Sample records for surface waters pt

  1. Adsorption of methanol, ethanol and water on well-characterized PtSn surface alloys

    NASA Astrophysics Data System (ADS)

    Panja, Chameli; Saliba, Najat; Koel, Bruce E.

    1998-01-01

    Adsorption and desorption of methanol (CH 3OH), ethanol (C 2H 5OH) and water on Pt(111) and two, ordered, PtSn alloys has been studied primarily using temperature-programmed desorption (TPD) mass spectroscopy. The two alloys studied were the {p(2 × 2) Sn}/{Pt(111) } and (√3 × √3) R30° {Sn}/{Pt(111) } surface alloys prepared by vapor deposition of Sn on Pt(111), with θSn = 0.25 and 0.33, respectively. All three molecules are weakly bonded and reversibly adsorbed under UHV conditions on all three surfaces, molecularly desorbing during TPD without any decomposition. The two PtSn surface alloys were found to chemisorb both methanol and ethanol slightly more weakly than on the Pt(111) surface. The desorption activation energies measured by TPD, and hence the adsorption energies, of both methanol and ethanol progressively decrease as the surface concentration of Sn increases, compared with Pt(111). The decreased binding energy leads one to expect a lower reactivity for these alcohols on the two alloys. The sticking coefficients and the monolayer coverages of these alcohols on the two alloys were identical to that on Pt(111) at 100 K, independent of the amount of Sn present in the surface layer. Alloying Sn in Pt(111) also slightly weakens the adsorption energy of water. Water clusters are formed even at low coverages on all three surfaces, eventually forming a water bilayer prior to the formation of a condensed ice phase. These results are relevant to a molecular-level explanation for the reactivity of Sn-promoted Pt surfaces that have been used in the electro-oxidation of simple organic molecules.

  2. Effect of water vapor on evolution of a thick Pt-layer modified oxide on the NiCoCrAl alloy at high temperature

    NASA Astrophysics Data System (ADS)

    Song, Peng; He, Xuan; Xiong, Xiping; Ma, Hongqing; Song, Qunling; Lü, Jianguo; Lu, Jiansheng

    2018-03-01

    To investigate the effect of water vapor on the novel Pt-containing oxide growth behavior, Pt-addition within the oxide layer on the surface of NiCoCrAl coating and furnace cycle tests were carried out at 1050 °C in air and air plus water vapor. The thick Pt-containing oxide layer on NiCoCrAl exhibits a different oxidation growth behavior compared to the conventional Pt-diffusion metallic coatings. The Pt-containing oxide after oxidation in air plus water vapor showed a much thicker oxide layer compare to the ones without Pt addition, and also presented a much better coating adhesion. During the oxidation process in air, Pt promotes the spinel (NiCr2O4) formation. However, the Cr2O3 formed in air with water vapor and fixed Pt within the complex oxide layer. The water vapor promoted the Ni and Co outer-diffusion, and combined with Pt to form CoPt compounds on the surface of the NiCoCrAl coating system.

  3. Characterizing heterogeneous dynamics at hydrated electrode surfaces.

    PubMed

    Willard, Adam P; Limmer, David T; Madden, Paul A; Chandler, David

    2013-05-14

    In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this ad-layer dynamic heterogeneity responds asymmetrically to applied voltage.

  4. Characterizing heterogeneous dynamics at hydrated electrode surfaces

    NASA Astrophysics Data System (ADS)

    Willard, Adam P.; Limmer, David T.; Madden, Paul A.; Chandler, David

    2013-05-01

    In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this ad-layer dynamic heterogeneity responds asymmetrically to applied voltage.

  5. Chemical composition and reactivity of water on hexagonal Pt-group metal surfaces.

    PubMed

    Shavorskiy, A; Gladys, M J; Held, G

    2008-10-28

    The dissociation behaviour and valence-electronic structure of water adsorbed on clean and oxygen-covered Ru{0001}, Rh{111}, Pd{111}, Ir{111} and Pt{111} surfaces has been studied by high-resolution X-ray photoelectron spectroscopy with the aim of identifying similarities and trends within the Pt-group metals. On average, we find higher reactivity for the 4d metals (Ru, Rh, Pd) as compared to 5d (Ir, Pt), which is correlated with characteristic shifts in the 1b(1) and 3a(1) molecular orbitals of water. Small amounts of oxygen (< 0.2 ML) induce dissociation of water on all five surfaces, for higher coverages (> 0.25 ML) only intact water is observed. Under UHV conditions these higher coverages can only be reached on the 4d metals, the 5d metals are, therefore, not passivated.

  6. Effect of temperature on compact layer of Pt electrode in PEMFCs by first-principles molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    He, Yang; Chen, Changfeng; Yu, Haobo; Lu, Guiwu

    2017-01-01

    Formation of the double-layer electric field and capacitance of the water-metal interface is of significant interest in physicochemical processes. In this study, we perform first- principles molecular dynamics simulations on the water/Pt(111) interface to investigate the temperature dependence of the compact layer electric field and capacitance based on the calculated charge densities. On the Pt (111) surface, water molecules form ice-like structures that exhibit more disorder along the height direction with increasing temperature. The Osbnd H bonds of more water molecules point toward the Pt surface to form Ptsbnd H covalent bonds with increasing temperature, which weaken the corresponding Osbnd H bonds. In addition, our calculated capacitance at 300 K is 15.2 mF/cm2, which is in good agreement with the experimental results. As the temperature increases from 10 to 450 K, the field strength and capacitance of the compact layer on Pt (111) first increase and then decrease slightly, which is significant for understanding the water/Pt interface from atomic level.

  7. Understanding Electrocatalytic Activity Enhancement of Bimetallic Particles to Ethanol Electro-oxidation: (1) Water Adsorption and Decomposition on PtnM (n=2,3 and 9; M=Pt, Ru, Sn)

    PubMed Central

    Wang, Yixuan; Mi, Yunjie; Redmon, Natalie; Holiday, Jessica

    2009-01-01

    The fundamental assumption of the bi-functional mechanism for PtSn alloy to catalyze ethanol electro-oxidation reaction (EER) is that Sn facilitates water dissociation and EER occurs over Pt site of the PtSn alloy. To clarify this assumption and achieve a good understanding about the EER, H2O adsorption and dissociation over bimetallic clusters PtM (M=Pt, Sn, Ru, Rh, Pd, Cu and Re) are systematically investigated in the present work. To discuss a variety of effects, PtnM (n=2, and 3; M=Pt, Sn and Ru), one-layer Pt6M (M=Pt, Sn and Ru), and two-layer (Pt6M)Pt3 (M=Pt, Sn, Ru, Rh, Pd, Cu and Re) clusters are used to model the PtM bimetallic catalysts. Water exhibits atop adsorption on Pt and Ru sites of the optimized clusters PtnM (n=2, and 3; M=Pt and Ru), yet bridge adsorption on Sn sites of Pt2Sn as well as distorted tetrahedral Pt3Sn. However, in the cases of one-layer Pt6M and two-layer Pt9M cluster models water preferentially binds to all of investigated central atom M of surface layer in atop configuration with the dipole moment of water almost parallel to the cluster surface. Water adsorption on the Sn site of PtnSn (n=2 and 3) is weaker than those on the Pt site of Ptn (n=3 and 4) and the Ru site of PtnRu (n=2 and 3), while water adsorptions on the central Sn atom of Pt6Sn and Pt9Sn are enhanced so significantly that they are even stronger than those on the central Pt and Ru atoms of PtnM (n=6 and 9; M=Pt and Ru). For all of the three cluster models, energy barrier (Ea) for the dissociation of adsorbed water over Sn is lower than over Ru and Pt atoms (e.g., Ea: 0.78 vs 0.96 and 1.07 eV for Pt9M), which also remains as external electric fields were added. It is interesting to note that the dissociation energy on Sn site is also the lowest (Ediss: 0.44 vs 0.61 and 0.67eV). The results show that from both kinetic and thermodynamic viewpoints Sn is more active to water decomposition than pure Pt and the PtRu alloy, which well supports the assumption of the bi-functional mechanism that Sn site accelerates the dissociation of H2O. The extended investigation for water behavior on the (Pt6M)Pt3 (M=Pt, Sn, Ru, Rh, Pd, Cu and Re) clusters indicate that the kinetic activity for water dissociation increases in the sequence of Cu < Pd < Rh < Pt < Ru < Sn < Re. PMID:20336187

  8. The electrochemistry of "solid/water" interfaces involved in PEM-H2O reactors: part I. The "Pt/water" interfaces.

    PubMed

    Wang, Qiang; Cha, Chuan-Sin; Lu, Juntao; Zhuang, Lin

    2009-01-28

    The nature and properties of Pt surfaces in contact with pure water in PEM-H2O reactors were mimetically studied by employing CV measurements with microelectrode techniques. These "Pt/water" interfaces were found to be electrochemically polarizable, and the local interfacial potential relative to reversible hydrogen electrode (RHE) potential in pure water is numerically the same as the potential value measured against a RHE in contact with PEM as the reference electrode. However, the structural parameters of the electric double layer at the "Pt/water" interfaces can be quite different from those at the "Pt/PEM" interfaces, and the kinetics of electrode processes could be seriously affected by the structure of electric double layer in pure water media. Besides, there is active diffusional flow of intermediates of electrode reactions between the "Pt/water" and the "Pt/PEM" interfaces, thus facilitating the active involvement of the "Pt/water" interfaces in the current-generation mechanism of PEM fuel cells and other types of PEM-H2O reactors.

  9. On the variability of the Priestley-Taylor coefficient over water bodies

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel; Li, Dan; Tyler, Scott; Tanny, Josef; Cohen, Shabtai; Bou-Zeid, Elie; Parlange, Marc; Katul, Gabriel G.

    2016-01-01

    Deviations in the Priestley-Taylor (PT) coefficient αPT from its accepted 1.26 value are analyzed over large lakes, reservoirs, and wetlands where stomatal or soil controls are minimal or absent. The data sets feature wide variations in water body sizes and climatic conditions. Neither surface temperature nor sensible heat flux variations alone, which proved successful in characterizing αPT variations over some crops, explain measured deviations in αPT over water. It is shown that the relative transport efficiency of turbulent heat and water vapor is key to explaining variations in αPT over water surfaces, thereby offering a new perspective over the concept of minimal advection or entrainment introduced by PT. Methods that allow the determination of αPT based on low-frequency sampling (i.e., 0.1 Hz) are then developed and tested, which are usable with standard meteorological sensors that filter some but not all turbulent fluctuations. Using approximations to the Gram determinant inequality, the relative transport efficiency is derived as a function of the correlation coefficient between temperature and water vapor concentration fluctuations (RTq). The proposed approach reasonably explains the measured deviations from the conventional αPT = 1.26 value even when RTq is determined from air temperature and water vapor concentration time series that are Gaussian-filtered and subsampled to a cutoff frequency of 0.1 Hz. Because over water bodies, RTq deviations from unity are often associated with advection and/or entrainment, linkages between αPT and RTq offer both a diagnostic approach to assess their significance and a prognostic approach to correct the 1.26 value when using routine meteorological measurements of temperature and humidity.

  10. A Cu/Pt Near-Surface Alloy for Water-Gas Shift Catalysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, Jan; Nilekar, Anand U.; Vang, Ronnie T.

    2007-05-01

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The primary route to hydrogen production from fossil fuels involves the water-gas shift (WGS) reaction, and an improvement in the efficiency of WGS catalysts could therefore lead to a major leap forward in the realization of hydrogen economy. On the basis of a combination of high-resolution scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory (DFT) calculations, we suggestmore » the existence of a new thermodynamically stable Cu/Pt near-surface alloy (NSA). Temperature-programmed desorption and DFT reveal that this Cu/Pt NSA binds CO significantly more weakly than does Pt alone, thereby implying a considerable reduction in the potential for CO poisoning of the Cu/Pt NSA surface as compared to that of pure Pt. In addition, DFT calculations show that this Cu/Pt NSA is able to activate H2O easily, which is the rate-determining step for the WGS on several metal surfaces, and, at the same time, to bind the products of that reaction and formate intermediates rather weakly, thus avoiding possible poisoning of the catalyst surface. The Cu/Pt NSA is thus a promising candidate for an improved WGS catalyst.« less

  11. Thermal effects on electronic properties of CO/Pt(111) in water.

    PubMed

    Duan, Sai; Xu, Xin; Luo, Yi; Hermansson, Kersti; Tian, Zhong-Qun

    2013-08-28

    Structure and adsorption energy of carbon monoxide molecules adsorbed on the Pt(111) surfaces with various CO coverages in water as well as work function of the whole systems at room temperature of 298 K were studied by means of a hybrid method that combines classical molecular dynamics and density functional theory. We found that when the coverage of CO is around half monolayer, i.e. 50%, there is no obvious peak of the oxygen density profile appearing in the first water layer. This result reveals that, in this case, the external force applied to water molecules from the CO/Pt(111) surface almost vanishes as a result of the competitive adsorption between CO and water molecules on the Pt(111) surface. This coverage is also the critical point of the wetting/non-wetting conditions for the CO/Pt(111) surface. Averaged work function and adsorption energy from current simulations are consistent with those of previous studies, which show that thermal average is required for direct comparisons between theoretical predictions and experimental measurements. Meanwhile, the statistical behaviors of work function and adsorption energy at room temperature have also been calculated. The standard errors of the calculated work function for the water-CO/Pt(111) interfaces are around 0.6 eV at all CO coverages, while the standard error decreases from 1.29 to 0.05 eV as the CO coverage increases from 4% to 100% for the calculated adsorption energy. Moreover, the critical points for these electronic properties are the same as those for the wetting/non-wetting conditions. These findings provide a better understanding about the interfacial structure under specific adsorption conditions, which can have important applications on the structure of electric double layers and therefore offer a useful perspective for the design of the electrochemical catalysts.

  12. Catalysts synthesized by selective deposition of Fe onto Pt for the water-gas shift reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aragao, Isaias Barbosa; Ro, Insoo; Liu, Yifei

    FePt bimetallic catalysts with intimate contact between the two metals were synthesized by controlled surface reactions (CSR) of (cyclohexadiene)iron tricarbonyl with hydrogen-treated supported Pt nanoparticles. Adsorption of the iron precursor on a Pt/SiO 2 catalyst was studied, showing that the Fe loading could be increased by performing multiple CSR cycles, and the efficiency of this process was linked to the renewal of adsorption sites by a reducing pretreatment. Here, the catalytic activity of these bimetallic catalysts for the water gas shift reaction was improved due to promotion by iron, likely linked to H 2O activation on FeO x species atmore » or near the Pt surface, mostly in the (II) oxidation state.« less

  13. Catalysts synthesized by selective deposition of Fe onto Pt for the water-gas shift reaction

    DOE PAGES

    Aragao, Isaias Barbosa; Ro, Insoo; Liu, Yifei; ...

    2017-10-04

    FePt bimetallic catalysts with intimate contact between the two metals were synthesized by controlled surface reactions (CSR) of (cyclohexadiene)iron tricarbonyl with hydrogen-treated supported Pt nanoparticles. Adsorption of the iron precursor on a Pt/SiO 2 catalyst was studied, showing that the Fe loading could be increased by performing multiple CSR cycles, and the efficiency of this process was linked to the renewal of adsorption sites by a reducing pretreatment. Here, the catalytic activity of these bimetallic catalysts for the water gas shift reaction was improved due to promotion by iron, likely linked to H 2O activation on FeO x species atmore » or near the Pt surface, mostly in the (II) oxidation state.« less

  14. Theoretical Investigation of the Structural Stabilities of Ceria Surfaces and Supported Metal Nanocluster in Vapor and Aqueous Phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Zhibo; Liu, Ning; Chen, Biaohua

    Understanding the structural stability and dynamics at the interface between the solid metal oxide and aqueous phase is significant in a variety of industrial applications including heterogeneous catalysis and environmental remediation. In the present work, the stabilities of three low-index ceria (CeO2) surfaces, i.e., (111), (110) and (100) in vapor and aqueous phases were studied using ab initio molecular dynamics simulations and density functional theory (DFT) calculations. Gibbs surface free energies as a function of temperature, water partial pressure, and water coverages were calculated using DFT based atomistic thermodynamic approach. On the basis of surface free energies, the morphology andmore » exposed surface structures of the CeO2 nanoparticle were predicted using Wulff construction principle. It is found that the partially hydroxylated (111) and (100) are two major surface structures of CeO2 nanoparticles in vapor phase at ambient temperature (300 K). As the temperature increases, the fully dehydrated (111) surface gradually becomes the most dominant surface structure. While in aqueous phase, the exposed surface of the CeO2 nanoparticle is dominated by the hydroxylated (110) structure at 393 K. Finally, the morphology and stability of a cuboctahedron Pt13 nanocluster supported on CeO2 surfaces in both gas and aqueous phases were investigated. In gas phase, the supported Pt13 nanocluster has the tendency to wetting the CeO2 surface due to the strong metal-support interaction. The calculated interaction energies suggest the CeO2(110) surface provides the best stability for the Pt13 nanocluster. The CeO2 supported Pt13 nanoclusters are oxidized. Compared to the gas phase, the morphology of the CeO2 supported Pt13 nanocluster is less distorted due to the solvation effect provided by surrounding water molecules in aqueous phase. More electrons are transferred from the Pt13 nanocluster to the CeO2 support, implying the supported Pt13 nanocluster is further oxidized in aqueous phase.« less

  15. Atomic structure of water/Au, Ag, Cu and Pt atomic junctions.

    PubMed

    Li, Yu; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2017-02-08

    Much progress has been made in understanding the transport properties of atomic-scale conductors. We prepared atomic-scale metal contacts of Cu, Ag, Au and Pt using a mechanically controllable break junction method at 10 K in a cryogenic vacuum. Water molecules were exposed to the metal atomic contacts and the effect of molecular adsorption was investigated by electronic conductance measurements. Statistical analysis of the electronic conductance showed that the water molecule(s) interacted with the surface of the inert Au contact and the reactive Cu ant Pt contacts, where molecular adsorption decreased the electronic conductance. A clear conductance signature of water adsorption was not apparent at the Ag contact. Detailed analysis of the conductance behaviour during a contact-stretching process indicated that metal atomic wires were formed for the Au and Pt contacts. The formation of an Au atomic wire consisting of low coordination number atoms leads to increased reactivity of the inert Au surface towards the adsorption of water.

  16. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water.

    PubMed

    Chen, Xiufang; Zhang, Ligang; Zhang, Bo; Guo, Xingcui; Mu, Xindong

    2016-06-22

    Graphitic carbon nitride nanosheets were investigated for developing effective Pt catalyst supports for selective hydrogenation of furfural to furfuryl alcohol in water. The nanosheets with an average thickness of about 3 nm were synthesized by a simple and green method through thermal oxidation etching of bulk g-C3N4 in air. Combined with the unique feature of nitrogen richness and locally conjugated structure, the g-C3N4 nanosheets with a high surface area of 142 m(2) g(-1) were demonstrated to be an excellent supports for loading small-size Pt nanoparticles. Superior furfural hydrogenation activity in water with complete conversion of furfural and high selectivity of furfuryl alcohol (>99%) was observed for g-C3N4 nanosheets supported Pt catalysts. The large specific surface area, uniform dispersion of Pt nanoparticles and the stronger furfural adsorption ability of nanosheets contributed to the considerable catalytic performance. The reusability tests showed that the novel Pt catalyst could maintain high activity and stability in the furfural hydrogenation reaction.

  17. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water

    NASA Astrophysics Data System (ADS)

    Chen, Xiufang; Zhang, Ligang; Zhang, Bo; Guo, Xingcui; Mu, Xindong

    2016-06-01

    Graphitic carbon nitride nanosheets were investigated for developing effective Pt catalyst supports for selective hydrogenation of furfural to furfuryl alcohol in water. The nanosheets with an average thickness of about 3 nm were synthesized by a simple and green method through thermal oxidation etching of bulk g-C3N4 in air. Combined with the unique feature of nitrogen richness and locally conjugated structure, the g-C3N4 nanosheets with a high surface area of 142 m2 g-1 were demonstrated to be an excellent supports for loading small-size Pt nanoparticles. Superior furfural hydrogenation activity in water with complete conversion of furfural and high selectivity of furfuryl alcohol (>99%) was observed for g-C3N4 nanosheets supported Pt catalysts. The large specific surface area, uniform dispersion of Pt nanoparticles and the stronger furfural adsorption ability of nanosheets contributed to the considerable catalytic performance. The reusability tests showed that the novel Pt catalyst could maintain high activity and stability in the furfural hydrogenation reaction.

  18. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water

    PubMed Central

    Chen, Xiufang; Zhang, Ligang; Zhang, Bo; Guo, Xingcui; Mu, Xindong

    2016-01-01

    Graphitic carbon nitride nanosheets were investigated for developing effective Pt catalyst supports for selective hydrogenation of furfural to furfuryl alcohol in water. The nanosheets with an average thickness of about 3 nm were synthesized by a simple and green method through thermal oxidation etching of bulk g-C3N4 in air. Combined with the unique feature of nitrogen richness and locally conjugated structure, the g-C3N4 nanosheets with a high surface area of 142 m2 g−1 were demonstrated to be an excellent supports for loading small-size Pt nanoparticles. Superior furfural hydrogenation activity in water with complete conversion of furfural and high selectivity of furfuryl alcohol (>99%) was observed for g-C3N4 nanosheets supported Pt catalysts. The large specific surface area, uniform dispersion of Pt nanoparticles and the stronger furfural adsorption ability of nanosheets contributed to the considerable catalytic performance. The reusability tests showed that the novel Pt catalyst could maintain high activity and stability in the furfural hydrogenation reaction. PMID:27328834

  19. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    PubMed Central

    Li, Zhiyang; Leung, Calvin; Gao, Fan; Gu, Zhiyong

    2015-01-01

    In this paper, vertically aligned Pt nanowire arrays (PtNWA) with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2) detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO) template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2) among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water) was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors. PMID:26404303

  20. Membrane electrode assembly fabricated with the combination of Pt/C and hollow shell structured-Pt-SiO2@ZrO2 sphere for self-humidifying proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Ko, Y. D.; Yang, H. N.; Züttel, Andreas; Kim, S. D.; Kim, W. J.

    2017-11-01

    The Pt-supported hollow structured Pt-HZrO2 with the shell thickness of 27 nm is successfully synthesized. The water retention ability of Pt-HZrO2 is significantly enhanced compared with that of SiO2@ZrO2 due to the hydrophilic hollow structured HZrO2with high BET surface area. Pt-C and Pt-HZrO2 are combined with different weight fractions to prepare the double catalyst electrode (DCE). The membrane electrode assembly with the DCE is fabricated and applied to both anode and cathode or anode side only. The water flooding and thus rapid voltage drop is affected by the presence/or absence of the DCE at the cathode side. The cell test and visual experiment suggests that the Pt-HZrO2 layer adsorb the water molecules generated by the oxygen reduction reaction (ORR), preventing the water flooding. The power generation under RH 0% strongly suggests the back-diffusion of water molecules generated by the ORR. The flow rate to the cathode significantly affects the water flooding and cell performance. Higher flow rate to the cathode is advantageous to expel the water generated by the ORR, thus preventing water flooding and enhancing the cell performance. Therefore, the weight fraction of Pt-C to Pt-HZrO2 and the flow rate to the cathode should be well balanced.

  1. Anions dramatically enhance proton transfer through aqueous interfaces

    PubMed Central

    Mishra, Himanshu; Enami, Shinichi; Nielsen, Robert J.; Hoffmann, Michael R.; Goddard, William A.; Colussi, Agustín J.

    2012-01-01

    Proton transfer (PT) through and across aqueous interfaces is a fundamental process in chemistry and biology. Notwithstanding its importance, it is not generally realized that interfacial PT is quite different from conventional PT in bulk water. Here we show that, in contrast with the behavior of strong nitric acid in aqueous solution, gas-phase HNO3 does not dissociate upon collision with the surface of water unless a few ions (> 1 per 106 H2O) are present. By applying online electrospray ionization mass spectrometry to monitor in situ the surface of aqueous jets exposed to HNO3(g) beams we found that production increases dramatically on > 30-μM inert electrolyte solutions. We also performed quantum mechanical calculations confirming that the sizable barrier hindering HNO3 dissociation on the surface of small water clusters is drastically lowered in the presence of anions. Anions electrostatically assist in drawing the proton away from lingering outside the cluster, whose incorporation is hampered by the energetic cost of opening a cavity therein. Present results provide both direct experimental evidence and mechanistic insights on the counterintuitive slowness of PT at water-hydrophobe boundaries and its remarkable sensitivity to electrostatic effects. PMID:22689964

  2. Reaction Dynamics Following Ionization of Ammonia Dimer Adsorbed on Ice Surface.

    PubMed

    Tachikawa, Hiroto

    2016-09-22

    The ice surface provides an effective two-dimensional reaction field in interstellar space. However, how the ice surface affects the reaction mechanism is still unknown. In the present study, the reaction of an ammonia dimer cation adsorbed both on water ice and cluster surface was theoretically investigated using direct ab initio molecular dynamics (AIMD) combined with our own n-layered integrated molecular orbital and molecular mechanics (ONIOM) method, and the results were compared with reactions in the gas phase and on water clusters. A rapid proton transfer (PT) from NH3(+) to NH3 takes place after the ionization and the formation of intermediate complex NH2(NH4(+)) is found. The reaction rate of PT was significantly affected by the media connecting to the ammonia dimer. The time of PT was calculated to be 50 fs (in the gas phase), 38 fs (on ice), and 28-33 fs (on water clusters). The dissociation of NH2(NH4(+)) occurred on an ice surface. The reason behind the reaction acceleration on an ice surface is discussed.

  3. The role of the anionic and cationic pt sites in the adsorption site preference of water and ethanol on defected Pt4/Pt(111) substrates: A density functional theory investigation within the D3 van der waals corrections

    NASA Astrophysics Data System (ADS)

    Seminovski, Yohanna; Amaral, Rafael C.; Tereshchuk, Polina; Da Silva, Juarez L. F.

    2018-01-01

    Platinum (Pt) atoms in the bulk face-centered cubic structure have neutral charge because they are equivalent by symmetry, however, in clean Pt surfaces, the effective charge on Pt atoms can turn slightly negative (anionic) or positive (cationic) while increasing substantially in magnitude for defected (low-coordinated) Pt sites. The effective charge affect the adsorption properties of molecular species on Pt surfaces and it can compete in importance with the coupling of the substrate-molecule electronic states. Although several studies have been reported due to the importance of Pt for catalysis, our understanding of the role played by low-coordinated sites is still limited. Here, we employ density functional theory within the Perdew-Burke-Ernzerhof exchange-correlation functional and the D3 van der Waals (vdW) correction to investigate the role of the cationic and anionic Pt sites on the adsorption properties of ethanol and water on defected Pt4/Pt(111) substrates. Four substrates were carefully selected, namely, two two-dimensional (2D) Pt4 configurations (2D-strand and 2D-island) and two tri-dimensional (3D) Pt4 (3D-fcc and 3D-hcp), to understand the role of coordination, effective charge, and coupling of the electronic states in the adsorption properties. From the Bader charge analysis, we identified the cationic and anionic sites among the Pt atoms exposed to the vacuum region in the Pt4/Pt(111) substrates. We found that ethanol and water bind via the anionic O atoms to the low-coordinated defected Pt sites of the substrates, where the angle PtOH is nearly 100° for most configurations. In the 3D-fcc or 3D-hcp defected configurations, the lowest-coordinated Pt atoms are anionic, hence, those Pt sites are not preferable for the adsorption of O atoms. The charge transfer from water and ethanol to the Pt substrates has similar magnitude for all cases, which implies similar Coulomb contribution to the adsorption energy. Moreover, we found a correlation of the adsorption energy with the shift of the center of gravity of the occupied d-states of Pt sites.

  4. Fabrication of superhydrophobic Pt3Fe/Fe surface for its application

    NASA Astrophysics Data System (ADS)

    Cui, Shuo; Lu, Shixiang; Xu, Wenguo; Wu, Bei

    2017-10-01

    Well-defined Pt3Fe/Fe superhydrophobic materials on iron sheet with special properties, such as corrosion resistance, superhydrophobicity and superoleophilicity, was fabricated. The fabrication process involved etching in hydrochloric acid aqueous solution and simple replacement deposition process without using any seed and organic solvent, and then annealing. The electrochemical measurements show that the resultant surface in 3.5% sodium chloride solution displays good corrosion resistance. Also, it is proved that the obtained surface has better mechanical abrasion resistance via scratch test. The superoleophilicity and low water adhesion force of the obtained surface endow it high oil/water separation capacity. The as-prepared nanocomposites display enhanced catalytic activity and kinetics toward degradation of methyl orange. In particular, it possesses the most efficient degradation capacity (95%) towards methyl orange at a high concentration (17.5 mg/L) in 80 min. The improved stability and excellent catalytic activity of the Pt3Fe/Fe nanocomposites promise new opportunities for the development of waste water treatment.

  5. Catalysts synthesized by selective deposition of Fe onto Pt for the water-gas shift reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aragao, Isaias Barbosa; Ro, Insoo; Liu, Yifei

    FePt bimetallic catalysts with intimate contact between the two metals were synthesized by controlled surface reactions (CSR) of (cyclohexadiene)iron tricarbonyl with hydrogen-treated supported Pt nanoparticles. Adsorption of the iron precursor on a Pt/SiO2 catalyst was studied, showing that the Fe loading could be increased by performing multiple CSR cycles, and the efficiency of this process was linked to the renewal of adsorption sites by a reducing pretreatment. The catalytic activity of these bimetallic catalysts for the water gas shift reaction was improved due to promotion by iron, likely linked to H2O activation on FeOx species at or near the Ptmore » surface, mostly in the (II) oxidation state.« less

  6. Highly active Pt/MoC and Pt/TiC catalysts for the low-temperature water-gas shift reaction: Effects of the carbide metal/carbon ratio on the catalyst performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, José A.; Ramírez, Pedro J.; Gutierrez, Ramón A.

    We present that Pt/MoC and Pt/TiC(001) are excellent catalysts for the low-temperature water-gas shift (WGS, CO + H 2O → H 2 + CO 2) reaction. They exhibit high-activity, stability and selectivity. The highest catalytic activities are seen for small coverages of Pt on the carbide substrates. Synergistic effects at the metal-carbide interface produce an enhancement in chemical activity with respect to pure Pt, MoC and TiC. A clear correlation is found between the ability of the Pt/MoC and Pt/TiC(001) surfaces to partially dissociate water and their catalytic activity for the WGS reaction. Finally, an overall comparison of the resultsmore » for Pt/MoC and Pt/Mo 2C(001) indicates that the metal/carbon ratio in the carbide support can have a strong influence in the stability and selectivity of WGS catalysts and is a parameter that must be taken into consideration when designing these systems.« less

  7. Highly active Pt/MoC and Pt/TiC catalysts for the low-temperature water-gas shift reaction: Effects of the carbide metal/carbon ratio on the catalyst performance

    DOE PAGES

    Rodriguez, José A.; Ramírez, Pedro J.; Gutierrez, Ramón A.

    2016-09-20

    We present that Pt/MoC and Pt/TiC(001) are excellent catalysts for the low-temperature water-gas shift (WGS, CO + H 2O → H 2 + CO 2) reaction. They exhibit high-activity, stability and selectivity. The highest catalytic activities are seen for small coverages of Pt on the carbide substrates. Synergistic effects at the metal-carbide interface produce an enhancement in chemical activity with respect to pure Pt, MoC and TiC. A clear correlation is found between the ability of the Pt/MoC and Pt/TiC(001) surfaces to partially dissociate water and their catalytic activity for the WGS reaction. Finally, an overall comparison of the resultsmore » for Pt/MoC and Pt/Mo 2C(001) indicates that the metal/carbon ratio in the carbide support can have a strong influence in the stability and selectivity of WGS catalysts and is a parameter that must be taken into consideration when designing these systems.« less

  8. Dimethyl ether electro-oxidation on platinum surfaces

    DOE PAGES

    Roling, Luke T.; Herron, Jeffrey A.; Budiman, Winny; ...

    2016-02-27

    A first-principles density functional theory study was performed in this paper to elucidate the mechanism of dimethyl ether electro-oxidation on three low-index platinum surfaces (Pt(111), Pt(100), and Pt(211)). The goal of this study is to provide a fundamental explanation for the high activity observed experimentally on Pt(100) compared to Pt(111) and stepped surfaces. We determine that the enhanced activity of Pt(100) stems from more facile C–O bond breaking kinetics, as well as from easier removal of CO as a surface poison through activation of water. In general, the C–O bond (in CH xOCH y) becomes easier to break as dimethylmore » ether is dehydrogenated to a greater extent. In contrast, dehydrogenation becomes more difficult as more hydrogen atoms are removed. We perform two analyses of probable reaction pathways, which both identify CHOC and CO as the key reaction intermediates on these Pt surfaces. We show that the reaction mechanism on each surface is dependent on the cell operating potential, as increasing the potential facilitates C–H bond scission, in turn promoting the formation of intermediates for which C–O scission is more facile. We additionally demonstrate that CO oxidation determines the high overpotential required for electro-oxidation on Pt surfaces. Finally, at practical operating potentials (~0.60 V RHE), we determine that C–O bond breaking is most likely the most difficult step on all three Pt surfaces studied.« less

  9. Pulsed thermography detection of water and hydraulic oil intrusion in the honeycomb sandwich structure composite

    NASA Astrophysics Data System (ADS)

    Zhao, Shi-bin; Zhang, Cun-lin; Wu, Nai-ming

    2011-08-01

    Water and hydraulic oil intrusion inside honeycomb sandwich Structure Composite during service has been linked to in-flight failure in some aircraft. There is an ongoing effort to develop nondestructive testing methods to detect the presence of water and hydraulic oil within the sandwich panels. Pulsed thermography(PT) represents an attractive approach in that it is sensitive to the change of thermal properties. Using a flash lamp PT, testing can be applied directly to the surface of the panel. The viability of PT is demonstrated through laboratory imaging of both water and hydraulic oil within sandwich panels. The detection of water and hydraulic oil intrusion using a one-sided flash lamp PT is presented. It is shown that simple detection, as well as spatial localization of water and hydraulic oil within sandwich panels, and assign the quantity of water and hydraulic oil is possible.

  10. Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harvesting.

    PubMed

    Yu, Zhenwei; Yun, Frank F; Wang, Yanqin; Yao, Li; Dou, Shixue; Liu, Kesong; Jiang, Lei; Wang, Xiaolin

    2017-09-01

    With the impacts of climate change and impending crisis of clean drinking water, designing functional materials for water harvesting from fog with large water capacity has received much attention in recent years. Nature has evolved different strategies for surviving dry, arid, and xeric conditions. Nature is a school for human beings. In this contribution, inspired by the Stenocara beetle, superhydrophilic/superhydrophobic patterned surfaces are fabricated on the silica poly(dimethylsiloxane) (PDMS)-coated superhydrophobic surfaces using a pulsed laser deposition approach with masks. The resultant samples with patterned wettability demonstrate water-harvesting efficiency in comparison with the silica PDMS-coated superhydrophobic surface and the Pt nanoparticles-coated superhydrophilic surface. The maximum water-harvesting efficiency can reach about 5.3 g cm -2 h -1 . Both the size and the percentage of the Pt-coated superhydrophilic square regions on the patterned surface affect the condensation and coalescence of the water droplet, as well as the final water-harvesting efficiency. The present water-harvesting strategy should provide an avenue to alleviate the water crisis facing mankind in certain arid regions of the world. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Atomic Layer-by-Layer Deposition of Platinum on Palladium Octahedra for Enhanced Catalysts toward the Oxygen Reduction Reaction

    DOE PAGES

    Park, Jinho; Zhang, Lei; Choi, Sang-Il; ...

    2015-02-08

    We systematically evaluated two different approaches to the syntheses of Pd@PtnL (n = 2–5) core–shell octahedra. We initially prepared the core–shell octahedra using a polyol-based route by titrating a Pt(IV) precursor into the growth solution containing Pd octahedral seeds at 200 °C through the use of a syringe pump. The number of Pt atomic layers could be precisely controlled from two to five by increasing the volume of the precursor solution while fixing the amount of seeds. We then demonstrated the synthesis of Pd@Pt nL octahedra using a water-based route at 95 °C through the one-shot injection of a Pt(II)more » precursor. Due to the large difference in reaction temperature, the Pd@Pt nL octahedra obtained via the water-based route showed sharper corners than their counterparts obtained through the polyol-based route. When compared to a commercial Pt/C catalyst based upon 3.2 nm Pt particles, the Pd@Pt nL octahedra prepared using both methods showed similar remarkable enhancement in terms of activity (both specific and mass) and durability toward the oxygen reduction reaction. These calculations based upon periodic, self-consistent density functional theory suggested that the enhancement in specific activity for the Pd@Pt nL octahedra could be attributed to the destabilization of OH on their Pt nL*/Pd(111) surface relative to the {111} and {100} facets exposed on the surface of Pt/C. Finally. the destabilization of OH facilitates its hydrogenation, which was found to be the rate-limiting step of the oxygen reduction reaction on all these surfaces.« less

  12. New electrocatalysts for unitized regenerative fuel cell: Pt-Ir alloy deposited on the proton exchange membrane surface by impregnation-reduction method.

    PubMed

    Wan, Chieh-Hao; Wu, Chun-Lin; Lin, Meng-Tsun; Shih, Chihhsiong

    2010-07-01

    In this paper, a modified technique to prepare Pt-Ir catalyst layer on the proton exchange membrane (PEM) surface using the impregnation-reduction (IR) method is proposed to improve the electrocatalytic activity as well as the life cycle of the bifunctional oxygen electrode (BOE). The resulted electrocatalysts were characterized by the Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Electron Probe Micro-Analysis (EPMA), and Transmission Electron Microscope (TEM). The electrocatalytic properties of the Pt-Ir layer on PEM surface for the oxygen reduction and water oxidation reactions as well as the life cycle of MEA were investigated. Experimental results showed that the Ir particles were dispersed densely in the platinum layer through the modified IR technique. The atomic ratio of Pt over Ir elements was 9:1, and the resulted thickness of the obtained Pt-Ir catalyst layer was about 1.0 microm. The Pt-Ir catalyst layer was composed of Pt layer doped with Ir nano-particles comprising nano Pt-Ir alloy phase. The large surface area of Ir core with Pt shell particles and the presence of nano Pt-Ir alloy phase led to a higher electrocatalytic activity of BOE. Due to the good binding between the Nafion membrane and the Pt-Ir alloy catalyst, as well as the composite structure of the resulted Pt-Ir, the life cycle of Unitized Regenerative Fuel Cell (URFC) is improved through this novel BOE.

  13. Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon.

    PubMed

    Liu, Xiuyun; Zhang, Bo; Fei, Benhua; Chen, Xiufang; Zhang, Junyi; Mu, Xindong

    2017-09-21

    The search for and exploitation of efficient catalytic systems for selective conversion of furfural into various high value-added chemicals remains a huge challenge for green synthesis in the chemical industry. Here, novel Pt nanoparticles supported on bamboo shoot-derived porous heteroatom doped carbon materials were designed as highly active catalysts for controlled hydrogenation of furfural in aqueous media. The porous heteroatom doped carbon supported Pt catalysts were endowed with a large surface area with a hierarchical porous structure, a high content of nitrogen and oxygen functionalities, a high dispersion of the Pt nanoparticles, good water dispersibility and reaction stability. Benefiting from these features, the novel Pt catalysts displayed a high activity and controlled tunable selectivity for furfural hydrogenation to produce furfuryl alcohol and cyclopentanone in water. The product selectivity could be easily modulated by controlling the carbonization temperature of the porous heteroatom doped carbon support and the reaction conditions (temperature and H 2 pressure). Under mild conditions (100 °C, 1 MPa H 2 ), furfuryl alcohol was obtained in water with complete conversion of the furfural and an impressive furfuryl alcohol selectivity of >99% in the presence of Pt/NC-BS-500. A higher reaction temperature, in water, favored rearrangement of the furfural (FFA) with Pt/NC-BS-800 as the catalyst, which resulted in a high cyclopentanone yield of >76% at 150 °C and 3 MPa H 2 . The surface properties and pore structure of the heteroatom doped carbon support, adjusted using the carbonization temperature, might determine the interactions between the Pt nanoparticles, carbon support and catalytic reactants in water, which in turn could have led to a good selectivity control. The effect of different reaction temperatures and reaction times on the product selectivity was also explored. Combined with exploration of the distribution of the reaction products, a reaction mechanism for furfural reduction has been proposed.

