China should be enhanced.

  13. [Hydrochemistry and Dissolved Inorganic Carbon Stable Isotope of Shibing Dolomite Karst Area in Guizhou Province].

    PubMed

    Xiao, Shi-zhen; Lan, Jia-cheng; Yuan, Dao-xian; Wang, Yun; Yang, Long; Ao, Xiang-hong

    2015-06-01

    Totally 49 water samples were collected in Shibing Dolomite Karst World Natural Heritage Site in Guizhou Province to analyze the characteristics and controlling factors of both the surface and underground waters, as well as the features and their origins of the dissolved inorganic carbon isotope. It was found that the pH of the study area was neutral to alkaline with low concentrations of total dissolved solids. The cations were dominated by Ca2+, Mg2 and anions by HCO3-, featured by HCO3-Ca x Mg type water. The ratios of Cl-, NO3- and SO4(2-) in the allogenic water from the shale area in the northern catchment were higher than those in autogenic water from the dolomite karst area, so did the concentration of Si. The SIc and SId of the allogenic waters in the shale area were negative. After the waters entered into and flew by the dolomite karst area, both the SIc and SId increased to over 0. It could be told by the water chemistry that the hydrochemistry was little impacted by the rainfall and human activities. The Gibbs plot revealed that the chemical composition of the waters was mainly controlled by rock weathering. The δ(13)C(DIC) of the surface waters ranged from -8.27% to -11.55% per hundred, averaging -9.45% per hundredo, while that of the underground waters ranged from -10.57% per hundred to -15.59% per hundred, averaging -12.04% per hundred, which was lighter than that of surface water. For the distribution features, it was found the δ(13)C(DIC), of the upper reaches of branches of Shangmuhe River was lighter than that of the lower reach, while that of the main river Shangmuhe River was relatively complex. Based on the mass balance of stable isotopes and the δ(13)C(DIC), the ratio of the origin of DIC of the ground water was calculated. It was found that 51.2% was from soil CO2, and 48.8% was from the rock itself.

  14. Identifying the hotspots of non-renewable water use using HiGW-MAT: A new land surface model coupled with human interventions and ground water reservoir

    NASA Astrophysics Data System (ADS)

    Oki, T.; Pokhrel, Y. N.; Yeh, P. J.; Koirala, S.; Kanae, S.; Hanasaki, N.

    2011-12-01

    The real hydrological cycles on the Earth are not natural anymore. Global hydrological model simulations of the water cycle and available water resources should have an ability to consider the effects of human interventions on hydrological cycles. Anthropogenic activity modules (Hanasaki et al., 2008), such as reservoir operation, crop growth and water demand in crop lands, and environmental flows, were incorporated into a land surface model called MATSIRO (Takata et al., 2003), to form a new model, MAT-HI (Pokhrel et al., 2011). Total terrestrial water storages (TWS) in large river basins were estimated using the new model by off-line simulation, and compared with the TWS observed by GRACE for 2002-2007. The results showed MAT-HI has an advantage estimating TWS particularly in arid river basins compared with H08 (Hanasaki et al., 2008). MAT-HI was further coupled with a module representing the ground water level fluctuations (Yeh et al., 2005), and consists a new land surface scheme HiGW-MAT (Human Intervention and Ground Water coupled MATSIRO). HiGW-MAT is also associated with a scheme tracing the origin and flow path with the consideration on the sources of water withdrawal from stream flow, medium-size reservoirs and nonrenewable groundwater in addition to precipitation to croplands enabled the assessment of the origin of water producing major crops as Hanasaki et al. (2010). Areas highly dependent on nonrenewable groundwater are detected in the Pakistan, Bangladesh, western part of India, north and western parts of China, some regions in the Arabian Peninsula and the western part of the United States through Mexico. Cumulative nonrenewable groundwater withdrawals estimated by the model are corresponding fairly well with the country statistics of total groundwater withdrawals. Ground water table depletions in large aquifers in US estimated by HiGW-MAT were compared with in-situ observational data, and the correspondences are very good. Mean global exploitation of ground water for 2000 estimated by HiGW-MAT is 450 km3/y as an excess of ground water withdrawal over natural recharge into aquifer.

  15. Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers

    USGS Publications Warehouse

    Stubbins, Aron; Hood, Eran; Raymond, Peter A.; Aiken, George R.; Sleighter, Rachel L.; Hernes, Peter J.; Butman, David; Hatcher, Patrick G.; Striegl, Robert G.; Schuster, Paul F.; Abdulla, Hussain A.N.; Vermilyea, Andrew W.; Scott, Durelle T.; Spencer, Robert G.M.

    2012-01-01

    Glacier-derived dissolved organic matter represents a quantitatively significant source of ancient, yet highly bioavailable carbon to downstream ecosystems. This finding runs counter to logical perceptions of age–reactivity relationships, in which the least reactive material withstands degradation the longest and is therefore the oldest. The remnants of ancient peatlands and forests overrun by glaciers have been invoked as the source of this organic matter. Here, we examine the radiocarbon age and chemical composition of dissolved organic matter in snow, glacier surface water, ice and glacier outflow samples from Alaska to determine the origin of the organic matter. Low levels of compounds derived from vascular plants indicate that the organic matter does not originate from forests or peatlands. Instead, we show that the organic matter on the surface of the glaciers is radiocarbon depleted, consistent with an anthropogenic aerosol source. Fluorescence spectrophotometry measurements reveal the presence of protein-like compounds of microbial or aerosol origin. In addition, ultrahigh-resolution mass spectrometry measurements document the presence of combustion products found in anthropogenic aerosols. Based on the presence of these compounds, we suggest that aerosols derived from fossil fuel burning are a source of pre-aged organic matter to glacier surfaces. Furthermore, we show that the molecular signature of the organic matter is conserved in snow, glacier water and outflow, suggesting that the anthropogenic carbon is exported relatively unchanged in glacier outflows.

  16. Some observations on the greenhouse effect at the Earth's surface.

    PubMed

    Akitt, J W

    2018-01-05

    It is shown that the greenhouse gases carbon dioxide and water vapour reflect back to the surface, all IR radiation originating at the surface within their respective spectral bands. This reflection occurs in a very thin layer at the surface, not much over 12cm in thickness. Heat is lost from the surface by heat exchange with the atmosphere and by loss of radiation. About 52% of radiation leaves the surface in two principal window regions but this is not enough to account for the earth's equilibrium temperature. This window radiation seems to disappear quite quickly and is replaced by black body radiation. It is this which eventually contributes to the earth's radiation balance, and has to originate approximately between 40 and 50km altitude where the temperature is about correct, near 255K. Doubling the CO 2 concentration increases the surface temperature by about 0.9°C and this need not have any influence higher up in the atmosphere. The surface temperature seems indeed to have no direct influence on the earth's external radiation balance. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Some observations on the greenhouse effect at the Earth's surface

    NASA Astrophysics Data System (ADS)

    Akitt, J. W.

    2018-01-01

    It is shown that the greenhouse gases carbon dioxide and water vapour reflect back to the surface, all IR radiation originating at the surface within their respective spectral bands. This reflection occurs in a very thin layer at the surface, not much over 12 cm in thickness. Heat is lost from the surface by heat exchange with the atmosphere and by loss of radiation. About 52% of radiation leaves the surface in two principal window regions but this is not enough to account for the earth's equilibrium temperature. This window radiation seems to disappear quite quickly and is replaced by black body radiation. It is this which eventually contributes to the earth's radiation balance, and has to originate approximately between 40 and 50 km altitude where the temperature is about correct, near 255 K. Doubling the CO2 concentration increases the surface temperature by about 0.9 °C and this need not have any influence higher up in the atmosphere. The surface temperature seems indeed to have no direct influence on the earth's external radiation balance.

  18. Large accumulation of micro-sized synthetic polymer particles in the sea surface microlayer.

    PubMed

    Song, Young Kyoung; Hong, Sang Hee; Jang, Mi; Kang, Jung-Hoon; Kwon, Oh Youn; Han, Gi Myung; Shim, Won Joon

    2014-08-19

    Determining the exact abundance of microplastics on the sea surface can be susceptible to the sampling method used. The sea surface microlayer (SML) can accumulate light plastic particles, but this has not yet been sampled. The abundance of microplastics in the SML was evaluated off the southern coast of Korea. The SML sampling method was then compared to bulk surface water filtering, a hand net (50 μm mesh), and a Manta trawl net (330 μm mesh). The mean abundances were in the order of SML water > hand net > bulk water > Manta trawl net. Fourier transform infrared spectroscopy (FTIR) identified that alkyds and poly(acrylate/styrene) accounted for 81 and 11%, respectively, of the total polymer content of the SML samples. These polymers originated from paints and the fiber-reinforced plastic (FRP) matrix used on ships. Synthetic polymers from ship coatings should be considered to be a source of microplastics. Selecting a suitable sampling method is crucial for evaluating microplastic pollution.

  19. The Role of Surface Water for the Branching Geometry of Mars' Channel Networks

    NASA Astrophysics Data System (ADS)

    Seybold, H. F.; Rothman, D.; Kirchner, J. W.

    2016-12-01

    The controversy over the origin of Mars' channel networks is almost as old as their discovery 150 years ago. In recent decades, new Mars probe missions have revealed detailed network structures, and new studies suggest that Mars once had an active hydrologic cycle. But how this water flowed and how it could have carved these huge channel networks remains unclear. A recent analysis of high-resolution data for the Continental United States suggests that climate leaves a characteristic imprint in the branching geometry of stream networks: arid regions dominated by overland or near-surface flows have much narrower branching angles than humid regions with greater groundwater recharge. Based on this result we analyze the channel networks of Mars, and find that their geometry resembles those created by near-surface and overland flows on Earth. This result gives additional support to the hypothesis that Mars once had a more active hydrologic cycle, with liquid water flowing over its surface.

  20. Rapid transport from the surface to wells in fractured rock: a unique infiltration tracer experiment.

    PubMed

    Levison, Jana K; Novakowski, Kent S

    2012-04-01

    A unique infiltration tracer experiment was performed whereby a fluorescent dye was applied to the land surface in an agricultural field, near Perth, Ontario, Canada, to simulate the transport of solutes to two pumped monitoring wells drilled into the granitic gneiss aquifer. This experiment, interpreted using the discrete-fracture capability of the numerical model HydroGeoSphere, showed that solute transport from the surface through thin soil (less than 2m) to wells in fractured bedrock can be extremely rapid (on the order of hours). Also, it was demonstrated that maximum concentrations of contaminants originating from the ground surface will not necessarily be the highest in the shallow aquifer horizon. These are important considerations for both private and government-owned drinking water systems that draw water from shallow fractured bedrock aquifers. This research illustrates the extreme importance of protecting drinking water at the source. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Localized sources of water vapour on the dwarf planet (1) Ceres.

    PubMed

    Küppers, Michael; O'Rourke, Laurence; Bockelée-Morvan, Dominique; Zakharov, Vladimir; Lee, Seungwon; von Allmen, Paul; Carry, Benoît; Teyssier, David; Marston, Anthony; Müller, Thomas; Crovisier, Jacques; Barucci, M Antonietta; Moreno, Raphael

    2014-01-23

    The 'snowline' conventionally divides Solar System objects into dry bodies, ranging out to the main asteroid belt, and icy bodies beyond the belt. Models suggest that some of the icy bodies may have migrated into the asteroid belt. Recent observations indicate the presence of water ice on the surface of some asteroids, with sublimation a potential reason for the dust activity observed on others. Hydrated minerals have been found on the surface of the largest object in the asteroid belt, the dwarf planet (1) Ceres, which is thought to be differentiated into a silicate core with an icy mantle. The presence of water vapour around Ceres was suggested by a marginal detection of the photodissociation product of water, hydroxyl (ref. 12), but could not be confirmed by later, more sensitive observations. Here we report the detection of water vapour around Ceres, with at least 10(26) molecules being produced per second, originating from localized sources that seem to be linked to mid-latitude regions on the surface. The water evaporation could be due to comet-like sublimation or to cryo-volcanism, in which volcanoes erupt volatiles such as water instead of molten rocks.

  2. Sea, ice and surface water circulation, Alaskan Continental Shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F. (Principal Investigator); Sharma, G. D.

    1972-01-01

    The author has identified the following significant results. Two cruises were conducted in Cook Inlet to obtain ground truth. Forty-seven stations during 22-23 August and 68 stations during 25-29 September 1972 were occupied and temperature, salinity, percent light transmission, and suspended load of surface waters obtained. Similar data at various depths was also obtained at selected stations. Cook Inlet is an estuary with complex mixing of river discharges and ocean water. The Upper Cook Inlet shows a gradual and systematic decrease in salinity, however, west of Kenai the mixing of waters is complex. The sediments in suspension originating at the head of the inlet generally settle out east of Kenai and Drift River. Sediment load in suspension decreased gradually from 1700 mg/1 near Anchorage to about 50 mg/1 in the Narrows. In the Lower Cook Inlet the suspended load varied between 1-10 mg/1. Surface waters with sediments in suspension and ocean water with relatively lower sediment concentration are clearly discernible in ERTS-1 images obtained during September 18, 1972 pass over Cook Inlet. The movement and mixing of these waters can also be delineated in the images.

  3. Multi-Terrain Impact Testing and Simulation of a Composite Energy Absorbing Fuselage Section

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Sparks, Chad E.; Sareen, Ashish K.

    2007-01-01

    Comparisons of the impact performance of a 5-ft diameter crashworthy composite fuselage section were investigated for hard surface, soft soil, and water impacts. The fuselage concept, which was originally designed for impacts onto a hard surface only, consisted of a stiff upper cabin, load bearing floor, and an energy absorbing subfloor. Vertical drop tests were performed at 25-ft/s onto concrete, soft-soil, and water at NASA Langley Research Center. Comparisons of the peak acceleration values, pulse durations, and onset rates were evaluated for each test at specific locations on the fuselage. In addition to comparisons of the experimental results, dynamic finite element models were developed to simulate each impact condition. Once validated, these models can be used to evaluate the dynamic behavior of subfloor components for improved crash protection for hard surface, soft soil, and water impacts.

  4. Multi-Terrain Impact Testing and Simulation of a Composite Energy Absorbing Fuselage Section

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Lyle, Karen H.; Sparks, Chad E.; Sareen, Ashish K.

    2004-01-01

    Comparisons of the impact performance of a 5-ft diameter crashworthy composite fuselage section were investigated for hard surface, soft soil, and water impacts. The fuselage concept, which was originally designed for impacts onto a hard surface only, consisted of a stiff upper cabin, load bearing floor, and an energy absorbing subfloor. Vertical drop tests were performed at 25-ft/s onto concrete, soft-soil, and water at NASA Langley Research Center. Comparisons of the peak acceleration values, pulse durations, and onset rates were evaluated for each test at specific locations on the fuselage. In addition to comparisons of the experimental results, dynamic finite element models were developed to simulate each impact condition. Once validated, these models can be used to evaluate the dynamic behavior of subfloor components for improved crash protection for hard surface, soft soil, and water impacts.

  5. Simulating the evolution of non-point source pollutants in a shallow water environment.

    PubMed

    Yan, Min; Kahawita, Rene

    2007-03-01

    Non-point source pollution originating from surface applied chemicals in either liquid or solid form as part of agricultural activities, appears in the surface runoff caused by rainfall. The infiltration and transport of these pollutants has a significant impact on subsurface and riverine water quality. The present paper describes the development of a unified 2-D mathematical model incorporating individual models for infiltration, adsorption, solubility rate, advection and diffusion, which significantly improve the current practice on mathematical modeling of pollutant evolution in shallow water. The governing equations have been solved numerically using cubic spline integration. Experiments were conducted at the Hydrodynamics Laboratory of the Ecole Polytechnique de Montreal to validate the mathematical model. Good correspondence between the computed results and experimental data has been obtained. The model may be used to predict the ultimate fate of surface applied chemicals by evaluating the proportions that are dissolved, infiltrated into the subsurface or are washed off.

  6. ARC-1979-A79-7092

    NASA Image and Video Library

    1979-07-09

    Range : 241,000km (150,600 mi.). This black and white image of Europa, smallest of Jupiter's four Galilean satellites, was acquired by Voyager 2. Europa, the brightest of the Galiliean satellites, has a density slightly less than Io, suggesting it has a substantial quantity of water. Scientists previously speculated that the water must have cooled from the interior and formed a mantle of ice perhaps 100 km thick. The complex patterns on its surface suggest that the icy surface was fractured, and that the cracks filled with dark material from below. Very few impact craters are visible on the surface, suggesting that active processes on the surface are still modifying Europa. The tectonic pattern seen on its surface differs drastically from the fault systems seen on Ganymede where pieces of the crust have moved relative to each other. On Europa, the crust evidently fractures but the pieces remain in roughly their original position.

  7. Polycyclic Aromatic Hydrocarbon Distribution and Modification in the Sub-surface Plume Near the Deepwater Horizon Wellhead

    NASA Astrophysics Data System (ADS)

    Shiller, A. M.; Joung, D.; Wade, T.

    2011-12-01

    A significant concern associated with oil spills is the toxicity associated with the polycyclic aromatic hydrocarbon (PAH) component. Ratios of various PAH's have also been used as indicators of oil sources. During a late May/early June cruise, 57 samples for PAH analysis were collected in the vicinity of the Deepwater Horizon wellhead. Most samples were from the previously reported sub-surface oil plume, centered near 1100 m depth. PAH concentrations ranged up to 117 μg/L and rapidly diminished in the subsurface with distance from the wellhead. The Macondo well oil was observed to be rich in naphthalenes. Within a few km of the wellhead, the percentage of methyl-naphthalenes in the sub-surface plume was generally higher than in the source, suggesting preferential solubilization of this low molecular weight fraction. However, the percentage rapidly decreased away from the well also suggesting rapid destruction or removal of the naphthalenes. The pyrogenic index (Wang et al.) was <0.05 for all samples, indicating a petroleum origin. For a few samples, some other PAH ratios (e.g., MP/P and P/A ratios) suggested a combustion origin. However, these ratios also tended to vary both with percent methyl-naphthalenes and distance from the wellhead, suggesting anomalous ratios originating from solubilization/degradation effects. We also obtained a more limited set of surface water samples, generally avoiding the most contaminated areas as well as areas of oil burning. For these surface water samples, similar trends were observed as at depth, probably resulting from selective volatilization and photo-degradation. Overall, the data illustrate how environmental factors lead both to reduced concentrations and fractionation of the PAH's.

  8. An Improved Algorithm for Retrieving Surface Downwelling Longwave Radiation from Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Yaping; Kratz, David P.; Wilber, Anne C.; Gupta, Shashi K.; Cess, Robert D.

    2007-01-01

    Zhou and Cess [2001] developed an algorithm for retrieving surface downwelling longwave radiation (SDLW) based upon detailed studies using radiative transfer model calculations and surface radiometric measurements. Their algorithm linked clear sky SDLW with surface upwelling longwave flux and column precipitable water vapor. For cloudy sky cases, they used cloud liquid water path as an additional parameter to account for the effects of clouds. Despite the simplicity of their algorithm, it performed very well for most geographical regions except for those regions where the atmospheric conditions near the surface tend to be extremely cold and dry. Systematic errors were also found for scenes that were covered with ice clouds. An improved version of the algorithm prevents the large errors in the SDLW at low water vapor amounts by taking into account that under such conditions the SDLW and water vapor amount are nearly linear in their relationship. The new algorithm also utilizes cloud fraction and cloud liquid and ice water paths available from the Cloud and the Earth's Radiant Energy System (CERES) single scanner footprint (SSF) product to separately compute the clear and cloudy portions of the fluxes. The new algorithm has been validated against surface measurements at 29 stations around the globe for Terra and Aqua satellites. The results show significant improvement over the original version. The revised Zhou-Cess algorithm is also slightly better or comparable to more sophisticated algorithms currently implemented in the CERES processing and will be incorporated as one of the CERES empirical surface radiation algorithms.

  9. Delineation of bank filtrate and groundwater flux for drinking water production using multivariate statistics and a combined tracer approach

    NASA Astrophysics Data System (ADS)

    Bichler, Andrea; Muellegger, Christian; Hofmann, Thilo

    2013-04-01

    In shallow or unconfined aquifers infiltration of contaminated river might be a major threat for ground water quality. Thus, the identification of hydrological pathways in coupled surface- and groundwater systems and specifically the delineation of areas influenced by bank filtrate are of paramount importance to ensure water quality. Tracers have the potential to elucidate both, sources and flow patterns, and are widely applied in hydrological flow. Besides conventional tracers (Cl-, SO42-, stable water isotopes δ18O, δ2H, etc.) only recently another class of tracers in hydrologic systems are emerging: trace contaminants as waste water markers. Compounds, such as artificial sweeteners, might enter the aquatic environment via discharge of waste water treatment plants and are ubiquitously found in sewage water receiving waters. While the occurrence of waste water in aquatic systems can be confirmed by the detection of artificial sweeteners, it is still unknown whether those compounds are also suitable for the quantitative assessment of waste water and surface water in groundwater systems. The hereby presented field study aims at the identification of infiltration areas and the quantitative assessment of river bank filtrate using conventional tracers and artificial sweeteners as waste water markers. The investigated aquifer system is located in an alpine head water catchment, it consists of quaternary gravel deposits (kfmax 5 x 10-2 ms-1, vmax 250 md-1) and is used for drinking water production. It is hypothesized that a large proportion of the groundwater flux originates from bank filtrate of a nearby losing stream. During a sampling campaign in July 2012 water samples were collected from the entire aquatic system (2 springs, 3 surface and 40 groundwater samples). The in-situ parameters, major ions, stable water isotopes δ18O/δ2H and artificial sweeteners (acesulfame ACE, sucralose SUC, saccharin SAC and cyclamate CYC) were measured. The water samples were classified according to their hydrochemical and isotopic composition with hierarchical clustering (Ward, 1963), identifying two predominant types of water in the aquifer: (1) groundwater influenced by bank filtrate and (2) groundwater originating from recharge. The mixing proportions of river water and spring water, representing bank filtrate and groundwater recharge, respectively, were determined by end member mixing analysis. The results show a contribution of more than 70% surface water in type (1) and less than 50% in type (2). The occurrence of ACE throughout the aquifer confirmed the influence of river water, however, it was not possible to obtain quantitative estimates due to the high variability of ACE concentrations in the river water.

  10. Wastewater indicator compounds in wastewater effluent, surface water, and bed sediment in the St. Croix National Scenic Riverway and implications for water resources and aquatic biota, Minnesota and Wisconsin, 2007-08

    USGS Publications Warehouse

    Tomasek, Abigail A.; Lee, Kathy E.; Hansen, Donald S.

    2012-01-01

    The results of this study indicate that aquatic biota in the St. Croix River are exposed to a wide variety of organic contaminants that originate from diverse sources including WWTP effluent. The data on wastewater indicator compounds indicate that exposures are temporally and spatially variable and that OWCs may accumulate in bed sediment. These results also indicate that OWCs in water and bed sediment increase downstream from discharges of wastewater effluent to the St. Croix River; however, the presence of OWCs in surface water and bed sediment at the Sunrise site indicates that potential sources of compounds, such as WWTPs or other sources, are upstream from the Taylors Falls-St. Croix Falls area.

  11. Spatial variability of surface-sediment porewater pH and related water-column characteristics in deep waters of the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Shao, Changgao; Sui, Yi; Tang, Danling; Legendre, Louis

    2016-12-01

    This study analyzes the pH of surface-sediment porewater (i.e. 2-3 cm below the water-sediment interface), and concentrations of CaCO3 and organic carbon (OC) in 1192 sediment cores from the northern South China Sea, in water depths ranging from 137 to 3702 m. This is the first study in the literature to analyze the large-scale spatial variability of deep-water surface-sediment pH over a large ocean basin. The data showed strong spatial variations in pH. The lowest pH values (<7.3) were observed south of Hainan Island, an area that is affected by summer upwelling and freshwater runoff from the Pearl and Red Rivers. Moderately low pH values (generally 7.3-7.5) occurred in two other areas: a submarine canyon, where sediments originated partly from the Pearl River and correspond to a paleo-delta front during the last glacial period; and southwest of Taiwan Island, where waters are affected by the northern branch of the Kuroshio intrusion current (KIC) and runoff from Taiwan rivers. The surface sediments with the highest pH (⩾7.5, and up to 8.3) were located in a fourth area, which corresponded to the western branch of the KIC where sediments have been intensively eroded by bottom currents. The pH of surface-sediment porewater was significantly linearly related to water depth, bottom-water temperature, and CaCO3 concentration (p < 0.05 for the whole sampling area). This study shows that the pH of surface-sediment porewater can be sensitive to characteristics of the overlying water column, and suggests that it will respond to global warming as changes in surface-ocean temperature and pH progressively reach deeper waters.

  12. On the molecular origins of biomass recalcitrance: the interaction network and solvation structures of cellulose microfibrils.

    PubMed

    Gross, Adam S; Chu, Jhih-Wei

    2010-10-28

    Biomass recalcitrance is a fundamental bottleneck to producing fuels from renewable sources. To understand its molecular origin, we characterize the interaction network and solvation structures of cellulose microfibrils via all-atom molecular dynamics simulations. The network is divided into three components: intrachain, interchain, and intersheet interactions. Analysis of their spatial dependence and interaction energetics indicate that intersheet interactions are the most robust and strongest component and do not display a noticeable dependence on solvent exposure. Conversely, the strength of surface-exposed intrachain and interchain hydrogen bonds is significantly reduced. Comparing the interaction networks of I(β) and I(α) cellulose also shows that the number of intersheet interactions is a clear descriptor that distinguishes the two allomorphs and is consistent with the observation that I(β) is the more stable form. These results highlight the dominant role of the often-overlooked intersheet interactions in giving rise to biomass recalcitrance. We also analyze the solvation structures around the surfaces of microfibrils and show that the structural and chemical features at cellulose surfaces constrict water molecules into specific density profiles and pair correlation functions. Calculations of water density and compressibility in the hydration shell show noticeable but not drastic differences. Therefore, specific solvation structures are more prominent signatures of different surfaces.

  13. Effect of Coadsorbed Water on the Photodecomposition of Acetone on TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.

    2008-06-10

    The influence of coadsorbed water on the photodecomposition of acetone on TiO2 was examined using temperature programmed desorption (TPD) and the rutile TiO2(110) surface as a model photocatalyst. Of the two major influences ascribed to water in the heterogeneous photocatalysis literature (promotion via OH radical supply and inhibition due to site blocking), only the negative influence of water was observed. As long as the total water and acetone coverage was maintained well below the first layer saturation coverage (‘1 ML’), little inhibition of acetone photodecomposition was observed. However, as the total water+acetone coverage exceeded 1 ML, acetone was preferentially displacedmore » from the first layer to physisorbed states by water and the extent of acetone photodecomposition attenuated. The displacement originated from water compressing acetone into high coverage regions where increased acetone-acetone repulsions caused displacement from the first layer. The immediate product of acetone photodecomposition was adsorbed acetate, which occupies twice as many surface sites per molecule as compared to acetone. Since the acetate intermediate was more stable on the TiO2(110) surface than either water or acetone (as gauged by TPD) and since its photodecomposition rate was less than that of acetone, additional surface sites were not opened up during acetone photodecomposition for previously displaced acetone molecules to re-enter the first layer. Results in this study suggest that increased molecular-level repulsions between organic molecules brought about by increased water coverage are as influential in the inhibiting effect of water on photooxidation rates as are water-organic repulsions.« less

  14. Perfluorinated alkylated acids in groundwater and drinking water: identification, origin and mobility.

    PubMed

    Eschauzier, Christian; Raat, Klaasjan J; Stuyfzand, Pieter J; De Voogt, Pim

    2013-08-01

    Human exposure to perfluorinated alkylated acids (PFAA) occurs primarily via the dietary intake and drinking water can contribute significantly to the overall PFAA intake. Drinking water is produced from surface water and groundwater. Waste water treatment plants have been identified as the main source for PFAA in surface waters and corresponding drinking water. However, even though groundwater is an important source for drinking water production, PFAA sources remain largely uncertain. In this paper, we identified different direct and indirect sources of PFAA to groundwater within the catchment area of a public supply well field (PSWF) in The Netherlands. Direct sources were landfill leachate and water draining from a nearby military base/urban area. Indirect sources were infiltrated rainwater. Maximum concentrations encountered in groundwater within the landfill leachate plume were 1.8 μg/L of non branched perfluorooctanoic acid (L-PFOA) and 1.2 μg/L of perfluorobutanoic acid (PFBA). Sum concentrations amounted to 4.4 μg/L total PFAA. The maximum concentration of ΣPFAA in the groundwater originating from the military camp was around 17 ng/L. Maximum concentrations measured in the groundwater halfway the landfill and the PWSF (15 years travel distance) were 29 and 160 ng/L for L-PFOA and PFBA, respectively. Concentrations in the groundwater pumping wells (travel distance >25 years) were much lower: 0.96 and 3.5 ng/L for L-PFOA and PFBA, respectively. The chemical signature of these pumping wells corresponded to the signature encountered in other wells sampled which were fed by water that had not been in contact with potential contaminant sources, suggesting a widespread diffuse contamination from atmospheric deposition. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Geochemical tracing of As pollution in the Orbiel Valley (southern France): 87Sr/86Sr as a tracer of the anthropogenic arsenic in surface and groundwater.

    NASA Astrophysics Data System (ADS)

    Khaska, Mahmoud; Le Gal La Salle, Corinnne; Lancelot, Joël; Verdoux, Patrick; Boutin, René

    2014-05-01

    The environmental impacts of arsenic mining activities and their effects on ecosystem and human health are observed in many stream waters and groundwater. The aim of this study is to identify the origin of As content in a mining environment using Sr isotopes. At the Salsigne gold mine, before the closure in 2004, high arsenic content has been observed in surface water and groundwater in the Orbiel valley. At the site, immobilization of As, in As rich leachate, is carried out by adding CaO. High contrast in 87Sr/86Sr between Arsenic rich minerals associated with Variscan metamorphic rocks (0.714888-0.718835), together with rich As waste water (0.713463-715477), and the CaO (0.707593) allows as to trace the origin of anthropogenic As. In 2012, Orbiel stream waters were sampled monthly upstream and downstream from the ancient ore processing site and once after an important rainy event (117mm). The upstream valley samples showed low and relatively constant As content with natural regional background of 3.6 and 5.6 μg/L. The rainy event induced only a slight increase in the As content up to 6.3 μg/L. High 87Sr/86Sr ratios suggested an influence of radiogenic Sr issued from the Variscan metamorphic basement. Downstream from the area, the As content was at least10 time as high. In the wet season, stream water As content clearly increased to 13.9-24 μg/L, reaching 120.5 μg/L during the rainy event. Associated 87Sr/86Sr ratio showed to be less radiogenic (0.712276-0.714002). The anti correlation observed between As and 87Sr/86Sr suggest that As issued from a natural origin is characterised by a high 87Sr/86Sr compared to As derived from the CaO treatement used on site and characterized by a low 87Sr/86Sr ratio. During the dry season, increase in As content was observed reaching 110 μg/L. These highlights the contribution of alluvial groundwater to base flow, probably associated with As reach leachate from the site. Contribution from the alluvial aquifer is confirmed by results from redox potential (Eh) measurements in both surface and groundwater. Hence, 87Sr/86Sr appears as an excellent tracer of the origin of pollution associated with CaO treatment widely used in many water treatment processes.

  16. Liquid-Infused Smooth Surface for Improved Condensation Heat Transfer.

    PubMed

    Tsuchiya, Hirotaka; Tenjimbayashi, Mizuki; Moriya, Takeo; Yoshikawa, Ryohei; Sasaki, Kaichi; Togasawa, Ryo; Yamazaki, Taku; Manabe, Kengo; Shiratori, Seimei

    2017-09-12

    Control of vapor condensation properties is a promising approach to manage a crucial part of energy infrastructure conditions. Heat transfer by vapor condensation on superhydrophobic coatings has garnered attention, because dropwise condensation on superhydrophobic surfaces with rough structures leads to favorable heat-transfer performance. However, pinned condensed water droplets within the rough structure and a high thermodynamic energy barrier for nucleation of superhydrophobic surfaces limit their heat-transfer increase. Recently, slippery liquid-infused surfaces (SLIPS) have been investigated, because of their high water sliding ability and surface smoothness originating from the liquid layer. However, even on SLIPS, condensed water droplets are eventually pinned to degrade their heat-transfer properties after extended use, because the rough base layer is exposed as infused liquid is lost. Herein, we report a liquid-infused smooth surface named "SPLASH" (surface with π electron interaction liquid adsorption, smoothness, and hydrophobicity) to overcome the problems derived from the rough structures in previous approaches to obtain stable, high heat-transfer performance. The SPLASH displayed a maximum condensation heat-transfer coefficient that was 175% higher than that of an uncoated substrate. The SPLASH also showed higher heat-transfer performance and more stable dropwise condensation than superhydrophobic surfaces and SLIPS from the viewpoints of condensed water droplet mobility and the thermodynamic energy barrier for nucleation. The effects of liquid-infused surface roughness and liquid viscosity on condensation heat transfer were investigated to compare heat-transfer performance. This research will aid industrial applications using vapor condensation.

  17. DIN retention-transport through four hydrologically connected zones in a headwater catchment of the Upper Mississippi River

    USGS Publications Warehouse

    Triska, F.J.; Duff, J.H.; Sheibley, R.W.; Jackman, A.P.; Avanzino, R.J.

    2007-01-01

    Dissolved inorganic nitrogen (DIN) retention-transport through a headwater catchment was synthesized from studies encompassing four distinct hydrologic zones of the Shingobee River Headwaters near the origin of the Mississippi River. The hydrologic zones included: (1) hillslope ground water (ridge to bankside riparian); (2) alluvial riparian ground water; (3) ground water discharged through subchannel sediments (hyporheic zone); and (4) channel surface water. During subsurface hillslope transport through Zone 1, DIN, primarily nitrate, decreased from ???3 mg-N/l to <0.1 mg-N/l. Ambient seasonal nitrate:chloride ratios in hillslope flow paths indicated both dilution and biotic processing caused nitrate loss. Biologically available organic carbon controlled biotic nitrate retention during hillslope transport. In the alluvial riparian zone (Zone 2) biologically available organic carbon controlled nitrate depletion although processing of both ambient and amended nitrate was faster during the summer than winter. In the hyporheic zone (Zone 3) and stream surface water (Zone 4) DIN retention was primarily controlled by temperature. Perfusion core studies using hyporheic sediment indicated sufficient organic carbon in bed sediments to retain ground water DIN via coupled nitrification-denitrification. Numerical simulations of seasonal hyporheic sediment nitrification-denitrification rates from perfusion cores adequately predicted surface water ammonium but not nitrate when compared to 5 years of monthly field data (1989-93). Mass balance studies in stream surface water indicated proportionally higher summer than winter N retention. Watershed DIN retention was effective during summer under the current land use of intermittently grazed pasture. However, more intensive land use such as row crop agriculture would decrease nitrate retention efficiency and increase loads to surface water. Understanding DIN retention capacity throughout the system, including special channel features such as sloughs, wetlands and floodplains that provide surface water-ground water connectivity, will be required to develop effective nitrate management strategies. ?? 2007 American Water Resources Association.

  18. Hydrology of Park County, Wyoming, exclusive of Yellowstone National Park

    USGS Publications Warehouse

    Lowry, M.E.; Smalley, M.L.; Mora, K.L.; Stockdale, R.G.; Martin, M.W.

    1993-01-01

    The climate of Park County, Wyoming, ranges from desert to alpine tundra. Average annual precipitation ranges from 6 to 40 inches. Ground water is present throughout most of the county, but supplies adequate for stock or domestic use are not readily available in areas of greatest need. The chemical quality of most of the water sampled was of suitable quality for livestock, but most of the water was not suitable for drinking, and the water from bedrock aquifers generally was not suitable for irrigation. Unconsolidated deposits are a principal source of ground water in the county. However, ground water is found in deposits topographically higher than stream level only where surface water has been applied for irrigation; those unconsolidated deposits beneath areas that are not irrigated, such as Polecat Bench, are dry. The conversion of irrigated land to urban development poses problems in some areas because yields of water-supply wells will be adversely affected by reduced recharge. The trend toward urban development also increases the risk of contamination of the ground water by septic tanks, petroleum products, and toxic and hazardous wastes. Perennial streams originate in the mountains and in areas where drainage from irrigated land is adequate to sustain flow. The average annual runoff from streams originating in the mountains is as large as 598 acre-feet per square mile, and the average annual runoff from streams originating in badlands and plains is as low as 14.8 acre-feet per square mile.

  19. Modeling the Surface Water-Groundwater Interaction in Arid and Semi-Arid Regions Impacted by Agricultural Activities

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Wu, B.; Zheng, Y.

    2013-12-01

    In many semi-arid and arid regions, interaction between surface water and groundwater plays an important role in the eco-hydrological system. The interaction is often complicated by agricultural activities such as surface water diversion, groundwater pumping, and irrigation. In existing surface water-groundwater integrated models, simulation of the interaction is often simplified, which could introduce significant simulation uncertainty under certain circumstance. In this study, GSFLOW, a USGS model coupling PRMS and MODFLOW, was improved to better characterize the surface water-groundwater interaction. The practices of water diversion from rivers, groundwater pumping and irrigation are explicitly simulated. In addition, the original kinematic wave routing method was replaced by a dynamic wave routing method. The improved model was then applied in Zhangye Basin (the midstream part of Heihe River Baisn), China, where the famous 'Silk Road' came through. It is a typical semi-arid region of the western China, with extensive agriculture in its oasis. The model was established and calibrated using the data in 2000-2008. A series of numerical experiments were conducted to evaluate the effect of those improvements. It has been demonstrated that with the improvements, the observed streamflow and groundwater level were better reproduced by the model. The improvements have a significant impact on the simulation of multiple fluxes associated with the interaction, such as groundwater discharge, riverbed seepage, infiltration, etc. Human activities were proved to be key elements of the water cycle in the study area. The study results have important implications to the water resources modeling and management in semi-arid and arid basins.

  20. Understanding sources of contaminants of emerging concern in a mixed use watershed

    USDA-ARS?s Scientific Manuscript database

    Contaminants of emerging concern (CECs) have been detected in surface waters worldwide and include biologically active compounds originating from agricultural, residential, and industrial sources that may result in potential ecological and health effects. The objectives of this research were to dete...

  1. A new capture fraction method to map how pumpage affects surface water flow

    USGS Publications Warehouse

    Leake, S.A.; Reeves, H.W.; Dickinson, J.E.

    2010-01-01

    All groundwater pumped is balanced by removal of water somewhere, initially from storage in the aquifer and later from capture in the form of increase in recharge and decrease in discharge. Capture that results in a loss of water in streams, rivers, and wetlands now is a concern in many parts of the United States. Hydrologists commonly use analytical and numerical approaches to study temporal variations in sources of water to wells for select points of interest. Much can be learned about coupled surface/groundwater systems, however, by looking at the spatial distribution of theoretical capture for select times of interest. Development of maps of capture requires (1) a reasonably well-constructed transient or steady state model of an aquifer with head-dependent flow boundaries representing surface water features or evapotranspiration and (2) an automated procedure to run the model repeatedly and extract results, each time with a well in a different location. This paper presents new methods for simulating and mapping capture using three-dimensional groundwater flow models and presents examples from Arizona, Oregon, and Michigan. Journal compilation ?? 2010 National Ground Water Association. No claim to original US government works.

  2. Leaf physico-chemical and physiological properties of maize (Zea mays L.) populations from different origins.

    PubMed

    Revilla, Pedro; Fernández, Victoria; Álvarez-Iglesias, Lorena; Medina, Eva T; Cavero, José

    2016-10-01

    In this study we evaluated the leaf surface properties of maize populations native to different water availability environments. Leaf surface topography, wettability and gas exchange performance of five maize populations from the Sahara desert, dry (south) and humid (north-western) areas of Spain were analysed. Differences in wettability, stomatal and trichome densities, surface free energy and solubility parameter values were recorded between populations and leaf sides. Leaves from the humid Spanish population with special regard to the abaxial side, were less wettable and less susceptible to polar interactions. The higher wettability and hydrophilicity of Sahara populations with emphasis on the abaxial leaf surfaces, may favour dew deposition and foliar water absorption, hence improving water use efficiency under extremely dry conditions. Compared to the other Saharan populations, the dwarf one had a higher photosynthesis rate suggesting that dwarfism may be a strategy for improving plant tolerance to arid conditions. The results obtained for different maize populations suggest that leaf surfaces may vary in response to drought, but further studies will be required to examine the potential relationship between leaf surface properties and plant stress tolerance. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Femtosecond laser-induced surface wettability modification of polystyrene surface

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Wang, XinCai; Zheng, HongYu; Lam, YeeCheong

    2016-12-01

    In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene's surface can be modified to either 12.7° or 156.2° from its original WCA of 88.2°. With properly spaced micro-pits created, the surface became hydrophilic probably due to the spread of the water droplets into the micro-pits. While with properly spaced micro-grooves created, the surface became rough and more hydrophobic. We investigated the effect of laser parameters on WCAs and analyzed the laser-treated surface roughness, profiles and chemical bonds by surface profilometer, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). For the laser-treated surface with low roughness, the polar (such as C—O, C=O, and O—C=O bonds) and non-polar (such as C—C or C—H bonds) groups were found to be responsible for the wettability changes. While for a rough surface, the surface roughness or the surface topography structure played a more significant role in the changes of the surface WCA. The mechanisms involved in the laser surface wettability modification process were discussed.

  4. Hydrologic and chemical data for wells, springs, and streams in Nevada, TPS. 1-21 N., and Rs. 41-57 E

    USGS Publications Warehouse

    Robinson, B.P.; Thordarson, William; Beetam, W.A.

    1967-01-01

    Studies of published and unpublished geologic, hydrologic, and chemical-quality data for ground and surface water in central Nevada, Tps. 1 to 21 N. and Rs. 41 to 57 E., Mount Diablo base and meridian, reveal the following information: Rocks exposed in central Nevada are of sedimentary and igneous origin and range in age from Cambrian to Recent. Rocks of Paleozoic age generally are carbonate or clastic, and rocks of Mesozoic age generally are clastic and granitic. Rocks of Tertiary age principally are volcanic, and the valley fill of Quaternary age is alluvial-fan and lake deposits. The rocks are folded, faulted, and highly fractured. Precipitation is closely related to altitude. In general, as the altitude increases the precipitation increases. Most of the streamflow in the valleys originates as snow in the nearby mountains. The streams generally flow only in response to snowmelt and to flash-flood-producing storms. Important chemical quality characteristics of the ground and surface water in central Nevada are hardness, expressed as CaCO3, generally in excess of 120 ppm, and a dissolved-solids content of less than 500 ppm. The principal chemical types of both ground and surface waters are sodium and calcium bicarbonates. The major uses of ground water in central Nevada are for irrigation and stock. Frequency of use of wells in decreasing order is: irrigation, stock, domestic, industrial, municipal, and observation. Of the 606 wells tabulated, 29 have multiple uses. Frequency of use of spring water in decreasing order is: stock, irrigation, domestic, and public facilities. Of the 135 springs tabulated, 5 have multiple uses.

  5. The origin of high-nitrate ground waters in the Australian arid zone

    NASA Astrophysics Data System (ADS)

    Barnes, C. J.; Jacobson, G.; Smith, G. D.

    1992-08-01

    Nitrate concentrations beyond the drinking-water limit of 10 mg1 -1 NO 3-N, are common in Australian arid-zone ground waters and are often associated with otherwise potable waters. In some aquifers nitrate-N concentrations of up to 80 mg1 -1 have been found, and this is a severe constraint on water supply development for small settlements. Water-bore data indicate a correlation of high-nitrate ground waters with shallow unconfined aquifers. Aguifer hydrochemistry indicats that these ground waters were emplaced by episodic Holocene recharge events in an otherwise arid climate regime. Nitrate has been flushed through the unsaturated zone which apparently lacks denitrification activity. The nitrate originates by near-surface biological fixation and contributing organisms include cyanobacteria in soil crusts and bacteria in termite mounds with the highest soil nitrate concentrations found in the outer skin of termite mounds. Bacteria associated with the termites appear to fix nitrogen, which eventually appears in an inorganic form, principally as ammonia. Nitrate is produced by bacterial oxidation of the ammonia, and is leached to the outside of the termite mound by capillary action. Diffuse recharge from extreme rainfall events then flushes this nitrate to the water table.

  6. The Mineralogy of Martian Dust: Design and Analysis Considerations for an X-Ray Diffraction/X-Ray Fluorescence (XRD/XRF) Instrument for Exobiological Studies

    NASA Technical Reports Server (NTRS)

    Blake, David; Vaniman, David; Bish, David; Morrison, David (Technical Monitor)

    1994-01-01

    A principal objective of Mars exploration is the search for evidence of past life which may have existed during an earlier clement period of Mars history. We would like to investigate the history of surface water activity (which is a requirement for all known forms of life) by identifying and documenting the distribution of minerals which require water for their formation or distribution. A knowledge of the mineralogy of the present Martian surface would help to identify areas which, due to the early activity of water, might have harbored ancient life. It would be desirable to establish the presence and characterize the distribution of hydrated minerals such as clays, and of minerals which are primarily of sedimentary origin such as carbonates, silica and evaporites. Mineralogy, which is more critical to exobiological exploration than is simple chemical analysis (absent the detection of organics), will remain unknown or will at best be imprecisely constrained unless a technique sensitive to mineral structure such as powder X-ray diffraction (XRD) is employed. Additional information is contained in the original extended abstract.