  14. Self-assembled monolayers of 1-alkenes on oxidized platinum surfaces as platforms for immobilized enzymes for biosensing

    NASA Astrophysics Data System (ADS)

    Alonso, Jose Maria; Bielen, Abraham A. M.; Olthuis, Wouter; Kengen, Servé W. M.; Zuilhof, Han; Franssen, Maurice C. R.

    2016-10-01

    Alkene-based self-assembled monolayers grafted on oxidized Pt surfaces were used as a scaffold to covalently immobilize oxidase enzymes, with the aim to develop an amperometric biosensor platform. NH2-terminated organic layers were functionalized with either aldehyde (CHO) or N-hydroxysuccinimide (NHS) ester-derived groups, to provide anchoring points for enzyme immobilization. The functionalized Pt surfaces were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (CA), infrared reflection absorption spectroscopy (IRRAS) and atomic force microscopy (AFM). Glucose oxidase (GOX) was covalently attached to the functionalized Pt electrodes, either with or without additional glutaraldehyde crosslinking. The responses of the acquired sensors to glucose concentrations ranging from 0.5 to 100 mM were monitored by chronoamperometry. Furthermore, lactate oxidase (LOX) and human hydroxyacid oxidase (HAOX) were successfully immobilized onto the PtOx surface platform. The performance of the resulting lactate sensors was investigated for lactate concentrations ranging from 0.05 to 20 mM. The successful attachment of active enzymes (GOX, LOX and HAOX) on Pt electrodes demonstrates that covalently functionalized PtOx surfaces provide a universal platform for the development of oxidase enzyme-based sensors.

  15. Photo-catalysis water splitting by platinum-loaded zeolite A

    NASA Astrophysics Data System (ADS)

    Cheng, Jing; Gao, Changda; Jing, Ming; Lu, Jian; Lin, Hui; Han, Zhaoxia; Ni, Zhengji; Zhang, Dawei

    2018-05-01

    Under the λ≥420 nm visible light illumination, the Pt4+ ions exchanged LTA zeolite powders without further heat-treatment presented H2 evolution at a rate of 5 μl/(15 mg·h) via photocatalysis water splitting. It was shown that the efficiency of H2 generation by the Pt4+ exchanged LTA zeolite powders without further heat-treatment was higher than the counterpart of the samples with heat treatment. In addition, the samples with lower Pt loading concentration showed higher H2 evolution rate than those of higher Pt loading did. The higher H2 evolution efficiency can be attributed to the effective isolation of water molecules and Pt at the atomic or the few atom ‘cluster’ scale by LTA zeolite’s periodical porous structure, which ensures a more efficient electron transfer efficiency for H2 evolution. However, after extra heat treatment, the Pt atoms reduced from Pt4+ in LTA zeolite’s cavities may tend to migrate to the surface and then form nano-particles, which led to the lower H2 evolution efficiency.

  16. Platinum-catalyzed hydrolysis etching of SiC in water: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Van Bui, Pho; Toh, Daisetsu; Isohashi, Ai; Matsuyama, Satoshi; Inagaki, Kouji; Sano, Yasuhisa; Yamauchi, Kazuto; Morikawa, Yoshitada

    2018-05-01

    A comprehensive study of the physicochemical interactions and the reaction mechanism of SiC etching with water by Pt catalysts can reveal key details about the surface treatment and catalytic phenomena at interfaces. Therefore, density functional theory simulations were performed to study the kinetics of Pt-assisted water dissociation and breaking of a Si–C bond compared to the HF-assisted mechanism. These calculations carefully considered the elastic and chemical interaction energies at the Pt–SiC interface, activation barriers of Si–C bond dissociation, and the catalytic role of Pt. It was found that the Pt-catalyzed etching of SiC in water is initiated via hydrolysis reactions that break the topmost Si–C bonds. The activation barrier strongly depends on the elastic and chemical interactions. However, chemical interactions are a dominant factor and mainly contribute to the lowering of the activation barrier, resulting in an increased rate of reaction.

  17. H2O on Pt(111): structure and stability of the first wetting layer

    NASA Astrophysics Data System (ADS)

    Standop, Sebastian; Morgenstern, Markus; Michely, Thomas; Busse, Carsten

    2012-03-01

    We study the structure and stability of the first water layer on Pt(111) by variable-temperature scanning tunneling microscopy. We find that a high Pt step edge density considerably increases the long-range order of the equilibrium \\sqrt{37}\\times \\sqrt{37}{R25.3}°- and \\sqrt{39}\\times \\sqrt{39}{R16.1}°-superstructures, presumably due to the capability of step edges to trap residual adsorbates from the surface. Passivating the step edges with CO or preparing a flat metal surface leads to the formation of disordered structures, which still show the same structural elements as the ordered ones. Coadsorption of Xe and CO proves that the water layer covers the metal surface completely. Moreover, we determine the two-dimensional crystal structure of Xe on top of the chemisorbed water layer which exhibits an Xe-Xe distance close to the one in bulk Xe and a rotation angle of 90° between the close-packed directions of Xe and the close-packed directions of the underlying water layer. CO is shown to replace H2O on the Pt(111) surface as has been deduced previously. In addition, we demonstrate that tunneling of electrons into the antibonding state or from the bonding state of H2O leads to dissociation of the molecules and a corresponding reordering of the adlayer into a \\sqrt{3}\\times \\sqrt{3}{R30}°-structure. Finally, a so far not understood restructuring of the adlayer by an increased tunneling current has been observed.

  18. Reaction mechanism of WGS and PROX reactions catalyzed by Pt/oxide catalysts revealed by an FeO(111)/Pt(111) inverse model catalyst.

    PubMed

    Xu, Lingshun; Wu, Zongfang; Jin, Yuekang; Ma, Yunsheng; Huang, Weixin

    2013-08-07

    We have employed XPS and TDS to study the adsorption and surface reactions of H2O, CO and HCOOH on an FeO(111)/Pt(111) inverse model catalyst. The FeO(111)-Pt(111) interface of the FeO(111)/Pt(111) inverse model catalyst exposes coordination-unsaturated Fe(II) cations (Fe(II)CUS) and the Fe(II)CUS cations are capable of modifying the reactivity of neighbouring Pt sites. Water facilely dissociates on the Fe(II)CUS cations at the FeO(111)-Pt(111) interface to form hydroxyls that react to form both water and H2 upon heating. Hydroxyls on the Fe(II)CUS cations can react with CO(a) on the neighbouring Pt(111) sites to produce CO2 at low temperatures. Hydroxyls act as the co-catalyst in the CO oxidation by hydroxyls to CO2 (PROX reaction), while they act as one of the reactants in the CO oxidation by hydroxyls to CO2 and H2 (WGS reaction), and the recombinative reaction of hydroxyls to produce H2 is the rate-limiting step in the WGS reaction. A comparison of reaction behaviors between the interfacial CO(a) + OH reaction and the formate decomposition reaction suggest that formate is the likely surface intermediate of the CO(a) + OH reaction. These results provide some solid experimental evidence for the associative reaction mechanism of WGS and PROX reactions catalyzed by Pt/oxide catalysts.

  19. Surface restructuring behavior of various types of poly(dimethylsiloxane) in water detected by SFG.

    PubMed

    Chen, Chunyan; Wang, Jie; Chen, Zhan

    2004-11-09

    Surface structures of several different poly(dimethylsiloxane) (PDMS) materials, tetraethoxysilane-cured hydroxy-terminated PDMS (TEOS-PDMS), platinum-cured vinyl-terminated PDMS (Pt-PDMS), platinum-cured vinyl-terminated poly(diphenylsiloxane)-co-poly(dimethylsiloxane) (PDPS-co-PDMS), and PDMS-co-polystyrene (PDMS-co-PS) copolymer in air and water have been investigated by sum frequency generation (SFG) vibrational spectroscopy. The SFG spectra collected from all PDMS surfaces in both air and water are dominated by methyl group stretches, indicating that all the surfaces are mainly covered by methyl groups. Other than surface-dominating methyl groups, some -Si-CH2-CH2- moieties on the Pt-PDMS surface have also been detected in air, which are present at cross-linking points. Information about the average orientation angle and angle distribution of the methyl groups on the PDMS surface has been evaluated. Surface restructuring of the methyl groups has been observed for all PDMS surfaces in water. Upon contacting water, the methyl groups on all PDMS surfaces tilt more toward the surface. The detailed restructuring behaviors of several PDMS surfaces in water and the effects of molecular weight on restructuring behaviors have been investigated. For comparison, in addition to air and water, surface structures of PDMS materials mentioned above in a nonpolar solvent, FC-75, have also been studied. By comparing the different response of phenyl groups to water on both PDPS-co-PDMS and PS-co-PDMS surfaces, we have demonstrated how the restructuring behaviors of surface phenyl groups are affected by the structural flexibility of the molecular chains where they are attached.

  20. Mechanism of oxygen reduction reaction on Pt(111) in alkaline solution: Importance of chemisorbed water on surface

    DOE PAGES

    Liu, Shizhong; White, Michael G.; Liu, Ping

    2016-06-30

    Here, we report a detailed mechanistic study of the oxygen reduction reaction (ORR) on Pt(111) in alkaline solution, combining density functional theory and kinetic Monte Carlo simulations. A complex reaction network including four possible pathways via either 2e – or 4e – transfer is established and is able to reproduce the experimental measured polarization curve at both low- and high-potential regions. Our results show that it is essential to account for solvation by water and the dynamic coverage of *OH to describe the reaction kinetics well. In addition, a chemisorbed water (*H 2O)-mediated mechanism including 4e – transfers is identified,more » where the reduction steps via *H 2O on the surface are potential-independent and only the final removal of *OH from the surface in the form of OH –(aq) contributes to the current. For the ORR in alkaline solutions, such a mechanism is more competitive than the associative and dissociative mechanisms typically used to describe the ORR in acid solution. Finally, *OH and **O 2 intermediates are found to be critically important for tuning the ORR activity of Pt in alkaline solution. To enhance the activity, the binding of Pt should be tuned in such a way that *OH binding is weak enough to release more surface sites under working conditions, while **O 2 binding is strong enough to enable the ORR via the 4e – transfer mechanism.« less

  1. Metal modified tungsten carbide (WC) for catalytic and electrocatalytic applications

    NASA Astrophysics Data System (ADS)

    Mellinger, Zachary J.

    One of the major challenges in the commercialization of proton exchange membrane fuel cells (PEMFC) is the cost, and low CO tolerance of the anode electrocatalyst material. The anode typically requires a high loading of precious metal electrocatalyst (Pt or Pt--Ru) to obtain a useful amount of electrical energy from the electrooxidation of methanol (CH3OH) or ethanol (C2H5OH). The complete electro--oxidation of methanol or ethanol on these catalysts produces strongly adsorbed CO on the surface, which reduces the activity of the Pt or Pt--Ru catalysts. Another major disadvantage of these electrocatalyst components is the scarcity and consequently high price of both Pt and Ru. Tungsten monocarbide (WC) has shown similar catalytic properties to Pt, leading to the utilization of WC and metal modified WC as replacements to Pt and Pt--Ru. In this thesis we investigated WC and Pt--modified WC as a potentially more CO--tolerant electrocatalysts as compared to pure Pt. These catalysts would reduce or remove the high loading of Pt used industrially. The binding energy of CO, estimated using temperature programmed desorption, is weaker on WC and Pt/WC than on Pt, suggesting that it should be easier to oxidize CO on WC and Pt/WC. This hypothesis was verified using cyclic voltammetry to compare the electro--oxidation of CO on WC, Pt/WC, and Pt supported on carbon substrates, which showed a lower voltage for the onset of oxidation of CO on WC and Pt/WC than on Pt. After observing these improved properties on the Pt/WC catalysts, we decided to expand our studies to investigate Pd--modified WC as Pd is less expensive than Pt and has shown more ideal properties for alcohol electrocatalysis in alkaline media. Pd/WC showed a lower binding energy of CO than both its parent metal Pd as well as Pt. Then, density functional theory (DFT) calculations were performed to determine how the presence of Pd affected the bonding of methanol and ethanol on the WC surface. The DFT studies showed that the binding energies for methanol and methoxy as well as ethanol and ethoxy on one monolayer (ML) Pd/WC are more similar to Pd than to WC. This predicts that the ML Pd/WC surface should have catalytic properties more similar to Pd than to WC. Ultra--high vacuum (UHV) experiments were then performed to determine the reaction products and pathways for methanol and ethanol on Pd(111), WC, and Pd/WC surfaces. These studies showed that the WC surface was very active toward the O--H bond cleavage to produce a methoxy intermediate, although WC was also undesirable because it was active for C--O bond scission and less active for the C--H bond scission. Adding Pd on WC enhanced the scission of the C--H bonds of methoxy while removing the C--O bond scission reaction pathway, suggesting a synergistic effect of using Pd/WC as electrocatalysts for methanol and ethanol decomposition. Dissociation of water, which is important for CO tolerance, was also investigated using UHV techniques with the conclusion that both the WC and Pd/WC surfaces dissociated water. The predictions from UHV studies was verified in electrochemical experiments using cyclic voltammetry (CV) and chronoamperometry (CA) measurements of electro--oxidation of methanol and ethanol in an alkaline environment. These experiments showed that Pd/WC was electrochemically active towards methanol and ethanol decomposition and has greater electrochemical stability over time than pure Pd, potentially due to higher CO tolerance for Pd/WC.

  2. In Situ Generation of Two-Dimensional Au–Pt Core–Shell Nanoparticle Assemblies

    PubMed Central

    2010-01-01

    Two-dimensional assemblies of Au–Pt bimetallic nanoparticles are generated in situ on polyethyleneimmine (PEI) silane functionalized silicon and indium tin oxide (ITO) coated glass surfaces. Atomic force microscopy (AFM), UV–Visible spectroscopy, and electrochemical measurements reveal the formation of core–shell structure with Au as core and Pt as shell. The core–shell structure is further supported by comparing with the corresponding data of Au nanoparticle assemblies. Static contact angle measurements with water show an increase in hydrophilic character due to bimetallic nanoparticle generation on different surfaces. It is further observed that these Au–Pt core–shell bimetallic nanoparticle assemblies are catalytically active towards methanol electro-oxidation, which is the key reaction for direct methanol fuel cells (DMFCs). PMID:20651923

  3. Electrochemically assisted localized etching of ZnO single crystals in water using a catalytically active Pt-coated atomic force microscopy probe

    NASA Astrophysics Data System (ADS)

    Shibata, Takayuki; Yamamoto, Kota; Sasano, Junji; Nagai, Moeto

    2017-09-01

    This paper presents a nanofabrication technique based on the electrochemically assisted chemical dissolution of zinc oxide (ZnO) single crystals in water at room temperature using a catalytically active Pt-coated atomic force microscopy (AFM) probe. Fabricated grooves featured depths and widths of several tens and several hundreds of nanometers, respectively. The material removal rate of ZnO was dramatically improved by controlling the formation of hydrogen ions (H+) on the surface of the catalytic Pt-coated probe via oxidation of H2O molecules; this reaction can be enhanced by applying a cathodic potential to an additional Pt-wire working electrode in a three-electrode configuration. Consequently, ZnO can be dissolved chemically in water as a soluble Zn2+ species via a reaction with H+ species present in high concentrations in the immediate vicinity of the AFM tip apex.

  4. High-efficient photo-electron transport channel in SiC constructed by depositing cocatalysts selectively on specific surface sites for visible-light H{sub 2} production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Da; Peng, Yuan; Wang, Qi

    2016-04-18

    Control cocatalyst location on a metal-free semiconductor to promote surface charge transfer for decreasing the electron-hole recombination is crucial for enhancing solar energy conversion. Based on the findings that some metals have an affinity for bonding with the specific atoms of polar semiconductors at a heterostructure interface, we herein control Pt deposition selectively on the Si sites of a micro-SiC photocatalyst surface via in-situ photo-depositing. The Pt-Si bond forming on the interface constructs an excellent channel, which is responsible for accelerating photo-electron transfer from SiC to Pt and then reducing water under visible-light. The hydrogen production is enhanced by twomore » orders of magnitude higher than that of bare SiC, and 2.5 times higher than that of random-depositing nano-Pt with the same loading amount.« less

  5. Water co-catalyzed selective dehydrogenation of methanol to formaldehyde and hydrogen

    NASA Astrophysics Data System (ADS)

    Shan, Junjun; Lucci, Felicia R.; Liu, Jilei; El-Soda, Mostafa; Marcinkowski, Matthew D.; Allard, Lawrence F.; Sykes, E. Charles H.; Flytzani-Stephanopoulos, Maria

    2016-08-01

    The non-oxidative dehydrogenation of methanol to formaldehyde is considered a promising method to produce formaldehyde and clean hydrogen gas. Although Cu-based catalysts have an excellent catalytic activity in the oxidative dehydrogenation of methanol, metallic Cu is commonly believed to be unreactive for the dehydrogenation of methanol in the absence of oxygen adatoms or oxidized copper. Herein we show that metallic Cu can catalyze the dehydrogenation of methanol in the absence of oxygen adatoms by using water as a co-catalyst both under realistic reaction conditions using silica-supported PtCu nanoparticles in a flow reactor system at temperatures below 250 °C, and in ultra-high vacuum using model PtCu(111) catalysts. Adding small amounts of isolated Pt atoms into the Cu surface to form PtCu single atom alloys (SAAs) greatly enhances the dehydrogenation activity of Cu. Under the same reaction conditions, the yields of formaldehyde from PtCu SAA nanoparticles are more than one order of magnitude higher than on the Cu nanoparticles, indicating a significant promotional effect of individual, isolated Pt atoms. Moreover, this study also shows the unexpected role of water in the activation of methanol. Water, a catalyst for methanol dehydrogenation at low temperatures, becomes a reactant in the methanol steam reforming reactions only at higher temperatures over the same metal catalyst.

  6. Revealing the Dynamics of Platinum Nanoparticle Catalysts on Carbon in Oxygen and Water Using Environmental TEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Langli; Engelhard, Mark H.; Shao, Yuyan

    Deactivation of supported metal nanoparticle catalysts, especially in relevant gas condition, is a critical challenge for many technological applications, including heterogeneous catalysis, electrocatalysis, fuel cells, biomedical imaging and drug delivery. It has been far more commonly realized that deactivation of catalysts stems from surface area loss due to particle coarsening, however, for which the mechanism remains largely unclear. Herein, we use aberration corrected environmental transmission electron microscopy, at atomic level, to in-situ observe the dynamics of Pt catalyst in fuel cell relevant gas conditions. Particles migration and coalescence is observed to be the dominant coarsening process. As compared with themore » case of H2O, O2 promotes Pt nanoparticle migration on carbon surface. Surprisingly, coating Pt/carbon with a nanofilm of electrolyte (Nafion ionomer) leads to a faster migration of Pt in H2O than in O2, a consequence of Nafion-carbon interface water “lubrication” effect. Atomically, the particles coalescence is featured by re-orientation of particles towards lattice matching, a process driven by orientation dependent van der Waals force. These results provide direct observations of dynamics of metal nanoparticles at critical surface/interface under relevant conditions and yield significant insights into the multi-phase interaction in related technological processes.« less

  7. AFM Study of Charge Transfer Between Metals Due to the Oxygen Redox Couple in Water

    NASA Astrophysics Data System (ADS)

    Trombley, Jeremy; Panthani, Tessie; Sankaran, Mohan; Angus, John; Kash, Kathleen

    2010-03-01

    The oxygen redox couple in an adsorbed water film can pin the Fermi level at the surfaces of diamond, GaN and ZnO.footnotetextV. Chakrapani, C. Pendyala, K. Kash, A. B. Anderson, M. K. Sunkara and J. C. Angus, J. Am. Chem. Soc. 130 (2008) 12944-12952, and ref. 6 therein. We report here preliminary observations of the same phenomenon at metal surfaces. A Pt-coated atomic force microscope (AFM) tip was used to take force-distance measurements on Au, Ag, and Pt surfaces placed in pH-controlled water. The work functions of these surfaces vary over ˜2eV and span the electrochemical potential range of the oxygen redox couple, which varies with pH according to the Nernst equation. Adjusting the pH of the water from 4 to 12 allowed us to change the redox potential energy from -5.42eV to -4.95eV, changing the surface charge and the associated screening charge and modulating the pull-off force. This work has relevance to AFM of many materials in air, and to contact electrification, mechanical friction, and nanoscale corona discharges.

  8. Stability investigation of a high number density Pt1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM.

    PubMed

    Duan, Sibin; Wang, Rongming; Liu, Jingyue

    2018-05-18

    Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt 1 /Fe 2 O 3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 °C under various gas environments that are relevant to CO oxidation, water-gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe 2 O 3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H 2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H 2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H 2 O molecules to the CO or H 2 significantly accelerates the sintering of the Fe 2 O 3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal-support interaction.

  9. Low Dielectric Permittivity of Water at the Membrane Interface: Effect on the Energy Coupling Mechanism in Biological Membranes

    PubMed Central

    Cherepanov, Dmitry A.; Feniouk, Boris A.; Junge, Wolfgang; Mulkidjanian, Armen Y.

    2003-01-01

    Protonmotive force (the transmembrane difference in electrochemical potential of protons, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\Delta}{\\tilde {{\\mu}}}_{{\\mathrm{H}}^{+}}\\end{equation*}\\end{document}) drives ATP synthesis in bacteria, mitochondria, and chloroplasts. It has remained unsettled whether the entropic (chemical) component of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\Delta}{\\tilde {{\\mu}}}_{{\\mathrm{H}}^{+}}\\end{equation*}\\end{document} relates to the difference in the proton activity between two bulk water phases (ΔpHB) or between two membrane surfaces (ΔpHS). To scrutinize whether ΔpHS can deviate from ΔpHB, we modeled the behavior of protons at the membrane/water interface. We made use of the surprisingly low dielectric permittivity of interfacial water as determined by O. Teschke, G. Ceotto, and E. F. de Souza (O. Teschke, G. Ceotto, and E. F. de Sousa, 2001, Phys. Rev. E. 64:011605). Electrostatic calculations revealed a potential barrier in the water phase some 0.5–1 nm away from the membrane surface. The barrier was higher for monovalent anions moving toward the surface (0.2–0.3 eV) than for monovalent cations (0.1–0.15 eV). By solving the Smoluchowski equation for protons spreading away from proton “pumps” at the surface, we found that the barrier could cause an elevation of the proton concentration at the interface. Taking typical values for the density of proton pumps and for their turnover rate, we calculated that a potential barrier of 0.12 eV yielded a steady-state pHS of ∼6.0; the value of pHS was independent of pH in the bulk water phase under neutral and alkaline conditions. These results provide a rationale to solve the long-lasting problem of the seemingly insufficient protonmotive force in mesophilic and alkaliphilic bacteria. PMID:12885673

  10. Platinum-nanoparticle-supported core-shell polymer nanospheres with unexpected water stability and facile further modification

    NASA Astrophysics Data System (ADS)

    Yuan, Conghui; Xu, Yiting; Luo, Weiang; Zeng, Birong; Qiu, Wuhui; Liu, Jie; Huang, Huiling; Dai, Lizong

    2012-05-01

    Core-shell nanospheres (CSNSs) with hydrophobic cores and hydrophilic shells were fabricated via a simple mini-emulsion polymerization for the stabilization of platinum nanoparticles (Pt-NPs). The CSNSs showed extremely high loading capacity of Pt-NPs (the largest loading amount of the Pt-NPs was about 49.2 wt%). Importantly, the Pt-NPs/CSNSs nanocomposites had unexpected stability in aqueous solution. DLS results revealed that the CSNSs loaded with Pt-NPs exhibited almost no aggregation after standing for a long time . However, the Pt-NPs immobilized on the CSNSs were not straitlaced: they could transport and redistribute between CSNSs freely when the environmental temperature was higher than the melting point of the CSNS shell. Owing to their excellent stability in aqueous solution, the surface of the Pt-NPs/CSNSs nanocomposites could be further decorated easily. For example, polyaniline (PANI)-coated Pt-NPs/CSNSs, nickel (Ni)-coated Pt-NPs/CSNSs and PANI/Pt-NPs dual-layer hollow nanospheres were facilely fabricated from the Pt-NPs/CSNS nanocomposites.

  11. Structural requirements and reaction pathways in dimethyl ether combustion catalyzed by supported Pt clusters.

    PubMed

    Ishikawa, Akio; Neurock, Matthew; Iglesia, Enrique

    2007-10-31

    The identity and reversibility of the elementary steps required for catalytic combustion of dimethyl ether (DME) on Pt clusters were determined by combining isotopic and kinetic analyses with density functional theory estimates of reaction energies and activation barriers to probe the lowest energy paths. Reaction rates are limited by C-H bond activation in DME molecules adsorbed on surfaces of Pt clusters containing chemisorbed oxygen atoms at near-saturation coverages. Reaction energies and activation barriers for C-H bond activation in DME to form methoxymethyl and hydroxyl surface intermediates show that this step is more favorable than the activation of C-O bonds to form two methoxides, consistent with measured rates and kinetic isotope effects. This kinetic preference is driven by the greater stability of the CH3OCH2* and OH* intermediates relative to chemisorbed methoxides. Experimental activation barriers on Pt clusters agree with density functional theory (DFT)-derived barriers on oxygen-covered Pt(111). Measured DME turnover rates increased with increasing DME pressure, but decreased as the O2 pressure increased, because vacancies (*) on Pt surfaces nearly saturated with chemisorbed oxygen are required for DME chemisorption. DFT calculations show that although these surface vacancies are required, higher oxygen coverages lead to lower C-H activation barriers, because the basicity of oxygen adatoms increases with coverage and they become more effective in hydrogen abstraction from DME. Water inhibits reaction rates via quasi-equilibrated adsorption on vacancy sites, consistent with DFT results indicating that water binds more strongly than DME on vacancies. These conclusions are consistent with the measured kinetic response of combustion rates to DME, O2, and H2O, with H/D kinetic isotope effects, and with the absence of isotopic scrambling in reactants containing isotopic mixtures of 18O2-16O2 or 12CH3O12CH3-13CH3O13CH3. Turnover rates increased with Pt cluster size, because small clusters, with more coordinatively unsaturated surface atoms, bind oxygen atoms more strongly than larger clusters and exhibit lower steady-state vacancy concentrations and a consequently smaller number of adsorbed DME intermediates involved in kinetically relevant steps. These effects of cluster size and metal-oxygen bond energies on reactivity are ubiquitous in oxidation reactions requiring vacancies on surfaces nearly saturated with intermediates derived from O2.

  12. High Pressure Cosmochemistry of Major Planetary Interiors: Laboratory Studies of the Water-rich Region of the System Ammonia-water

    NASA Technical Reports Server (NTRS)

    Nicol, M.; Johnson, M.; Koumvakalis, A. S.

    1985-01-01

    The behavior of gas-ice mixtures in major planets at very high pressures was studied. Some relevant pressure-temperature-composition (P-T-X) regions of the hydrogen (H2)-helium (He)-water (H2O-ammonia (NH3)-methane (CH4) phase diagram were determined. The studies, and theoretical model, of the relevant phases, are needed to interpret the compositions of ice-gas systems at conditions of planetary interest. The compositions and structures of a multiphase, multicomponent system at very high pressures care characterized, and the goal is to characterize this system over a wide range of low and high temperatures. The NH3-H2O compositions that are relevant to planetary problems yet are easy to prepare were applied. The P-T surface of water was examined and the corresponding surface for NH3 was determined. The T-X diagram of ammonia-water at atmospheric pressure was studied and two water-rich phases were found, NH3-2H2O (ammonia dihydrate), which melts incongruently, and NH3.H2O (ammonia monohydrate), which is nonstoichiometric and melts at a higher temperature than the dihydrate. It is suggested that a P-T surface at approximately the monohydrate composition and the P-X surface at room temperature is determined.

  13. Methanol electro-oxidation on platinum modified tungsten carbides in direct methanol fuel cells: a DFT study.

    PubMed

    Sheng, Tian; Lin, Xiao; Chen, Zhao-Yang; Hu, P; Sun, Shi-Gang; Chu, You-Qun; Ma, Chun-An; Lin, Wen-Feng

    2015-10-14

    In exploration of low-cost electrocatalysts for direct methanol fuel cells (DMFCs), Pt modified tungsten carbide (WC) materials are found to be great potential candidates for decreasing Pt usage whilst exhibiting satisfactory reactivity. In this work, the mechanisms, onset potentials and activity for electrooxidation of methanol were studied on a series of Pt-modified WC catalysts where the bare W-terminated WC(0001) substrate was employed. In the surface energy calculations of a series of Pt-modified WC models, we found that the feasible structures are mono- and bi-layer Pt-modified WCs. The tri-layer Pt-modified WC model is not thermodynamically stable where the top layer Pt atoms tend to accumulate and form particles or clusters rather than being dispersed as a layer. We further calculated the mechanisms of methanol oxidation on the feasible models via methanol dehydrogenation to CO involving C-H and O-H bonds dissociating subsequently, and further CO oxidation with the C-O bond association. The onset potentials for the oxidation reactions over the Pt-modified WC catalysts were determined thermodynamically by water dissociation to surface OH* species. The activities of these Pt-modified WC catalysts were estimated from the calculated kinetic data. It has been found that the bi-layer Pt-modified WC catalysts may provide a good reactivity and an onset oxidation potential comparable to pure Pt and serve as promising electrocatalysts for DMFCs with a significant decrease in Pt usage.

  14. Energetics of formic acid conversion to adsorbed formates on Pt(111) by transient calorimetry.

    PubMed

    Silbaugh, Trent L; Karp, Eric M; Campbell, Charles T

    2014-03-12

    Carboxylates adsorbed on solid surfaces are important in many technological applications, ranging from heterogeneous catalysis and surface organo-functionalization to medical implants. We report here the first experimentally determined enthalpy of formation of any surface bound carboxylate on any surface, formate on Pt(111). This was accomplished by studying the dissociative adsorption of formic acid on oxygen-presaturated (O-sat) Pt(111) to make adsorbed monodentate and bidentate formates using single-crystal adsorption calorimetry. The integral heat of molecular adsorption of formic acid on clean Pt(111) at 100 K is 62.5 kJ/mol at 0.25 monolayer (ML). On O-sat Pt(111), the integral heat of the dissociative adsorption of formic acid to make monodentate formate (HCOOmon,ad) plus the water-hydroxyl complex ((H2O-OH)ad) was found to be 76 kJ/mol at 3/8 ML and 100-150 K. Similarly, its integral heat of dissociative adsorption to make bidentate formate (HCOObi,ad) plus (H2O-OH)ad was 106 kJ/mol at 3/8 ML and 150 K. These heats give the standard enthalpies of formation of adsorbed monodentate and bidentate formate on Pt(111) to be -354 ± 5 and -384 ± 5 kJ/mol, respectively, and their net bond enthalpies to the Pt(111) surface to be 224 ± 13 and 254 ± 13 kJ/mol, respectively. Coverage-dependent enthalpies of formation were used to estimate the enthalpy of the elementary reaction HCOOHad → HCOObi,ad + Had to be -4 kJ/mol at zero coverage and +24 kJ/mol at 3/8 ML.

  15. Application of green chemistry techniques to prepare electrocatalysts for direct methanol fuel cells.

    PubMed

    Shimizu, Kenichi; Wang, Joanna S; Wai, Chien M

    2010-03-25

    A series of green techniques for synthesizing carbon nanotube-supported platinum nanoparticles and their high electrocatalytic activity toward methanol fuel cell applications are reported. The techniques utilize either the supercritical fluid carbon dioxide or water as a medium for depositing platinum nanoparticles on surfaces of multiwalled or single-walled carbon nanotubes. The catalytic properties of the carbon nanotubes-supported Pt nanoparticle catalysts prepared by four different techniques are compared for anodic oxidation of methanol and cathodic reduction of oxygen using cyclic voltammetry. One technique using galvanic exchange of Pt(2+) in water with zerovalent iron present on the surfaces of as-grown single-walled carbon nanotubes produces a Pt catalyst that shows an unusually high catalytic activity for reduction of oxygen but a negligible activity for oxidation of methanol. This fuel-selective catalyst may have a unique application as a cathode catalyst in methanol fuel cells to alleviate the problems caused by crossover of methanol through the polymer electrolyte membrane.

  16. Chemisorption on the (111) and (100) faces of platinum-tin bimetallic surfaces

    NASA Astrophysics Data System (ADS)

    Panja, Chameli

    2000-10-01

    Chemisorption and reaction of CH3OH (methanol), C2H 5OH (ethanol), and H2O (water) on Pt(111) and Sn/Pt(111) alloys, and CO (carbon monoxide), NO (nitric oxide), and C2D 2 (acetylene) on Pt(100) and Sn/Pt(100) have been studied under ultrahigh vacuum conditions using temperature programmed desorption (TPD), Auger electron spectroscopy (AES), low energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS) and high resolution electron energy loss spectroscopy (HREELS). Small organic molecules like CH3OH and C2H5OH are potential fuels for low-temperature hydrocarbon fuel cells and it is important to understand the role of tin as a promoter in electrooxidation of these molecules. Also, the catalytic reactions of CO, NO and C2H2 are of considerable interest for improving of automotive exhaust-gas catalytic converters and other heterogeneous catalysts. Ordered Pt-Sn alloys can be prepared by vapor deposition of Sn on Pt surfaces. A (2 x 2) structure (theta Sn = 0.25) and a (√3x√/3)R30° structure are formed on Pt(111), and a c(2 x 2) and (3√2x√2)R45° structures with theta Sn = 0.5 and 0.67, respectively, are formed on Pt(100). CH3OH, C2H5OH and H2O are all weakly bound and reversibly adsorbed on Pt(111) and both of the Sn/Pt(111) alloys under UHV conditions. Alloying Sn into the Pt(111) surface weakens the adsorption of these molecules from that on Pt(111) and leads to a lower reactivity as the surface concentration of Sn increases. TPD measurements reveal a reduction in the saturation coverage and chemisorption bond energy for CO, NO and C2HL chemisorption, on the two Sn/Pt(100)alloys compared to that on Pt(100). CO chemisorption is completely reversible on these two Sn/Pt(100) alloys. However, NO is partially reduced to form N2O on these alloys, so that N2O along with NO and O2 desorption was observed. We propose that dinitrosyl species, i.e., two NO molecules bound to one Pt atom, are intermediates in N2O formation from adsorbed NO on these Sn/Pt(100) surface alloys. Irreversible dissociative adsorption of acetylene was strongly suppressed (˜80--90%) on both of the two Sn/Pt(100) alloys. About 15% of the adsorbed acetylene monolayer was converted to benzene and desorbed during TPD on the (3√2x√2)R45°Sn/Pt(100) alloy, but no benzene was desorbed from the c(2x2) alloy.

  17. Proton transfer to charged platinum electrodes. A molecular dynamics trajectory study.

    PubMed

    Wilhelm, Florian; Schmickler, Wolfgang; Spohr, Eckhard

    2010-05-05

    A recently developed empirical valence bond (EVB) model for proton transfer on Pt(111) electrodes (Wilhelm et al 2008 J. Phys. Chem. C 112 10814) has been applied in molecular dynamics (MD) simulations of a water film in contact with a charged Pt surface. A total of seven negative surface charge densities σ between -7.5 and -18.9 µC cm(-2) were investigated. For each value of σ, between 30 and 84 initial conditions of a solvated proton within a water slab were sampled, and the trajectories were integrated until discharge of a proton occurred on the charged surfaces. We have calculated the mean rates for discharge and for adsorption of solvated protons within the adsorbed water layer in contact with the metal electrode as a function of surface charge density. For the less negative values of σ we observe a Tafel-like exponential increase of discharge rate with decreasing σ. At the more negative values this exponential increase levels off and the discharge process is apparently transport limited. Mechanistically, the Tafel regime corresponds to a stepwise proton transfer: first, a proton is transferred from the bulk into the contact water layer, which is followed by transfer of a proton to the charged surface and concomitant discharge. At the more negative surface charge densities the proton transfer into the contact water layer and the transfer of another proton to the surface and its discharge occur almost simultaneously.

  18. Poly (vinyl alcohol)/gum karaya electrospun plasma treated membrane for the removal of nanoparticles (Au, Ag, Pt, CuO and Fe3O4) from aqueous solutions.

    PubMed

    Padil, Vinod Vellora Thekkae; Černík, Miroslav

    2015-04-28

    In the present work, nanofibre membranes composed of polyvinyl alcohol (PVA) and a natural gum karaya (GK) hydrocolloid were prepared using electrospinning. The electrospun membranes of PVA/GK were cross-linked with heat treatment and later methane plasma was used to obtain a hydrophobic membrane. The morphology, characterization and adsorption ability of P-NFM was assessed using scanning electron microscopy, UV-vis spectroscopy, ATR-FTIR techniques, water contact angle and ICP-MS analytical methods. The membrane was employed for the extraction of nanoparticles (Ag, Au, Pt, CuO and Fe3O4) from water. The nanoparticle extraction kinetic and adsorption isotherm perform the pseudo-second-order model and Langmuir isotherm model, respectively. The adsorption capacities of the membrane for the removal of NPs from water diverge in the order Pt>Au>Ag>CuO>Fe3O4. The high adsorption efficiency for the removal of NPs from water was compared with an untreated membrane. Physisorption, functional group interactions, complexation reactions between metal/metal oxide nanoparticles with various functional groups present in NFM and modified surface properties such as the balance of hydrophilicity/hydrophobicity, surface free energy, and the high surface area of the plasma treated membrane were possible mechanisms of NPs adsorption onto NFM. The regeneration and reusability were tested in five consecutive adsorption/desorption cycles. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Characterizing water-metal interfaces and machine learning potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Ryczko, Kevin

    In this thesis, we first discuss the fundamentals of ab initio electronic structure theory and density functional theory (DFT). We also discuss statistics related to computing thermodynamic averages of molecular dynamics (MD). We then use this theory to analyze and compare the structural, dynamical, and electronic properties of liquid water next to prototypical metals including platinum, graphite, and graphene. Our results are built on Born-Oppenheimer molecular dynamics (BOMD) generated using density functional theory (DFT) which explicitly include van der Waals (vdW) interactions within a first principles approach. All calculations reported use large simulation cells, allowing for an accurate treatment of the water-electrode interfaces. We have included vdW interactions through the use of the optB86b-vdW exchange correlation functional. Comparisons with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional are also shown. We find an initial peak, due to chemisorption, in the density profile of the liquid water-Pt interface not seen in the liquid water-graphite interface, liquid watergraphene interface, nor interfaces studied previously. To further investigate this chemisorption peak, we also report differences in the electronic structure of single water molecules on both Pt and graphite surfaces. We find that a covalent bond forms between the single water molecule and the platinum surface, but not between the single water molecule and the graphite surface. We also discuss the effects that defects and dopants in the graphite and graphene surfaces have on the structure and dynamics of liquid water. Lastly, we introduce artificial neural networks (ANNs), and demonstrate how they can be used to machine learn electronic structure calculations. As a proof of principle, we show the success of an ANN potential energy surfaces for a dimer molecule with a Lennard-Jones potential.

  20. SFG study of the ethanol in an acidic medium--Pt(110) interface: effects of the alcohol concentration.

    PubMed

    Gomes, Janaina F; Busson, Bertrand; Tadjeddine, Abderrahmane

    2006-03-23

    Ethanol in an acidic solution-Pt(110) interface was studied by SFG spectroscopy (between 1820 and 2325 cm(-1)) to explore primarily the effects of the alcohol concentration. Stretching bands of H-Pt (ca. 1970 or 2050 cm(-1)) and CO (ca. 1980 and 2040 cm(-1)) species, produced by the ethanol oxidation, were detected during the adsorption and oxidation of 0-1 mol L(-1) ethanol in a 0.1 mol L(-1) HClO(4) solution on the electrode surface. Hydrogen and CO coadsorb stably on Pt(110) between 0.05 and 0.15 V in ethanol-containing solutions. In this potential range, the blue shift of the hydrogen resonance (ca. 80 cm(-1)) reveals a weakening of the hydrogen bonding between adsorbed hydrogen and water molecules in the double layer. After the hydrogen desorption (0.15 V), the formation of compact CO islands, depending on the ethanol concentration, lifts the Pt(110) surface reconstruction. In ethanol-free solution, the surface remains reconstructed. The lower-frequency CO band is assigned to the CO species adsorbed on (1 x 2) reconstructed Pt(110) domains, having smaller local coverages, while the higher-frequency CO band is attributed to the close-packed CO species adsorbed on (1 x 1) patches. The reaction pathway forming CO(2) is less favored with increasing ethanol concentration.