  7. Origin of the improved photocatalytic activity of Cu incorporated TiO2 for hydrogen generation from water

    NASA Astrophysics Data System (ADS)

    Hu, Qianqian; Huang, Jiquan; Li, Guojing; Jiang, Yabin; Lan, Hai; Guo, Wang; Cao, Yongge

    2016-09-01

    Cu incorporated TiO2 has been regarded as a low-cost photocatalyst with excellent photocatalytic performance for water splitting. Here we try to exploit the origin of its high reactivity by fabricating a series of Cu incorporated TiO2 films with the same Cu content under different atmosphere. Based on the comprehensive structure and surface characterizations, it is found that CuO is unstable and will be reduced to Cu2O or even to metallic Cu under light irradiation during the photocatalytic reaction, and Cu2O is an efficient co-catalyst that promotes the separation of photogenerated carriers while metallic Cu can further boost the photocatalytic activity. Besides, it is also noticed that the chemisorbed oxygen on the particle surface blocks the water splitting. By depositing TiO2 films under oxygen rich condition, oxygen vacancy is decreased greatly, which facilitates the removal of chemisorbed oxygen and the formation of metallic Cu during photocatalytic reaction, resulting in an ultra-high H2 evolution rate of 2.80 μmol cm-2 h-1, which is about 55 times higher than that of pure TiO2.

  8. Isotopic analysis for degradation diagnosis of calcite matrix in mortar.

    PubMed

    Dotsika, E; Psomiadis, D; Poutoukis, D; Raco, B; Gamaletsos, P

    2009-12-01

    Mortar that was used in building as well as in conservation and restoration works of wall paintings have been analysed isotopically (delta(13)C and delta(18)O) in order to evaluate the setting environments and secondary processes, to distinguish the structural components used and to determine the exact causes that incurred the degradation phenomena. The material undergoes weathering and decay on a large proportion of its surface and in depth, due to the infiltration of water through the structural blocks. Mineralogical analysis indicated signs of sulphation and dissolution/recrystallisation processes taking place on the material, whereas stable isotopes provided information relative to the origin of the CO(2) and water during calcite formation and degradation processes. Isotopic change of the initial delta(13)C and delta(18)O in carbonate matrix was caused by alteration of the primary source of CO(2) and H(2)O in mortar over time, particularly by recrystallisation of calcite with porewater, evaporated or re-condensed water, and CO(2) from various sources of atmospheric and biogenic origin. Human influence (surface treatment) and biological growth (e.g. fungus) are major exogenic processes which may alter delta(18)O and delta(13)C in lime mortar.

  9. Algae metabolism and organic carbon in sediments determining arsenic mobilisation in ground- and surface water. A field study in Doñana National Park, Spain.

    PubMed

    Kohfahl, Claus; Navarro, Daniel Sánchez-Rodas; Mendoza, Jorge Armando; Vadillo, Iñaki; Giménez-Forcada, Elena

    2016-02-15

    A study has been performed to explore the origin, spatiotemporal behaviour and mobilisation mechanism of the elevated arsenic (As) concentrations found in ground water and drinking ponds of the Doñana National Park, Southern Spain. At a larger scale, 13 piezometers and surface water samples of about 50 artificial drinking ponds and freshwater lagoons throughout the National Park were collected and analysed for major ions, metals and trace elements. At a smaller scale, 5 locations were equipped with piezometers and groundwater was sampled up to 4 times for ambient parameters, major ions, metals, trace elements and iron (Fe) speciation. As was analysed for inorganic and organic speciation. Undisturbed sediment samples were analysed for physical parameters, mineralogy, geochemistry as well as As species. Sediment analyses yielded total As between 0.1 and 18 mg/kg and are not correlated with As concentration in water. Results of the surface- and groundwater sampling revealed elevated concentration of As up to 302 μg/L within a restricted area of the National Park. Results of groundwater sampling reveals strong correlation of As with Fe(2+) pointing to As mobilisation due to reductive dissolution of hydroferric oxides (HFO) in areas of locally elevated amounts of organic matter within the sediments. High As concentrations in surface water ponds are correlated with elevated alkalinity and pH attributed to algae metabolism, leading to As desorption from HFO. The algae metabolism is responsible for the presence of methylated arsenic species in surface water, in contrast to ground water in which only inorganic As species was found. Temporal variations in surface water and groundwater are also related to changes in pH and alkalinity as a result of enhanced algae metabolism in surface water or related to changes in the redox level in the case of groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards

    PubMed Central

    Comanns, Philipp; Effertz, Christian; Hischen, Florian; Staudt, Konrad; Böhme, Wolfgang

    2011-01-01

    Summary Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus), the Arabian toadhead agama (Phrynocephalus arabicus) and the Texas horned lizard (Phrynosoma cornutum). All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive – and for Phrynosoma directed – transport of water. PMID:21977432

  11. Röthlisberger channel theory: its origins and consequences

    USGS Publications Warehouse

    Walder, Joseph S.

    2010-01-01

    The theory of channelized water flow through glaciers, most commonly associated with the names of Hans Röthlisberger and Ron Shreve and their 1972 papers in the Journal of Glaciology, was developed at a time when interest in glacier-bed processes was expanding, and the possible relationship between glacier sliding and water at the bed was becoming of keen interest. The R-channel theory provided for the first time a physically based conceptual model of water flow through glaciers. The theory also marks the emergence of glacier hydrology as a glaciological discipline with goals and methods distinct from those of surface-water hydrology.

  12. A hybrid finite-difference and analytic element groundwater model

    USGS Publications Warehouse

    Haitjema, Henk M.; Feinstein, Daniel T.; Hunt, Randall J.; Gusyev, Maksym

    2010-01-01

    Regional finite-difference models tend to have large cell sizes, often on the order of 1–2 km on a side. Although the regional flow patterns in deeper formations may be adequately represented by such a model, the intricate surface water and groundwater interactions in the shallower layers are not. Several stream reaches and nearby wells may occur in a single cell, precluding any meaningful modeling of the surface water and groundwater interactions between the individual features. We propose to replace the upper MODFLOW layer or layers, in which the surface water and groundwater interactions occur, by an analytic element model (GFLOW) that does not employ a model grid; instead, it represents wells and surface waters directly by the use of point-sinks and line-sinks. For many practical cases it suffices to provide GFLOW with the vertical leakage rates calculated in the original coarse MODFLOW model in order to obtain a good representation of surface water and groundwater interactions. However, when the combined transmissivities in the deeper (MODFLOW) layers dominate, the accuracy of the GFLOW solution diminishes. For those cases, an iterative coupling procedure, whereby the leakages between the GFLOW and MODFLOW model are updated, appreciably improves the overall solution, albeit at considerable computational cost. The coupled GFLOW–MODFLOW model is applicable to relatively large areas, in many cases to the entire model domain, thus forming an attractive alternative to local grid refinement or inset models.

  13. High contact angle hysteresis of superhydrophobic surfaces: Hydrophobic defects

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Ming; Hong, Siang-Jie; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2009-08-01

    A typical superhydrophobic surface is essentially nonadhesive and exhibits very low water contact angle (CA) hysteresis, so-called Lotus effect. However, leaves of some plants such as scallion and garlic with an advancing angle exceeding 150° show very serious CA hysteresis. Although surface roughness and epicuticular wax can explain the very high advancing CA, our analysis indicates that the unusual hydrophobic defect, diallyl disulfide, is the key element responsible for contact line pinning on allium leaves. After smearing diallyl disulfide on an extended polytetrafluoroethylene (PTFE) film, which is originally absent of CA hysteresis, the surface remains superhydrophobic but becomes highly adhesive.

  14. Solvothermal synthesis of nanoporous polymer chalk for painting superhydrophobic surfaces.

    PubMed

    Zhang, Yong-Lai; Wang, Jian-Nan; He, Yan; He, Yinyan; Xu, Bin-Bin; Wei, Shu; Xiao, Feng-Shou

    2011-10-18

    Reported here is a facile synthesis of nanoporous polymer chalk for painting superhydrophobic surfaces. Taking this nanoporous polymer as a media, superhydrophobicity is rapidly imparted onto three typical kinds of substrates, including paper, transparent polydimethylsiloxane (PDMS), and finger skin. Quantitative characterization showed that the adhesion between the water droplet and polymer-coated substrates decreased significantly compared to that on the original surface, further indicating the effective wetting mode transformation. The nanoporous polymer coating would open a new door for facile, rapid, safe, and larger scale fabrication of superhydrophobic surfaces on general substrates. © 2011 American Chemical Society

  15. The geochemical characteristics of soil water and epikarst springs and their response to vegetation-soil degradation in a karst area

    NASA Astrophysics Data System (ADS)

    Xiao, D. A.; Xu, H.

    2012-04-01

    Samples of soil waters and epi-karst springs in four vegetation types were collected at Maolan nature reserve in Libo county, which including protogenetic arbors, secondary arbor-shrub, shrubs and shrub-grass, to analyze their hydro-geochemical properties and the variations of nutrient elements, and further to illustrate the intrinsic correlations of vegetation, soil, environment changes and their geochemical information. The conclusions have been concluded as follows: (1) The pH of soil waters in the study area varies between 5.32 and 7.93, with a mean value of 6.78, and the conductivity changes between 31.82 and 353.65 μS/cm, with a mean value of 126.19 μS/cm. Both descend as the vegetation degrades. The hydro-chemistry of soil waters are Ca- HCO3-, and their ions mainly consist of Ca2+, Mg2+, HCO3-, SO42-. Ca2+, Mg2+, HCO3-are very sensitive to vegetations degradation. Ion contents are high in rain seasons and low in dry ones. (2) The pH of surface karst springs in the study area vary between 6.7 and 8.42, with a mean value of 7.65, and the conductivity between 125.6 and 452 μS/cm, with a mean value of 288.09 μS/cm. The hydro-chemistry of surface karst springs are Ca- HCO3-. HCO3-and SO42-are the main anions while Ca2+and Mg2+as main cations. The chemical properties and geochemical process of surface springs are mainly controlled by the solubility equilibrium of carbonate rocks, thus not sensitive to vegetation degradations. (3) All the calcite saturation indices of soil waters in four vegetation types are below 0, while most indices of surface karst springs are above 0, demonstrating greater denudation of soil waters than surface karst springs. As soil waters flow to surface springs, the partial pressure of CO2decreases, the denudation of water lessens, and saturation index, Ca2+, HCO3-, consequently, pH and conductivity increase. (4) Inorganic nitrogen in soil waters exist mainly as N-NO3- and N-NH4+, accounting ~ 95% of the 3 Ns. As vegetation degrades, nitrate nitrogen, organic nitrogen and total nitrogen change in follow way, protogenetic arbors > secondary arbor-shrub, shrubs > shrub-grass, but the differences among all vegetation types are not prominent. Ammonia nitrogen, however, changes otherwise as follows: shrubs, shrub-grass > protogenetic arbors, secondary arbor-shrub. In surface springs, few inorganic nitrogen exists as NO2--N ( 2 μg/L on average ), and most exists as NO3-N ( 215 μg/L on average ), and NH4+-N is 185μg/L on average. In general, NH4+-N, NO3--N and TN formations in the four vegetation types are: protogenetic arbors > secondary arbor-shrub > shrubs > shrub-grass. (5) DOC content in soil waters vary between 1.88 and 10.37 mg/L, with an average 4.8 mg/L. DOC content in surface karst springs changes between 0.39 and 9.98 mg/L, with an average 2.25 mg/L. DOCs in soil waters are greater than those in surface karst springs in all four vegetation types, and have sharp differences ( P≤0.01 ). DOCs in soil waters and surface karst springs share a great relationship and a similar change tendency, which well illustrates a main source of surface springs from soil waters. In both of them, DOCs are larger in original vegetations than in degraded vegetations. This is because the soil-vegetation system is stable in an original ecology environment which free from outside disturbs. By contrast, a degraded system is unstable, weak at beating disturbs, and conserves less but loses more. Key words: soil waters, epi-karst springs, hydro-geochemical, vegetation, karst area, Maolan in Guizhou

  16. Effects of surface coal mining and reclamation on ground water in small watersheds in the Allegheny Plateau, Ohio

    USGS Publications Warehouse

    Eberle, Michael; Razem, A.C.

    1985-01-01

    The hydrologic effects of surface coal mining in unlimited areas is difficult to predict, partly because of a lack of adequate data collected before and after mining and reclamation. In order to help provide data to assess the effects of surface mining on the hydrology of small basins in the coal fields of the eastern United States, the U.S. Bureau of Mines sponsored a comprehensive hydrologic study at three sites in the Ohio part of the Eastern Coal Province. These sites are within the unqlaciated part of the Allegheny Plateau, and are representative of similar coal-producing areas in Kentucky, West Virginia, and Pennsylvania. The U.S. Geological Survey was responsible for the ground-water phase of the study. The aquifer system at each watershed consisted of two localized perched aquifers (top and middle) above a deeper, more regional aquifer. The premining top aquifer was destroyed by mining in each case, and was replaced by spoils during reclamation. The spoils formed new top aquifers that were slowly becoming resaturated at the end of the study period. Water levels in the aquifers were about the same after reclamation as before mining, although levels rose in a few places. It appears that the underclay at the base of the new top aquifers at all three sites prevents significant downward leakage from the top aquifers to lower except in places where the layer may have been damaged during mining. Water in the top aquifers is a calcium sulfate type, whereas calcium bicarbonate type water predominated before mining. The median specific conductance of water in the new top aquifers was about 5 times greater than that of the original top aquifers in two of the watersheds, and 1 1/2 times the level of the original top aquifers in the third. Concentrations of dissolved sulfate, iron, and manganese in the top aquifers before mining generally did not exceed U.S. and Ohio Environmental Protection Agency drinking-water limits, but generally exceeded these limits after reclamation. Water-quality changes in the middle aquifers were minor by comparison. Water levels and water quality in the deeper, regional aquifers were unaffected by mining.

  17. An Isopycnal Box Model with predictive deep-ocean structure for biogeochemical cycling applications

    NASA Astrophysics Data System (ADS)

    Goodwin, Philip

    2012-07-01

    To simulate global ocean biogeochemical tracer budgets a model must accurately determine both the volume and surface origins of each water-mass. Water-mass volumes are dynamically linked to the ocean circulation in General Circulation Models, but at the cost of high computational load. In computationally efficient Box Models the water-mass volumes are simply prescribed and do not vary when the circulation transport rates or water mass densities are perturbed. A new computationally efficient Isopycnal Box Model is presented in which the sub-surface box volumes are internally calculated from the prescribed circulation using a diffusive conceptual model of the thermocline, in which upwelling of cold dense water is balanced by a downward diffusion of heat. The volumes of the sub-surface boxes are set so that the density stratification satisfies an assumed link between diapycnal diffusivity, κd, and buoyancy frequency, N: κd = c/(Nα), where c and α are user prescribed parameters. In contrast to conventional Box Models, the volumes of the sub-surface ocean boxes in the Isopycnal Box Model are dynamically linked to circulation, and automatically respond to circulation perturbations. This dynamical link allows an important facet of ocean biogeochemical cycling to be simulated in a highly computationally efficient model framework.

  18. Linking optical properties of dissolved organic matter to multiple processes at the coastal plume zone in the East China Sea.

    PubMed

    Jiang, Yulin; Zhao, Jianfu; Li, Penghui; Huang, Qinghui

    2016-10-12

    Because of the significance in photosynthesis, nutrient dynamics, trophodynamics and biological activity, dissolved organic matter (DOM) is important to the microbial community in the coastal plume zone. In this study, we investigated the hydrodynamic processes, photodegradation and biodegradation of DOM at the Yangtze River plume in the East China Sea through analyzing water quality and optical properties of DOM. Surface water samples were collected to examine water quality and fluorescence properties of fluorescent dissolved organic matter (FDOM). The results indicated that dilution was the key factor in the multiple processes, and the mixing process gradually increased from nearshore to offshore in coastal water. Four components of FDOM representing humic-like substances (C1 & C4) and protein-like substances (C2 & C3) were identified, and all components showed nearly conservative behaviors. Protein-like substances were more mutable compared to humic-like substances. The photodegradation of humic-like substances caused brown algae blooms to some extent. The molecular weight of humic substances gradually decreased along the mixing process. FDOM in the plume zone was both of terrigenous and autochthonous origins, and the characteristic of terrigenous origin was obvious compared to that of autochthonous origin.

  19. Functional wettability in carbonate reservoirs

    DOE PAGES

    Brady, Patrick V.; Thyne, Geoffrey

    2016-10-11

    Oil adsorbs to carbonate reservoirs indirectly through a relatively thick separating water layer, and directly to the surface through a relatively thin intervening water layer. Whereas directly sorbed oil desorbs slowly and incompletely in response to changes in reservoir conditions, indirectly sorbed oil can be rapidly desorbed by changing the chemistry of the separating water layer. The additional recovery might be as much as 30% original oil in place (OOIP) above the ~30% OOIP recovered from carbonates through reservoir depressurization (primary production) and viscous displacement (waterflooding). Electrostatic adhesive forces are the dominant control over carbonate reservoir wettability. A surface complexationmore » model that quantifies electrostatic adhesion accurately predicts oil recovery trends for carbonates. Furthermore, the approach should therefore be useful for estimating initial wettability and designing fluids that improve oil recovery.« less

  20. Sealing is at the origin of rubber slipping on wet roads.

    PubMed

    Persson, B N J; Tartaglino, U; Albohr, O; Tosatti, E

    2004-12-01

    Loss of braking power and rubber skidding on a wet road is still an open physics problem, as neither the hydrodynamic effects nor the loss of surface adhesion that are sometimes blamed really manage to explain the 20-30% observed loss of low-speed tyre-road friction. Here we report a novel mechanism based on sealing of water-filled substrate pools by the rubber. The sealed-in water effectively smoothens the substrate, thus reducing the viscoelastic dissipation in bulk rubber induced by surface asperities-well established as a major friction contribution. Starting with the measured spectrum of asperities one can calculate the water-smoothened spectrum and from that the predicted friction reduction, which is of the correct magnitude. The theory is directly supported by fresh tyre-asphalt friction data.

  1. Sealing is at the origin of rubber slipping on wet roads

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.; Tartaglino, U.; Albohr, O.; Tosatti, E.

    2004-12-01

    Loss of braking power and rubber skidding on a wet road is still an open physics problem, as neither the hydrodynamic effects nor the loss of surface adhesion that are sometimes blamed really manage to explain the 20-30% observed loss of low-speed tyre-road friction. Here we report a novel mechanism based on sealing of water-filled substrate pools by the rubber. The sealed-in water effectively smoothens the substrate, thus reducing the viscoelastic dissipation in bulk rubber induced by surface asperities-well established as a major friction contribution. Starting with the measured spectrum of asperities one can calculate the water-smoothened spectrum and from that the predicted friction reduction, which is of the correct magnitude. The theory is directly supported by fresh tyre-asphalt friction data.

  2. Distribution of mountain wetlands and their response to Holocene climate change in the Hachimantai Volcanic Groups, northeastern Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, N.; Sugai, T.

    2017-12-01

    Mountain wetlands, natural peatlands or lakes, with narrow catchment areas need abundant water supply and topography retaining water because of unstable water condition. This study examines wetland distribution with a focus on topography and snow accumulation, and discuss wetland evolution responding to Holocene climate change in the Hachimantai Volcanic Group, northeastern Japan, where the East Asian winter monsoon brings heavier snow and where has many wetlands of varied origin: crater lakes and wetlands in nivation hollows on original volcanic surfaces, and wetlands in depressions formed by landslides. We identified and classified wetlands using aerial photographs and 5-m and 10-m digital elevation models. Wetlands on the original volcanic surfaces tend to be concentrated under the small scarps with much snow or on saddles of the mountain ridge where snowmelt from surrounding slopes maintains a moist environment. More lake type wetlands are formed in the saddle than in the snowdrifts. That may represent that the saddles can correct more recharge water and may be a more suitable topographic condition for wetland formation and endurance. On the contrary, wetlands on landslides lie at the foot of the scarps where spring water can be abundantly supplied, regardless of snow accumulation. We used lithological analysis, 14C dating, tephra age data, and carbon contents of wetland cores to compare the evolution of wetlands, one (the Oyachi wetland) within a huge landslide and three (the Appi Highland wetlands) outside of a landslide area. We suggest that the evolution of the wetland in the landslide is primarily influenced by landslide movements and stream dissection rather than climate change. In the Appi Highland wetlands, peatlands appeared much later and at the almost same time in the Medieval Warm Period. We suggest that the development of mountain wetlands outside of landslide areas is primarily related to climate changes. Responsiveness of mountain wetlands to climate change may be different depending on their water condition due to topography.

  3. Contribution of hydrological data to the understanding of the spatio-temporal dynamics of F-specific RNA bacteriophages in river water during rainfall-runoff events.

    PubMed

    Fauvel, Blandine; Cauchie, Henry-Michel; Gantzer, Christophe; Ogorzaly, Leslie

    2016-05-01

    Heavy rainfall events were previously reported to bring large amounts of microorganisms in surface water, including viruses. However, little information is available on the origin and transport of viral particles in water during such rain events. In this study, an integrative approach combining microbiological and hydrological measurements was investigated to appreciate the dynamics and origins of F-specific RNA bacteriophage fluxes during two distinct rainfall-runoff events. A high frequency sampling (automatic sampler) was set up to monitor the F-specific RNA bacteriophages fluxes at a fine temporal scale during the whole course of the rainfall-runoff events. A total of 276 rainfall-runoff samples were collected and analysed using both infectivity and RT-qPCR assays. The results highlight an increase of 2.5 log10 and 1.8 log10 of infectious F-specific RNA bacteriophage fluxes in parallel of an increase of the water flow levels for both events. Faecal pollution was characterised as being mainly from anthropic origin with a significant flux of phage particles belonging to the genogroup II. At the temporal scale, two successive distinct waves of phage pollution were established and identified through the hydrological measurements. The first arrival of phages in the water column was likely to be linked to the resuspension of riverbed sediments that was responsible for a high input of genogroup II. Surface runoff contributed further to the second input of phages, and more particularly of genogroup I. In addition, an important contribution of infectious phage particles has been highlighted. These findings imply the existence of a close relationship between the risk for human health and the viral contamination of flood water. Copyright © 2016 Luxembourg institute of Science and Technology. Published by Elsevier Ltd.. All rights reserved.

  4. 30 CFR 785.16 - Permits incorporating variances from approximate original contour restoration requirements for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... will be reduced, so as to improve the public or private uses or the ecology of such water, or flood..., during every season of the year, will not vary in a way that adversely affects the ecology of any surface...

  5. 30 CFR 785.16 - Permits incorporating variances from approximate original contour restoration requirements for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... will be reduced, so as to improve the public or private uses or the ecology of such water, or flood..., during every season of the year, will not vary in a way that adversely affects the ecology of any surface...

  6. Evaluating impacts of pulp and paper mill process changes on bioactive contaminant loading to St. Louis Bay.

    EPA Science Inventory

    As a convergence point for human waste streams, wastewater treatment plants are recognized as point sources through which contaminants originating from domestic, industrial, and commercial activities enter surface waters. Effluent from the Western Lake Superior Sanitary District ...

  7. 30 CFR 785.16 - Permits incorporating variances from approximate original contour restoration requirements for...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... will be reduced, so as to improve the public or private uses or the ecology of such water, or flood..., during every season of the year, will not vary in a way that adversely affects the ecology of any surface...

  8. 30 CFR 785.16 - Permits incorporating variances from approximate original contour restoration requirements for...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... will be reduced, so as to improve the public or private uses or the ecology of such water, or flood..., during every season of the year, will not vary in a way that adversely affects the ecology of any surface...

  9. 30 CFR 785.16 - Permits incorporating variances from approximate original contour restoration requirements for...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... will be reduced, so as to improve the public or private uses or the ecology of such water, or flood..., during every season of the year, will not vary in a way that adversely affects the ecology of any surface...

  10. Remotely Distinguishing and Mapping Endogenic Water on the Moon

    NASA Technical Reports Server (NTRS)

    Klima, Rachel L.; Petro, Noah E.

    2017-01-01

    Water and/or hydroxyl detected remotely on the lunar surface originates from several sources: (i) comets and other exogenous debris; (ii) solar wind implantation; (iii) the lunar interior. While each of these sources is interesting in its own right, distinguishing among them is critical for testing hypotheses for the origin and evolution of the Moon and our Solar System. Existing spacecraft observations are not of high enough spectral resolution to uniquely characterize the bonding energies of the hydroxyl molecules that have been detected. Nevertheless, the spatial distribution and associations of H, OH- or H2O with specific lunar lithologies provide some insight into the origin of lunar hydrous materials. The global distribution of OH-/H2O as detected using infrared spectroscopic measurements from orbit is here examined, with particular focus on regional geological features that exhibit OH-/H2O absorption band strengths that differ from their immediate surroundings.

  11. Outgassing history of Venus and the absence of water on Venus

    NASA Technical Reports Server (NTRS)

    Zhang, Youxue; Zindler, Alan

    1992-01-01

    Similarities in the size and mean density of Earth and Venus encourage the use of Earth-analogue models for the evolution of Venus. However, the amount of water in the present Venus atmosphere is miniscule compared to Earth's oceans. The 'missing' water is thus one of the most significant problems related to the origin and evolution of Venus. Other researchers proposed that Venus accreted with less water, but this was challenged. The high D/H ratio in Venus' atmosphere is consistent with an earlier water mass more than 100 times higher than at present conditions and is often cited to support a 'wet' Venus, but this amounts to only 0.01 to 0.1 percent of the water in terrestrial oceans and the high D/H ratio on Venus could easily reflect cometary injection. Nevertheless, many authors begin with the premise that Venus once had an oceanlike water mass on its surface, and investigate the many possible mechanisms that might account for its loss. In this paper we propose that Venus degassed to lower degree than the Earth and never had an oceanlike surface water mass.

  12. Humic acids contribution to sedimentary organic matter on a shallow continental shelf (northern Adriatic Sea)

    NASA Astrophysics Data System (ADS)

    Giani, M.; Rampazzo, F.; Berto, D.

    2010-12-01

    The shallow northern Adriatic Sea receives large river runoff, predominantly from the Po River, which is the main allochthonous source of nutrients and organic matter. The origin and quality of organic matter deposited in the sediments can influence the degradation processes and oxygen consumption in the bottom waters as well as the fate of many pollutants. Therefore the humic acids (HA) were quantified in surface and sub-surface sediments collected in an area of the north-western Adriatic platform south of Po River. HA showed to have a relevant contribution to sedimentary organic matter. HA content in sediments were positively correlated with the organic carbon concentration and negatively with redox potential and pH, particularly in sub-surface reduced sediments, suggesting their important role in the diagenetic processes taking place in anoxic conditions. Elemental composition of HA extracted from surface and sub-surface sediments showed a wide range of variation of the C org/N ratios which could be due to a mixed (terrestrial and marine) origin and/or an elevated bacteria degradation of nitrogen during diagenesis processes in sediments. The spectroscopic ratios A 2/A 4 and A 4/A 6 of HA confirmed a mixed origin with a high degree of condensation of the HA extracted from sediments.

  13. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    NASA Astrophysics Data System (ADS)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-05-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone, with Fe(II) oxidation taking place in the soil surrounding the ditch during summer and in the surface water during winter. The dynamics in Fe(II) oxidation did not affect the dissolved P concentrations. The dissolved P concentrations of the in-stream reservoirs water were an order of magnitude lower than observed in the groundwater and have no seasonal trend. Our data showed preferential binding of P during initial stage of the Fe(II) oxidation process, indicating the formation of Fe(III)-phosphate precipitates. The formation of Fe(III)-phosphates at the groundwater-surface water interface is an important geochemical mechanism in the transformation of dissolved phosphate to particulate phosphate and therefore a major control on the P retention in natural waters that drain anaerobic aquifers.

  14. Use of chemical and isotopic tracers to assess nitrate contamination and ground-water age, Woodville Karst Plain, USA

    USGS Publications Warehouse

    Katz, B.G.; Chelette, A.R.; Pratt, T.R.

    2004-01-01

    Concerns regarding ground-water contamination in the Woodville Karst Plain have arisen due to a steady increase in nitrate-N concentrations (0.25-0.90 mg/l) during the past 30 years in Wakulla Springs, a large regional discharge point for water (9.6 m3/s) from the Upper Floridan aquifer (UFA). Multiple isotopic and chemical tracers were used with geochemical and lumped-parameter models (exponential mixing (EM), dispersion, and combined exponential piston flow) to assess: (1) the sources and extent of nitrate contamination of ground water and springs, and (2) mean transit times (ages) of ground water. Delta 15N-NO3 values (1.7-13.8???) indicated that nitrate in ground water originated from localized sources of inorganic fertilizer and human/animal wastes. Nitrate in spring waters (??15N-NO3=5.3-8.9???) originated from both inorganic and organic N sources. Nitrate-N concentrations (1.0 mg/l) were associated with shallow wells (open intervals less than 15 m below land surface), elevated nitrate concentrations in deeper wells are consistent with mixtures of water from shallow and deep zones in the UFA as indicated from geochemical mixing models and the distribution of mean transit times (5-90 years) estimated using lumped-parameter flow models. Ground water with mean transit times of 10 years or less tended to have higher dissolved organic carbon concentrations, lower dissolved solids, and lower calcite saturation indices than older waters, indicating mixing with nearby surface water that directly recharges the aquifer through sinkholes. Significantly higher values of pH, magnesium, dolomite saturation index, and phosphate in springs and deep water (>45 m) relative to a shallow zone (<45 m) were associated with longer ground-water transit times (50-90 years). Chemical differences with depth in the aquifer result from deep regional flow of water recharged through low permeability sediments (clays and clayey sands of the Hawthorn Formation) that overlie the UFA upgradient from the karst plain.

  15. Hydrology and simulation of ground-water flow in Kamas Valley, Summit County, Utah

    USGS Publications Warehouse

    Brooks, L.E.; Stolp, B.J.; Spangler, L.E.

    2003-01-01

    Kamas Valley, Utah, is located about 50 miles east of Salt Lake City and is undergoing residential development. The increasing number of wells and septic systems raised concerns of water managers and prompted this hydrologic study. About 350,000 acre-feet per year of surface water flows through Kamas Valley in the Weber River, Beaver Creek, and Provo River, which originate in the Uinta Mountains east of the study area. The ground-water system in this area consists of water in unconsolidated deposits and consolidated rock; water budgets indicate very little interaction between consolidated rock and unconsolidated deposits. Most recharge to consolidated rock occurs at higher altitudes in the mountains and discharges to streams and springs upgradient of Kamas Valley. About 38,000 acre-feet per year of water flows through the unconsolidated deposits in Kamas Valley. Most recharge is from irrigation and seepage from major streams; most discharge is to Beaver Creek in the middle part of the valley. Long-term water-level fluctuations range from about 3 to 17 feet. Seasonal fluctuations exceed 50 feet. Transmissivity varies over four orders of magnitude in both the unconsolidated deposits and consolidated rock and is typically 1,000 to 10,000 feet squared per day in unconsolidated deposits and 100 feet squared per day in consolidated rock as determined from specific capacity. Water samples collected from wells, streams, and springs had nitrate plus nitrite concentrations (as N) substantially less than 10 mg/L. Total and fecal coliform bacteria were detected in some surface-water samples and probably originate from livestock. Septic systems do not appear to be degrading water quality. A numerical ground-water flow model developed to test the conceptual understanding of the ground-water system adequately simulates water levels and flow in the unconsolidated deposits. Analyses of model fit and sensitivity were used to refine the conceptual and numerical models.

  16. Hydrovolcanism

    NASA Technical Reports Server (NTRS)

    Sheridan, M. F.; Wohletz, K. H.

    1985-01-01

    Hydrovolcanism is a common phenomena produced by the interaction of magma or magmatic heat with an external source of water, such as a surface body, an aquifer, or a glacier. The effects include hydrofracture of existing rock units in the subsurface and the formation of hyaloclastites in a subaqueous environment. Hydroexplosions originate within a few kilometers of the surface. They may be relatively small, phreatic events or devastating complex blasts. Large-scale experiments determined that the optimal mixing ratio of water to basaltic melt (thermite plus silicates) for efficient conversion of thermal energy into mechanical energy is in the range of 0.1 to 0.3. Based on experimental results, eruptions can be classified as dominantly magmatic if the ratio of external water to magma is less than 0.2. Eruptions with water/melt ratios in the range of 0.2 to 1.0 are highly explosive and carry tephra in a hot vapor that contains dominantly superheated (dry) steam.

  17. Uncovering the Chemistry of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Zeng, Li; Jacobsen, Stein; Sasselov, Dimitar D.

    2015-01-01

    We propose to use evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet's rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called 'late veneer'. The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet's surface, which are crucial for life to occur. We plan to build an integrative model of Earth-like planets from the bottom up. We would like to infer their chemical compositions from their mass-radius relations and their host stars' elemental abundances, and understand the origins of volatile contents (especially water) on their surfaces, and thereby shed light on the origins of life on them.

  18. Genetic diversity of Escherichia coli isolates from surface water and groundwater in a rural environment.

    PubMed

    Gambero, Maria Laura; Blarasin, Monica; Bettera, Susana; Giuliano Albo, Jesica

    2017-10-01

    The genetic characteristics among Escherichia coli strains can be grouped by origin of isolation. Then, it is possible to use the genotypes as a tool to determine the source of water contamination. The aim of this study was to define water aptitude for human consumption in a rural basin and to assess the diversity of E. coli water populations. Thus, it was possible to identify the main sources of fecal contamination and to explore linkages with the hydrogeological environment and land uses. The bacteriological analysis showed that more than 50% of samples were unfit for human consumption. DNA fingerprinting analysis by BOX-PCR indicated low genotypic diversity of E. coli isolates taken from surface water and groundwater. The results suggested the presence of a dominant source of fecal contamination. The relationship between low genotypic diversity and land use would prove that water contamination comes from livestock. The genetic diversity of E. coli isolated from surface water was less than that identified in groundwater because of the different hydraulic features of both environments. Furthermore, each one of the two big strain groups identified in this basin is located in different sub-basins, showing that hydrological dynamics exerts selective pressure on bacteria DNA.

  19. Evolution of steam-water flow structure under subcooled water boiling at smooth and structured heating surfaces

    NASA Astrophysics Data System (ADS)

    Vasiliev, N. V.; Zeigarnik, Yu A.; Khodakov, K. A.

    2017-11-01

    Experimentally studying of subcooled water boiling in rectangular channel electrically heated from one side was conducted. Flat surfaces, both smooth and coated by microarc oxidation technology, were used as heating surfaces. The tests were conducted at atmospheric pressure in the range of mass flow rate from 650 to 1300 kg/(m2 s) and water subcooling relative to saturation temperature from 23 to 75 °C. Using high-speed filming a change in the two-phase flow structure and its statistic characteristics (nucleation sites density, vapor bubble distribution by size, etc.) were studied. With an increase in the heat flux density (with the mass flow rate and subcooling being the same) and amount and size of the vapor bubbles increased also. At a relatively high heat flux density, non-spherical vapor agglomerates appeared at the heating surface as a result of coalescence of small bubbles. They originated in chaotic manner in arbitrary points of the heating surface and then after random evolution in form and size collapsed. The agglomerate size reached several millimeters and their duration of life was several milliseconds. After formation of large vapor agglomerates, with a further small increase in heat flux density a burnout of the heating surface occurred. In most cases the same effect took place if the large agglomerates were retained for several minutes.

  20. Atlantic water variability on the SE Greenland continental shelf and its relationship to SST

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Straneo, F.; Rosing-Asvid, A.; Stenson, G.; Davidson, F. J.; Hammill, M.

    2012-12-01

    Interaction of warm, Atlantic-origin water (AW) and colder, polar origin water (PW) advecting southward in the East Greenland Current (EGC) influences the heat content of water entering Greenland's outlet glacial fjords. Here we use depth and temperature data derived from deep-diving seals to map out water mass variability across the continental shelf and to augment existing bathymetric products. We find two dominant modes in the vertical temperature structure: a cold mode, with the typical AW/PW layering observed in the EGC, and a warm mode, where AW is present throughout the water column. The prevalence of these modes varies seasonally and spatially across the continental shelf, implying distinct AW pathways. In addition, we find that satellite sea surface temperatures (SST) correlate significantly with temperatures in the upper 50 m (R=0.54), but this correlation decreases with depth (R=0.22 at 200 m), and becomes insignificant below 250 m. Thus, care must be taken in using SST as a proxy for heat content, as AW mainly resides in these deeper layers. Regional map showing the location of all seal tracks originating from Canada and Greenland (stars). Tracks passing inside (red) or outside (blue) the SE Greenland region (black) were subdivided into continental shelf regions (green boxes) near Sermilik Fjord (SF), Cape Farewell (CF) and Kangerdlugssuaq Fjord (KG). GEBCO bathymetry is contoured at 200, 1000, 2000, and 3000 m.

  1. Water resource use and management by the United States forest products industry.

    PubMed

    Wiegand, P S; Flinders, C A; Ice, G G; Malmberg, B J; Fisher, R P

    2009-01-01

    The connections between forest products operations and water resources in the United States is considered and, where possible, quantified. Manufacture of wood, pulp, and paper products and the influences of forest management and forest products manufacture on water quality are discussed. Most fresh water in the US originates in forested areas. Responsible harvesting strategies, best management practices, and forest re-growth combine to minimize or eliminate changes in water availability and degradation of water quality due to harvesting. Relative to alternative land uses and large-scale disturbance events, forested areas produce the highest quality of fresh water. Water inputs for the manufacture of forest products total about 5.8 billion m(3) per year, an amount equal about 0.4% of the surface and groundwater yield from timberland. Approximately 88% of water used in manufacturing is treated and returned directly to surface waters, about 11% is converted to water vapor and released during the manufacturing process, and 1% is imparted to products or solid residuals. Extensive study and continued monitoring of treated effluents suggest few or no concerns regarding the compatibility of current effluents with healthy aquatic systems.

  2. Life on Mars? II. Physical restrictions

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.; Banin, A.

    1995-01-01

    The primary physical factors important to life's evolution on a planet include its temperature, pressure and radiation regimes. Temperature and pressure regulate the presence and duration of liquid water on the surface of Mars. The prolonged presence of liquid water is essential for the evolution and sustained presence of life on a planet. It has been postulated that Mars has always been a cold dry planet; it has also been postulated that early mars possessed a dense atmosphere of CO2 (> or = 1 bar) and sufficient water to cut large channels across its surface. The degree to which either of these postulates is true correlates with the suitability of Mars for life's evolution. Although radiation can destroy living systems, the high fluxes of UV radiation on the martian surface do not necessarily stop the origin and early evolution of life. The probability for life to have arisen and evolved to a significant degree on Mars, based on the postulated ranges of early martian physical factors, is almost solely related to the probability of liquid water existing on the planet for at least hundreds of millions to billions of years.

  3. Seep and stream nitrogen dynamics in two adjacent mixed land use watersheds

    USDA-ARS?s Scientific Manuscript database

    In many headwater catchments, streamflow originates from surface seeps and springs. The objective of this study was to determine the influence of seeps on nitrogen (N) dynamics within the stream and at the outlet of two adjacent mixed land use watersheds. Nitrogen concentrations in stream water were...

  4. Fundamental molecules of life are pigments which arose and evolved to dissipate the solar spectrum

    NASA Astrophysics Data System (ADS)

    Michaelian, K.; Simeonov, A.

    2015-02-01

    The driving force behind the origin and evolution of life has been the thermodynamic imperative of increasing the entropy production of the biosphere through increasing the global solar photon dissipation rate. In the upper atmosphere of today, oxygen and ozone derived from life processes are performing the short wavelength UVC and UVB dissipation. On Earth's surface, water and organic pigments in water facilitate the near UV and visible photon dissipation. The first organic pigments probably formed, absorbed, and dissipated at those photochemically active wavelengths in the UVC that could have reached Earth's surface during the Archean. Proliferation of these pigments can be understood as an autocatalytic photochemical process obeying non-equilibrium thermodynamic directives related to increasing solar photon dissipation rate. Under these directives, organic pigments would have evolved over time to increase the global photon dissipation rate by; (1) increasing the ratio of their effective photon cross sections to their physical size, (2) decreasing their electronic excited state life times, (3) quenching radiative de-excitation channels (e.g. fluorescence), (4) covering ever more completely the prevailing solar spectrum, and (5) proliferating and dispersing to cover an ever greater surface area of Earth. From knowledge of the evolution of the spectrum of G-type stars, and considering the most probable history of the transparency of Earth's atmosphere, we construct the most probable Earth surface solar spectrum as a function of time and compare this with the history of molecular absorption maxima obtained from the available data in the literature. This comparison supports the conjecture that many fundamental molecules of life are pigments which arose and evolved to dissipate the solar spectrum, supports the thermodynamic dissipation theory for the origin of life, constrains models for Earth's early atmosphere, and sheds some new light on the origin of photosynthesis.

  5. Case study approach to modeling historical disinfection by-product exposure in Iowa drinking waters.

    PubMed

    Krasner, Stuart W; Cantor, Kenneth P; Weyer, Peter J; Hildesheim, Mariana; Amy, Gary

    2017-08-01

    In the 1980s, a case-control epidemiologic study was conducted in Iowa (USA) to analyze the association between exposure to disinfection by-products (DBPs) and bladder cancer risk. Trihalomethanes (THMs), the most commonly measured and dominant class of DBPs in drinking water, served as a primary metric and surrogate for the full DBP mixture. Average THM exposure was calculated, based on rough estimates of past levels in Iowa. To reduce misclassification, a follow-up study was undertaken to improve estimates of past THM levels and to re-evaluate their association with cancer risk. In addition, the risk associated with haloacetic acids, another class of DBPs, was examined. In the original analysis, surface water treatment plants were assigned one of two possible THM levels depending on the point of chlorination. The re-assessment considered each utility treating surface or groundwater on a case-by-case basis. Multiple treatment/disinfection scenarios and water quality parameters were considered with actual DBP measurements to develop estimates of past levels. The highest annual average THM level in the re-analysis was 156μg/L compared to 74μg/L for the original analysis. This allowed the analysis of subjects exposed at higher levels (>96μg/L). The re-analysis established a new approach, based on case studies and an understanding of the water quality and operational parameters that impact DBP formation, for determining historical exposure. Copyright © 2017. Published by Elsevier B.V.

  6. Elucidating the Role of Many-Body Forces in Liquid Water. I. Simulations of Water Clusters on the VRT (ASP-W) Potential Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, N; Saykally, R J

    We test the new VRT(ASP-W)II and VRT(ASP-W)III potentials by employing Diffusion Quantum Monte Carlo simulations to calculate the vibrational ground-state properties of water clusters. These potentials are fits of the highly detailed ASP-W ab initio potential to (D{sub 2}O){sub 2} microwave and far-IR data, and along with the SAPT5s potentials, are the most accurate water dimer potential surfaces in the literature. The results from VRT(ASP-W)II and III are compare to those from the original ASP-W potential, the SAPT5s family of potentials, and several bulk water potentials. Only VRT(ASP-W)II and the spectroscopically ''tuned'' SAPT5st (with N-body induction included) accurately reproduce themore » vibrational ground-state structures of water clusters up to the hexamer. Finally, the importance of many-body induction and three-body dispension are examined, and it is shown that the latter can have significant effects on water cluster properties despite its small magnitude.« less

  7. Noble Gases in Iddingsite from the Lafayette Meteorite: Evidence for Liquid Water on Mars in the Last Few Hundred Million Years

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.; Treiman, A. H.; Lindstrom, D. J.; Brkland, M. K.; Cohen, B. A.; Grier, J. A.; Li, B.; Olson, E. K.

    2000-01-01

    We analyzed noble gases from 18 samples of weathering products ("iddingsite") from the Lafayette meteorite. Potassium-argon ages of 12 samples range from near zero to 670 +/- 91 Ma. These ages confirm the martian origin of the iddingsite, but it is not clear whether any or all of the ages represent iddingsite formation as opposed to later alteration or incorporation of martian atmospheric Ar-40. In any case, because iddingsite formation requires liquid water, this data requires the presence of liquid water near the surface of Mars at least as recently as 1300 Ma ago, and probably as recently as 650 Ma ago. Krypton and Xe analysis of a single 34 microg sample indicates the presence of fractionated martian atmosphere within the iddingsite. This also confirms the martian origin of the iddingsite. The mechanism of incorporation could either be through interaction with liquid water during iddingsite formation or a result of shock implantation of adsorbed atmospheric gas.

  8. Estimation of land-surface evaporation at four forest sites across Japan with the new nonlinear complementary method.

    PubMed

    Ai, Zhipin; Wang, Qinxue; Yang, Yonghui; Manevski, Kiril; Zhao, Xin; Eer, Deni

    2017-12-19

    Evaporation from land surfaces is a critical component of the Earth water cycle and of water management strategies. The complementary method originally proposed by Bouchet, which describes a linear relation between actual evaporation (E), potential evaporation (E po ) and apparent potential evaporation (E pa ) based on routinely measured weather data, is one of the various methods for evaporation calculation. This study evaluated the reformulated version of the original method, as proposed by Brutsaert, for forest land cover in Japan. The new complementary method is nonlinear and based on boundary conditions with strictly physical considerations. The only unknown parameter (α e ) was for the first time determined for various forest covers located from north to south across Japan. The values of α e ranged from 0.94 to 1.10, with a mean value of 1.01. Furthermore, the calculated evaporation with the new method showed a good fit with the eddy-covariance measured values, with a determination coefficient of 0.78 and a mean bias of 4%. Evaluation results revealed that the new nonlinear complementary relation performs better than the original linear relation in describing the relationship between E/E pa and E po /E pa , and also in depicting the asymmetry variation between E pa /E po and E/E po .

  9. Potential Effects of Hydroelectric Dam Development in the Mekong River Basin on the Migration of Siamese Mud Carp (Henicorhynchus siamensis and H. lobatus) Elucidated by Otolith Microchemistry

    PubMed Central

    Fukushima, Michio; Jutagate, Tuantong; Grudpan, Chaiwut; Phomikong, Pisit; Nohara, Seiichi

    2014-01-01

    The migration of Siamese mud carp (Henicorhynchus siamensis and H. lobatus), two of the most economically important fish species in the Mekong River, was studied using an otolith microchemistry technique. Fish and river water samples were collected in seven regions throughout the whole basin in Thailand, Laos and Cambodia over a 4 year study period. There was coherence between the elements in the ambient water and on the surface of the otoliths, with strontium (Sr) and barium (Ba) showing the strongest correlation. The partition coefficients were 0.409–0.496 for Sr and 0.055 for Ba. Otolith Sr-Ba profiles indicated extensive synchronized migrations with similar natal origins among individuals within the same region. H. siamensis movement has been severely suppressed in a tributary system where a series of irrigation dams has blocked their migration. H. lobatus collected both below and above the Khone Falls in the mainstream Mekong exhibited statistically different otolith surface elemental signatures but similar core elemental signatures. This result suggests a population originating from a single natal origin but bypassing the waterfalls through a passable side channel where a major hydroelectric dam is planned. The potential effects of damming in the Mekong River are discussed. PMID:25099147

  10. Separation and characterization of effective demulsifying substances from surface of Alcaligenes sp. S-XJ-1 and its application in water-in-kerosene emulsion.