  1. Detecting decompositions of sulfur hexafluoride using reduced graphene oxide decorated with Pt nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Dachang; Tang, Ju; Zhang, Xiaoxing; Fang, Jiani; Li, Yi; Zhuo, Ran

    2018-05-01

    The resistance-typed gas sensing material of Pt nanoparticles (PtNPs) decorated reduced graphene oxide (RGO) synthesized by one-step chemical reduction for the detection of four types of SF6 decompositions was explored. The PtNPs disperse uniformly on RGO with particle size near 2–4 nm and a small number of particles are larger than 10 nm. Gas sensing tests suggest that the introduction of PtNPs increases the response to SO2, SOF2 and H2S compared to pure RGO and PtNPs-RGO experiences resistance reducing in SO2 and SOF2 while presenting the opposite case in H2S. Elevating the temperature enhances the recovery properties to SO2 and H2S but lowers the sensitivity. The sensing mechanism for Pt-RGO in low oxygen and water environment depends mainly on the charge transfer between gas and adsorbent and the solvent on material surface. The work provides experimental investigation of Pt-RGO to detect SF6 decompositions.

  2. Decorating CoP and Pt Nanoparticles on Graphitic Carbon Nitride Nanosheets to Promote Overall Water Splitting by Conjugated Polymers.

    PubMed

    Pan, Zhiming; Zheng, Yun; Guo, Fangsong; Niu, Pingping; Wang, Xinchen

    2017-01-10

    The splitting of water into H 2 and O 2 using solar energy is one of the key steps in artificial photosynthesis for the future production of renewable energy. Here, we show the first use of CoP and Pt nanoparticles as dual co-catalysts to modify graphitic carbon nitride (g-C 3 N 4 ) polymer to achieve overall water splitting under visible light irradiation. Our findings demonstrate that loading dual co-catalysts on delaminated g-C 3 N 4 imparts surface redox sites on the g-C 3 N 4 nanosheets that can not only promote catalytic kinetics but also promote charge separation and migration in the soft interface, thus improving the photocatalytic efficiency for overall water splitting. This robust, abundant, and stable photocatalyst based on covalent organic frameworks is demonstrated to hold great promise by forming heterojunctions with CoP and Pt for catalyzing the direct splitting of water into stoichiometric H 2 and O 2 using energy from photons. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Surface structure and chemistry of Pt/Cu/Pt(1 1 1) near surface alloy model catalyst in CO

    NASA Astrophysics Data System (ADS)

    Zeng, Shibi; Nguyen, Luan; Cheng, Fang; Liu, Lacheng; Yu, Ying; Tao, Franklin (Feng)

    2014-11-01

    Near surface alloy (NSA) model catalyst Pt/Cu/Pt(1 1 1) was prepared on Pt(1 1 1) through a controlled vapor deposition of Cu atoms. Different coordination environments of Pt atoms of the topmost Pt layer with the underneath Cu atoms in the subsurface result in different local electronic structures of surface Pt atoms. Surface structure and chemistry of the NAS model catalyst in Torr pressure of CO were studied with high pressure scanning tunneling microscopy (HP-STM) and ambient pressure X-ray photoelectron spectroscopy (AP-XPS). In Torr pressure of CO, the topmost Pt layer of Pt/Cu/Pt(1 1 1) is restructured to thin nanoclusters with size of about 1 nm. Photoemission feature of O 1s of CO on Pt/Cu/Pt(1 1 1) suggests CO adsorbed on both edge and surface of these formed nanoclusters. This surface is active for CO oxidation. Atomic layers of carbon are formed on Pt/Cu/Pt(1 1 1) at 573 K in 2 Torr of CO.

  4. Chlorobenzene Poisoning and Recovery of Platinum-Based Cathodes in Proton Exchange Membrane Fuel Cells

    PubMed Central

    Zhai, Yunfeng; Baturina, Olga; Ramaker, David; Farquhar, Erik; St-Pierre, Jean; Swider-Lyons, Karen

    2015-01-01

    The platinum electrocatalysts found in proton exchange membrane fuel cells are poisoned both reversibly and irreversibly by air pollutants and residual manufacturing contaminants. In this work, the poisoning of a Pt/C PEMFC cathode was probed by a trace of chlorobenzene in the air feed. Chlorobenzene inhibits the oxygen reduction reaction and causes significant cell performance loss. The performance loss is largely restored by neat air operation and potential cycling between 0.08 V and 1.2 V under H2/N2 (anode/cathode). The analysis of emissions, in situ X-ray absorption spectroscopy and electrochemical impedance spectra show the chlorobenzene adsorption/reaction and molecular orientation on Pt surface depend on the electrode potential. At low potentials, chlorobenzene deposits either on top of adsorbed H atoms or on the Pt surface via the benzene ring and is converted to benzene (ca. 0.1 V) or cyclohexane (ca. 0 V) upon Cl removal. At potentials higher than 0.2 V, chlorobenzene binds to Pt via the Cl atom and can be converted to benzene (less than 0.3 V) or desorbed. Cl− is created and remains in the membrane electrode assembly. Cl− binds to the Pt surface much stronger than chlorobenzene, but can slowly be flushed out by liquid water. PMID:26388963

  5. Monocrystalline platinum-nickel branched nanocages with enhanced catalytic performance towards the hydrogen evolution reaction.

    PubMed

    Cao, Zhenming; Li, Huiqi; Zhan, Chenyang; Zhang, Jiawei; Wang, Wei; Xu, Binbin; Lu, Fa; Jiang, Yaqi; Xie, Zhaoxiong; Zheng, Lansun

    2018-03-15

    Single crystalline noble metal nanocages are the most promising candidates for heterogeneous catalysis due to their large specific surface area, well-defined structure and enhanced structural stability. Herein, based on the observation of an unexpected phenomenon that the alloying of Pt and transition metals by co-reduction is more preferential than the formation of pure Pt NCs, we propose a feasible one-pot strategy to synthesize a uniformly epitaxial core-shell Pt-Ni structure with a Ni-rich alloy as the core and a Pt-rich alloy as the shell. The as-prepared Pt-Ni core-shell structures are subsequently etched into monocrystalline Pt-Ni branched nanocages with the wall thickness being 2.8 nm. This unique structure exhibits excellent catalytic performance and stability for the hydrogen evolution reaction (HER) in alkaline solution which is of great significance for the energy-intensive water-alkali and chlor-alkali industry.

  6. Xe adsorption site distributions on Pt(111), Pt(221) and Pt(531)

    NASA Astrophysics Data System (ADS)

    Gellman, Andrew J.; Baker, L.; Holsclaw, B. S.

    2016-04-01

    The ideal structures of the Pt(111), Pt(221) and Pt(531) surfaces expose adsorption sites that can be qualitatively described as terrace sites on Pt(111), both step and terrace sites on Pt(221), and kink sites on Pt(531). The real surface structures of these surfaces can be complicated by imperfections such as misorientation, reconstruction and thermal roughening, all of which will influence their distributions of adsorption sites. Xe adsorption sites on the Pt(111), Pt(221) and Pt(531) surfaces have been probed using both photoemission of adsorbed Xe (PAX) and temperature programmed desorption (TPD) of Xe. Both PAX and Xe TPD are sensitive to the adsorption sites of the Xe and serve as complementary means of assessing the distributions of adsorption sites on these three Pt surfaces. The adsorption of Xe is sufficiently sensitive to detect the presence of residual steps on the Pt(111) surface at a density of 1.5% step atoms per Pt atom. On the Pt(221) surface, PAX and Xe TPD reveal adsorption at both terrace and step sites simultaneously. Although the ideal structure of the Pt(531) surface has no well-defined steps or terraces, Xe adsorption indicates that its adsorption sites are best described as a distribution of both step and kink sites with roughly twice as many steps sites as kinks.

  7. Monodisperse Metal-Organic Framework Nanospheres with Encapsulated Core-Shell Nanoparticles Pt/Au@Pd@{Co2(oba)4(3-bpdh)2}4H2O for the Highly Selective Conversion of CO2 to CO.

    PubMed

    Zhao, Xi; Xu, Haitao; Wang, XiaoXiao; Zheng, Zhizhong; Xu, Zhenliang; Ge, Jianping

    2018-05-02

    A new microporous metal-organic framework (MOF) with formula {Co 2 (oba) 4 (3-bpdh) 2 }4H 2 O [oba = 4,4'-oxybis(benzoic acid); 3-bpdh = N, N'-bis-(1-pyridine-3-yl-ethylidene)-hydrazine] was assembled, and its morphology was found to undergo a microrod-to-nanosphere transformation with temperature variation. Core-shell Au@Pd functional nanoparticles (NPs) were successfully encapsulated in the center of the monodisperse nanospheres, and Pt NPs were well-dispersed and fully immobilized on the surface of Au@Pd@1Co to build the Pt/Au@Pd@1Co composites, which exhibited NPs catalytic activity for the reverse water gas shift reaction. The core-shell Au@Pd NPs in MOF significantly enchanced the CO selectivity of the catalyst, and the Pt NP loading on the surface of the nanosphere afforded a desirable CO 2 conversion.

  8. Surface modifications of chalcopyrite CuInS2 thin films for photochatodes in photoelectrochemical water splitting under sunlight irradiation

    NASA Astrophysics Data System (ADS)

    Gunawan; Haris, A.; Widiyandari, H.; Septina, W.; Ikeda, S.

    2017-02-01

    Copper chalcopyrite semiconductors include a wide range of compounds that are of interest for photoelectrochemical water splitting which enables them to be used as photochatodes for H2 generation. Among them, CuInS2 is one of the most important materials due to its optimum band gap energy for sunlight absorption. In the present study, we investigated the application of CuInS2 fabricated by electrodeposition as photochatodes for water splitting. Thin film of CuInS2 chalcopyrite was formed on Mo-coated glass substrate by stacked electrodeposition of copper and indium followed by sulfurization under H2S flow. The films worked as a H2 liberation electrode under cathodic polarization from a solution containing Na2SO4 after loading Pt deposits on the film. Introduction of an n-type CdS layer by chemical bath deposition on the CuInS2 surface before the Pt loading resulted appreciable improvements of H2 liberation efficiency and a higher photocurrent onset potential. Moreover, the use of In2S3 layer as an alternative n-type layer to the CdS significantly improved the H2 liberation performance: the CuInS2 film modified with In2S3 and Pt deposits worked as an efficient photocathode for photoelectrochemical water splitting.

  9. Structure and energetics of hydrogen-bonded networks of methanol on close packed transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Murphy, Colin J.; Carrasco, Javier; Lawton, Timothy J.; Liriano, Melissa L.; Baber, Ashleigh E.; Lewis, Emily A.; Michaelides, Angelos; Sykes, E. Charles H.

    2014-07-01

    Methanol is a versatile chemical feedstock, fuel source, and energy storage material. Many reactions involving methanol are catalyzed by transition metal surfaces, on which hydrogen-bonded methanol overlayers form. As with water, the structure of these overlayers is expected to depend on a delicate balance of hydrogen bonding and adsorbate-substrate bonding. In contrast to water, however, relatively little is known about the structures methanol overlayers form and how these vary from one substrate to another. To address this issue, herein we analyze the hydrogen bonded networks that methanol forms as a function of coverage on three catalytically important surfaces, Au(111), Cu(111), and Pt(111), using a combination of scanning tunneling microscopy and density functional theory. We investigate the effect of intermolecular interactions, surface coverage, and adsorption energies on molecular assembly and compare the results to more widely studied water networks on the same surfaces. Two main factors are shown to direct the structure of methanol on the surfaces studied: the surface coverage and the competition between the methanol-methanol and methanol-surface interactions. Additionally, we report a new chiral form of buckled hexamer formed by surface bound methanol that maximizes the interactions between methanol monomers by sacrificing interactions with the surface. These results serve as a direct comparison of interaction strength, assembly, and chirality of methanol networks on Au(111), Cu(111), and Pt(111) which are catalytically relevant for methanol oxidation, steam reforming, and direct methanol fuel cells.

  10. Critical assessment of Pt surface energy - An atomistic study

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Seol, Donghyuk; Lee, Byeong-Joo

    2018-04-01

    Despite the fact that surface energy is a fundamental quantity in understanding surface structure of nanoparticle, the results of experimental measurements and theoretical calculations for the surface energy of pure Pt show a wide range of scattering. It is necessary to further ensure the surface energy of Pt to find the equilibrium shape and atomic configuration in Pt bimetallic nanoparticles accurately. In this article, we critically assess and optimize the Pt surface energy using a semi-empirical atomistic approach based on the second nearest-neighbor modified embedded-atom method interatomic potential. That is, the interatomic potential of pure Pt was adjusted in a way that the surface segregation tendency in a wide range of Pt binary alloys is reproduced in accordance with experimental information. The final optimized Pt surface energy (mJ/m2) is 2036 for (100) surface, 2106 for (110) surface, and 1502 for (111) surface. The potential can be utilized to find the equilibrium shape and atomic configuration of Pt bimetallic nanoparticles more accurately.

  11. Low-Dimensional Materials for Optoelectronic and Bioelectronic Applications

    NASA Astrophysics Data System (ADS)

    Hong, Tu

    In this thesis, we first discuss the fundamentals of ab initio electronic structure theory and density functional theory (DFT). We also discuss statistics related to computing thermodynamic averages of molecular dynamics (MD). We then use this theory to analyze and compare the structural, dynamical, and electronic properties of liquid water next to prototypical metals including platinum, graphite, and graphene. Our results are built on Born-Oppenheimer molecular dynamics (BOMD) generated using density functional theory (DFT) which explicitly include van der Waals (vdW) interactions within a first principles approach. All calculations reported use large simulation cells, allowing for an accurate treatment of the water-electrode interfaces. We have included vdW interactions through the use of the optB86b-vdW exchange correlation functional. Comparisons with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional are also shown. We find an initial peak, due to chemisorption, in the density profile of the liquid water-Pt interface not seen in the liquid water-graphite interface, liquid watergraphene interface, nor interfaces studied previously. To further investigate this chemisorption peak, we also report differences in the electronic structure of single water molecules on both Pt and graphite surfaces. We find that a covalent bond forms between the single water molecule and the platinum surface, but not between the single water molecule and the graphite surface. We also discuss the effects that defects and dopants in the graphite and graphene surfaces have on the structure and dynamics of liquid water. Lastly, we introduce artificial neural networks (ANNs), and demonstrate how they can be used to machine learn electronic structure calculations. As a proof of principle, we show the success of an ANN potential energy surfaces for a dimer molecule with a Lennard-Jones potential.

  12. Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes

    NASA Astrophysics Data System (ADS)

    Liu, Wenlong; Liu, Yen-Yu; Do, Jing-Shan; Li, Jing

    2016-12-01

    Room temperature NH3 gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH3 gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm-1 cm-2 .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.

  13. Sulfate-enhanced catalytic destruction of 1,1,1-trichlorethane over Pt(111).

    PubMed

    Lee, Adam F; Wilson, Karen

    2006-01-19

    The catalytic destruction of 1,1,1-trichloroethane (TCA) over model sulfated Pt(111) surfaces has been investigated by fast X-ray photoelectron spectroscopy and mass spectrometry. TCA adsorbs molecularly over SO4 precovered Pt(111) at 100 K, with a saturation coverage of 0.4 monolayer (ML) comparable to that on the bare surface. Surface crowding perturbs both TCA and SO4 species within the mixed adlayer, evidenced by strong, coverage-dependent C 1s and Cl and S 2p core-level shifts. TCA undergoes complete dechlorination above 170 K, accompanied by C-C bond cleavage to form surface CH3, CO, and Cl moieties. These in turn react between 170 and 350 K to evolve gaseous CO2, C2H6, and H2O. Subsequent CH3 dehydrogenation and combustion occurs between 350 and 450 K, again liberating CO2 and water. Combustion is accompanied by SO4 reduction, with the coincident evolution of gas phase SO2 and CO2 suggesting the formation of a CO-SOx surface complex. Reactively formed HCl desorbs in a single state at 400 K. Only trace (<0.06 ML) residual atomic carbon and chlorine remain on the surface by 500 K.

  14. Double-side illuminated titania nanotubes for high volume hydrogen generation by water splitting

    NASA Astrophysics Data System (ADS)

    Mohapatra, Susanta K.; Mahajan, Vishal K.; Misra, Mano

    2007-11-01

    A sonoelectrochemical anodization method is proposed to synthesize TiO2 nanotubular arrays on both sides of a titanium foil (TiO2/Ti/TiO2). Highly ordered TiO2 nanotubular arrays of 16 cm2 area with uniform surface distribution can be obtained using this anodization procedure. These double-sided TiO2/Ti/TiO2 materials are used as both photoanode (carbon-doped titania nanotubes) and cathode (Pt nanoparticles dispersed on TiO2 nanotubes; PtTiO2/Ti/PtTiO2) in a specially designed photoelectrochemical cell to generate hydrogen by water splitting at a rate of 38 ml h-1. The nanomaterials are characterized by FESEM, HRTEM, STEM, EDS, FFT, SAED and XPS techniques. The present approach can be used for large-scale hydrogen generation using renewable energy sources.

  15. Mechanisms of deep benzene oxidation on the Pt(1 1 1) surface using temperature-programmed reaction methods

    NASA Astrophysics Data System (ADS)

    Marsh, Anderson L.; Gland, John L.

    2003-06-01

    The catalytic oxidation of benzene on the Pt(1 1 1) surface has been characterized using temperature-programmed reaction spectroscopy (TPRS) over a wide range of benzene and oxygen coverages. Coadsorbed atomic oxygen and benzene are the primary reactants on the surface during the initial oxidation step. Benzene is oxidized over the 300-500 K range to produce carbon dioxide and water. Carbon-hydrogen and carbon-carbon bond activation are clearly rate-limiting steps for these reactions. Preferential oxidation causes depletion of bridge-bonded benzene, suggesting enhanced reactivity in this bonding configuration. When oxygen is in excess on the surface, all of the surface carbon and hydrogen is oxidized. When benzene is in excess on the surface, hydrogen produced by dehydrogenation is desorbed after all of the surface oxygen has been consumed. Repulsive interactions between benzene and molecular oxygen dominate at low temperatures. Preadsorption of oxygen inhibits adsorption of less reactive benzene in threefold hollow sites. The desorption temperature of this non-reactive chemisorbed benzene decreases and overlaps with the multilayer desorption peak with increasing oxygen exposure. The results presented here provide a clear picture of rate-limiting steps during deep oxidation of benzene on the Pt(1 1 1) surface.

  16. Interface architecture determined electrocatalytic activity of Pt on vertically oriented TiO(2) nanotubes.

    PubMed

    Rettew, Robert E; Allam, Nageh K; Alamgir, Faisal M

    2011-02-01

    The surface atomic structure and chemical state of Pt is consequential in a variety of surface-intensive devices. Herein we present the direct interrelationship between the growth scheme of Pt films, the resulting atomic and electronic structure of Pt species, and the consequent activity for methanol electro-oxidation in Pt/TiO(2) nanotube hybrid electrodes. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) measurements were performed to relate the observed electrocatalytic activity to the oxidation state and the atomic structure of the deposited Pt species. The atomic structure as well as the oxidation state of the deposited Pt was found to depend on the pretreatment of the TiO(2) nanotube surfaces with electrodeposited Cu. Pt growth through Cu replacement increases Pt dispersion, and a separation of surface Pt atoms beyond a threshold distance from the TiO(2) substrate renders them metallic, rather than cationic. The increased dispersion and the metallic character of Pt results in strongly enhanced electrocatalytic activity toward methanol oxidation. This study points to a general phenomenon whereby the growth scheme and the substrate-to-surface-Pt distance dictates the chemical state of the surface Pt atoms, and thereby, the performance of Pt-based surface-intensive devices.

  17. Compression Ratio and Catalyst Aging Effects on Aqueous Ethanol Ignition (Year 2) : Part 2 Catalyst Aging and Effects of Water on Ignition

    DOT National Transportation Integrated Search

    2009-09-01

    A tubular plug-flow reactor under low Reynolds Numbers Re flow regimes, along with a 127 um diameter coiled platinum (Pt) wire, were used to study catalytic surface reactions of nonflammable, fuel-lean mixtures of propane, oxygen, and water vapor dil...

  18. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt3M (where M = 3d transition metals) alloy catalyst from first-principles.

    PubMed

    Kim, Chang-Eun; Lim, Dong-Hee; Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Hong, Seong-Ahn; Soon, Aloysius; Ham, Hyung Chul

    2015-01-21

    The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt3M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt3M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt3M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt3M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.

  19. Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Men, Yong; Wang, Jinguo; He, Rong; Wang, Yuanqiang

    2017-10-01

    Effects of supports over Pt/In2O3/MOx catalysts with extremely low loading of Pt (1 wt%) and In2O3 loadings (3 wt%) are investigated for the hydrogen production of methanol steam reforming (MSR) in the temperature range of 250-400 °C. Under practical conditions without the pre-reduction, the 1Pt/3In2O3/CeO2 catalyst shows the highly efficient catalytic performance, achieving almost complete methanol conversion (98.7%) and very low CO selectivity of 2.6% at 325 °C. The supported Pt/In2O3 catalysts are characterized by means of Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), high-resolution transmission microscopy (HRTEM), temperature programmed reduction with hydrogen (H2-TPR), CO pulse chemisorption, temperature programmed desorption of methanol and water (CH3OH-TPD and H2O-TPD). These demonstrate that the nature of catalyst support of Pt/In2O3/MOx plays crucial roles in the Pt dispersion associated by the strong interaction among Pt, In2O3 and supporting materials and the surface redox properties at low temperature, and thus affects their capability to activate the reactants and determines the catalytic activity of methanol steam reforming. The superior 1Pt/3In2O3/CeO2 catalyst, exhibiting a remarkable reactivity and stability for 32 h on stream, demonstrates its potential for efficient hydrogen production of methanol steam reforming in mobile and de-centralized H2-fueled PEMFC systems.

  20. Characterization of Platinum and Iridium Oxyhydrate Surface Layers from Platinum and Iridium Foils.

    PubMed

    Johnson, Benjamin; Ranjan, Chinmoy; Greiner, Mark; Arrigo, Rosa; Schuster, Manfred Erwin; Höpfner, Britta; Gorgoi, Mihaela; Lauermann, Iver; Willinger, Marc; Knop-Gericke, Axel; Schlögl, Robert

    2016-07-07

    Platinum and iridium polycrystalline foils were oxidized electrochemically through anodization to create thin platinum and iridium hydrous oxide layers, which were analyzed through laboratory photoelectron spectroscopy during heating and time series (temperature-programmed spectroscopy). The films contain oxygen in the form of bound oxides, water, and hydroxides and were investigated by depth profiling with high-energy photoelectron spectroscopy. The Pt films are unstable and begin to degrade immediately after removal from the electrolyte to form core-shell structures with a metallic inner core and a hydrous oxide outer shell almost devoid of Pt. However, evidence was found for metastable intermediate states of degradation; therefore, it may be possible to manufacture PtOx phases with increased stability. Heating the film to even 100 °C causes accelerated degradation, which shows that stoichiometric oxides such as PtO2 or PtO are not the active species in the electrolyte. The Ir films exhibit increased stability and higher surface Ir content, and gentle heating at low temperatures leads to a decrease in defect density. Although both layers are based on noble metals, their surface structures are markedly different. The complexity of such hydrous oxide systems is discussed in detail with the goal of identifying the film composition more precisely. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Shape-dependent surface magnetism of Co-Pt and Fe-Pt nanoparticles from first principles

    NASA Astrophysics Data System (ADS)

    Liu, Zhenyu; Wang, Guofeng

    2017-12-01

    In this paper, we have performed the first-principles density functional theory calculations to predict the magnetic properties of the CoPt and FePt nanoparticles in cuboctahedral, decahedral, and icosahedral shapes. The modeled alloy nanoparticles have a diameter of 1.1 nm and consist of 31 5 d Pt atoms and 24 3 d Co (or Fe) atoms. For both CoPt and FePt, we found that the decahedral nanoparticles had appreciably lower surface magnetic moments than the cuboctahedral and icosahedral nanoparticles. Our analysis indicated that this reduction in the surface magnetism was related to a large contraction of atomic spacing and high local Co (or Fe) concentration in the surface of the decahedral nanoparticles. More interestingly, we predicted that the CoPt and FePt cuboctahedral nanoparticles exhibited dramatically different surface spin structures when noncollinear magnetism was taken into account. Our calculation results revealed that surface anisotropy energy decided the fashion of surface spin canting in the CoPt and FePt nanoparticles, confirming previous predictions from atomistic Monte Carlo simulations.

  2. Superior long-term activity for a Pt-Re alloy compared to Pt in methanol oxidation reactions

    NASA Astrophysics Data System (ADS)

    Duke, Audrey S.; Xie, Kangmin; Monnier, John R.; Chen, Donna A.

    2017-03-01

    Pt-Re bimetallic catalysts have shown enhanced activity compared to pure Pt for reactions involving oxidation, but the origins of this improved activity are not fully understood. Methanol oxidation on a Pt-Re alloy surface and pure Pt foil was studied in a microreactor coupled to an ultrahigh vacuum chamber. For reaction at 60 °C, the Pt-Re alloy surface exhibits superior long-term activity over a 24 h reaction period compared to pure Pt. The initial activity of Pt is 10-15% higher than on Pt-Re; however, the Pt surface gradually loses activity after 10 h online, whereas the activity of Pt-Re does not diminish. Post-reaction XPS shows that more carbon accumulates on the Pt than on Pt-Re, and the improved long-term activity is attributed to a greater ability of Pt-Re to oxidize the carbonaceous intermediates that eventually poison active sites. Both Pt and Pt-Re surfaces have almost no activity for methanol oxidation until a minimum coverage of oxygen is achieved from O2 dissociation. A comparison with methanol oxidation studies on Pt and Pt-Re in a pressure regime that is 150 times lower than in this work demonstrates that more carbon and less oxygen accumulate on the surfaces during reaction at the lower pressures.

  3. A facile reflux procedure to increase active surface sites form highly active and durable supported palladium@platinum bimetallic nanodendrites

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Li, Yingjun; Liu, Baocang; Xu, Guangran; Zhang, Geng; Zhao, Qi; Zhang, Jun

    2015-11-01

    A series of well-dispersed bimetallic Pd@Pt nanodendrites uniformly supported on XC-72 carbon black are fabricated by using different capping agents. These capping agents are essential for the branched morphology control. However, the surfactant adsorbed on the nanodendrites surface blocks the access of reactant molecules to the active surface sites, and the catalytic activities of these bimetallic nanodendrites are significantly restricted. Herein, a facile reflux procedure to effectively remove the capping agent molecules without significantly affecting their sizes is reported for activating supported nanocatalysts. More significantly, the structure and morphology of the nanodendrites can also be retained, enhancing the numbers of active surface sites, catalytic activity and stability toward methanol and ethanol electro-oxidation reactions. The as-obtained hot water reflux-treated Pd@Pt/C catalyst manifests superior catalytic activity and stability both in terms of surface and mass specific activities, as compared to the untreated catalysts and the commercial Pt/C and Pd/C catalysts. We anticipate that this effective and facile removal method has more general applicability to highly active nanocatalysts prepared with various surfactants, and should lead to improvements in environmental protection and energy production.

  4. Reversible structural modulation of Fe-Pt bimetallic surfaces and its effect on reactivity.

    PubMed

    Ma, Teng; Fu, Qiang; Su, Hai-Yan; Liu, Hong-Yang; Cui, Yi; Wang, Zhen; Mu, Ren-Tao; Li, Wei-Xue; Bao, Xin-He

    2009-05-11

    Tunable surface: The surface structure of the Fe-Pt bimetallic catalyst can be reversibly modulated between the iron-oxide-rich Pt surface and the Pt-skin structure with subsurface Fe via alternating reduction and oxidation treatments (see figure). The regenerated active Pt-skin structure is active in reactions involving CO and/or O.

  5. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping

    2016-02-01

    In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.

  6. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells.

    PubMed

    Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping

    2016-02-15

    In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.

  7. Electrochemical synthesis of mesoporous Pt-Au binary alloys with tunable compositions for enhancement of electrochemical performance.

    PubMed

    Yamauchi, Yusuke; Tonegawa, Akihisa; Komatsu, Masaki; Wang, Hongjing; Wang, Liang; Nemoto, Yoshihiro; Suzuki, Norihiro; Kuroda, Kazuyuki

    2012-03-21

    Mesoporous Pt-Au binary alloys were electrochemically synthesized from lyotropic liquid crystals (LLCs) containing corresponding metal species. Two-dimensional exagonally ordered LLC templates were prepared on conductive substrates from diluted surfactant solutions including water, a nonionic surfactant, ethanol, and metal species by drop-coating. Electrochemical synthesis using such LLC templates enabled the preparation of ordered mesoporous Pt-Au binary alloys without phase segregation. The framework composition in the mesoporous Pt-Au alloy was controlled simply by changing the compositional ratios in the precursor solution. Mesoporous Pt-Au alloys with low Au content exhibited well-ordered 2D hexagonal mesostructures, reflecting those of the original templates. With increasing Au content, however, the mesostructural order gradually decreased, thereby reducing the electrochemically active surface area. Wide-angle X-ray diffraction profiles, X-ray photoelectron spectra, and elemental mapping showed that both Pt and Au were atomically distributed in the frameworks. The electrochemical stability of mesoporous Pt-Au alloys toward methanol oxidation was highly improved relative to that of nonporous Pt and mesoporous Pt films, suggesting that mesoporous Pt-Au alloy films are potentially applicable as electrocatalysts for direct methanol fuel cells. Also, mesoporous Pt-Au alloy electrodes showed a highly sensitive amperometric response for glucose molecules, which will be useful in next-generation enzyme-free glucose sensors.

  8. Formation of Surface and Quantum-Well States in Ultra Thin Pt Films on the Au(111) Surface

    PubMed Central

    Silkin, Igor V.; Koroteev, Yury M.; Echenique, Pedro M.; Chulkov, Evgueni V.

    2017-01-01

    The electronic structure of the Pt/Au(111) heterostructures with a number of Pt monolayers n ranging from one to three is studied in the density-functional-theory framework. The calculations demonstrate that the deposition of the Pt atomic thin films on gold substrate results in strong modifications of the electronic structure at the surface. In particular, the Au(111) s-p-type Shockley surface state becomes completely unoccupied at deposition of any number of Pt monolayers. The Pt adlayer generates numerous quantum-well states in various energy gaps of Au(111) with strong spatial confinement at the surface. As a result, strong enhancement in the local density of state at the surface Pt atomic layer in comparison with clean Pt surface is obtained. The excess in the density of states has maximal magnitude in the case of one monolayer Pt adlayer and gradually reduces with increasing number of Pt atomic layers. The spin–orbit coupling produces strong modification of the energy dispersion of the electronic states generated by the Pt adlayer and gives rise to certain quantum states with a characteristic Dirac-cone shape. PMID:29232833

  9. Enhanced MEA Performance for PEMFCs under Low Relative Humidity and Low Oxygen Content Conditions via Catalyst Functionalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xin, Le; Yang, Fan; Xie, Jian

    2017-01-01

    This work demonstrates that functionalizing annealed-Pt/Ketjen black EC300j (a-Pt/KB) and dealloyed-PtNi/Ketjen black EC300j (d-PtNi/KB) catalysts using p-phenyl sulfonic acid can effectively enhance performance in the membrane electrode assemblies (MEAs) of proton exchange membrane fuel cells (PEMFCs). The functionalization increased the size of both Pt and PtNi catalyst particles and resulted in the further leaching of Ni from the PtNi catalyst while promoting the formation of nanoporous PtNi nanoparticles. The size of the SO3H-Pt/KB and SO3H-PtNi/KB carbon-based aggregates decreased dramatically, leading to the formation of catalyst layers with narrower pore size distributions.MEA tests highlighted the benefits of the surface functionalization, inmore » which the cells with SO3H-Pt/KB and SO3H-PtNi/KB cathode catalysts showed superior high current density performance under reduced RH conditions, in comparison with cells containing annealed Pt/KB (a-Pt/KB) and de-alloyed PtNi/KB (d-PtNi/KB) catalysts. The performance improvement was particularly evident when using reactant gases with low relative humidity, indicating that the hydrophilic functional groups on the carbon improved the water retention in the cathode catalyst layer. These results show a new avenue for enhancing catalyst performance for the next generation of catalytic materials for PEMFCs.« less

  10. Enhanced Stability of Pt-Cu Single-Atom Alloy Catalysts: In Situ Characterization of the Pt/Cu(111) Surface in an Ambient Pressure of CO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonovis, Juan Pablo; Hunt, Adrian; Palomino, Robert M.

    The interaction between a catalyst and reactants often induce changes in the surface structure and composition of the catalyst, which, in turn, affect its reactivity. Therefore, it is important to study such changes using in situ techniques under well-controlled conditions. We have used ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to study the surface stability of a Pt/Cu(111) single atom alloy (SAA) in an ambient pressure of CO. By directly probing the Pt atoms, we found that CO causes a slight surface segregation of Pt atoms at room temperature. In addition, while the Pt/Cu(111) surface demonstrates poor thermal stability in UHV,more » where surface Pt starts to diffuse to the subsurface layer above 400 K, the presence of adsorbed CO enhances the thermal stability of surface Pt atoms. Furthermore, we also found that temperatures above 450 K cause a restructuring of the subsurface layer, which consequently strengthens the CO binding to the surface Pt sites, likely due to the presence of neighboring subsurface Pt atoms.« less

  11. Enhanced Stability of Pt-Cu Single-Atom Alloy Catalysts: In Situ Characterization of the Pt/Cu(111) Surface in an Ambient Pressure of CO

    DOE PAGES

    Simonovis, Juan Pablo; Hunt, Adrian; Palomino, Robert M.; ...

    2018-02-05

    The interaction between a catalyst and reactants often induce changes in the surface structure and composition of the catalyst, which, in turn, affect its reactivity. Therefore, it is important to study such changes using in situ techniques under well-controlled conditions. We have used ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to study the surface stability of a Pt/Cu(111) single atom alloy (SAA) in an ambient pressure of CO. By directly probing the Pt atoms, we found that CO causes a slight surface segregation of Pt atoms at room temperature. In addition, while the Pt/Cu(111) surface demonstrates poor thermal stability in UHV,more » where surface Pt starts to diffuse to the subsurface layer above 400 K, the presence of adsorbed CO enhances the thermal stability of surface Pt atoms. Furthermore, we also found that temperatures above 450 K cause a restructuring of the subsurface layer, which consequently strengthens the CO binding to the surface Pt sites, likely due to the presence of neighboring subsurface Pt atoms.« less

  12. SERS and DFT study of water on metal cathodes of silver, gold and platinum nanoparticles.

    PubMed

    Li, Jian-Feng; Huang, Yi-Fan; Duan, Sai; Pang, Ran; Wu, De-Yin; Ren, Bin; Xu, Xin; Tian, Zhong-Qun

    2010-03-14

    The observed surface-enhanced Raman scattering (SERS) spectra of water adsorbed on metal film electrodes of silver, gold, and platinum nanoparticles were used to infer interfacial water structures on the basis of the change of the electrochemical vibrational Stark tuning rates and the relative Raman intensity of the stretching and bending modes. To explain the increase of the relative Raman intensity ratio of the bending and stretching vibrations at the very negative potential region, density functional theory calculations provide the conceptual model. The specific enhancement effect for the bending mode was closely associated with the water adsorption structure in a hydrogen bonded configuration through its H-end binding to surface sites with large polarizability due to strong cathodic polarization. The present results allow us to propose that interfacial water molecules exist on these metal cathodes with different hydrogen bonding interactions, i.e., the HO-HH-Pt dihydrogen bond for platinum and the HO-HAg(Au) for silver and gold. This dihydrogen bonding configuration on platinum is further supported from observation of the Pt-H stretching band. Furthermore, the influences of the pH effect on SERS intensity and vibrational Stark effect on the gold electrode indicate that the O-H stretching SERS signals are enhanced in the alkaline solutions because of the hydrated hydroxide surface species adsorbed on the gold cathode.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shizhong; White, Michael G.; Liu, Ping

    Here, we report a detailed mechanistic study of the oxygen reduction reaction (ORR) on Pt(111) in alkaline solution, combining density functional theory and kinetic Monte Carlo simulations. A complex reaction network including four possible pathways via either 2e – or 4e – transfer is established and is able to reproduce the experimental measured polarization curve at both low- and high-potential regions. Our results show that it is essential to account for solvation by water and the dynamic coverage of *OH to describe the reaction kinetics well. In addition, a chemisorbed water (*H 2O)-mediated mechanism including 4e – transfers is identified,more » where the reduction steps via *H 2O on the surface are potential-independent and only the final removal of *OH from the surface in the form of OH –(aq) contributes to the current. For the ORR in alkaline solutions, such a mechanism is more competitive than the associative and dissociative mechanisms typically used to describe the ORR in acid solution. Finally, *OH and **O 2 intermediates are found to be critically important for tuning the ORR activity of Pt in alkaline solution. To enhance the activity, the binding of Pt should be tuned in such a way that *OH binding is weak enough to release more surface sites under working conditions, while **O 2 binding is strong enough to enable the ORR via the 4e – transfer mechanism.« less

  14. Robust Platinum-Based Electrocatalysts for Fuel Cell Applications

    NASA Astrophysics Data System (ADS)

    Coleman, Eric James

    Polymer electrolyte fuel cells (PEMFCs) are energy conversion devices that exploit the energetics of the reaction between hydrogen fuel and O 2 to generate electricity with water as the only byproduct. PEMFCs have attracted substantial attention due to their high conversion efficiency, high energy density, and low carbon footprint. However, PEMFC performance is hindered by the high activation barrier and slow reaction rates at the cathode where O2 undergoes an overall 4-electron reduction to water. The most efficient oxygen reduction reaction (ORR) catalyst materials to date are Pt group metals due to their high catalytic activity and stability in a wide range of operating conditions. Before fuel cells can become economically viable, efforts must be taken to decrease Pt content while maintaining a high level of ORR activity. This work describes the design and synthesis of a Pt-Cu electrocatalyst with ORR activity exceeding that of polycrystalline Pt. Production of this novel catalyst is quite simple and begins with synthesis of a porous Cu substrate, formed by etching Al from a Cu-Al alloy. The porous Cu substrate is then coated with a Pt layer via a spontaneous electrochemical process known as galvanic replacement. The Pt layer enhances the ORR activity (as measured by a rotating ring-disk electrode (RRDE)) and acts as a barrier towards corrosion of the Cu understructure. Growth of the Pt layer can be manipulated by time, temperature, concentration of Pt precursor, and convection rate during galvanic replacement. Data from analytical and electrochemical techniques confirm multiple Pt loadings have been achieved via the galvanic replacement process. The boost in ORR activity for the PtCu catalyst was determined to be a result of its lower affinity towards (site-blocking) OH adsorption. A unique catalyst degradation study explains the mechanism of initial catalyst ORR deactivation for both monometallic and bimetallic Pt-based catalysts. Finally, a rigorous and pioneering examination of how Pt surface passivation affects ORR dynamics is presented.

  15. Plasma-induced synthesis of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Su, Nan; Hu, Xiulan; Zhang, Jianbo; Huang, Huihong; Cheng, Jiexu; Yu, Jinchen; Ge, Chao

    2017-03-01

    A Pt/C/TiO2 nanotube composite catalyst was successfully prepared for enhanced methanol electro-oxidation. Pt nanoparticles with a particle size of 2 nm were synthesized by plasma sputtering in water, and anatase TiO2 nanotubes with an inner diameter of approximately 100 nm were prepared by a simple two-step anodization method and annealing process. Field-emission scanning electron microscopy images indicated that the different morphologies of TiO2 synthesized on the surface of Ti foils were dependent on the different anodization parameters. The electrochemical performance of Pt/C/TiO2 catalysts for methanol oxidation showed that TiO2 nanotubes were more suitable for use as Pt nanoparticle support materials than irregular TiO2 short nanorods due to their tubular morphology and better electronic conductivity. X-ray photoelectron spectroscopy characterization showed that the binding energies of the Pt 4f of the Pt/C/TiO2 nanotubes exhibited a slightly positive shift caused by the relatively strong interaction between Pt and the TiO2 nanotubes, which could mitigate the poisoning of the Pt catalyst by COads, and further enhance the electrocatalytic performance. Thus, the as-obtained Pt/C/TiO2 nanotubes composites may become a promising catalyst for methanol electro-oxidation.