    PubMed

    Huang, Xiangfeng; Peng, Kaiming; Feng, Yi; Liu, Jia; Lu, Lijun

    2013-07-01

    The main goal of this work was to analyze the effect of surface substances on demulsifying capability of the demulsifying strain Alcaligenes sp. S-XJ-1. The demulsifying substances were successfully separated from the cell surface with dichloromethane-alkali treatment, and exhibited 67.5% of the demulsification ratio for water-in-kerosene emulsions at a dosage of 356mg/L. FT-IR, TLC and ESI-MS analysis confirmed the presence of a carbohydrate-protein-lipid complex in the demulsifying substances with the major molecular ions from mass-to-charge ratio (m/z) 165 to 814. After the substances separated, the cell morphology changed from aggregated to dispersed, and the concentration of cell surface functional groups decreased. Cell surface hydrophobicity and the ability of cell adhesion to hydrophobic surface of the treated cells was also reduced compared with original cell. It was proved that the demulsifying substances had a significant effect on cell surface properties and accordingly with demulsifying capability of Alcaligenes sp. S-XJ-1. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Imaging surface nanobubbles at graphite-water interfaces with different atomic force microscopy modes.

    PubMed

    Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh

    2013-05-08

    We have imaged nanobubbles on highly ordered pyrolytic graphite (HOPG) surfaces in pure water with different atomic force microscopy (AFM) modes, including the frequency-modulation, the tapping, and the PeakForce techniques. We have compared the performance of these modes in obtaining the surface profiles of nanobubbles. The frequency-modulation mode yields a larger height value than the other two modes and can provide more accurate measurement of the surface profiles of nanobubbles. Imaging with PeakForce mode shows that a nanobubble appears smaller and shorter with increasing peak force and disappears above a certain peak force, but the size returns to the original value when the peak force is reduced. This indicates that imaging with high peak forces does not cause gas removal from the nanobubbles. Based on the presented findings and previous AFM observations, the existing models for nanobubbles are reviewed and discussed. The model of gas aggregate inside nanobubbles provides a better explanation for the puzzles of the high stability and the contact angle of surface nanobubbles.

  12. Bovine Enteroviruses as Indicators of Fecal Contamination

    PubMed Central

    Ley, Victoria; Higgins, James; Fayer, Ronald

    2002-01-01

    Surface waters frequently have been contaminated with human enteric viruses, and it is likely that animal enteric viruses have contaminated surface waters also. Bovine enteroviruses (BEV), found in cattle worldwide, usually cause asymptomatic infections and are excreted in the feces of infected animals in large numbers. In this study, the prevalence and genotype of BEV in a closed herd of cattle were evaluated and compared with BEV found in animals in the immediate environment and in environmental specimens. BEV was found in feces from 76% of cattle, 38% of white-tailed deer, and one of three Canada geese sharing the same pastures, as well as the water obtained from animal watering tanks, from the pasture, from streams running from the pasture to an adjacent river, and from the river, which emptied into the Chesapeake Bay. Furthermore, BEV was found in oysters collected from that river downstream from the farm. These findings suggest that BEV could be used as an indicator of fecal pollution originating from animals (cattle and/or deer). Partial sequence analysis of the viral genomes indicates that different viral variants coexist in the same area. The possibility of identifying the viral strains found in the animals and in the contaminated areas by sequencing the RNA genome, could provide a tool to find the origin of the contamination and should be useful for epidemiological and viral molecular evolution studies. PMID:12089028

  13. Analysis of dark albedo features on a southern polar dune field of Mars.

    PubMed

    Horváth, András; Kereszturi, Akos; Bérczi, Szaniszló; Sik, András; Pócs, Tamás; Gánti, Tibor; Szathmáry, Eörs

    2009-01-01

    We observed 20-200 m sized low-albedo seepage-like streaks and their annual change on defrosting polar dunes in the southern hemisphere of Mars, based on the Mars Orbiter Camera (MOC), High Resolution Stereo Camera (HRSC), and High Resolution Imaging Science Experiment (HiRISE) images. The structures originate from dark spots and can be described as elongated or flowlike and, at places, branching streaks. They frequently have another spotlike structure at their end. Their overall appearance and the correlation between their morphometric parameters suggest that some material is transported downward from the spots and accumulates at the bottom of the dune's slopes. Here, we present possible scenarios for the origin of such streaks, including dry avalanche, liquid CO(2), liquid H(2)O, and gas-phase CO(2). Based on their morphology and the currently known surface conditions of Mars, no model interprets the streaks satisfactorily. The best interpretation of only the morphology and morphometric characteristics is only given by the model that implies some liquid water. The latest HiRISE images are also promising and suggest liquid flow. We suggest, with better knowledge of sub-ice temperatures that result from extended polar solar insolation and the heat insulator capacity of water vapor and water ice, future models and measurements may show that ephemeral water could appear and flow under the surface ice layer on the dunes today.

  14. Iodide, bromide, and ammonium in hydraulic fracturing and oil and gas wastewaters: environmental implications.

    PubMed

    Harkness, Jennifer S; Dwyer, Gary S; Warner, Nathaniel R; Parker, Kimberly M; Mitch, William A; Vengosh, Avner

    2015-02-03

    The expansion of unconventional shale gas and hydraulic fracturing has increased the volume of the oil and gas wastewater (OGW) generated in the U.S. Here we demonstrate that OGW from Marcellus and Fayetteville hydraulic fracturing flowback fluids and Appalachian conventional produced waters is characterized by high chloride, bromide, iodide (up to 56 mg/L), and ammonium (up to 420 mg/L). Br/Cl ratios were consistent for all Appalachian brines, which reflect an origin from a common parent brine, while the I/Cl and NH4/Cl ratios varied among brines from different geological formations, reflecting geogenic processes. There were no differences in halides and ammonium concentrations between OGW originating from hydraulic fracturing and conventional oil and gas operations. Analysis of discharged effluents from three brine treatment sites in Pennsylvania and a spill site in West Virginia show elevated levels of halides (iodide up to 28 mg/L) and ammonium (12 to 106 mg/L) that mimic the composition of OGW and mix conservatively in downstream surface waters. Bromide, iodide, and ammonium in surface waters can impact stream ecosystems and promote the formation of toxic brominated-, iodinated-, and nitrogen disinfection byproducts during chlorination at downstream drinking water treatment plants. Our findings indicate that discharge and accidental spills of OGW to waterways pose risks to both human health and the environment.

  15. Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films.

    PubMed

    Saison, Tamar; Peroz, Christophe; Chauveau, Vanessa; Berthier, Serge; Sondergard, Elin; Arribart, Hervé

    2008-12-01

    An original and low cost method for the fabrication of patterned surfaces bioinspired from butterfly wings and lotus leaves is presented. Silica-based sol-gel films are thermally imprinted from elastomeric molds to produce stable structures with superhydrophobicity values as high as 160 degrees water contact angle. The biomimetic surfaces are demonstrated to be tuned from superhydrophobic to superhydrophilic by annealing between 200 degrees C and 500 degrees C.

  16. Sulfur/Carbonate Springs and Life in Glacial Ice

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Grasby, Stephen; Longazo, Teresa

    2001-01-01

    Ice in the near subsurface of Mars apparently discharges liquid water on occasion. Cold-tolerant microorganisms are known to exist within terrestrial glacial ice, and may be brought to the surface as a result of melting events. We are investigating a set of springs that deposit sulfur and carbonate minerals, as well as evidence of microbial life, on the surface of a glacier in the Canadian arctic. Additional information is contained in the original extended abstract.

  17. Transformation of Deep Water Masses Along Lagrangian Upwelling Pathways in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Tamsitt, V.; Abernathey, R. P.; Mazloff, M. R.; Wang, J.; Talley, L. D.

    2018-03-01

    Upwelling of northern deep waters in the Southern Ocean is fundamentally important for the closure of the global meridional overturning circulation and delivers carbon and nutrient-rich deep waters to the sea surface. We quantify water mass transformation along upwelling pathways originating in the Atlantic, Indian, and Pacific and ending at the surface of the Southern Ocean using Lagrangian trajectories in an eddy-permitting ocean state estimate. Recent related work shows that upwelling in the interior below about 400 m depth is localized at hot spots associated with major topographic features in the path of the Antarctic Circumpolar Current, while upwelling through the surface layer is more broadly distributed. In the ocean interior upwelling is largely isopycnal; Atlantic and to a lesser extent Indian Deep Waters cool and freshen while Pacific deep waters are more stable, leading to a homogenization of water mass properties. As upwelling water approaches the mixed layer, there is net strong transformation toward lighter densities due to mixing of freshwater, but there is a divergence in the density distribution as Upper Circumpolar Deep Water tends become lighter and dense Lower Circumpolar Deep Water tends to become denser. The spatial distribution of transformation shows more rapid transformation at eddy hot spots associated with major topography where density gradients are enhanced; however, the majority of cumulative density change along trajectories is achieved by background mixing. We compare the Lagrangian analysis to diagnosed Eulerian water mass transformation to attribute the mechanisms leading to the observed transformation.

  18. Evidence for marine origin and microbial-viral habitability of sub-zero hypersaline aqueous inclusions within permafrost near Barrow, Alaska.

    PubMed

    Colangelo-Lillis, J; Eicken, H; Carpenter, S D; Deming, J W

    2016-05-01

    Cryopegs are sub-surface hypersaline brines at sub-zero temperatures within permafrost; their global extent and distribution are unknown. The permafrost barrier to surface and groundwater advection maintains these brines as semi-isolated systems over geological time. A cryopeg 7 m below ground near Barrow, Alaska, was sampled for geochemical and microbiological analysis. Sub-surface brines (in situtemperature of -6 °C, salinity of 115 ppt), and an associated sediment-infused ice wedge (melt salinity of 0.04 ppt) were sampled using sterile technique. Major ionic concentrations in the brine corresponded more closely to other (Siberian) cryopegs than to Standard seawater or the ice wedge. Ionic ratios and stable isotope analysis of water conformed to a marine or brackish origin with subsequent Rayleigh fractionation. The brine contained ∼1000× more bacteria than surrounding ice, relatively high viral numbers suggestive of infection and reproduction, and an unusually high ratio of particulate to dissolved extracellular polysaccharide substances. A viral metagenome indicated a high frequency of temperate viruses and limited viral diversity compared to surface environments, with closest similarity to low water activity environments. Interpretations of the results underscore the isolation of these underexplored microbial ecosystems from past and present oceans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Antarctic sea ice control on ocean circulation in present and glacial climates

    PubMed Central

    Ferrari, Raffaele; Jansen, Malte F.; Adkins, Jess F.; Burke, Andrea; Stewart, Andrew L.; Thompson, Andrew F.

    2014-01-01

    In the modern climate, the ocean below 2 km is mainly filled by waters sinking into the abyss around Antarctica and in the North Atlantic. Paleoproxies indicate that waters of North Atlantic origin were instead absent below 2 km at the Last Glacial Maximum, resulting in an expansion of the volume occupied by Antarctic origin waters. In this study we show that this rearrangement of deep water masses is dynamically linked to the expansion of summer sea ice around Antarctica. A simple theory further suggests that these deep waters only came to the surface under sea ice, which insulated them from atmospheric forcing, and were weakly mixed with overlying waters, thus being able to store carbon for long times. This unappreciated link between the expansion of sea ice and the appearance of a voluminous and insulated water mass may help quantify the ocean’s role in regulating atmospheric carbon dioxide on glacial–interglacial timescales. Previous studies pointed to many independent changes in ocean physics to account for the observed swings in atmospheric carbon dioxide. Here it is shown that many of these changes are dynamically linked and therefore must co-occur. PMID:24889624

  20. Antarctic sea ice control on ocean circulation in present and glacial climates.

    PubMed

    Ferrari, Raffaele; Jansen, Malte F; Adkins, Jess F; Burke, Andrea; Stewart, Andrew L; Thompson, Andrew F

    2014-06-17

    In the modern climate, the ocean below 2 km is mainly filled by waters sinking into the abyss around Antarctica and in the North Atlantic. Paleoproxies indicate that waters of North Atlantic origin were instead absent below 2 km at the Last Glacial Maximum, resulting in an expansion of the volume occupied by Antarctic origin waters. In this study we show that this rearrangement of deep water masses is dynamically linked to the expansion of summer sea ice around Antarctica. A simple theory further suggests that these deep waters only came to the surface under sea ice, which insulated them from atmospheric forcing, and were weakly mixed with overlying waters, thus being able to store carbon for long times. This unappreciated link between the expansion of sea ice and the appearance of a voluminous and insulated water mass may help quantify the ocean's role in regulating atmospheric carbon dioxide on glacial-interglacial timescales. Previous studies pointed to many independent changes in ocean physics to account for the observed swings in atmospheric carbon dioxide. Here it is shown that many of these changes are dynamically linked and therefore must co-occur.

  1. Cleaning painted surfaces: evaluation of leaching phenomenon induced by solvents applied for the removal of gel residues.

    PubMed

    Casoli, Antonella; Di Diego, Zaira; Isca, Clelia

    2014-12-01

    Cleaning is one of the most important, delicate, and at the same time controversial processes in the conservation treatment of paintings. Although a strict definition of cleaning would be the removal of dirt, grime, or other accretions (surface cleaning), in the conservation field, cleaning is used in the broader meaning to include thinning/removing altered or “unwanted layers” of materials without damaging or altering the physicochemical properties of the surfaces to be preserved. The cleaning of unvarnished paintings is one of the most critical issues that are currently discussed. Several studies exist regarding different cleaning tools, such as gels, soaps, enzymes, ionic liquids, and foams, as well as various dry methods and lasers, but only a few have been performed on the risk associated with the use of water and organic solvents for the cleaning treatments in relation to the original paint binder. The aim of the study is to verify analytically the behavior of water gelling agents during cleaning treatments and the interaction of the following elements: water or organic solvents applied for the removal of gel residues with the original lipid paint binder. For this purpose, the study was conducted on a fragment of canvas painting (sixteenth to seventeenth century) of Soprintendenza per i Beni Storici, Artistici ed Etnoantropologici del Friuli Venezia Giulia (Superintendence for the Historical, Artistic and Ethno-anthropological Heritage of Friuli Venezia Giulia), Udine by means of Fourier transform infrared spectroscopy, gas chromatography/mass spectrometry, and scanning electron microscopy.

  2. Geochemical and isotopic evidences from groundwater and surface water for understanding of natural contamination in chronic kidney disease of unknown etiology (CKDu) endemic zones in Sri Lanka.

    PubMed

    Edirisinghe, E A N V; Manthrithilake, H; Pitawala, H M T G A; Dharmagunawardhane, H A; Wijayawardane, R L

    2018-06-01

    Chronic kidney disease of unknown etiology (CKDu) is the main health issue in the dry zone of Sri Lanka. Despite many studies carried out, causative factors have not been identified yet clearly. According to the multidisciplinary researches carried out so far, potable water is considered as the main causative factor for CKDu. Hence, the present study was carried out with combined isotopic and chemical methods to understand possible relationships between groundwater; the main drinking water source, and CKDu in four endemic areas in the dry zone. Different water sources were evaluated isotopically ( 2 H, 3 H and 18 O) and chemically from 2013 to 2015. Results revealed that prevalence of CKDu is significantly low with the groundwater replenished by surface water inputs. It is significantly high with the groundwater stagnated as well as groundwater recharged from regional flow paths. Thus, the origin, recharge mechanism and flow pattern of groundwater, as well as geological conditions which would be responsible for natural contamination of groundwater appear as the main causative factors for CKDu. Therefore, detailed investigations should be made in order to identify the element(s) in groundwater contributing to CKDu. The study recommends providing drinking water to the affected zones using water sources associated with surface waters.

  3. Cryptoblemes: A New Discovery with Major Economic Implications and Profound Changes to the Geologic Paradigm

    NASA Technical Reports Server (NTRS)

    Windolph, J., Jr.; Sutton, J.

    1997-01-01

    Cryptoblemes are subtle impact shock signatures imprinted by cosmic debris on the crustal surfaces of lunar planetary bodes. These signatures constitute a complex cumulative overprinting of topographic, structural geophysical, and tectonic patterns that have a conspicuous radial centric multiringed symmetry. The geometry and distribution of cryptoblemes on Earth is comparable to the size and density of impact features on lunar planetary surfaces. Analysis of satellite imagery, sea-floor sonar, side-looking radar and aerial photographs of specific sites reveals new criteria for the identification and confirmation of impact-shock signatures. These criteria include joint and foliation patterns with asbestiform minerals, ribbon-quartz, spheroidal weathering, domal exfoliation, pencil shale, and shock spheres, which may originate from hydrocavitation of water-saturated sedimentary rocks. Cryptoblemes may also be associated with breccia pipes, sinkholes, buttes, mesas, and bogs, high-Rn anomalies, nodular concentrations, and earthquake epicenters. Major implications of cryptobleme identification include exploratory targeting of hydrocarbon and mineral deposits and the explanation of their origins. Analysis of known mineral deposits, structural traps and sedimentary basins show a direct correlation with cryptobleme patterns. Significant geologic paradigm shifts related to cryptoblemes include mountain building processes, structural orogenies, induced volcanism, earthquake origins, hydrocarbon diagenesis, formation mineral deposits, continental rifting, and plate movements, magnetic overprinting and local regional, and global geologic extinction and speciation patterns. Two figures provide a comparison between a multiring impact overprint in water and multiring cryptobleme in the U.S. basin range. (Additional information is contained in the original document).

  4. Identification of water ice on the Centaur 1997 CU26.

    PubMed

    Brown, R H; Cruikshank, D P; Pendleton, Y; Veeder, G J

    1998-05-29

    Spectra of the Centaur 1997 CU26 were obtained at the Keck Observatory on 27 October 1997 (universal time). The data show strong absorptions at 1.52 and 2.03 micrometers attributable to water ice on the surface of 1997 CU26. The reflectance spectrum of 1997 CU26 is matched by the spectrum of a mixture of low-temperature, particulate water ice and spectrally featureless but otherwise red-colored material. Water ice dominates the spectrum of 1997 CU26, whereas methane or methane-like hydrocarbons apparently dominate the spectrum of the Kuiper belt object 1993 SC, perhaps indicating different origins, thermal histories, or both for these two objects.

  5. Deep Basalt Aquifers in Orcus Patera, Elysium Basin Mars: Perspectives for Exobiology Exploration

    NASA Technical Reports Server (NTRS)

    Grin, E. A.; Cabrol, N. A.

    1998-01-01

    Direct indicators of shorelines, spillways, and terraces allowed to determine the extent of the Elysium Paleolake between the contour-lines 1000 and 500 m below the Martian datum. The Elysium Paleolake is bordered north by Orcus Patera (14N/181W), which lies west of the Tartarus Montes and Tartarus Colles. The Orcus Patera displays an ellipse-shaped collapsed caldera of 360-km long and 100-km wide. Viking topographic data show that the bottom of the caldera is located at 2500 below the Martian datum, and surrounded by a steep-walled ram art which crest is located at about 0 m elevation. Considering the localization of Orcus Patera in the Elysium paleolake, its altimetry, and the magmatic origin of this caldera, we propose the existence of a paleolake in Orcus Patera generated (a) by juvenile water from magma during the Noachian period, and (b) by intermittent influx of the Elysium Basin from Hesperian to Amazonian. Results are encouraging to consider this site as a potential high-energy source environment for microbial communities. are circumscribed by a 50-km wide lava field mapped as Noachian material. The structure of Orcus Patera represents the record of material erupted from a magmatic reservoir. The caldera is enclosed by steep inner walls (25% measured from topographic data), values which could be in agreement with the presence of a deep magmatic reservoir, as suggested by the typology of Crumpler et.al. The depth of the caldera might be due to the collapse of the magma reservoir, and the release of gases accompanying the magma thermal evolution. Origins of water for the paleolake(s): The water that generated a paleolake in Orcus Patera may have come from two origins: (1) Juvenile water: Plescia and Crips estimated a magma H20 content by weight between 0.5% and 1.5% using for the first value a comparison with terrestrial basalt, and for the second values from a Martian meteorite. The amount of H20 can be estimated by the volume of erupted lava, and the lava content of the caldera. In this study, we adopt a water content of 1%. The total volume of magma that has been contained in the caldera, and the volume of lava contained in the observed lava field is about 110 x 10(exp 6) cubic km, that gives a total volume of 1.10 x 10(exp 6) cubic km of water. The juvenile water expelled by the overpressure within the magma chamber charged with desolved water-vapor may have moved into the crust. The decrease in overburden pressure led to bubble formation. The ascent of these bubbles generated a pressurization of the magma, which was sufficient to fracture the overlaying magma layer, (2) Water from Elysium paleolake. During the Amazonian, the rise of the Elysium paleolake level generated an overspilling that supplied the caldera with water. The southern portion of the crest shows a deep gap 12-km wide at -1500 m elevation, locating the gap between 500 to 1000 in below the assumed water of Elysium paleolake, thus facilitating the influx of Elysium paleolake water into Orcus Patera. Bathymetric calculations give a floor area of 25,500 sq km at -2000 m elevation, and a water volume of 42,000 cubic km, with a lake-level at -1500 m. A substantial amount of water may have percolated through the fractured lava, and part of the volume may have overspilled the northern crest of Orcus Patera to debouch in the Tartarus Montes region. We envision the formation of a subsurface aqueous environment in basaltic rocks at the contact of the two water-source origins, possibly the percolating surface lake water, and more likely the juvenile water. Similarly to terrestrial calderas, Orcus Patera might be surrounded by ring-fractures caused by the collapse of the magma chamber that followed the release of gases. These ring-fractures may have been covered later by sedimentation in the caldera (lacustrine, aeolian, and volcanic), and by mass wasting. The detumescence of the magma in the caldera, and the vesiculation of the juvenile water may have operated simultaneously. Comparatively to terrestrial melts, Martian iron-rich melts are denser. This greater density implies greater effusion rates (eight-times terrestrial values), and larger fissuration widths (two-times terrestrial ones). With increasing vesiculation of magma, the bubbles interact with one-another because there are of similar pressure. They make a magma froth at the contact with the caldera surface, and on the walls of the fractures. In the saturated magma, froth, where the volume ratio of gases-to-liquid is about 4:1, the bubbles form a huge surface area of interconnected spaces. Bubbles near the caldera surface disrupt the magma, and fragmentation takes place, which moves downward through the magma column. On Earth, the bubbles are likely to grow between 1 and 50 mm in diameter due to the difference between the magma surface tension, and the bubble supersaturation pressure. The Martian low-pressure at surface level is likely to accelerate the expansion of the bubbles, and increase their final diameter and number, creating more voids in the magma. The strong magma froth with enclosed juvenile water bubbles interconnected with exsolved gas bubbles constitute a potential geothermal environment for geochemical energy production from basalt and water that does not require excessive temperatures. This process can start at +20C. Similar types of environments have been shown on Earth as potential energy sources for microbial metabolism, and could have provided deep aqueous basaltic niches for possible Martian microorganisms, even geologically recently. During the Amazonian, combination of volcanism and water activity still existed on Mars. Moreover, this type of potential niches open ways for investigation of possible oases of extinct or extant life, not only on paleolakes, and surface hydrothermalism spring areas, but also all large systems of fossae, which combine hydrologic and volcanic activities, and which provide an energy source, and an underground shelter to prevent surface UV bombardment. Additional information contained in the original.

  6. The initiation of boiling during pressure transients. [water boiling on metal surfaces

    NASA Technical Reports Server (NTRS)

    Weisman, J.; Bussell, G.; Jashnani, I. L.; Hsieh, T.

    1973-01-01

    The initiation of boiling of water on metal surfaces during pressure transients has been investigated. The data were obtained by a new technique in which light beam fluctuations and a pressure signal were simultaneously recorded on a dual beam oscilloscope. The results obtained agreed with those obtained using high speed photography. It was found that, for water temperatures between 90-150 C, the wall superheat required to initiate boiling during a rapid pressure transient was significantly higher than required when the pressure was slowly reduced. This result is explained by assuming that a finite time is necessary for vapor to fill the cavity at which the bubble originates. Experimental measurements of this time are in reasonably good agreement with calculations based on the proposed theory. The theory includes a new procedure for estimating the coefficient of vaporization.

  7. Aqueous geochemistry on Mars: Possible clues from salts and clays in SNC meteorites

    NASA Technical Reports Server (NTRS)

    Gooding, James L.

    1992-01-01

    All subgroups of the shergottite, nakhlite, and chassignite (SNC) meteorites contain traces of water precipitated minerals that include various combinations of carbonates, sulfates, halides, ferric oxides, and aluminosilicate clays of preterrestrial origin. Oxygen three-isotope analysis of thermally extracted bulk water has confirmed that at least some of the water in SNC's is, indeed, extraterrestrial. A mixture of aqueous precipitates found in the SNC's, comprising smectite, illite, and gypsum (with minor halite +/- calcite and hematite), provides a self-consistent, though not unique, model for the bulk elemental composition of surface sediments at the Viking Lander sites. Therefore, if the salts and clays in SNC's are truly linked to aqueous alteration and soil formation on Mars, then the suite of SNC secondary minerals might provide the best currently available insight into near-surface martian chemistry.

  8. Piercing mandrel strengthening by surfacing with nickel aluminide-based alloy

    NASA Astrophysics Data System (ADS)

    Zorin, I. V.; Dubtsov, Yu N.; Sokolov, G. N.; Artem'ev, A. A.; Lysak, V. I.; Elsukov, S. N.

    2017-02-01

    Electrode composite wire (CW) was used for argon-arc surfacing of a thermal-resisting nickel aluminide-based alloy (Ni-Al-Cr-W-Mo-Ta system) on the butt-end surface of the non-water-cooled piercing mandrel. It was shown that multipassing surfacing forms a defect-free deposited metal based on the γ’-Ni3Al phase of various structural origins. Using high-temperature sclerometry and thermal fatigue testing methods, the metal deposited with CW containing ultrafine particle of 0.3-0.4 % wt. WC carbide features increased resistance to thermal and force effects at temperatures up to 1200 °C.

  9. Binary breath figures for straightforward and controllable self-assembly of microspherical caps.

    PubMed

    Gong, Jianliang; Xu, Bingang; Tao, Xiaoming; Li, Lei

    2016-05-11

    The intense interest surrounding asymmetrical microparticles originates from their unique anisotropic properties and promising applications. In this work, direct self-assembly of polymeric microspherical caps without the assistance of any additives has been achieved by using low-surface-tension methanol (MeOH) and high-surface-tension water as binary breath figures (BFs). With the evaporation of polystyrene (PS) solution containing low-boiling-point solvent in the binary vapors, the formed MeOH BFs could quickly diffuse into solution, while water BFs tended to remain at the solution surface. This led to the formation of a gradient nonsolvent layer at the vapor/solution interface, which induced the formation of nuclei and guided further asymmetrical growth of polymer particles. After the spontaneous removal of MeOH, water and residual solvent by evaporation, polymeric microspherical caps were left on the substrate. Through controlling the proportion of water introduced by adjusting the ratios of MeOH and water, polymeric microspherical caps with a range of controllable shapes (divided at different positions of a sphere) were successfully obtained. The formation mechanism was explained based on the difference of vapor pressure, surface tension and miscibility between the employed solvents and nonsolvents. A solvent possessing a high vapor pressure, low surface tension and good miscibility with MeOH contributed to the formation of microspherical caps. This flexible, green and straightforward technique is a nondestructive strategy, and avoids complicated work on design, preparation and removal of hard templates and additives.

  10. The physical state of finely dispersed soil-like systems with drilling sludge as an example

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.; Kol'Tsov, I. N.; Pepelov, I. L.; Kirichenko, A. V.; Sadovnikova, N. B.; Kinzhaev, R. R.

    2011-02-01

    The physical state and its dynamics were studied at the quantitative level for drilling sludge (finely dispersed waste of the oil industry). Using original methodological approaches, the main hydrophysical and technological properties of sludge samples were assessed for the first time, including the water retention curve, the specific surface, the water conductivity, the electrical conductivity, the porosity dynamics during shrinkage, the water yield, etc., which are used in the current models of water transfer and the behavior of these soil-like objects under real thermodynamic conditions. The technologically unfavorable phenomenon of the spontaneous swelling of sludge during the storage of drilling waste was theoretically explained. The water regime of the homogeneous 0.5-m thick drilling sludge layer under the free gravity outflow and permanent evaporation of water from the surface was analyzed using the HYDRUS-1D model. The high water retention capacity and the low water conductivity and water yield of sludge do not allow their drying to the three-phase state (with the entry of air) acceptable for terrestrial plants under humid climatic conditions, which explains the spontaneous transformation of sludge pits to only hydromorphic ecosystems.

  11. Faster proton transfer dynamics of water on SnO2 compared to TiO2.

    PubMed

    Kumar, Nitin; Kent, Paul R C; Bandura, Andrei V; Kubicki, James D; Wesolowski, David J; Cole, David R; Sofo, Jorge O

    2011-01-28

    Proton jump processes in the hydration layer on the iso-structural TiO(2) rutile (110) and SnO(2) cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local analysis based on the correlation between the stretching band of the O-H vibrations and the strength of H-bonds indicates that the faster proton jump activity on cassiterite is produced by a stronger H-bond formation between the surface and the hydration layer above the surface. The origin of the increased H-bond strength on cassiterite is a combined effect of stronger covalent bonding and stronger electrostatic interactions due to differences of its electronic structure. The bridging oxygens form the strongest H-bonds between the surface and the hydration layer. This higher proton jump rate is likely to affect reactivity and catalytic activity on the surface. A better understanding of its origins will enable methods to control these rates.

  12. Managing urban runoff in residential neighborhoods: Nitrogen and phosphorus in lawn irrigation driven runoff.

    PubMed

    Toor, Gurpal S; Occhipinti, Marti L; Yang, Yun-Ya; Majcherek, Tammy; Haver, Darren; Oki, Lorence

    2017-01-01

    Sources and mechanisms of nutrient transport in lawn irrigation driven surface runoff are largely unknown. We investigated the transport of nitrogen (N) and phosphorus (P) in lawn irrigation driven surface runoff from a residential neighborhood (28 ha) of 56% impervious and 44% pervious areas. Pervious areas encompassing turfgrass (lawns) in the neighborhood were irrigated with the reclaimed water in common areas during the evening to late night and with the municipal water in homeowner's lawns during the morning. The stormwater outlet pipe draining the residential neighborhood was instrumented with a flow meter and Hach autosampler. Water samples were collected every 1-h and triple composite samples were obtained at 3-h intervals during an intensive sampling period of 1-week. Mean concentrations, over 56 sampling events, of total N (TN) and total P (TP) in surface runoff at the outlet pipe were 10.9±6.34 and 1.3±1.03 mg L-1, respectively. Of TN, the proportion of nitrate-N was 58% and other-N was 42%, whereas of TP, orthophosphate-P was 75% and other-P was 25%. Flow and nutrient (N and P) concentrations were lowest from 6:00 a.m. to noon, which corresponded with the use of municipal water and highest from 6:00 p.m. to midnight, which corresponded with the use of reclaimed water. This data suggests that N and P originating in lawn irrigation driven surface runoff from residential catchments is an important contributor of nutrients in surface waters.

  13. Managing urban runoff in residential neighborhoods: Nitrogen and phosphorus in lawn irrigation driven runoff

    PubMed Central

    Occhipinti, Marti L.; Yang, Yun-Ya; Majcherek, Tammy; Haver, Darren; Oki, Lorence

    2017-01-01

    Sources and mechanisms of nutrient transport in lawn irrigation driven surface runoff are largely unknown. We investigated the transport of nitrogen (N) and phosphorus (P) in lawn irrigation driven surface runoff from a residential neighborhood (28 ha) of 56% impervious and 44% pervious areas. Pervious areas encompassing turfgrass (lawns) in the neighborhood were irrigated with the reclaimed water in common areas during the evening to late night and with the municipal water in homeowner’s lawns during the morning. The stormwater outlet pipe draining the residential neighborhood was instrumented with a flow meter and Hach autosampler. Water samples were collected every 1-h and triple composite samples were obtained at 3-h intervals during an intensive sampling period of 1-week. Mean concentrations, over 56 sampling events, of total N (TN) and total P (TP) in surface runoff at the outlet pipe were 10.9±6.34 and 1.3±1.03 mg L–1, respectively. Of TN, the proportion of nitrate–N was 58% and other–N was 42%, whereas of TP, orthophosphate–P was 75% and other–P was 25%. Flow and nutrient (N and P) concentrations were lowest from 6:00 a.m. to noon, which corresponded with the use of municipal water and highest from 6:00 p.m. to midnight, which corresponded with the use of reclaimed water. This data suggests that N and P originating in lawn irrigation driven surface runoff from residential catchments is an important contributor of nutrients in surface waters. PMID:28604811

  14. Effect of climate change on runoff of Campylobacter and Cryptosporidium from land to surface water.

    PubMed

    Sterk, Ankie; Schijven, Jack; de Roda Husman, Ana Maria; de Nijs, Ton

    2016-05-15

    Faeces originating from wildlife, domestic animals or manure-fertilized fields, is considered an important source of zoonotic pathogens to which people may be exposed by, for instance, bathing or drinking-water consumption. An increase in runoff, and associated wash-off of animal faeces from fields, is assumed to contribute to the increase of disease outbreaks during periods of high precipitation. Climate change is expected to increase winter precipitation and extreme precipitation events during summer, but has simultaneously also other effects such as temperature rise and changes in evapotranspiration. The question is to what extent the combination of these effects influence the input of zoonotic pathogens to the surface waters. To quantitatively analyse the impacts of climate change on pathogen runoff, pathogen concentrations reaching surface waters through runoff were calculated by combining an input model for catchment pathogen loads with the Wageningen Lowland Runoff Simulator (WALRUS). Runoff of Cryptosporidium and Campylobacter was evaluated under different climate change scenarios and by applying different scenarios for sources of faecal pollution in the catchments, namely dairy cows and geese and manure fertilization. Model evaluation of these scenarios shows that climate change has little overall impact on runoff of Campylobacter and Cryptosporidium from land to the surface waters. Even though individual processes like runoff fluxes, pathogen release and dilution are affected, either positively or negatively, the net effect on the pathogen concentration in surface waters and consequently also on infection risks through recreation seems limited. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Hydrogen speciation in hydrated layers on nuclear waste glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aines, R.D.; Weed, H.C.; Bates, J.K.

    1987-01-15

    The hydration of an outer layer on nuclear waste glasses is known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 & 165, and PNL 76-68), which were leached at 90{sup 0}C (all glasses) or hydrated in a vapor-saturated atmosphere at 202{sup 0}C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. Molecular water was foundmore » in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. Using the known molar absorptivities of water and hydroxyl in silica-rich glass the vapor-phase layer contained 4.8 moles/liter of molecular water, and 0.6 moles water in the form hydroxyl. A 15 {mu}m layer on SRL-131 glass formed by leaching at 90{sup 0}C contained a total of 4.9 moles/liter of water, 2/3 of which was as hydroxyl. The unreacted bulk glass contains about 0.018 moles/liter water, all as hydroxyl. The amount of hydrogen added to the SRL-131 glass was about 70% of the original Na + Li content, not the 300% that would result from alkali=hydronium ion interdiffusion. If all the hydrogen is then assumed to be added as the result of alkali-H{sup +} interdiffusion, the molecular water observed may have formed from condensation of the original hydroxyl groups.« less

  16. DIFFERENT ORIGINS OR DIFFERENT EVOLUTIONS? DECODING THE SPECTRAL DIVERSITY AMONG C-TYPE ASTEROIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernazza, P.; Marsset, M.; Groussin, O.

    Anhydrous pyroxene-rich interplanetary dust particles (IDPs) have been proposed as surface analogs for about two-thirds of all C-complex asteroids. However, this suggestion appears to be inconsistent with the presence of hydrated silicates on the surfaces of some of these asteroids, including Ceres. Here, we report the presence of enstatite (pyroxene) on the surface of two C-type asteroids (Ceres and Eugenia) based on their spectral properties in the mid-infrared range. The presence of this component is particularly unexpected in the case of Ceres, because most thermal evolution models predict a surface consisting of hydrated compounds only. The most plausible scenario is that Ceres’more » surface has been partially contaminated by exogenous enstatite-rich material, possibly coming from the Beagle asteroid family. This scenario questions a similar origin for Ceres and the remaining C-types, and it possibly supports recent results obtained by the Dawn mission (NASA) that Ceres may have formed in the very outer solar system. Concerning the smaller D  ∼ 200 km C-types such as Eugenia, both their derived surface composition (enstatite and amorphous silicates) and low density (<1.5 g cm{sup −3}) suggest that these bodies accreted from the same building blocks, namely chondritic porous, pyroxene-rich IDPs and volatiles (mostly water ice), and that a significant volume fraction of these bodies has remained unaffected by hydrothermal activity likely implying a late accretion. In addition, their current heliocentric distance may best explain the presence or absence of water ice at their surfaces. Finally, we raise the possibility that CI chondrites, Tagish-Lake-like material, or hydrated IDPs may be representative samples of the cores of these bodies.« less

  17. Different Origins or Different Evolutions? Decoding the Spectral Diversity Among C-type Asteroids

    NASA Astrophysics Data System (ADS)

    Vernazza, P.; Castillo-Rogez, J.; Beck, P.; Emery, J.; Brunetto, R.; Delbo, M.; Marsset, M.; Marchis, F.; Groussin, O.; Zanda, B.; Lamy, P.; Jorda, L.; Mousis, O.; Delsanti, A.; Djouadi, Z.; Dionnet, Z.; Borondics, F.; Carry, B.

    2017-02-01

    Anhydrous pyroxene-rich interplanetary dust particles (IDPs) have been proposed as surface analogs for about two-thirds of all C-complex asteroids. However, this suggestion appears to be inconsistent with the presence of hydrated silicates on the surfaces of some of these asteroids, including Ceres. Here, we report the presence of enstatite (pyroxene) on the surface of two C-type asteroids (Ceres and Eugenia) based on their spectral properties in the mid-infrared range. The presence of this component is particularly unexpected in the case of Ceres, because most thermal evolution models predict a surface consisting of hydrated compounds only. The most plausible scenario is that Ceres’ surface has been partially contaminated by exogenous enstatite-rich material, possibly coming from the Beagle asteroid family. This scenario questions a similar origin for Ceres and the remaining C-types, and it possibly supports recent results obtained by the Dawn mission (NASA) that Ceres may have formed in the very outer solar system. Concerning the smaller D ˜ 200 km C-types such as Eugenia, both their derived surface composition (enstatite and amorphous silicates) and low density (<1.5 g cm-3) suggest that these bodies accreted from the same building blocks, namely chondritic porous, pyroxene-rich IDPs and volatiles (mostly water ice), and that a significant volume fraction of these bodies has remained unaffected by hydrothermal activity likely implying a late accretion. In addition, their current heliocentric distance may best explain the presence or absence of water ice at their surfaces. Finally, we raise the possibility that CI chondrites, Tagish-Lake-like material, or hydrated IDPs may be representative samples of the cores of these bodies.

  18. Origin and mechanisms of high salinity in Hombolo Dam and groundwater in Dodoma municipality Tanzania, revealed

    NASA Astrophysics Data System (ADS)

    Shemsanga, Ceven; Muzuka, Alfred Nzibavuga Nyarubakula; Martz, Lawrance; Komakech, Hans Charles; Elisante, Eliapenda; Kisaka, Marry; Ntuza, Cosmas

    2017-10-01

    The Hombolo dam (HD), in central Tanzania, is a shallow reservoir characterized by high salinity that limits its use for human activities. The origin of the salinity, mechanisms of reaching and concentrating in the dam remain unclear. These were assessed using hydrogeochemical facies, water type evolutions and mapping. The source of HD salinity was identified to be shallow groundwater (SG) and runoff from a seasonal floodplain with NaCl-rich lithological materails, along Little Kinyasungwe River that feeds the dam. The NaCl-rich lithological units, about 5-7 km upstream of the dam, were highly concentrated with NaCl to the extent that the local community was commercially separating table salt from them. The physicochemical parameters from these NaCl-rich lithological materials were well represented in HD and nearby groundwater sources, which suggests active water interactions. Water type evolution and surface hydrology assessments clearly showed that SG in the salty-floodplain was influenced by evaporation (ET) and was periodically carried to the HD. Clearly; HD water had high chemical similarity with the nearby SG. This agrees with previous studies that HD is partly fed by the local aquifer. However, this is the first attempt at mapping its physical origin. The origin of HD salinity was further supported by the spatial distribution of electrical conductivity (EC), where very high EC (up to 21,230 μScm-1) was recorded in SG within the NaCl-rich lithological unit while water sources far away from the NaCl-rich materials had much lower EC values. Thus, the study disagrees with previous conclusions that HD salinity was sorely due to high dam surface ET but is primarily due to geological reasons. Comparisons of HD with a nearby Matumbulu dam (MD), another earthen dam in climatologically similar settings, reveals that MD water was less saline/mineralised. This further shows that HD high salinity is most likely a geologic phenomenon, but local climatic factors, namely high ET, decreasing rainfall and warming trends are likely to have concentrated the salts further. Although HD is widely/ideally used for grape vine irrigation, it was clearly revealed that its prolonged usage would potentially affect the soil and grape productivity due to high salinity.

  19. Environmental Setting and the Effects of Natural and Human-Related Factors on Water Quality and Aquatic Biota, Oahu, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.; Brasher, Anne M.D.

    2003-01-01

    The island of Oahu is the third largest island of the State of Hawaii, and is formed by the eroded remnants of the Waianae and Koolau shield volcanoes. The landscape of Oahu ranges from a broad coastal plain to steep interior mountains. Rainfall is greatest in the mountainous interior parts of the island, and lowest near the southwestern coastal areas. The structure and form of the two volcanoes in conjunction with processes that have modified the original surfaces of the volcanoes control the hydrologic setting. The rift zones of the volcanoes contain dikes that tend to impede the flow of ground water, leading to high ground-water levels in the dike-impounded ground-water system. In the windward (northeastern) part of the island, dike-impounded ground-water levels may reach the land surface in stream valleys, resulting in ground-water discharge to streams. Where dikes are not present, the volcanic rocks are highly permeable, and a lens of freshwater overlies a brackish-water transition zone separating the freshwater from saltwater. Ground water discharges to coastal springs and streams where the water table in the freshwater-lens system intersects the land surface. The Waianae and Koolau Ranges have been deeply dissected by numerous streams. Streams originate in the mountainous interior areas and terminate at the coast. Some streams flow perennially throughout their entire course, others flow perennially over parts of their course, and the remaining streams flow during only parts of the year throughout their entire course. Hawaiian streams have relatively few native species compared to continental streams. Widespread diverse orders of insects are absent from the native biota, and there are only five native fish, two native shrimp, and a few native snails. The native fish and crustaceans of Hawaii's freshwater systems are all amphidromous (adult lives are spent in streams, and larval periods as marine or estuarine zooplankton). During the 20th century, land-use patterns on Oahu reflected increases in population and decreases in large-scale agricultural operations over time. The last two remaining sugarcane plantations on Oahu closed in the mid-1990's, and much of the land that once was used for sugarcane now is urbanized or used for diversified agriculture. Although two large pineapple plantations continue to operate in central Oahu, some of the land previously used for pineapple cultivation has been urbanized. Natural and human-related factors control surface- and ground-water quality and the distribution and abundance of aquatic biota on Oahu. Natural factors that may affect water quality include geology, soils, vegetation, rainfall, ocean-water quality, and air quality. Human-related factors associated with urban and agricultural land uses also may affect water quality. Ground-water withdrawals may cause saltwater intrusion. Pesticides and fertilizers that were used in agricultural or urban areas have been detected in surface and ground water on Oahu. In addition, other organic compounds associated with urban uses of chemicals have been detected in surface and ground water on Oahu. The effects of urbanization and agricultural practices on instream and riparian areas in conjunction with a proliferation of nonnative fish and crustaceans have resulted in a paucity of native freshwater macrofauna on Oahu. A variety of pesticides, nutrients, and metals are associated with urban and agricultural land uses, and these constituents can affect the fish and invertebrates that live in the streams.

  20. In-situ composition analysis of dust particles originating from Europa and Ganymede in future missions and its scientific value

    NASA Astrophysics Data System (ADS)

    Sternovsky, Z.; Gruen, E.; Postberg, F.; Srama, R.; Kempf, S.; Horanyi, M.

    2009-12-01

    In the upcoming joint ESA/NASA mission two flagship spacecraft wills be launched to study the Jovian system. In the second phase of operation the spacecrafts will settle into orbits around Ganymede and Europa, respectively. Of primary interests are the characterization of the icy shells, the global surface composition and chemistry in order to understand geological evolution, confirm the presence of liquid water under the icy core and investigate the habitability of these interesting planetary objects. On their orbit around the moons, the spacecrafts will be bombarded by micron-sized particles originating from the surface. These dust particles are kicked-up to high altitudes by the continual micrometeoroid bombardment of the surface. This permanently present dust cloud enshrouding the moons has already been detected by the Galileo spacecraft. These particles are a direct link to the place of origin (surface) and their composition can be analyzed by existing instruments. The mass analysis is based on the time-of-flight mass analysis of the ions generated upon the impact of the dust on the instrument’s target surface. The high scientific value of this method was recently demonstrated by the analysis of particles originating from Enceladus’s plumes by the Cosmic Dust Analyzer onboard the Cassini spacecraft [Postberg et al., Nature 459, 1098, 2009]. This analyzing method is particularly sensitive to salts and other minerals as well as organic compounds embedded in the ice as the ionization of these is greatly enhanced. (Resent experiments showed that we are sensitive to organic compounds at least down to 0.001% mixing ratio). The small abundance of these elements are difficult to detect by other methods, yet they are considerable scientific significance as proof of interaction between the rocky core and the liquid water underneath the icy surface, for example. In this presentation we review capabilities of the existing instrument and the applicability of this method to Europa and Ganymede. The speed of a spacecraft orbiting either of the moons will be > 1 km/s, which is sufficient to get chemical information from a highly resolved impact ionization mass spectrum. Instruments far exceeding the sensitivity and mass resolution of CDA are now available and can greatly enhance the science return and answer many question of the next Jupiter mission.