  16. Application of plow-tillage as an innovative technique for eliminating overwintering cyanobacteria in eutrophic lake sediments.

    PubMed

    Zhou, Qilin; Liu, Cheng; Fan, Chengxin

    2016-12-01

    Surface sediment in eutrophic lakes is both a destination and a habitat for overwintering cyanobacteria. The resuspension and recovery of viable, overwintering cyanobacteria from the surface sediment during warm spring weather is usually the primary stage of cyanobacterial blooms (CBs) in shallow eutrophic lakes. Therefore, the elimination of overwintering cyanobacteria in sediment is vital to control CBs. In the present study, sediment plow-tillage (PT) was introduced as an innovative technique for eliminating overwintering cyanobacteria in sediments from Lake Chaohu. Four depths of PT (2, 5, 10, and 15 cm) were tested during the 42-day experiment. The results showed that rapid cell death during the first 0-7 d after PT was accompanied by high oxygen uptake rates. The viable cells in deeper sediment died more quickly and at a higher rate after PT. A PT depth of >10 cm effectively eliminated viable cyanobacteria (with a removal rate of 82.8%) from the sediment and prevented their resuspension. The activity of the viable cyanobacteria also decreased quickly as cyanobacteria were eliminated. It appears that the dark, anoxic environment of the deeper sediment after PT was responsible for the elimination of viable cells. Although high release rates of nitrogen and phosphorus were found to accompany the dying and decomposition of cyanobacteria during days 0-7 of the experiment, greater depth of PT was found to decrease nutrient concentrations in the overlying water. In conclusion, we recommend sediment PT as a new technique for eliminating overwintering algae in sediments. However, the release of nutrients from the sediment and the in situ control of CBs in lakes after PT should be further studied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Adsorption of lactic acid on chiral Pt surfaces—A density functional theory study

    NASA Astrophysics Data System (ADS)

    Franke, J.-H.; Kosov, D. S.

    2013-02-01

    The adsorption of the chiral molecule lactic acid on chiral Pt surfaces is studied by density functional theory calculations. First, we study the adsorption of L-lactic acid on the flat Pt(111) surface. Using the optimed PBE - van der Waals (oPBE-vdW) functional, which includes van der Waals forces on an ab initio level, it is shown that the molecule has two binding sites, a carboxyl and the hydroxyl oxygen atoms. Since real chiral surfaces are (i) known to undergo thermal roughening that alters the distribution of kinks and step edges but not the overall chirality and (ii) kink sites and edge sites are usually the energetically most favored adsorption sites, we focus on two surfaces that allow qualitative sampling of the most probable adsorption sites. We hereby consider chiral surfaces exhibiting (111) facets, in particular, Pt(321) and Pt(643). The binding sites are either both on kink sites—which is the case for Pt(321) or on one kink site—as on Pt(643). The binding energy of the molecule on the chiral surfaces is much higher than on the Pt(111) surface. We show that the carboxyl group interacts more strongly than the hydroxyl group with the kink sites. The results indicate the possible existence of very small chiral selectivities of the order of 20 meV for the Pt(321) and Pt(643) surfaces. L-lactic acid is more stable on Pt(321)S than D-lactic acid, while the chiral selectivity is inverted on Pt(643)S. The most stable adsorption configurations of L- and D-lactic acid are similar for Pt(321) but differ for Pt(643). We explore the impact of the different adsorption geometries on the work function, which is important for field ion microscopy.

  18. Water-soluble platinum nanoparticles stabilized by sulfonated N-heterocyclic carbenes: influence of the synthetic approach.

    PubMed

    Baquero, Edwin A; Tricard, Simon; Coppel, Yannick; Flores, Juan C; Chaudret, Bruno; de Jesús, Ernesto

    2018-03-28

    The synthesis of metal nanoparticles (NPs) under controlled conditions in water remains a challenge in nanochemistry. Two different approaches to obtain platinum NPs, which involve the treatment of aqueous solutions of preformed sulfonated (NHC)Pt(ii) dimethyl complexes with carbon monoxide, and of (NHC)Pt(0) diolefin complexes with dihydrogen (NHC = N-heterocyclic carbene), are disclosed here. The resulting NPs were found to be highly stable in water under air for an indefinite time period. Coordination of the NHC ligands to the platinum surface via the carbenic carbon was monitored by solid-state NMR spectroscopy, and the presence of a platinum-carbon bond was unambiguously evidenced by the determination of a 13 C- 195 Pt coupling constant (1106 and 1050 Hz for NPs containing 13 C labeled-NHC ligands and prepared under CO and H 2 , respectively). The coordination of CO to the (NHC)Pt(ii) precursors prior to formation of the NPs was confirmed by NMR spectroscopy. When using a disulfonated NHC ligand, a second coordination sphere containing bis(NHC)Pt(ii) complexes is described. Under CO, the formation of NPs was found to be slower than in a previously reported thermal method (Angew. Chem., Int. Ed., 2014, 53, 13220-13224), but led to NPs of similar sizes, whereas under H 2 , the synthesis of platinum NPs progressed even more slowly and produced larger NPs. In addition to the influence of the synthetic approach, the present study highlights the importance of ligand design for NP stabilization.

  19. The role of titanium nitride supports for single-atom platinum-based catalysts in fuel cell technology.

    PubMed

    Zhang, Ren-Qin; Lee, Tae-Hun; Yu, Byung-Deok; Stampfl, Catherine; Soon, Aloysius

    2012-12-28

    As a first step towards a microscopic understanding of single-Pt atom-dispersed catalysts on non-conventional TiN supports, we present density-functional theory (DFT) calculations to investigate the adsorption properties of Pt atoms on the pristine TiN(100) surface, as well as the dominant influence of surface defects on the thermodynamic stability of platinized TiN. Optimized atomic geometries, energetics, and analysis of the electronic structure of the Pt/TiN system are reported for various surface coverages of Pt. We find that atomic Pt does not bind preferably to the clean TiN surface, but under typical PEM fuel cell operating conditions, i.e. strongly oxidizing conditions, TiN surface vacancies play a crucial role in anchoring the Pt atom for its catalytic function. Whilst considering the energetic stability of the Pt/TiN structures under varying N conditions, embedding Pt at the surface N-vacancy site is found to be the most favorable under N-lean conditions. Thus, the system of embedding Pt at the surface N-vacancy sites on TiN(100) surfaces could be promising catalysts for PEM fuel cells.

  20. The effect of the surface composition of Ru-Pt bimetallic catalysts for methanol oxidation

    DOE PAGES

    Garrick, Taylor R.; Diao, Weijian; Tengco, John M.; ...

    2016-02-23

    Here, a series of Ru-Pt bimetallic catalysts prepared by the electroless deposition of controlled and variable amounts of Ru on the Pt surface of a commercially-available 20 wt% Pt/C catalyst has been characterized and evaluated for the oxidation of methanol. The activity of each Ru-Pt catalyst was determined as a function of surface composition via cyclic voltammetry. For the Ru-Pt bimetallic catalysts, activity passed through a maximum at approximately 50% monodisperse Ru surface coverage. However, due to the monolayer coverage of Ru on Pt, the amount of metal in the catalyst is minimized compared to a bulk 1:1 atomic ratiomore » of Ru:Pt seen in commercial bimetallic catalysts. Chemisorption and temperature programmed reduction experiments confirmed that the surface had characteristics of a true bimetallic catalyst. On a mass of Pt basis, the activity of this composition for methanol oxidation was 7 times higher than pure Pt and 3.5 times higher than a commercial catalyst with a 1:1 Pt:Ru bulk atomic ratio.« less

  1. Sorption behavior of the Pt(II) complex anion on manganese dioxide (δ-MnO2): a model reaction to elucidate the mechanism by which Pt is concentrated into a marine ferromanganese crust

    NASA Astrophysics Data System (ADS)

    Maeno, Mamiko Yamashita; Ohashi, Hironori; Yonezu, Kotaro; Miyazaki, Akane; Okaue, Yoshihiro; Watanabe, Koichiro; Ishida, Tamao; Tokunaga, Makoto; Yokoyama, Takushi

    2016-02-01

    It is difficult to directly investigate the chemical state of Pt in marine ferromanganese crusts (a mixture of hydrous iron(III) oxide and manganese dioxide (δ-MnO2)) because it is present at extremely low concentration levels. This paper attempts to elucidate the mechanism by which Pt is concentrated into marine ferromanganese crust from the Earth's continental crust through ocean water. In this investigation, the sorption behavior of the Pt(II) complex ions on the surface of the δ-MnO2 that is a host of Pt was examined as a model reaction. The δ-MnO2 sorbing Pt was characterized by X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) to determine the chemical state of the Pt. Hydrolytic Pt(II) complex ions were specifically sorbed above pH 6 by the formation of a Mn-O-Pt bond. XPS spectra and XANES spectra for δ-MnO2 sorbing Pt showed that the sorbed Pt(II) was oxidized to Pt(IV) on δ-MnO2. The extended X-ray absorption fine structure (EXAFS) analysis showed that the coordination structure of Pt sorbed on δ-MnO2 is almost the same as that of the [Pt(OH)6]2- complex ion used as a standard. Therefore, the mechanism for the concentration of Pt in marine ferromanganese crust may be an oxidative substitution (penetration of Pt(IV) into structure of δ-MnO2) by a reduction-oxidation reaction between Pt(II) in [PtCl4-n(OH)n]2- and Mn(IV) in δ-MnO2 through a Mn-O-Pt bond.

  2. SFG study of methanol dissociative adsorption at Pt(1 0 0), Pt(1 1 0) and Pt(1 1 1) electrodes surfaces

    NASA Astrophysics Data System (ADS)

    Vidal, F.; Busson, B.; Six, C.; Pluchery, O.; Tadjeddine, A.

    2002-04-01

    The Pt( hkl)/methanol in acidic solution interface which constitutes a model of the anodic part of a fuel cell is studied by infrared-visible sum frequency generation vibrational spectroscopy. Methanol dissociative adsorption leads to CO poisoning of the Pt electrode surfaces. The structure of the CO/Pt( hkl) interface depends strongly on the orientation of the surface electrode.

  3. Quantum Mechanics Studies of Fuel Cell Catalysts and Proton Conducting Ceramics with Validation by Experiment

    NASA Astrophysics Data System (ADS)

    Tsai, Ho-Cheng

    We carried out quantum mechanics (QM) studies aimed at improving the performance of hydrogen fuel cells. In part I, The challenge was to find a replacement for the Pt cathode that would lead to improved performance for the Oxygen Reduction Reaction (ORR) while remaining stable under operational conditions and decreasing cost. Our design strategy was to find an alloy with composition Pt3M that would lead to surface segregation such that the top layer would be pure Pt, with the second and subsequent layers richer in M. Under operating conditions we expect the surface to have significant O and/or OH chemisorbed on the surface; we searched for M that would remain segregated under these conditions. Using QM we examined surface segregation for 28 Pt3M alloys, where M is a transition metal. We found that only Pt3Os and Pt3Ir showed significant surface segregation when O and OH are chemisorbed on the catalyst surfaces. This result indicates that Pt3Os and Pt 3Ir favor formation of a Pt-skin surface layer structure that would resist the acidic electrolyte corrosion during fuel cell operation environments. We chose to focus on Os because the phase diagram for Pt-Ir indicated that Pt-Ir could not form a homogeneous alloy at lower temperature. To determine the performance for ORR, we used QM to examine intermediates, reaction pathways, and reaction barriers involved in the processes for which protons from the anode reactions react with O2 to form H2O. These QM calculations used our Poisson-Boltzmann implicit solvation model include the effects of the solvent (water with dielectric constant 78 with pH 7 at 298K). We also carried out similar QM studies followed by experimental validation for the Os/Pt core-shell catalyst fabricated by the underpotential deposition (UPD) method. The QM results indicated that the RDS for ORR is a compromise between the OOH formation step (0.37 eV for Pt, 0.23 eV for Pt2ML/Os core-shell) and H2O formation steps (0.32 eV for Pt, 0.22 eV for Pt2ML /Os core-shell). We found that Pt2ML/Os has the highest activity (compared to pure Pt and to the Pt3Os alloy) because the 0.37 eV barrier decreases to 0.23 eV. To understand what aspects of the core shell structure lead to this improved performance, we considered the effect on ORR of compressing the alloy slab to the dimensions of pure Pt. However this had the same RDS barrier 0.37 eV. Experimental materials characterization proves the core-shell feature of our catalyst. In part II, we used QM calculations to study methane stream reforming on a Ni-alloy catalyst surfaces for solid oxide fuel cell (SOFC) application. SOFC has wide fuel adaptability but the coking and sulfur poisoning will reduce its stability. We carried out QM calculations on surface segregation and found that the most stable configuration for Ni4Fe has a Fe atom distribution of (0%, 50%, 25%, 25%, 0%) starting at the bottom layer. We calculated that the binding of C atoms on the Ni4Fe surface is 142.9 Kcal/mol, which is about 10 Kcal/mol weaker compared to the pure Ni surface. This result confirms the experimental observation. The reaction energy barriers for CH x decomposition and C binding on various alloy surface, Ni4X (X=Fe, Co, Mn, and Mo), showed Ni4Fe, Ni4Co, and Fe4Mn all have better coking resistance than pure Ni, but that only Ni4Fe and Fe4Mn have (slightly) improved activity compared to pure Ni. In part III, we used QM to examine the proton transport in doped perovskite-ceramics. Here we used a 2x2x2 supercell of perovskite with composition Ba8X 7M1(OH)1O23 where X=Ce or Zr and M=Y, Gd, or Dy. Thus in each case a 4+ X is replace by a 3 + M plus a proton on one O. Here we predicted the barriers for proton diffusion allowing both includes intra-octahedron and inter-octahedra proton transfer. Without any restriction, we only observed the inter-octahedra proton transfer with similar energy barrier as previous computational work but 0.2 eV higher than experimental result for Y doped zirconate. For one restriction in our calculations is that the Odonor-Oacceptor atoms were kept at fixed distances, we found that the barrier difference between cerates/zirconates with various dopants are only 0.02~0.03 eV. To fully address performance one would need to examine proton transfer at grain boundaries, which will require larger scale ReaxFF reactive dynamics for systems with millions of atoms. The QM calculations used here will be used to train the ReaxFF force field. (Abstract shortened by UMI.).

  4. Quantifying the mechanism of phosphate monoester hydrolysis in aqueous solution by evaluating the relevant ab initio QM/MM free-energy surfaces.

    PubMed

    Plotnikov, Nikolay V; Prasad, B Ram; Chakrabarty, Suman; Chu, Zhen T; Warshel, Arieh

    2013-10-24

    Understanding the nature of the free-energy surfaces for phosphate hydrolysis is a prerequisite for understanding the corresponding key chemical reactions in biology. Here, the challenge has been to move to careful ab initio QM/MM (QM(ai)/MM) free-energy calculations, where obtaining converging results is very demanding and computationally expensive. This work describes such calculations, focusing on the free-energy surface for the hydrolysis of phosphate monoesters, paying special attention to the comparison between the one water (1W) and two water (2W) paths for the proton-transfer (PT) step. This issue has been explored before by energy minimization with implicit solvent models and by nonsystematic QM/MM energy minimization, as well as by nonsystematic free-energy mapping. However, no study has provided the needed reliable 2D (3D) surfaces that are necessary for reaching concrete conclusions. Here we report a systematic evaluation of the 2D (3D) free-energy maps for several relevant systems, comparing the results of QM(ai)/MM and QM(ai)/implicit solvent surfaces, and provide an advanced description of the relevant energetics. It is found that the 1W path for the hydrolysis of the methyl diphosphate (MDP) trianion is 6-9 kcal/mol higher than that the 2W path. This difference becomes slightly larger in the presence of the Mg(2+) ion because this ion reduces the pKa of the conjugated acid form of the phosphate oxygen that accepts the proton. Interestingly, the BLYP approach (which has been used extensively in some studies) gives a much smaller difference between the 1W and 2W activation barriers. At any rate, it is worth pointing out that the 2W transition state for the PT is not much higher that the common plateau that serves as the starting point of both the 1W and 2W PT paths. Thus, the calculated catalytic effects of proteins based on the 2W PT mechanistic model are not expected to be different from the catalytic effects predicted using the 1W PT mechanistic model, which was calibrated on the observed barrier in solution and in which the TS charge distribution was similar to the that of the plateau (as was done in all of our previous EVB studies).

  5. Highly Durable Supportless Pt Hollow Spheres Designed for Enhanced Oxygen Transport in Cathode Catalyst Layers of Proton Exchange Membrane Fuel Cells.

    PubMed

    Dogan, Didem C; Cho, Seonghun; Hwang, Sun-Mi; Kim, Young-Min; Guim, Hwanuk; Yang, Tae-Hyun; Park, Seok-Hee; Park, Gu-Gon; Yim, Sung-Dae

    2016-10-10

    Supportless Pt catalysts have several advantages over conventional carbon-supported Pt catalysts in that they are not susceptible to carbon corrosion. However, the need for high Pt loadings in membrane electrode assemblies (MEAs) to achieve state-of-the-art fuel cell performance has limited their application in proton exchange membrane fuel cells. Herein, we report a new approach to the design of a supportless Pt catalyst in terms of catalyst layer architecture, which is crucial for fuel cell performance as it affects water management and oxygen transport in the catalyst layers. Large Pt hollow spheres (PtHSs) 100 nm in size were designed and prepared using a carbon template method. Despite their large size, the unique structure of the PtHSs, which are composed of a thin-layered shell of Pt nanoparticles (ca. 7 nm thick), exhibited a high surface area comparable to that of commercial Pt black (PtB). The PtHS structure also exhibited twice the durability of PtB after 2000 potential cycles (0-1.3 V, 50 mV/s). A MEA fabricated with PtHSs showed significant improvement in fuel cell performance compared to PtB-based MEAs at high current densities (>800 mA/cm 2 ). This was mainly due to the 2.7 times lower mass transport resistance in the PtHS-based catalyst layers compared to that in PtB, owing to the formation of macropores between the PtHSs and high porosity (90%) in the PtHS catalyst layers. The present study demonstrates a successful example of catalyst design in terms of catalyst layer architecture, which may be applied to a real fuel cell system.

  6. From well-defined Pt(II) surface species to the controlled growth of silica supported Pt nanoparticles.

    PubMed

    Laurent, Pierre; Veyre, Laurent; Thieuleux, Chloé; Donet, Sébastien; Copéret, Christophe

    2013-01-07

    Silica-supported Pt nanoparticles were prepared from well-defined surface platinum(II) surface species, obtained by grafting of well-defined Pt(II) molecular precursors with specific ligands (Cl, Me, N(SiMe(3))(2), OSi(OtBu)(3)) onto silica partially dehydroxylated at 200 and 700 °C yielding well-defined platinum(II) surface species. This approach allowed for testing the effect of Pt density and ligands on nanoparticle size. Higher grafting densities are achieved on silica partially dehydroxylated at 200 °C due to its initially higher surface silanol density. Surface species have been synthesized from symmetrical and dissymmetrical complexes, namely (COD)Pt(Me)(2), (COD)Pt(OSi(OtBu)(3))(2), (COD)Pt(Me)(OSi(OtBu)(3)), (COD)Pt(Me)(N(SiMe(3))(2)), (COD)Pt(Cl)(N(SiMe(3))(2)) and (COD)Pt(N(SiMe(3))(2))(OSi(OtBu)(3)) yielding mono-grafted complexes of general formula (COD)Pt(R)(OSi≡) according to elemental analyses, diffuse reflectance infrared fourier transform (DRIFT) and carbon-13 solid-state nuclear magnetic resonance (NMR) spectroscopies. While the dimethyl-complex shows low reactivity towards grafting, bis-siloxy and dissymmetric complexes demonstrate better reactivity yielding platinum loadings up to 7.4 wt%. Upon grafting amido complexes, the surface passivation yielding Me(3)SiOSi≡ surface species is demonstrated. Nanoparticles have been synthesized from these well-defined surface species by reduction under H(2) at 300 °C, under static or flow conditions. This process yields nanoparticles with sizes ranging from 2 to 3.3 nm and narrow size dispersion from 0.5 to 1.2 nm. Interestingly, the chloride complex yields large nanoparticles from 5 to 40 nm demonstrating the strong influence of chloride over the nanoparticles growth.

  7. Cadmium sulfide quantum dots supported on gallium and indium oxide for visible-light-driven hydrogen evolution from water.

    PubMed

    Pan, Yun-xiang; Zhuang, Huaqiang; Hong, Jindui; Fang, Zheng; Liu, Hai; Liu, Bin; Huang, Yizhong; Xu, Rong

    2014-09-01

    In this work, CdS quantum dots (QDs) supported on Ga2O3 and In2O3 are applied for visible-light-driven H2 evolution from aqueous solutions that contain lactic acid. With Pt as the cocatalyst, the H2 evolution rates on CdS/Pt/Ga2O3 and CdS/Pt/In2O3 are as high as 995.8 and 1032.2 μmol h(-1), respectively, under visible light (λ>420 nm) with apparent quantum efficiencies of 43.6 and 45.3% obtained at 460 nm, respectively. These are much higher than those on Pt/CdS (108.09 μmol h(-1)), Pt/Ga2O3 (0.12 μmol h(-1)), and Pt/In2O3 (0.05 μmol h(-1)). The photocatalysts have been characterized thoroughly and their band structures and photocurrent responses have been measured. The band alignment between the CdS QDs and In2O3 can lead to interfacial charge separation, which cannot occur between the CdS QDs and Ga2O3. Among the various possible factors that contribute to the high H2 evolution rates on CdS/Pt/oxide, the surface properties of the metal oxides play important roles, which include (i) the anchoring of CdS QDs and Pt nanoparticles for favorable interactions and (ii) the efficient trapping of photogenerated electrons from the CdS QDs because of surface defects (such as oxygen defects) based on photoluminescence and photocurrent studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Flexible Microsensor Array for the Root Zone Monitoring of Porous Tube Plant Growth System

    NASA Technical Reports Server (NTRS)

    Sathyan, Sandeep; Kim, Chang-Soo; Porterfield, D. Marshall; Nagle, H. Troy; Brown, Christopher S.

    2004-01-01

    Control of oxygen and water in the root zone is vital to support plant growth in the microgravity environment. The ability to control these sometimes opposing parameters in the root zone is dependent upon the availability of sensors to detect these elements and provide feedback for control systems. In the present study we demonstrate the feasibility of using microsensor arrays on a flexible substrate for dissolved oxygen detection, and a 4-point impedance microprobe for surface wetness detection on the surface of a porous tube (PT) nutrient delivery system. The oxygen microsensor reported surface oxygen concentrations that correlated with the oxygen concentrations of the solution inside the PT when operated at positive pressures. At negative pressures the microsensor shows convergence to zero saturation (2.2 micro mol/L) values due to inadequate water film formation on porous tube surface. The 4-point microprobe is useful as a wetness detector as it provides a clear differentiation between dry and wet surfaces. The unique features of the dissolved oxygen microsensor array and 4-point microprobe include small and simple design, flexibility and multipoint sensing. The demonstrated technology is anticipated to provide low cost, and highly reliable sensor feedback monitoring plant growth nutrient delivery system in both terrestrial and microgravity environments.

  9. Small Fermi surfaces of PtSn4 and Pt3In7

    NASA Astrophysics Data System (ADS)

    Yara, T.; Kakihana, M.; Nishimura, K.; Hedo, M.; Nakama, T.; Ōnuki, Y.; Harima, H.

    2018-05-01

    An extremely large magnetoresistance of PtSn4 has been recently observed and discussed from a viewpoint of de Haas-van Alphen (dHvA) oscillations and theoretical small Fermi surfaces. We have studied precisely the Fermi surfaces by measuring angular dependences of dHvA frequencies and have also carried out the full potential LAPW band calculation. Furthermore, small Fermi surfaces have been detected in another Pt-based compound of Pt3In7 with the cubic structure.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detwiler, Michael D.; Majumdar, Paulami; Gu, Xiang-Kui

    Changes in surface chemistry and morphology of Re–Pt surfaces synthesized by ultra-high vacuum chemical vapor deposition (UHV-CVD) of Re on Pt(111) were studied by a combination of experiment and density functional theory (DFT) modeling. A Re oxide formed following exposure of the as-deposited Re to 1 × 10- 6 mbar oxygen at 600–673 K. Subsequent annealing at 973 K resulted in oxygen desorption and a decrease in Re coverage, as calculated by XPS and as observed by STM. This observation was explained by DFT calculations which showed that a clean Pt surface slab with subsurface Re is thermodynamically more favorablemore » than Pt(111) with Re on the surface. DFT calculations also predicted weaker O and CO binding on this surface compared to both monometallic Pt and Re, and HREELS and temperature desorption measurements suggested that O binds weakly to the Pt skin surface, with oxygen on the Pt skin desorbing from this surface following annealing at 373 K. Trends in adsorption energies were consistent with DFT calculated d-band centers of surface atoms for model Pt–Re structures. Comparison of HREELS data and STM images with DFT calculated vibrational frequencies have been used to understand the structure of rhenium oxide on Pt(111).« less

  11. Photothermal Superheating of Water with Ion-Implanted Silicon Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roder, Paden B.; Manandhar, Sandeep; Smith, Bennett E.

    2015-07-21

    Nanoparticle-mediated photothermal (PT) cancer therapy has been a major focus in nanomedicine due to its potential as an effective, non-invasive, and targeted alternative to traditional cancer therapy based on small-molecule pharmaceuticals[1,2]. Gold nanocrystals have been a primary focus of PT research[3], which can be attributed to their size tunability[4], well understood conjugation chemistry[5], and efficient absorption of NIR radiation in the tissue transparency window (800 nm – 1 μm) due to their size-dependent localized surface plasmon resonances[6].

  12. Kinetics of optically excited charge carriers at the GaN surface: Influence of catalytic Pt nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winnerl, Andrea, E-mail: andrea.winnerl@wsi.tum.de; Pereira, Rui N.; Stutzmann, Martin

    2015-10-21

    In this work, we use GaN with different deposited Pt nanostructures as a controllable model system to investigate the kinetics of photo-generated charge carriers in hybrid photocatalysts. We combine conductance and contact potential difference measurements to investigate the influence of Pt on the processes involved in the capture and decay of photo-generated charge carriers at and close to the GaN surface. We found that in the presence of Pt nanostructures the photo-excitation processes are similar to those found in Pt free GaN. However, in GaN with Pt nanostructures, photo-generated holes are preferentially trapped in surface states of the GaN coveredmore » with Pt and/or in electronic states of the Pt and lead to an accumulation of positive charge there, whereas negative charge is accumulated in localized states in a shallow defect band of the GaN covered with Pt. This preferential accumulation of photo-generated electrons close to the surface is responsible for a dramatic acceleration of the turn-off charge transfer kinetics and a stronger dependence of the surface photovoltage on light intensity when compared to a Pt free GaN surface. Our study shows that in hybrid photocatalysts, the metal nanostructures induce a spatially inhomogeneous surface band bending of the semiconductor that promotes a lateral drift of photogenerated charges towards the catalytic nanostructures.« less

  13. Theoretical evidence of PtSn alloy efficiency for CO oxidation.

    PubMed

    Dupont, Céline; Jugnet, Yvette; Loffreda, David

    2006-07-19

    The efficiency of PtSn alloy surfaces toward CO oxidation is demonstrated from first-principles theory. Oxidation kinetics based on atomistic density-functional theory calculations shows that the Pt3Sn surface alloy exhibits a promising catalytic activity for fuel cells. At room temperature, the corresponding rate outstrips the activity of Pt(111) by several orders of magnitude. According to the oxidation pathways, the activation barriers are actually lower on Pt3Sn(111) and Pt3Sn/Pt(111) surfaces than on Pt(111). A generalization of Hammer's model is proposed to elucidate the key role of tin on the lowering of the barriers. Among the energy contributions, a correlation is evidenced between the decrease of the barrier and the strengthening of the attractive interaction energy between CO and O moieties. The presence of tin modifies also the symmetry of the transition states which are composed of a CO adsorbate on a Pt near-top position and an atomic O adsorption on an asymmetric mixed PtSn bridge site. Along the reaction pathways, a CO2 chemisorbed surface intermediate is obtained on all the surfaces. These results are supported by a thorough vibrational analysis including the coupling with the surface phonons which reveals the existence of a stretching frequency between the metal substrate and the CO2 molecule.

  14. Structure Determination of Au on Pt(111) Surface: LEED, STM and DFT Study

    PubMed Central

    Krupski, Katarzyna; Moors, Marco; Jóźwik, Paweł; Kobiela, Tomasz; Krupski, Aleksander

    2015-01-01

    Low-energy electron diffraction (LEED), scanning tunneling microscopy (STM) and density functional theory (DFT) calculations have been used to investigate the atomic and electronic structure of gold deposited (between 0.8 and 1.0 monolayer) on the Pt(111) face in ultrahigh vacuum at room temperature. The analysis of LEED and STM measurements indicates two-dimensional growth of the first Au monolayer. Change of the measured surface lattice constant equal to 2.80 Å after Au adsorption was not observed. Based on DFT, the distance between the nearest atoms in the case of bare Pt(111) and Au/Pt(111) surface is equal to 2.83 Å, which gives 1% difference in comparison with STM values. The first and second interlayer spacing of the clean Pt(111) surface are expanded by +0.87% and contracted by −0.43%, respectively. The adsorption energy of the Au atom on the Pt(111) surface is dependent on the adsorption position, and there is a preference for a hollow fcc site. For the Au/Pt(111) surface, the top interlayer spacing is expanded by +2.16% with respect to the ideal bulk value. Changes in the electronic properties of the Au/Pt(111) system below the Fermi level connected to the interaction of Au atoms with Pt(111) surface are observed.

  15. Observation and elimination of broken symmetry in L1{sub 0} FePt nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quarterman, P.; Wang, Hao; Qiu, Jiao-Ming

    2015-12-07

    An unexplained surface anisotropy effect was observed and confirmed in the magnetization reversal process of both L1{sub 0} phase FePt nanoparticles with octahedral shape and (001) textured L1{sub 0} FePt thin films with island nanostructures. We suggest that the nature of the observed surface effect is caused by broken symmetry on the FePt surface, which results in weakened exchange coupling for surface atoms. Furthermore, we propose, and experimentally demonstrate, a method to repair the broken symmetry by capping the FePt islands with a Pt layer, which could prove invaluable in understanding fundamental limitations of magnetic nanostructures.

  16. Comparing the catalytic oxidation of ethanol at the solid-gas and solid-liquid interfaces over size-controlled Pt nanoparticles: striking differences in kinetics and mechanism.

    PubMed

    Sapi, Andras; Liu, Fudong; Cai, Xiaojun; Thompson, Christopher M; Wang, Hailiang; An, Kwangjin; Krier, James M; Somorjai, Gabor A

    2014-11-12

    Pt nanoparticles with controlled size (2, 4, and 6 nm) are synthesized and tested in ethanol oxidation by molecular oxygen at 60 °C to acetaldehyde and carbon dioxide both in the gas and liquid phases. The turnover frequency of the reaction is ∼80 times faster, and the activation energy is ∼5 times higher at the gas-solid interface compared to the liquid-solid interface. The catalytic activity is highly dependent on the size of the Pt nanoparticles; however, the selectivity is not size sensitive. Acetaldehyde is the main product in both media, while twice as much carbon dioxide was observed in the gas phase compared to the liquid phase. Added water boosts the reaction in the liquid phase; however, it acts as an inhibitor in the gas phase. The more water vapor was added, the more carbon dioxide was formed in the gas phase, while the selectivity was not affected by the concentration of the water in the liquid phase. The differences in the reaction kinetics of the solid-gas and solid-liquid interfaces can be attributed to the molecular orientation deviation of the ethanol molecules on the Pt surface in the gas and liquid phases as evidenced by sum frequency generation vibrational spectroscopy.

  17. Editors' Choice—Electrochemically Active Surface Area Measurement of Aged Pt Alloy Catalysts in PEM Fuel Cells by CO Stripping

    DOE PAGES

    Garrick, Taylor R.; Moylan, Thomas E.; Carpenter, Michael K.; ...

    2016-12-13

    The use of hydrogen adsorption/desorption (HAD) is a convenient method to measure the Pt surface area of a catalyst. However, it was shown that electrochemical charges measured by this technique can underestimate the Pt surface area by up to a factor of two for small Pt nanoparticles or Pt alloy nanoparticles. Electrooxidation of CO, so-called CO stripping, has been shown to be more accurate. Yet measurements of CO stripping in MEAs are scarce, especially on high activity alloy catalysts. In this study we investigated CO stripping and the ratio between Pt surface areas measured by CO and by HAD onmore » several Pt and Pt alloy catalysts. The effects on these measurements of temperature and catalyst aging by voltage cycling are discussed.« less

  18. Editors' Choice—Electrochemically Active Surface Area Measurement of Aged Pt Alloy Catalysts in PEM Fuel Cells by CO Stripping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrick, Taylor R.; Moylan, Thomas E.; Carpenter, Michael K.

    The use of hydrogen adsorption/desorption (HAD) is a convenient method to measure the Pt surface area of a catalyst. However, it was shown that electrochemical charges measured by this technique can underestimate the Pt surface area by up to a factor of two for small Pt nanoparticles or Pt alloy nanoparticles. Electrooxidation of CO, so-called CO stripping, has been shown to be more accurate. Yet measurements of CO stripping in MEAs are scarce, especially on high activity alloy catalysts. In this study we investigated CO stripping and the ratio between Pt surface areas measured by CO and by HAD onmore » several Pt and Pt alloy catalysts. The effects on these measurements of temperature and catalyst aging by voltage cycling are discussed.« less

  19. Highly Effective Pt-Based Water-Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts

    DOE PAGES

    Kusche, Matthias; Bustillo, Karen; Agel, Friederike; ...

    2015-01-29

    Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid filmmore » of alkali hydroxide forms on the alumina surface, which increases the availability of H 2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H 2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.« less

  20. Platinum nanoparticles functionalized nitrogen doped graphene platform for sensitive electrochemical glucose biosensing.

    PubMed

    Yang, Zhanjun; Cao, Yue; Li, Juan; Jian, Zhiqin; Zhang, Yongcai; Hu, Xiaoya

    2015-04-29

    In this work, we reported an efficient platinum nanoparticles functionalized nitrogen doped graphene (PtNPs@NG) nanocomposite for devising novel electrochemical glucose biosensor for the first time. The fabricated PtNPs@NG and biosensor were characterized using transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, static water contact angle, UV-vis spectroscopy, electrochemical impedance spectra and cyclic voltammetry, respectively. PtNPs@NG showed large surface area and excellent biocompatibility, and enhanced the direct electron transfer between enzyme molecules and electrode surface. The glucose oxidase (GOx) immobilized on PtNPs@NG nanocomposite retained its bioactivity, and exhibited a surface controlled, quasi-reversible and fast electron transfer process. The constructed glucose biosensor showed wide linear range from 0.005 to 1.1mM with high sensitivity of 20.31 mA M(-1) cm(-2). The detection limit was calculated to be 0.002 mM at signal-to-noise of 3, which showed 20-fold decrease in comparison with single NG-based electrochemical biosensor for glucose. The proposed glucose biosensor also demonstrated excellent selectivity, good reproducibility, acceptable stability, and could be successfully applied in the detection of glucose in serum samples at the applied potential of -0.33 V. This research provided a promising biosensing platform for the development of excellent electrochemical biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Controlling the bond scission sequence of oxygenates for energy applications

    NASA Astrophysics Data System (ADS)

    Stottlemyer, Alan L.

    The so called "Holy Grail" of heterogeneous catalysis is a fundamental understanding of catalyzed chemical transformations which span multidimensional scales of both length and time, enabling rational catalyst design. Such an undertaking is realizable only with an atomic level understanding of bond formation and destruction with respect to intrinsic properties of the metal catalyst. In this study, we investigate the bond scission sequence of small oxygenates (methanol, ethanol, ethylene glycol) on bimetallic transition metal catalysts and transition metal carbide catalysts. Oxygenates are of interest both as hydrogen carriers for reforming to H2 and CO and as fuels in direct alcohol fuel cells (DAFC). To address the so-called "materials gap" and "pressure gap" this work adopted three parallel research approaches: (1) ultra high vacuum (UHV) studies including temperature programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) on polycrystalline surfaces; (2) DFT studies including thermodynamic and kinetic calculations; (3) electrochemical studies including cyclic voltammetry (CV) and chronoamperometry (CA). Recent studies have suggested that tungsten monocarbide (WC) may behave similarly to Pt for the electrooxidation of oxygenates. TPD was used to quantify the activity and selectivity of oxygenate decomposition for WC and Pt-modifiedWC (Pt/WC) as compared to Pt. While decomposition activity was generally higher on WC than on Pt, scission of the C-O bond resulted in alkane/alkene formation on WC, an undesired product for DAFC. When Pt was added to WC by physical vapor deposition C-O bond scission was limited, suggesting that Pt synergistically modifies WC to improve the selectivity toward C-H bond scission to produce H2 and CO. Additionally, TPD confirmed WC and Pt/WC to be more CO tolerant than Pt. HREELS results verified that surface intermediates were different on Pt/WC as compared to Pt or WC and evidence of aldehyde intermediates was observed on the Pt and Pt/WC surfaces. For CH3OH decomposition, DFT calculations suggested that the bond scission sequence could be controlled using monolayer coverage of Pt on WC. The Ni/Pt bimetallic system was studied as an example for using oxygenates as a hydrogen source. There are two well characterized surface structures for the Ni/Pt system: the surface configuration, in which the Ni atoms reside primarily on the surface of the Pt bulk, and the subsurface configuration, in which the second atomic layer is enriched in Ni atoms and the surface is enriched in Pt atoms. These configurations are denoted NiPtPt and PtNiPt, respectively. DFT results revealed that trends established for the Ni/Pt(111) system extend to the Ni/Pt(100) analogue. TPD studies revealed that the NiPtPt surface was more active for oxygenate reforming than the Pt or PtNiPt surfaces. HREELS confirmed the presence of strongly bound reaction intermediates, including aldehyde-like species, and suggested that the first decomposition step was likely O-H bond scission. Thus, the binding energies of the deprotonated reaction intermediates are important parameters in controlling the decomposition pathways of oxygenates. These studies have demonstrated that the bond scission sequence of oxygenate decomposition can be controlled using bimetallic and transition metal carbide catalysts. While this study has focused on oxygenate decomposition for energy applications, the principles and methodology applied herein are universally applicable to the development of novel and marketable value-added products. The value in such a methodology is in the combination of both calculations to predict catalytic and chemical properties, and experiments to fine-tune theoretical predictions.

  2. Prospective role of indigenous Exiguobacterium profundum PT2 in arsenic biotransformation and biosorption by planktonic cultures and biofilms.

    PubMed

    Saba; Andreasen, R; Li, Y; Rehman, Y; Ahmed, M; Meyer, R L; Sabri, A N

    2018-02-01

    The aim of this study was to analyse arsenic (As) transformation and biosorption by indigenous As-resistant bacteria both in planktonic and biofilm modes of growth. As-resistant bacteria were isolated from industrial waste water and strain PT2, and identified as Exiguobacterium profundum through 16S rRNA gene sequencing was selected for further study. As transformation and biosorption by E. profundumPT2 was determined by HPLC-ICP-MS analysis. Planktonic cultures reduced 3·73 mmol l -1 As 5+ into As 3+ from artificial waste water effluent after 48-h incubation. In case of biosorption, planktonic cultures and biofilms exhibited 25·2 and 29·4 mg g -1 biomass biosorption, respectively. As biosorption kinetics followed Freundlich isotherm and pseudo second-order model. Biofilm formation peaked after 3 days of incubation, and in the presence of As stress, biofilm formation was significantly affected in contrast to control (P < 0·05). Homogeneous nature of mature biofilms with an increased demand of nutrients was revealed by minimum roughness and maximum surface to biovolume ratio measured through CLSM analysis. Indigenous As-resistant E. profundumPT2 was found capable of As transformation and biosorption both in the form of planktonic cultures and biofilms. Indigenous biofilm forming E. profundum PT2 revealing As biosorption and biotransformation potential is presented an eco-friendly and cost-effective source for As remediation that can be implemented for waste water treatment. © 2017 The Society for Applied Microbiology.