  1. On improving cold region hydrological processes in the Canadian Land Surface Scheme

    NASA Astrophysics Data System (ADS)

    Ganji, Arman; Sushama, Laxmi; Verseghy, Diana; Harvey, Richard

    2017-01-01

    Regional and global climate model simulated streamflows for high-latitude regions show systematic biases, particularly in the timing and magnitude of spring peak flows. Though these biases could be related to the snow water equivalent and spring temperature biases in models, a good part of these biases is due to the unaccounted effects of non-uniform infiltration capacity of the frozen ground and other related processes. In this paper, the treatment of frozen water in the Canadian Land Surface Scheme (CLASS), which is used in the Canadian regional and global climate models, is modified to include fractional permeable area, supercooled liquid water and a new formulation for hydraulic conductivity. The impact of these modifications on the regional hydrology, particularly streamflow, is assessed by comparing three simulations performed with the original and two modified versions of CLASS, driven by atmospheric forcing data from the European Centre for Medium-Range Weather Forecast (ECMWF) reanalysis (ERA-Interim) for the 1990-2001 period over a northeast Canadian domain. The two modified versions of CLASS differ in the soil hydraulic conductivity and matric potential formulations, with one version being based on formulations from a previous study and the other one is newly proposed. Results suggest statistically significant decreases in infiltration and therefore soil moisture during the snowmelt season for the simulation with the new hydraulic conductivity and matric potential formulations and fractional permeable area concept compared to the original version of CLASS, which is also reflected in the increased spring surface runoff and streamflows in this simulation with modified CLASS over most of the study domain. The simulated spring peaks and their timing in this simulation are also in better agreement to those observed. This study thus demonstrates the importance of treatment of frozen water for realistic simulation of streamflows.

  2. The origin of high sulfate concentrations in a coastal plain aquifer, Long Island, New York

    USGS Publications Warehouse

    Brown, C.J.; Schoonen, M.A.A.

    2004-01-01

    Ion-exchange batch experiments were run on Cretaceous (Magothy aquifer) clay cores from a nearshore borehole and an inland borehole on Long Island, NY, to determine the origin of high SO42- concentrations in ground water. Desorption batch tests indicate that the amounts of SO 42- released from the core samples are much greater (980-4700 ??g/g of sediment) than the concentrations in ground-water samples. The locally high SO42- concentrations in pore water extracted from cores are consistent with the overall increase in SO 42- concentrations in ground water along Magothy flow paths. Results of the sorption batch tests indicate that SO42- sorption onto clay is small but significant (40-120 ??g/g of sediment) in the low-pH (<5) pore water of clays, and a significant part of the SO42- in Magothy pore water may result from the oxidation of FeS2 by dissolved Fe(III). The acidic conditions that result from FeS2 oxidation in acidic pore water should result in greater sorption of SO42- and other anions onto protonated surfaces than in neutral-pH pore water. Comparison of the amounts of Cl- released from a clay core sample in desorption batch tests (4 ??g/g of sediment) with the amounts of Cl- sorbed to the same clay in sorption tests (3.7-5 ??g/g) indicates that the high concentrations of Cl- in pore water did not originate from connate seawater but were desorbed from sediment that was previously in contact with seawater. Furthermore, a hypothetical seawater transgression in the past is consistent with the observed pattern of sorbed cation complexes in the Magothy cores and could be a significant source of high SO42- concentrations in Magothy ground water.

  3. Tidally-driven Surface Flow in a Georgia Estuarine Saltmarsh

    NASA Astrophysics Data System (ADS)

    Young, D.; Bruder, B. L.; Haas, K. A.; Webster, D. R.

    2016-02-01

    Estuarine saltmarshes are diverse, valuable, and productive ecosystems. Vegetation dampens wave and current energy, thereby allowing the estuaries to serve as a nursery habitat for shellfish and fish species. Tidally-driven flow transports nutrients into and out of the estuary, nourishing inshore and offshore vegetation and animals. The effects of vegetation on the marsh hydrodynamics and on the estuary creek and channel flow are, unfortunately, poorly understood, and the knowledge that does exist primarily originates from modeling studies. Field studies addressing marsh surface flows are limited due to the difficulty of accurately measuring the water surface elevation and acquiring concurrent velocity measurements in the dense marsh vegetation. This study partially bridges the gap between the model observations of marsh flow driven by water surface elevation gradients and flume studies of flow through vegetation. Three current meters and three pressure transducers were deployed for three days along a transect perpendicular to the main channel (Little Ogeechee River) in a saltmarsh adjacent to Rose Dhu Island (Savannah, Georgia, USA). The pressure transducer locations were surveyed daily with static GPS yielding highly accurate water surface elevation data. During flood and ebb tide, water surface elevation differences between the marsh and Little Ogeechee River were observed up to 15 cm and pressure gradients were observed up to 0.0017 m of water surface elevation drop per m of linear distance. The resulting channel-to-saltmarsh pressure gradients substantially affected tidal currents at all current meters. At one current meter, the velocity was nearly perpendicular to the Little Ogeechee River bank. The velocity at this location was effectively modeled as a balance between the pressure gradient and marsh vegetation-induced drag force using the Darcy-Weisbach/Lindner's equations developed for flow-through-vegetation analysis in open channel flow.

  4. Covalent attachment of phospholipid analogous polymers to modify a polymeric membrane surface: a novel approach.

    PubMed

    Xu, Zhi-Kang; Dai, Qing-Wen; Wu, Jian; Huang, Xiao-Jun; Yang, Qian

    2004-02-17

    A novel method for the surface modification of a microporous polypropylene membrane by tethering phospholipid analogous polymers (PAPs) is given, which includes the photoinduced graft polymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA) and the ring-opening reaction of grafted poly-(DMAEMA) with 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes. Five 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes, containing octyloxy, dodecyloxy, tetradecyloxy, hexadecyloxy, and octadecyloxy groups in the molecular structure, were used to fabricate the PAP-modified polypropylene membranes. The attenuated total reflectance FT-IR spectra of the original, poly(DMAEMA)-grafted, and PAP-modified membranes confirmed the chemical changes on the membrane surface. Scanning electron microscope pictures showed that, compared with the original membrane, the surface porosities ofpoly(DMAEMA)-grafted and PAP-modified membranes were somewhat reduced. Water contact angles measured by the sessile drop method on PAP-modified membranes were slightly lower than that on the original polypropylene membrane, but higher than those on poly(DMAEMA)-grafted membranes with the exception of octyloxy-containing PAP-modified membranes. However, BSA adsorption experiments indicated that the five PAP-modified membranes had a much better protein-resistant property than the original polypropylene membrane and the poly(DMAEMA)-grafted membranes. For hexadecyloxy- and octadecyloxy-containing PAP-modified membranes, almost no protein adsorption was observed when the grafting degree was above 6 wt %. It was also found that the platelet adhesion was remarkably suppressed on the PAP-modified membranes. All these results demonstrate that the described approach is an effective way to improve the surface biocompatibility for polymeric membranes.

  5. Influence of sea level rise on iron diagenesis in an east Florida subterranean estuary

    USGS Publications Warehouse

    Roy, M.; Martin, J.B.; Cherrier, J.; Cable, J.E.; Smith, C.G.

    2010-01-01

    Subterranean estuary occupies the transition zone between hypoxic fresh groundwater and oxic seawater, and between terrestrial and marine sediment deposits. Consequently, we hypothesize, in a subterranean estuary, biogeochemical reactions of Fe respond to submarine groundwater discharge (SGD) and sea level rise. Porewater and sediment samples were collected across a 30-m wide freshwater discharge zone of the Indian River Lagoon (Florida, USA) subterranean estuary, and at a site 250. m offshore. Porewater Fe concentrations range from 0.5 ??M at the shoreline and 250. m offshore to about 286 ??M at the freshwater-saltwater boundary. Sediment sulfur and porewater sulfide maxima occur in near-surface OC-rich black sediments of marine origin, and dissolved Fe maxima occur in underlying OC-poor orange sediments of terrestrial origin. Freshwater SGD flow rates decrease offshore from around 1 to 0.1. cm/day, while bioirrigation exchange deepens with distance from about 10. cm at the shoreline to about 40. cm at the freshwater-saltwater boundary. DOC concentrations increase from around 75 ??M at the shoreline to as much as 700 ??M at the freshwater-saltwater boundary as a result of labile marine carbon inputs from marine SGD. This labile DOC reduces Fe-oxides, which in conjunction with slow discharge of SGD at the boundary, allows dissolved Fe to accumulate. Upward advection of fresh SGD carries dissolved Fe from the Fe-oxide reduction zone to the sulfate reduction zone, where dissolved Fe precipitates as Fe-sulfides. Saturation models of Fe-sulfides indicate some fractions of these Fe-sulfides get dissolved near the sediment-water interface, where bioirrigation exchanges oxic surface water. The estimated dissolved Fe flux is approximately 0.84 ??M Fe/day per meter of shoreline to lagoon surface waters. Accelerated sea level rise predictions are thus likely to increase the Fe flux to surface waters and local primary productivity, particularly along coastlines where groundwater discharges through sediments. ?? 2010 Elsevier Ltd.

  6. Venus: The case for a wet origin and a runaway greenhouse

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1992-01-01

    To one interested in atmospheric evolution, the most intriguing aspect of our neighboring planet Venus is its lack of water. Measurements made by Pioneer Venus and by Several Venera spacecraft indicate that the present water abundance in Venus' lower atmosphere is of the order of 20 to 200 ppmv, or 3 x 10( exp -6) to 3 x 10 (exp -5) of the amount of water in Earth's oceans. The exact depletion factor is uncertain, in part because of an unexplained vertical gradient in H2O concentration in the lowest 10 km of the venusian atmosphere, but the general scarcity of water is well established. The interesting question, then, is: Was venus deficient in water when it formed and, if not, where did its water go? The conclusion that Venus was originally wet is consistent with its large endowment of other volatiles and with the enhanced D/H ratio in the present atmosphere. The most likely mechanism by which Venus could have lost its water is by the development of a runaway or moist greenhouse atmosphere followed by photodissociation of water vapor and escape of hydrogen to space. Climate model calculations that neglect cloud albedo feedback predict the existence of two critical transitions in atmospheric behavior at high solar fluxes: (1) at a solar flux of approximately 1.1 times the value at Earth's orbit, S(o), the abundance of stratospheric water vapor increases dramatically, permitting rapid escape of hydrogen to space (termed a moist greenhouse) and (2) at a solar flux of approximately 1.4 S(o), the oceans vaporize entirely, creating a true runaway greenhouse. If cloudiness increases at high surface temperatures, as seems likely, and if the dominant effect of clouds is to cool the planet by reflecting incident solar radiation, the actual solar flux required to create moist or runaway conditions would be higher than the values quoted above. Early in solar system history, solar luminosity was about 25 percent to 30 percent less than today, putting the flux at Venus' orbit in the range of 1.34 S(o) to 1.43 S(o). Thus, it is possible that Venus had liquid water on its surface for several hundred million years following its formation. Paradoxically, this might have facilitated water loss by sequestering atmospheric CO2 in carbonate rocks and by providing an effective medium for surface oxidation.

  7. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water.

    PubMed

    Blake, R W

    2009-03-01

    The origins and effects of wave drag at and near the surface and in shallow water are discussed in terms of the dispersive waves generated by streamlined technical bodies of revolution and by semi-aquatic and aquatic animals with a view to bearing on issues regarding the design and function of autonomous surface and underwater vehicles. A simple two-dimensional model based on energy flux, allowing assessment of drag and its associated wave amplitude, is applied to surface swimming in Lesser Scaup ducks and is in good agreement with measured values. It is argued that hydrodynamic limitations to swimming at speeds associated with the critical Froude number ( approximately 0.5) and hull speed do not necessarily set biological limitations as most behaviours occur well below the hull speed. From a comparative standpoint, the need for studies on the hull displacement of different forms is emphasized. For forms in surface proximity, drag is a function of both Froude and Reynolds numbers. Whilst the depth dependence of wave drag is not particularly sensitive to Reynolds number, its magnitude is, with smaller and slower forms subject to relatively less drag augmentation than larger, faster forms that generate additional resistance due to ventilation and spray. A quasi-steady approach to the hydrodynamics of swimming in shallow water identifies substantial drag increases relative to the deeply submerged case at Froude numbers of about 0.9 that could limit the performance of semi-aquatic and aquatic animals and autonomous vehicles. A comparative assessment of fast-starting trout and upside down catfish shows that the energy losses of fast-starting fish are likely to be less for fish in surface proximity in deep water than for those in shallow water. Further work on unsteady swimming in both circumstances is encouraged. Finally, perspectives are offered as to how autonomous surface and underwater vehicles in surface proximity and shallow water could function to avoid prohibitive hydrodynamic resistance, thereby increasing their operational life.

  8. Seep and stream nitrogen dynamics in two adjacent mixed land use watersheds

    USDA-ARS?s Scientific Manuscript database

    In many headwater catchments, stream flow originates from surface seeps and springs. The objective of this study was to determine the influence of seeps on nitrogen (N) dynamics within the stream and at the outlet of two adjacent mixed land use watersheds. Nitrogen concentrations in stream water wer...

  9. Quality of surface water at selected sites in the Suwannee River basin, Florida

    USGS Publications Warehouse

    Coffin, J.E.

    1982-01-01

    This report presents the results of analyses of water-quality samples collected from 14 surface-water sites in the Suwannee River basin in Florida from January through December 1980. The analyses of samples collected routinely included: nutrients, total organic carbon, and 5-day biochemical oxygen demand, bimonthly; and trace metals, annually. The array of constituents sampled was expanded in October 1978 at three of the original nine stations to provide quality-of-water information for streams draining an industrial area: Rocky Creek near Belmont, Hunter Creek near Belmont, and Swift Creek at Facil. Data collected at these three sites now include: major chemical constituents, six times per year: radium-226, two times per year; and trace metals, one time per year. These constituents are determined in addition to nutrients, total organic carbon, and bio-chemical oxygen demand which continue to be analyzed six times per year. All results of analyses of the water-quality samples collected from January through December 1980 remained within, or near, previously measured ranges and water-quality fluctuations were similar to those noted from data collected since 1971. (USGS)

  10. In vitro enamel erosion associated with commercially available original and sour candies

    PubMed Central

    Wagoner, Stephanie N.; Marshall, Teresa A.; Qian, Fang; Wefel, James S.

    2009-01-01

    Background Exposure to acidic foods and beverages is thought to increase risk of dental erosion. We hypothesized that the erosion potential of sour candies was greater than the erosion potentials of original candies. Methods The pH and titratable acidity of candies dissolved in artificial saliva or water were measured. Lesion depths of enamel surfaces exposed to candy slurries for 25 hours were measured. Statistics included two sample t-tests and Wilcoxon rank-sum tests to identify differences between original and sour candies and correlations to identify relationships between lesion depths, pH and titratable acidity. Results Lesion depths were generally higher following exposure to sour candies compared to original candies, and for candies dissolved in water compared to artificial saliva. Lesion depths were negatively associated with initial slurry pH and positively associated with titratable acidity. Conclusions Both original and sour candies are potentially erosive, with sour candies being of greater concern. Although saliva might protect against the erosive effects of original candies, saliva is much less likely to protect against the erosive effects of sour candies. Clinical Implications Individuals at risk for candy-associated erosion, particularly those with high intakes, pocketing behaviors or decreased salivary flow, should be provided preventive guidance regarding candy habits. PMID:19571054

  11. Size effects in MgO cube dissolution.

    PubMed

    Baumann, Stefan O; Schneider, Johannes; Sternig, Andreas; Thomele, Daniel; Stankic, Slavica; Berger, Thomas; Grönbeck, Henrik; Diwald, Oliver

    2015-03-10

    Stability parameters and dissolution behavior of engineered nanomaterials in aqueous systems are critical to assess their functionality and fate under environmental conditions. Using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, we investigated the stability of cubic MgO particles in water. MgO dissolution proceeding via water dissociation at the oxide surface, disintegration of Mg(2+)-O(2-) surface elements, and their subsequent solvation ultimately leads to precipitation of Mg(OH)2 nanosheets. At a pH ≥ 10, MgO nanocubes with a size distribution below 10 nm quantitatively dissolve within few minutes and convert into Mg(OH)2 nanosheets. This effect is different from MgO cubes originating from magnesium combustion in air. With a size distribution in the range 10 nm ≤ d ≤ 1000 nm they dissolve with a significantly smaller dissolution rate in water. On these particles water induced etching generates (110) faces which, above a certain face area, dissolve at a rate equal to that of (100) planes.1 The delayed solubility of microcrystalline MgO is attributed to surface hydroxide induced self-inhibition effects occurring at the (100) and (110) microplanes. The present work underlines the importance of morphology evolution and surface faceting of engineered nanomaterials particles during their dissolution.

  12. Field Verification Program (Upland Disposal): Prediction of Surface Runoff Water Quality from Black Rock Harbor Dredged Material Placed in an Upland Disposal Site.

    DTIC Science & Technology

    1987-03-01

    Simulator was similar to the original rotating disk-type rainfall simulator but had several important design modifications ( Westerdahl and Skogerboe...exist- ing vegetation on the soil surface ( Westerdahl and Skogerboe 1982). A multiple-peaked natural storm event was selected from field data and pro... Westerdahl and Skogerboe 1982) and has been used as a standard storm event for comparison to natural storm events (Laws and Parsons 1943). Similar

  13. Variability of trace-metal fluxes through the Strait of Gibraltar

    NASA Astrophysics Data System (ADS)

    van Geen, Alexander; Boyle, Edward

    1990-10-01

    Three water masses originating in the Atlantic and entering the Alboran Sea through the Strait of Gibraltar have recently been identified on the basis of salinity and Cu, Ni, Cd and Zn concentrations. The endmembers are (1) Atlantic surface water, (2) North Atlantic Central Water and (3) Spanish shelf water. Spanish shelf water is of particular relevance to the trace-metal composition of the inflow to the Mediterranean Sea because this water mass is highly enriched in Cu, Cd and Zn relative to Atlantic surface water. Here, a conservative mixing model is solved for the above Atlantic endmembers, (with the addition of (4) a Mediterranean deep-water endmember) by weighted least-squares and shown to be consistent with tracer data for 42 surface samples collected in April '86 within the Strait of Gibraltar. Sensitivity of the solution to errors in the data and the assumptions of the model are discussed in detail. Uncertainties in the proportions of metal-enriched Spanish shelf water and NACW are (at most) on the order of 6 and 16%, respectively, and often smaller depending on the composition of a given sample. The inversion shows that Spanish shelf water is present predominantly in the northern half of the Strait and contributes up to 55% to Alboran Sea surface samples. Determining a representative composition of the inflow is complicated, however, by rapid change in the proportion of the three Atlantic endmembers present in the Strait of Gibraltar: entrainment of Spanish shelf water through the Strait roughly doubles between April 11 and 17. We show that the timing of collection of these samples minimizes a potential bias in endmember distributions simply due to variable tidal currents. The increase in entrainment of Spanish shelf water from neap tide to spring tide could, therefore, reflect a significant shift to the north of source waters to the Atlantic inflow over the course of a week. The data show that entrainment of Spanish shelf water is a significant source of the increased Cu, Cd and Zn concentrations observed in the Mediterranean relative to open Atlantic surface water, and this source may even account for the greater part of the Mediterranean enrichments.

  14. Sulfidic Anion Concentrations on Early Earth for Surficial Origins-of-Life Chemistry.

    PubMed

    Ranjan, Sukrit; Todd, Zoe R; Sutherland, John D; Sasselov, Dimitar D

    2018-04-08

    A key challenge in origin-of-life studies is understanding the environmental conditions on early Earth under which abiogenesis occurred. While some constraints do exist (e.g., zircon evidence for surface liquid water), relatively few constraints exist on the abundances of trace chemical species, which are relevant to assessing the plausibility and guiding the development of postulated prebiotic chemical pathways which depend on these species. In this work, we combine literature photochemistry models with simple equilibrium chemistry calculations to place constraints on the plausible range of concentrations of sulfidic anions (HS - , HSO 3 - , SO 3 2- ) available in surficial aquatic reservoirs on early Earth due to outgassing of SO 2 and H 2 S and their dissolution into small shallow surface water reservoirs like lakes. We find that this mechanism could have supplied prebiotically relevant levels of SO 2 -derived anions, but not H 2 S-derived anions. Radiative transfer modeling suggests UV light would have remained abundant on the planet surface for all but the largest volcanic explosions. We apply our results to the case study of the proposed prebiotic reaction network of Patel et al. ( 2015 ) and discuss the implications for improving its prebiotic plausibility. In general, epochs of moderately high volcanism could have been especially conducive to cyanosulfidic prebiotic chemistry. Our work can be similarly applied to assess and improve the prebiotic plausibility of other postulated surficial prebiotic chemistries that are sensitive to sulfidic anions, and our methods adapted to study other atmospherically derived trace species. Key Words: Early Earth-Origin of life-Prebiotic chemistry-Volcanism-UV radiation-Planetary environments. Astrobiology 18, xxx-xxx.

  15. Uncovering the Chemistry of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Zeng, Li; Sasselov, Dimitar; Jacobsen, Stein

    2015-08-01

    We propose to use the evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet’s rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called “late veneer”. The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet’s surface, which are crucial for life to occur. Here we build an integrative model of Earth-like planets from the bottom up. Thus the chemical compositions of Earth-like planets could be inferred from their mass-radius relations and their host stars’ elemental abundances, and the origins of volatile contents (especially water) on their surfaces could be understood, and thereby shed light on the origins of life on them. This elemental abundance model could be applied to other rocky exoplanets in exoplanet systems.

  16. Uncovering the Chemistry of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Jacobsen, S. B.; Sasselov, D. D.

    2015-12-01

    We propose to use the evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet's rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called "late veneer". The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet's surface, which are crucial for life to occur. Here we build an integrative model of Earth-like planets from the bottom up. Thus the chemical compositions of Earth-like planets could be inferred from their mass-radius relations and their host stars' elemental abundances, and the origins of volatile contents (especially water) on their surfaces could be understood, and thereby shed light on the origins of life on them. This elemental abundance model could be applied to other rocky exoplanets in exoplanet systems.

  17. Coupling Stable Water Isotopes in Vapor and Precipitation to Raindrop Size Distributions at a Mid-latitude Tall-tower Site to Evaluate the Role of Rain Evaporation in Boundary Layer Moisture Recycling

    NASA Astrophysics Data System (ADS)

    Kaushik, A.; Noone, D.

    2016-12-01

    The continental boundary layer moisture balance plays an important role in regulating water and energy exchange between the surface and the atmosphere, yet the mechanisms associated with moistening and drying are both poorly observed and modeled. Stable water isotope ratio measurements can provide insights into air mass origins, convection dynamics and mechanisms dominating atmosphere-land surface water fluxes. Profiles can be exploited to improve estimates of boundary layer moistening associated with evaporation of falling precipitation and contributions from surface evapotranspiration. We present two years of in situ tower-based measurements of isotope ratios of water vapor and precipitation (δD and δ18O) and raindrop size distributions from the Boulder Atmospheric Observatory (BAO) tall-tower site in Erie, Colorado. Isotope vapor measurements were made at 1 Hz with a full cycle from the surface to 300 meters recorded every 80 minutes. At the surface and 300m, water samples were collected during precipitation events and raindrop sizes were measured continuously using Parsivel instruments. We use this unique suite of measurements and, in particular, exploit the differences between the surface and 300m observations to constrain the surface layer hydrological mass balance during and after rain events, and evaluate parameterization choices for rain evaporation and moisture recycling in current isotope-enabled climate models. Aggregate raindrop size measurements showed shifts from populations of smaller raindrops at 300m to larger raindrops at the surface, contrary to what is expected for rain evaporation. Convective storms resulted in more uniform signatures between the surface and 300m, as well as longer isotope equilibration and adjustment time scales, whereas low Dexcess signatures (<9 to negative) during stratiform drizzle events were indicative of a greater degree of rain evaporation. Our observational results suggest that water vapor-rain equilibration is rarely achieved, and modification of the kinetic fractionation factor is necessary to better capture drop-size related isotope changes. This has implications not only for refining current global climate models, but also for interpreting proxy records connected to rainfall signatures that aid in understanding past hydrology.

  18. Biogeochemical processes controlling density stratification in an iron-meromictic lake

    NASA Astrophysics Data System (ADS)

    Nixdorf, E.; Boehrer, B.

    2015-06-01

    Biogeochemical processes and mixing regime of a lake can control each other mutually. The prominent case of iron meromixis is investigated in Waldsee near Doebern, a small lake that originated from surface mining of lignite. From a four years data set of monthly measured electrical conductivity profiles, we calculated summed conductivity as a quantitative variable reflecting the amount of electro-active substances in the entire lake. Seasonal variations followed changing chemocline height. Coinciding changes of electrical conductivities in the monimolimnion indicated that a considerable share of substances, precipitated by the advancing oxygenated epilimnion, re-dissolved in the remaining anoxic deep waters and contributed considerably to the density stratification. In addition, we constructed a lab experiment, in which aeration of monimolimnetic waters removed iron compounds and organic material. Precipitates could be identified by visual inspection. Introduced air bubbles ascended through the water column and formed a water mass similar to the mixolimnetic Waldsee water. The remaining less dense water remained floating on the nearly unchanged monimolimnetic water. In conclusion, iron meromixis as seen in Waldsee did not require two different sources of incoming waters, but the inflow of iron rich deep groundwater and the aeration through the lake surface were fully sufficient.

  19. Elucidating the role of many-body forces in liquid water. I. Simulations of water clusters on the VRT(ASP-W) potential surfaces.

    PubMed

    Goldman, Nir; Saykally, R J

    2004-03-08

    We test two new potentials for water, fit to vibration-rotation tunneling (VRT) data by employing diffusion quantum Monte Carlo simulations to calculate the vibrational ground-state properties of water clusters. These potentials, VRT(ASP-W)II and VRT(ASP-W)III, are fits of the highly detailed ASP-W (anisotropic site potential with Woermer dispersion) ab initio potential to (D(2)O)(2) microwave and far-infrared data, and along with the SAPT5s (five-site symmetry adapted perturbation theory) potentials, are the most accurate water dimer potential surfaces in the literature. The results from VRT(ASP-W)II and III are compared to those from the original ASP-W potential, the SAPT5s family of potentials, and several bulk water potentials. Only VRT(ASP-W)III and the spectroscopically "tuned" SAPT5st (with N-body induction included) accurately reproduce the vibrational ground-state structures of water clusters up to the hexamer. Finally, the importance of many-body induction and three-body dispersion are examined, and it is shown that the latter can have significant effects on water cluster properties despite its small magnitude.

  20. Elucidating the role of many-body forces in liquid water. I. Simulations of water clusters on the VRT(ASP-W) potential surfaces

    NASA Astrophysics Data System (ADS)

    Goldman, Nir; Saykally, R. J.

    2004-03-01

    We test two new potentials for water, fit to vibration-rotation tunneling (VRT) data by employing diffusion quantum Monte Carlo simulations to calculate the vibrational ground-state properties of water clusters. These potentials, VRT(ASP-W)II and VRT(ASP-W)III, are fits of the highly detailed ASP-W (anisotropic site potential with Woermer dispersion) ab initio potential to (D2O)2 microwave and far-infrared data, and along with the SAPT5s (five-site symmetry adapted perturbation theory) potentials, are the most accurate water dimer potential surfaces in the literature. The results from VRT(ASP-W)II and III are compared to those from the original ASP-W potential, the SAPT5s family of potentials, and several bulk water potentials. Only VRT(ASP-W)III and the spectroscopically "tuned" SAPT5st (with N-body induction included) accurately reproduce the vibrational ground-state structures of water clusters up to the hexamer. Finally, the importance of many-body induction and three-body dispersion are examined, and it is shown that the latter can have significant effects on water cluster properties despite its small magnitude.

  1. OSIRIS-REx Solar Array Illumination Test

    NASA Image and Video Library

    2016-08-05

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, illumination testing is underway on the power-producing solar arrays for the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Targeted for liftoff Sept. 8, 2016, OSIRIS-Rex will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  2. OSIRIS-REx Solar Array Illumination Test

    NASA Image and Video Library

    2016-08-05

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, illumination testing is underway on the power -producing solar arrays for the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Targeted for liftoff Sept. 8, 2016, OSIRIS-Rex will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  3. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    The United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  4. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    After leaving the Vertical Integration Facility, a United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  5. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    The United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth. Photo credit: NASA/Kim Shiflett

  6. Tracking Water-Use in Colorado's Energy Exploration and Development

    NASA Astrophysics Data System (ADS)

    Halamka, T. A.; Ge, S.

    2017-12-01

    By the year 2050 Colorado's population is projected to nearly double, posing many important questions about the stresses that Colorado's water resources will experience. Growing in tandem with Colorado's population is the state's energy exploration and development industry. As water demands increase across the state, the energy exploration and development industry must adapt to and prepare for future difficulties surrounding the legal acquisition of water. The goal of this study is to map out the potential sources of water within the state of Colorado that are being purchased, or will be eligible for purchase, for unconventional subsurface energy extraction. The background of this study includes an overview of the intertwined relationship between water, the energy industry, and the Colorado economy. The project also aims to determine the original purpose of legally appropriated water that is used in Colorado's energy exploration and development. Is the water primarily being purchased or leased from the agricultural sector? Is the water mostly surface water or groundwater? In order to answer these questions, we accessed data from numerous water reporting agencies and examined legal methods of acquisition of water for use in the energy industry. Using these data, we assess the future water quantity available to the energy industry. Knowledge and foresight on the origins of the water used by the energy industry will allow for better and strategic planning of water resources and how the industry will respond to statewide water-related stresses.

  7. Comets, Carbonaceous Meteorites, and the Origin of the Biosphere

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2007-01-01

    Evidence for indigenous microfossils in carbonaceous meteorites suggests that the paradigm of the endogenous origin of life on Earth should be reconsidered. It is now widely accepted that comets and carbonaceous meteorites played an important role in the delivery of water, organics and life critical biogenic elements to the early Earth and facilitated the origin and evolution of the Earth's Biosphere. However; the detection of embedded microfossils and mats in carbonaceous meteorites implies that comets and meteorites may have played a direct role in the delivery of intact microorganisms and that the Biosphere may extend far into the Cosmos. Recent space observations have found the nuclei of comets to have very low albedos (approx.0.03) and. these jet-black surfaces become very hot (T approx. 400 K) near perihelion. This paper reviews recent observational data-on comets and suggests that liquid water pools could exist in cavities and fissures between the internal ices and rocks and the exterior carbonaceous crust. The presence of light and liquid water near the surface of the nucleus enhances the possibility that comets could harbor prokaryotic extremophiles (e.g., cyanobacteria) capable of growth over a wide range of temperatures. The hypothesis that comets are the parent bodies of the CI1 and the CM2 carbonaceous meteorites is advanced. Electron microscopy images will be presented showing forms interpreted as indigenous-microfossils embedded' in freshly. fractured interior surfaces of the Orgueil (CI1) and Murchison (CM2) meteorites. These forms are consistent in size and morphologies with known morphotypes of all five orders of Cyanobacteriaceae: Energy Dispersive X-ray Spectroscopy (EDS) elemental data shows that the meteoritic forms have anomalous C/O; C/N; and C/S as compared with modern extremophiles and cyanobacteria. These images and spectral data indicate that the clearly biogenic and embedded remains cannot be interpreted as recent biological contaminants and'therefore are indigenous'microfossils in the meteorites.

  8. Identification of anthropogenic and natural inputs of sulfate and chloride into the karstic ground water of Guiyang, SW China: combined delta37Cl and delta34S approach.

    PubMed

    Liu, Cong-Qiang; Lang, Yun-Chao; Satake, Hiroshi; Wu, Jiahong; Li, Si-Liang

    2008-08-01

    Because of active exchange between surface and groundwater of a karstic hydrological system, the groundwater of Guiyang, the capital city of Guizhou Province, southwest China, has been seriously polluted by anthropogenic inputs of NO3-, SO4(2-), Cl-, and Na+. In this work, delta37Cl of chloride and delta34S variations of sulfate in the karstic surface/groundwater system were studied, with a main focus to identify contaminant sources, including their origins. The surface, ground, rain, and sewage water studied showed variable delta37Cl and delta34S values, in the range of -4.1 to +2.0 per thousand, and -20.4 to +20.9 per thousand for delta37Cl and delta34S (SO4(2-)), respectively. The rainwater samples yielded the lowest delta37Cl values among those observed to date for aerosols and rainwater. Chloride in the Guiyang area rain waters emanated from anthropogenic sources rather than being of marine origin, probably derived from HCl (g) emitted by coal combustion. By plotting 1/SO4(2-) vs delta34S and 1/Cl- vs delta37Cl, respectively, we were able to identify some clusters of data, which were assigned as atmospheric deposition (acid rain component), discharge from municipal sewage, paleo-brine components in clastic sedimentary rocks, dissolution of gypsum mainly in dolomite, oxidation of sulfide minerals in coal-containing clastic rocks, and possibly degradation of chlorine-containing organic matter. We conclude that human activities give a significant input of sulfate and chloride ions, as well as other contaminants, into the studied groundwater system through enhanced atmospheric deposition and municipal sewage, and that multiple isotopic tracers constitute a powerful tool to ascertain geochemical characteristics and origin of complex contaminants in groundwater.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, Edgar A., E-mail: eae32@cam.ac.uk; Needs, Richard J.; Monserrat, Bartomeu

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range frommore » −1.2 eV for the cubic ice basal surface up to −1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.« less

  10. Water repellent/wetting characteristics of various bio-inspired morphologies and fluid drag reduction testing research.

    PubMed

    Luo, Yuehao; Song, Wen; Wang, Xudong

    2016-03-01

    It is well-known that the bio-inspired sharkskin covering the original pattern has the apparent drag reduction function in the turbulent flowing stations, which can be regarded as "sharkskin effect", and it has progressively been put application into the fluid engineering with obtaining great profits. In this paper, the anisotropic wetting phenomena on sharkskin are discovered, the contact angles and rolling angles on different orientations are not the same. In addition, the hydrodynamic experiments on different sharkskin surfaces are conducted, and the experimental results illustrate that the super-hydrophobic and drag-reducing properties on deformed biological surfaces are improved to some extent compared to the original morphology, which has important significance to expand its practical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The evolution of the Cappadocia Geothermal Province, Anatolia (Turkey): geochemical and geochronological evidence

    NASA Astrophysics Data System (ADS)

    Şener, M. Furkan; Şener, Mehmet; Uysal, I. Tonguç

    2017-12-01

    Cappadocia Geothermal Province (CGP), central Turkey, consists of nine individual geothermal regions controlled by active regional fault systems. This paper examines the age dating of alteration minerals and the geochemistry (trace elements and isotopes) of the alteration minerals and geothermal waters, to assess the evolution of CGP in relation to regional tectonics. Ar-Ar age data of jarosite and alunite show that the host rocks were exposed to oxidizing conditions near the Earth's surface at about 5.30 Ma. Based on the δ18O-δD relationhip, water samples had a high altitude meteoric origin. The δ34S values of jarosite and alunite indicate that water samples from the southern part of the study area reached the surface after circulation through volcanic rocks, while northern samples had traveled to the surface after interacting with evaporates at greater depths. REY (rare earth elements and yttrium) diagrams of alteration minerals (especially illite, jarosite and alunite) from rock samples, taken from the same locations as the water samples, display a similar REY pattern to water samples. This suggests that thermal fluids, which reached the surface along a fault zone and caused the mineral alteration in the past, had similar chemical composition to the current geothermal water. The geothermal conceptual model, which defines a volcanically heated reservoir and cap rocks, suggests there are no structural drawbacks to the use of the CGP geothermal system as a resource. However, fluid is insufficient to drive the geothermal system as a result of scanty supply of meteoric water due to evaporation significantly exceeding rainfall.

  12. Isotope Geochemistry and Chronology of Offshore Ground Water Beneath Indian River Bay, Delaware

    USGS Publications Warehouse

    Böhlke, John Karl; Krantz, David E.

    2003-01-01

    Results of geophysical surveys in Indian River Bay, Delaware, indicate a complex pattern of salinity variation in subestuarine ground water. Fresh ground-water plumes up to about 20 meters thick extending hundreds of meters offshore are interspersed with saline ground water, with varying degrees of mixing along the salinity boundaries. It is possible that these features represent pathways for nutrient transport and interaction with estuarine surface water, but the geophysical data do not indicate rates of movement or nutrient sources and reactions. In the current study, samples of subestuarine ground water from temporary wells with short screens placed 3 to 22 meters below the sediment-water interface were analyzed chemically and isotopically to determine the origins, ages, transport pathways, and nutrient contents of the fresh and saline components. Apparent ground-water ages determined from chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), tritium (3H), and helium isotopes (3He and 4He) commonly were discordant, but nevertheless indicate that both fresh and saline ground waters ranged from a few years to at least 50 years in age. Tritium-helium (3H-3He) ages, tentatively judged to be most reliable, indicate that stratified offshore freshwater plumes originating in distant recharge areas on land were bounded by relatively young saline water that was recharged locally from the overlying estuary. Undenitrified and partially denitrified nitrate of agricultural or mixed origin was transported laterally beneath the estuary in oxic and suboxic fresh ground water. Ammonium produced by anaerobic degradation of organic matter in estuarine sediments was transported downward in suboxic saline ground water around the freshwater plumes. Many of the chemical and isotopic characteristics of the subestuarine ground waters are consistent with conservative mixing of the fresh (terrestrial) and saline (estuarine) endmember water types. These data indicate that freshwater plumes detected by geophysical surveys beneath Indian River Bay represent lateral continuations of the active surficial nitrate-contaminated freshwater flow systems originating on land, but they do not indicate directly the magnitude of fresh ground-water discharge or nutrient exchange with the estuary. There is evidence that some of the terrestrial ground-water nitrate is reduced before discharging directly beneath the estuary. Local estuarine sediment-derived ammonium in saline pore water may be a substantial benthic source of nitrogen in offshore areas of the estuary.

  13. Non-renewable water use on the globe and its implication to sea level change

    NASA Astrophysics Data System (ADS)

    Oki, T.; Pokhrel, Y. N.; Hanasaki, N.; Koirala, S.; Kanae, S.

    2012-12-01

    The real hydrological cycles on the Earth are not natural anymore. Global hydrological model simulations of the water cycle and available water resources should have an ability to consider the effects of human interventions on hydrological cycles. Anthropogenic activity modules, such as reservoir operation, crop growth and water demand in croplands, and environmental flows, were incorporated into a land surface model to form a new model, MAT-HI. Total terrestrial water storages (TWS) in large river basins were estimated using the new model by off-line simulation, and compared with the TWS observed by GRACE for 2002-2007. MAT-HI was further coupled with a module representing the ground water level fluctuations, and consists a new land surface scheme HiGW-MAT (Human Intervention and Ground Water coupled MATSIRO). HiGW-MAT is also associated with a scheme tracing the origin and flow path with the consideration on the sources of water withdrawal from stream flow, medium-size reservoirs and nonrenewable groundwater in addition to precipitation to croplands which enabled the assessment of the origin of water producing major crops. Areas highly dependent on nonrenewable groundwater are detected in the Pakistan, Bangladesh, Western part of India, north and western parts of China, some regions in the Arabian Peninsula, and the western part of the United States through Mexico. Cumulative nonrenewable groundwater withdrawals estimated by the model are corresponding fairly well with the country statistics of total groundwater withdrawals. Ground water table depletions in large aquifers in US estimated by HiGW-MAT were compared with in-situ observational data, and the correspondences are very good. Mean global exploitation of ground water for 2000 estimated by HiGW-MAT is 360 km3/y as an excess of ground water withdrawal over natural recharge into aquifer. This unsustainable groundwater use, together with artificial reservoir water impoundment, climate-driven changes in terrestrial water storage and the loss of water from closed basins, could have contributed a sea-level rise of about 0.77mm/y between 1961 and 2003, about 42% of the observed sea-level rise.

  14. Water-rich planets: How habitable is a water layer deeper than on Earth?

    NASA Astrophysics Data System (ADS)

    Noack, L.; Höning, D.; Rivoldini, A.; Heistracher, C.; Zimov, N.; Journaux, B.; Lammer, H.; Van Hoolst, T.; Bredehöft, J. H.

    2016-10-01

    Water is necessary for the origin and survival of life as we know it. In the search for life-friendly worlds, water-rich planets therefore are obvious candidates and have attracted increasing attention in recent years. The surface H2O layer on such planets (containing a liquid water ocean and possibly high-pressure ice below a specific depth) could potentially be hundreds of kilometres deep depending on the water content and the evolution of the proto-atmosphere. We study possible constraints for the habitability of deep water layers and introduce a new habitability classification relevant for water-rich planets (from Mars-size to super-Earth-size planets). A new ocean model has been developed that is coupled to a thermal evolution model of the mantle and core. Our interior structure model takes into account depth-dependent thermodynamic properties and the possible formation of high-pressure ice. We find that heat flowing out of the silicate mantle can melt an ice layer from below (in some cases episodically), depending mainly on the thickness of the ocean-ice shell, the mass of the planet, the surface temperature and the interior parameters (e.g. radioactive mantle heat sources). The high pressure at the bottom of deep water-ice layers could also impede volcanism at the water-mantle boundary for both stagnant lid and plate tectonics silicate shells. We conclude that water-rich planets with a deep ocean, a large planet mass, a high average density or a low surface temperature are likely less habitable than planets with an Earth-like ocean.

  15. Multiple mechanisms generate a universal scaling with dissipation for the air-water gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Katul, Gabriel; Liu, Heping

    2017-02-01

    A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air-water interfaces scales as kL˜(νɛ)1/4, where ν is the kinematic water viscosity and ɛ is the mean turbulent kinetic energy dissipation rate. Originally predicted from surface renewal theory, this scaling appears to hold for marine and coastal systems and across many environmental conditions. It is shown that multiple approaches to representing the effects of turbulence on kL lead to this expression when the Kolmogorov microscale is assumed to be the most efficient transporting eddy near the interface. The approaches considered range from simplified surface renewal schemes with distinct models for renewal durations, scaling and dimensional considerations, and a new structure function approach derived using analogies between scalar and momentum transfer. The work offers a new perspective as to why the aforementioned 1/4 scaling is robust.

  16. Bathymetry of Lake Manatee, Manatee County, Florida, 2009

    USGS Publications Warehouse

    Bellino, Jason C.; Pfeiffer, William R.

    2010-01-01

    Lake Manatee, located in central Manatee County, Florida, is the principal drinking-water source for Manatee and Sarasota Counties. The drainage basin of Lake Manatee encompasses about 120 square miles, and the reservoir covers a surface area of about 1,450 acres at an elevation of 38.8 feet above NAVD 88 or 39.7 feet above NGVD 29. The full pool water-surface elevation is 39.1 feet above NAVD 88 (40.0 feet above NGVD 29), and the estimated minimum usable elevation is 25.1 feet above NAVD 88 (26.0 feet above NGVD 29). The minimum usable elevation is based on the elevation of water intake structures. Manatee County has used the stage/volume relation that was developed from the original survey in the 1960s to estimate the volume of water available for consumption. Concerns about potential changes in storage capacity of the Lake Manatee reservoir, coupled with a recent drought, led to this bathymetry mapping effort.

  17. Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Sik; Yu, Qingsong; Deng, Baolin

    2011-09-01

    Commercial nanofiltration (NF) thin-film composite (TFC) membranes were treated by low-pressure NH3 plasma, and the effects of the plasma treatment were investigated in terms of the membrane hydrophilicity, pure water flux, salt rejection, protein adsorption, and humic acid fouling. Experimental results indicated that the membrane surface hydrophilicity was increased by the plasma treatment, and changes in the hydrophilicity as well as membrane performance including permeate flux and fouling varied with the original membrane characteristics (e.g., roughness and hydrophilicity). Water flux of plasma treated membranes was the highest with 10 min and 90 W of plasma treatment, and salt rejection was mainly affected by the intensity of the plasma power. Results of bovine serum albumin (BSA) adsorption demonstrated that the protein adsorption decreased with increasing plasma treatment time. The plasma treatment that resulted in more negatively charged surfaces could also better prevent Aldrich humic acid (AHA) attachment on the membrane surface.

  18. Field study on evaluation of the efficacy and usability of two disinfectants for drinking water treatment at small cattle breeders and dairy cattle farms.

    PubMed

    Mohammed, Asmaa N

    2016-03-01

    The hygienic quality of drinking water for cattle originated from different sources together with the efficacy and usability of two types of disinfectants against waterborne pathogens were assessed for small cattle breeders and dairy cattle farms. A total of 120 drinking water samples were collected from water troughs representing three different water sources commonly used for cattle drinking (tap, underground and surface water; n = 65, 25, and 30, respectively). Collected samples were cultured for isolation and identification of pathogenic bacteria using serological techniques and PCR. The bactericidal efficacy of the disinfectants, sodium dichloroisocyanurate (NaDCC) and hydrogen peroxide (H2O2) 50%, at different concentrations were evaluated by the determination of total viable and coliform counts of water prior and postwater treatment. In small cattle breeders, Escherichia coli was the most prevalent bacterial isolates from surface water (56.7%) followed by Staphylococcus aureus (36.7%), Salmonella spp. (26.7%), Streptococcus faecalis (23.3%), Shigella flexneri (16.7%), Proteus spp. (16.7%), and Klebsiella pneumonae (10.0 %) at X(2) = 9, P ≤ 0.01. Prior to the use of disinfectants, the averages of total bacterial and coliform counts were the highest in surface water (3.56 × 10(7), 240.0, and 38.0 CFU/100 ml, respectively). It has been found that hydrogen peroxide 50% at a concentration of 35 mg/l had a lethal effect (100 %) on indicator microorganisms compared with NaDCC at concentration of 2 mg/l. In conclusion, the higher bacterial contaminants in drinking water were found in surface water followed by tap water, particularly for small cattle breeders. Therefore, the usage of more hygienic water troughs with their regular treatment by hydrogen peroxide 50% at concentration of 35 mg/l is highly recommended to control waterborne bacteria and consequently improve and maintain the animal health.

  19. Abrupt changes of intermediate-water oxygen in the northwestern Pacific during the last 27 kyr

    NASA Astrophysics Data System (ADS)

    Ishizaki, Yui; Ohkushi, Ken'ichi; Ito, Takashi; Kawahata, Hodaka

    2009-04-01

    An oxygen minimum zone (OMZ) currently exists at intermediate water depths on the northern Japanese margin in the northwestern Pacific. The OMZ results largely from a combination of high surface-water productivity and poor ventilation of intermediate waters. We investigated the late Quaternary history (last 27 kyr) of the intensity of this OMZ using changes in benthic foraminiferal carbon isotopes and assemblages in a sediment core taken on the continental slope off Shimokita Peninsula, northern Japan, at a water depth of 975 m. The core was located well within the region of the present-day OMZ and high surface-water productivity. The benthic foraminiferal δ13C values, which indicate millennial-scale fluctuations of nutrient contents at the sediment-water interface, were 0.48‰ lower during the last glacial maximum (LGM) than during the late Holocene. These results do not indicate the formation of glacial intermediate waters of subarctic Pacific origin, but rather the large contribution of high-nutrient water masses such as the Antarctic Intermediate Water, implying that the regional circulation pattern during the LGM was similar to that of modern times. Benthic foraminiferal assemblages underwent major changes in response to changes in dissolved oxygen concentrations in ocean floor sediments. The lowest oxygen and highest nutrient conditions, marked by dysoxic taxa and negative values of benthic foraminiferal δ13C, occurred during the Bølling/Allerød (B/A) and Pre-Boreal warming events. Dysoxic conditions in this region during these intervals were possibly caused by high surface-water productivity at times of reduced intermediate-water ventilation in the northwestern Pacific. The benthic assemblages show dysoxic events on approx. 100- to 200-year cycles during the B/A, reflecting centennial-scale productivity changes related to freshwater cycles and surface-water circulation in the North Pacific.

  20. Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean.

    PubMed

    Smith, Kenneth L; Ruhl, Henry A; Kahru, Mati; Huffard, Christine L; Sherman, Alana D

    2013-12-03

    The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (~4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections.

  1. Formation of diamond nanoparticle thin films by electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Goto, Yosuke; Ohishi, Fujio; Tanaka, Kuniaki; Usui, Hiroaki

    2016-03-01

    Thin films of diamond nanoparticles were prepared by electrophoretic deposition (EPD) using 0.5 wt % dispersions in water, ethanol, and 2-propanol. The film growth rate increased with increasing voltage applied to the electrodes. However, an excessive increase in voltage caused the degradation of film morphology. The optimum voltage was 4 V with an electrode separation of 5 mm. The film growth rate was higher in organic solvents than in water. The deposited film had a smooth surface with an average surface roughness comparable to the size of primary particles of the source material. It is notable that the EPD films had a considerably higher physical stability than spin-coated and cast films. The stability was further improved by thermally annealing the films. IR analysis revealed that the diamond nanoparticles have carboxy and amino groups on their surfaces. It is considered that the stability of the EPD films originate from a chemical reaction between these functional groups.

  2. Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean

    PubMed Central

    Smith, Kenneth L.; Ruhl, Henry A.; Kahru, Mati; Huffard, Christine L.; Sherman, Alana D.

    2013-01-01

    The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (∼4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections. PMID:24218565

  3. Heat Capacity Mapping Mission (HCMM) thermal surface water mapping and its correlation to LANDSAT. [Lake Anna, Virginia

    NASA Technical Reports Server (NTRS)

    Colvocoresses, A. P. (Principal Investigator)

    1980-01-01

    Graphics are presented which show HCMM mapped water-surface temperature in Lake Anna, a 13,000 dendrically-shaped lake which provides cooling for a nuclear power plant in Virginia. The HCMM digital data, produced by NASA were processed by NOAA/NESS into image and line-printer form. A LANDSAT image of the lake illustrates the relationship between MSS band 7 data and the HCMM data as processed by the NASA image processing facility which transforms the data to the same distortion-free hotline oblique Mercator projection. Spatial correlation of the two images is relatively simple by either digital or analog means and the HCMM image has a potential accuracy approaching the 80 m of the original LANDSAT data. While it is difficult to get readings that are not diluted by radiation from cooler adjacent land areas in narrow portions of the lake, digital data indicated by the line-printer display five different temperatures for open-water areas. Where the water surface response was not diluted by land areas, the temperature difference recorded by HCMM corresponds to in situ readings with rsme on the order of 1 C.

  4. Enhancing electrochemical water-splitting kinetics by polarization-driven formation of near-surface iron(0): an in situ XPS study on perovskite-type electrodes.

    PubMed

    Opitz, Alexander K; Nenning, Andreas; Rameshan, Christoph; Rameshan, Raffael; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Fleig, Jürgen; Klötzer, Bernhard

    2015-02-23

    In the search for optimized cathode materials for high-temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La0.6 Sr0.4 FeO3-δ (LSF) thin film electrodes. Under cathodic polarization the formation of Fe(0) on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  5. Assessing the Impact of Sublimation on the Stable Water Isotope Signal of Surface Ice

    NASA Astrophysics Data System (ADS)

    Dennis, D. P.; Ehrenfeucht, S.; Marchant, D. R.

    2017-12-01

    Sublimation is often a significant, if not the dominant, mechanism for ablation in polar and high elevation glacial systems. Previous field studies on firn and ice have suggested that sublimation can enrich the stable water isotope (δD and δ18O) signatures of these exposed materials. Several additional studies have attempted to replicate this effect through laboratory experiments. However, neither the magnitude of alteration caused by sublimation nor the maximum depth at which ice is affected are well-constrained. The effect of sublimation-induced alteration on the original meteoric signal relative to other post-depositional processes is additionally unknown. Here, we present the results of an experimental study on the effect of sublimation on stable water isotope ratios in surface ice. Using high-resolution data, we attempt to assess the suitability of δD and δ18O in near-surface and exposed ice for use as paleoclimate proxies. This type of analysis is particularly useful for future studies of ice from hyper-arid polar regions like the Antarctic McMurdo Dry Valleys, and may be extended to icy planetary bodies, including surface ice on Mars.

  6. Comparison pesticide residue levels in the surface of Bertam River in Cameron Highlands, Pahang

    NASA Astrophysics Data System (ADS)

    Haron, S. H.; Ismail B., S.

    2015-09-01

    The presence of pesticide residues in the surface water of Bertam River in the agricultural areas of Cameron Highlands in Pahang, Malaysia was monitored from May to October 2014. The sampling sites were located at 10 sampling points along the Bertam River in the vegetable planting areas. The extraction method of the pesticide (organophosphate/pyrethroid) from the river samples used solid phase extraction followed by gas chromatography (with electron capture detector, ECD). Insecticides, cypermethrin and chlorpyrifos were found in the surface water of Bertam River. High level concentrations of those insecticides in the river were observed during the period from May to October 2014, a period which included both seasons (wet and dry seasons). The highest concentration of 2.66 µg/mL and 1.23 µg/mL of cypermethrin was observed during the wet and dry seasons respectively. This could be due to the frequent usage of the above-mentioned insecticides coupled with contamination that could have originated from the application sites. Meanwhile, the lowest concentration detected in the surface water was chlorpyrifos (0.11 µg/mL and 0.17 µg/mL) during the dry and wet seasons, respectively.

  7. Male-specific coliphages for source tracking fecal contamination in surface waters and prevalence of Shiga-toxigenic Escherichia coli in a major produce production region of the Central Coast of California.

    PubMed

    Ravva, Subbarao V; Sarreal, Chester Z; Cooley, Michael B

    2015-07-01

    To provide data for traditional trace-back studies from fork to farm, it is necessary to determine the environmental sources for Shiga-toxigenic Escherichia coli. We developed SYBR green based reverse-transcriptase PCR methods to determine the prevalence of F+ RNA coliphages (FRNA) as indicators of fecal contamination. Male-specific coliphages, determined using a single-agar overlay method, were prevalent in all surface waters sampled for 8 months. F+ DNA coliphages (FDNA) were predominant compared to FRNA in water samples from majority of sampling locations. Most (90%) of the FRNA were sourced to humans and originated from human-impacted sites. Members of genogroup III represented 77% of FRNA originated from human sources. Furthermore, 93% of FRNA sourced to animals were also detected in water samples from human-impacted sites. Eighty percent of all FRNA were isolated during the winter months indicating seasonality in prevalence. In contrast, FDNA were more prevalent during summer months. E. coli O157:H7 and Shiga-toxigenic E. coli were detected in water samples from locations predominantly influenced by agriculture. Owing to their scarcity, their numbers could not be correlated with the prevalence of FRNA or FDNA in water samples. Both coliform bacteria and generic E. coli from agricultural or human-impacted sites were similar in numbers and thus could not be used to determine the sources of fecal contamination. Data on the prevalence of male-specific coliphages may be invaluable for predicting the sources of fecal contamination and aid in developing methods to prevent enteric pathogen contamination from likely sources during produce production.

  8. Orientational order as the origin of the long-range hydrophobic effect.

    PubMed

    Banerjee, Saikat; Singh, Rakesh S; Bagchi, Biman

    2015-04-07

    The long range attractive force between two hydrophobic surfaces immersed in water is observed to decrease exponentially with their separation-this distance-dependence of effective force is known as the hydrophobic force law (HFL). We explore the microscopic origin of HFL by studying distance-dependent attraction between two parallel rods immersed in 2D Mercedes Benz model of water. This model is found to exhibit a well-defined HFL. Although the phenomenon is conventionally explained by density-dependent theories, we identify orientation, rather than density, as the relevant order parameter. The range of density variation is noticeably shorter than that of orientational heterogeneity. The latter is comparable to the observed distances of hydrophobic force. At large separation, attraction between the rods arises primarily from a destructive interference among the inwardly propagating oppositely oriented heterogeneity generated in water by the two rods. As the rods are brought closer, the interference increases leading to a decrease in heterogeneity and concomitant decrease in free energy of the system, giving rise to the effective attraction. We notice formation of hexagonal ice-like structures at the onset of attractive region which suggests that metastable free energy minimum may play a role in the origin of HFL.

  9. Orientational order as the origin of the long-range hydrophobic effect

    NASA Astrophysics Data System (ADS)

    Banerjee, Saikat; Singh, Rakesh S.; Bagchi, Biman

    2015-04-01

    The long range attractive force between two hydrophobic surfaces immersed in water is observed to decrease exponentially with their separation—this distance-dependence of effective force is known as the hydrophobic force law (HFL). We explore the microscopic origin of HFL by studying distance-dependent attraction between two parallel rods immersed in 2D Mercedes Benz model of water. This model is found to exhibit a well-defined HFL. Although the phenomenon is conventionally explained by density-dependent theories, we identify orientation, rather than density, as the relevant order parameter. The range of density variation is noticeably shorter than that of orientational heterogeneity. The latter is comparable to the observed distances of hydrophobic force. At large separation, attraction between the rods arises primarily from a destructive interference among the inwardly propagating oppositely oriented heterogeneity generated in water by the two rods. As the rods are brought closer, the interference increases leading to a decrease in heterogeneity and concomitant decrease in free energy of the system, giving rise to the effective attraction. We notice formation of hexagonal ice-like structures at the onset of attractive region which suggests that metastable free energy minimum may play a role in the origin of HFL.

  10. Giant calcite concretions in aeolian dune sandstones; sedimentological and architectural controls on diagenetic heterogeneity, mid-Cretaceous Iberian Desert System, Spain

    NASA Astrophysics Data System (ADS)

    Arribas, Maria Eugenia; Rodríguez-López, Juan Pedro; Meléndez, Nieves; Soria, Ana Rosa; de Boer, Poppe L.

    2012-01-01

    Aeolian dune sandstones of the Iberian erg system (Cretaceous, Spain) host giant calcite concretions that constitute heterogeneities of diagenetic origin within a potential aeolian reservoir. The giant calcite concretions developed in large-scale aeolian dune foresets, at the transition between aeolian dune toeset and damp interdune elements, and in medium-scale superimposed aeolian dune sets. The chemical composition of the giant concretions is very homogeneous. They formed during early burial by low Mg-calcite precipitation from meteoric pore waters. Carbonate components with yellow/orange luminescence form the nuclei of the poikilotopic calcite cement. These cements postdate earlier diagenetic features, characterized by early mechanical compaction, Fe-oxide cements and clay rims around windblown quartz grains resulting from the redistribution of aeolian dust over the grain surfaces. The intergranular volume (IGV) in friable aeolian sandstone ranges from 7.3 to 15.3%, whereas in cemented aeolian sandstone it is 18.6 to 25.3%. The giant-calcite concretions developed during early diagenesis under the influence of meteoric waters associated with the groundwater flow of the desert basin, although local (e.g. activity of fluid flow through extensional faults) and/or other regional controls (e.g. variations of the phreatic level associated with a variable water influx to the erg system and varying sea level) could have favoured the local development of giant-calcite concretions. The spatial distribution pattern of carbonate grains and the main bounding surfaces determined the spatial distribution of the concretions. In particular, the geometry of the giant calcite concretions is closely associated with main bounding aeolian surfaces. Thus, interdune, superimposition and reactivation surfaces exerted a control on the concretion geometries ranging from flat and tabular ones (e.g. bounded by interdunes) to wedge-shaped concretions at the dune foresets (e.g. bounded by superimposition and reactivation surfaces) determining the spatial distribution of the heterogeneities of diagenetic origin in the aeolian reservoir.

  11. ALARA efforts in nordic BWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingemansson, T.; Lundgren, K.; Elkert, J.

    1995-03-01

    Some ALARA-related ABB Atom projects are currently under investigation. One of the projects has been ordered by the Swedish Radiation Protection Institute, and two others by the Nordic BWR utilities. The ultimate objective of the projects is to identify and develop methods to significantly decrease the future exposure levels in the Nordic BWRS. As 85% to 90% of the gamma radiation field in the Nordic BWRs originates from Co-60, the only way to significantly decrease the radiation doses is to effect Co and Co-60. The strategy to do this is to map the Co sources and estimate the source strengthmore » of Co from these sources, and to study the possibility to affect the release of Co-60 from the core surfaces and the uptake on system surfaces. Preliminary results indicate that corrosion/erosion of a relatively small number of Stellite-coated valves and/or dust from grinding of Stellite valves may significantly contribute to the Co input to the reactors. This can be seen from a high measured Co/Ni ratio in the feedwater and in the reactor water. If stainless steel is the only source of Co, the Co/Ni ratio would be less than 0.02 as the Co content in the steel is less than 0.2%. The Co/Ni ratio in the reactor water, however, is higher than 0.1, indicating that the major fraction of the Co originates from Stellite-coated valves. There are also other possible explanations for an increase of the radiation fields. The Co-60 inventory on the core surfaces increases approximately as the square of the burn-up level. If the burn-up is increased from 35 to 5 MWd/kgU, the Co-60 inventory on the core surfaces will be doubled. Also the effect on the behavior of Co-60 of different water chemistry and materials conditions is being investigated. Examples of areas studied are Fe and Zn injection, pH-control, and different forms of surface pre-treatments.« less

  12. Flux of low salinity water from Aniva Bay (Sakhalin Island) to the southern Okhotsk Sea

    NASA Astrophysics Data System (ADS)

    Oguma, Sachiko; Ono, Tsuneo; Watanabe, Yutaka W.; Kasai, Hiromi; Watanabe, Shuichi; Nomura, Daiki; Mitsudera, Humio

    2011-01-01

    In this study, we examined the relationship between the low salinity water in the shelf region of the southern Okhotsk Sea which was seasonally sampled (0-200 m), and fluxes of low salinity water from Aniva Bay. To express the source of freshwater mixing in the surface layer, we applied normalized total alkalinity (NTA) and stable isotopes of seawater as chemical tracers. NTA-S diagrams indicate that NTA of low salinity water in the upper 30 m layer just off the Soya Warm Current is clearly higher than in the far offshore region in summer and autumn. Using NTA-S regression lines, we could deduce that the low salinity and high NTA water in the upper layer originates from Aniva Bay. For convenience, we defined this water as the Aniva Surface Water (ASW) with values S < 32, NTA > 2450 μmol kg -1. Formation and transport processes of ASW are discussed using historical data. The interaction between the maximum core of high NTA water on the bottom slope of eastern Aniva Bay and an anticyclonic eddy at the mouth of Aniva Bay are concluded to control ASW formation. Upwelling of the Cold Water Belt water at the tip of Cape Krillion is considered to cause ASW outflow from Aniva Bay.

  13. Recharge in semiarid mountain environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, G.W.

    A systematic investigation of tritium activity in precipitation, surface water, springs, and ground water of the Roswell artesian basin in New Mexico, has been supplemented by hydrogeologic reconnaissance of spring systems; by various statistical correlations and spectral analysis of stream flow and water level records of observation wells; by spring discharge measurements; by stable isotope determinations (oxygen 18 and deuterium); and by numerical modeling of part of the basin. Two recharge contributions to the Principal or Carbonate Aquifer have been distinguished principally on the basis of their tritium label and aquifer response characteristics. Almost all basin waters (including deep groundmore » water) fall close to the meteoric line of hydrogen/oxygen isotope composition, and this rules out a juvenile origin or appreciable bedrock interaction.« less

  14. Tracing the transport of colored dissolved organic matter in water masses of the Southern Beaufort Sea: relationship with hydrographic characteristics

    NASA Astrophysics Data System (ADS)

    Matsuoka, A.; Bricaud, A.; Benner, R.; Para, J.; Sempéré, R.; Prieur, L.; Bélanger, S.; Babin, M.

    2012-03-01

    Light absorption by colored dissolved organic matter (CDOM) [aCDOM(λ)] plays an important role in the heat budget of the Arctic Ocean, contributing to the recent decline in sea ice, as well as in biogeochemical processes. We investigated aCDOM(λ) in the Southern Beaufort Sea where a significant amount of CDOM is delivered by the Mackenzie River. In the surface layer, aCDOM(440) showed a strong and negative correlation with salinity, indicating strong river influence and conservative transport in the river plume. Below the mixed layer, a weak but positive correlation between aCDOM(440) and salinity was observed above the upper halocline, resulting from the effect of removal of CDOM due to brine rejection and lateral intrusion of Pacific summer waters into these layers. In contrast, the relationship was negative in the upper and the lower haloclines, suggesting these waters originated from Arctic coastal waters. DOC concentrations in the surface layer were strongly correlated with aCDOM(440) (r2 = 0.97), suggesting that this value can be estimated in this area, using aCDOM(440) that is retrieved using satellite ocean color data. Implications for estimation of DOC concentrations in surface waters using ocean color remote sensing are discussed.

  15. Characterising flow regime and interrelation between surface-water and ground-water in the Fuente de Piedra salt lake basin by means of stable isotopes, hydrogeochemical and hydraulic data

    NASA Astrophysics Data System (ADS)

    Kohfahl, Claus; Rodriguez, Miguel; Fenk, Cord; Menz, Christian; Benavente, Jose; Hubberten, Hans; Meyer, Hanno; Paul, Liisa; Knappe, Andrea; López-Geta, Juan Antonio; Pekdeger, Asaf

    2008-03-01

    SummaryThis research reports the characterisation of ground- and surface-water interaction in the Fuente de Piedra Salt lake basin in southern Spain by a combined approach using hydraulic, hydrogeochemical and stable isotope data. During three sampling campaigns (February 2004, 2005 and October 2005) ground- and surface-water samples were collected for stable isotope studies ( 18O, D) and for major and minor ion analysis. Hydraulic measurements at multilevel piezometers were carried out at four different locations around the lake edge. Conductivity logs were performed at four piezometers located along a profile at the northern lake border and at two deeper piezometers in the Miocene basin at a greater distance from the lake. To describe processes that control the brine evolution different hydrogeochemical simulations were performed. Hydrogeochemical data show a variety of brines related to thickness variations of lacustrine evaporites around the lake. Salinity profiles in combination with stable isotope and hydraulic data indicate the existence of convection cells and recycled brines. Furthermore restricted ground-water inflow into the lake was detected. Dedolomitisation processes were identified by hydrogeochemical simulations and different brine origins were reproduced by inverse modelling approaches.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varanasi, S. R., E-mail: s.raovaranasi@uq.edu.au, E-mail: guskova@ipfdd.de; John, A.; Guskova, O. A., E-mail: s.raovaranasi@uq.edu.au, E-mail: guskova@ipfdd.de

    Fullerene C{sub 60} sub-colloidal particle with diameter ∼1 nm represents a boundary case between small and large hydrophobic solutes on the length scale of hydrophobic hydration. In the present paper, a molecular dynamics simulation is performed to investigate this complex phenomenon for bare C{sub 60} fullerene and its amphiphilic/charged derivatives, so called shape amphiphiles. Since most of the unique properties of water originate from the pattern of hydrogen bond network and its dynamics, spatial, and orientational aspects of water in solvation shells around the solute surface having hydrophilic and hydrophobic regions are analyzed. Dynamical properties such as translational-rotational mobility, reorientationalmore » correlation and occupation time correlation functions of water molecules, and diffusion coefficients are also calculated. Slower dynamics of solvent molecules—water retardation—in the vicinity of the solutes is observed. Both the topological properties of hydrogen bond pattern and the “dangling” –OH groups that represent surface defects in water network are monitored. The fraction of such defect structures is increased near the hydrophobic cap of fullerenes. Some “dry” regions of C{sub 60} are observed which can be considered as signatures of surface dewetting. In an effort to provide molecular level insight into the thermodynamics of hydration, the free energy of solvation is determined for a family of fullerene particles using thermodynamic integration technique.« less

  17. Presence and distribution of organic wastewater compounds in wastewater, surface, ground, and drinking waters, Minnesota, 2000-02

    USGS Publications Warehouse

    Lee, Kathy E.; Barber, Larry B.; Furlong, Edward T.; Cahill, Jeffery D.; Kolpin, Dana W.; Meyer, Michael T.; Zaugg, Steven D.

    2004-01-01

    Results of this study indicate ubiquitous distribution of measured OWCs in the environment that originate from numerous sources and pathways. During this reconnaissance of OWCs in Minnesota it was not possible to determine the specific sources of OWCs to surface, ground, or drinking waters. The data indicate WWTP effluent is a major pathway of OWCs to surface waters and that landfill leachate at selected facilities is a potential source of OWCs to WWTPs. Aquatic organism or human exposure to some OWCs is likely based on OWC distribution. Few aquatic or human health standards or criteria exist for the OWCs analyzed, and the risks to humans or aquatic wildlife are not known. Some OWCs detected in this study are endocrine disrupters and have been found to disrupt or influence endocrine function in fish. Thirteen endocrine disrupters, 3-tert-butyl-4-hydoxyanisole (BHA), 4- cumylphenol, 4-normal-octylphenol, 4-tert-octylphenol, acetyl-hexamethyl-tetrahydro-naphthalene (AHTN), benzo[α]pyrene, beta-sitosterol, bisphenol-A, diazinon, nonylphenol diethoxylate (NP2EO), octyphenol diethoxylate (OP2EO), octylphenol monoethoxylate (OP1EO), and total para-nonylphenol (NP) were detected. Results of reconnaissance studies may help regulators who set water-quality standards begin to prioritize which OWCs to focus upon for given categories of water use.

  18. Herbicides and transformation products in surface waters of the Midwestern United States

    USGS Publications Warehouse

    Battaglin, W.A.; Thurman, E.M.; Kalkhoff, S.J.; Porter, S.D.

    2003-01-01

    Most herbicides applied to crops are adsorbed by plants or transformed (degraded) in the soil, but small fractions are lost from fields and either move to streams in overland runoff, near surface flow, or subsurface drains, or they infiltrate slowly to ground water. Herbicide transformation products (TPs) can be more or less mobile and more or less toxic in the environment than their source herbicides. To obtain information on the concentrations of selected herbicides and TPs in surface waters of the Midwestern United States, 151 water samples were collected from 71 streams and five reservoir outflows in 1998. These samples were analyzed for 13 herbicides and 10 herbicide TPs. Herbicide TPs were found to occur as frequently or more frequently than source herbicides and at concentrations that were often larger than their source herbicides. Most samples contained a mixture of more than 10 different herbicides or TPs. The ratios of TPs to herbicide concentrations can be used to determine the source of herbicides in streams. Results of a two-component mixing model suggest that on average 90 percent or more of the herbicide mass in Midwestern streams during early summer runoff events originates from the runoff and 10 percent or less comes from increased ground water discharge.

  19. Possible Tuff Cones In Isidis Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Seabrook, A. M.; Rothery, D. A.; Bridges, J. C.; Wright, I. P.

    The Beagle 2 lander of the ESA Mars Express mission will touch down on the martian surface in December 2003 to conduct a primarily exobiological mission. The landing site will be within Isidis Planitia, an 1100 km diameter impact basin. Isidis contains many sub-kilometre-sized cones. These can be found singly, in clusters, and in straight or arcuate chains extending many kilometres. In some areas of the basin these cones can occupy over 10% of the surface, with the most densely populated areas being in the older western half of the basin. There are few cones around the basin rim. There is also variation in the erosional state of the cones both across the basin, and within smaller areas, implying a range in time of formation for the cones. We currently favour a tuff cone origin as an explanation for these features. Tuff cones on Earth are rooted volcanic features formed at vents by the interaction between magma or magmatic heat and surface or near-surface water. Lava flows likely to be associated with at least some of the cones if they had a cinder cone (rooted eruptions at vents in a dry environment) origin are absent. This suggests the involvement of suffi- cient volatiles both to explosively fragment the erupting magma, and to cool the ejecta enough to prevent the formation of clastogenic flows. If our tuff cone interpretation is correct, this has implications for the presence, abundance and long-term persistence of sub-surface volatiles (water or carbon dioxide) on Mars. An understanding of the mechanism of formation of the Isidis cones will assist the characterisation of the basin in preparation for the landing of Beagle 2, by providing information about the history of volatiles and volcanism in the basin, and the processes that resulted in the surface we see today.

  20. Quantum mechanical/molecular mechanical modeling finds Diels-Alder reactions are accelerated less on the surface of water than in water.

    PubMed

    Thomas, Laura L; Tirado-Rives, Julian; Jorgensen, William L

    2010-03-10

    Quantum and molecular mechanics calculations for the Diels-Alder reactions of cyclopentadiene with 1,4-naphthoquinone, methyl vinyl ketone, and acrylonitrile have been carried out at the vacuum-water interface and in the gas phase. In conjunction with previous studies of these cycloadditions in dilute solution, a more complete picture of aqueous environmental effects emerges with implications for the origin of observed rate accelerations using heterogeneous aqueous suspensions, "on water" conditions. The pure TIP4P water slab maintains the bulk density and hydrogen-bonding properties in central water layers. The bulk region merges to vacuum over a ca. 5 A band with progressive diminution of the density and hydrogen bonding. The relative free energies of activation and transition structures for the reactions at the interface are found to be intermediate between those calculated in the gas phase and in bulk water; i.e., for the reaction with 1,4-naphthoquinone, the DeltaDeltaG(++) values relative to the gas phase are -3.6 and -7.3 kcal/mol at the interface and in bulk water, respectively. Thus, the results do not support the notion that a water surface is more effective than bulk water for catalysis of such pericyclic reactions. The trend is in qualitative agreement with expectations based on density considerations and estimates of experimental rate constants for the gas phase, a heterogeneous aqueous suspension, and a dilute aqueous solution for the reaction of cyclopentadiene with methyl vinyl ketone. Computed energy pair distributions reveal a uniform loss of 0.5-1.0 hydrogen bond for the reactants and transition states in progressing from bulk water to the vacuum-water interface. Orientational effects are apparent at the surface; e.g., the carbonyl group in the methyl vinyl ketone transition structure is preferentially oriented into the surface. Also, the transition structure for the 1,4-naphthoquinone case is buried more in the surface, and the free energy of activation for this reaction is most similar to the result in bulk water.

  1. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples

    PubMed Central

    Lusher, Amy L.; Tirelli, Valentina; O’Connor, Ian; Officer, Rick

    2015-01-01

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment. PMID:26446348

  2. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples

    NASA Astrophysics Data System (ADS)

    Lusher, Amy L.; Tirelli, Valentina; O'Connor, Ian; Officer, Rick

    2015-10-01

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.

  3. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples.

    PubMed

    Lusher, Amy L; Tirelli, Valentina; O'Connor, Ian; Officer, Rick

    2015-10-08

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.

  4. Metabolic identification of germs isolated from ozonized water mixed with underground water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fransolet, G.; Villers, G.; Goyens, A.

    Twenty bacterial strains having shown a characteristic regrowth, starting from surface water treated and ozonized and then mixed with water of underground origin have been isolated. After verification of the purity of these strains, their preliminary identification has been attempted by utilizing more than 60 tests. The identification was limited to biochemical tests based on the following types of metabolism: energetic metabolism, carbohydrate metabolism, lipid metabolism, proteic metabolism, nutritional metabolism, and utilization of special media. In support of the results, one is able to affirm that the 20 strains belong to seven families consisting of Pseudomonadaceae, Bacillaceae, the group ofmore » Coryneformes, the Azotobactericeae, Micrococcaceae, Enterobacteriaceae and Vibrionaceae.« less

  5. Re-Emergence of Excess Bomb Radiocarbon in Upwelling Waters with High-Latitude Origins

    NASA Astrophysics Data System (ADS)

    Lindsay, C. M.; Lehman, S.

    2016-02-01

    The quantity of radiocarbon (14C) in the atmosphere was nearly doubled by nuclear weapons testing in the 1960s. Since then, the terrestrial biosphere and the ocean have absorbed most of the excess 14C from the atmosphere, although atmospheric radiocarbon activity (∆14C) continues to decline due to ongoing emissions of 14C-free CO2 from combustion of fossil fuels. The large transient decline in atmospheric ∆14C combined with gas exchange at the surface and spatially variable time scales of ocean mixing have led to large ∆14C gradients in the surface ocean between upwelling- and downwelling-dominated regions. These gradients continue to evolve over time. We examine the rate of change of surface ocean ∆14C between CLIVAR (2000-2011) and WOCE era (1990s) or other slightly earlier (1980s) datasets and find spatial patterns that reveal mixing between 14C-enriched mode waters, 14C-depleted deep waters and surface waters that are well-equilibrated with the atmosphere. The ∆14C of mode water reaching equatorial upwelling regions has increased between the WOCE and CLIVAR time periods, and the greater contribution of 14C to the low-latitude surface ocean appears to have significantly offset the ∆14C decline otherwise imparted by air-sea gas exchange with the atmosphere. Consequently, ∆14C gradients between low-latitude upwelling regions and gyre centers have weakened proportionally more than between gyre centers and regions where pre-industrial water still upwells, such as the Southern Ocean. Properly accounting for the re-emergence of water with post-industrial characteristics is important to constrain earth system models that seek to explain DIC, pH and other anthropogenically perturbed tracers in the surface ocean. Because of the history of ∆14C in the atmosphere, ocean ∆14C is a useful tracer for this purpose.

  6. Reactive molecular dynamics of the initial oxidation stages of Ni111 in pure water: effect of an applied electric field.

    PubMed

    Assowe, O; Politano, O; Vignal, V; Arnoux, P; Diawara, B; Verners, O; van Duin, A C T

    2012-12-06

    Corrosion processes occurring in aqueous solutions are critically dependent upon the interaction between the metal electrode and the solvent. In this work, the interaction of a nickel substrate with water molecules has been investigated using reactive force field (ReaxFF) molecular dynamics simulations. This approach was originally developed by van Duin and co-workers to study hydrocarbon chemistry and the catalytic properties of organic compounds. To our knowledge, this method has not previously been used to study the corrosion of nickel. In this work, we studied the interaction of 480 molecules of water (ρ = 0.99 g·cm(-3)) with Ni(111) surfaces at 300 K. The results showed that a water "bilayer" was adsorbed on the nickel surface. In the absence of an applied electric field, no dissociation of water was observed. However, the nickel atoms at the surface were charged positively, whereas the first water layer was charged negatively, indicating the formation of an electric double layer. To study the corrosion of nickel in pure water, we introduced an external electric field between the metal and the solution. The electric field intensity varied between 10 and 20 MeV/cm. The presence of this electric field led to oxidation of the metal surface. The structural and morphological differences associated with the growth of this oxide film in the presence of the electric field were evaluated. The simulated atomic trajectories were used to analyze the atomic displacement during the reactive process. The growth of the oxide scale on the nickel surface was primarily due to the movement of anions toward the interior of the metal substrate and the migration of nickel toward the free surface. We found that increasing the electric field intensity sped up the corrosion of nickel. The results also showed that the oxide film thickness increased linearly with increasing electric field intensity.

  7. Flow and geochemistry of groundwater beneath a back-barrier lagoon: The subterranean estuary at Chincoteague Bay, Maryland, USA

    USGS Publications Warehouse

    Bratton, J.F.; Böhlke, J.K.; Krantz, D.E.; Tobias, C.R.

    2009-01-01

    To better understand large-scale interactions between fresh and saline groundwater beneath an Atlantic coastal estuary, an offshore drilling and sampling study was performed in a large barrier-bounded lagoon, Chincoteague Bay, Maryland, USA. Groundwater that was significantly fresher than overlying bay water was found in shallow plumes up to 8??m thick extending more than 1700??m offshore. Groundwater saltier than bay surface water was found locally beneath the lagoon and the barrier island, indicating recharge by saline water concentrated by evaporation prior to infiltration. Steep salinity and nutrient gradients occur within a few meters of the sediment surface in most locations studied, with buried peats and estuarine muds acting as confining units. Groundwater ages were generally more than 50??years in both fresh and brackish waters as deep as 23??m below the bay bottom. Water chemistry and isotopic data indicate that freshened plumes beneath the estuary are mixtures of water originally recharged on land and varying amounts of estuarine surface water that circulated through the bay floor, possibly at some distance from the sampling location. Ammonium is the dominant fixed nitrogen species in saline groundwater beneath the estuary at the locations sampled. Isotopic and dissolved-gas data from one location indicate that denitrification within the subsurface flow system removed terrestrial nitrate from fresh groundwater prior to discharge along the western side of the estuary. Similar situations, with one or more shallow semi-confined flow systems where groundwater geochemistry is strongly influenced by circulation of surface estuary water through organic-rich sediments, may be common on the Atlantic margin and elsewhere.

  8. Building Towards a Conceptual Model for Phosphorus Transport in Lowland Catchments

    NASA Astrophysics Data System (ADS)

    van der Grift, B.; Griffioen, J.; Oste, L.

    2016-12-01

    The release of P to surface water following P leaching from heavily fertilized agricultural fields to groundwater and the extent of P retention at the redox interphase are of major importance for surface water quality. We studied the role of biogeochemical and hydrological processes during exfiltration of groundwater and their impact on phosphorus transport in lowland catchments in the Netherlands. Our study showed that the mobility and ecological impact of P in surface waters in lowland catchments or polders like in the Netherlands is strongly controlled by the exfiltration of anoxic groundwater containing ferrous iron. Chemical precipitates derived from groundwater-associated Fe(II) seeping into the overlying surface water contribute to immobilization of dissolved phosphate and, therefore, reduces its bioavailability. Aeration experiments with Fe(II) and phosphate-containing synthetic solutions and natural groundwater showed that Fe(II) oxidation in presence of phosphate leads initially to formation of Fe(III) hydroxyphosphates precipitates until phosphate is near-depleted from solution. A field campaign on P specation in surface waters draining agricultural land showed, additionally, that the total-P concentration is strongly dominated by iron-bound. Between 75 and 95% of the total-P concentration in the water samples was iron-bound particulate P. After the turnover of dissolved P to iron-bound particulate P, the P transport in catchments or polders is controlled by sedimentation and erosion of suspended sediments in the water body. Shear flow-induced surface erosion of sediment beds upon natural discharge events or generated by pumping stations is thus an important mechanism for P transport in catchments or polders. The flow velocities in headwaters like drainage ditches are generally low and not high enough to cause a bed shear stress that exceed the critical shear stress. Transport of particulate P that originates from groundwater and (agricultural) drains discharge is strongly retained but particulate P can be remobilized due to biogeochemical processes in the sediment layer at other moments. This makes it difficult to link agricultural practice to P concentrations in the surface water and this should be accounted for when judging measures to reduce P loads from agriculture.

  9. From aggregative adsorption to surface depletion: Aqueous systems of C nE m amphiphiles at hydrophilic surfaces

    DOE PAGES

    Rother, Gernot; Müter, Dirk; Bock, Henry; ...

    2017-03-27

    Adsorption of a short-chain nonionic amphiphile (C 6E 3) at the surface of mesoporous silica glass (CPG-10) was studied by a combination of adsorption measurements and mesoscale simulations. Adsorption measurements covering a wide composition range of the C 6E 3 + water system show that no adsorption occurs up to the critical micelle concentration (cmc), at which a sharp increase of adsorption is observed that is attributed to ad-micelle formation at the pore walls. Intriguingly, as the concentration is increased further, the surface excess of the amphiphile begins to decrease and eventually becomes negative, which corresponds to preferential adsorption ofmore » water rather than amphiphile at high amphiphile concentrations. The existence of such a surface-azeotropic point has not previously been reported in the surfactant adsorption field. Dissipative particle dynamics (DPD) simulations were performed to reveal the structural origin of this transition from aggregative adsorption to surface depletion. Finally, the simulations indicate that this transition can be attributed to the repulsive interaction between head groups, causing amphiphilic depletion in the region around the corona of the surface micelles.« less

  10. Deep drilling; Probing beneath the earth's surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosen, J.250

    1991-06-01

    This paper reports on boreholes from 4.5 to greater than 10 kilometers deep that are pushing back the boundaries of earth science as they yield information that is used to refine seismic surveys, chart the evolution of sedimentary basins and shield volcanos, and uncover important clues on the origin and migration of mantle-derived water and gas.

  11. An apparatus to measure water optical attenuation length for LHAASO-MD

    NASA Astrophysics Data System (ADS)

    Li, Cong; Xiao, Gang; Feng, Shaohui; Wang, Lingyu; Li, Xiurong; Zuo, Xiong; Cheng, Ning; Wang, Hui; Gao, Bo; Duan, Zhihao; Liu, Jia; He, Huihai; Saeed, Mohsin; Lhaaso Collaboration

    2018-06-01

    The large high altitude air shower observatory (LHAASO) is being constructed at 4400 m a.s.l. in Daocheng, Sichuan Province, aiming to reveal the secrets of cosmic rays origin. And it has the largest surface muon detector array in the world. Due to the needs of calibration and construction of muon detector, we developed a water optical attenuation measurement device using an 8 m long water tank. The results are presented for filtered water at wavelength of 405 nm, which proves this apparatus can reach an accuracy of about 20% at 100 m. This apparatus has not only a high precision measurement of water attenuation length up to 100 m but is also very convenient to be used, which is crucial for water optical properties study during LHAASO detector construction.

  12. Fluoride: A naturally-occurring health hazard in drinking-water resources of Northern Thailand.

    PubMed

    Chuah, C Joon; Lye, Han Rui; Ziegler, Alan D; Wood, Spencer H; Kongpun, Chatpat; Rajchagool, Sunsanee

    2016-03-01

    In Northern Thailand, incidences of fluorosis resulting from the consumption of high-fluoride drinking-water have been documented. In this study, we mapped the high-fluoride endemic areas and described the relevant transport processes of fluoride in enriched waters in the provinces of Chiang Mai and Lamphun. Over one thousand surface and sub-surface water samples including a total of 995 collected from shallow (depth: ≤ 30 m) and deep (> 30 m) wells were analysed from two unconnected high-fluoride endemic areas. At the Chiang Mai site, 31% of the shallow wells contained hazardous levels (≥ 1.5 mg/L) of fluoride, compared with the 18% observed in the deep wells. However, at the Lamphun site, more deep wells (35%) contained water with at least 1.5mg/L fluoride compared with the shallow wells (7%). At the Chiang Mai site, the high-fluoride waters originate from a nearby geothermal field. Fluoride-rich geothermal waters are distributed across the area following natural hydrological pathways of surface and sub-surface water flow. At the Lamphun site, a well-defined, curvilinear high-fluoride anomalous zone, resembling that of the nearby conspicuous Mae Tha Fault, was identified. This similarity provides evidence of the existence of an unmapped, blind fault as well as its likely association to a geogenic source (biotite-granite) of fluoride related to the faulted zone. Excessive abstraction of ground water resources may also have affected the distribution and concentration of fluoride at both sites. The distribution of these high-fluoride waters is influenced by a myriad of complex natural and anthropogenic processes which thus created a challenge for the management of water resources for safe consumption in affected areas. The notion of clean and safe drinking water can be found in deeper aquifers is not necessarily true. Groundwater at any depth should always be tested before the construction of wells. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The influence of irrigation water on the hydrology and lake water budgets of two small arid-climate lakes in Khorezm, Uzbekistan

    USGS Publications Warehouse

    Scott, J.; Rosen, Michael R.; Saito, L.; Decker, D.L.

    2011-01-01

    Little is known regarding the origins and hydrology of hundreds of small lakes located in the western Uzbekistan province of Khorezm, Central Asia. Situated in the Aral Sea Basin, Khorezm is a productive agricultural region, growing mainly cotton, wheat, and rice. Irrigation is provided by an extensive canal network that conveys water from the Amu Darya River (AD) throughout the province. The region receives on average 10 cm/year of precipitation, yet potential evapotranspiration exceeds this amount by about 15 times. It was hypothesized that the perennial existence of the lakes of interest depends on periodic input of excess irrigation water. This hypothesis was investigated by studying two small lakes in the region, Tuyrek and Khodjababa. In June and July 2008, surface water and shallow groundwater samples were collected at these lake systems and surrounding communities and analyzed for δ2H, δ18O, and major ion hydrochemistry to determine water sources. Water table and lake surface elevations were monitored, and the local aquifer characteristics were determined through aquifer tests. These data and climate data from a Class A evaporation pan and meteorological stations were used to estimate water budgets for both lakes. Lake evaporation was found to be about 0.7 cm/day during the study period. Results confirm that the waters sampled at both lake systems and throughout central Khorezm were evaporated from AD water to varying degrees. Together, the water budgets and stable isotope and major ion hydrochemistry data suggest that without surface water input from some source (i.e. excess irrigation water), these and other Khorezm lakes with similar hydrology may decrease in volume dramatically, potentially to the point of complete desiccation.

  14. Numerical modeling the genetic mechanism of Cenozoic intraplate Volcanoes in Northeastern China

    NASA Astrophysics Data System (ADS)

    Qu, Wulin; Chen, Yongshun John; Zhang, Huai; Jin, Yimin; Shi, Yaolin

    2017-04-01

    Changbaishan Volcano located about 1400 km west of Japan Trench is an intra continental volcano which having different origin from island arc volcanoes. A number of different mechanisms have been proposed to interpret the origin of intraplate volcanoes, such as deep mantle plumes, back-arc extension and decompressional partial melting, asthenosphere upwelling and decompressional melting, and deep stagnant slab dehydration and partial melting. The recent geophysical research reveals that the slow seismic velocity anomaly extends continuously just below 660 km depth to surface beneath Changbaishan by seismic images and three-dimensional waveform modelling [Tang et al., 2014]. The subduction-induced upwelling occurs within a gap in the stagnant subducted Pacific Plate and produces decompressional melting. Water in deep Earth can reduce viscosity and lower melting temperature and seismic velocity and has effects on many other physical properties of mantle materials. The water-storage capacity of wadsleyite and ringwoodite, which are the main phase in the mantle transition zone, is much greater than that of upper mantle and lower mantle. Geophysical evidences have shown that water content in the mantle transition zone is exactly greater than that of upper mantle and lower mantle [Karato, 2011]. Subducted slab could make mantle transition zone with high water content upward or downward across main phase change surface to release water, and lead to partial melting. We infer that the partial melting mantle and subducted slab materials propagate upwards and form the Cenozoic intraplate Volcanoes in Northeastern China. We use the open source code ASPECT [Kronbichler et al., 2012] to simulate the formation and migration of magma contributing to Changbaishan Volcano. We find that the water entrained by subducted slab from surface has only small proportion comparing to water content of mantle transition zone. Our model provide insights into dehydration melting induced by water transport out of the mantle transition zone associated with dynamic interactions between the subducted slab and surrounding mantle. References Karato, S. (2011), Water distribution across the mantle transition zone and its implications for global material circulation, EARTH PLANET SC LETT, 301(3), 413-423. Kronbichler, M., et al. (2012), High accuracy mantle convection simulation through modern numerical methods, GEOPHYS J INT, 191(1), 12-29. Tang, Y., et al. (2014), Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling, NAT GEOSCI, 7(6), 470-475.