  3. Weak interactions between water and clathrate-forming gases at low pressures

    DOE PAGES

    Thürmer, Konrad; Yuan, Chunqing; Kimmel, Greg A.; ...

    2015-07-17

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10 –1 mbar methane or 10 –5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~ 10 7 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10 –5 mbar methane does not alter their morphology, suggestingmore » that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water–gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~ 43 K and isobutane desorbs near ~ 100 K. As a result, similar desorption temperatures were observed for desorption from amorphous solid water.« less

  4. Morphology of size-selected Ptn clusters on CeO2(111).

    PubMed

    Shahed, Syed Mohammad Fakruddin; Beniya, Atsushi; Hirata, Hirohito; Watanabe, Yoshihide

    2018-03-21

    Supported Pt catalysts and ceria are well known for their application in automotive exhaust catalysts. Size-selected Pt clusters supported on a CeO 2 (111) surface exhibit distinct physical and chemical properties. We investigated the morphology of the size-selected Pt n (n = 5-13) clusters on a CeO 2 (111) surface using scanning tunneling microscopy at room temperature. Pt n clusters prefer a two-dimensional morphology for n = 5 and a three-dimensional (3D) morphology for n ≥ 6. We further observed the preference for a 3D tri-layer structure when n ≥ 10. For each cluster size, we quantitatively estimated the relative fraction of the clusters for each type of morphology. Size-dependent morphology of the Pt n clusters on the CeO 2 (111) surface was attributed to the Pt-Pt interaction in the cluster and the Pt-O interaction between the cluster and CeO 2 (111) surface. The results obtained herein provide a clear understanding of the size-dependent morphology of the Pt n clusters on a CeO 2 (111) surface.

  5. Surface chemistry of aromatic reactants on Pt- and Mo-modified Pt catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Allison M.; Mark, Lesli; Rasmussen, Mathew J.

    Supported catalysts containing an oxophilic metal such as Mo and a noble metal such as Pt have shown promising activity and selectivity for deoxygenation of biomass-derived compounds. Here, we report that PtMo catalysts also promote hydrogenolysis of the model compound benzyl alcohol, while decarbonylation is most prevalent over unmodified Pt. A combination of single crystal surface science studies, density functional theory (DFT) calculations, and vapor phase upgrading experiments using supported catalysts was carried out to better understand the mechanism by which Mo promotes deoxygenation. Molybdenum was deposited in submonolayer quantities on a Pt(111) surface and reduced at high temperature. Temperature-programmedmore » desorption (TPD) experiments using benzyl alcohol as a reactant showed greatly enhanced yields of the deoxygenation product toluene at moderate Mo coverages. To understand how the interaction of the aromatic group with the surface influenced this reactivity, we investigated the adsorption of toluene as a probe molecule. We found that the addition of Mo to Pt(111) resulted in a significant decrease in toluene decomposition. DFT calculations indicated that this decrease was consistent with decreased aromatic adsorption strengths that accompany incorporation of Mo into the Pt subsurface. The weaker aromatic-surface interaction on Pt/Mo surfaces led to a tilted adsorption geometry for benzyl alcohol, which presumably promotes hydrogenolysis to produce toluene instead of decarbonylation to produce benzene and CO. Alumina-supported Pt and PtMo catalysts were also tested for benzyl alcohol deoxygenation. PtMo catalysts had a higher rate of toluene production and lower rates of benzene and benzaldehyde production. Additionally, when benzaldehyde was used as the reactant to measure decarbonylation activity the mass-normalized rate of benzene production was 2.5 times higher on Pt than PtMo. Altogether, the results of TPD, DFT, and supported catalyst experiments suggest that subsurface Mo sites weaken the binding of aromatic rings on PtMo surfaces; the weakened aromatic-surface interaction is correlated with an improvement in selectivity to C-O bond scission.« less

  6. Surface chemistry of aromatic reactants on Pt- and Mo-modified Pt catalysts

    DOE PAGES

    Robinson, Allison M.; Mark, Lesli; Rasmussen, Mathew J.; ...

    2016-11-01

    Supported catalysts containing an oxophilic metal such as Mo and a noble metal such as Pt have shown promising activity and selectivity for deoxygenation of biomass-derived compounds. Here, we report that PtMo catalysts also promote hydrogenolysis of the model compound benzyl alcohol, while decarbonylation is most prevalent over unmodified Pt. A combination of single crystal surface science studies, density functional theory (DFT) calculations, and vapor phase upgrading experiments using supported catalysts was carried out to better understand the mechanism by which Mo promotes deoxygenation. Molybdenum was deposited in submonolayer quantities on a Pt(111) surface and reduced at high temperature. Temperature-programmedmore » desorption (TPD) experiments using benzyl alcohol as a reactant showed greatly enhanced yields of the deoxygenation product toluene at moderate Mo coverages. To understand how the interaction of the aromatic group with the surface influenced this reactivity, we investigated the adsorption of toluene as a probe molecule. We found that the addition of Mo to Pt(111) resulted in a significant decrease in toluene decomposition. DFT calculations indicated that this decrease was consistent with decreased aromatic adsorption strengths that accompany incorporation of Mo into the Pt subsurface. The weaker aromatic-surface interaction on Pt/Mo surfaces led to a tilted adsorption geometry for benzyl alcohol, which presumably promotes hydrogenolysis to produce toluene instead of decarbonylation to produce benzene and CO. Alumina-supported Pt and PtMo catalysts were also tested for benzyl alcohol deoxygenation. PtMo catalysts had a higher rate of toluene production and lower rates of benzene and benzaldehyde production. Additionally, when benzaldehyde was used as the reactant to measure decarbonylation activity the mass-normalized rate of benzene production was 2.5 times higher on Pt than PtMo. Altogether, the results of TPD, DFT, and supported catalyst experiments suggest that subsurface Mo sites weaken the binding of aromatic rings on PtMo surfaces; the weakened aromatic-surface interaction is correlated with an improvement in selectivity to C-O bond scission.« less

  7. Controlling hydrogenation activity and selectivity of bimetallic surfaces and catalysts

    NASA Astrophysics Data System (ADS)

    Murillo, Luis E.

    Studies of bimetallic systems are of great interest in catalysis due to the novel properties that they often show in comparison with the parent metals. The goals of this dissertation are: (1) to expand the studies of self-hydrogenation and hydrogenation reactions on bimetallic surfaces under ultra high vacuum conditions (UHV) using different hydrocarbon as probe molecules; (2) to attempt to correlate the surface science findings with supported catalyst studies under more realistic conditions; and (3) to investigate the competitive hydrogenation of C=C versus C=O bonds on Pt(111) modified by different 3d transition metals. Hydrogenation studies using temperature programmed desorption (TPD) on Ni/Pt(111) bimetallic surfaces have demonstrated an enhancement in the low temperature hydrogenation activity relative to that of clean Pt(111). This novel hydrogenation pathway can be achieved under UHV conditions by controlling the structures of the bimetallic surfaces. A low temperature hydrogenation activity of 1-hexene and 1-butene has been observed on a Pt-Ni-Pt(111) subsurface structure, where Ni atoms are mainly present on the second layer of the Pt(111) single crystal. These results are in agreement with previous studies of self-hydrogenation and hydrogenation of cyclohexene. However, a much higher dehydrogenation activity is observed in the reaction of cyclohexene to produce benzene, demonstrating that the hydrocarbon structure has an effect on the reaction pathways. On the other hand, self-hydrogenation of 1-butene is not observed on the Pt-Ni-Pt(111) surface, indicating that the chain length (or molecular weight) has a significant effect on the selfhydrogenation activity. The gas phase reaction of cyclohexene on Ni/Pt supported on alumina catalysts has also shown a higher self-hydrogenation activity in comparison with the same reaction performed on supported monometallic catalysts. The effects of metal loading and impregnation sequence of the metal precursors are also discussed. Chemisorption, TPD, FTIR using a batch reactor for the self-hydrogenation of cyclohexene and CO adsorbed on the bimetallic surfaces were carried out to correlate surface science findings with experiments on supported bimetallic catalysts. To expand the studies on the effect of bimetallic structures on hydrogenation reactions, molecules with multiple functional groups such as alpha,beta-unsaturated aldehydes were also investigated. Studies of selective hydrogenation of a,ss-unsaturated aldehydes toward the desired unsaturated alcohols are of interest for the production of fine chemicals and pharmaceuticals. In these compounds, competitive hydrogenation of the C=C and C=O bonds occurs. TPD and HREELS experiments of acrolein (CH2=CH-CH=O) on Pt-based bimetallic surfaces are performed to investigate their effects on the hydrogenation activity of the C-O bond. The production of the desired unsaturated alcohol, allyl alcohol, has been observed for the first time on Pt-Ni-Pt(111) under UHV conditions. However, the propionaldehyde yield is five times higher than the allyl alcohol yield. Thus, a preferential isomerization reaction of allyl alcohol to propionaldehyde is very likely to occur on the Pt-Ni-Pt(111) surface as observed on the desorption studies of allyl alcohol on this surface. The hydrogenation of acrolein is also carried out under UHV conditions on other 3d-transition metal/Pt(111) surfaces such as Co/Pt(111), Fe/Pt(111), and Cu/Pt(111). So far, the highest activity and allyl alcohol yield are found on the Pt-Ni-Pt(111) surface with pre-adsorbed hydrogen.

  8. Polybenzimidazole (PBI) functionalized nanographene as highly stable catalyst support for polymer Electrolyte membrane fuel cells (PEMFCs)

    DOE PAGES

    Xin, Le; Yang, Fan; Qiu, Yang; ...

    2016-08-25

    Nanoscale graphenes were used as cathode catalyst supports in proton exchange membrane fuel cells (PEMFCs). Surface-initiated polymerization that covalently bonds polybenzimidazole (PBI) polymer on the surface of graphene supports enables the uniform distribution of the Pt nanoparticles, as well as allows the sealing of the unterminated carbon bonds usually present on the edge of graphene from the chemical reduction of graphene oxide. The nanographene effectively shortens the length of channels and pores for O 2 diffusion/water dissipation and significantly increases the primary pore volume. Further addition of p-phenyl sulfonic functional graphitic carbon particles as spacers, increases the specific volume ofmore » the secondary pores and greatly improves O 2 mass transport within the catalyst layers. The developed composite cathode catalyst of Pt/PBI-nanographene (50 wt%) + SO 3H-graphitic carbon black demonstrates a higher beginning of life (BOL) PEMFC performance as compared to both Pt/PBI-nanographene (50 wt%) and Pt/PBI-graphene (50 wt%) + SO 3H-graphitic carbon black (GCB). Accelerated stress tests show excellent support durability compared to that of traditional Pt/Vulcan XC72 catalysts, when subjected to 10,000 cycles from 1.0 V to 1.5 V. As a result, this study suggests the promise of using PBI-nanographene + SO 3H-GCB hybrid supports in fuel cells to achieve the 2020 DOE targets for transportation applications.« less

  9. Synthesis and comparative photocatalytic activity of Pt/WO 3 and Au/WO 3 nanocomposites under sunlight-type excitation

    NASA Astrophysics Data System (ADS)

    Qamar, M.; Yamani, Z. H.; Gondal, M. A.; Alhooshani, K.

    2011-09-01

    The article deals with the synthesis of highly active visible-light-driven nanocomposite for the decontamination of water hazards under sunlight-type excitation. The surface of visible-light-active nanostructured photocatalyst tungsten oxide (WO 3) was modified with noble metals, such as platinum (Pt) and gold (Au) nanoparticles, and the resulting photocatalytic activity of the nanocomposites was investigated by studying the removal of Methyl Orange and 2,4-Dichlorophenoxyacetic acid (2,4-D) under sunlight-type excitation. The study revealed that the deposited noble metals are not always favorable for the enhancement of photocatalytic response of catalysts; the activity of WO 3 was enhanced manyfold (˜8 times) by depositing an optimum amount of Pt nanoparticles after certain photodeposition time whereas the presence of Au nanoparticles onto the WO 3 surface, under identical experimental conditions, affected the removal process negatively. The variation in the photocatalytic activity of nanocomposites was attributed to the size of the deposited metals; Pt nanoparticles were uniformly dispersed with narrow size distribution (2-4 nm) while the size distribution of Au nanoparticles was found to be 10-15 nm for similar preparation conditions. The effects of critical parameters, such as metal deposition time and metal contents, on the photocatalytic activity of WO 3 were investigated. Furthermore, Pt/WO 3 nanocomposites showed good stability and recyclability under the conditions studied.

  10. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2O 4 spinel in oxidizing atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei -Zhen; Nie, Lei; Cheng, Yingwen

    With the capability of MgAl 2O 4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated in this paper, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2 nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement inmore » Pt exposure was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H 2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. Finally, a dynamic stabilization mechanism involving wetting/nucleation seems to be responsible for the evolution of surface compositions upon cyclic oxidizing and reducing thermal treatments.« less

  11. Synthesis and characterization of diverse Pt nanostructures in Nafion.

    PubMed

    Ingle, N J C; Sode, A; Martens, I; Gyenge, E; Wilkinson, D P; Bizzotto, D

    2014-02-25

    With the aid of TEM characterization, we describe two distinct Pt nanostructures generated via the electroless reduction of Pt(NH3)4(NO2)2 within Nafion. Under one set of conditions, we produce bundles of Pt nanorods that are 2 nm in diameter and 10-20 nm long. These bundled Pt nanorods, uniformly distributed within 5 μm of the Nafion surface, are strikingly similar to the proposed hydrated nanomorphology of Nafion, and therefore strongly suggestive of Nafion templating. By altering the reaction environment (pH, reductant strength, and Nafion hydration), we can also generate nonregular polyhedron Pt nanoparticles that range in size from a few nanometers in diameter up to 20 nm. These Pt nanoparticles form a dense Pt layer within 100-200 nm from the Nafion surface and show a power-law dependence of particle size and distribution on the distance from the Nafion membrane surface. Control over the distribution and the type of Pt nanostructures in the surface region may provide a cost-effective, simple, and scaleable pathway for enhancing manufacturability, activity, stability, and utilization efficiency of Pt catalysts for electrochemical devices.

  12. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2O 4 spinel in oxidizing atmosphere

    DOE PAGES

    Li, Wei -Zhen; Nie, Lei; Cheng, Yingwen; ...

    2017-01-13

    With the capability of MgAl 2O 4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated in this paper, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2 nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement inmore » Pt exposure was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H 2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. Finally, a dynamic stabilization mechanism involving wetting/nucleation seems to be responsible for the evolution of surface compositions upon cyclic oxidizing and reducing thermal treatments.« less

  13. Mass-produced multi-walled carbon nanotubes as catalyst supports for direct methanol fuel cells.

    PubMed

    Jang, In Young; Park, Ki Chul; Jung, Yong Chae; Lee, Sun Hyung; Song, Sung Moo; Muramatsu, Hiroyuki; Kim, Yong Jung; Endo, Morinobu

    2011-01-01

    Commercially mass-produced multi-walled carbon nanotubes, i.e., VGNF (Showa Denko Co.), were applied to support materials for platinum-ruthenium (PtRu) nanoparticles as anode catalysts for direct methanol fuel cells. The original VGNFs are composed of high-crystalline graphitic shells, which hinder the favorable surface deposition of the PtRu nanoparticles that are formed via borohydride reduction. The chemical treatment of VGNFs with potassium hydroxide (KOH), however, enables highly dispersed and dense deposition of PtRu nanoparticles on the VGNF surface. This capability becomes more remarkable depending on the KOH amount. The electrochemical evaluation of the PtRu-deposited VGNF catalysts showed enhanced active surface areas and methanol oxidation, due to the high dispersion and dense deposition of the PtRu nanoparticles. The improvement of the surface deposition states of the PtRu nanoparticles was significantly due to the high surface area and mesorporous surface structure of the KOH-activated VGNFs.

  14. Nanoscale morphology and optical property evolution of Pt nanostructures on GaN (0 0 0 1) by the systematic control of annealing temperature and duration with various Pt thickness

    NASA Astrophysics Data System (ADS)

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Zhang, Quanzhen; Li, Ming-Yu; Lee, Jihoon

    2017-06-01

    By the controlled fabrication of Pt nanostructures, various surface morphology dependent electronic, catalytic and optical properties can be exploited for a wide range of applications. In this paper, the evolution of Pt nanostructures on GaN (0 0 0 1) by the solid-state dewetting of Pt thin films is investigated. Controlling the annealing temperature, time and film thickness allows us to fabricate distinct size, density and configurations of Pt nanostructures. For 10 nm Pt thickness, tiny voids and Pt hillocks up to 550 °C, extensive void expansion and Pt nanostructure evolution between 600 °C-750 °C and finally Pt nanostructures assisted nanoholes penetration on GaN surface above 800 °C are demonstrated. Furthermore, comparatively elongated Pt nanostructures and NHs are resulted with 20 nm Pt thickness and voids growth and connected Pt nanostructure are formed by annealing duration control. The transformation of Pt films to nanostructures is governed by the surface diffusion, Rayleigh instability, Volmer-Weber growth and energy minimization mechanism whereas NHs penetration is commenced by the decomposition of GaN, Pt-Ga alloying and nitrogen desorption at high temperature. In addition, the optical characteristic of Pt nanostructures on GaN (0 0 0 1) by reflectance, photoluminescence (PL) and Raman spectroscopy demonstrate the surface morphology dependent spectral response.

  15. Density Functional Theory plus Hubbard U Study of the Segregation of Pt to the CeO2- x Grain Boundary.

    PubMed

    Zhou, Guoli; Li, Pan; Ma, Qingmin; Tian, Zhixue; Liu, Ying

    2018-03-14

    Grain boundaries (GBs) can be used as traps for solute atoms and defects, and the interaction between segregants and GBs is crucial for understanding the properties of nanocrystalline materials. In this study, we have systematically investigated the Pt segregation and Pt-oxygen vacancies interaction at the ∑3 (111) GB in ceria (CeO 2 ). The Pt atom has a stronger tendency to segregate to the ∑3 (111) GB than to the (111) and (110) free surfaces, but the tendency is weaker than to (112) and (100). Lattice distortion plays a dominant role in Pt segregation. At the Pt-segregated-GB (Pt@GB), oxygen vacancies prefer to form spontaneously near Pt in the GB region. However, at the pristine GB, oxygen vacancies can only form under O-poor conditions. Thus, Pt segregation to the GB promotes the formation of oxygen vacancies, and their strong interactions enhance the interfacial cohesion. We propose that GBs fabricated close to the surfaces of nanocrystalline ceria can trap Pt from inside the grains or other types of surface, resulting in the suppression of the accumulation of Pt on the surface under redox reactions, especially under O-poor conditions.

  16. Molecular-orbital models for the catalytic activity and selectivity of coordinatively unsaturated platinum surfaces and complexes

    NASA Astrophysics Data System (ADS)

    Balazs, A. C.; Johnson, K. H.

    1982-01-01

    Electronic structures have been calculated for 5-, 6-, and 10-atom Pt clusters, as well as for a Pt(PH 3) 4 coordination complex, using the self-consistent-field X-alpha scattered-wave (SCF-Xα-SW) molecular-orbital technique. The 10-atom cluster models the local geometry of a flat, unreconstructed Pt(100) surface, while the 5- and 6-atom clusters show features of a stepped Pt surface. Pt(PH 3) 4 resembles the chemically similar homogeneous catalyst Pt(PPh 3) 4. Common to all these coordinatively unsaturated complexes are orbitals lying near or coinciding with the highest occupied molecular orbital ("Fermi level") which show pronounced d lobes pointing directly into the vacuum. Under the hypothesis that these molecular orbitals are mainly responsible for the chemical activities of the above species, one can account for the relative similarities and differences in catalytic activity and selectivity displayed by unreconstructed Pt(100) surfaces, stepped Pt surfaces or particles, and isolated Pt(PPh 3) 4 coordination complexes. The relevance of these findings to catalyst-support interactions is also discussed. Finally, relativistic corrections to the electronic structures are calculated and their implications on catalytic properties discussed.

  17. Nitrogen-doped hierarchical lamellar porous carbon synthesized from the fish scale as support material for platinum nanoparticle electrocatalyst toward the oxygen reduction reaction.

    PubMed

    Liu, Haijing; Cao, Yinliang; Wang, Feng; Huang, Yaqin

    2014-01-22

    Novel hierarchical lamellar porous carbon (HLPC) with high BET specific surface area of 2730 m(2) g(-1) and doped by nitrogen atoms has been synthesized from the fish scale without any post-synthesis treatment, and applied to support the platinum (Pt) nanoparticle (NP) catalysts (Pt/HLPC). The Pt NPs could be highly dispersed on the porous surface of HLPC with a narrow size distribution centered at ca. 2.0 nm. The results of the electrochemical analysis reveal that the electrochemical active surface area (ECSA) of Pt/HLPC is larger than the Pt NP electrocatalyst supported on the carbon black (Pt/Vulcan XC-72). Compared with the Pt/Vulcan XC-72, the Pt/HLPC exhibits larger current density, lower overpotential, and enhanced catalytic activity toward the oxygen reduction reaction (ORR) through the direct four-electron pathway. The improved catalytic activity is mainly attributed to the high BET specific surface area, hierarchical porous structures and the nitrogen-doped surface property of HLPC, indicating the superiority of HLPC as a promising support material for the ORR electrocatalysts.

  18. Complexation of lysozyme with adsorbed PtBS-b-SCPI block polyelectrolyte micelles on silver surface.

    PubMed

    Papagiannopoulos, Aristeidis; Christoulaki, Anastasia; Spiliopoulos, Nikolaos; Vradis, Alexandros; Toprakcioglu, Chris; Pispas, Stergios

    2015-01-20

    We present a study of the interaction of the positively charged model protein lysozyme with the negatively charged amphiphilic diblock polyelectrolyte micelles of poly(tert-butylstyrene-b-sodium (sulfamate/carboxylate)isoprene) (PtBS-b-SCPI) on the silver/water interface. The adsorption kinetics are monitored by surface plasmon resonance, and the surface morphology is probed by atomic force microscopy. The micellar adsorption is described by stretched-exponential kinetics, and the micellar layer morphology shows that the micelles do not lose their integrity upon adsorption. The complexation of lysozyme with the adsorbed micellar layers depends on the micelles arrangement and density in the underlying layer, and lysozyme follows the local morphology of the underlying roughness. When the micellar adsorbed amount is small, the layers show low capacity in protein complexation and low resistance in loading. When the micellar adsorbed amount is high, the situation is reversed. The adsorbed layers both with or without added protein are found to be irreversibly adsorbed on the Ag surface.

  19. Effects of annealing temperature and duration on the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire.

    PubMed

    Sui, Mao; Li, Ming-Yu; Kunwar, Sundar; Pandey, Puran; Zhang, Quanzhen; Lee, Jihoon

    2017-01-01

    Metallic nanostructures (NSs) have been widely adapted in various applications and their physical, chemical, optical and catalytic properties are strongly dependent on their surface morphologies. In this work, the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire (0001) is demonstrated by the control of annealing temperature and dwelling duration with the distinct thickness of Pt films. The formation of Pt NSs is led by the surface diffusion, agglomeration and surface and interface energy minimization of Pt thin films, which relies on the growth parameters such as system temperature, film thickness and annealing duration. The Pt layer of 10 nm shows the formation of overlaying NPs below 650°C and isolated Pt nanoparticles above 700°C based on the enhanced surface diffusion and Volmer-Weber growth model whereas larger wiggly nanostructures are formed with 20 nm thick Pt layers based on the coalescence growth model. The morphologies of Pt nanostructures demonstrate a sharp distinction depending on the growth parameters applied. By the control of dwelling duration, the gradual transition from dense Pt nanoparticles to networks-like and large clusters is observed as correlated to the Rayleigh instability and Ostwald ripening. The various Pt NSs show a significant distinction in the reflectance spectra depending on the morphology evolution: i.e. the enhancement in UV-visible and NIR regions and the related optical properties are discussed in conjunction with the Pt NSs morphology and the surface coverage.

  20. Catalyst inks and method of application for direct methanol fuel cells

    DOEpatents

    Zelenay, Piotr; Davey, John; Ren, Xiaoming; Gottesfeld, Shimshon; Thomas, Sharon C.

    2004-02-24

    Inks are formulated for forming anode and cathode catalyst layers and applied to anode and cathode sides of a membrane for a direct methanol fuel cell. The inks comprise a Pt catalyst for the cathode and a Pt--Ru catalyst for the anode, purified water in an amount 4 to 20 times that of the catalyst by weight, and a perfluorosulfonic acid ionomer in an amount effective to provide an ionomer content in the anode and cathode surfaces of 20% to 80% by volume. The inks are prepared in a two-step process while cooling and agitating the solutions. The final solution is placed in a cooler and continuously agitated while spraying the solution over the anode or cathode surface of the membrane as determined by the catalyst content.

  1. First-principles Study of Phenol Hydrogenation on Pt and Ni Catalysts in Aqueous Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Yeohoon; Rousseau, Roger J.; Weber, Robert S.

    2014-07-23

    The effects of aqueous phase on the reactivity of phenol hydrogenation over Pt and Ni catalysts were investigated using density functional theory based ab initio molecular dynamics (AIMD) calculations. The adsorption of phenol and the first hydrogenation steps via three carbon positions (ortho, meta and para) with respect to the phenolic OH group were studied in both vacuum and liquid phase conditions. To gain insight into how the aqueous phase affects the metal catalyst surface, increasing water environments including singly adsorbed water molecule, mono- (9 water molecules), double layers (24 water molecules), and the bulk liquid water which (52 watermore » molecules) on the Pt(111) and the Ni(111) surfaces were modeled. Compared to the vacuum/metal interfaces, AIMD simulation results suggest that the aqueous Pt(111) and Ni(111) interfaces have a lower metal work function in the order of 0.8 - 0.9 eV, thus, making the metals in aqueous phase stronger reducing agents and poorer oxidizing agents. Phenol adsorption from the aqueous phase is found to be slightly weaker that from the vapor phase. The first hydrogenation step of phenol at the ortho position of the phenolic ring is slightly favored over the other two positions. The polarization induced by the surrounding water molecules and the solvation effect play important roles in stabilizing the transition states associated with phenol hydrogenation by lowering the barriers of 0.1 - 0.4 eV. The detailed discussion on the basis of the interfacial electrostatics from the current study is very useful to understand the nature of a broader class of metal catalyzed reactions in liquid solution phase. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences and Office of Energy Efficiency and Renewable Energy. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less

  2. Pt/Au nanoalloy supported on alumina and chlorided alumina: DFT and experimental analysis

    NASA Astrophysics Data System (ADS)

    Sharifi, N.; Falamaki, C.; Ghorbanzadeh Ahangari, M.

    2018-04-01

    Density functional theory (DFT) was used to explore the adsorption of Pt/Au nanoalloy onto a pure and chlorided γ-Al2O3(110) surface, which has been applied in numerous catalytic reactions. First, we considered the adsorption properties of Pt clusters (n ≤ 5) onto the Al2O3(110) surface to determine the most stable Pt cluster on alumina surface in reforming processes. After full structural relaxations of Pt clusters at various configurations on alumina, our computed results expressed that the minimum binding energy (‑5.67 eV) is accrued for Pt4 cluster and the distance between the nearest Pt atom in the cluster to the alumina surface is equal to 1.13 Å. Then, we investigated the binding energies, geometries, and electronic properties of adsorbed Aun clusters (n ≤ 6) on the γ-Al2O3(110) surface. Our studied showed that Au5 was the most thermodynamically stable structure on γ-Al2O3. Finally, we inspected these properties for adsorbed Au clusters onto the Pt4-decorated alumina (Aun/Pt4-alumina) system. The binding energy of the Au4/Pt4-alumina system was ‑5.01 eV, and the distance between Au4 cluster and Pt4-alumina was 1.33 Å. The Au4/Pt4alumina system was found to be the most stable nanometer-sized catalyst design. At last, our first-principles calculations predicted that the best position of embedment Cl on the Au4/Pt4-alumina.

  3. Characterization and methanol electrooxidation studies of Pt(111)/Os surfaces prepared by spontaneous deposition.

    PubMed

    Johnston, Christina M; Strbac, Svetlana; Lewera, Adam; Sibert, Eric; Wieckowski, Andrzej

    2006-09-12

    Catalytic activity of the Pt(111)/Os surface toward methanol electrooxidation was optimized by exploring a wide range of Os coverage. Various methods of surface analyses were used, including electroanalytical, STM, and XPS methods. The Pt(111) surface was decorated with nanosized Os islands by spontaneous deposition, and the Os coverage was controlled by changing the exposure time to the Os-containing electrolyte. The structure of Os deposits on Pt(111) was characterized and quantified by in situ STM and stripping voltammetry. We found that the optimal Os surface coverage of Pt(111) for methanol electrooxidation was 0.7 +/- 0.1 ML, close to 1.0 +/- 0.1 Os packing density. Apparently, the high osmium coverage Pt(111)/Os surface provides more of the necessary oxygen-containing species (e.g., Os-OH) for effective methanol electrooxidation than the Pt(111)/Os surfaces with lower Os coverage (vs e.g., Ru-OH). Supporting evidence for this conjecture comes from the CO electrooxidation data, which show that the onset potential for CO stripping is lowered from 0.53 to 0.45 V when the Os coverage is increased from 0.2 to 0.7 ML. However, the activity of Pt(111)/Os for methanol electrooxidation decreases when the Os coverage is higher than 0.7 +/- 0.1 ML, indicating that Pt sites uncovered by Os are necessary for sustaining significant methanol oxidation rates. Furthermore, osmium is inactive for methanol electrooxidation when the platinum substrate is absent: Os deposits on Au(111), a bulk Os ingot, and thick films of electrodeposited Os on Pt(111), all compare poorly to Pt(111)/Os. We conclude that a bifunctional mechanism applies to the methanol electrooxidation similarly to Pt(111)/Ru, although with fewer available Pt sites. Finally, the potential window for methanol electrooxidation on Pt(111)/Os was observed to shift positively versus Pt(111)/Ru. Because of the difference in the Os and Ru oxophilicity under electrochemical conditions, the Os deposit provides fewer oxygen-containing species, at least below 0.5 V vs RHE. Both higher coverage of Os than Ru and the higher potentials are required to provide a sufficient number of active oxygen-containing species for the effective removal of the site-blocking CO from the catalyst surface when the methanol electrooxidation process occurs.

  4. Colorimetric assay of heparin in plasma based on the inhibition of oxidase-like activity of citrate-capped platinum nanoparticles.

    PubMed

    You, Jyun-Guo; Liu, Yao-Wen; Lu, Chi-Yu; Tseng, Wei-Lung; Yu, Cheng-Ju

    2017-06-15

    We report citrate-capped platinum nanoparticles (Pt NPs) as oxidase mimetics for effectively catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid), dopamine, and methylene blue in the presence of O 2 . To confirm oxidase-like activity of citrate-capped Pt NPs, their activity toward oxygen reduction reaction was studied using cyclic voltammetry and rotating ring-disk electrode method. The results obtained showed that Pt NP NPs can catalyze the oxidation of organic substrates to the colored product and the reduction of oxygen to water through a four-electron exchange process. Because the aggregation of Pt NPs can inhibit their oxidase-like activity and protamine can recognize heparin, we prepared the protamine-modified Pt NPs through direct adsorption on the surface of citrate-capped Pt NPs. The electrostatic attraction between heparin and protamine-stabilized Pt NPs induced nanoparticle aggregation, inhibiting their catalytic activity. Therefore, the lowest detectable heparin concentrations through UV-vis absorption and by the naked eye were estimated to be 0.3 and 60nM, respectively. Moreover, the proposed system enabled the determination of the therapeutic heparin concentration in a single drop of blood. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Is the planum temporale surface area a marker of hemispheric or regional language lateralization?

    PubMed

    Tzourio-Mazoyer, Nathalie; Crivello, Fabrice; Mazoyer, Bernard

    2018-04-01

    We investigated the association between the left planum temporale (PT) surface area or asymmetry and the hemispheric or regional functional asymmetries during language production and perception tasks in 287 healthy adults (BIL&GIN) who were matched for sex and handedness. The measurements of the PT surface area were performed after manually delineating the region using brain magnetic resonance images (MRI) and considering the Heschl's gyrus (HG) duplication pattern; the measurements either included (PT tot ) or did not include (PT post ) the second gyrus. A region encompassing both the PT and HG (HGPT) was also studied. Regardless of the ROI measured, 80% of the sample had a positive left minus right PT asymmetry. We first tested whether the PT tot , PT post and HGPT surface areas in the left or right hemispheres or PT asymmetries differed in groups of individuals varying in language lateralization by assessing their hemispheric index during a sentence production minus word list production task. We then investigated the association between these different measures of the PT anatomy and the regional asymmetries measured during the task. Regardless of the anatomical definition used, we observed no correlations between the left surface areas or asymmetries and the hemispheric or regional functional asymmetries during the language production task. We then performed a similar analysis using the same sample measuring language functional lateralization during speech listening tasks (i.e., listening to sentences and lists of words). Although the hemispheric lateralization during speech listening was not correlated with the left PT tot , PT post or HGPT surface areas or the PT asymmetries, significant positive correlations were observed between the asymmetries in these regions and the regional functional asymmetries measured in areas adjacent to the end of the Sylvian fissure while participants listened to the word lists or sentences. The PT asymmetry thus appears to be associated with the local functional asymmetries in auditory areas but is not a marker of inter-individual variability in language dominance.

  6. 46 CFR 11.950 - Subjects for engineer endorsements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., Valves P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P P P P-T P Hydraulics P-T P-T P-T P-T P-T P-T... P-T Boiler Water P-T P-T P-T P-T P-T P-T P-T P-T P-T P P-T P P P P-T P-T P Control Systems P-T P-T P...

  7. 46 CFR 11.950 - Subjects for engineer endorsements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., Valves P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P P P P-T P Hydraulics P-T P-T P-T P-T P-T P-T... P-T Boiler Water P-T P-T P-T P-T P-T P-T P-T P-T P-T P P-T P P P P-T P-T P Control Systems P-T P-T P...

  8. 46 CFR 11.950 - Subjects for engineer endorsements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., Valves P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P P P P-T P Hydraulics P-T P-T P-T P-T P-T P-T... P-T Boiler Water P-T P-T P-T P-T P-T P-T P-T P-T P-T P P-T P P P P-T P-T P Control Systems P-T P-T P...

  9. 46 CFR 11.950 - Subjects for engineer endorsements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., Valves P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P-T P P P P-T P Hydraulics P-T P-T P-T P-T P-T P-T... P-T Boiler Water P-T P-T P-T P-T P-T P-T P-T P-T P-T P P-T P P P P-T P-T P Control Systems P-T P-T P...

  10. Isolated Pt Atoms Stabilized by Amorphous Tungstenic Acid for Metal-Support Synergistic Oxygen Activation.

    PubMed

    Zhang, Qian; Qin, Xixi; Duanmu, Fanpeng; Ji, Huiming; Shen, Zhurui; Han, Xiaopeng; Hu, Wenbin

    2018-06-05

    Oxygen activation plays a crucial role in many important chemical reactions such as organics oxidation and oxygen reduction. For developing highly active materials for oxygen activation, herein, we report an atomically dispersed Pt on WO3 nanoplates stabilized by in-situ formed amorphous H2WO4 out-layer and the mechanism for activating molecular oxygen. Experimental and theoretical studies demonstrate that the isolated Pt atoms coordinated with oxygen atoms from [WO6] and water of H2WO4, consequently leading to optimized surface electronic configuration and strong metal support interaction (SMSI). In exemplified reactions of butanone oxidation sensing and oxygen reduction, the atomic Pt/WO3 hybrid exhibits superior activity than those of Pt nanoclusters/WO3 and bare WO3 as well as enhanced long-term durability. This work will provide insight on the origin of activity and stability for atomically dispersed materials, thus promoting the development of highly efficient and durable single atom-based catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Weathering of PGE sulfides and Pt-Fe alloys in the Freetown Layered Complex, Sierra Leone

    NASA Astrophysics Data System (ADS)

    Bowles, John F. W.; Suárez, Saioa; Prichard, Hazel M.; Fisher, Peter C.

    2017-12-01

    Fresh and weathered rocks and saprolite from Horizon B of the Freetown Layered Complex contain platinum-group minerals (PGM). The PGM in the fresh rocks are 1-7 μm across, including cooperite (PtS), isoferroplatinum (Pt3Fe), minor tetraferroplatinum (PtFe), tulameenite (Pt2FeCu), Os-bearing laurite (RuS2), and other base metal-sulfide (BMS)-bearing PGM. The weathered rocks contain fewer of those PGM but a high proportion of disordered Cu-(±Pd)-bearing Pt-Fe alloys. The saprolite hosts scarce, smaller (1-3 μm) ordered PtFe and disordered PtFe3. The Pt-Fe alloys became increasingly Fe rich as weathering proceeded. Pt-Fe oxides appeared during weathering. Copper sulfides associated with the primary PGM and cooperite (with <3% Pd) were destroyed to provide the minor Cu and Pd found in some of the disordered Pt-Fe alloys. Platinum- and Pd-bearing saprolites have retained the original rock fabric and, to a depth of about 2 m, surround residual rocks that show progressive weathering (corestones). Ground water passing through the saprolite has transported Pt and Pd (and probably Au) in solution down slope into saprolite over unmineralized rocks. Transport is marked by changes in the Pt/Pd ratio indicating that the metals have moved independently. Palladium is present in marginally higher concentrations in the deeper saprolite than in the corestones suggesting some retention of Pd in the deeper saprolite. Platinum and Pd are less concentrated in the upper saprolite than the deeper saprolite indicating surface leaching. Alteration occurred over a long period in an organic and microbial rich environment that may have contributed to the leaching and transport of PGE.

  12. Platinized tin oxide catalysts for CO2 lasers: Effects of pretreatment

    NASA Technical Reports Server (NTRS)

    Gardner, Steven D.; Hoflund, Gar B.; Schryer, David R.; Upchurch, Billy T.

    1990-01-01

    Platinized tin oxide surfaces used for low-temperature CO oxidation in CO2 lasers have been characterized before and after reduction in CO at 125 and 250 C using ion scattering spectroscopy (ISS) and X ray photoelectron spectroscopy (XPS). XPS indicates that the Pt is present initially as PtO2. Reduction at 125 C converts the PtO2 to Pt(OH)2 while reduction at 250 C converts the PtO2 to metallic Pt. ISS shows that the Pt in the outermost atomic layer of the catalyst is mostly covered by substrate species during the 250 C reduction. Both the ISS and XPS results are consistent with Pt/Sn alloy formation. The surface dehydration and migration of substrate species over surface Pt and Sn appear to explain why a CO pretreatment at 250 C produces inferior CO oxidation activities compared to a 125 C pretreatment.

  13. MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells.

    PubMed

    Zhou, Chunmei; Wang, Hongjuan; Peng, Feng; Liang, Jiahua; Yu, Hao; Yang, Jian

    2009-07-07

    Pt/MnO2/carbon nanotube (CNT) and PtRu/MnO2/CNT nanocomposites were synthesized by successively loading hydrous MnO2 and Pt (or PtRu alloy) nanoparticles on CNTs and were used as anodic catalysts for direct methanol fuel cells (DMFCs). The existence of MnO2 on the surface of CNTs effectively increases the proton conductivity of the catalyst, which then could remarkably improve the performance of the catalyst in methanol electro-oxidation. As a result, Pt/MnO2/CNTs show higher electrochemical active surface area and better methanol electro-oxidation activity, compared with Pt/CNTs. As PtRu alloy nanoparticles were deposited on the surface of MnO2/CNTs instead of Pt, the PtRu/MnO2/CNT catalyst shows not only excellent electro-oxidation activity to methanol with forward anodic peak current density of 901 A/gPt but also good CO oxidation ability with lower preadsorbed CO oxidation onset potential (0.33 V vs Ag/AgCl) and peak potential (0.49 V vs Ag/AgCl) at room temperature.