  15. Ion specific effects: decoupling ion-ion and ion-water interactions

    PubMed Central

    Song, Jinsuk; Kang, Tae Hui; Kim, Mahn Won; Han, Songi

    2015-01-01

    Ion-specific effects in aqueous solution, known as the Hofmeister effect is prevalent in diverse systems ranging from pure ionic to complex protein solutions. The objective of this paper is to explicitly demonstrate how complex ion-ion and ion-water interactions manifest themselves in the Hofmeister effects, based on a series of recent experimental observation. These effects are not considered in the classical description of ion effects, such as the Deryaguin-Landau-Verwey-Overbeek (DLVO) theory that, likely for that reason, fail to describe the origin of the phenomenological Hofmeister effect. However, given that models considering the basic forces of electrostatic and van der Waals interactions can offer rationalization for the core experimental observations, a universal interaction model stands a chance to be developed. In this perspective, we separately derive the contribution from ion-ion electrostatic interaction and ion-water interaction from second harmonic generation (SHG) data at the air-ion solution interface, which yields an estimate of ion-water interactions in solution. Hofmeister ion effects observed on biological solutes in solution should be similarly influenced by contributions from ion-ion and ion-water interactions, where the same ion-water interaction parameters derived from SHG data at the air-ion solution interface could be applicable. A key experimental data set available from solution systems to probe ion-water interaction is the modulation of water diffusion dynamics near ions in bulk ion solution, as well as near biological liposome surfaces. It is obtained from Overhauser dynamic nuclear polarization (ODNP), a nuclear magnetic resonance (NMR) relaxometry technique. The surface water diffusivity is influenced by the contribution from ion-water interactions, both from localized surface charges and adsorbed ions, although the relative contribution of the former is larger on liposome surfaces. In this perspective, ion-water interaction energy values derived from experimental data for various ions are compared with theoretical values in the literature. Ultimately, quantifying ion-induced changes in surface energy for the purpose of developing valid theoretical models for ion-water interaction, will be critical to rationalizing the Hofmeister effect. PMID:25761273

  16. Ab initio molecular dynamics of H2O adsorbed on solid MgO

    NASA Astrophysics Data System (ADS)

    Langel, Walter; Parrinello, Michele

    1995-08-01

    The Car-Parrinello method has been applied to study the adsorption of water on solid magnesium oxide with surface defects. A step consisting of an (100) and an (010) surface on an (011) base plane allows us to model the experimentally observed microfaceting. In and on this step dissociation of water into a hydroxyl group and a H-atom took place following a complicated pathway only accessible by the simulation of thermal motion. Under comparable conditions physisorption only was observed on a regular (001) plane. This solves an experimental controversy and it is in agreement with the observation, that disordered surfaces are more active in initiating the dissociation of the water molecules. Our work allows us to identify an important active center. We can also account for the experimentally observed broadening and shifting to the red of the stretching mode of hydrogen bonded hydroxyl groups, and we provide a detailed explanation of the origin of this effect. This allows us to verify earlier theories of hydrogen bonding such as that of the adiabatic separation of the proton dynamics.

  17. Long-term decrease in phosphate concentrations in the surface layer of the southern Japan Sea

    NASA Astrophysics Data System (ADS)

    Kodama, Taketoshi; Igeta, Yosuke; Kuga, Mizuki; Abe, Shoko

    2016-10-01

    To identify possible causes for the long-term trends in nutrient concentrations in the southern Japan Sea (JS), we studied nutrient concentrations that were obtained by the Japan Meteorological Agency. Our evaluation shows that phosphate concentrations declined in the surface layers in summer (0-20 and 21-50 m depth) and winter (0-20, 21-50, and 51-100 m depth) over the last 40 years, while no significant linear trend was observed for nitrate concentrations. The declining trend in the phosphate concentration was quantified as 1.8-3.3 nM yr-1. The increase in atmospheric nutrient deposition to the JS could not explain the decline in phosphate concentration. In addition, the mixed-layer depth during winter did not demonstrate any significant trend, and an increase in phosphate concentrations was not observed in any layers; therefore, the decrease in nutrient supply from deep JS water was not considered a major possible cause for the decline in the phosphate concentration. In contrast, the phosphate concentration in the surface of the southern JS during winter showed a significant positive correlation with the concentration in the 21-50 m depth layer of the saline East China Sea (ECS) water in the preceding summer, and the surface water of the southern JS was almost entirely replaced by water originating from the ECS during May-October. Therefore, it is concluded that the declining trend in the phosphate concentrations in the southern JS is caused by horizontal advection of ECS water.

  18. Bacterial community composition and structure in an Urban River impacted by different pollutant sources.

    PubMed

    Ibekwe, A Mark; Ma, Jincai; Murinda, Shelton E

    2016-10-01

    Microbial communities in terrestrial fresh water are diverse and dynamic in composition due to different environmental factors. The goal of this study was to undertake a comprehensive analysis of bacterial composition along different rivers and creeks and correlate these to land-use practices and pollutant sources. Here we used 454 pyrosequencing to determine the total bacterial community composition, and bacterial communities that are potentially of fecal origin, and of relevance to water quality assessment. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, and community composition. Detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) were used to correlate bacterial composition in streams and creeks to different environmental parameters impacting bacterial communities in the sediment and surface water within the watershed. Bacteria were dominated by the phyla Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria, with Bacteroidetes significantly (P<0.001) higher in all water samples than sediment, where as Acidobacteria and Actinobacteria where significantly higher (P<0.05) in all the sediment samples than surface water. Overall results, using the β diversity measures, coupled with PCoA and DCA showed that bacterial composition in sediment and surface water was significantly different (P<0.001). Also, there were differences in bacterial community composition between agricultural runoff and urban runoff based on parsimony tests using 454 pyrosequencing data. Fecal indicator bacteria in surface water along different creeks and channels were significantly correlated with pH (P<0.01), NO2 (P<0.03), and NH4N (P<0.005); and in the sediment with NO3 (P<0.015). Our results suggest that microbial community compositions were influenced by several environmental factors, and pH, NO2, and NH4 were the major environmental factors driving FIB in surface water based on CCA analysis, while NO3 was the only factor in sediment. Published by Elsevier B.V.

  19. Degradation and rearrangement of a lung surfactant lipid at the air-water interface during exposure to the pollutant gas ozone.

    PubMed

    Thompson, Katherine C; Jones, Stephanie H; Rennie, Adrian R; King, Martin D; Ward, Andrew D; Hughes, Brian R; Lucas, Claire O M; Campbell, Richard A; Hughes, Arwel V

    2013-04-09

    The presence of unsaturated lipids in lung surfactant is important for proper respiratory function. In this work, we have used neutron reflection and surface pressure measurements to study the reaction of the ubiquitous pollutant gas-phase ozone, O3, with pure and mixed phospholipid monolayers at the air-water interface. The results reveal that the reaction of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, with ozone leads to the rapid loss of the terminal C9 portion of the oleoyl strand of POPC from the air-water interface. The loss of the C9 portion from the interface is accompanied by an increase in the surface pressure (decrease in surface tension) of the film at the air-water interface. The results suggest that the portion of the oxidized oleoyl strand that is still attached to the lipid headgroup rapidly reverses its orientation and penetrates the air-water interface alongside the original headgroup, thus increasing the surface pressure. The reaction of POPC with ozone also leads to a loss of material from the palmitoyl strand, but the loss of palmitoyl material occurs after the loss of the terminal C9 portion from the oleoyl strand of the molecule, suggesting that the palmitoyl material is lost in a secondary reaction step. Further experiments studying the reaction of mixed monolayers composed of unsaturated lipid POPC and saturated lipid dipalmitoyl-sn-glycero-3-phosphocholine, DPPC, revealed that no loss of DPPC from the air-water interface occurs, eliminating the possibility that a reactive species such as an OH radical is formed and is able to attack nearby lipid chains. The reaction of ozone with the mixed films does cause a significant change in the surface pressure of the air-water interface. Thus, the reaction of unsaturated lipids in lung surfactant changes and impairs the physical properties of the film at the air-water interface.

  20. The Search for Life from Antarctica to Mars

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    Although the Viking results may indicate that Mars has no life today, the possibility exists that Mars may hold the best record of the events that led to the origin of life. There is direct geomorphological evidence that in the past Mars had large amounts of liquid water on its surface. Atmospheric models would suggest that this early period of hydrological activity was due to the presence of a thick atmosphere and the resulting warmer temperatures. From a biological perspective the existence of liquid water, by itself motivates the question of the origin of life on Mars. From studies of the Earth's earliest biosphere we know that by 3.5 Gyr. ago, life had originated on Earth and reached a fair degree of biological sophistication. Surface activity and erosion on Earth make it difficult to trace the history of life before the 3.5 Gyr timeframe. If Mars did maintain a clement environment for longer than it took for life to originate on Earth, then the question of the origin of life on Mars follows naturally. Human exploration of Mars will probably begin with a small base manned by a temporary crew, a necessary first start. But exploration of the entire planet win require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research base can be compared to the permanent research bases which several nations maintain in Antarctica at the South Pole, the geomagnetic pole, and elsewhere. In the long run, a continued human presence on Mars will be t he most economical way to study that planet in detail. It is possible that at some time in the future we might recreate a habitable climate on Mars, returning it to the life-bearing state it may have enjoyed early in its history. Our studies of Mars are still in a preliminary state but everything we have learned suggests that it may be possible to restore Mars to a habitable climate.

  1. In Situ Missions For Investigation of the Climate, Geology and Evolution of Venus

    NASA Astrophysics Data System (ADS)

    Grinspoon, David

    2017-10-01

    In situ Exploration of Venus has been recommended by the Decadal Study of the National Research Council. Many high priority measurements, addressing outstanding first-order, fundamental questions about current processes and evolution of Venus can only be made from in situ platforms such as entry probes, balloons or landers. These include: measuring noble gases and their isotopes to constrain origin and evolution; measuring stable isotopes to constrain the history of water and other volatiles; measuring trace gas profiles and sulfur compounds for chemical cycles and surface-atmosphere interactions, constraining the coupling of radiation, dynamics and chemistry, making visible and infrared descent images, and measuring surface and sub-surface composition. Such measurements will allow us deepen our understanding of the origin and evolution of Venus in the context of the terrestrial planets and extrasolar planets, to determine the level and style of current geological activity and to characterize the divergent climate evolution of Venus and Earth and extend our knowledge of the limits of habitability on hot terrestrial planets.

  2. Stability of micro-Cassie states on rough substrates

    NASA Astrophysics Data System (ADS)

    Guo, Zhenjiang; Liu, Yawei; Lohse, Detlef; Zhang, Xuehua; Zhang, Xianren

    2015-06-01

    We numerically study different forms of nanoscale gaseous domains on a model for rough surfaces. Our calculations based on the constrained lattice density functional theory show that the inter-connectivity of pores surrounded by neighboring nanoposts, which model the surface roughness, leads to the formation of stable microscopic Cassie states. We investigate the dependence of the stability of the micro-Cassie states on substrate roughness, fluid-solid interaction, and chemical potential and then address the differences between the origin of the micro-Cassie states and that of surface nanobubbles within similar models. Finally, we show that the micro-Cassie states share some features with experimentally observed micropancakes at solid-water interfaces.

  3. Ceres' Evolution Before and After Dawn: Where are We Now?

    NASA Astrophysics Data System (ADS)

    McCord, T. B.; Castillo, J. C.

    2016-12-01

    Observations of Ceres before Dawn indicated that it contains 25 wt% water, and thermodynamic modeling indicated Ceres probably had experienced the same process of differentiation due to melting of the original ice after accretion as experienced by large icy moons. Consistent with that was a surface of altered mineralogy like clays suggesting aqueous alteration of the original chondritic silicates. Dawn has revealed some concentration of mass toward the center, specific aqueously altered mineralogies, a stiff surface with weaker material beneath, and extrusions and protrusions suggesting recent subsurface activity, including exposures of water ice that must be very recent. This wealth of new information from Dawn enables selection of more specific evolution models that best match the vastly improved Dawn observations. In this new study we propose one possibility is that Ceres accreted as an ice and silicate mixture after short-lived radionuclides in CAIs had significantly decayed, i.e. nearer 5 my after CAIs, and thus differentiated less completely than for hotter models. On the other hand, the presence of heavily aqueously altered mineralogies, including probably salts, suggests extensive mixing of water and silicates, which might normally be associated with more complete differentiation. Geologically recent activity, perhaps even to the present time, seems evident from several young landforms, including protrusions consistent with diapirism and recent exposures of water ice. This suggests recent flexing of the subsurface and rising of less dense interior material, including salts and ice. The presence of ammoniated minerals and what appear to be salt deposits suggest a major lowering of subsurface water ice melting temperature, enhancing the duration of water-silicate contact, and perhaps accelerating the mineralization processes and slowing or halting differentiation of water and silicates. Thus, Ceres is becoming known as the first body outward from the Sun that has had its evolution controlled by water-driven processes. Investigations of its interior and geology enable by Dawn's observations will in turn help to better understand other ice-rich bodies.

  4. Ceres' evolution before and after Dawn: Where are we now?

    NASA Astrophysics Data System (ADS)

    McCord, Thomas B.; Castillo-Rogez, Julie C.

    2016-10-01

    Observations of Ceres before Dawn indicated that it contains ~25 wt% water, and thermodynamic modeling indicated Ceres probably had experienced the same process of differentiation due to melting of the original ice after accretion as experienced by large icy moons. Consistent with that was a surface of altered mineralogy like clays suggesting aqueous alteration of the original chondritic silicates. Dawn has revealed some concentration of mass toward the center, specific aqueously altered mineralogies, a stiff surface with weaker material beneath, and extrusions and protrusions suggesting recent subsurface activity, including exposures of water ice that must be very recent. This wealth of new information from Dawn enables selection of more specific evolution models that best match the vastly improved Dawn observations. In this new study we propose one possibility is that Ceres accreted as an ice and silicate mixture after short-lived radionuclides in CAIs had significantly decayed, i.e. nearer 5 my after CAIs, and thus differentiated less completely than for hotter models. On the other hand, the presence of heavily aqueously altered mineralogies, including probably salts, suggests extensive mixing of water and silicates, which might normally be associated with more complete differentiation. Geologically recent activity, perhaps even to the present time, seems evident from several young landforms, including protrusions consistent with diapirism and recent exposures of water ice. This suggests recent flexing of the subsurface and rising of less dense interior material, including salts and ice. The presence of ammoniated minerals and what appear to be salt deposits suggest a major lowering of subsurface water ice melting temperature, enhancing the duration of water-silicate contact, and perhaps accelerating the mineralization processes and slowing or halting differentiation of water and silicates. Thus, Ceres is becoming known as the first body outward from the Sun that has had its evolution controlled by water-driven processes. Investigations of its interior and geology enable by Dawn's observations will in turn help to better understand other ice-rich bodies.

  5. [Pollution and Potential Ecology Risk Evaluation of Heavy Metals in River Water, Top Sediments on Bed and Soils Along Banks of Bortala River, Northwest China].

    PubMed

    Zhang, Zhao-yong; Abuduwaili, Jilili; Jiang, Feng-qing

    2015-07-01

    This paper focuses on the sources, pollution status and potential ecology risks of heavy metals (Cr, Cu, Hg, As, Cd, Pb, and Zn) in the surface water, top sediment of river bed and soil along banks of Bortala River, which locates in the oasis region of Xinjiang, northwest China. Results showed that: (1) As a whole, contents of 7 tested heavy metals of Bortala River were low, while the maximum values of Hg, Cd, Pb, and Cr in the river water were significantly higher than those of Secondary Category of the Surface Water Quality Standards of People's Republic of China (GB 3838-2002) and Drinking Water Guideline from WHO. Analysis showed that the heavy metals contents of top sediment on river bed and soils along river banks were significantly higher than those of the river water. (Correlation analysis and enrichment factor (EF) calculation showed that in the river water, top sediment on river bed and soils along river banks, Hg, Cd, Pb, and Cr mainly originated from industrial emissions, urban and rural anthropogenic activities, transportation and agricultural production activities; While Cu, Zn, and As mainly originated from natural geological background and soil parent materials. (3) Pollution assessment showed that in three matrices, the single factor pollution index(Pi) and the integrated pollution index (Pz) of 7 heavy metals were all lower than 1, and they all belonged to safe and clean levels. (4) Potential ecology risk evaluation showed that as a whole the single factor potential ecological risk (Eir) and the integrated potential ecology risks (RI) of 7 heavy metals were relatively low, and would not cause threats to the health of water and soil environment of river basin, while the potential ecology risks of Cd, Hg, Pb, and Cr were significantly higher than those of other heavy metals.

  6. A Search for Signs of Life and Habitability on Europa

    NASA Technical Reports Server (NTRS)

    Fonda, Mark (Technical Monitor); McKay, Christoper P.; Eicken, H.; Neuer, S.; Sogin, M.; Waite, H.; Warmflash, D.

    2003-01-01

    Europa is a key target in the search for life beyond the Earth because of consistent evidence that below the icy surface there is liquid water. Future missions to Europa could confirm the presence and nature of the ocean and determine the thickness of the ice layer. Confirming the presence of an ocean and determining the habitability of Europa are key astrobiology science objectives. Nevertheless, the highest priority objective for astrobiology will be a search for life. How could a search for life be accomplished on a near-term mission given the thick ice cover? One answer may lie in the surface materials. If Europa has an ocean, and if that ocean contains life, and if water from the ocean is carried up to the surface, then signs of life may be contained in organic material on the surface. Organics that derive from biological processes (dead organisms) are distinct from organics derived from non-biological processes in several aspects. First, biology is selective and specific in its use of molecules. For example, Earth life uses 20 left-handed amino acids. Second, biology can leave characteristic isotopic patterns. Third, biology often produces large complex molecules in high concentrations, for example lipids. Organic material that has been on the surface of Europa for long periods of time would be reprocessed by the strong radiation field probably erasing any signature of biological origin. Evidence of life in the ocean may be found on the surface of Europa if regions of the surface contained relatively recent material carried up from the ocean through cracks in the icy lithosphere. But organic material that has been on the surface of Europa for long periods of time would be reprocessed by the strong radiation field probably erasing any signature of biological origin. Thus, the detailed analysis required may not be possible via remote sensing but direct sampling of the material below the radiation processed upper meter is probably required.

  7. Efficient adsorption of Hg (II) ions in water by activated carbon modified with melamine

    NASA Astrophysics Data System (ADS)

    Qin, Hangdao; Meng, Jingling; Chen, Jing

    2018-04-01

    Removal of Hg (II) ions from industrial wastewater is important for the water treatment, and adsorption is an efficient treatment process. Activated carbon (AC) was modified with melamine, which introduced nitrogen-containing functional groups onto AC surface. Original AC and melamine modified activated carbon (ACM) were characterized by elemental analysis, N2 adsorption-desorption, determination of the pH of the point of zero charge (pHpzc) and X-ray photoelectron spectroscopy (XPS) and their performance in the adsorption of Hg(II) ions was investigated. Langmuir model fitted the experimental data of equilibrium isotherms well. ACM showed the higher Hg (II) ions adsorption capacity, increasing more than more than 1.8 times compared to the original one. Moreover, ACM showed a wider pH range for the maximum adsorption than the parent AC.

  8. Mars Global Surveyor Data Analysis Program. Origins of Small Volcanic Cones: Eruption Mechanisms and Implications for Water on Mars

    NASA Technical Reports Server (NTRS)

    Fagents, Sarah A.; Greeley, Ronald; Thordarson, Thorvaldur

    2002-01-01

    The goal of the proposed work was to determine the origins of small volcanic cones observed in Mars Global Surveyor (MGS) data, and their implications for regolith ice stores and magma volatile contents. For this 1-year study, our approach involved a combination of: Quantitative morphologic analysis and interpretation of Mars Orbiter Camera (MOC) and Mars Orbiter Laser Altimeter (MOLA) data; Numerical modeling of eruption processes responsible for producing the observed features; Fieldwork on terrestrial analogs in Iceland. Following this approach, this study succeeded in furthering our understanding of (i) the spatial and temporal distribution of near-surface water ice, as defined by the distribution and sizes of rootless volcanic cones ("pseudocraters"), and (ii) the properties, eruption conditions, and volatile contents of magmas producing primary vent cones.

  9. Identification of the origin of salts in an agricultural area of SE Spain

    NASA Astrophysics Data System (ADS)

    Acosta, Jose A.; Faz, Angel; Kalbitz, Karsten; Jansen, Boris; Silvia, Martinez-Martinez

    2010-05-01

    In spite of soil salinity having been widely studied in many part of the world, origin of salinity has not been addresses in detail in some of the most productive agricultural areas of Europe (e.g. southeast of Spain). According to the European Commission, salinization affects about 1 to 3 million ha of the area of the European Union and Candidate Countries. In Europe, most of the salt-affected land surfaces are concentrated in the Mediterranean basin. In Spain, about 3% of the 3.5 million hectares of irrigated land are severely affected by salts and another 15% is at serious risk of imminent salinization. Due to the limited water resources in southeast of Spain, water with marginal quality is used for irrigation. The use of this water has led to degradation, reduction of the land's production capacity and soil salinization. The main aim of the present study was to identify the origin of the salts involved in such salinization, using classical and multivariable statistical techniques. In order to achieve this objective, surface soil samples were collected in January and July 2009 at 48 sites located in a representative lemon production area close to City of Murcia, covering a surface area of 44 km2. Soil pH, electrical conductivity, ionic composition, total organic matter, equivalent calcium carbonate, cation exchange capacity and particle size distribution were determined. The Pearson correlation coefficient, r, was used to measure the relationship between two quantitative variables and principal components analysis was used to study the correlations among anions and cations and their grouping into several factors. Results indicated that the high electrical conductivity found in the study area indeed comes from poor quality irrigation water used for agriculture. Anions and cations responsible of the salinity were chlorides, sulphates, calcium, magnesium and sodium. Mismanagement of water and traditional irrigation system resulted in salt build-up in the soil system. Therefore, there is an urgent need to manage irrigation considering the soil type, climatic factors, and crop requirements. A change to drip irrigation system is desirable in this respect. Phosphate, ammonium, nitrate and potassium found in the soils under study were found to be associated with fertilization. They have been applied to the soil mainly as ammonium nitrate, potassium nitrate, and monoammonium phosphate. The previous indicated that these ions are not involved in secondary salinization of the soils. Finally, SEM-EDX analysis suggested that calcium sulphate found in the agricultural soil of Murcia originated from two sources: i) irrigation water and ii) pedogenic sources. This was confirmed by different crystal morphology and occurrence. In conclusion, multivariable analyses combined with advanced laboratory analysis (e.g. SEM-EDX) are very useful to identify the possible sources of salts. Acknowledgements: to "Fundación Séneca" of "Comunidad Autónoma de Murcia" for its financial support.

  10. Asphaltene content and composition as a measure of Deepwater Horizon oil spill losses within the first 80 days

    USGS Publications Warehouse

    Lewan, M.D.; Warden, A.; Dias, R.F.; Lowry, Z.K.; Hannah, T.L.; Lillis, P.G.; Kokaly, R.F.; Hoefen, T.M.; Swayze, G.A.; Mills, C.T.; Harris, S.H.; Plumlee, G.S.

    2014-01-01

    The composition and content of asphaltenes in spilled and original wellhead oils from the Deepwater Horizon (DWH) incident provide information on the amount of original oil lost and the processes most responsible for the losses within the first 80 days of the active spill. Spilled oils were collected from open waters, coastal waters and coastal sediments during the incident. Asphaltenes are the most refractory component of crude oils but their alteration in the spilled oils during weathering prevents them from being used directly as a conservative component to calculate original oil losses. The alteration is reflected by their increase in oxygen content and depletion in 12C. Reconnaissance experiments involving evaporation, photo-oxidation, microbial degradation, dissolution, dispersion and burning indicate that the combined effects of photo-oxidation and evaporation are responsible for these compositional changes. Based on measured losses and altered asphaltenes from these experiments, a mean of 61 ± 3 vol% of the original oil was lost from the surface spilled oils during the incident. This mean percentage of original oil loss is considerably larger than previous estimates of evaporative losses based on only gas chromatography (GC) amenable hydrocarbons (32–50 vol%), and highlights the importance of using asphaltenes, as well as GC amenable parameters in evaluating original oil losses and the processes responsible for the losses.

  11. Compositional maps of Saturn's moon Phoebe from imaging spectroscopy

    USGS Publications Warehouse

    Clark, R.N.; Brown, R.H.; Jaumann, R.; Cruikshank, D.P.; Nelson, R.M.; Buratti, B.J.; McCord, T.B.; Lunine, J.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Formisano, V.; Langevin, Y.; Matson, D.L.; Mennella, V.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Hoefen, T.M.; Curchin, J.M.; Hansen, G.; Hibbits, K.; Matz, K.-D.

    2005-01-01

    The origin of Phoebe, which is the outermost large satellite of Saturn, is of particular interest because its inclined, retrograde orbit suggests that it was gravitationally captured by Saturn, having accreted outside the region of the solar nebula in which Saturn formed. By contrast, Saturn's regular satellites (with prograde, low-inclination, circular orbits) probably accreted within the sub-nebula in which Saturn itself formed. Here we report imaging spectroscopy of Phoebe resulting from the Cassini-Huygens spacecraft encounter on 11 June 2004. We mapped ferrous-iron-bearing minerals, bound water, trapped CO2, probable phyllosilicates, organics, nitriles and cyanide compounds. Detection of these compounds on Phoebe makes it one of the most compositionally diverse objects yet observed in our Solar System. It is likely that Phoebe's surface contains primitive materials from the outer Solar System, indicating a surface of cometary origin.

  12. An intercomparison of three methods for the large-scale isolation of oceanic dissolved organic matter

    USGS Publications Warehouse

    Green, Nelson W.; Perdue, E. Michael; Aiken, George R.; Butler, Kenna D.; Chen, Hongmei; Dittmar, Thorsten; Niggemann, Jutta; Stubbins, Aron

    2014-01-01

    Dissolved organic matter (DOM) was isolated from large volumes of deep (674 m) and surface (21 m) ocean water via reverse osmosis/electrodialysis (RO/ED) and two solid-phase extraction (SPE) methods (XAD-8/4 and PPL) at the Natural Energy Laboratory of Hawaii Authority (NELHA). By applying the three methods to common water samples, the efficiencies of XAD, PPL and RO/ED DOM isolation were compared. XAD recovered 42% of dissolved organic carbon (DOC) from deep water (25% with XAD-8; 17% with XAD-4) and 30% from surface water (16% with XAD-8; 14% with XAD-4). PPL recovered 61 ± 3% of DOC from deep water and 61% from surface water. RO/ED recovered 82 ± 3% of DOC from deep water, 14 ± 3% of which was recovered in a sodium hydroxide rinse, and 75 ± 5% of DOC from surface water, with 12 ± 2% in the sodium hydroxide rinse. The highest recoveries of all were achieved by the sequential isolation of DOC, first with PPL and then via RO/ED. This combined technique recovered 98% of DOC from a deep water sample and 101% of DOC from a surface water sample. In total, 1.9, 10.3 and 1.6 g-C of DOC were collected via XAD, PPL and RO/ED, respectively. Rates of DOC recovery using the XAD, PPL and RO/ED methods were 10, 33 and 10 mg-C h− 1, respectively. Based upon C/N ratios, XAD isolates were heavily C-enriched compared with water column DOM, whereas RO/ED and PPL ➔ RO/ED isolate C/N values were most representative of the original DOM. All techniques are suitable for the isolation of large amounts of DOM with purities suitable for most advanced analytical techniques. Coupling PPL and RO/ED techniques may provide substantial progress in the search for a method to quantitatively isolate oceanic DOC, bringing the entirety of the DOM pool within the marine chemist's analytical window.

  13. Oceanographic Interpretation of Apollo Photographs. Coastal Oceanographic and Sedimentologic Interpretation of Apollo 9 Space Photographs; Carolina's Continental Shelf, USA

    NASA Technical Reports Server (NTRS)

    Mairs, R. L.

    1971-01-01

    Apollo 9 photographs, color band separations, and oceanographic and meteorological data are used in the study of the origin, movement, and dissipation of masses of discolored water near the shores of North and South Carolina. A model has been developed incorporating jet theory, climatology, currents, surface temperatures, color separations, and other oceanographic data to explain the processes involved in the life cycle of the discolored water masses. Special treatment is afforded the Gulf Stream boundary definition and the Cape Hatteras oceanographic barrier.

  14. Singular structures on liquid rims

    NASA Astrophysics Data System (ADS)

    Mayer, Hans C.; Krechetnikov, Rouslan

    2014-03-01

    This experimental note is concerned with a new effect we discovered in the course of studying water hammering phenomena. Namely, the ejecta originating from the solid plate impact on a water surface brings about a liquid rim at its edge with the fluid flowing towards the rim center and forming a singular structure resembling a "pancake." Here, we present the experimental observations and a qualitative physical explanation for the effect, which proves to be fundamental to the situation when the size and speed of the impacting body are such that the capillary effects become important.

  15. Effects of hierarchical features on longevity of submerged superhydrophobic surfaces with parallel grooves

    NASA Astrophysics Data System (ADS)

    Hemeda, A. A.; Gad-el-Hak, M.; Tafreshi, H. Vahedi

    2014-08-01

    While the air-water interface over superhydrophobic surfaces decorated with hierarchical micro- or nanosized geometrical features have shown improved stability under elevated pressures, their underwater longevity—-the time that it takes for the surface to transition to the Wenzel state—-has not been studied. The current work is devised to study the effects of such hierarchical features on the longevity of superhydrophobic surfaces. For the sake of simplicity, our study is limited to superhydrophobic surfaces composed of parallel grooves with side fins. The effects of fins on the critical pressure—-the pressure at which the surface starts transitioning to the Wenzel state—-and longevity are predicted using a mathematical approach based on the balance of forces across the air-water interface. Our results quantitatively demonstrate that the addition of hierarchical fins significantly improves the mechanical stability of the air-water interface, due to the high advancing contact angles that can be achieved when an interface comes in contact with the fins sharp corners. For longevity on the contrary, the hierarchical fins were only effective at hydrostatic pressures below the critical pressure of the original smooth-walled groove. Our results indicate that increasing the length of the fins decreases the critical pressure of a submerged superhydrophobic groove but increases its longevity. Increasing the thickness of the fins can improve both the critical pressure and longevity of a submerged groove. The mathematical framework presented in this paper can be used to custom-design superhydrophobic surfaces for different applications.

  16. An Impact Origin for Surface Minerals on Ceres

    NASA Astrophysics Data System (ADS)

    Zolotov, M. Y.

    2013-12-01

    The dwarf planet Ceres is the largest body in the main asteroid belt with a hydrated dark rocky surface and an uncertain internal structure [1,2]. Spectra of Ceres in the near- and mid-infrared ranges show that surface materials may not contain abundant serpentine, saponite, sulfates, olivine, pyroxenes, and organic matter [2,3], which are common in carbonaceous chondrites. However, brucite, Mg carbonates, cronstedtite, and magnetite could be abundant and indicate aqueous processes [2,3]. The formation of abundant brucite, carbonates, and cronstedtite requires open-system low-temperature conditions characterized by elevated water/rock ratios and low fugacities of hydrogen and carbon dioxide. The observed mineralogy is more consistent with a near-surface origin than with a formation within Ceres or on planetesimals. The instability of aqueous solutions at the surface of Ceres implies mineral deposition during transient events of fluidal activity. But a warming of near-surface rocks by thermal processes in the interior requires dehydration of rocks, which is not consistent with the low density of Ceres. The lack of low-solubility sulfates in surface materials does not indicate percolation of interior fluids. Carbonate-bearing fluids may not percolate to the cold surface, especially if Ceres had undergone water-rock differentiation [1,4]. The lack of serpentine in surface materials does not indicate a formation of brucite through aqueous alteration of olivine-rich rocks. Though, the observed minerals could form in impact collisions of ice-rich targets and/or impactors. OH-bearing phases may condense from water-rich impact plumes [5]. Brucite and Mg carbonates could form through hydrolysis and carbonation of condensed MgO formed through evaporation of silicates. Apparently abundant carbonates may indicate an ample oxidation of organics. Ferric iron in magnetite and cronstedtite agrees with water-rich and oxidizing impact settings [5]. Turbulent and disequilibrium environments in impact plumes and surges could have led to deposition of minerals which typically do not form together (e.g., brucite and cronstedtite). Aqueous minerals could have formed in impact clouds, crater outflows, transient ice-covered crater lakes, and related hydrothermal systems. The observed clay-sized and spatially homogeneous surface materials [2] could be gravitationally sorted deposits of impact clouds and surges. The surface materials could have formed through impacts on an icy shell of a differentiated Ceres during the Late Heavy Bombardment (LHB) in the inner solar system, which affected may other asteroids [6]. However, mineral-forming processes during collisions of an undifferentiated and hydrated Ceres with water-rich bodies during LHB remain a possibility. A detection of fluidized crater outflows together with topography and composition of surface materials with Dawn will test this hypothesis. Refs: [1] McCord, T.B. et al. (2011) Space Sci. Rev. 163, 63-76. [2] Rivkin, A.S. et al. (2011) Space Sci. Rev. 101, 1-22. [3] Milliken, R.E., and Rivkin, A.S. (2009) Nature Geoscience 2, 258-261. [4] Castillo-Rogez, J.C., and McCord, T.B. (2010) Icarus 205, 443-459. [5] Gerasimov, M.V. et al. (2002) Deep-Sea Res. II 49, 995-1009. [6] Marchi, S. et al. (2013) Nature Geoscience, 6, 303-307.

  17. On the origins of hypersaline groundwater in the Nile Delta aquifer

    NASA Astrophysics Data System (ADS)

    van Engelen, Joeri; Oude Essink, Gualbert H. P.; Kooi, Henk; Bierkens, Marc F. P.

    2018-05-01

    The Nile Delta is essential to Egypt's agro- and socio-economy. Although surface water is the traditional source for Egypt's irrigation, the shallow fresh groundwater resources underlying the delta are increasingly burdened by groundwater pumping, which increases interest in the status of the groundwater resources. Groundwater up to three times more saline than sea water was found at 600 m depth. The occurrence of this hypersaline groundwater raises doubts on the often-made assumption in the literature that seawater is the only source of salt in the Nile Delta aquifer and makes further investigation necessary. Knowledge on the origin of this hypersaline groundwater is key in assessing the possibility of deep fresh groundwater pockets. In this paper we conducted computational analyses to assess possible origins using both analytical solutions and numerical models. It is concluded that the hypersaline groundwater can either originate from Quaternary free convection systems, or from compaction-induced upward salt transport of hypersaline groundwater that formed during the Messinian salinity crisis. Our results also indicate that with groundwater dating it is possible to discriminate between these two hypotheses. Furthermore, it is deduced that the hydrological connection between aquifer and sea is crucial to the hydrogeological functioning of the Nile Delta Aquifer.

  18. The nitrate response of a lowland catchment and groundwater travel times

    NASA Astrophysics Data System (ADS)

    van der Velde, Ype; Rozemeijer, Joachim; de Rooij, Gerrit; van Geer, Frans

    2010-05-01

    Intensive agriculture in lowland catchments causes eutrophication of downstream waters. To determine effective measures to reduce the nutrient loads from upstream lowland catchments, we need to understand the origin of long-term and daily variations in surface water nutrient concentrations. Surface water concentrations are often linked to travel time distributions of water passing through the saturated and unsaturated soil of the contributing catchment. This distribution represents the contact time over which sorption, desorption and degradation takes place. However, travel time distributions are strongly influenced by processes like tube drain flow, overland flow and the dynamics of draining ditches and streams and therefore exhibit strong daily and seasonal variations. The study we will present is situated in the 6.6 km2 Hupsel brook catchment in The Netherlands. In this catchment nitrate and chloride concentrations have been intensively monitored for the past 26 years under steadily decreasing agricultural inputs. We described the complicated dynamics of subsurface water fluxes as streams, ditches and tube drains locally switch between active or passive depending on the ambient groundwater level by a groundwater model with high spatial and temporal resolutions. A transient particle tracking approach is used to derive a unique catchment-scale travel time distribution for each day during the 26 year model period. These transient travel time distributions are not smooth distributions, but distributions that are strongly spiked reflecting the contribution of past rainfall events to the current discharge. We will show that a catchment-scale mass response function approach that only describes catchment-scale mixing and degradation suffices to accurately reproduce observed chloride and nitrate surface water concentrations as long as the mass response functions include the dynamics of travel time distributions caused by the highly variable connectivity of the surface water network.

  19. Quantifying climate change impacts on runoff of zoonotic pathogens from land

    NASA Astrophysics Data System (ADS)

    Sterk, Ankie; de Roda Husman, Ana Maria; Stergiadi, Maria; de Nijs, Ton; Schijven, Jack

    2013-04-01

    Several studies have shown a correlation between rainfall and waterborne disease outbreaks. One of the mechanisms whereby rainfall may cause outbreaks is through an increase in runoff of animal faeces from fields to surface waters. Faeces originating from wildlife, domestic animals or manure-fertilized fields, is considered an important source of zoonotic pathogens to which people may be exposed by water recreation or drinking-water consumption. Climate changes affect runoff because of increasing winter precipitation and more extreme precipitation events, as well as changes in evaporation. Furthermore, drier summers are leading to longer periods of high soil moisture deficits, increasing the hydrophobicity of soil and consequently changing infiltration capacities. A conceptual model is designed to describe the impacts of climate changes on the terrestrial and aquatic ecosystems, which are both directly and indirectly affecting pathogen loads in the environment and subsequent public health risks. One of the major outcomes was the lack of quantitative data and limited qualitative analyses of impacts of climate changes on pathogen runoff. Quantifying the processes by which micro-organisms are transported from fields to waters is important to be able to estimate such impacts to enable targeted implementation of effective intervention measures. A quantitative model using Mathematica software will be developed to estimate concentrations of pathogens originating from overland flow during runoff events. Different input sources will be included by applying different land-use scenarios, including point source faecal pollution from dairy cows and geese and diffuse source pollution by fertilization. Zoonotic pathogens, i.e. Cryptosporidium and Campylobacter, were selected based on transport properties, faecal loads and disease burden. Transport and survival rates of these pathogens are determined including effects of changes in precipitation but also temperature induced changes on die-off. Moreover, besides climate and surface variables, changes in soil or vegetation and adjustments in agricultural policy are considered. Output of this model can be used to assess how expected climate changes could affect pathogen concentrations in surface waters. The long term aim is to include this information in a larger framework, to quantify the impact of climate change on the infection and eventual disease risks due to exposure to water transmitted pathogens.

  20. Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum

    NASA Astrophysics Data System (ADS)

    Michaelian, K.; Simeonov, A.

    2015-08-01

    The driving force behind the origin and evolution of life has been the thermodynamic imperative of increasing the entropy production of the biosphere through increasing the global solar photon dissipation rate. In the upper atmosphere of today, oxygen and ozone derived from life processes are performing the short-wavelength UV-C and UV-B dissipation. On Earth's surface, water and organic pigments in water facilitate the near-UV and visible photon dissipation. The first organic pigments probably formed, absorbed, and dissipated at those photochemically active wavelengths in the UV-C and UV-B that could have reached Earth's surface during the Archean. Proliferation of these pigments can be understood as an autocatalytic photochemical process obeying non-equilibrium thermodynamic directives related to increasing solar photon dissipation rate. Under these directives, organic pigments would have evolved over time to increase the global photon dissipation rate by (1) increasing the ratio of their effective photon cross sections to their physical size, (2) decreasing their electronic excited state lifetimes, (3) quenching radiative de-excitation channels (e.g., fluorescence), (4) covering ever more completely the prevailing solar spectrum, and (5) proliferating and dispersing to cover an ever greater surface area of Earth. From knowledge of the evolution of the spectrum of G-type stars, and considering the most probable history of the transparency of Earth's atmosphere, we construct the most probable Earth surface solar spectrum as a function of time and compare this with the history of molecular absorption maxima obtained from the available data in the literature. This comparison supports the conjecture that many fundamental molecules of life are pigments which arose, proliferated, and co-evolved as a response to dissipating the solar spectrum, supports the thermodynamic dissipation theory for the origin of life, constrains models for Earth's early atmosphere, and sheds some new light on the origin of photosynthesis.

  1. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    A United Launch Alliance Atlas V rocket begins to roll out of the Vertical Integration Facility to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  2. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    After leaving the Vertical Integration Facility, a United Launch Alliance Atlas V rocket is on its way to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  3. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    In a view from above, a United Launch Alliance Atlas V rocket begins to roll out of the Vertical Integration Facility to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  4. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    A United Launch Alliance Atlas V rocket rolls out of the Vertical Integration Facility on its way to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  5. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    A United Launch Alliance Atlas V rocket has left the Vertical Integration Facility and is on its way to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  6. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    The United Launch Alliance Atlas V rocket has made the trek from the Vertical Integration Facility to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  7. OSIRIS-REx Rollout for Launch

    NASA Image and Video Library

    2016-09-07

    A United Launch Alliance Atlas V rocket rolled out of the Vertical Integration Facility and is on its way to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  8. KSC-20160908-RV-ANG01_0001-OSIRIS_REx_Launch_Broadcast_UCS_3_ISO-3126827

    NASA Image and Video Library

    2016-09-08

    Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  9. KSC-20160908-RV-GEB01_0001-OSIRIS_REx_Launch_Broadcast_Van_1_People_Cutaways_ISO-3126827

    NASA Image and Video Library

    2016-09-08

    Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  10. KSC-20160908-RV-CSH01_0001-OSIRIS_REx_Launch_Broadcast_Van_2_NASA_Causeway_ISO-3126827

    NASA Image and Video Library

    2016-09-08

    Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  11. KSC-20160908-RV-GMM01_0003-OSIRIS_REx_Launch_Broadcast_Ground_ISO-3126827

    NASA Image and Video Library

    2016-09-08

    Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  12. KSC-20160908-RV-GMM01_0002-OSIRIS_REx_Launch_Broadcast_VIF_ISO-3126827

    NASA Image and Video Library

    2016-09-08

    Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  13. KSC-20160908-RV-GMM01_0001-OSIRIS_REx_Launch_Broadcast_VAB_Roof_ISO-3126827

    NASA Image and Video Library

    2016-09-08

    Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  14. KSC-20160908-RV-ULA01_0001-OSIRIS_REx_Launch_Broadcast_Rocket_Cam_Ascent_ISO-3126827

    NASA Image and Video Library

    2016-09-08

    Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  15. Remote detection of widespread indigenous water in lunar pyroclastic deposits

    NASA Astrophysics Data System (ADS)

    Milliken, Ralph E.; Li, Shuai

    2017-08-01

    Laboratory analyses of lunar samples provide a direct means to identify indigenous volatiles and have been used to argue for the presence of Earth-like water content in the lunar interior. Some volatile elements, however, have been interpreted as evidence for a bulk lunar mantle that is dry. Here we demonstrate that, for a number of lunar pyroclastic deposits, near-infrared reflectance spectra acquired by the Moon Mineralogy Mapper instrument onboard the Chandrayaan-1 orbiter exhibit absorptions consistent with enhanced OH- and/or H2O-bearing materials. These enhancements suggest a widespread occurrence of water in pyroclastic materials sourced from the deep lunar interior, and thus an indigenous origin. Water abundances of up to 150 ppm are estimated for large pyroclastic deposits, with localized values of about 300 to 400 ppm at potential vent areas. Enhanced water content associated with lunar pyroclastic deposits and the large areal extent, widespread distribution and variable chemistry of these deposits on the lunar surface are consistent with significant water in the bulk lunar mantle. We therefore suggest that water-bearing volcanic glasses from Apollo landing sites are not anomalous, and volatile loss during pyroclastic eruptions may represent a significant pathway for the transport of water to the lunar surface.

  16. The Water-Wheel IR (WIR): A Contact Survey Experiment for Water and Carbonates on Mars

    NASA Technical Reports Server (NTRS)

    Wang, Alian; Haskin, Larry A.; Freeman, John; Dong, Edward X.; Kuebler, Karla E.

    2004-01-01

    Minimum requirements for life include water and accessible carbon. Mars has both in its polar caps and atmosphere. Water (or water-equivalent hydrogen) is present at shallow depths (approx. 10-20 cm) at latitudes =60 and is heterogeneously distributed in other parts of Mars [1]. Mars may have once had surface water that could plausibly have produced carbonate deposits [2-5]. Mars shows signs of hydrothermal activity [6-8] that may have affected soil composition [9, 10]. The Thermal Emission Spectrometer on the Mars Global Surveyor found large and small patches of hematite that may have been water-borne or water-derived [11, 12]. Current orbiting spacecraft (MGS & Odyssey) have not found massive carbonate deposits, however [13]. Shales and limestones, which we associate with moist and benign environments on Earth, are apparently not abundant on Mars. Both carbonate and organic carbon occur as alteration products in Martian meteorites of igneous origin [14]. One study of MGS-TES data suggests 2-5 wt% carbonates (mainly MgCO3) in surface dust, but found no concentrated source [15]. Carbonates and H2O/OH bearing minerals will be sought by the mini-TES and Mossbauer experiments on the Mars Exploration Rovers, one of which landed successfully on Mars on January 3.