  14. Universal Strategy for Ultrathin Pt-M (M = Fe, Co, Ni) Nanowires for Efficient Catalytic Hydrogen Generation.

    PubMed

    Bai, Shuxing; Huang, Bolong; Shao, Qi; Huang, Xiaoqing

    2018-06-25

    Methanol (CH 3 OH) reformation with water (H 2 O) to in situ release hydrogen (H 2 ) is regarded as a hopeful H 2 production approach for polymer electrolyte membrane fuel cells, while developing highly efficient CH 3 OH reformation catalysts still remains a great challenge. Herein, a series of Pt-based ultrafine nanowires (UNWs) with high surface atom ratio are used as highly active and stable catalysts for CH 3 OH reformation to H 2 . By tuning Pt 3 M (M = Fe, Co, Ni), support and the composition of the Pt x Fe UNWs, the optimized Pt 4 Fe UNWs/Al 2 O 3 exhibits excellent catalytic behaviors with the high H 2 turnover frequency reaching to 2035.8 h -1 , more than 4 times higher than that of Pt UNWs/Al 2 O 3 . The reaction mechanism investigated by diffuse reflectance infrared Fourier transform spectroscopy turns out that the production of H 2 undergoes the CH 3 OH decomposition to *CO and gas-shift reaction of *CO with H 2 O. Combing with the XPS result and the density functional theory calculations, the high CH 3 OH reformation activity of Pt 4 Fe UNWs/Al 2 O 3 is attributable to synergism between Pt and Fe, which facilitates H 2 desorption and intermediate HCOO* and *COO formations via the reaction between *CO and OH - .

  15. Surface potential driven dissolution phenomena of [0 0 0 1]-oriented ZnO nanorods grown from ZnO and Pt seed layers

    NASA Astrophysics Data System (ADS)

    Seo, Youngmi; Kim, Jung Hyeun

    2011-06-01

    Highly oriented ZnO nanorods are synthesized hydrothermally on ZnO and Pt seed layers, and they are dissolved in KOH solution. The rods grown on ZnO seed layer show uniform dissolution, but those grown on Pt seed layer are rod-selectively dissolved. The ZnO nanorods from both seed layers show the same crystalline structure through XRD and Raman spectrometer data. However, the surface potential analysis reveals big difference for ZnO and Pt seed cases. The surface potential distribution is very uniform for the ZnO seed case, but it is much fluctuated on the Pt seed case. It suggests that the rod-selective dissolution phenomena on Pt seed case are likely due to the surface energy difference.

  16. ISS and TPD study of the adsorption and interaction of CO and H2 on polycrystalline Pt

    NASA Technical Reports Server (NTRS)

    Melendez, Orlando; Hoflund, Gar B.; Schryer, David R.

    1990-01-01

    The adsorption and interaction of CO and H2 on polycrystalline Pt has been studied using ion scattering spectroscopy (ISS) and temperature programmed desorption (TPD). The ISS results indicate that the initial CO adsorption on Pt takes place very rapidly and saturates the Pt surface with coverage close to a monolayer. ISS also shows that the CO molecules adsorb at an angular orientation from the surface normal and perhaps parallel to the surface. A TPD spectrum obtained after coadsorbing C-12 O-16 and C-13 O-18 on Pt shows no isotopic mixing, which is indicative of molecular CO adsorption. TPD spectra obtained after coadsorbing H2 and CO on polycrystalline Pt provides evidence for the formation of a CO-H surface species.

  17. Preparation of c-axis perpendicularly oriented ultra-thin L10-FePt films on MgO and VN underlayers

    NASA Astrophysics Data System (ADS)

    Futamoto, Masaaki; Shimizu, Tomoki; Ohtake, Mitsuru

    2018-05-01

    Ultra-thin L10-FePt films of 2 nm average thickness are prepared on (001) oriented MgO and VN underlayers epitaxially grown on base substrate of SrTiO3(001) single crystal. Detailed cross-sectional structures are observed by high-resolution transmission electron microscopy. Continuous L10-FePt(001) thin films with very flat surface are prepared on VN(001) underlayer whereas the films prepared on MgO(001) underlayer consist of isolated L10-FePt(001) crystal islands. Presence of misfit dislocation and lattice bending in L10-FePt material is reducing the effective lattice mismatch with respect to the underlayer to be less than 0.5 %. Formation of very flat and continuous FePt layer on VN underlayer is due to the large surface energy of VN material where de-wetting of FePt material at high temperature annealing process is suppressed under a force balance between the surface and interface energies of FePt and VN materials. An employment of underlayer or substrate material with the lattice constant and the surface energy larger than those of L10-FePt is important for the preparation of very thin FePt epitaxial thin continuous film with the c-axis controlled to be perpendicular to the substrate surface.

  18. Hexagonal boron nitride cover on Pt(111): a new route to tune molecule-metal interaction and metal-catalyzed reactions.

    PubMed

    Zhang, Yanhong; Weng, Xuefei; Li, Huan; Li, Haobo; Wei, Mingming; Xiao, Jianping; Liu, Zhi; Chen, Mingshu; Fu, Qiang; Bao, Xinhe

    2015-05-13

    In heterogeneous catalysis molecule-metal interaction is often modulated through structural modifications at the surface or under the surface of the metal catalyst. Here, we suggest an alternative way toward this modulation by placing a two-dimensional (2D) cover on the metal surface. As an illustration, CO adsorption on Pt(111) surface has been studied under 2D hexagonal boron nitride (h-BN) overlayer. Dynamic imaging data from surface electron microscopy and in situ surface spectroscopic results under near ambient pressure conditions confirm that CO molecules readily intercalate monolayer h-BN sheets on Pt(111) in CO atmosphere but desorb from the h-BN/Pt(111) interface even around room temperature in ultrahigh vacuum. The interaction of CO with Pt has been strongly weakened due to the confinement effect of the h-BN cover, and consequently, CO oxidation at the h-BN/Pt(111) interface was enhanced thanks to the alleviated CO poisoning effect.

  19. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2 O 4 spinel in oxidizing atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei-Zhen; Nie, Lei; Cheng, Yingwen

    With the capability of MgAl2O4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement in Pt exposure was achieved when themore » sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. A dynamic stabilization mechanism involving wetting\

  20. Electrochemically induced disintegration of layer-by-layer-assembled thin films composed of 2-iminobiotin-labeled poly(ethyleneimine) and avidin.

    PubMed

    Sato, Katsuhiko; Kodama, Daisuke; Naka, Yukihisa; Anzai, Jun-ichi

    2006-12-01

    A layer-by-layer assembly composed of avidin and 2-iminobiotin-labeled poly(ethyleneimine) (ib-PEI) was prepared on the surface of a platinum (Pt) film-coated quartz resonator, and an electrochemically induced disintegration of the avidin-ib-PEI assembly was studied using a quartz crystal microbalance. The resonance frequency of a five-bilayer (avidin-ib-PEI)5 film-coated quartz resonator was increased upon application of an electric potential to the Pt layer of the quartz resonator, suggesting that the mass on the quartz resonator was decreased as a result of disintegration of the (avidin-ib-PEI)5 film, due to a pH change in the vicinity of the surface of the Pt-coated quartz resonator. It may be that the (avidin-ib-PEI)5 film assembly was decomposed by acidification of the local pH on the surface of the Pt layer, which in turn was induced through electrolysis of water on Pt, because ib-PEI forms complexes with avidin only in basic media. In pH 9 solution, the (avidin-ib-PEI)5 film was decomposed under the influence of an applied potential of 0.6-1.0 V versus Ag/AgCl. The (avidin-ib-PEI)5 film was decomposed almost completely within a minute in a low concentration buffer (1 mM, pH 9), while the decomposition was slower in 10 and 100 mM buffer solutions at the same pH. The decomposition of the assembly was rapid when the electrode potential was applied in pH 9 solutions, while the response was relatively slow in pH 10 and 11 solutions. All the results are rationalized on the basis of an electrochemically induced acidification of the local environment around the (avidin-ib-PEI)5 film on the Pt layer.

  1. Low-level (PPB) determination of cisplatin in cleaning validation (rinse water) samples. II. A high-performance liquid chromatographic method.

    PubMed

    Raghavan, R; Burchett, M; Loffredo, D; Mulligan, J A

    2000-04-01

    A high-performance liquid chromatographic (HPLC) method is described for the determination of residual levels of cisplatin from extracts of surfaces with very low surface area; from extracts of surfaces of coupons made of Teflon (polytetrafluoroethylene, PTFE), stainless steel, and glass; and in aqueous solution collected after rinsing equipment and parts. Initially, the method was developed to determine cisplatin at concentrations ranging from 20 to 200 ng/ml by direct injection. Retaining the same method conditions, the scope of the method was expanded by the addition of a sample preconcentration step, allowing analyses at levels ranging from 0.5 ng to 20 ng/ml. Preconcentration is necessary for the determination of cisplatin in rinse waters at a quantifiable concentration of about 2 PPB. Under these conditions, the detection limit is about 0.2 to 0.3 ng/ml. Residual cisplatin on different types of surfaces, including surfaces with very low surface area, can be determined by swabbing each test surface with a derivatizing solution. The cisplatin recovered in the swabbing solution can be analyzed by HPLC using direct injection or preconcentration, depending on the expected level of cisplatin in the sample. Initial methods were developed to quantitate at a cisplatin concentration of about 100 PPB or higher in solution extracted from surfaces. However, when surface areas are limited because of the size of the parts, solution concentration becomes very low as a result of the minimum volume required for extraction. To support the application of swabbing techniques to surface analysis, stainless steel, Teflon, and glass surfaces were spiked with cisplatin at 2.5 to 20 ng/cm2. Satisfactory overall recoveries of 90% +/- 10% were obtained from all surfaces. Cisplatin has no ultraviolet/visible (UV/Vis) spectral-active functional group that can be used to detect low levels of cisplatin. Hence, diethyldithiocarbamate (DDTC) was used as a derivatizing agent to increase sensitivity to UV absorption at 340 nm. Diethyldithiocarbamate forms complexes with the platinum in cisplatin to yield a platinum-DDTC (Pt-DDTC) complex with a high molar-extinction coefficient. The Pt(DDTC)2 complex thus formed was chromatographically separated and the quantitated by comparison of its detector response to that of a similarly derivatized standard preparation. DDTC also has application as a cleaning agent for cisplatin (e.g., for production equipment cleaning, spill cleanup). Destruction of cisplatin can be affected by the reaction of cisplatin with this cleaning agent. Derivatization of cisplatin will convert active cisplatin to platinum-DDTC on surfaces or in solution. Final cleaning can be accomplished using a water-for-injection rinse. After such a cleaning process, the rinse water, when collected and analyzed, showed levels of free cisplatin less than the detection concentration of 0.2 PPB and a total platinum concentration less than 10 PPB as Pt-DDTC complex.

  2. Atomic level study of water-gas shift catalysts via transmission electron microscopy and x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Akatay, Mehmed Cem

    Water-gas shift (WGS), CO + H2O ⇆ CO2 + H2 (DeltaH° = -41 kJ mol -1), is an industrially important reaction for the production of high purity hydrogen. Commercial Cu/ZnO/Al2O3 catalysts are employed to accelerate this reaction, yet these catalysts suffer from certain drawbacks, including costly regeneration processes and sulfur poisoning. Extensive research is focused on developing new catalysts to replace the current technology. Supported noble metals stand out as promising candidates, yet comprise intricate nanostructures complicating the understanding of their working mechanism. In this study, the structure of the supported Pt catalysts is explored by transmission electron microscopy and X-ray spectroscopy. The effect of the supporting phase and the use of secondary metals on the reaction kinetics is investigated. Structural heterogeneities are quantified and correlated with the kinetic descriptors of the catalysts to develop a fundamental understanding of the catalytic mechanism. The effect of the reaction environment on catalyst structure is examined by in-situ techniques. This study benefitted greatly from the use of model catalysts that provide a convenient medium for the atomic level characterization of nanostructures. Based on these studies, Pt supported on iron oxide nano islands deposited on inert spherical alumina exhibited 48 times higher WGS turnover rate (normalized by the total Pt surface area) than Pt supported on bulk iron oxide. The rate of aqueous phase glycerol reforming reaction of Pt supported on multiwall carbon nanotubes (MWCNT) is promoted by co-impregnating with cobalt. The synthesis resulted in a variety of nanostructures among which Pt-Co bimetallic nanoparticles are found to be responsible for the observed promotion. The unprecedented WGS rate of Pt supported on Mo2C is explored by forming Mo 2C patches on top of MWCNTs and the rate promotion is found to be caused by the Pt-Mo bimetallic entities.

  3. Dual role of TiO2 buffer layer in Pt catalyzed BiFeO3 photocathodes: Efficiency enhancement and surface protection

    NASA Astrophysics Data System (ADS)

    Shen, Huanyu; Zhou, Xiaoxue; Dong, Wen; Su, Xiaodong; Fang, Liang; Wu, Xi; Shen, Mingrong

    2017-09-01

    Polycrystalline ferroelectric BiFeO3 (BFO) films deposited on transparent indium tin oxide (ITO) electrodes have shown to be an interesting photocathode for photoelectrochemical (PEC) water splitting; however, its PEC performance and stability are far from perfection. Herein, we reported an amorphous TiO2 buffer layer, inserted between BFO and Pt catalyst, improves significantly both its PEC activity and stability. A photocathodic current density of -460 μA/cm2 at 0 V vs. reversible hydrogen electrode (RHE) and an onset potential of 1.25 V vs. RHE were obtained in ITO/BFO/TiO2/Pt photocathode under 100 mW/cm2 Xe-lamp illumination. TiO2 functions as a buffer layer to remove the upward barrier between BFO and Pt, and makes the photogenerated carriers separate efficiently. The photocathode also shows high stability in acid solution after a 10-h PEC continuous testing.

  4. Chemical states of surface oxygen during CO oxidation on Pt(1 1 0) surface revealed by ambient pressure XPS

    DOE PAGES

    Yu, Youngseok; Koh, Yoobin Esther; Lim, Hojoon; ...

    2017-10-20

    Here, the study of CO oxidation on Pt(110) surface is revisited using ambient pressure x-ray photoemission spectroscopy. When the surface temperature reaches the activation temperature for CO oxidation under elevated pressure conditions, both the α-phase of PtO 2 oxide and chemisorbed oxygen are formed simultaneously on the surface. Due to the exothermic nature of CO oxidation, the temperature of the Pt surface increases as CO oxidation takes place. As the CO/O 2 ratio increases, the production of CO 2 increases continuously and the surface temperature also increases. Interestingly, within the diffusion limited regions, the amount of surface oxide changes littlemore » while the chemisorbed oxygen is reduced.« less

  5. Chemical states of surface oxygen during CO oxidation on Pt(1 1 0) surface revealed by ambient pressure XPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Youngseok; Koh, Yoobin Esther; Lim, Hojoon

    Here, the study of CO oxidation on Pt(110) surface is revisited using ambient pressure x-ray photoemission spectroscopy. When the surface temperature reaches the activation temperature for CO oxidation under elevated pressure conditions, both the α-phase of PtO 2 oxide and chemisorbed oxygen are formed simultaneously on the surface. Due to the exothermic nature of CO oxidation, the temperature of the Pt surface increases as CO oxidation takes place. As the CO/O 2 ratio increases, the production of CO 2 increases continuously and the surface temperature also increases. Interestingly, within the diffusion limited regions, the amount of surface oxide changes littlemore » while the chemisorbed oxygen is reduced.« less

  6. Stepped Single Crystals as Improved Model for Supported Catalysts: Ethylene, Methanol and Assorted Molecules on PLATINUM(511) and PLATINUM(331)

    NASA Astrophysics Data System (ADS)

    Spaendonk, Vincent Van

    Past research has shown unusual activity of the (1 x 1)Pt(110) surface to break carbon-carbon and carbon -oxygen bonds. Methane formation from ethylene or ethane has been reported for supported platinum catalysts. A model for the methane formation on (1 x 1)Pt(110), was proposed by Yagasaki. In this study, the mechanism of methane formation has been further investigated, and Yagasaki's model tested, by studying the decomposition of ethylene and methanol on the stepped surfaces Pt(511) and Pt(331) with Temperature Programmed Desorption. The experiments have been carried out in a Ultra High Vacuum system, equipped with a mass spectrometer, LEED and AES. Hydrogen and carbon monoxide desorption show that on Pt(511) different adsorption sites are available than on Pt(331). Ethylene decomposition on Pt(511) leads to small amounts of methane formation compared to (1 x 1)Pt(110). The metastable (1 x 1) phase of Pt(511) is 2-3 times more active than the stable (hex) phase. When ^{13}C_2H _4 is used, ^{13 }CH_4 is not detected. Methane formation is not seen on the Pt(331) surface. Arguments are given why Pt(511) is a superior model for supported catalysts compared to (1 x 1)Pt(110). The carbon-oxygen bond of methanol is not broken on either Pt(511) or Pt(331), whether the surface is clean or covered with oxygen. Hydrogen saturating the surface, prevents the chemisorption of ethylene and the formation of methane. Postadsorption of hydrogen does not lead to an increase in methane formation. Coadsorption of ethylene with carbon monoxide shows a maximum methane formation at 0.3 L carbon monoxide exposure. Poison experiments with 'oxide' and carbon indicate that the active site for methane formation is located at the step. The amount of carbon deposited during ethylene decomposition, increases in the order (1 x 1)Pt(511) to (hex)Pt(511) to Pt(331). This is also the order for decreasing methane activity. In a new model, it is proposed that in order to be active for methane formation, a surface has to prevent the polymerization of single carbon species to inactive graphite. The model predicts that surfaces with large enough (111) terraces have higher diffusion rates and allow the single carbon species to convert to graphite before the species can be hydrogenated.

  7. Atomic layer deposition of ruthenium surface-coating on porous platinum catalysts for high-performance direct ethanol solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Jeong, Heon Jae; Kim, Jun Woo; Jang, Dong Young; Shim, Joon Hyung

    2015-09-01

    Pt-Ru bi-metallic catalysts are synthesized by atomic layer deposition (ALD) of Ru surface-coating on sputtered Pt mesh. The catalysts are evaluated in direct ethanol solid oxide fuel cells (DESOFCs) in the temperature range of 300-500 °C. Island-growth of the ALD Ru coating is confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS) analyses. The performance of the DESOFCs is evaluated based on the current-voltage output and electrochemical impedance spectroscopy. Genuine reduction of the polarization impedance, and enhanced power output with improved surface kinetics are achieved with the optimized ALD Ru surface-coating compared to bare Pt. The chemical composition of the Pt/ALD Ru electrode surface after fuel cell operation is analyzed via XPS. Enhanced cell performance is clearly achieved, attributed to the effective Pt/ALD Ru bi-metallic catalysis, including oxidation of Cdbnd O by Ru, and de-protonation of ethanol and cleavage of C-C bonds by Pt, as supported by surface morphology analysis which confirms formation of a large amount of carbon on bare Pt after the ethanol-fuel-cell test.

  8. 40 CFR Appendix A to Subpart II of... - VOC Data Sheet 1

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Shipbuilding and Ship Repair (Surface Coating) Pt. 63, Subpt. II, App. A... supplied” by the manufacturer. Properties of the coating as supplied 1 to the customer: A. Coating Density... (nonvolatiles) 2. __ g/L coating (less water and exempt compounds) G. Thinner Density: Dth __ g/L ASTM...

  9. Chemistry of acetylene on platinum (111) and (100) surfaces

    PubMed Central

    Muetterties, E. L.; Tasi, M.-C.; Kelemen, S. R.

    1981-01-01

    An ultra-high vacuum experimental study of acetylene chemisorption on Pt(111) and Pt(100) and of the reaction of hydrogen with the acetylene adsorbate has established distinguishing features of carbon-hydrogen bond breaking and making processes as a function of pressure, temperature, and surface crystallography. The rates for both processes are substantially higher on the Pt(100) surface. Net acetylene-hydrogen processes, in the temperature range of 20°C to ≈130°C, are distinctly different on the two surfaces: on Pt(100) the net reaction is hydrogen exchange (1H-2H exchange) and on Pt(111) the only detectable reaction is hydrogenation. Stereochemical differences in the acetylene adsorbate structure are considered to be a contributing factor to the differences in acetylene chemistry on these two surfaces. Images PMID:16593110

  10. Characterization of Platinum Nanoparticles Deposited on Functionalized Graphene Sheets

    PubMed Central

    Chiang, Yu-Chun; Liang, Chia-Chun; Chung, Chun-Ping

    2015-01-01

    Due to its special electronic and ballistic transport properties, graphene has attracted much interest from researchers. In this study, platinum (Pt) nanoparticles were deposited on oxidized graphene sheets (cG). The graphene sheets were applied to overcome the corrosion problems of carbon black at operating conditions of proton exchange membrane fuel cells. To enhance the interfacial interactions between the graphene sheets and the Pt nanoparticles, the oxygen-containing functional groups were introduced onto the surface of graphene sheets. The results showed the Pt nanoparticles were uniformly dispersed on the surface of graphene sheets with a mean Pt particle size of 2.08 nm. The Pt nanoparticles deposited on graphene sheets exhibited better crystallinity and higher oxygen resistance. The metal Pt was the predominant Pt chemical state on Pt/cG (60.4%). The results from the cyclic voltammetry analysis showed the value of the electrochemical surface area (ECSA) was 88 m2/g (Pt/cG), much higher than that of Pt/C (46 m2/g). The long-term test illustrated the degradation in ECSA exhibited the order of Pt/C (33%) > Pt/cG (7%). The values of the utilization efficiency were calculated to be 64% for Pt/cG and 32% for Pt/C. PMID:28793577

  11. Platinized tin oxide catalysts for CO2 lasers - Effects of pretreatment

    NASA Technical Reports Server (NTRS)

    Gardner, Steven D.; Hoflund, Gar B.; Schryer, David R.; Upchurch, Billy T.

    1989-01-01

    Platinized tin oxide surfaces used for low-temperature CO oxidation in CO2 lasers have been characterized before and after reduction in CO at 125 and 250 C using ion scattering spectroscopy (ISS) and X-ray photoelectron spectroscopy (XPS). XPS indicates that the Pt is present initially as Pto2. Reduction at 125 C converts the PtO2 to Pt(OH)2 while reduction at 250 C converts the PtO2 to metallic Pt. ISS shows that the Pt in the outermost atomic layer of the catalyst is mostly covered by substrate species during the 250 C reduction. Both the ISS and XPS results are consistent with Pt/Sn alloy formation. The surface dehydration and migration of substrate species over surface Pt and Sn appear to explain why a CO pretreatment at 250 C produces inferior CO oxidation activities compared to a 125 C pretreatment.

  12. Influence of dioxygen on the promotional effect of Bi during Pt-catalyzed oxidation of 1,6-hexanediol

    DOE PAGES

    Xie, Jiahan; Huang, Benjamin; Yin, Kehua; ...

    2016-05-24

    In this study, a series of carbon-supported, Bi-promoted Pt catalysts with various Bi/Pt atomic ratios was prepared by selectively depositing Bi on Pt nanoparticles. The catalysts were evaluated for 1,6-hexanediol oxidation activity in aqueous solvent under different dioxygen pressures. The rate of diol oxidation on the basis of Pt loading over a Bi-promoted catalyst was 3 times faster than that of an unpromoted Pt catalyst under 0.02 MPa of O 2, whereas the unpromoted catalyst was more active than the promoted catalyst under 1 MPa of O 2. After liquid-phase catalyst pretreatment and 1,6-hexanediol oxidation, migration of Bi on themore » carbon support was observed. The reaction order in O 2 was 0 over Bi-promoted Pt/C in comparison to 0.75 over unpromoted Pt/C in the range of 0.02–0.2 MPa of O 2. Under low O 2 pressure, rate measurements in D 2O instead of H 2O solvent revealed a moderate kinetic isotope effect (rate H2O/rate D2O) on 1,6-hexanediol oxidation over Pt/C (KIE = 1.4), whereas a negligible effect was observed on Bi-Pt/C (KIE = 0.9), indicating that the promotional effect of Bi could be related to the formation of surface hydroxyl groups from the reaction of dioxygen and water. No significant change in product distribution or catalyst stability was observed with Bi promotion, regardless of the dioxygen pressure.« less

  13. Water masses in the Monterey Bay during the summer of 2000

    NASA Astrophysics Data System (ADS)

    Warn-Varnas, Alex; Gangopadhyay, Avijit; Hawkins, J. A.

    2007-06-01

    Water masses in Monterey Bay are determined from the CTD casts of the Monterey Ocean Observing System (MOOS) Upper-water-column Science Experiment (MUSE) August 2000 dataset. It is shown through cluster analysis that the MUSE 2000 CTD dataset contains 5 water masses. These five water masses are: bay surface water (BSW), bay warm water (BWW), bay intermediate water (BIW), sub arctic upper water (SUW) and North Pacific deep water (NPDW). The BWW is a new water mass that exists in one area and is attributed to the effects of solar heating. The volumes occupied by each of the water masses are obtained. The BIW water is the most dominant water mass and occupies 68.8% of the volume. The statistical means and standard deviations for each water parameter, including spiciness and oxygen concentration, are calculated during separate upwelling and relaxed periods. The water mass content and structure are analyzed and studied during upwelling and a relaxed period. During upwelling, along a CTD track off Pt. Ano Nuevo, the water mass T, S distribution tended to be organized along three branches. Off Pt. Ano Nuevo the innovative coastal observation network (ICON) model showed the formation of a cyclonic eddy during the analyzed upwelling period. In time the eddy moved southwest and became absorbed into the southerly flow during the initial phases of the following wind-relaxed period.

  14. Co-Pt core-shell nanostructured catalyst prepared by selective chemical vapor pulse deposition of Pt on Co as a cathode in polymer electrolyte fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Sang-Joon; Chung, Ho-Kyoon; Yoo, Ji-Beom

    2014-01-15

    A new type of PtCo/C catalyst for use as a cathode in polymer electrolyte fuel cells was prepared by selective chemical vapor pulse deposition (CVPD) of Pt on the surface of Co. The activity of the prepared catalyst for oxygen reduction was higher than that of a catalyst prepared by sequential impregnation (IMP) with the two metallic components. This catalytic activity difference occurs because the former catalyst has smaller Pt crystallites that produce stronger Pt-Co interactions and have a larger Pt surface area. Consequently, the CVPD catalyst has a great number of Co particles that are in close contact withmore » the added Pt. The Pt surface was also electronically modified by interactions with Co, which were stronger in the CVPD catalyst than in the IMP catalyst, as indicated by X-ray diffraction, X-ray photoemission spectroscopy, and cyclic voltammetry measurements of the catalysts.« less

  15. High temperature growth of Pt on the Rh(111) surface

    NASA Astrophysics Data System (ADS)

    Duisberg, M.; Dräger, M.; Wandelt, K.; Gruber, E. L. D.; Schmid, M.; Varga, P.

    1999-08-01

    The epitaxial growth of Pt on the Rh(111) surface at 700 K was studied with AES, UPS, ISS and STM. From AES and ISS measurements a 2D growth mode is concluded at this substrate temperature. The morphology of the surface is studied by photoemission spectra of adsorbed Xe (PAX) and STM. A disperse distribution of the Pt atoms is suggested by PAX and is consistent with an incorporation of these atoms into the first substrate layer. Atomically and chemically resolved STM measurements confirm these conclusions. The interaction of CO with the surface alloy is investigated by UPS. The CO-induced features in UP spectra show significant differences in the peak positions and shape between the clean substrate and the surface precovered with different amounts of Pt. The CO induced emissions are, thus, used for a quantitative titration of Pt on the Rh surface.

  16. High Resolution CryoFESEM of Microbial Surfaces

    NASA Astrophysics Data System (ADS)

    Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol

    2003-08-01

    The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.

  17. The molecular dynamics of adsorption and dissociation of O{sub 2} on Pt(553)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobse, Leon, E-mail: l.jacobse@chem.leidenuniv.nl; Dunnen, Angela den; Juurlink, Ludo B. F.

    2015-07-07

    Molecular adsorption and dissociation of O{sub 2} on the stepped Pt(553) surface have been investigated using supersonic molecular beam techniques and temperature programmed desorption. The initial and coverage-dependent sticking probability was determined with the King and Wells technique for various combinations of incident kinetic energy, surface temperature, incident angle, and surface coverage. A comparison with similar data for Pt(533) and Pt(110)(1 × 2) shows quantitatively the same high step-induced sticking at low incident energies compared to Pt(111). The enhancement is therefore insensitive to the exact arrangement of atoms forming surface corrugation. We consider energy transfer and electronic effects to explainmore » the enhanced sticking. On the other hand, dissociation dynamics at higher incident kinetic energies are strongly dependent on step type. The Pt(553) and Pt(533) surfaces are more reactive than Pt(111), but the (100) step shows higher sticking than the (110) step. We relate this difference to a variation in the effective lowering of the barrier to dissociation from molecularly adsorbed states into atomic states. Our findings are in line with results from experimental desorption studies and theoretical studies of atomic binding energies. We discuss the influence of the different step types on sticking and dissociation dynamics with a one-dimensional potential energy surface.« less

  18. Differences in estimating terrestrial water flux from three satellite-based Priestley-Taylor algorithms

    NASA Astrophysics Data System (ADS)

    Yao, Yunjun; Liang, Shunlin; Yu, Jian; Zhao, Shaohua; Lin, Yi; Jia, Kun; Zhang, Xiaotong; Cheng, Jie; Xie, Xianhong; Sun, Liang; Wang, Xuanyu; Zhang, Lilin

    2017-04-01

    Accurate estimates of terrestrial latent heat of evaporation (LE) for different biomes are essential to assess energy, water and carbon cycles. Different satellite- based Priestley-Taylor (PT) algorithms have been developed to estimate LE in different biomes. However, there are still large uncertainties in LE estimates for different PT algorithms. In this study, we evaluated differences in estimating terrestrial water flux in different biomes from three satellite-based PT algorithms using ground-observed data from eight eddy covariance (EC) flux towers of China. The results reveal that large differences in daily LE estimates exist based on EC measurements using three PT algorithms among eight ecosystem types. At the forest (CBS) site, all algorithms demonstrate high performance with low root mean square error (RMSE) (less than 16 W/m2) and high squared correlation coefficient (R2) (more than 0.9). At the village (HHV) site, the ATI-PT algorithm has the lowest RMSE (13.9 W/m2), with bias of 2.7 W/m2 and R2 of 0.66. At the irrigated crop (HHM) site, almost all models algorithms underestimate LE, indicating these algorithms may not capture wet soil evaporation by parameterization of the soil moisture. In contrast, the SM-PT algorithm shows high values of R2 (comparable to those of ATI-PT and VPD-PT) at most other (grass, wetland, desert and Gobi) biomes. There are no obvious differences in seasonal LE estimation using MODIS NDVI and LAI at most sites. However, all meteorological or satellite-based water-related parameters used in the PT algorithm have uncertainties for optimizing water constraints. This analysis highlights the need to improve PT algorithms with regard to water constraints.

  19. Interactions of small platinum clusters with the TiC(001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Jianjun; Li, Shasha; Chu, Xingli

    2015-11-14

    Density functional theory calculations are used to elucidate the interactions of small platinum clusters (Pt{sub n}, n = 1–5) with the TiC(001) surface. The results are analyzed in terms of geometric, energetic, and electronic properties. It is found that a single Pt atom prefers to be adsorbed at the C-top site, while a Pt{sub 2} cluster prefers dimerization and a Pt{sub 3} cluster forms a linear structure on the TiC(001). As for the Pt{sub 4} cluster, the three-dimensional distorted tetrahedral structure and the two-dimensional square structure almost have equal stability. In contrast with the two-dimensional isolated Pt{sub 5} cluster, the adsorbed Pt{submore » 5} cluster prefers a three-dimensional structure on TiC(001). Substantial charge transfer takes place from TiC(001) surface to the adsorbed Pt{sub n} clusters, resulting in the negatively charged Pt{sub n} clusters. At last, the d-band centers of the absorbed Pt atoms and their implications in the catalytic activity are discussed.« less

  20. Growth mechanism of surface roughed platinum nanowires through electrodeposition current control and their electrochemical applications

    NASA Astrophysics Data System (ADS)

    Ruan, Dajiang

    The aim of this work is to investigate the effect of current density on the grain size and surface morphology of electrodeposited platinum nanowires and their applications. Platinum (Pt) nanowires were fabricated by a galvanostatic electrodeposition method in a porous anodic alumina oxide (AAO) template with different current densities. Both direct current and pulse current electrodeposition were used to synthesize the Pt nanowires. The grain size and surface morphology of the Pt nanowires were studied by field emission scanning electron microscopy (FE-SEM), transmission electron microcopy (TEM) and X-ray diffraction (XRD). The experimental results showed that the current density was the key factor to control the surface roughness. The surface of the Pt nanowires became rougher and the grain sizes were increased by increasing the current densities. From the experimental results, a growth mechanism of Pt nanowires based on progressive nucleation and crystallization was proposed in order to find out the relationship between the surface morphology and current density. The electrochemical properties and catalytic activities of these surface roughed Pt nanowires were investigated in the detection of H20 2 and for the methanol oxidation. Cyclic voltammograms of Pt nanowire modified electrodes were obtained using a potentiostat, which showed that rougher Pt nanowires have higher response and better activity than that of smooth nanowires. For H202 detection, the effect of scan rate and H202 concentration were studied and it was found that the peak current for hydrogen peroxide reduction became larger with the increasing of either scan rate or H202 concentration. It can be inferred that the process of electrocatalytic hydrogen peroxide reduction may be controlled by diffusion of hydrogen peroxide and the Pt nanowire modified glassy carbon electrode (GCE) is well suited for the detection of H202. From the relationship between the peak current and square root of scan rates for methanol oxidation, it can be inferred that the process of electrocatalytic methanol oxidation was controlled by diffusion of methanol. To understand the effect of the morphological feature on the electrocatalytic activity of the Pt nanowire catalysts, the electrochemically active surface area (ECSA) as a function of deposited current density was investigated, which suggests that Pt nanowire catalysts deposited at highest current density had the most ECSA surface morphology of the Pt nanowires. The chronoamperometric curves and electrochemical impedance spectroscopy (EIS) results confirmed that the Pt nanowire catalyst synthesized at higher current density possessed longer durability and gave more efficient electrochemical performance.

  1. Layer-by-layer evolution of structure, strain, and activity for the oxygen evolution reaction in graphene-templated Pt monolayers.

    PubMed

    Abdelhafiz, Ali; Vitale, Adam; Joiner, Corey; Vogel, Eric; Alamgir, Faisal M

    2015-03-25

    In this study, we explore the dimensional aspect of structure-driven surface properties of metal monolayers grown on a graphene/Au template. Here, surface limited redox replacement (SLRR) is used to provide precise layer-by-layer growth of Pt monolayers on graphene. We find that after a few iterations of SLRR, fully wetted 4-5 monolayer Pt films can be grown on graphene. Incorporating graphene at the Pt-Au interface modifies the growth mechanism, charge transfers, equilibrium interatomic distances, and associated strain of the synthesized Pt monolayers. We find that a single layer of sandwiched graphene is able to induce a 3.5% compressive strain on the Pt adlayer grown on it, and as a result, catalytic activity is increased due to a greater areal density of the Pt layers beyond face-centered-cubic close packing. At the same time, the sandwiched graphene does not obstruct vicinity effects of near-surface electron exchange between the substrate Au and adlayers Pt. X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) techniques are used to examine charge mediation across the Pt-graphene-Au junction and the local atomic arrangement as a function of the Pt adlayer dimension. Cyclic voltammetry (CV) and the oxygen reduction reaction (ORR) are used as probes to examine the electrochemically active area of Pt monolayers and catalyst activity, respectively. Results show that the inserted graphene monolayer results in increased activity for the Pt due to a graphene-induced compressive strain, as well as a higher resistance against loss of the catalytically active Pt surface.

  2. The Role of Interfacial Potential in Adsorbate Bonding: Electrode Potential-Dependent Infrared Spectra for Saturated CO Adlayers on Pt(110) and Related Electrochemical Surfaces in Varying Solvent Environments

    DTIC Science & Technology

    1992-05-01

    as supporting electrolytes were recrystallized from methanol, water and ethanol , and water, respectively, and dried under vacuum at 110°C. Electrode...under these conditions 8,17 (vide infra). All measurements were performed at room temperature , 23±1*C. RESULTS AND DISCUSSION The experimental strategy...of interferometer scans during a suitably slow (2 mV s- ) positive-going potential sweep. For solvents containing traces of water, electrooxidative

  3. CO oxidation on stepped-Pt(111) under electrochemical conditions: insights from theory and experiment.

    PubMed

    Busó-Rogero, C; Herrero, E; Bandlow, J; Comas-Vives, A; Jacob, Timo

    2013-11-14

    The co-adsorption of CO and OH on two Pt stepped surfaces vicinal to the (111) orientation has been evaluated by means of density functional theory (DFT) calculations. Focusing on Pt(533) and Pt(221), which contain (100) and (111)-steps, respectively, we find that (111)-steps should be more reactive towards CO oxidation than surfaces containing (100)-steps. The DFT results are compared with electrochemical experiments on the CO adsorption and oxidation on these vicinal surfaces.

  4. Mitigation of CO Poisoning on Functionalized Pt/TiN(001) Surface: A Fundamental Study of the Next-Generation Fuel Cell Technologies

    DTIC Science & Technology

    2014-05-27

    TiN(100) surface (Pt/TiN) could be a promising catalyst for proton exchange membrane fuel cells ( PEM FCs). The adsorption properties of molecules on Pt...under both acidic and basic operation conditions in PEM FCs. 15. SUBJECT TERMS Catalysis, fuel cells , density functional theory, density functional...poisoning on functionalized Pt/TiN surfaces under both acidic and basic operation conditions in PEM FCs. 15. SUBJECT TERMS Catalysis, fuel cells

  5. Understanding the Role of M/Pt(111) (M = Fe, Co, Ni, Cu) Bimetallic Surfaces for Selective Hydrodeoxygenation of Furfural

    DOE PAGES

    Jiang, Zhifeng; Wan, Weiming; Lin, Zhexi; ...

    2017-07-24

    Selectively cleaving the C=O bond of the aldehyde group in furfural is critical for converting this biomass-derived platform chemical to an important biofuel molecule, 2-methylfuran. This work combined density functional theory (DFT) calculations and temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) measurements to investigate the hydrodeoxygenation (HDO) activity of furfural on bimetallic surfaces prepared by modifying Pt(111) with 3d transition metals (Cu, Ni, Fe, and Co). The stronger binding energy of furfural and higher tilted degree of the furan ring on the Co-terminated bimetallic surface resulted in a higher activity for furfural HDO to produce 2-methylfuran inmore » comparison to that on either Pt(111) or Pt-terminated PtCoPt(111). The 3d-terminated bimetallic surfaces with strongly oxophilic 3d metals (Co and Fe) showed higher 2-methylfuran yield in comparison to those surfaces modified with weakly oxophilic 3d metals (Cu and Ni). The effect of oxygen on the HDO selectivity was also investigated on oxygen-modified bimetallic surfaces, revealing that the presence of surface oxygen resulted in a decrease in 2-methylfuran yield. Furthermore, the combined theoretical and experimental results presented here should provide useful guidance for designing Pt-based bimetallic HDO catalysts.« less

  6. Understanding the Role of M/Pt(111) (M = Fe, Co, Ni, Cu) Bimetallic Surfaces for Selective Hydrodeoxygenation of Furfural

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Zhifeng; Wan, Weiming; Lin, Zhexi

    Selectively cleaving the C=O bond of the aldehyde group in furfural is critical for converting this biomass-derived platform chemical to an important biofuel molecule, 2-methylfuran. This work combined density functional theory (DFT) calculations and temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) measurements to investigate the hydrodeoxygenation (HDO) activity of furfural on bimetallic surfaces prepared by modifying Pt(111) with 3d transition metals (Cu, Ni, Fe, and Co). The stronger binding energy of furfural and higher tilted degree of the furan ring on the Co-terminated bimetallic surface resulted in a higher activity for furfural HDO to produce 2-methylfuran inmore » comparison to that on either Pt(111) or Pt-terminated PtCoPt(111). The 3d-terminated bimetallic surfaces with strongly oxophilic 3d metals (Co and Fe) showed higher 2-methylfuran yield in comparison to those surfaces modified with weakly oxophilic 3d metals (Cu and Ni). The effect of oxygen on the HDO selectivity was also investigated on oxygen-modified bimetallic surfaces, revealing that the presence of surface oxygen resulted in a decrease in 2-methylfuran yield. Furthermore, the combined theoretical and experimental results presented here should provide useful guidance for designing Pt-based bimetallic HDO catalysts.« less

  7. Current-induced spin polarization on a Pt surface: A new approach using spin-polarized positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kawasuso, A.; Fukaya, Y.; Maekawa, M.; Zhang, H.; Seki, T.; Yoshino, T.; Saitoh, E.; Takanashi, K.