  17. Hadean Oceanography: Experimental Constraints on the Development of the Terrestrial Hydrosphere and the Origin of Life on Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryerson, F J

    The oxygen isotopic compositions of the world's oldest mineral grains, zircon, have recently been used to infer the compositions of the rocks from which they crystallized. The results appear to require a source that had once experienced isotopic fractionation between clay minerals and liquid water, thereby implying the presence of liquid water at the Earth's surface prior to 4.4 billion years ago, less than 2 million years after accretion. This observation has important implications for the development of the Earth's continental crust. The inferred composition of the zircon source rock is directly dependent upon the oxygen isotopic fractionation between zirconmore » and melt, and zircon and water. These fractionation factors have not been determined experimentally, however, constituting the weak link in this argument. A series of experiments to measure these fractionation factors has been conducted. The experiments consist of finely powdered quartz, a polished single crystal of zircon and isotopically-enriched or isotopically normal water to provide a range of isotopic compositions. The experiments will be run until quartz is in isotopic equilibrium with water. Zircon was expected to partially equilibrate producing an oxygen isotopic diffusion profile perpendicular to the surface. Ion probe spot analysis of quartz and depth profiling of zircon will determine the bulk and surface isotopic compositions of the phases, respectively. The well-known quartz-water isotopic fractionation factors can be used to calculate the oxygen isotopic composition of the fluid, and with the zircon surface composition, the zircon-water fractionation factor. Run at temperatures up to 1000 C for as long as 500 hours have not produced diffusion profiles longer than 50 nm. The steep isotopic gradient at the samples surface precludes use of the diffusion profile for estimation on the surface isotopic composition. The short profiles may be the result of surface dissolution, although such dissolution cannot be resolved in SEM images. The sluggish nature of diffusion in zircon may require that fractionation factors be determined by direct hydrothermal synthesis of zircon rather than by mineral-fluid exchange.« less

  18. Risk assessment for drugs of abuse in the Dutch watercycle.

    PubMed

    van der Aa, Monique; Bijlsma, Lubertus; Emke, Erik; Dijkman, Ellen; van Nuijs, Alexander L N; van de Ven, Bianca; Hernández, Felix; Versteegh, Ans; de Voogt, Pim

    2013-04-01

    A screening campaign of drugs of abuse (DOA) and their relevant metabolites in the aqueous environment was performed in the Netherlands. The presence of DOA, together with the potential risks for the environment and the possible human exposure to these compounds through consumption of drinking water was investigated. Sewage water (influent and effluent), surface water of the rivers Rhine and Meuse, and drinking water (raw and finished) were analysed by four different laboratories using fully in-house validated methods for a total number of 34 DOA and metabolites. In this way, data reported for several compounds could also be confirmed by other laboratories, giving extra confidence to the results obtained in this study. In total 17 and 22 DOA were detected and quantified in influent and effluent sewage samples, respectively. The tranquilizers oxazepam and temazepam, and cocaine and its metabolite benzoylecgonine were found in high concentrations in sewage water. Nine compounds were possibly not efficiently removed during treatment and were detected in surface waters. The results indicated that substantial fractions of the total load of DOA and metabolites in the rivers Rhine and Meuse enter the Netherlands from abroad. For some compounds, loads appear to increase going downstream, which is caused by a contribution from Dutch sewage water effluents. As far as data are available, no environmental effects are expected of the measured DOA in surface waters. In raw water, three DOA were detected, whereas in only one finished drinking water out of the 17 tested, benzoylecgonine was identified, albeit at a concentration below the limit of quantification (<1 ng/L). Concentrations were well below the general signal value of 1 μg/L, which is specified for organic compounds of anthropogenic origin in the Dutch Drinking Water Act. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Enceladus' Interior: A Liquid Circulation Model

    NASA Astrophysics Data System (ADS)

    Matson, Dennis L.; Johnson, Torrence; Lunine, Jonathan; Castillo-Rogez, Julie

    We are studying a model for Enceladus' interior in which the water, gas, dust and heat are supplied to the plumes by a relatively deeply circulating brine solution. Data indicates such a source for the erupting material. On the basis of ammonia in the plume gas Waite et al. [1] suggested that the jets might originate from a liquid water region under Enceladus' icy surface. Postberg et al. [2] noted that the presence of ". . . grains that are rich in sodium salts (0.5-2 percent by mass). . . can arise only if the plumes originate from liquid water." Waite et al. [1] also regard the some of the plume chemicals as evidence for interactions with an ice layer presumably overlying the liquid water reservoir. They suggest that this could be in the form of dissociation of clathrate hydrates [3]. Additionally, there is a large heat flow of more than 15 GW [4, 5] coming out of Enceladus' south polar region. We consider a model that brings heat and chemical species up to the surface from a reservoir or "ocean" located below the ice crust that may be many tens of kilometers thick. Water transits to the surface via vertical conduits. The Cassini INMS data suggest that the water has a relatively large gas content of order a few percent. As the water travels upward and the pressure is released, exolving gases form bubbles. Since the bubbly liquid is less dense than the ice, it moves upward. (This part of the model is a variant of the "Perrier Ocean" Europa model of Crawford and Stevenson [6]. A similar model was studied for Ganymede by Murchie and Head [7].) Postberg et al. [2] model the plume eruptions that result from the water, gases, salts, and other chemicals that our circulation model provides. In the near-surface reservoir feeding the plumes, bubbles reaching the surface of the water pop and throw a very fine spray. Some of these very small droplets of brine exit with the plume gas and provide the observed salt-rich dust particles [2]. Much of the water-borne heat is transferred to the near-surface ice. The water is now relatively cold and dense. It absorbs the remaining bubbles and descends via fractures or defects in the ice, and percolates down to the "ocean". The water is in intimate contact with the ice and chemical interactions and heat exchange are possible. While the formation of the briny "ocean" was envisioned as due to the exclusion of non-water chemical species from the ice as it froze [8], a number of mechanisms permit a variety of organic and inorganic species to be present in the ice. The downward percolation of briny water facilitates these by making a large volume of the ice accessible along the crack surfaces. References: [1] J. H. Waite Jr et al., Nature, 460, 487-490 (2009). [2] F. Postberg et al., Nature, 459, 1098-1101 (2009). [3] S. W. Kieffer et al., Science, 314, 1764-1766 (2006). [4] C. Howett, J. R. Spencer, J. Pearl, M. Segura, Bull. Am. Astron. Soc., 41, 1122 (2009). [5] O. Abramov, J. R. Spencer, Icarus, 199, 189-196 (2009). [6] G. D. Crawford, D. J. Stevenson, Icarus, 73, 66-79 (1988). [7] S. L. Murchie, J. W. Head, LPS XVII, 583-584 (1986). [8] M. Y. Zolotov, Geophysical Research Letters, 34, L23203 (2007). This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration, and for JIL under the program "Incentivazione alla mobilita' di studiosi straineri italiani residenti all'estero" of Italy.

  20. Evaporation-Triggered Segregation of Sessile Binary Droplets.

    PubMed

    Li, Yaxing; Lv, Pengyu; Diddens, Christian; Tan, Huanshu; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef

    2018-06-01

    Droplet evaporation of multicomponent droplets is essential for various physiochemical applications, e.g., in inkjet printing, spray cooling, and microfabrication. In this work, we observe and study the phase segregation of an evaporating sessile binary droplet, consisting of a miscible mixture of water and a surfactantlike liquid (1,2-hexanediol). The phase segregation (i.e., demixing) leads to a reduced water evaporation rate of the droplet, and eventually the evaporation process ceases due to shielding of the water by the nonvolatile 1,2-hexanediol. Visualizations of the flow field by particle image velocimetry and numerical simulations reveal that the timescale of water evaporation at the droplet rim is faster than that of the Marangoni flow, which originates from the surface tension difference between water and 1,2-hexanediol, eventually leading to segregation.

  1. Origin of carbon released from ecosystems affected by permafrost degradation in Northern Siberia

    NASA Astrophysics Data System (ADS)

    Gandois, L.; Hoyt, A.; Xu, X.; Hatte, C.; Teisserenc, R.; Tananaev, N.

    2016-12-01

    Permafrost soils and peatlands store half of the soil organic carbon stock worldwide, and are rapidly evolving as a result of permafrost thaw. Determining the origin (permafrost or recent photosynthesis) of carbon which is released to surface waters and the atmosphere is crucial to assess Arctic ecosystems' potential feedback to climate change. In order to evaluate it, we investigated the stable and radioactive content of carbon in solid organic matter, dissolved organic matter (DOM) and dissolved CO2 and CH4 in a discontinuous permafrost area of Siberia affected by permafrost degradation (Igarka, Graviyka catchment (67°27'11''N, 86°32'07''E)). We collected samples from the active layer, permafrost, surface water and bubbles from thermokarst lakes. We further investigated DOM and dissolved CO2 and CH4 in porewater profiles, streams and the catchment outlet. In thermokarst lakes, DOM of surface water as well as CO2 and CH4 from bubbles from lake sediments predominantly originate from modern carbon. In two locations, CO2 and CH4 from bubbles have relatively low 14C contents, with ages greater than 700 yr BP, but still younger that what was previously reported in Eastern Siberia. In all samples the Δ14C of CH4 and CO2 were strongly correlated, with CH4 being consistently older than CO2, indicating strong interrelation between CO2 and CH4 cycles. In our study, permafrost influenced CO2 and CH4 is found in small ponds where palsa collapse and the resulting bank erosion has mobilized sequestered carbon. In peatland porewater, the Δ14C of DOM, CO2 and CH4 increases with depth (DOM: 1385 ±45 yr BP at 2m), indicating a contribution from Holocene peatlands affected by permafrost. In deep layers, CO2 reduction is the dominant pathway of CH4 production, whereas acetate fermentation dominates in thermokarst lakes. In summary, the majority of dissolved CO2 and CH4 analyzed from thermokarst lakes and degraded peatlands is modern and originates from recently fixed carbon. Additionally, the DOM exported in small streams draining peatlands is also modern. However, at the catchment scale, an additional contribution from deep groundwater or thawing permafrost results in an intermediate Δ14C of DOM (300-400 yr BP) at the outlet of the Graviyka River.

  2. Author Correction: Spiraling pathways of global deep waters to the surface of the Southern Ocean.

    PubMed

    Tamsitt, Veronica; Drake, Henri F; Morrison, Adele K; Talley, Lynne D; Dufour, Carolina O; Gray, Alison R; Griffies, Stephen M; Mazloff, Matthew R; Sarmiento, Jorge L; Wang, Jinbo; Weijer, Wilbert

    2018-01-15

    The original version of this Article contained errors in Fig. 6. In panel a, the grey highlights obscured the curves for CESM, CM2.6 and SOSE, and the labels indicating SWIR, KP, MR, PAR, and DP were inadvertently omitted. These have now been corrected in both the PDF and HTML versions of the Article.

  3. 76 FR 26280 - Vermont Marble Power Division of Omya Inc.; Notice of Application Accepted for Filing, Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ...); (6) an additional steel structure measuring 28 by 48 feet attached to the original powerhouse... maximum water surface elevation of 469.5 feet mean sea level (M.S.L); (3) a gated-forebay intake structure...: A 9-foot- diameter, 460-foot-long, riveted steel penstock that decreases to 8 feet diameter; and a 7...

  4. Comet 67p/Churyumov-Gerasimenko, possible origin of the depression Hatmehit

    NASA Astrophysics Data System (ADS)

    Kossacki, Konrad J.; Czechowski, Leszek

    2018-05-01

    On the nucleus of comet 67P/Churyumov-Gerasimenko numerous pits and depressions of different sizes are identified. In the present work the origin of depression Hatmehit is investigated. We propose a mechanism that includes recession of the surface due to sub-dust sublimation together with formation of cavities. Recession of the surface is calculated taking into account the sub-dust sublimation of water ice with volatile organic components, formation of a strengthened ice-dust crust due to sintering of ice grains and the increase of the gas pressure in pores due to release of gaseous CO. Our simulations indicate, that the formation of a 300 m deep depression due to the sub-dust sublimation of ice can take as little as 50 orbital periods assuming that the heliocentric distance at perihelion is close to its present value (Ip. et al., 2016). When amorphous water ice is present at small depth the release of gaseous CO may cause either compression of low-strength material beneath the strengthened crust, or ejection of the crust. In both cases a cavity is formed and grows due to the sublimation of ice from the wall and the floor.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tribble, G.W.; Sansone, F.J.; Li, Yuan-Hui

    Hydraulic exchange between overlying sea water and the internal structure of a patch reef in Kaneohe Bay, Oahu, Hawaii, was studied with an array of wells, 1, 2, and 4 m deep. Two natural chemical tracers, radon, and salinity, were used to calculate the exchange rate between surface sea water and reef interstitial waters. Dissolved radon concentrations are substantially higher in interstitial waters than is surface water. The degree of radon enrichment is quantitatively related to the time elapsed since interstitial water had equilibrated with the atmosphere. Residence time estimates are 1-40 days, with deeper wells having slower exchange. Themore » average residence time for 1-m-deep wells was 2.1 days. A rainstorm-induced dilution of the salinity of Kaneohe Bay provides the second tracer. Samples of surface and reef interstitial waters following this salinity perturbation are used to calculate an average residence time of 2.6 days at a depth of 1 m and 42 days at a depth of 2 m. Three types of physical forces thought to cause exchange between surface and interstitial water are considered by measurement of the forcing functions and reef permeability. Hydraulic conductivities are about 50 m/d, with lower values near the seaward side of the reef. Most exchange seems to be caused by high-frequency, wave-driven oscillatory pumping and by unidirectional hydraulic head gradients (of uncertain origin) that are stable for at least 3-4 days. Wave-driven mixing is probably more important shallower in the reef, whereas head-driven flow may dominate deeper in the reef. Tidal pumping does not seem to contribute to exchange. All methods indicate that exchange in the upper part of Checker Reef is primarily through vertical exchange. The best estimate for the residence time of water at a depth of 1 m is 2 days. Water at depths of 204 m probably has a residence time of weeks to months. 49 refs., 8 figs., 6 tabs.« less

  6. Oil biodegradation. Water droplets in oil are microhabitats for microbial life.

    PubMed

    Meckenstock, Rainer U; von Netzer, Frederick; Stumpp, Christine; Lueders, Tillmann; Himmelberg, Anne M; Hertkorn, Norbert; Schmitt-Kopplin, Philipp; Harir, Mourad; Hosein, Riad; Haque, Shirin; Schulze-Makuch, Dirk

    2014-08-08

    Anaerobic microbial degradation of hydrocarbons, typically occurring at the oil-water transition zone, influences the quality of oil reservoirs. In Pitch Lake, Trinidad and Tobago--the world's largest asphalt lake--we found that microorganisms are metabolically active in minuscule water droplets (1 to 3 microliters) entrapped in oil. Pyrotag sequencing of individual droplet microbiomes revealed complex methanogenic microbial communities actively degrading the oil into a diverse range of metabolites, as shown by nuclear magnetic resonance and Fourier transform ion cyclotron resonance mass spectrometry. High salinity and water-stable isotopes of the droplets indicate a deep subsurface origin. The 13.5% water content and the large surface area of the droplets represent an underestimated potential for biodegradation of oil away from the oil-water transition zone. Copyright © 2014, American Association for the Advancement of Science.

  7. Origin and migration of trace elements in the surface sediments of Majuro Atoll, Marshall Islands.

    PubMed

    Ito, Lisa; Omori, Takayuki; Yoneda, Minoru; Yamaguchi, Toru; Kobayashi, Ryuta; Takahashi, Yoshio

    2018-07-01

    The sediments of Majuro Atoll, Marshall Islands, consist of bioclastic materials, including foraminifera and coral debris. The sedimentary depth profiles of elements showed that various elements including zinc (Zn) and copper (Cu) were enriched in the upper layers of the islands of Majuro Atoll. Carbon-14 dating revealed that the sedimentation of the upper layer was completed before 1670 and 542 cal BP in Laura and Calalen, respectively. The enriched elements could be categorized by their origins: (a) terrestrial elements transported as dust (aluminum (Al) and rare earth elements (REEs)); (b) anthropogenic elements (Zn and Cu); and (c) elements supplied by seabirds (phosphorus (P)). From the results of the total amount of Al supplied to sediments for ca. 2000 years, Al in Majuro Atoll was suggested to be airborne origin. The enrichment factors of the elements normalized to Al concentration of continental crust showed that REEs were also transported as dust, while Zn and Cu were mainly of anthropogenic origin. The speciation analysis by X-ray absorption near-edge structure (XANES) showed the presence of Zn-Cu alloys originated from industrial products. It was also revealed that Zn was enriched in the surface due to anthropogenic emission after urbanization on Majuro Atoll and fixed by carbonate and phosphate at the upper layer, which inhibits migration of Zn into the deeper layer and its release to the groundwater and costal water. Hence, the fixation of heavy metals at the surface prevents their exposure to aquatic organisms and residents via fresh groundwater in the island. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Semi-permeable surface analytical reversed-phase column for the improved trace analysis of acidic pesticides in water with coupled-column reversed-phase liquid chromatography with UV detection. Determination of bromoxynil and bentazone in surface water.

    PubMed

    Hogendoorn, E A; Westhuis, K; Dijkman, E; Heusinkveld, H A; den Boer, A C; Evers, E A; Baumann, R A

    1999-10-08

    The coupled-column (LC-LC) configuration consisting of a 3 microm C18 column (50 x 4.6 mm I.D.) as the first column and a 5 microm C18 semi-permeable-surface (SPS) column (150 x 4.6 mm I.D.) as the second column appeared to be successful for the screening of acidic pesticides in surface water samples. In comparison to LC-LC employing two C18 columns, the combination of C18/SPS-C18 significantly decreased the baseline deviation caused by the hump of the co-extracted humic substances when using UV detection (217 nm). The developed LC-LC procedure allowed the simultaneous determination of the target analytes bentazone and bromoxynil in uncleaned extracts of surface water samples to a level of 0.05 microg/l in less than 15 min. In combination with a simple solid-phase extraction step (200 ml of water on a 500 mg C18-bonded silica) the analytical procedure provides a high sample throughput. During a period of about five months more than 200 ditch-water samples originating from agricultural locations were analyzed with the developed procedure. Validation of the method was performed by randomly analyzing recoveries of water samples spiked at levels of 0.1 microg/l (n=10), 0.5 microg/l (n=7) and 2.5 microg/l (n=4). Weighted regression of the recovery data showed that the method provides overall recoveries of 95 and 100% for bentazone and bromoxynil, respectively, with corresponding intra-laboratory reproducibilities of 10 and 11%, respectively. Confirmation of the analytes in part of the samples extracts was carried out with GC-negative ion chemical ionization MS involving a derivatization step with bis(trifluoromethyl)benzyl bromide. No false negatives or positives were observed.

  9. Recent experimental advances on hydrophobic interactions at solid/water and fluid/water interfaces.

    PubMed

    Zeng, Hongbo; Shi, Chen; Huang, Jun; Li, Lin; Liu, Guangyi; Zhong, Hong

    2015-03-15

    Hydrophobic effects play important roles in a wide range of natural phenomena and engineering processes such as coalescence of oil droplets in water, air flotation of mineral particles, and folding and assembly of proteins and biomembranes. In this work, the authors highlight recent experimental attempts to reveal the physical origin of hydrophobic effects by directly quantifying the hydrophobic interaction on both solid/water and fluid/water interfaces using state-of-art nanomechanical techniques such as surface forces apparatus and atomic force microscopy (AFM). For solid hydrophobic surfaces of different hydrophobicity, the range of hydrophobic interaction was reported to vary from ∼10 to >100 nm. With various characterization techniques, the very long-ranged attraction (>100 nm) has been demonstrated to be mainly attributed to nonhydrophobic interaction mechanisms such as pre-existing nanobubbles and molecular rearrangement. By ruling out these factors, intrinsic hydrophobic interaction was measured to follow an exponential law with decay length of 1-2 nm with effective range less than 20 nm. On the other hand, hydrophobic interaction measured at fluid interfaces using AFM droplet/bubble probe technique was found to decay with a much shorter length of ∼0.3 nm. This discrepancy of measured decay lengths is proposed to be attributed to inherent physical distinction between solid and fluid interfaces, which impacts the structure of interface-adjacent water molecules. Direct measurement of hydrophobic interaction on a broader range of interfaces and characterization of interfacial water molecular structure using spectroscopic techniques are anticipated to help unravel the origin of this rigidity-related mismatch of hydrophobic interaction and hold promise to uncover the physical nature of hydrophobic effects. With improved understanding of hydrophobic interaction, intrinsic interaction mechanisms of many biological and chemical pathways can be better elucidated, and novel devices/processes can be developed with capacity to modulate and control the hydrophobic effects from the molecular to the macroscopic scale.

  10. Pathways and hydrography in the Mesoamerican Barrier Reef System Part 2: Water masses and thermohaline structure

    NASA Astrophysics Data System (ADS)

    Carrillo, L.; Johns, E. M.; Smith, R. H.; Lamkin, J. T.; Largier, J. L.

    2016-06-01

    Hydrographic data from two oceanographic cruises conducted during March 2006 and January/February 2007 are used to investigate the thermohaline structure related to the observed circulation along the Mesoamerican Barrier Reef System (MBRS). From our observations we identify three water masses in the MBRS: the Caribbean Surface Water (CSW), North Atlantic Subtropical Underwater (SUW), and Tropical Atlantic Central Water (TACW). Little vertical structure in temperature is observed in the upper 100 m of the water column, but important differences are observed in the salinity distribution both horizontally and with depth. Freshwater inputs to the system from the mainland can be traced in the surface layer, with two possible sources: one from surface rivers located along the southern portion of the MBRS, and the other originating from an underground river system located along the northern portion of the MBRS. The thermohaline structure in the MBRS reflects the dynamics of the observed circulation. Uplifted isopycnals along most of the central and northern coastline of the MBRS reflect the effects of the strong geostrophic circulation flowing northward, i.e. the Yucatan Current. To the south along the MBRS, much weaker velocities are observed, with the Honduras Gyre dominating the flow in this region as presented during January/February 2007. These two regions are separated by onshore and divergent alongshore flow associated with the impingement of the Cayman Current on the shore and the MBRS.

  11. Soil Moisture and Vegetation Effects on GPS Reflectivity From Land

    NASA Astrophysics Data System (ADS)

    Torres, O.; Grant, M. S.; Bosch, D.

    2004-12-01

    While originally designed as a navigation system, the GPS signal has been used to achieve a number of useful scientific measurements. One of these measurements utilizes the reflection of the GPS signal from land to determine soil moisture. The study of GPS reflections is based on a bistatic configuration that utilizes forward reflection from the surface. The strength of the GPS signal varies in proportion to surface parameters such as soil moisture, soil type, vegetation cover, and topography. This paper focuses on the effects of soil water content and vegetation cover on the surface based around a reflectivity. A two-part method for calibrating the GPS reflectivity was developed that permits the comparison of the data with surface parameters. The first part of the method relieves the direct signal from any multipath effects, the second part is an over-water calibration that yields a reflectivity independent of the transmitting satellite. The sensitivity of the GPS signal to water in the soil is shown by presenting the increase in reflectivity after rain as compared to before rain. The effect of vegetation on the reflected signal is also presented by the inclusion of leaf area index as a fading parameter in the reflected signal from corn and soy bean fields. The results are compared to extensive surface measurements made as part of the Soil Moisture Experiment 2002 (SMEX 2002) in Iowa and SMEX 2003 in Georgia.

  12. Technogenic effect of liquidation of coal mines on earth’s entrails: hydrogeochemical aspect

    NASA Astrophysics Data System (ADS)

    Tarasenko, I. A.; Zinkov, A. V.; Chudaev, O. V.; Vetoshkina, A. V.; Holodilov, I. I.

    2017-10-01

    The authors of the paper have established the geochemical features of the composition of underground waters and regularities of their formation in the areas of the liquidated coal mines of Russia and Ukraine. It is shown that the mine flood resulted in the formation of technogenic waters which geochemical specificity originates in the feeding field and is transformed in the direction of the filtration flow. It depends on the geological structure of sedimentary basins and the presence in the coal and supra-coal beds of the marine, salt-bearing and freshwater groups of geological formations. The water types are distinguished characterizing the conditions and processes of their formation that may be the regional markers in the hydrochemical and geological constructions. The technogenic waters influenced the safety of the underground waters, sources of water supply of the regions, and surface water channels. The pollutions are of local character in space.

  13. Fluorometric Measurement of Individual Stomata Activity and Transpiration via a “Brush-on”, Water-Responsive Polymer

    PubMed Central

    Seo, Minjeong; Park, Dong-Hoon; Lee, Chan Woo; Jaworski, Justyn; Kim, Jong-Man

    2016-01-01

    Much of atmospheric water originates from transpiration, the process by which plants release H2O from pores, known as stomata, that simultaneously intake CO2 for photosynthesis. Controlling stomatal aperture can regulate the extent of water transport in response to dynamic environmental factors including osmotic stress, temperature, light, and wind. While larger leaf regions are often examined, the extent of water vapor release from individual stomata remains unexplored. Using a “brush-on” sensing material, we can now assess transpiration using a water-responsive, polydiacetylene-based coating on the leaves surfaces. By eliciting a fluorometric signal to passing water vapor, we obtained information regarding the activity of individual stomata. In this demonstration, our results prove that this coating can identify the proportion of active stomata and the extent of transpirational diffusion of water in response to different conditions. PMID:27578430

  14. Origin of dolostone reservoir rocks, Smackover Formation (Oxfordian), northeastern Gulf Coast, U. S. A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prather, B.E.

    Formation of regionally extensive dolostone reservoir rocks in the Smackover can be understood despite the possible effects of recrystallization. Geochemical and petrographic data suggest that dolomitization took place in (1) seawater-seepage, (2) reflux, (3) near-surface mixed-water, (4) shallow-burial mixed-water, and (5) deeper burial environments, which overlapped in time and space to form a platform-scale' dolostone body composed of a complex mixture of dolomites. Seawater-seepage and reflux dolomitization occurred in the near surface penecontemporaneously with deposition of the Smackover and overlying Haynesville Formations. Dolomitization by seawater seepage occurred within an oolite grainstone sill which separated an intraplatform salt basin from themore » open sea. Seawater flowed landward through the sill in response to evaporitic drawdown of brines in the isolated intraplatform basin. Isolation of the salt basin occurred during the Oxfordian when the shoreline retreated from the Conecuh embayment. Dolomite located at the top of the Smackover enriched in {sup 18}O suggests additional dolomitization by reflux of hypersaline brines. Reflux occurred as Buckner coastal sabkhas prograded over Smackover oolite grainstone shoreface deposits. Vugs lined with shallow-burial calcite and dolomite cements indicate flushing of the Smackover grainstone aquifer with fresh water. Freshwater intrusion probably occurred following sea level lowstands during the Late Jurassic and Early Cretaceous. Leaching in the proximal portion of the freshwater aquifer produced excellent limestone reservoir rocks in the updip Smackover. Dolomitization in the contemporaneous downdip mixed connate/freshwater zone formed dolostone reservoir rocks with depleted isotopic compositions consistent with a shallow-burial mixed-water origin.« less

  15. Links between nanoscale and macroscale surface properties of natural root mucilage studied by atomic force microscopy and contact angle.

    PubMed

    Kaltenbach, Robin; Diehl, Dörte; Schaumann, Gabriele E

    2018-04-15

    Soil water repellency originating from organic coatings plays a crucial role for soil hydraulics and plant water uptake. Focussing on hydrophobicity in the rhizosphere induced by root-mucilage, this study aims to explore the link between macroscopic wettability and nano-microscopic surface properties. The existing knowledge of the nanostructures of organic soil compounds and its effect on wettability is limited by the lack of a method capable to assess the natural spatial heterogeneity of physical and chemical properties. In this contribution, this task is tackled by a geostatistical approach via variogram analysis of topography and adhesion force data acquired by atomic force microscopy and macroscopic sessile drop measurements on dried films of mucilage. The results are discussed following the wetting models given by Wenzel and Cassie-Baxter. Undiluted mucilage formed homogeneous films on the substrate with contact angles >90°. For diluted samples contact angles were smaller and incomplete mucilage surface coverage with hole-like structures frequently exhibited increased adhesion forces. Break-free distances of force curves indicated enhanced capillary forces due to adsorbed water films at atmospheric RH (35 ± 2%) that promote wettability. Variogram analysis enabled a description of complex surface structures exceeding the capability of comparative visual inspection. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Comparison pesticide residue levels in the surface of Bertam River in Cameron Highlands, Pahang

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haron, S. H., E-mail: ismail@ukm.edu.my; Ismail, B. S., E-mail: sthumaira@yahoo.com

    The presence of pesticide residues in the surface water of Bertam River in the agricultural areas of Cameron Highlands in Pahang, Malaysia was monitored from May to October 2014. The sampling sites were located at 10 sampling points along the Bertam River in the vegetable planting areas. The extraction method of the pesticide (organophosphate/pyrethroid) from the river samples used solid phase extraction followed by gas chromatography (with electron capture detector, ECD). Insecticides, cypermethrin and chlorpyrifos were found in the surface water of Bertam River. High level concentrations of those insecticides in the river were observed during the period from Maymore » to October 2014, a period which included both seasons (wet and dry seasons). The highest concentration of 2.66 µg/mL and 1.23 µg/mL of cypermethrin was observed during the wet and dry seasons respectively. This could be due to the frequent usage of the above-mentioned insecticides coupled with contamination that could have originated from the application sites. Meanwhile, the lowest concentration detected in the surface water was chlorpyrifos (0.11 µg/mL and 0.17 µg/mL) during the dry and wet seasons, respectively.« less

  17. Evolution of CO2, CH4, and OCS abundances relative to H2O in the coma of comet 67P around perihelion from Rosetta/VIRTIS-H observations

    NASA Astrophysics Data System (ADS)

    Bockelée-Morvan, Dominique; Crovisier, J.; Erard, S.; Capaccioni, F.; Leyrat, C.; Filacchione, G.; Drossart, P.; Encrenaz, T.; Biver, N.; de Sanctis, M.-C.; Schmitt, B.; Kührt, E.; Capria, M.-T.; Combes, M.; Combi, M.; Fougere, N.; Arnold, G.; Fink, U.; Ip, W.; Migliorini, A.; Piccioni, G.; Tozzi, G.

    2016-11-01

    Infrared observations of the coma of 67P/Churyumov-Gerasimenko were carried out from 2015 July to September, I.e. around perihelion (2015 August 13), with the high-resolution channel of the Visible and Infrared Thermal Imaging Spectrometer instrument onboard Rosetta. We present the analysis of fluorescence emission lines of H2O, CO2, 13CO2, OCS, and CH4 detected in limb sounding with the field of view at 2.7-5 km from the comet centre. Measurements are sampling outgassing from the illuminated Southern hemisphere, as revealed by H2O and CO2 raster maps, which show anisotropic distributions, aligned along the projected rotation axis. An abrupt increase of water production is observed 6 d after perihelion. In the meantime, CO2, CH4, and OCS abundances relative to water increased by a factor of 2 to reach mean values of 32, 0.47, and 0.18 per cent, respectively, averaging post-perihelion data. We interpret these changes as resulting from the erosion of volatile-poor surface layers. Sustained dust ablation due to the sublimation of water ice maintained volatile-rich layers near the surface until at least the end of the considered period, as expected for low thermal inertia surface layers. The large abundance measured for CO2 should be representative of the 67P nucleus original composition, and indicates that 67P is a CO2-rich comet. Comparison with abundance ratios measured in the Northern hemisphere shows that seasons play an important role in comet outgassing. The low CO2/H2O values measured above the illuminated Northern hemisphere are not original, but the result of the devolatilization of the uppermost layers.

  18. An Open Source Framework for Coupled Hydro-Hydrogeo-Chemical Systems in Catchment Research

    NASA Astrophysics Data System (ADS)

    Delfs, J.; Sachse, A.; Gayler, S.; Grathwohl, P.; He, W.; Jang, E.; Kalbacher, T.; Klein, C.; Kolditz, O.; Maier, U.; Priesack, E.; Rink, K.; Selle, B.; Shao, H.; Singh, A. K.; Streck, T.; Sun, Y.; Wang, W.; Walther, M.

    2013-12-01

    This poster presents an open-source framework designed to assist water scientists in the study of catchment hydraulic functions with associated chemical processes, e.g. contaminant degradation, plant nutrient turnover. The model successfully calculates the feedbacks between surface water, subsurface water and air in standard benchmarks. In specific model applications to heterogeneous catchments, subsurface water is driven by density variations and runs through double porous media. Software codes of water science are tightly coupled by iteration, namely the Storm Water Management Model (SWMM) for urban runoff, Expert-N for simulating water fluxes and nutrient turnover in agricultural and forested soils, and OpenGeoSys (OGS) for groundwater. The coupled model calculates flow of hydrostatic shallow water over the land surface with finite volume and difference methods. The flow equations for water in the porous subsurface are discretized in space with finite elements. Chemical components are transferred through 1D, 2D or 3D watershed representations with advection-dispersion solvers or, as an alternative, random walk particle tracking. A transport solver can be in sequence with a chemical solver, e.g. PHREEQ-C, BRNS, additionally. Besides coupled partial differential equations, the concept of hydrological response units is employed in simulations at regional scale with scarce data availability. In this case, a conceptual hydrological model, specifically the Jena Adaptable Modeling System (JAMS), passes groundwater recharge through a software interface into OGS, which solves the partial differential equations of groundwater flow. Most components of the modeling framework are open source and can be modified for individual purposes. Applications range from temperate climate regions in Germany (Ammer catchment and Hessian Ried) to arid regions in the Middle East (Oman and Dead See). Some of the presented examples originate from intensively monitored research sites of the WESS research centre and the monitoring initiative TERENO. Other examples originate from the IWAS project on integrated water resources management. The model applications are primarily concerned with groundwater resources, which are endangered by overexploitation, intrusion of saltwater, and nitrate loads.

  19. Spatial distribution of the phytoplankton in the White Sea during atypical domination of dinoflagellates (July 2009)

    NASA Astrophysics Data System (ADS)

    Ilyash, L. V.; Zhitina, L. S.; Belevich, T. A.; Shevchenko, V. P.; Kravchishina, M. D.; Pantyulin, A. N.; Tolstikov, A. V.; Chultsova, A. L.

    2016-05-01

    The species composition and biomass of phytoplankton, concentrations of chlorophyll a (Chl a) and nutrients, and accompanying hydrophysical conditions have been studied in the White Sea on July 6-11, 2009. The temperature of the surface water layer was lower than the multiyear average in July. Dinoflagellates dominated in the entire studied area; this was not the typical event for July. We suggest that domination of dinoflagellates was caused by low water temperature, when the nutrient regeneration rate was insufficient to support diatom growth. The abundance of microalgae and the structure of the phytoplankton community depended on the water structure. Variations in the phytoplankton community structure were caused not by substitution of specific species but rather by variability of the abundance of a single species, Heterocapsa triquetra. The highest phytoplankton biomass has been recorded in weakly stratified waters, where tidal mixing supplied the income of inorganic nutrients. The income of nutrients to the photic layer was limited in the stratified waters of Dvina Bay during the summer low-water period, so the phytoplankton abundance was low. We suggest that the lens of surface desalinated water presumably originated from the outlet of the Dvina River was registered in the central part of the White Sea.

  20. The dynamic monitoring of warm-water discharge based on the airborne high-resolution thermal infrared remote sensing data

    NASA Astrophysics Data System (ADS)

    Shao, Honglan; Xie, Feng; Liu, Chengyu; Liu, Zhihui; Zhang, Changxing; Yang, Gui; Wang, Jianyu

    2016-04-01

    The cooling water discharged from the coastal plants flow into the sea continuously, whose temperature is higher than original sea surface temperature (SST). The fact will have non-negligible influence on the marine environment in and around where the plants site. Hence, it's significant to monitor the temporal and spatial variation of the warm-water discharge for the assessment of the effect of the plant on its surrounding marine environment. The paper describes an approach for the dynamic monitoring of the warm-water discharge of coastal plants based on the airborne high-resolution thermal infrared remote sensing technology. Firstly, the geometric correction was carried out for the thermal infrared remote sensing images acquired on the aircraft. Secondly, the atmospheric correction method was used to retrieve the sea surface temperature of the images. Thirdly, the temperature-rising districts caused by the warm-water discharge were extracted. Lastly, the temporal and spatial variations of the warm-water discharge were analyzed through the geographic information system (GIS) technology. The approach was applied to Qinshan nuclear power plant (NPP), in Zhejiang Province, China. In considering with the tide states, the diffusion, distribution and temperature-rising values of the warm-water discharged from the plant were calculated and analyzed, which are useful to the marine environment assessment.

  1. On the origin of alkali metals in Europa exosphere

    NASA Astrophysics Data System (ADS)

    Ozgurel, Ozge; Pauzat, Françoise; Ellinger, Yves; Markovits, Alexis; Mousis, Olivier; LCT, LAM

    2016-10-01

    At a time when Europa is considered as a plausible habitat for the development of an early form of life, of particular concern is the origin of neutral sodium and potassium atoms already detected in its exosphere (together with magnesium though in smaller abundance), since these atoms are known to be crucial for building the necessary bricks of prebiotic species. However their origin and history are still poorly understood. The most likely sources could be exogenous and result from the contamination produced by Io's intense volcanism and/or by meteoritic bombardment. These sources could also be endogenous if these volatile elements originate directly from Europa's icy mantle. Here we explore the possibility that neutral sodium and potassium atoms were delivered to the satellite's surface via the upwelling of ices formed in contact with the hidden ocean. These metallic elements would have been transferred as ions to the ocean at early epochs after Europa's formation, by direct contact of water with the rocky core. During Europa's subsequent cooling, the icy layers formed at the top of the ocean would have kept trapped the sodium and potassium, allowing their future progression to the surface and final identification in the exosphere of the satellite. To support this scenario, we have used chemistry numerical models based on first principle periodic density functional theory (DFT). These models are shown to be well adapted to the description of compact ice and are capable to describe the trapping and neutralization of the initial ions in the ice matrix. The process is found relevant for all the elements considered, alkali metals like Na and K, as well as for Mg and probably for Ca, their respective abundances depending essentially of their solubility and chemical capabilities to blend with water ices.

  2. Hyperarid Soils in the Atacama Desert: A Terrestrial Guide to Mars Soil Formation

    NASA Astrophysics Data System (ADS)

    Amundson, R.; Stephanie, E.; Justine, O.; Brad, S.; Nishiizumi, K.; William, D.; Chris, M.

    2005-12-01

    Hyperarid soils on Earth provide a framework for interpreting the growing Mars regolith database and for developing testable hypotheses for the origin of Mars soils. On Earth, dust and aerosol deposition are strongly coupled with soil formation. Long term atmospheric deposition in the Atacama Desert, coupled with small and highly stochastic rain and fog events, produce a set of soil features diagnostic of pedogenic processes and indicative of the direction of liquid water flow: (1) Extreme hyperaridity results in the retention of nearly all atmospheric inputs within the upper 3 m of the soil profile, but the infrequent rainfall events vertically separate salts by solubility, forming polygonally cracked, sulfate-cemented near-surface crusts which overlie variably concentrated layers of the more soluble chloride, nitrate, and Na-sulfate salts. (2) Pedogenic sulfates in the Atacama desert exhibit unique depth-dependent S, O and Ca isotope trends caused by isotopic fractionation during downward aqueous migration and chemical reaction. (3) Pedogenic sulfates and nitrates contain a distinctive mass independent O isotope signal indicative of a tropospheric origin, and in the case of nitrate, the retention of this signal persists only under near-abiotic conditions. Taken together, the morphology and the depth-dependent chemical and isotopic composition of hyperarid soils provides quantitative information on the origin of solutes, direction of water flow, and degree of biological activity. Depth-dependent measures of these parameters on Mars can therefore be used to test a pedogenic hypothesis for the origin of the widely distributed sulfate layers and can be used to design experiments for future missions that may more fully illuminate the history of Mars surface processes.

  3. Tidal-Induced Internal Ocean Waves as an Explanation for Enceladus' Tiger Stripe Pattern and Hotspot Activity

    NASA Astrophysics Data System (ADS)

    Vermeersen, B. L. A.; Maas, L. R.; van Oers, S.; Rabitti, A.; Jara-Orue, H.

    2014-12-01

    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. Indeed, later Cassini observations have shown that salty water jets originate from the tiger stripes [e.g., Hansen et al., Science, 311, 1422-1425, 2006; Postberg et al., Nature, 474, 620-622, 2011]. More recently, Porco et al. [Astron. J., 148:45, Sep. 2014] and Nimmo et al. [Astron. J., 148:46, Sep. 2014] have reported strong evidence that the geysers are not caused by frictional heating at the surface, but that geysers must originate deeper in Enceladus' interior. Tidal flexing models, like those of Hurford et al., Nature, 447, 292-294, 2007, give a good match for the brightness variations Cassini observes, but they seem to fail to reproduce the exact timing of plume brightening. Although jet activity is thus strongly connected to tidal forcing, another mechanism must be involved as well. Last year, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. The latest observations by Porco et al. and Nimmo et al. seem to be in agreement with this tidal-induced wave attractor phenomenon, both with respect to tiger stripe pattern and with respect to timing of hotspot activity. However, in contrast to the thin ocean/thick ice sheet model as anticipated in Fig. 12 of Porco et al. (2014), our lab experiments suggest that attractors are generated most efficiently at aspect ratio O(1), implying that distance between stripes might actually approximately directly represent local ocean depth in a thin ice sheet/thick ocean setting.

  4. Factors controlling groundwater salinization and hydrogeochemical processes in coastal aquifers from southern Spain.

    PubMed

    Argamasilla, M; Barberá, J A; Andreo, B

    2017-02-15

    In detrital coastal aquifers, seawater and surface water may interact with groundwater in multiple ways. Understanding the interference of water fluxes in this type of environment is essential to effectively manage the groundwater resources in water-stressed regions, such as the Mediterranean coastal fringe. In this research, the characterization of the main hydrogeochemical processes and the interaction between surface water and groundwater in the Marbella-Estepona coastal aquifers (southern Spain) have been carried out by means of the combined use of different hydrogeochemical indicators along with isotope data. The results show that the diversity of source lithologies (peridotite, carbonate and/or metapelitic) substantially conditions the groundwater geochemistry. The analysis of ionic deltas made it possible a preliminary screening of the geochemical reactions that occur in the Marbella-Estepona aquifers, while the Discriminant Analysis allowed for a consistent classification of sampled groundwater types. The dissolution of calcite and dolomite determines the chemical composition of the groundwater from the eastern sector that are more conditioned by the rainwater infiltration. The dissolution of magnesium-bearing minerals (predominantly forming peridotite rocks) is observed in groundwater samples from the western and central sectors, whose chemical composition showed a greater influence of surface water. The spatial analysis of rCl - /Br - in groundwater has permitted to corroborate that saline intrusion is negligible, hardly affecting to its original water quality. The irregularly distributed recharge by precipitation (seasonal effect) and the atmospheric circulation of cloud fronts (coastal/continental effect) explains why most of groundwater sampled is isotopically impoverished with respect to the rainfall signature. The isotope approach also suggests the hydraulic relationship between surface water and groundwater in the study site. A deeper knowledge of spatial hydrogeochemical variations in coastal groundwater and the influence of water sources over them are crucial for a sustainable groundwater management and global change adaptation in equivalent Mediterranean water-stressed regions. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Evidence from Hydrogen Isotopes in Meteorites for a Subsurface Hydrogen Reservoir on Mars

    NASA Technical Reports Server (NTRS)

    Usui, Tomohiro; Alexander, Conel M. O'D.; Wang, Jianhua; Simon, Justin I.; Jones, John H.

    2015-01-01

    The surface geology and geomorphology of Mars indicates that it was once warm enough to maintain a large body of liquid water on its surface, though such a warm environment might have been transient. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. We have conducted in situ hydrogen isotope (D/H) analyses of quenched and impact glasses in three Martian meteorites (Yamato 980459, EETA79001, LAR 06319) by Cameca ims-6f at Digital Terrain Models (DTM) following the methods of [1]. The hydrogen isotope analyses provide evidence for the existence of a distinct but ubiquitous water/ice reservoir (D/H = 2-3 times Earth's ocean water: Standard Mean Ocean Water (SMOW)) that lasted from at least the time when the meteorites crystallized (173-472 Ma) to the time they were ejected by impacts (0.7-3.3 Ma), but possibly much longer [2]. The origin of this reservoir appears to predate the current Martian atmospheric water (D/H equals approximately 5-6 times SMOW) and is unlikely to be a simple mixture of atmospheric and primordial water retained in the Martian mantle (D/H is approximately equal to SMOW [1]). Given the fact that this intermediate-D/H reservoir (2-3 times SMOW) is observed in a diverse range of Martian materials with different ages (e.g., SNC (Shergottites, Nakhlites, Chassignites) meteorites, including shergottites such as ALH 84001; and Curiosity surface data [3]), we conclude that this intermediate-D/H reservoir is likely a global surficial feature that has remained relatively intact over geologic time. We propose that this reservoir represents either hydrated crust and/or ground ice interbedded within sediments. Our results corroborate the hypothesis that a buried cryosphere accounts for a large part of the initial water budget of Mars.

  6. What Governs Friction of Silicon Oxide in Humid Environment: Contact Area between Solids, Water Meniscus around the Contact, or Water Layer Structure?

    PubMed

    Chen, Lei; Xiao, Chen; Yu, Bingjun; Kim, Seong H; Qian, Linmao

    2017-09-26

    In order to understand the interfacial parameters governing the friction force (F t ) between silicon oxide surfaces in humid environment, the sliding speed (v) and relative humidity (RH) dependences of F t were measured for a silica sphere (1 μm radius) sliding on a silicon oxide (SiO x ) surface, using atomic force microscopy (AFM), and analyzed with a mathematical model describing interfacial contacts under a dynamic condition. Generally, F t decreases logarithmically with increasing v to a cutoff value below which its dependence on interfacial chemistry and sliding condition is relatively weak. Above the cutoff value, the logarithmic v dependence could be divided into two regimes: (i) when RH is lower than 50%, F t is a function of both v and RH; (ii) in contrast, at RH ≥ 50%, F t is a function of v only, but not RH. These complicated v and RH dependences were hypothesized to originate from the structure of the water layer adsorbed on the surface and the water meniscus around the annulus of the contact area. This hypothesis was tested by analyzing F t as a function of the water meniscus area (A m ) and volume (V m ) estimated from a thermally activated water-bridge formation model. Surprisingly, it was found that F t varies linearly with V m and correlates poorly with A m at RH < 50%; and then its V m dependence becomes weaker as RH increases above 50%. Comparing the friction data with the attenuated total reflection infrared (ATR-IR) spectroscopy analysis result of the adsorbed water layer, it appeared that the solidlike water layer structure formed on the silica surface plays a critical role in friction at RH < 50% and its contribution diminishes at RH ≥ 50%. These findings give a deeper insight into the role of water condensation in friction of the silicon oxide single asperity contact under ambient conditions.

  7. An Improved Algorithm for Retrieving Surface Downwelling Longwave Radiation from Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Yaping; Kratz, David P.; Wilber, Anne C.; Gupta, Shashi K.; Cess, Robert D.

    2006-01-01

    Retrieving surface longwave radiation from space has been a difficult task since the surface downwelling longwave radiation (SDLW) are integrations from radiation emitted by the entire atmosphere, while those emitted from the upper atmosphere are absorbed before reaching the surface. It is particularly problematic when thick clouds are present since thick clouds will virtually block all the longwave radiation from above, while satellites observe atmosphere emissions mostly from above the clouds. Zhou and Cess developed an algorithm for retrieving SDLW based upon detailed studies using radiative transfer model calculations and surface radiometric measurements. Their algorithm linked clear sky SDLW with surface upwelling longwave flux and column precipitable water vapor. For cloudy sky cases, they used cloud liquid water path as an additional parameter to account for the effects of clouds. Despite the simplicity of their algorithm, it performed very well for most geographical regions except for those regions where the atmospheric conditions near the surface tend to be extremely cold and dry. Systematic errors were also found for areas that were covered with ice clouds. An improved version of the algorithm was developed that prevents the large errors in the SDLW at low water vapor amounts. The new algorithm also utilizes cloud fraction and cloud liquid and ice water paths measured from the Cloud and the Earth's Radiant Energy System (CERES) satellites to separately compute the clear and cloudy portions of the fluxes. The new algorithm has been validated against surface measurements at 29 stations around the globe for the Terra and Aqua satellites. The results show significant improvement over the original version. The revised Zhou-Cess algorithm is also slightly better or comparable to more sophisticated algorithms currently implemented in the CERES processing. It will be incorporated in the CERES project as one of the empirical surface radiation algorithms.

  8. The relationship between cadmium and phosphate in the Atlantic Ocean unravelled

    NASA Astrophysics Data System (ADS)

    Middag, Rob; van Heuven, Steven M. A. C.; Bruland, Kenneth W.; de Baar, Hein J. W.

    2018-06-01

    Cadmium (Cd) is not generally considered a nutrient element, but behaves like a nutrient in the oceans and might play an important role in ocean biology after all. The relationship between Cd and the nutrient phosphate (PO4) has been studied for over 40 yrs, but the debate on the driving mechanism and reason behind the 'kink', a change in the steepness of the slope is ongoing. Using new data of high accuracy and spatial resolution covering the West-Atlantic Ocean from north to south, in combination with a robust extended optimum multiparameter (eOMP) water mass model, we show that mixing between different water masses is the dominant factor explaining the observed correlation and its kink. Regeneration of Cd via remineralisation explains the smaller scale variability, notably in the surface ocean. Observations imply the availability of Cd in surface waters determines the Cd-uptake and thus the Cd:PO4 remineralisation ratio. This ratio is variable between different ocean regions, notably between the northern and southern high latitude oceans. Due to their role in deep water formation, both the northern and southern high latitude oceans are a driving factor in the Atlantic and global Cd and PO4 relation. Outside the Atlantic Ocean, the classical kink is not expected, but the relationship is by no means linear. Most likely, this is due to the interaction between low latitude surface waters and subsurface waters from high latitude origin, but more data are required to assess this in detail.

  9. Attractive forces between hydrophobic solid surfaces measured by AFM on the first approach in salt solutions and in the presence of dissolved gases.

    PubMed

    Azadi, Mehdi; Nguyen, Anh V; Yakubov, Gleb E

    2015-02-17

    Interfacial gas enrichment of dissolved gases (IGE) has been shown to cover hydrophobic solid surfaces in water. The atomic force microscopy (AFM) data has recently been supported by molecular dynamics simulation. It was demonstrated that IGE is responsible for the unexpected stability and large contact angle of gaseous nanobubbles at the hydrophobic solid-water interface. Here we provide further evidence of the significant effect of IGE on an attractive force between hydrophobic solid surfaces in water. The force in the presence of dissolved gas, i.e., in aerated and nonaerated NaCl solutions (up to 4 M), was measured by the AFM colloidal probe technique. The effect of nanobubble bridging on the attractive force was minimized or eliminated by measuring forces on the first approach of the AFM probe toward the flat hydrophobic surface and by using high salt concentrations to reduce gas solubility. Our results confirm the presence of three types of forces, two of which are long-range attractive forces of capillary bridging origin as caused by either surface nanobubbles or gap-induced cavitation. The third type is a short-range attractive force observed in the absence of interfacial nanobubbles that is attributed to the IGE in the form of a dense gas layer (DGL) at hydrophobic surfaces. Such a force was found to increase with increasing gas saturation and to decrease with decreasing gas solubility.

  10. Carbon and hydrogen isotopic evidence for the origin of combustible gases in water-supply wells in north-central Pennsylvania

    USGS Publications Warehouse

    Révész, K. M.; Breen, K.J.; Baldassare, A.J.; Burruss, R.C.

    2010-01-01

    The origin of the combustible gases in groundwater from glacial-outwash and fractured-bedrock aquifers was investigated in northern Tioga County, Pennsylvania. Thermogenic methane (CH4) and ethane (C2H6) and microbial CH4 were found. Microbial CH4 is from natural in situ processes in the shale bedrock and occurs chiefly in the bedrock aquifer. The δ13C values of CH4 and C2H6 for the majority of thermogenic gases from water wells either matched or were between values for the samples of non-native storage-field gas from injection wells and the samples of gas from storage-field observation wells. Traces of C2H6 with microbial CH4 and a range of C and H isotopic compositions of CH4 indicate gases of different origins are mixing in sub-surface pathways; gas mixtures are present in groundwater. Pathways for gas migration and a specific source of the gases were not identified. Processes responsible for the presence of microbial gases in groundwater could be elucidated with further geochemical study.

  11. Investigation of Underground Hydrocarbon Leakage using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Srigutomo, Wahyu; Trimadona; Agustine, Eleonora

    2016-08-01

    Ground Penetrating Radar (GPR) survey was carried out in several petroleum plants to investigate hydrocarbon contamination beneath the surface. The hydrocarbon spills are generally recognized as Light Non-Aqueous Phase Liquids (LNAPL) if the plume of leakage is distributed in the capillary fringe above the water table and as Dense Non-Aqueous Phase Liquids (DNAPL) if it is below the water table. GPR antennas of 200 MHz and 400 MHz were deployed to obtain clear radargrams until 4 m deep. In general, the interpreted radargram sections indicate the presence of surface concrete layer, the compacted silty soill followed by sand layer and the original clayey soil as well as the water table. The presence of hydrocarbon plumes are identified as shadow zones (radar velocity and intensity contrasts) in the radargram that blur the layering pattern with different intensity of reflected signal. Based on our results, the characteristic of the shadow zones in the radargram is controlled by several factors: types of hydrocarbon (fresh or bio-degraded), water moisture in the soil, and clay content which contribute variation in electrical conductivity and dielectric constants of the soil.

  12. Liquid water on Mars - an energy balance climate model for CO2/H2O atmospheres

    NASA Astrophysics Data System (ADS)

    Hoffert, M. I.; Callegari, A. J.; Hsieh, T.; Ziegler, W.

    1981-07-01

    A simple climatic model is developed for a Mars atmosphere containing CO2 and sufficient liquid water to account for the observed hydrologic surface features by the existence of a CO2/H2O greenhouse effect. A latitude-resolved climate model originally devised for terrestrial climate studies is applied to Martian conditions, with the difference between absorbed solar flux and emitted long-wave flux to space per unit area attributed to the divergence of the meridional heat flux and the poleward heat flux assumed to equal the atmospheric eddy heat flux. The global mean energy balance is calculated as a function of atmospheric pressure to assess the CO2/H2O greenhouse liquid water hypothesis, and some latitude-resolved cases are examined in detail in order to clarify the role of atmospheric transport and temperature-albedo feedback. It is shown that the combined CO2/H2O greenhouse at plausible early surface pressures may account for climates hot enough to support a hydrological cycle and running water at present-day insolation and visible albedo levels.

  13. Liquid water on Mars - An energy balance climate model for CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Callegari, A. J.; Hsieh, C. T.; Ziegler, W.

    1981-01-01

    A simple climatic model is developed for a Mars atmosphere containing CO2 and sufficient liquid water to account for the observed hydrologic surface features by the existence of a CO2/H2O greenhouse effect. A latitude-resolved climate model originally devised for terrestrial climate studies is applied to Martian conditions, with the difference between absorbed solar flux and emitted long-wave flux to space per unit area attributed to the divergence of the meridional heat flux and the poleward heat flux assumed to equal the atmospheric eddy heat flux. The global mean energy balance is calculated as a function of atmospheric pressure to assess the CO2/H2O greenhouse liquid water hypothesis, and some latitude-resolved cases are examined in detail in order to clarify the role of atmospheric transport and temperature-albedo feedback. It is shown that the combined CO2/H2O greenhouse at plausible early surface pressures may account for climates hot enough to support a hydrological cycle and running water at present-day insolation and visible albedo levels.

  14. PRP: The Proven Solution for Cleaning Up Oil Spills

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The basic technology behind PRP is thousands of microcapsules, tiny balls of beeswax with hollow centers. Water cannot penetrate the microcapsule s cell, but oil is absorbed right into the beeswax spheres as they float on the water s surface. This way, the contaminants, chemical compounds that originally come from crude oil such as fuels, motor oils, or petroleum hydrocarbons, are caught before they settle. PRP works well as a loose powder for cleaning up contaminants in lakes and other ecologically fragile areas. The powder can be spread over a contaminated body of water or soil, and it will absorb contaminants, contain them in isolation, and dispose of them safely. In water, it is important that PRP floats and keeps the oil on the surface, because, even if oil exposure is not immediately lethal, it can cause long-term harm if allowed to settle. Bottom-dwelling fish exposed to compounds released after oil spills may develop liver disease, in addition to reproductive and growth problems. This use of PRP is especially effective for environmental cleanup in sensitive areas like coral reefs and mangroves.

  15. Characterizing Exoplanet Habitability with Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler

    2018-01-01

    Results from NASA’s Kepler mission and other recent exoplanet surveys have demonstrated that potentially habitable exoplanets are relatively common, especially in the case of low-mass stellar hosts. The next key question that must be addressed for such planets is whether or not these worlds are actually habitable, implying they could sustain surface liquid water. Only through investigations of the potential habitability of exoplanets and through searches for biosignatures from these planets will we be able to understand if the emergence of life is a common phenomenon in our galaxy. Emission spectroscopy for transiting exoplanets (sometimes called secondary eclipse spectroscopy) is a powerful technique that future missions will use to study the atmospheres and surfaces of worlds orbiting in the habitable zones of nearby, low-mass stars. Emission observations that span the mid-infrared wavelength range for potentially habitable exoplanets provide opportunities to detect key habitability and life signatures, and also allow observers to probe atmospheric and surface temperatures. This presentation will outline the case for using emission spectroscopy to understand if an exoplanet can sustain surface liquid water, which is believed to be a critical precursor to the origin of life.

  16. Transfer of Salmonella enterica Serovar Typhimurium from Beef to Tomato through Kitchen Equipment and the Efficacy of Intermediate Decontamination Procedures.

    PubMed

    Gkana, E; Lianou, A; Nychas, G-J E

    2016-07-01

    It is well established that a high percentage of foodborne illness is caused by failure of consumers to prepare food in a hygienic manner. Indeed, a common practice in households is to use the same kitchen equipment for both raw meat and fresh produce. Such a practice may lead to cross-contamination of fruits and vegetables, which are mainly consumed without further processing, with pathogenic microorganisms originating from raw meat. The present study was performed to examine the transfer of the pathogenic bacterium Salmonella enterica serovar Typhimurium from inoculated beef fillets to tomatoes via contact with high-density polyethylene (PE), stainless steel (SS), and wooden (WD) surfaces and through cutting with SS knives. Furthermore, the following decontamination procedures were applied: (i) rinsing with tap water, (ii) scrubbing with tap water and liquid dish detergent, and (iii) using a commercial antibacterial spray. When surfaces and knives that came into contact with contaminated beef fillets were not cleaned prior to handling tomatoes, the lowest level of pathogen transfer to tomatoes was observed through PE surfaces. All of the decontamination procedures applied were more effective on knives than on surfaces, while among the surface materials tested, WD surfaces were the most difficult to decontaminate, followed by PE and SS surfaces. Mechanical cleaning with tap water and detergent was more efficient in decontaminating WD surfaces than using commercial disinfectant spray, followed by rinsing only with water. Specifically, reductions of 2.07 and 1.09 log CFU/cm(2) were achieved by washing the WD surfaces with water and detergent and spraying the surfaces with an antibacterial product, respectively. Although the pathogen's populations on SS and PE surfaces, as well as on tomatoes, after both aforementioned treatments were under the detection limit, the surfaces were all positive after enrichment, and thus, the potential risk of cross-contamination cannot be overlooked. As demonstrated by the results of this study, washing or disinfection of kitchen equipment may not be sufficient to avoid cross-contamination of ready-to-eat foods with foodborne pathogens, depending on the decontamination treatment applied and the material of the surfaces treated. Therefore, separate cutting boards and knives should be used for processing raw meat and preparing ready-to-eat foods in order to enhance food safety.

  17. Beaver Fever: Whole-Genome Characterization of Waterborne Outbreak and Sporadic Isolates To Study the Zoonotic Transmission of Giardiasis.

    PubMed

    Tsui, Clement K-M; Miller, Ruth; Uyaguari-Diaz, Miguel; Tang, Patrick; Chauve, Cedric; Hsiao, William; Isaac-Renton, Judith; Prystajecky, Natalie

    2018-04-25

    Giardia causes the diarrheal disease known as giardiasis; transmission through contaminated surface water is common. The protozoan parasite's genetic diversity has major implications for human health and epidemiology. To determine the extent of transmission from wildlife through surface water, we performed whole-genome sequencing (WGS) to characterize 89 Giardia duodenalis isolates from both outbreak and sporadic infections: 29 isolates from raw surface water, 38 from humans, and 22 from veterinary sources. Using single nucleotide variants (SNVs), combined with epidemiological data, relationships contributing to zoonotic transmission were described. Two assemblages, A and B, were identified in surface water, human, and veterinary isolates. Mixes of zoonotic assemblages A and B were seen in all the community waterborne outbreaks in British Columbia (BC), Canada, studied. Assemblage A was further subdivided into assemblages A1 and A2 based on the genetic variation observed. The A1 assemblage was highly clonal; isolates of surface water, human, and veterinary origins from Canada, United States, and New Zealand clustered together with minor variation, consistent with this being a panglobal zoonotic lineage. In contrast, assemblage B isolates were variable and consisted of several clonal lineages relating to waterborne outbreaks and geographic locations. Most human infection isolates in waterborne outbreaks clustered with isolates from surface water and beavers implicated to be outbreak sources by public health. In-depth outbreak analysis demonstrated that beavers can act as amplification hosts for human infections and can act as sources of surface water contamination. It is also known that other wild and domesticated animals, as well as humans, can be sources of waterborne giardiasis. This study demonstrates the utility of WGS in furthering our understanding of Giardia transmission dynamics at the water-human-animal interface. IMPORTANCE Giardia duodenalis causes large numbers of gastrointestinal illness in humans. Its transmission through the contaminated surface water/wildlife intersect is significant, and the water-dwelling rodents beavers have been implicated as one important reservoir. To trace human infections to their source, we used genome techniques to characterize genetic relationships among 89 Giardia isolates from surface water, humans, and animals. Our study showed the presence of two previously described genetic assemblages, A and B, with mixed infections detected from isolates collected during outbreaks. Study findings also showed that while assemblage A could be divided into A1 and A2, A1 showed little genetic variation among animal and human hosts in isolates collected from across the globe. Assemblage B, the most common type found in the study surface water samples, was shown to be highly variable. Our study demonstrates that the beaver is a possible source of human infections from contaminated surface water, while acknowledging that theirs is only one role in the complex cycle of zoonotic spread. Mixes of parasite groups have been detected in waterborne outbreaks. More information on Giardia diversity and its evolution using genomics will further the understanding of the epidemiology of spread of this disease-causing protozoan. © Crown copyright 2018.

  18. Uranium in Surface Waters and Sediments Affected by Historical Mining in the Denver West 1:100,000 Quadrangle, Colorado

    USGS Publications Warehouse

    Zielinski, Robert A.; Otton, James K.; Schumann, R. Randall; Wirt, Laurie

    2008-01-01

    Geochemical sampling of 82 stream waters and 87 stream sediments within mountainous areas immediately west of Denver, Colorado, was conducted by the U.S. Geological Survey in October 1994. The primary purpose was to evaluate regionally the effects of geology and past mining on the concentration and distribution of uranium. The study area contains uranium- and thorium-rich bedrock, numerous noneconomic occurrences of uranium minerals, and several uranium deposits of variable size and production history. During the sampling period, local streams had low discharge and were more susceptible to uranium-bearing acid drainage originating from historical mines of base- and precious-metal sulfides. Results indicated that the spatial distribution of Precambrian granites and metamorphic rocks strongly influences the concentration of uranium in stream sediments. Within-stream transport increases the dispersion of uranium- and thorium rich mineral grains derived primarily from granitic source rocks. Dissolved uranium occurs predominantly as uranyl carbonate complexes, and concentrations ranged from less than 1 to 65 micrograms per liter. Most values were less than 5 micrograms per liter, which is less than the current drinking water standard of 30 micrograms per liter and much less than locally applied aquatic-life toxicity standards of several hundred micrograms per liter. In local streams that are affected by uranium-bearing acid mine drainage, dissolved uranium is moderated by dilution and sorptive uptake by stream sediments. Sorbents include mineral alteration products and chemical precipitates of iron- and aluminum-oxyhydroxides, which form where acid drainage enters streams and is neutralized. Suspended uranium is relatively abundant in some stream segments affected by nearby acid drainage, which likely represents mobilization of these chemical precipitates. The 234U/238U activity ratio of acid drainage (0.95-1.0) is distinct from that of local surface waters (more than 1.05), and this distinctive isotopic composition may be preserved in iron-oxyhydroxide precipitates of acid drainage origin. The study area includes a particularly large vein-type uranium deposit (Schwartzwalder mine) with past uranium production. Stream water and sediment collected downstream from the mine's surface operations have locally anomalous concentrations of uranium. Fine-grained sediments downstream from the mine contain rare minute particles (10-20 micrometers) of uraninite, which is unstable in a stream environment and thus probably of recent origin related to mining. Additional rare particles of very fine grained (less than 5 micrometer) barite likely entered the stream as discharge from settling ponds in which barite precipitation was formerly used to scavenge dissolved radium from mine effluent.

  19. A simulation-optimization model for effective water resources management in the coastal zone

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina; Kampanis, Nikolaos

    2015-04-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater mathematical models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. However, most integrated surface water-groundwater models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated surface water-groundwater model IRENE (Spanoudaki et al., 2009; Spanoudaki, 2010) has been modified in order to simulate surface water-groundwater flow and salinity interactions in the coastal zone. IRENE, in its original form, couples the 3D shallow water equations to the equations describing 3D saturated groundwater flow of constant density. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection-diffusion equation describing the fate and transport of contaminants introduced in a 3D turbulent flow field to the partial differential equation describing the fate and transport of contaminants in 3D transient groundwater flow systems. The model has been further developed to include the effects of density variations on surface water and groundwater flow, while the already built-in solute transport capabilities are used to simulate salinity interactions. The refined model is based on the finite volume method using a cell-centred structured grid, providing thus flexibility and accuracy in simulating irregular boundary geometries. For addressing water resources management problems, simulation models are usually externally coupled with optimisation-based management models. However this usually requires a very large number of iterations between the optimisation and simulation models in order to obtain the optimal management solution. As an alternative approach, for improved computational efficiency, an Artificial Neural Network (ANN) is trained as an approximate simulator of IRENE. The trained ANN is then linked to a Genetic Algorithm (GA) based optimisation model for managing salinisation problems in the coastal zone. The linked simulation-optimisation model is applied to a hypothetical study area for performance evaluation. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the protection of surface water and groundwater in the coastal zone', (2013 - 2015). References Spanoudaki, K., Stamou, A.I. and Nanou-Giannarou, A. (2009). Development and verification of a 3-D integrated surface water-groundwater model. Journal of Hydrology, 375 (3-4), 410-427. Spanoudaki, K. (2010). Integrated numerical modelling of surface water groundwater systems (in Greek). Ph.D. Thesis, National Technical University of Athens, Greece.

  20. Occurrence and transport of pesticides and alkylphenols in water samples along the Ebro River Basin

    NASA Astrophysics Data System (ADS)

    Navarro, Alícia; Tauler, Romà; Lacorte, Sílvia; Barceló, Damià

    2010-03-01

    SummaryWe report the temporal and geographical variations of a set of 30 pesticides (including triazines, organophosphorus and acetanilides) and industrial compounds in surface waters along the Ebro River during the period 2004-2006. Using descriptive statistics we found that the compounds with industrial origin (tributylphosphate, octylphenol and nonylphenol) appeared in over 60% of the samples analyzed and at very high concentrations, while pesticides had a point source origin in the Ebro delta area and overall low-levels, between 0.005 and 2.575 μg L -1. Correlations among pollutants and their distributions were studied using Principal Component Analysis (PCA), a multivariate exploratory data analysis technique which permitted us to discern between agricultural and industrial source contamination. Over a 3 years period a seasonal trend revealed highest concentrations of pesticides over the spring-summer period following pesticide application.

  1. Identifizierung der Eintragsquellen von Antibiotika in das Grundwasser viehstarker Regionen

    NASA Astrophysics Data System (ADS)

    Hannappel, Stephan; Köpp, Claudia; Zühlke, Sebastian; Balzer, Frederike; Schulz, Dietrich

    2016-11-01

    Only few sulfonamide antibiotics were detected in near-surface groundwater in areas with a high stocking rate in northwestern Germany. Intensive sampling with a high resolution in time and space was applied in order to illuminate the findings. As some pharmaceuticals can be of both human and animal origin, they may enter the environment via application of manure/digestate to arable land or via domestic waste water. In addition to existing monitoring wells, non-permanent wells were sampled to obtain information regarding pathways into the ground water. Interviews with farmers and chemical analyses show that application of manure leads to low concentrations (<100 ng/l) of Sulfadimidin and Sulfadiazin in most of the investigated samples. Sulfamethoxazol was found above 100 ng/l and likely originated from sewage of nearby small scale wastewater treatment plants. Sulfamethoxazole and its main metabolite could be detected within the plants; additionally, the sewage tracer acesulfam-K was detected in the groundwater.

  2. National Hydrography Dataset (NHD)

    USGS Publications Warehouse

    ,

    2001-01-01

    The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000 scale and exists at that scale for the whole country. High resolution NHD adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Like the 1:100,000-scale NHD, high resolution NHD contains reach codes for networked features and isolated lakes, flow direction, names, stream level, and centerline representations for areal water bodies. Reaches are also defined to represent waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria set out by the Federal Geographic Data Committee.

  3. [Residue Concentration and Distribution Characteristics of Perfluorinated Compounds in Surface Water from Qiantang River in Hangzhou Section].

    PubMed

    Zhang, Ming; Tang, Fang-liang; Yu, Ya-yun; Xu, Jian-fen; Li, Hua; Wu, Min-hua; Zhang, Wei; Pan, Jian-yang

    2015-12-01

    This study studied the pollution characteristics of perfluorinated compounds (PFCs) in Qiantang River in Hangzhou section (QR). Surface water samples, collected in July 2014 and January 2015 from 14 sites in QR were analyzed for 16 PFCs. All samples were prepared by solid-phase extraction with Oasis WAX cartridges and analyzed using the ultra performance liquid chromatography interfaced to tandem mass spectrometry ( UPLC-MS/MS). The results showed that 8 medium-and short-chain PFCs including C₄ and C₈ perfluorinated sulfonates (PFSAs) and C₄-C₉ perfluorinated carboxylic acids (PFCAs) were detected in the surface waters. The total concentrations of PFCs ranged from 0.98 to 609 ng · L⁻¹, while perfluorooctanoic acid (PFOA) dominated, with range of 0.59-538 ng L⁻¹, and perfluorooctane sulfonate (PFOS) was detected at lower levels, ranging from 0 to 2.48 ng · L⁻¹. The spatial distribution of PFCs varied, and the pollutant concentrations at the sampling sites located in upstream of the river such as Lanjiangkou and Jiangjunyan were relatively high, PFCs concentration showed a decreasing trend from the upstream to the downstream. According to the ratio of feature components, PFCs in surface water of QR originated largely from the input of direct sewage emissions. Taken together, the PFCs pollution was highly correlated with the upstream of Qiantang River valley's industry distribution, and most of the mass load in the investigated river was attributed to upstream running water with a minor influence from the wastewater discharges along the river basin. Overall, the results presented here indicated that greater attention should be given to the contamination of PFCs, especially for PFOA in water body of QR.

  4. Early Mars: A Warm Wet Niche for Life

    NASA Technical Reports Server (NTRS)

    Gibson, Everett K.; McKay, David S.; Thomas-Keprta, Kathie L.; Clemett, Simon J.

    2010-01-01

    Exploration of Mars has begun to unveil the history of the planet. Combinations of remote sensing, in situ compositional measurements and photographic observations have shown Mars had a dynamic and active geologic evolution. Mars geologic evolution had conditions that were suitable for supporting life. A habitable planet must have water, carbon and energy sources along with a dynamic geologic past. Mars meets all of these requirements. The first 600 Ma of Martian history were ripe for life to develop because of the abundance of: (i) Water-as shown by carved canyons and oceans or lakes with the early presence of near surface water shown by precipitated carbonates in ALH84001, well-dated at approx.3.9 Ga, (ii) Energy from the original accretional processes, a molten core which generated a strong magnetic field leaving a permanent record in the early crust, active volcanism continuing throughout Martian history, and continuing impact processes, (iii) Carbon, water and a likely thicker atmosphere from extensive volcanic outgassing (i.e. H2O, CO2, CH4, CO, O2, N2, H2S, SO2, etc.) and (iv) crustal tectonics as revealed by faulting and possible plate movement reflected by the magnetic patterns in the crust [1]. The question arises: "Why would life not develop from these favorable conditions on Mars in its first 600 Ma?" During this period, environmental near-surface conditions on Mars were more favorable to life than at any later time. Standing bodies of water, precipitation and flowing surface water, and possibly abundant hydrothermal energy would favor the formation of early life. (Even if life developed elsewhere on Earth, Venus, or on other bodies-it was transported to Mars where surface conditions were suitable for life to evolve)

  5. Impact of groundwater capillary rises as lower boundary conditions for soil moisture in a land surface model

    NASA Astrophysics Data System (ADS)

    Vergnes, Jean-Pierre; Decharme, Bertrand; Habets, Florence

    2014-05-01

    Groundwater is a key component of the global hydrological cycle. It sustains base flow in humid climate while it receives seepage in arid region. Moreover, groundwater influences soil moisture through water capillary rise into the soil and potentially affects the energy and water budget between the land surface and the atmosphere. Despite its importance, most global climate models do not account for groundwater and their possible interaction with both the surface hydrology and the overlying atmosphere. This study assesses the impact of capillary rise from shallow groundwater on the simulated water budget over France. The groundwater scheme implemented in the Total Runoff Integrated Pathways (TRIP) river routing model in a previous study is coupled with the Interaction between Soil Biosphere Atmosphere (ISBA) land surface model. In this coupling, the simulated water table depth acts as the lower boundary condition for the soil moisture diffusivity equation. An original parameterization accounting for the subgrid elevation inside each grid cell is proposed in order to compute this fully-coupled soil lower boundary condition. Simulations are performed at high (1/12°) and low (0.5°) resolutions and evaluated over the 1989-2009 period. Compared to a free-drain experiment, upward capillary fluxes at the bottom of soil increase the mean annual evapotranspiration simulated over the aquifer domain by 3.12 % and 1.54 % at fine and low resolutions respectively. This process logically induces a decrease of the simulated recharge from ISBA to the aquifers and contributes to enhance the soil moisture memory. The simulated water table depths are then lowered, which induces a slight decrease of the simulated mean annual river discharges. However, the fully-coupled simulations compare well with river discharge and water table depth observations which confirms the relevance of the coupling formalism.

  6. Study of the air-water interfacial properties of biodegradable polyesters and their block copolymers with poly(ethylene glycol).

    PubMed

    Park, Hae-Woong; Choi, Je; Ohn, Kimberly; Lee, Hyunsuk; Kim, Jin Woong; Won, You-Yeon

    2012-08-07

    It has been reported that the surface pressure-area isotherm of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) at the air-water interface exhibits several interesting features: (1) a plateau at intermediate compression levels, (2) a sharp rise in surface pressure upon further compression, and (3) marked surface pressure-area hysteresis during compression-expansion cycles. To investigate the molecular origin of this behavior, we conducted an extensive set of surface pressure and AFM imaging measurements with PLGA materials having several different molecular weights and also a poly(D,L-lactic acid-ran-glycolic acid-ran-caprolactone) (PLGACL) material in which the caprolactone monomers were incorporated as a plasticizing component. The results suggest that (i) the plateau in the surface pressure-area isotherm of PLGA (or PLGACL) occurs because of the formation (and collapse) of a continuous monolayer of the polymer under continuous compression; (ii) the PLGA monolayer becomes significantly resistant to compression at high compression because under that condition the collapsed domains become large enough to become glassy (such behavior was not observed in the nonglassy PLGACL sample); and (iii) the isotherm hysteresis is due to a coarsening of the collapsed domains that occurs under high-compression conditions. We also investigated the monolayer properties of PEG-PLGA and PEG-PLGACL diblock copolymers. The results demonstrate that the tendency of PLGA (or PLGACL) to spread on water allows the polymer to be used as an anchoring block to form a smooth biodegradable monolayer of block copolymers at the air-water interface. These diblock copolymer monolayers exhibit protein resistance.

  7. Structural investigation of Langmuir and Langmuir-Blodgett monolayers of semifluorinated alkanes.

    PubMed

    Dynarowicz Łatka, Patrycja; Pérez-Morales, Marta; Muñoz, Eulogia; Broniatowski, Marcin; Martín-Romero, María T; Camacho, Luis

    2006-03-30

    The behavior of a semi-fluorinated alkane (C(10)F(21)C(19)H(39)) has been studied at the air-water interface by using surface pressure and surface potential-area isotherms as well as infrared spectroscopy for the Langmuir-Blodgett films. In addition, based on the quantum chemical PM3 semiempirical approach, the dimer structure was investigated, and the double helix was found to be the most stable conformation of the dimer. The obtained results allow us to imply that the phase transition observed in the course of the surface pressure/area isotherm is due to a conformational change originating from the double helix to a vertical, single helix configuration.

  8. Seasonal variability of oxygen and hydrogen isotopes in a wetland system of the Yunnan-Guizhou Plateau, southwest China: a quantitative assessment of groundwater inflow fluxes

    NASA Astrophysics Data System (ADS)

    Cao, Xingxing; Wu, Pan; Zhou, Shaoqi; Han, Zhiwei; Tu, Han; Zhang, Shui

    2018-02-01

    The Caohai Wetland serves as an important ecosystem on the Yunnan-Guizhou Plateau and as a nationally important nature reserve for migratory birds in China. In this study, surface water, groundwater and wetland water were collected for the measurement of environmental isotopes to reveal the seasonal variability of oxygen and hydrogen isotopes (δ18O, δD), sources of water, and groundwater inflow fluxes. Results showed that surface water and groundwater are of meteoric origin. The isotopes in samples of wetland water were well mixed vertically in seasons of both high-flow (September) and low-flow (April); however, marked seasonal and spatial variations were observed. During the high-flow season, the isotopic composition in surface wetland water varied from -97.13 to -41.73‰ for δD and from -13.17 to -4.70‰ for δ18O. The composition of stable isotopes in the eastern region of this wetland was lower than in the western region. These may have been influenced by uneven evaporation caused by the distribution of aquatic vegetation. During the low-flow season, δD and δ18O in the more open water with dead aquatic vegetation ranged from -37.11 to -11.77‰, and from -4.25 to -0.08‰, respectively. This may result from high evaporation rates in this season with the lowest atmospheric humidity. Groundwater fluxes were calculated by mass transfer and isotope mass balance approaches, suggesting that the water sources of the Caohai Wetland were mainly from groundwater in the high-flow season, while the groundwater has a smaller contribution to wetland water during the low-flow season.

  9. The role of the hydrophobic phase in the unique rheological properties of saponin adsorption layers.

    PubMed

    Golemanov, Konstantin; Tcholakova, Slavka; Denkov, Nikolai; Pelan, Eddie; Stoyanov, Simeon D

    2014-09-28

    Saponins are a diverse class of natural, plant derived surfactants, with peculiar molecular structure consisting of a hydrophobic scaffold and one or several hydrophilic oligosaccharide chains. Saponins have strong surface activity and are used as natural emulsifiers and foaming agents in food and beverage, pharmaceutical, ore processing, and other industries. Many saponins form adsorption layers at the air-water interface with extremely high surface elasticity and viscosity. The molecular origin of the observed unique interfacial visco-elasticity of saponin adsorption layers is of great interest from both scientific and application viewpoints. In the current study we demonstrate that the hydrophobic phase in contact with water has a very strong effect on the interfacial properties of saponins and that the interfacial elasticity and viscosity of the saponin adsorption layers decrease in the order: air > hexadecane ≫ tricaprylin. The molecular mechanisms behind these trends are analyzed and discussed in the context of the general structure of the surfactant adsorption layers at various nonpolar phase-water interfaces.

  10. Geohydrology of the lowland lakes area, Anchorage, Alaska

    USGS Publications Warehouse

    Zenone, Chester

    1976-01-01

    Unconsolidated deposits, chiefly of glacial origin, make up the surficial geologic materials in the Anchorage lowland lakes area , the western part of the Anchorage glacial outwash plain. Postglacial accumulation of peat, commonly 5 to 10 feet thick, and the presence of ground water at or very near the surface combine to create the swamp-muskeg terrane of much of the area. Deeper, confined ground water is also present beneath thick silt and clay layers that underlie the surficial deposits. Domestic water supply for the lowland lakes area is provided largely by public-supply wells completed in the deep, confined aquifers. No large perennial streams traverse the area, thus streamflow is not a major parameter in the area 's natural water balance. The major uses of surface water are recreational, including fishing and boating at several of the larger lakes, and private and commercial aircraft operations at Hood-Spenard Lakes floatplane base. The hydrology and water balance of these lakes is complex. Water levels in some lakes appear to be closely related to adjacent ground-water levels. Other lakes are evidently perched above the local water table. The relation of lake level to adjacent ground-water level may vary along the shoreline of a single lake. The effect of residential development practices on lake basin water balance is not completely understood. At Sand Lake, the largest lake in this area of rapid urbanization, the water level has declined about 6 feet since the early 1960's. (Woodard-USGS)

  11. A method of extracting impervious surface based on rule algorithm

    NASA Astrophysics Data System (ADS)

    Peng, Shuangyun; Hong, Liang; Xu, Quanli

    2018-02-01

    The impervious surface has become an important index to evaluate the urban environmental quality and measure the development level of urbanization. At present, the use of remote sensing technology to extract impervious surface has become the main way. In this paper, a method to extract impervious surface based on rule algorithm is proposed. The main ideas of the method is to use the rule-based algorithm to extract impermeable surface based on the characteristics and the difference which is between the impervious surface and the other three types of objects (water, soil and vegetation) in the seven original bands, NDWI and NDVI. The steps can be divided into three steps: 1) Firstly, the vegetation is extracted according to the principle that the vegetation is higher in the near-infrared band than the other bands; 2) Then, the water is extracted according to the characteristic of the water with the highest NDWI and the lowest NDVI; 3) Finally, the impermeable surface is extracted based on the fact that the impervious surface has a higher NDWI value and the lowest NDVI value than the soil.In order to test the accuracy of the rule algorithm, this paper uses the linear spectral mixed decomposition algorithm, the CART algorithm, the NDII index algorithm for extracting the impervious surface based on six remote sensing image of the Dianchi Lake Basin from 1999 to 2014. Then, the accuracy of the above three methods is compared with the accuracy of the rule algorithm by using the overall classification accuracy method. It is found that the extraction method based on the rule algorithm is obviously higher than the above three methods.

  12. Shifting Surface Currents in the Northern North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Rhines, Peter B.

    2007-01-01

    Analysis of surface drifter tracks in the North Atlantic Ocean from the time period 1990 to 2006 provides the first evidence that the Gulf Stream waters can have direct pathways to the Nordic Seas. Prior to 2000, the drifters entering the channels leading to the Nordic Seas originated in the western and central subpolar region. Since 2001 several paths from the western subtropics have been present in the drifter tracks leading to the Rockall Trough through which the most saline North Atlantic Waters pass to the Nordic Seas. Eddy kinetic energy from altimetry shows also the increased energy along the same paths as the drifters, These near surface changes have taken effect while the altimetry shows a continual weakening of the subpolar gyre. These findings highlight the changes in the vertical structure of the northern North Atlantic Ocean, its dynamics and exchanges with the higher latitudes, and show how pathways of the thermohaline circulation can open up and maintain or increase its intensity even as the basin-wide circulation spins down.

  13. The Strategy for Polar Exploration: Planes, Trains, and Automobiles

    NASA Technical Reports Server (NTRS)

    Stoker, C.; Lemke, L.

    2000-01-01

    The polar regions are both interesting and challenging to explore. The record of climate history and the behavior of Martian volatiles over time are thought to be contained in the polar terrains. Furthermore, the polar regions are probably the best environment to search for evidence of living organisms on Mars because they have both the presence of water ice and summertime temperatures at the surface that exceed the freezing point of water. In addition, melting at the base of the polar caps is predicted to occur which could result in a deep aquifer beneath the polar caps. Such an aquifer is potentially another habitat for life. Clearly, assessing the question of volaties, climate, and life in the polar regions would benefit from landed missions that can sample and interact with the surface. Mobility on the surface is also important for polar exploration due to the apparent wide diversity of terrains that occur on both local and regional scales. Additional information is contained in the original extended abstract.

  14. AB INITIO Simulations of Desorption and Reactivity of Glycine at a Water-Pyrite Interface at ``Iron-Sulfur World'' Prebiotic Conditions

    NASA Astrophysics Data System (ADS)

    Pollet, Rodolphe; Boehme, Christian; Marx, Dominik

    2006-08-01

    Glycine at the interface of a pyrite surface (001) FeS2, and bulk water at high pressure and temperature conditions relevant to the “iron-sulfur world” scenario of the origin of life is investigated by theoretical means. Car-Parrinello molecular dynamics is used in order to study the desorption process of the zwitterionic form of this amino acid using two different adsorption modes, where either only one or both oxygens of the carboxylate group are anchored to surface iron atoms. It is found that the formation of stabilizing hydrogen bonds plays a key role in the detachment process, leading to longer retention times for the bidentate adsorption mode. In addition, the chemical reactivity of this heterogeneous system is probed by calculating the Fukui functions as site-specific reactivity indices. The most prominent targets for both nucleophilic and electrophilic reactions to occur are surface atoms, whereas the reactivity of glycine is only slightly affected upon anchoring.

  15. Fish embryo tests with Danio rerio as a tool to evaluate surface water and sediment quality in rivers influenced by wastewater treatment plants using different treatment technologies.

    PubMed

    Thellmann, Paul; Köhler, Heinz-R; Rößler, Annette; Scheurer, Marco; Schwarz, Simon; Vogel, Hans-Joachim; Triebskorn, Rita

    2015-11-01

    In order to evaluate surface water and the sediment quality of rivers connected to wastewater treatment plants (WWTPs) with different treatment technologies, fish embryo tests (FET) with Danio rerio were conducted using native water and sediment samples collected upstream and downstream of four WWTPs in Southern Germany. Two of these WWTPs are connected to the Schussen River, a tributary of Lake Constance, and use a sand filter with final water purification by flocculation. The two others are located on the rivers Schmiecha and Eyach in the area of the Swabian Alb and were equipped with a powdered activated carbon stage 20 years ago, which was originally aimed at reducing the release of stains from the textile industry. Several endpoints of embryo toxicity including mortality, malformations, reduced hatching rate, and heart rate were investigated at defined time points of embryonic development. Higher embryotoxic potentials were found in water and sediments collected downstream of the WWTPs equipped with sand filtration than in the sample obtained downstream of both WWTPs upgraded with a powdered activated carbon stage.

  16. West Europe Report No. 2040.

    DTIC Science & Technology

    1982-10-05

    separating it from the sea water , and ignites near the surface. M-20 Missile Characteristics Two-stage solid-fuel rocket Height: 10.75 meters Diameter...translated; those from English-language sources are transcribed or reprinted, with the original phrasing and other characteristics retained. Headlines...and 1.5 percent for national production as a whole), because the light weight and weak perfor- mance of agriculture and fishing will neutralize its

  17. Enhanced photoelectrochemical water splitting performance of anodic TiO(2) nanotube arrays by surface passivation.

    PubMed

    Gui, Qunfang; Xu, Zhen; Zhang, Haifeng; Cheng, Chuanwei; Zhu, Xufei; Yin, Min; Song, Ye; Lu, Linfeng; Chen, Xiaoyuan; Li, Dongdong

    2014-10-08

    One-dimensional anodic titanium oxide nanotube (TONT) arrays provide a direct pathway for charge transport, and thus hold great potential as working electrodes for electrochemical energy conversion and storage devices. However, the prominent surface recombination due to the large amount surface defects hinders the performance improvement. In this work, the surface states of TONTs were passivated by conformal coating of high-quality Al2O3 onto the tubular structures using atomic layer deposition (ALD). The modified TONT films were subsequently employed as anodes for photoelectrochemical (PEC) water splitting. The photocurrent (0.5 V vs Ag/AgCl) recorded under air mass 1.5 global illumination presented 0.8 times enhancement on the electrode with passivation coating. The reduction of surface recombination rate is responsible for the substantially improved performance, which is proposed to have originated from a decreased interface defect density in combination with a field-effect passivation induced by a negative fixed charge in the Al2O3 shells. These results not only provide a physical insight into the passivation effect, but also can be utilized as a guideline to design other energy conversion devices.

  18. Phyt'Eaux Cités: application and validation of a programme to reduce surface water contamination with urban pesticides.

    PubMed

    Botta, Fabrizio; Fauchon, Nils; Blanchoud, Hélène; Chevreuil, Marc; Guery, Bénédicte

    2012-01-01

    This paper presents first results of Phyt'Eaux Cités, a program put in place by the local water supply agency, the SEDIF (Syndicat des Eaux d'Ile-de-France), in collaboration with 73 local authorities, private societies and institutional offices (365 km(2)). The challenges included: measurement of the previous surface water contamination, control of urban pesticide applications, prevention of pesticide hazard on users and finally a overall reduction of surface water contamination. An inquiry on urban total pesticide amount was coupled with a surface water bi-weekly monitoring to establish the impact of more than 200 molecules upon the Orge River. For 2007, at least 4400 kg and 92 type of pesticides (essentially herbicides) were quantified for all urban users in the Phyt'Eaux Cités perimeter. At the outlet of the Orge River (bi-weekly sampling in 2007), 11 molecules were always detected above 0.1 μg L(-1). They displayed the mainly urban origin of pesticide surface water contamination. Amitrole, AMPA (Aminomethyl Phosphonic Acid), demethyldiuron, diuron, glyphosate and atrazine were quantified with a 100% of frequency in 2007 and 2008 at the Orge River outlet. During the year, peaks of contamination were also registered for MCCP, 2,4 MCPA, 2,4 D, triclopyr, dichlorprop, diflufènican, active substances used in large amount in the urban area. However, some other urban molecules, such as isoxaben or flazasulfuron, were detected with low frequency. During late spring and summer, contamination patterns and load were dominated by glyphosate, amitrole and diuron, essentially applied by cities and urban users. Both isoproturon and chlortoluron were quantified during autumn and winter months according to upstream agricultural practices. In conclusion, 3 years after the beginning of this programme, the cities reduced the use of 68% of the total pesticide amount. An improvement on surface water quality was found from 2008 and during 2009 for all pesticides. In particular, glyphosate showed a decrease of the load above 60% in 2008, partly related to the Phyt'Eaux Cités action. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Impacts of the Changjiang diluted water on sinking processes of particulate organic matters in the East China Sea

    NASA Astrophysics Data System (ADS)

    Sukigara, Chiho; Mino, Yoshihisa; Tripathy, Sarat Chandra; Ishizaka, Joji; Matsuno, Takeshi

    2017-12-01

    Intensive surveys with repeated CTD and microstructure turbulent observations, water and sediments sampling as well as onboard incubation and sediment trap experiments were conducted to reveal the nitrogen budget in the center of the East China Sea (ECS) during July 2010 and 2011. Low salinity water (Changjiang Diluted Water, CDW) covered the study area in 2010, but not in 2011. Higher chlorophyll a (chl. a) concentration, primary productivity, and downward particle flux in the upper layer were observed in 2010 than those in 2011. Existence of the CDW resulted in a steep pycnocline and an associated subsurface chl. a maximum (SCM) layer directly beneath the CDW. From chemical analyses of particulate carbon and nitrogen contents and isotope ratios, it became apparent that the particles sunk out the euphotic zone in 2010 was primarily originated in the CDW layer and secondly in the SCM layer. Whereas, in 2011, sinking particles were originated in the surface layer but a part of them were decomposed in the bottom of pycnocline. Our findings indicate that the CDW would supply particles into the deep layer and contribute to the downward transport of materials and the efficiency of biological pump in the ECS.

  20. Volcanic flows versus water- and ice-related outburst deposits in eastern Hellas: A comparison

    NASA Astrophysics Data System (ADS)

    Voelker, M.; Hauber, E.; Stephan, K.; Jaumann, R.

    2018-06-01

    Hellas Planitia is one of the major topographic sinks on Mars for the deposition of any kind of sediments. We report on our observations of sheet deposits in the eastern part of the basin that are apparently related to the Dao Vallis outflow channel. The deposits have lobate flow fronts and a thickness of a few decameters. Despite their generally smooth surface, some distinctive textures and patterns can be identified, such as longitudinal lineations, distributive channels, and polygons. We compared these deposits to other sheet deposits on Mars and tested three hypotheses of their origin: volcanic flows as well as water- and ice-related mass wastings. Despite some similarities to volcanic sheet flows on Mars, we found several morphological characteristics that are not known for sheet lava flows; for example conically arranged lineations and channel systems very similar to fluvial incisions. We also reject an ice-related formation similar to terrestrial rock-ice avalanches, as there is no sufficient relief energy to explain their extent and location. A water-related origin appears most consistent with our observations, and we favor an emplacement by fluvially-driven mass wasting processes, e.g., debris flows. Assuming a water-related origin, we calculated the amount of water that would be required to deposit such large sedimentary bodies for different flow types. Our calculations show a large range of possible water volumes, from 64 to 2,042 km³, depending on the specific flow mechanism. The close link to Dao Vallis makes these deposits a unique place to study the deposition of outflow channel sediments, as the deposits of other outflow channels on Mars, such as those around Chryse Planitia, are mostly buried by younger sediments and volcanic flows.

Top