    2013-09-01

    Transversely spin-polarized positrons were injected near Pt and Au surfaces under an applied electric current. The three-photon annihilation of spin-triplet positronium, which was emitted from the surfaces into vacuum, was observed. When the positron spin polarization was perpendicular to the current direction, the maximum asymmetry of the three-photon annihilation intensity was observed upon current reversal for the Pt surfaces, whereas it was significantly reduced for the Au surface. The experimental results suggest that electrons near the Pt surfaces were in-plane and transversely spin-polarized with respect to the direction of the electric current. The maximum electron spin polarization was estimated to be more than 0.01 (1%).

  8. Enhanced Catalytic Activities of NiPt Truncated Octahedral Nanoparticles toward Ethylene Glycol Oxidation and Oxygen Reduction in Alkaline Electrolyte.

    PubMed

    Xia, Tianyu; Liu, Jialong; Wang, Shouguo; Wang, Chao; Sun, Young; Gu, Lin; Wang, Rongming

    2016-05-04

    The high cost and poor durability of Pt nanoparticles (NPs) are great limits for the proton exchange membrane fuel cells (PEMFCs) from being scaled-up for commercial applications. Pt-based bimetallic NPs together with a uniform distribution can effectively reduce the usage of expensive Pt while increasing poison resistance of intermediates. In this work, a simple one-pot method was used to successfully synthesize ultrafine (about 7.5 nm) uniform NiPt truncated octahedral nanoparticles (TONPs) in dimethylformamid (DMF) without any seeds or templates. The as-prepared NiPt TONPs with Pt-rich surfaces exhibit greatly improved catalytic activities together with good tolerance and better stability for ethylene glycol oxidation reaction (EGOR) and oxygen reduction reaction (ORR) in comparison with NiPt NPs and commercial Pt/C catalysts in alkaline electrolyte. For example, the value of mass and specific activities for EGOR are 23.2 and 17.6 times higher comparing with those of commercial Pt/C, respectively. Our results demonstrate that the dramatic enhancement is mainly attributed to Pt-rich surface, larger specific surface area, together with coupling between Ni and Pt atoms. This developed method provides a promising pathway for simple preparation of highly efficient electrocatalysts for PEMFCs in the near future.

  9. Enhancement of the electrooxidation of ethanol on Pt-Sn-P/C catalysts prepared by chemical deposition process

    NASA Astrophysics Data System (ADS)

    Xue, Xinzhong; Ge, Junjie; Tian, Tian; Liu, Changpeng; Xing, Wei; Lu, Tianhong

    In this paper, five Pt 3Sn 1/C catalysts have been prepared using three different methods. It was found that phosphorus deposited on the surface of carbon with Pt and Sn when sodium hypophosphite was used as reducing agent by optimization of synthetic conditions such as pH in the synthetic solution and temperature. The deposition of phosphorus should be effective on the size reduction and markedly reduces PtSn nanoparticle size, and raise electrochemical active surface (EAS) area of catalyst and improve the catalytic performance. TEM images show PtSnP nanoparticles are highly dispersed on the carbon surface with average diameters of 2 nm. The optimum composition is Pt 3Sn 1P 2/C (note PtSn/C-3) catalyst in my work. With this composition, it shows very high activity for the electrooxidation of ethanol and exhibit enhanced performance compared with other two Pt 3Sn 1/C catalysts that prepared using ethylene glycol reduction method (note PtSn/C-EG) and borohydride reduction method (note PtSn/-B). The maximum power densities of direct ethanol fuel cell (DEFC) were 61 mW cm -2 that is 150 and 170% higher than that of the PtSn/C-EG and PtSn/C-B catalyst.

  10. Insight into the role of the promoters Pt, Ru and B in inhibiting the deactivation of Co catalysts in Fischer-Tropsch synthesis

    NASA Astrophysics Data System (ADS)

    Zhang, Riguang; Liu, Hongxia; Li, Qiaohong; Wang, Baojun; Ling, Lixia; Li, Debao

    2018-09-01

    In order to probe into the roles of the promoters Pt, Ru and B in inhibiting the deactivation of Co catalysts in FTS reactions, the adsorption ability of neighboring surface C and subsurface C atom around the promoters (Pt, Ru and B), and the mechanisms of surface C diffusion, accumulation, hydrogenation and penetration are examined by density functional theory calculations over the promoters Pt, Ru and B-modified Co catalysts, as well as the pure Co catalysts. Our results clearly show that compared to Co catalysts, both PtCo and RuCo bimetallic catalysts promote surface C hydrogenation, and inhibit surface C diffusion, accumulation and penetration, and therefore the ability of resistance toward deactivation and the stability of Co-based catalysts are enhanced; the promoter B cannot effectively improve the ability of resistance toward deactivation. Thus, the sequence for resistance toward deactivation of Co-based catalyst is BCo < Co < PtCo < RuCo. Moreover, the activation free energy of surface C accumulation to C2 species increases with the increasing of surface C adsorption free energy, namely, the adsorption characteristic of surface C species well represent the surface carbon deposition. Our results not only give an explanation for reported experiment that the Pt, Ru and B-modified Co catalysts exhibit ability of resistance toward deactivation in FTS at a molecular level, but also provide a clue for the design of efficient Co-based catalysts in FTS reactions.

  11. Bimetallic core-based cuboctahedral core-shell nanoclusters for the formation of hydrogen peroxide (2e- reduction) over water (4e- reduction): role of core metals.

    PubMed

    Mahata, Arup; Pathak, Biswarup

    2017-07-13

    The design of an efficient and selective catalyst for hydrogen peroxide (H 2 O 2 ) formation is highly sought due to its industrial importance. As alternatives to a conventional Pd-Au alloy-based catalyst, three cuboctahedral core-shell nanoclusters (Au 19 @Pt 60 , Co 19 @Pt 60 and Au 10 Co 9 @Pt 60 NCs) have been investigated. Their catalytic activities toward H 2 O 2 formation have been compared with that of pure Pt cuboctahedral NC (Pt 79 ). Much attention has been devoted to thermodynamic and kinetic parameters to find out the feasibility of the two-electron (2e - ) over the four-electron (4e - ) oxygen reduction reaction (ORR) to improve the product selectivity (H 2 O vs. H 2 O 2 ). Elementary steps corresponding to H 2 O 2 formation are significantly improved over the Au 10 Co 9 @Pt 60 NC catalyst compared with the pure core-shell NCs and periodic surface based catalysts. Furthermore, the Au 10 Co 9 @Pt 60 NC favours H 2 O 2 formation via the much desired Langmuir-Hinshelwood mechanism. The potential-dependent study shows that the H 2 O 2 formation is thermodynamically favourable up to 0.43 V on the Au 10 Co 9 @Pt 60 NC and thus the overpotential for the 2e - ORR process is significantly lowered. Besides, the Au 10 Co 9 @Pt 60 NC is highly selective for H 2 O 2 formation over H 2 O formation.

  12. High sensitivity and accuracy dissolved oxygen (DO) detection by using PtOEP/poly(MMA-co-TFEMA) sensing film.

    PubMed

    Zhang, Ke; Zhang, Honglin; Wang, Ying; Tian, Yanqing; Zhao, Jiupeng; Li, Yao

    2017-01-05

    Fluorinated acrylate polymer has received great interest in recent years due to its extraordinary characteristics such as high oxygen permeability, good stability, low surface energy and refractive index. In this work, platinum octaethylporphyrin/poly(methylmethacrylate-co-trifluoroethyl methacrylate) (PtOEP/poly(MMA-co-TFEMA)) oxygen sensing film was prepared by the immobilizing of PtOEP in a poly(MMA-co-TFEMA) matrix and the technological readiness of optical properties was established based on the principle of luminescence quenching. It was found that the oxygen-sensing performance could be improved by optimizing the monomer ratio (MMA/TFEMA=1:1), tributylphosphate(TBP, 0.05mL) and PtOEP (5μg) content. Under this condition, the maximum quenching ratio I0/I100 of the oxygen sensing film is obtained to be about 8.16, Stern-Volmer equation is I0/I=1.003+2.663[O2] (R(2)=0.999), exhibiting a linear relationship, good photo-stability, high sensitivity and accuracy. Finally, the synthesized PtOEP/poly(MMA-co-TFEMA) sensing film was used for DO detection in different water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. High sensitivity and accuracy dissolved oxygen (DO) detection by using PtOEP/poly(MMA-co-TFEMA) sensing film

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Zhang, Honglin; Wang, Ying; Tian, Yanqing; Zhao, Jiupeng; Li, Yao

    2017-01-01

    Fluorinated acrylate polymer has received great interest in recent years due to its extraordinary characteristics such as high oxygen permeability, good stability, low surface energy and refractive index. In this work, platinum octaethylporphyrin/poly(methylmethacrylate-co-trifluoroethyl methacrylate) (PtOEP/poly(MMA-co-TFEMA)) oxygen sensing film was prepared by the immobilizing of PtOEP in a poly(MMA-co-TFEMA) matrix and the technological readiness of optical properties was established based on the principle of luminescence quenching. It was found that the oxygen-sensing performance could be improved by optimizing the monomer ratio (MMA/TFEMA = 1:1), tributylphosphate(TBP, 0.05 mL) and PtOEP (5 μg) content. Under this condition, the maximum quenching ratio I0/I100 of the oxygen sensing film is obtained to be about 8.16, Stern-Volmer equation is I0/I = 1.003 + 2.663[O2] (R2 = 0.999), exhibiting a linear relationship, good photo-stability, high sensitivity and accuracy. Finally, the synthesized PtOEP/poly(MMA-co-TFEMA) sensing film was used for DO detection in different water samples.

  14. Kinetics of gas phase formic acid decomposition on platinum single crystal and polycrystalline surfaces

    NASA Astrophysics Data System (ADS)

    Detwiler, Michael D.; Milligan, Cory A.; Zemlyanov, Dmitry Y.; Delgass, W. Nicholas; Ribeiro, Fabio H.

    2016-06-01

    Formic acid dehydrogenation turnover rates (TORs) were measured on Pt(111), Pt(100), and polycrystalline Pt foil surfaces at a total pressure of 800 Torr between 413 and 513 K in a batch reactor connected to an ultra-high vacuum (UHV) system. The TORs, apparent activation energies, and reaction orders are not sensitive to the structure of the Pt surface, within the precision of the measurements. CO introduced into the batch reactor depressed the formic acid dehydrogenation TOR and increased the reaction's apparent activation energies on Pt(111) and Pt(100), consistent with behavior predicted by the Temkin equation. Two reaction mechanisms were explored which explain the formic acid decomposition mechanism on Pt, both of which include dissociative adsorption of formic acid, rate limiting formate decomposition, and quasi-equilibrated hydrogen recombination and CO adsorption. No evidence was found that catalytic supports used in previous studies altered the reaction kinetics or mechanism.

  15. Bridging the pressure gap: In situ atomic-level investigations of model platinum catalyst surfaces under reaction conditions by scanning tunneling microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntyre, Brian James

    1994-05-01

    Results of this thesis show that STM measurements can provide information about the surfaces and their adsorbates. Stability of Pt(110) under high pressures of H 2, O 2, and CO was studied (Chap. 4). In situ UHV and high vacuum experiments were carried out for sulfur on Pt(111) (Chap.5). STM studies of CO/S/Pt(111) in high CO pressures showed that the Pt substrate undergoes a stacking-fault-domain reconstruction involving periodic transitions from fcc to hcp stacking of top-layer atoms (Chap.6). In Chap.7, the stability of propylene on Pt(111) and the decomposition products were studied in situ with the HPSTM. Finally, in Chap.8,more » results are presented which show how the Pt tip of the HPSTM was used to locally rehydrogenate and oxidize carbonaceous clusters deposited on the Pt(111) surface; the Pt tip acted as a catalyst after activation by short voltage pulses.« less

  16. Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces

    DOE PAGES

    Chen, Chen; Kang, Yijin; Huo, Ziyang; ...

    2014-02-27

    Control of structure at the atomic level can precisely and effectively tune catalytic properties of materials, enabling enhancement in both activity and durability. We synthesized a highly active and durable class of electrocatalysts by exploiting the structural evolution of platinum-nickel (Pt-Ni) bimetallic nanocrystals. The starting material, crystalline PtNi 3 polyhedra, transforms in solution by interior erosion into Pt 3Ni nanoframes with surfaces that offer three-dimensional molecular accessibility. The edges of the Pt-rich PtNi 3 polyhedra are maintained in the final Pt 3Ni nanoframes. Both the interior and exterior catalytic surfaces of this open-framework structure are composed of the nanosegregated Pt-skinmore » structure, which exhibits enhanced oxygen reduction reaction (ORR) activity. The Pt 3Ni nanoframe catalysts achieved a factor of 36 enhancement in mass activity and a factor of 22 enhancement in specific activity, respectively, for this reaction (relative to state-of-the-art platinum-carbon catalysts) during prolonged exposure to reaction conditions.« less

  17. CO adsorption on (111) and (100) surfaces of the Pt sub 3 Ti alloy. Evidence for parallel binding and strong activation of CO

    NASA Technical Reports Server (NTRS)

    Mehandru, S. P.; Anderson, A. B.; Ross, P. N.

    1985-01-01

    The CO adsorption on a 40 atom cluster model of the (111) surface and a 36 atom cluster model of the (100) surface of the Pt3Ti alloy was studied. Parallel binding to high coordinate sites associated with Ti and low CO bond scission barriers are predicted for both surfaces. The binding of CO to Pt sites occurs in an upright orientation. These orientations are a consequence of the nature of the CO pi donation interactions with the surface. On the Ti sites the orbitals donate to the nearly empty Ti 3d band and the antibonding counterpart orbitals are empty. On the Pt sites, however, they are in the filled Pt 5d region of the alloy band, which causes CO to bond in a vertical orientation by 5 delta donation from the carbon end.

  18. Comparative analysis of cobalt oxide nanoisland stability and edge structures on three related noble metal surfaces: Au(111), Pt(111) and Ag(111)

    DOE PAGES

    Fester, Jakob; Bajdich, Michal; Walton, Alex S.; ...

    2016-09-12

    Here, metal oxide nanostructures and thin films grown on metallic substrates have attracted strong attention as model catalysts and as interesting inverse catalyst systems in their own right. In this study, we investigate the role of metal support in the growth and stabilization of cobalt oxide nanostructures on the three related (111) surfaces of Au, Pt and Ag, as investigated by means of high-resolution scanning tunneling microscopy and DFT calculations. All three substrates promote the growth of crystalline CoO x (x = 1–2) islands under oxidative conditions, but we find several noteworthy differences in the occurrence and stabilization of fourmore » distinct cobalt oxide island phases: Co–O bilayers, O–Co–O trilayers, Co–O–Co–O double bilayers and O–Co–O–Co–O multilayers. Using atom-resolved images combined with analysis of defect lines in bilayer islands on Au and Pt, we furthermore unambiguously determine the edge structure. Interestingly, the island shape and abundances of edge types in bilayers change radically from mixed Co/O edge terminations on Au(111) to a predominance of Co terminated edges (~91 %) on Pt(111) which is especially interesting since the Co metal edges are expected to host the most active sites for water dissociation.« less

  19. Recovery of condensate water quality in power generator's surface condenser

    NASA Astrophysics Data System (ADS)

    Kurniawan, Lilik Adib

    2017-03-01

    In PT Badak NGL Plant, steam turbines are used to drive major power generators, compressors, and pumps. Steam exiting the turbines is condensed in surface condensers to be returned to boilers. Therefore, surface condenser performance and quality of condensate water are very important. One of the recent problem was caused by the leak of a surface condenser of Steam Turbine Power Generator. Thesteam turbine was overhauled, leaving the surface condenser idle and exposed to air for more than 1.5 years. Sea water ingress due to tube leaks worsens the corrosionof the condenser shell. The combination of mineral scale and corrosion product resulting high conductivity condensate at outlet condenser when we restarted up, beyond the acceptable limit. After assessing several options, chemical cleaning was the best way to overcome the problem according to condenser configuration. An 8 hour circulation of 5%wt citric acid had succeed reducing water conductivity from 50 μmhos/cm to below 5 μmhos/cm. The condensate water, then meets the required quality, i.e. pH 8.3 - 9.0; conductivity ≤ 5 μmhos/cm, therefore the power generator can be operated normally without any concern until now.

  20. Platinum particle size and support effects in NO(x) mediated carbon oxidation over platinum catalysts.

    PubMed

    Villani, Kenneth; Vermandel, Walter; Smets, Koen; Liang, Duoduo; van Tendeloo, Gustaaf; Martens, Johan A

    2006-04-15

    Platinum metal was dispersed on microporous, mesoporous, and nonporous support materials including the zeolites Na-Y, Ba-Y, Ferrierite, ZSM-22, ETS-10, and AIPO-11, alumina, and titania. The oxidation of carbon black loosely mixed with catalyst powder was monitored gravimetrically in a gas stream containing nitric oxide, oxygen, and water. The carbon oxidation activity of the catalysts was found to be uniquely related to the Pt dispersion and little influenced by support type. The optimum dispersion is around 3-4% corresponding to relatively large Pt particle sizes of 20-40 nm. The carbon oxidation activity reflects the NO oxidation activity of the platinum catalyst, which reaches an optimum in the 20-40 nm Pt particle size range. The lowest carbon oxidation temperatures were achieved with platinum loaded ZSM-22 and AIPO-11 zeolite crystallites bearing platinum of optimum dispersion on their external surfaces.

  1. Pt deposited TiO2 catalyst fabricated by thermal decomposition of titanium complex for solar hydrogen production

    NASA Astrophysics Data System (ADS)

    Truong, Quang Duc; Le, Thanh Son; Ling, Yong-Chien

    2014-12-01

    C, N codoped TiO2 catalyst has been synthesized by thermal decomposition of a novel water-soluble titanium complex. The structure, morphology, and optical properties of the synthesized TiO2 catalyst were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and UV-vis diffuse reflectance spectroscopy. The photocatalytic activity of the Pt deposited TiO2 catalysts synthesized at different temperatures was evaluated by means of hydrogen evolution reaction under both UV-vis and visible light irradiation. The investigation results reveal that the photocatalytic H2 evolution rate strongly depended on the crystalline grain size as well as specific surface area of the synthesized catalyst. Our studies successfully demonstrate a simple method for the synthesis of visible-light responsive Pt deposited TiO2 catalyst for solar hydrogen production.

  2. Rational Design of Au@Pt Multibranched Nanostructures as Bifunctional Nanozymes.

    PubMed

    Wu, Jiangjiexing; Qin, Kang; Yuan, Dan; Tan, Jun; Qin, Li; Zhang, Xuejin; Wei, Hui

    2018-04-18

    One of the current challenges in nanozyme-based nanotechnology is the utilization of multifunctionalities in one material. In this regard, Au@Pt nanoparticles (NPs) with excellent enzyme-mimicking activities due to the Pt shell and unique surface plasmon resonance features from the Au core have attracted enormous research interest. However, the unique surface plasmon resonance features from the Au core have not been widely utilized. The practical problem of the optical-damping nature of Pt hinders the research into the combination of Au@Pt NPs' enzyme-mimicking properties with their surface-enhanced Raman scattering (SERS) activities. Herein, we rationally tuned the Pt amount to achieve Au@Pt NPs with simultaneous plasmonic and enzyme-mimicking activities. The results showed that Au@Pt NPs with 2.5% Pt produced the highest Raman signal in 2 min, which benefited from the remarkably accelerated catalytic oxidation of 3,3',5,5'-tetramethylbenzidine with the decorated Pt and strong electric field retained from the Au core for SERS. This study not only demonstrates the great promise of combining bimetallic nanomaterials' multiple functionalities but also provides rational guidelines to design high-performance nanozymes for potential biomedical applications.

  3. Micro Galvanic Cell To Generate PtO and Extend the Triple-Phase Boundary during Self-Assembly of Pt/C and Nafion for Catalyst Layers of PEMFC.

    PubMed

    Long, Zhi; Gao, Liqin; Li, Yankai; Kang, Baotao; Lee, Jin Yong; Ge, Junjie; Liu, Changpeng; Ma, Shuhua; Jin, Zhao; Ai, Hongqi

    2017-11-08

    The self-assembly powder (SAP) with varying Nafion content was synthesized and characterized by XRD, XPS, HRTEM, and mapping. It is observed that the oxygen from oxygen functional groups transfers to the surface of Pt and generate PtO during the process of self-assembly with the mechanism of micro galvanic cell, where Pt, carbon black, and Nafion act as the anode, cathode and electrolyte, respectively. The appearance of PtO on the surface of Pt leads to a turnover of Nafion structure, and therefore more hydrophilic sulfonic groups directly contact with Pt, and thus the triple-phase boundary (TPB) has been expanded.

  4. Surface reaction modification: The effect of structured overlayers of sulfur on the kinetics and mechanism of the decomposition of formic acid on Pt(111)

    NASA Astrophysics Data System (ADS)

    Abbas, N.; Madix, R. J.

    The reaction of formic acid (DCOOH) on Pt(111), Pt(111)-(2×2)S and Pt(111)-(√3×√3)R30°S surfaces was examined by temperature programmed reaction spectroscopy. On the clean surface formic acid decomposed to yield primarily carbon dioxide and the hydrogenic species (H 2, HD and D 2) at low coverages. Although the formation of water and carbon monoxide via a dehydration reaction was observed at these coverages, the yield of these products was small when compared to the other products of reaction. The evolution of CO 2 at low temperature was ascribed to the decomposition of the formate intermediate. In the presence of sulfur the amount of molecularly adsorbed formic acid decreased up to a factor of three on the (√3×√3)R30°S surface, and a decline in the reactivity of over an order of magnitude was also observed. The only products formed were the hydrogenic species and carbon dioxide. The absence of carbon monoxide indicated that the dehydration pathway was blocked by sulfur. In addition to the low temperature CO 2 peak a high temperature CO 2-producing path was also evident. It was inferred from both the stoichiometry and the coincident evolution of D 2 and CO 2 in the high temperature states that these products also evolved due to the decomposition of the formate intermediate. On increasing the sulfur coverage to one-third monolayer this intermediate was further stabilized, and a predominance of the decomposition via the high temperature path was observed. Stability of the formate intermediate was attributed to inhibition of the decomposition reaction by sulfur atoms. The activation energy for formate decomposition increased from 15 kcal/gmole on the clean surface to 24.3 kcal/gmol on the (√3×√3)R30°S overlayer.

  5. Roles of Mo Surface Dopants in Enhancing the ORR Performance of Octahedral PtNi Nanoparticles

    DOE PAGES

    Jia, Qingying; Zhao, Zipeng; Cao, Liang; ...

    2017-12-22

    Doping with a transition metal was recently shown to greatly boost the activity and durability of PtNi/C octahedral nanoparticles (NPs) for the oxygen reduction reaction (ORR), but its specific roles remain unclear. By combining electrochemistry, ex situ and in situ spectroscopic techniques, density functional theory calculations, and a newly developed kinetic Monte Carlo model, we showed that Mo atoms are preferentially located on the vertex and edge sites of Mo–PtNi/C in the form of oxides, which are stable within the wide potential window of the electrochemical cycle. These surface Mo oxides stabilize adjacent Pt sites, hereby stabilizing the octahedral shapemore » enriched with (111) facets, and lead to increased concentration of Ni in subsurface layers where they are protected against acid dissolution. Consequently, the favorable Pt 3Ni(111) structure for the ORR is stabilized on the surface of PtNi/C NPs in acid against voltage cycling. Significantly, the unusual potential-dependent oxygen coverage trend on Mo-doped PtNi/C NPs as revealed by the surface-sensitive Δμ analysis suggests that the Mo dopants may also improve the ORR kinetics by modifying the coordination environments of Pt atoms on the surface. Lastly, our studies point out a possible way to stabilize the favorable shape and composition established on conceptual catalytic models in practical nanoscale catalysts.« less

  6. Roles of Mo Surface Dopants in Enhancing the ORR Performance of Octahedral PtNi Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Qingying; Zhao, Zipeng; Cao, Liang

    Doping with a transition metal was recently shown to greatly boost the activity and durability of PtNi/C octahedral nanoparticles (NPs) for the oxygen reduction reaction (ORR), but its specific roles remain unclear. By combining electrochemistry, ex situ and in situ spectroscopic techniques, density functional theory calculations, and a newly developed kinetic Monte Carlo model, we showed that Mo atoms are preferentially located on the vertex and edge sites of Mo–PtNi/C in the form of oxides, which are stable within the wide potential window of the electrochemical cycle. These surface Mo oxides stabilize adjacent Pt sites, hereby stabilizing the octahedral shapemore » enriched with (111) facets, and lead to increased concentration of Ni in subsurface layers where they are protected against acid dissolution. Consequently, the favorable Pt 3Ni(111) structure for the ORR is stabilized on the surface of PtNi/C NPs in acid against voltage cycling. Significantly, the unusual potential-dependent oxygen coverage trend on Mo-doped PtNi/C NPs as revealed by the surface-sensitive Δμ analysis suggests that the Mo dopants may also improve the ORR kinetics by modifying the coordination environments of Pt atoms on the surface. Lastly, our studies point out a possible way to stabilize the favorable shape and composition established on conceptual catalytic models in practical nanoscale catalysts.« less

  7. An extensive phase space for the potential martian biosphere.

    PubMed

    Jones, Eriita G; Lineweaver, Charles H; Clarke, Jonathan D

    2011-12-01

    We present a comprehensive model of martian pressure-temperature (P-T) phase space and compare it with that of Earth. Martian P-T conditions compatible with liquid water extend to a depth of ∼310 km. We use our phase space model of Mars and of terrestrial life to estimate the depths and extent of the water on Mars that is habitable for terrestrial life. We find an extensive overlap between inhabited terrestrial phase space and martian phase space. The lower martian surface temperatures and shallower martian geotherm suggest that, if there is a hot deep biosphere on Mars, it could extend 7 times deeper than the ∼5 km depth of the hot deep terrestrial biosphere in the crust inhabited by hyperthermophilic chemolithotrophs. This corresponds to ∼3.2% of the volume of present-day Mars being potentially habitable for terrestrial-like life.

  8. Facile synthesis of Pt-Pd alloy nanocages and Pt nanorings by templating with Pd nanoplates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xue; Luo, Ming; Huang, Hongwen

    We report a facile method for the synthesis of Pt-Pd nanocages and Pt nanorings by conformally coating Pd nanoplates with Pt-based shells using polyol- and water-based protocols, respectively, followed by selective removal of the Pd cores. For the polyol-based system, Pd nanoplates were conformally coated with Pt-Pd alloy shells due to the use of a high reaction temperature of 200 °C and a slow injection rate for the Pt precursor. In comparison, Pt shells were formed on Pd nanoplates (with a larger thickness on the side face than on the top/bottom face) in the water-based system due to the usemore » of a low reaction temperature of 80 °C and the presence of twin boundaries on the side face. As such, the Pd@Pt nanoplates prepared using the polyol- and water-based protocols evolved into Pt-Pd nanocages and Pt nanorings, respectively, when the Pd templates in the cores were selectively removed by wet etching. As a result, the wall thickness of the nanocages and the ridge thickness of the nanorings could be reduced down to 1.1 nm and 1.8 nm, respectively, without breaking the hollow structures.« less

  9. Facile synthesis of Pt-Pd alloy nanocages and Pt nanorings by templating with Pd nanoplates

    DOE PAGES

    Wang, Xue; Luo, Ming; Huang, Hongwen; ...

    2016-09-06

    We report a facile method for the synthesis of Pt-Pd nanocages and Pt nanorings by conformally coating Pd nanoplates with Pt-based shells using polyol- and water-based protocols, respectively, followed by selective removal of the Pd cores. For the polyol-based system, Pd nanoplates were conformally coated with Pt-Pd alloy shells due to the use of a high reaction temperature of 200 °C and a slow injection rate for the Pt precursor. In comparison, Pt shells were formed on Pd nanoplates (with a larger thickness on the side face than on the top/bottom face) in the water-based system due to the usemore » of a low reaction temperature of 80 °C and the presence of twin boundaries on the side face. As such, the Pd@Pt nanoplates prepared using the polyol- and water-based protocols evolved into Pt-Pd nanocages and Pt nanorings, respectively, when the Pd templates in the cores were selectively removed by wet etching. As a result, the wall thickness of the nanocages and the ridge thickness of the nanorings could be reduced down to 1.1 nm and 1.8 nm, respectively, without breaking the hollow structures.« less

  10. Influence of hydrogen on the thermoelectric voltage signal in a Pt/WO x /6 H-SiC/Ni/Pt layered structure

    NASA Astrophysics Data System (ADS)

    Zuev, V. V.; Grigoriev, S. N.; Fominski, V. Yu.; Volosova, M. A.; Soloviev, A. A.

    2017-09-01

    The possibility of detecting H2 by registering the thermal electromotive force signal, which arises between the surfaces of 6 H-SiC plates with a thickness of 400 μm, is established. The working surface of the plates is modified by deposition of a WO x film and catalytic Pt. An ohmic contact (Ni/Pt) is created on the rear surface of the plate, and this surface is maintained at a stabilized temperature of 350°C. The temperature gradient through the plate thickness arises due to the cooling of the working surface with the air medium. The delivery of H2 into this medium up to a concentration of 2% gives rise to a 15-fold increase in the electric signal, which considerably exceeds the Pt/WO x /SiC/Ni/Pt system's response registered in the usual way by measuring the current-voltage dependence. In this case, an additional power source for the registration of the thermal electromotive force is not required.

  11. A one-dimensional ice structure built from pentagons

    NASA Astrophysics Data System (ADS)

    Carrasco, Javier; Michaelides, Angelos

    2010-03-01

    Heterogeneous nucleation of water plays a key role in fields as diverse as atmospheric chemistry, astrophysics, and biology. Ice nucleation on metal surfaces offers an opportunity to watch this process unfold, providing a molecular-scale description at a well-defined, planar interface. We discuss a density-functional theory study on a metal surface specifically designed to understand such phenomena. Together with our colleges at the University of Liverpool, we found that the nanometer wide water-ice chains experimentally observed to nucleate and grow on Cu(110) are built from a face sharing arrangement of water pentagons [1]. The novel one-dimensional pentagon structure maximizes the water-metal bonding whilst simultaneously maintaining a strong hydrogen bonding network. These results reveal an unanticipated structural adaptability of water-ice films, demonstrating that the presence of the substrate can be sufficient to favor non-conventional structural units. [4pt] [1] J. Carrasco et al., Nature Mater. 8, 427 (2009).

  12. Pt-Enhanced Mesoporous Ti3+/TiO2 with Rapid Bulk to Surface Electron Transfer for Photocatalytic Hydrogen Evolution.

    PubMed

    Lian, Zichao; Wang, Wenchao; Li, Guisheng; Tian, Fenghui; Schanze, Kirk S; Li, Hexing

    2017-05-24

    Pt-doped mesoporous Ti 3+ self-doped TiO 2 (Pt-Ti 3+ /TiO 2 ) is in situ synthesized via an ionothermal route, by treating metallic Ti in an ionic liquid containing LiOAc, HOAc, and a H 2 PtCl 6 aqueous solution under mild ionothermal conditions. Such Ti 3+ -enriched environment, as well as oxygen vacancies, is proven to be effective for allowing the in situ reduction of Pt 4+ ions uniformly located in the framework of the TiO 2 bulk. The photocatalytic H 2 evolution of Pt-Ti 3+ /TiO 2 is significantly higher than that of the photoreduced Pt loaded on the original TiO 2 and commercial P25. Such greatly enhanced activity is due to the various valence states of Pt (Pt n+ , n = 0, 2, or 3), forming Pt-O bonds embedded in the framework of TiO 2 and ultrafine Pt metal nanoparticles on the surface of TiO 2 . Such Pt n+ -O bonds could act as the bridges for facilitating the photogenerated electron transfer from the bulk to the surface of TiO 2 with a higher electron carrier density (3.11 × 10 20 cm -3 ), about 2.5 times that (1.25 × 10 20 cm -3 ) of the photoreduced Pt-Ti 3+ /TiO 2 sample. Thus, more photogenerated electrons could reach the Pt metal for reducing protons to H 2 .

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionita, G.; Stefanescu, I.

    The nature and performance of our patented catalysts, with platinum on carbon and polytetrafluorethylene [Pt/C/PTFE] and platinum on styrenedivynilbenzene and polystyrene [Pt/STB/PS], used in a water-hydrogen isotope exchange process are presented. The behaviour of the two catalysts in tritiated water was tested by determining their physical and structural characteristics as well as the catalytic activity before and after immersion in tritiated water. The test results emphasized that the two catalysts are highly active in the hydrogen - water vapor (H{sub 2(g)}-H{sub 2}O{sub (v)}) isotopic exchange and highly stable to tritium radiation. It was discovered that Pt/SDB/PS catalyst proved to bemore » quite unstable in the hydrogen- water vapor - water (H{sub 2(g)}-H{sub 2}O{sub (v)}-H{sub 2}O{sub (1)}) isotopic exchange, while the Pt/C/PTFE catalyst was highly stable. Thus, the Pt/C/PTFE catalyst was chosen for hydrogen isotope separation by liquid hydrogen cryogenic distillation combined with water - hydrogen isotopic exchange in a demonstration scale plant. 5 refs., 8 figs., 2 tabs.« less

  14. Interactions between liquid-water and gas-diffusion layers in polymer-electrolyte fuel cells

    DOE PAGES

    Das, Prodip K.; Santamaria, Anthony D.; Weber, Adam Z.

    2015-06-11

    Over the past few decades, a significant amount of research on polymer-electrolyte fuel cells (PEFCs) has been conducted to improve performance and durability while reducing the cost of fuel cell systems. However, the cost associated with the platinum (Pt) catalyst remains a barrier to their commercialization and PEFC durability standards have yet to be established. An effective path toward reducing PEFC cost is making the catalyst layers (CLs) thinner thus reducing expensive Pt content. The limit of thin CLs is high gas-transport resistance and the performance of these CLs is sensitive to the operating temperature due to their inherent lowmore » water uptake capacity, which results in higher sensitivity to liquid-water flooding and reduced durability. Therefore, reducing PEFC's cost by decreasing Pt content and improving PEFC's performance and durability by managing liquid-water are still challenging and open topics of research. An overlooked aspect nowadays of PEFC water management is the gas-diffusion layer (GDL). While it is known that GDL's properties can impact performance, typically it is not seen as a critical component. In this work, we present data showing the importance of GDLs in terms of water removal and management while also exploring the interactions between liquid-water and GDL surfaces. The critical interface of GDL and gas-flow-channel in the presence of liquid-water was examined through systematic studies of adhesion forces as a function of water-injection rate for various GDLs of varying thickness. GDL properties (breakthrough pressure and adhesion force) were measured experimentally under a host of test conditions. Specifically, the effects of GDL hydrophobic (PTFE) content, thickness, and water-injection rate were examined to identify trends that may be beneficial to the design of liquid-water management strategies and next-generation GDL materials for PEFCs.« less

  15. Distinguishing molecular environments in supported Pt catalysts and their influences on activity and selectivity

    NASA Astrophysics Data System (ADS)

    Jones, Louis Chin

    This thesis entails the synthesis, automated catalytic testing, and in situ molecular characterization of supported Pt and Pt-alloy nanoparticle (NP) catalysts, with emphasis on how to assess the molecular distributions of Pt environments that are affecting overall catalytic activity and selectivity. We have taken the approach of (a) manipulating nucleation and growth of NPs using oxide supports, surfactants, and inorganic complexes to create Pt NPs with uniform size, shape, and composition, (b) automating batch and continuous flow catalytic reaction tests, and (c) characterizing the molecular environments of Pt surfaces using in situ infrared (IR) spectroscopy and solid-state 195Pt NMR. The following will highlight the synthesis and characterization of Ag-doped Pt NPs and their influence on C 2H2 hydrogenation selectivity, and the implementation of advanced solid-state 195Pt NMR techniques to distinguish how distributions of molecular Pt environments vary with nanoparticle size, support, and surface composition.

  16. Confined catalysis under two-dimensional materials

    PubMed Central

    Li, Haobo; Xiao, Jianping; Bao, Xinhe

    2017-01-01

    Confined microenvironments formed in heterogeneous catalysts have recently been recognized as equally important as catalytically active sites. Understanding the fundamentals of confined catalysis has become an important topic in heterogeneous catalysis. Well-defined 2D space between a catalyst surface and a 2D material overlayer provides an ideal microenvironment to explore the confined catalysis experimentally and theoretically. Using density functional theory calculations, we reveal that adsorption of atoms and molecules on a Pt(111) surface always has been weakened under monolayer graphene, which is attributed to the geometric constraint and confinement field in the 2D space between the graphene overlayer and the Pt(111) surface. A similar result has been found on Pt(110) and Pt(100) surfaces covered with graphene. The microenvironment created by coating a catalyst surface with 2D material overlayer can be used to modulate surface reactivity, which has been illustrated by optimizing oxygen reduction reaction activity on Pt(111) covered by various 2D materials. We demonstrate a concept of confined catalysis under 2D cover based on a weak van der Waals interaction between 2D material overlayers and underlying catalyst surfaces. PMID:28533413

  17. Dehydrogenation of benzene on Pt(111) surface

    NASA Astrophysics Data System (ADS)

    Gao, W.; Zheng, W. T.; Jiang, Q.

    2008-10-01

    The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.

  18. Dehydrogenation of benzene on Pt(111) surface.

    PubMed

    Gao, W; Zheng, W T; Jiang, Q

    2008-10-28

    The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.

  19. Preparation of the vulcan XC-72R-supported Pt nanoparticles for the hydrogen evolution reaction in PEM water electrolysers

    NASA Astrophysics Data System (ADS)

    Du Nguyen, Huy; Thuy Luyen Nguyen, T.; Nguyen, Khac Manh; Ha, Thuc Huy; Hien Nguyen, Quoc

    2015-01-01

    Pt nanoparticles on vulcan XC-72R support (Pt/vulcan XC-72R) were prepared by the impregnation-reduction method. The Pt content, the morphological properties and the electrochemical catalysis of the Pt/vulcan XC 72R materials have been investigated by ICP-OES analysis, FESEM, TEM, and cyclic voltammetry. These materials were then used as catalyst for hydrogen evolution reaction at the cathode of proton exchange membrane (PEM) water electrolysers. The best catalyst was Pt/vulcan XC-72R prepared by the impregnation-reduction method which is conducted in two reducing steps with the reductants of sodium borohydride and ethylene glycol, respectively. The current density of PEM water electrolysers reached 1.0 A cm-2 when applying a voltage of 2.0 V at 25 °C.

  20. Lignin-derived oxygenate reforming on a bimetallic surface: The reaction of benzaldehyde on Zn/Pt(111)

    NASA Astrophysics Data System (ADS)

    Shi, Daming; Vohs, John M.

    2016-08-01

    Temperature programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) were used to characterize the adsorption and reaction of benzaldehyde (C6H5CHO) on hydrogen-covered Pt(111) and Zn-modified Pt(111) surfaces. Benzaldehyde was found to interact with Pt(111) via both the phenyl ring and carbonyl of the aldehyde group. This bonding configuration facilitates unselective decomposition of the benzaldehyde to produce CO, H2, and small hydrocarbon fragments at relatively low temperatures. On the other hand, benzaldehyde was found to bond to Zn-decorated Pt(111) surface exclusively via the carbonyl group in an η2(C, O) configuration, with the phenyl ring tilted away from the surface. This configuration weakens Csbnd O bond in the carbonyl facilitating its cleavage and helps prevent hydrogenation of the phenyl ring.

  1. Tailoring Silica-alumina Supported Pt-Pd As Poison Tolerant Catalyst For Aromatics Hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yanzhe; Gutierrez, Oliver Y.; Haller, Gary L.

    2013-08-01

    The tailoring of the physicochemical and catalytic properties of mono- and bimetallic Pt-Pd catalysts supported on amorphous silica-alumina is studied. Electron energy loss spectroscopy and extended X-ray absorption fine structure analyses indicated that bimetallic Pt-Pd and relatively large monometallic Pd particles were formed, whereas the X-ray absorption near edge structure provided direct evidence for the electronic deficiency of the Pt atoms. The heterogeneous distribution of metal particles was also shown by high resolution transmission electron microscopy. The average structure of the bimetallic particles (Pt-rich core and Pd-rich shell) and the presence of Pd particles led to surface Pd enrichment, whichmore » was independently shown by IR spectra of adsorbed CO. The specific metal distribution, average size, and surface composition of the Pt-Pd particles depend to a large extent on the metal precursors. In the presence of NH3 ligands, Pt-Pd particles with a fairly homogeneous bulk and surface metal distribution were formed. Also high Lewis acid site concentration of the carrier leads to more homogeneous bimetallic particles. All catalysts were active for the hydrogenation of tetralin in the absence and presence of quinoline and dibenzothiophene (DBT). Monometallic Pt catalysts had the highest hydrogenation activity in poison-free and quinoline-containing feed. When DBT was present, bimetallic Pt-Pd catalysts with the most homogenous metal distribution showed the highest activity. The higher resistance of bimetallic catalysts towards sulfur poisoning compared to their monometallic Pt counterparts results from the weakened metal-sulfur bond on the electron deficient Pt atoms. Thus, increasing the fraction of electron deficient Pt on the surface of the bimetallic particles increases the efficiency of the catalyst in the presence of sulfur.« less

  2. Investigation of interaction between the Pt(II) ions and aminosilane-modified silica surface in heterogeneous system

    NASA Astrophysics Data System (ADS)

    Nowicki, Waldemar; Gąsowska, Anna; Kirszensztejn, Piotr

    2016-05-01

    UV-vis spectroscopy measurements confirmed the reaction in heterogeneous system between Pt(II) ions and ethylenediamine type ligand, n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane, immobilized at the silica surface. The formation of complexes is a consequence of interaction between the amine groups from the ligand grafted onto SiO2 and ions of platinum. A potentiometric titration technique was to determine the stability constants of complexes of Pt(II) with immobilized insoluble ligand (SG-L), on the silica gel. The results show the formation of three surface complexes of the same type (PtHSG-L, Pt(HSG-L)2, PtSG-L) with SG-L ligand, in a wide range of pH for different Debye length. The concentration distribution of the complexes in a heterogeneous system is evaluated.

  3. Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts

    DOE PAGES

    Christ, J. M.; Neyerlin, K. C.; Richards, R.; ...

    2014-10-04

    A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA weremore » more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.« less

  4. Microkinetic modeling of H 2SO 4 formation on Pt based diesel oxidation catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Hom N.; Sun, Yunwei; Glascoe, Elizabeth A.

    The presence of water vapor and sulfur oxides in diesel engine exhaust leads to the formation of sulfuric acid (H 2SO 4), which severely impacts the performance of Pt/Pd based emissions aftertreatment catalysts. In this study, a microkinetic model is developed to investigate the reaction pathways of H 2SO 4 formation on Pt based diesel oxidation catalysts (DOCs). The microkinetic model consists of 14 elementary step reactions (7 reversible pairs) and yields prediction in excellent agreement with data obtained from experiments at practically relevant sulfur oxides environment in engine exhaust. The model simulation utilizing a steady-state plug flow reactor demonstratesmore » that it matches experimental data in both kinetically and thermodynamically controlled regions. Results clearly show the negative impact of SO 3 on the SO 2 oxidation light-off temperature, consistent with experimental observations. A reaction pathway analysis shows that the primary pathway of sulfuric acid formation on Pt surface involves SO 2* oxidation to form SO 3* with the subsequent interaction of SO 3* with H 2O* to form H 2SO 4*.« less

  5. A Simple Assay for Ultrasensitive Colorimetric Detection of Ag⁺ at Picomolar Levels Using Platinum Nanoparticles.

    PubMed

    Wang, Yi-Wei; Wang, Meili; Wang, Lixing; Xu, Hui; Tang, Shurong; Yang, Huang-Hao; Zhang, Lan; Song, Hongbo

    2017-11-02

    In this work, uniformly-dispersed platinum nanoparticles (PtNPs) were synthesized by a simple chemical reduction method, in which citric acid and sodium borohydride acted as a stabilizer and reducer, respectively. An ultrasensitive colorimetric sensor for the facile and rapid detection of Ag⁺ ions was constructed based on the peroxidase mimetic activities of the obtained PtNPs, which can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H₂O₂ to produce colored products. The introduced Ag⁺ would be reduced to Ag⁰ by the capped citric acid, and the deposition of Ag⁰ on the PtNPs surface, can effectively inhibit the peroxidase-mimetic activity of PtNPs. Through measuring the maximum absorption signal of oxidized TMB at 652 nm, ultra-low detection limits (7.8 pM) of Ag⁺ can be reached. In addition to such high sensitivity, the colorimetric assay also displays excellent selectivity for other ions of interest and shows great potential for the detection of Ag⁺ in real water samples.

  6. Microkinetic modeling of H 2SO 4 formation on Pt based diesel oxidation catalysts

    DOE PAGES

    Sharma, Hom N.; Sun, Yunwei; Glascoe, Elizabeth A.

    2017-08-10

    The presence of water vapor and sulfur oxides in diesel engine exhaust leads to the formation of sulfuric acid (H 2SO 4), which severely impacts the performance of Pt/Pd based emissions aftertreatment catalysts. In this study, a microkinetic model is developed to investigate the reaction pathways of H 2SO 4 formation on Pt based diesel oxidation catalysts (DOCs). The microkinetic model consists of 14 elementary step reactions (7 reversible pairs) and yields prediction in excellent agreement with data obtained from experiments at practically relevant sulfur oxides environment in engine exhaust. The model simulation utilizing a steady-state plug flow reactor demonstratesmore » that it matches experimental data in both kinetically and thermodynamically controlled regions. Results clearly show the negative impact of SO 3 on the SO 2 oxidation light-off temperature, consistent with experimental observations. A reaction pathway analysis shows that the primary pathway of sulfuric acid formation on Pt surface involves SO 2* oxidation to form SO 3* with the subsequent interaction of SO 3* with H 2O* to form H 2SO 4*.« less

  7. Formic acid decomposition on Pt1/Cu (111) single platinum atom catalyst: Insights from DFT calculations and energetic span model analysis

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Fan; Li, Kun; Wang, Gui-Chang

    2018-04-01

    Inspired by the recent surface experimental results that the monatomic Pt catalysts has more excellent hydrogen production that Cu(111) surface, the mechanism of decomposition of formic acid on Cu(111) and single atom Pt1/Cu(111) surface was studied by periodic density functional theory calculations in the present work. The results show that the formic acid tends to undergo dehydrogenation on both surfaces to obtain the hydrogen product of the target product, and the selectivity and catalytic activity of Pt1/Cu (111) surface for formic acid dehydrogenation are better. The reason is that the single atom Pt1/Cu(111) catalyst reduces the reaction energy barrier (i.e., HCOO → CO2 + H) of the critical step of the dehydrogenation reaction due to the fact that the single atom Pt1/Cu(111) catalyst binds formate weakly compared to that of Cu (111) one. Moreover, it was found that the Pt1/Cu (111) binds CO more strongly than that of Cu (111) one and thus leading to the difficult for the formation of CO. These two factors would make the single Pt atom catalyst had the high selectivity for the H2 production. It is hoped that the present work may help people to design the efficient H2 production from HCOOH decomposition by reduce the surface binding strength of HCOO species, for example, using the low coordination number active site like single atom or other related catalytic system.

  8. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network.

    PubMed

    Wang, Hui-Fang; Liu, Zhi-Pan

    2008-08-20

    Ethanol oxidation on Pt is a typical multistep and multiselectivity heterogeneous catalytic process. A comprehensive understanding of this fundamental reaction would greatly benefit design of catalysts for use in direct ethanol fuel cells and the degradation of biomass-derived oxygenates. In this work, the reaction network of ethanol oxidation on different Pt surfaces, including close-packed Pt{111}, stepped Pt{211}, and open Pt{100}, is explored thoroughly with an efficient reaction path searching method, which integrates our new transition-state searching technique with periodic density functional theory calculations. Our new technique enables the location of the transition state and saddle points for most surface reactions simply and efficiently by optimization of local minima. We show that the selectivity of ethanol oxidation on Pt depends markedly on the surface structure, which can be attributed to the structure-sensitivity of two key reaction steps: (i) the initial dehydrogenation of ethanol and (ii) the oxidation of acetyl (CH3CO). On open surface sites, ethanol prefers C-C bond cleavage via strongly adsorbed intermediates (CH2CO or CHCO), which leads to complete oxidation to CO2. However, only partial oxidizations to CH3CHO and CH3COOH occur on Pt{111}. Our mechanism points out that the open surface Pt{100} is the best facet to fully oxidize ethanol at low coverages, which sheds light on the origin of the remarkable catalytic performance of Pt tetrahexahedra nanocrystals found recently. The physical origin of the structure-selectivity is rationalized in terms of both thermodynamics and kinetics. Two fundamental quantities that dictate the selectivity of ethanol oxidation are identified: (i) the ability of surface metal atoms to bond with unsaturated C-containing fragments and (ii) the relative stability of hydroxyl at surface atop sites with respect to other sites.

  9. Estimating Field Scale Crop Evapotranspiration using Landsat and MODIS Satellite Observations

    NASA Astrophysics Data System (ADS)

    Wong, A.; Jin, Y.; Snyder, R. L.; Daniele, Z.; Gao, F.

    2016-12-01

    Irrigation accounts for 80% of human freshwater consumption, and most of it return to the atmosphere through Evapotranspiration (ET). Given the challenges of already-stressed water resources and ground water regulation in California, a cost-effective, timely, and consistent spatial estimate of crop ET, from the farm to watershed level, is becoming increasingly important. The Priestley-Taylor (PT) approach, calibrated with field data and driven by satellite observations, shows great promise for accurate ET estimates across diverse ecosystems. We here aim to improve the robustness of the PT approach in agricultural lands, to enable growers and farm managers to tailor irrigation management based on in-field spatial variability and in-season variation. We optimized the PT coefficients for each crop type with available ET measurements from eddy covariance towers and/or surface renewal stations at six crop fields (Alfalfa, Almond, Citrus, Corn, Pistachio and Rice) in California. Good agreement was found between satellite-based estimates and field measurements of net radiation, with a RMSE of less than 36 W m-2. The crop type specific optimization performed well, with a RMSE of 30 W m-2 and a correlation of 0.81 for predicted daily latent heat flux. The calibrated algorithm was used to estimate ET at 30 m resolution over the Sacramento-San Joaquin Delta region for 2015 water year. It captures well the seasonal dynamics and spatial distribution of ET in Sacramento-San Joaquin Delta. A continuous monitoring of the dynamics and spatial heterogeneity of canopy and consumptive water use at a field scale, will help the growers to be well prepared and informed to adaptively manage water, canopy, and grove density to maximize the yield with the least amount of water.

  10. Study of Pt-Rh/CeO2-ZrO2-MxOy (M = Y, La)/Al2O3 three-way catalysts

    NASA Astrophysics Data System (ADS)

    Jiaxiu, Guo; Zhonghua, Shi; Dongdong, Wu; Huaqiang, Yin; Maochu, Gong; Yaoqiang, Chen

    2013-05-01

    CeO2-ZrO2-MxOy (M = Y; La) mixed oxides, prepared by co-precipitation method and characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Raman spectra (RM) and oxygen pulse reaction, were comparatively investigated to elucidate the combinational effects of Y and/or La oxide promoters on the catalytic activity and anti-aging performance of monolithic cordierite honeycomb catalysts with low Pt and Rh content. The catalytic activities, water-gas shift (WGS) and steam reforming reaction (SR) were studied under a simulated gas mixture. The catalysts were also characterized by H2-temperature-programmed reduction (H2-TPR) and O2-temperature-programmed desorption (O2-TPD). The results showed that the prepared CeO2-ZrO2-MxOy oxides have a face-centered cubic fluorite structure and are nanosize. La3+ ions can significantly improve thermal stability and efficiently retard CeO2-ZrO2 crystal sintering and growth. Doped CeO2-ZrO2 with Y3+ and La3+ has 105 and 60 m2/g surface area and 460 and 390 μmol/g OSC before and after aging. The T50 of fresh Pt-Rh/CZYL/LA is 170 °C for CO, 222 °C for C3H8 and 189 °C for NO, and shift to 205, 262 and 228 °C after hydrothermal aging, which are better than those of Pt-Rh/CZY/LA or Pt-Rh/CZL/LA. WGS and SR are relate to the OSC of oxygen storage materials and absorbed oxygen species on the catalyst surface and affect the three-way catalytic activities of catalysts. The reductive property of noble metals and the dissociatively adsorbed O2 on the surface of catalysts are closely related to the catalytic activities.

  11. 40 CFR Table 2 to Subpart II of... - Volatile Organic HAP (VOHAP) Limits for Marine Coatings

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for Marine Coatings 2 Table 2 to Subpart II of Part 63 Protection of Environment ENVIRONMENTAL... (Surface Coating) Pt. 63, Subpt. II, Table 2 Table 2 to Subpart II of Part 63—Volatile Organic HAP (VOHAP) Limits for Marine Coatings Coating category VOHAP limits a,b,c Grams/liter coating (minus water and...

  12. 40 CFR Table 2 to Subpart II of... - Volatile Organic HAP (VOHAP) Limits for Marine Coatings

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for Marine Coatings 2 Table 2 to Subpart II of Part 63 Protection of Environment ENVIRONMENTAL... (Surface Coating) Pt. 63, Subpt. II, Table 2 Table 2 to Subpart II of Part 63—Volatile Organic HAP (VOHAP) Limits for Marine Coatings Coating category VOHAP limits a,b,c Grams/liter coating (minus water and...

  13. 40 CFR Table 2 to Subpart II of... - Volatile Organic HAP (VOHAP) Limits for Marine Coatings

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Marine Coatings 2 Table 2 to Subpart II of Part 63 Protection of Environment ENVIRONMENTAL... (Surface Coating) Pt. 63, Subpt. II, Table 2 Table 2 to Subpart II of Part 63—Volatile Organic HAP (VOHAP) Limits for Marine Coatings Coating category VOHAP limits a b c Grams/liter coating (minus water and...

  14. 40 CFR Table 2 to Subpart II of... - Volatile Organic HAP (VOHAP) Limits for Marine Coatings

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Marine Coatings 2 Table 2 to Subpart II of Part 63 Protection of Environment ENVIRONMENTAL... (Surface Coating) Pt. 63, Subpt. II, Table 2 Table 2 to Subpart II of Part 63—Volatile Organic HAP (VOHAP) Limits for Marine Coatings Coating category VOHAP limits a,b,c Grams/liter coating (minus water and...

  15. 40 CFR Table 2 to Subpart II of... - Volatile Organic HAP (VOHAP) Limits for Marine Coatings

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for Marine Coatings 2 Table 2 to Subpart II of Part 63 Protection of Environment ENVIRONMENTAL... (Surface Coating) Pt. 63, Subpt. II, Table 2 Table 2 to Subpart II of Part 63—Volatile Organic HAP (VOHAP) Limits for Marine Coatings Coating category VOHAP limits a,b,c Grams/liter coating (minus water and...

  16. Synthesis of Cubic-Shaped Pt Particles with (100) Preferential Orientation by a Quick, One-Step and Clean Electrochemical Method.

    PubMed

    Liu, Jie; Fan, Xiayue; Liu, Xiaorui; Song, Zhishuang; Deng, Yida; Han, Xiaopeng; Hu, Wenbin; Zhong, Cheng

    2017-06-07

    A new approach has been developed for in situ preparing cubic-shaped Pt particles with (100) preferential orientation on the surface of the conductive support by using a quick, one-step, and clean electrochemical method with periodic square-wave potential. The whole electrochemical deposition process is very quick (only 6 min is required to produce cubic Pt particles), without the use of particular capping agents. The shape and the surface structure of deposited Pt particles can be controlled by the lower and upper potential limits of the square-wave potential. For a frequency of 5 Hz and an upper potential limit of 1.0 V (vs saturated calomel electrode), as the lower potential limit decreases to the H adsorption potential region, the Pt deposits are changed from nearly spherical particles to cubic-shaped (100)-oriented Pt particles. High-resolution transmission electron microscopy and selected-area electron diffraction reveal that the formed cubic Pt particles are single-crystalline and enclosed by (100) facets. Cubic Pt particles exhibit characteristic H adsorption/desorption peaks corresponding to the (100) preferential orientation. Ge irreversible adsorption indicates that the fraction of wide Pt(100) surface domains is 47.8%. The electrocatalytic activities of different Pt particles are investigated by ammonia electro-oxidation, which is particularly sensitive to the amount of Pt(100) sites, especially larger (100) domains. The specific activity of cubic Pt particles is 3.6 times as high as that of polycrystalline spherical Pt particles, again confirming the (100) preferential orientation of Pt cubes. The formation of cubic-shaped Pt particles is related with the preferential electrochemical deposition and dissolution processes of Pt, which are coupled with the periodic desorption and adsorption processes of O-containing species and H adatoms.

  17. Architecture-dependent surface chemistry for Pt monolayers on carbon-supported Au.

    PubMed

    Cheng, Shuang; Rettew, Robert E; Sauerbrey, Marc; Alamgir, Faisal M

    2011-10-01

    Pt monolayers were grown by surface-limited redox replacement (SLRR) on two types of Au nanostructures. The Au nanostructures were fabricated electrochemically on carbon fiber paper (CFP) by either potentiostatic deposition (PSD) or potential square wave deposition (PSWD). The morphology of the Au/CFP heterostructures, examined using scanning electron microscopy (SEM), was found to depend on the type of Au growth method employed. The properties of the Pt deposit, as studied using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and cyclic voltammetry (CV), were found to depend strongly on the morphology of the support. Specifically, it was found that smaller Au morphologies led to a higher degree of cationicity in the resulting Pt deposit, with Pt(4+) and Pt(2+) species being identified using XPS and XAS. For fuel-cell catalysts, the resistance of ultrathin catalyst deposits to surface area loss through dissolution, poisoning, and agglomeration is critical. This study shows that an equivalent of two monolayers (ML) is the low-loading limit of Pt on Au. At 1 ML or below, the Pt film decreases in activity and durability very rapidly due to presence of cationic Pt. © 2011 American Chemical Society

  18. Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies

    NASA Astrophysics Data System (ADS)

    Motin, Abdul Md.; Haunold, Thomas; Bukhtiyarov, Andrey V.; Bera, Abhijit; Rameshan, Christoph; Rupprechter, Günther

    2018-05-01

    Pt nanoparticles supported on carbon are an important technological catalyst. A corresponding model catalyst was prepared by physical vapor deposition (PVD) of Pt on sputtered HOPG (highly oriented pyrolytic graphite). The carbon substrate before and after sputtering as well as the Pt/HOPG system before and after Pt deposition and annealing were examined by XPS and STM. This yielded information on the surface density of defects, which serve as nucleation centres for Pt, and on the size distribution (mean size/height) of the Pt nanoparticles. Two different model catalysts were prepared with mean sizes of 2.0 and 3.6 nm, both turned out to be stable upon UHV-annealing to 300 °C. After transfer into a UHV-compatible flow microreactor and subsequent cleaning in UHV and under mbar pressure, the catalytic activity of the Pt/HOPG model system for ethylene hydrogenation was examined under atmospheric pressure flow conditions. This enabled to determine temperature-dependent conversion rates, turnover frequencies (TOFs) and activation energies. The catalytic results obtained are in line with the characteristics of technological Pt/C, demonstrating the validity of the current surface science based model catalyst approach.

  19. Synthesis and characterization of magnetically hard Fe-Pt alloy nanoparticles and nano-islands

    NASA Astrophysics Data System (ADS)

    Hu, Xiaocao

    In this dissertation, we explored the fabrication of FePt nanoparticles and nano-islands with the face-centered tetragonal (fct, L10) phase prepared by both chemical synthesis routes and physical vapor deposition. Microstructure and magnetic properties characterizations were used to gain a fundamental understanding of the nano-structure formation and atomic ordering behavior and determine the possible applications in the next generation ultra-high density magnetic storage media. FePt nanoparticles prepared by thermal decomposition of iron pentacarbonyl [Fe(CO)5] have been widely investigated and by tuning the processing procedure monodispersed FePt nanoparticles with good assembly can be obtained. The as-made FePt nanoparticles are usually in the magnetically soft face-centered cubic (fcc) phase. To transformation to the fct phase, post-annealing at above 600°C is needed which, however, introduces undesirable agglomeration and sintering. To address this problem, we used three different fabrication processes which are discussed below. In the first fabrication experiment, the FePt nanoparticles were fabricated by a novel environmental friendly method involving crystalline saline complex hexaaquairon (II) hexachloroplatinate ([Fe(H2O)6]PtCl 6) with a special layered structure. Then the precursor was ball milled with NaCl and annealed at temperatures above 400°C under a reducing atmosphere of forming gas (95% Ar and 5% H2) FePt nanoparticles were obtained after washing away NaCl with deionized water. This method avoids the use of the very poisonous Fe(CO)5 and other organic solvents such as oleylamine and oleic acid. Instead, environmentally friendly NaCl and water were used. The size of FePt nanoparticles was controlled by varying the proportion of precursor and NaCl (from 10mg/20g to 50mg/20g). Particles with size in the range of 6.2--13.2 nm were obtained. All the nanoparticles annealed above 400°C are in the highly ordered fct phase with a coercivity range of 4.7 kOe to 10.7 kOe. Compared with reported high annealing temperatures above 600°C, this fabrication process led to a significantly decreased temperature to achieve the L10 phase FePt by 200°C. A qualitative model was set up to explain the surprising low L10 phase achievement temperature and the influence of annealing temperature on the microstructure and magnetic properties was investigated. Although FePt nanoparticles with high coercivity and small size were successfully obtained by the first fabrication method, agglomeration happened during the washing procedure due to the large inter-particle magnetostatic force caused by their high magnetization. To avoid this agglomeration, exfoliated graphene was introduced in the second preparation method to keep the nanoparticles separated. Different from the traditional solvent-phase reaction to disperse FePt nanoparticles onto the exfoliated graphene, a novel solid-phase reaction was used in this dissertation involving the layered precursor [Fe(H2 O)6]PtCl6 molecule. The [Fe(H2O) 6]PtCl6 water solution was mixed with exfoliated graphene oxide (GO) and then the top solution was removed. Fe2+ and Pt2+ ions were absorbed onto the surface of GO. The remaining product was annealed under a reducing atmosphere of forming gas at different temperatures (500°C to 950°C). During the reduction process, GO was reduced to "graphene" and FePt nanoparticles were formed on the surface of exfoliated graphene. The separation effect by the exfoliated graphene increased the phase transformation temperature to 600°C compared to the first method. However, even at an annealing temperature as high as 750°C, we could still obtained separated, small size FePt nanoparticles with coercivity of 8.3 kOe. The third preparation method used in this dissertation is the traditional magnetron sputtering with very short deposition time (10 s to 25 s) on heated MgO (001) substrate to form separate nano-islands instead of continuous thin films. The ordering of FePt nano-islands were studied by high resolution transmission electron microscopy. Because of the low degree of atomic ordering of the as-prepared nano-islands, post annealing at 700°C under an atmosphere of forming gas was introduced. Ordering of nano-islands of as small as 3 nm was revealed. We discovered that in the ordered FePt nano-islands, there are defects present. Particularly, we observed an onion like structure in a FePt nano-island composed of c-domains perpendicular to each other. These defects explained the low coercivity of the L10 ordered FePt nano-islands, which was envisioned theoretically. In summary, in this dissertation, novel solid-phase, environmentally friendly synthesis methods to fabricate FePt nanoparticles and FePt nanoparticles on "graphene" with high coercivity are first reported. Also, a special onion-like structure was first discovered by high-resolution microscopy and theoretical simulation was done with good agreement with the experimental results.

  20. Pd surface and Pt subsurface segregation in Pt1-c Pd c nanoalloys

    NASA Astrophysics Data System (ADS)

    De Clercq, A.; Giorgio, S.; Mottet, C.

    2016-02-01

    The structure and chemical arrangement of Pt1-c Pd c nanoalloys with the icosahedral and face centered cubic symmetry are studied using Monte Carlo simulations with a tight binding interatomic potential fitted to density-functional theory calculations. Pd surface segregation from the lowest to the highest coordinated sites is predicted by the theory together with a Pt enrichment at the subsurface, whatever the structure and the size of the nanoparticles, and which subsists when increasing the temperature. The onion-shell chemical configuration is found for both symmetries and is initiated from the Pd surface segregation. It is amplified in the icosahedral symmetry and small sizes but when considering larger sizes, the oscillating segregation profile occurs near the surface on about three to four shells whatever the structure. Pd segregation results from the significant lower cohesive energy of Pd as compared to Pt and the weak ordering tendency leads to the Pt subsurface segregation. The very weak size mismatch does not prevent the bigger atoms (Pt) from occupying subsurface sites which are in compression whereas the smaller ones (Pd) occupy the central site of the icosahedra where the compression is an order of magnitude higher.

  1. Dry Reforming of Ethane and Butane with CO 2 over PtNi/CeO 2 Bimetallic Catalysts

    DOE PAGES

    Yan, Binhang; Yang, Xiaofang; Yao, Siyu; ...

    2016-09-21

    Dry reforming is a potential process to convert CO 2 and light alkanes into syngas (H 2 and CO), which can be subsequently transformed to chemicals and fuels. Here in this work, PtNi bimetallic catalysts have been investigated for dry reforming of ethane and butane using both model surfaces and supported powder catalysts. The PtNi bimetallic catalyst shows an improvement in both activity and stability as compared to the corresponding monometallic catalysts. The formation of PtNi alloy and the partial reduction of Ce 4+ to Ce 3+ under reaction conditions are demonstrated by in-situ Ambient Pressure X-ray Photoemission Spectroscopy (AP-XPS),more » X-ray Diffraction (XRD) and X-ray Absorption Fine Structure (XAFS) measurements. A Pt-rich bimetallic surface is revealed by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) following CO adsorption. Combined in-situ experimental results and Density Functional Theory (DFT) calculations suggest that the Pt-rich PtNi bimetallic surface structure would weaken the binding of surface oxygenates/carbon species and reduce the activation energy for C-C bond scission, leading to an enhanced dry reforming activity.« less

  2. Dry Reforming of Ethane and Butane with CO 2 over PtNi/CeO 2 Bimetallic Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Binhang; Yang, Xiaofang; Yao, Siyu

    Dry reforming is a potential process to convert CO 2 and light alkanes into syngas (H 2 and CO), which can be subsequently transformed to chemicals and fuels. Here in this work, PtNi bimetallic catalysts have been investigated for dry reforming of ethane and butane using both model surfaces and supported powder catalysts. The PtNi bimetallic catalyst shows an improvement in both activity and stability as compared to the corresponding monometallic catalysts. The formation of PtNi alloy and the partial reduction of Ce 4+ to Ce 3+ under reaction conditions are demonstrated by in-situ Ambient Pressure X-ray Photoemission Spectroscopy (AP-XPS),more » X-ray Diffraction (XRD) and X-ray Absorption Fine Structure (XAFS) measurements. A Pt-rich bimetallic surface is revealed by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) following CO adsorption. Combined in-situ experimental results and Density Functional Theory (DFT) calculations suggest that the Pt-rich PtNi bimetallic surface structure would weaken the binding of surface oxygenates/carbon species and reduce the activation energy for C-C bond scission, leading to an enhanced dry reforming activity.« less

  3. Multicomponent Pt-Based Zigzag Nanowires as Selectivity Controllers for Selective Hydrogenation Reactions.

    PubMed

    Bai, Shuxing; Bu, Lingzheng; Shao, Qi; Zhu, Xing; Huang, Xiaoqing

    2018-06-22

    The selective hydrogenation of α, β-unsaturated aldehyde is an extremely important transformation, while developing efficient catalysts with desirable selectivity to highly value-added products is challenging, mainly due to the coexistence of two conjugated unsaturated functional groups. Herein, we report that a series of Pt-based zigzag nanowires (ZNWs) can be adopted as selectivity controllers for α, β-unsaturated aldehyde hydrogenation, where the excellent unsaturated alcohol (UOL) selectivity (>95%) and high saturated aldehyde (SA) selectivity (>94%) are achieved on PtFe ZNWs and PtFeNi ZNWs+AlCl 3 , respectively. The excellent UOL selectivity of PtFe ZNWs is attributed to the lower electron density of the surface Pt atoms, while the high SA selectivity of PtFeNi ZNWs+AlCl 3 is due to synergy between PtFeNi ZNWs and AlCl 3 , highlighting the importance of Pt-based NWs with precisely controlled surface and composition for catalysis and beyond.

  4. Pt Single Atoms Embedded in the Surface of Ni Nanocrystals as Highly Active Catalysts for Selective Hydrogenation of Nitro Compounds.

    PubMed

    Peng, Yuhan; Geng, Zhigang; Zhao, Songtao; Wang, Liangbing; Li, Hongliang; Wang, Xu; Zheng, Xusheng; Zhu, Junfa; Li, Zhenyu; Si, Rui; Zeng, Jie

    2018-06-13

    Single-atom catalysts exhibit high selectivity in hydrogenation due to their isolated active sites, which ensure uniform adsorption configurations of substrate molecules. Compared with the achievement in catalytic selectivity, there is still a long way to go in exploiting the catalytic activity of single-atom catalysts. Herein, we developed highly active and selective catalysts in selective hydrogenation by embedding Pt single atoms in the surface of Ni nanocrystals (denoted as Pt 1 /Ni nanocrystals). During the hydrogenation of 3-nitrostyrene, the TOF numbers based on surface Pt atoms of Pt 1 /Ni nanocrystals reached ∼1800 h -1 under 3 atm of H 2 at 40 °C, much higher than that of Pt single atoms supported on active carbon, TiO 2 , SiO 2 , and ZSM-5. Mechanistic studies reveal that the remarkable activity of Pt 1 /Ni nanocrystals derived from sufficient hydrogen supply because of spontaneous dissociation of H 2 on both Pt and Ni atoms as well as facile diffusion of H atoms on Pt 1 /Ni nanocrystals. Moreover, the ensemble composed of the Pt single atom and nearby Ni atoms in Pt 1 /Ni nanocrystals leads to the adsorption configuration of 3-nitrostyrene favorable for the activation of nitro groups, accounting for the high selectivity for 3-vinylaniline.

  5. Carbon nanotubes decorated with Pt nanoparticles via electrostatic self-assembly: a highly active oxygen reduction electrocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Sheng; Shao, Yuyan; Yin, Geping

    2010-03-20

    Carbon nanotubes (CNTs) are noncovalently functionalized with poly(allylamine hydrochloride) (PAH) and then employed as the support of Pt nanoparticles. X-Ray photoelectron spectroscopy confirms the successful functionalization of CNTs with PAH. The negatively charged Pt precursors are adsorbed on positively charged PAH-wrapping CNTs surface via electrostatic self-assembly and then in situ reduced in ethylene glycol. X-Ray diffraction and transmission electron microscope images reveal that Pt nanoparticles with an average size of 2.6 nm are uniformly dispersed on CNT surface. Pt/PAH-CNTs exhibit unexpectedly high activity towards oxygen reduction reaction, which can be attributed to the large electrochemical surface area of Pt nanoparticles.more » It also shows enhanced electrochemical stability due to the structural integrity of PAH-CNTs. This provides a facile approach to synthesize CNTs-based nanoelectrocatalysts.« less

  6. Platinum group elements and gold in ferromanganese crusts from Afanasiy-Nikitin seamount, equatorial Indian Ocean: Sources and fractionation

    USGS Publications Warehouse

    Banakar, V.K.; Hein, J.R.; Rajani, R.P.; Chodankar, A.R.

    2007-01-01

    The major element relationships in ferromanganese (Fe-Mn) crusts from Afanasiy-Nikitin seamount (ANS), eastern equatorial Indian Ocean, appear to be atypical. High positive correlations (r = 0.99) between Mn/Co and Fe/Co ratios, and lack of correlation of those ratios with Co, Ce, and Ce/Co, indicate that the ANS Fe-Mn crusts are distinct from Pacific seamount Fe-Mn crusts, and reflect region-specific chemical characteristics. The platinum group elements (PGE: Ir, Ru, Rh, Pt, and Pd) and Au in ANS Fe-Mn crusts are derived from seawater and are mainly of terrestrial origin, with a minor cosmogenic component. The Ru/Rh (0.5-2) and Pt/Ru ratios (7-28) are closely comparable to ratios in continental basalts, whereas Pd/Ir ratios exhibit values ( 0.75) correlations between water depth and Mn/Co, Fe/Co, Ce/Co, Co, and the PGEs. Fractionation of the PGE-Au from seawater during colloidal precipitation of the major-oxide phases is indicated by well-defined linear positive correlations (r > 0.8) of Co and Ce with Ir, Ru, Rh, and Pt; Au/Co with Mn/Co; and by weak or no correlations of Pd with water depth, Co-normalized major-element ratios, and with the other PGE (r < 0.5). The strong enrichment of Pt (up to 1 ppm) relative to the other PGE and its positive correlations with Ce and Co demonstrate a common link for the high concentrations of all three elements, which likely involves an oxidation reaction on the Mn-oxide and Fe-oxyhydroxide surfaces. The documented fractionation of PGE-Au and their positive association with redox sensitive Co and Ce may have applications in reconstructing past-ocean redox conditions and water masses.

  7. Enhanced Hydrodeoxygenation of m -Cresol over Bimetallic Pt–Mo Catalysts through an Oxophilic Metal-Induced Tautomerization Pathway

    DOE PAGES

    Robinson, Allison; Ferguson, Glen Allen; Gallagher, James R.; ...

    2016-05-26

    Supported bimetallic catalysts consisting of a noble metal (e.g., Pt) and an oxophilic metal (e.g., Mo) have received considerable attention for the hydrodeoxygenation of oxygenated aromatic compounds produced from biomass fast pyrolysis. Here, we report that PtMo can catalyze m-cresol deoxygenation via a pathway involving an initial tautomerization step. In contrast, the dominant mechanism on monometallic Pt/Al 2O 3 was found to be sequential Pt-catalyzed ring hydrogenation followed by dehydration on the support. Bimetallic Pt 10Mo 1 and Pt 1Mo 1 catalysts were found to produce the completely hydrogenated and deoxygenated product, methylcyclohexane (MCH), with much higher yields than monometallicmore » Pt catalysts with comparable metal loadings and surface areas. Over an inert carbon support, MCH formation was found to be slow over monometallic Pt catalysts, while deoxygenation was significant for PtMo catalysts even in the absence of an acidic support material. Experimental studies of m-cresol deoxygenation together with density functional theory calculations indicated that Mo sites on the PtMo bimetallic surface dramatically lower the barrier for m-cresol tautomerization and subsequent deoxygenation. The accessibility of this pathway arises from the increased interaction between the oxygen of m-cresol and the Mo sites in the Pt surface. This interaction significantly alters the configuration of the precursor and transition states for tautomerization. Lastly, a suite of catalyst characterization techniques including X-ray absorption spectroscopy (XAS) and temperature-programmed reduction (TPR) indicate that Mo was present in a reduced state on the bimetallic surface under conditions relevant for reaction. Overall, these results suggest that the use of bifunctional metal catalysts can result in new reaction pathways that are unfavorable on monometallic noble metal catalysts.« less

  8. Characterization and comparison of biofilm development by pathogenic and commensal isolates of Histophilus somni.

    PubMed

    Sandal, Indra; Hong, Wenzhou; Swords, W Edward; Inzana, Thomas J

    2007-11-01

    Histophilus somni (Haemophilus somnus) is an obligate inhabitant of the mucosal surfaces of bovines and sheep and an opportunistic pathogen responsible for respiratory disease, meningoencephalitis, myocarditis, arthritis, and other systemic infections. The identification of an exopolysaccharide produced by H. somni prompted us to evaluate whether the bacterium was capable of forming a biofilm. After growth in polyvinyl chloride wells a biofilm was formed by all strains examined, although most isolates from systemic sites produced more biofilm than commensal isolates from the prepuce. Biofilms of pneumonia isolate strain 2336 and commensal isolate strain 129Pt were grown in flow cells, followed by analysis by confocal laser scanning microscopy and scanning electron microscopy. Both strains formed biofilms that went through stages of attachment, growth, maturation, and detachment. However, strain 2336 produced a mature biofilm that consisted of thick, homogenous mound-shaped microcolonies encased in an amorphous extracellular matrix with profound water channels. In contrast, strain 129Pt formed a biofilm of cell clusters that were tower-shaped or distinct filamentous structures intertwined with each other by strands of extracellular matrix. The biofilm of strain 2336 had a mass and thickness that was 5- to 10-fold greater than that of strain 129Pt and covered 75 to 82% of the surface area, whereas the biofilm of strain 129Pt covered 35 to 40% of the surface area. Since H. somni is an obligate inhabitant of the bovine and ovine host, the formation of a biofilm may be crucial to its persistence in vivo, and our in vitro evidence suggests that formation of a more robust biofilm may provide a selective advantage for strains that cause systemic disease.

  9. Characterization and Comparison of Biofilm Development by Pathogenic and Commensal Isolates of Histophilus somni▿

    PubMed Central

    Sandal, Indra; Hong, Wenzhou; Swords, W. Edward; Inzana, Thomas J.

    2007-01-01

    Histophilus somni (Haemophilus somnus) is an obligate inhabitant of the mucosal surfaces of bovines and sheep and an opportunistic pathogen responsible for respiratory disease, meningoencephalitis, myocarditis, arthritis, and other systemic infections. The identification of an exopolysaccharide produced by H. somni prompted us to evaluate whether the bacterium was capable of forming a biofilm. After growth in polyvinyl chloride wells a biofilm was formed by all strains examined, although most isolates from systemic sites produced more biofilm than commensal isolates from the prepuce. Biofilms of pneumonia isolate strain 2336 and commensal isolate strain 129Pt were grown in flow cells, followed by analysis by confocal laser scanning microscopy and scanning electron microscopy. Both strains formed biofilms that went through stages of attachment, growth, maturation, and detachment. However, strain 2336 produced a mature biofilm that consisted of thick, homogenous mound-shaped microcolonies encased in an amorphous extracellular matrix with profound water channels. In contrast, strain 129Pt formed a biofilm of cell clusters that were tower-shaped or distinct filamentous structures intertwined with each other by strands of extracellular matrix. The biofilm of strain 2336 had a mass and thickness that was 5- to 10-fold greater than that of strain 129Pt and covered 75 to 82% of the surface area, whereas the biofilm of strain 129Pt covered 35 to 40% of the surface area. Since H. somni is an obligate inhabitant of the bovine and ovine host, the formation of a biofilm may be crucial to its persistence in vivo, and our in vitro evidence suggests that formation of a more robust biofilm may provide a selective advantage for strains that cause systemic disease. PMID:17644581

  10. Water-soluble metal nanoparticles stabilized by plant polyphenols for improving the catalytic properties in oxidation of alcohols

    NASA Astrophysics Data System (ADS)

    Mao, H.; Liao, Y.; Ma, J.; Zhao, S. L.; Huo, F. W.

    2015-12-01

    Plant polyphenols extracted from plants are one of the most abundant biomasses in nature, which are typical water soluble natural polymers. Herein, we reported a facile approach for the synthesis of platinum nanoparticle (PtNP) aqueous colloid by utilizing black wattle tannin (BWT, a typical plant polyphenol) as amphiphilic stabilizer. The phenolic hydroxyls of BWT provide the PtNPs with enough hydrophilicity, and their reduction ability could protect the PtNPs from deactivation caused by oxygen atmosphere. Additionally, the hydrophilic nature of BWT could efficiently promote the oxidation of alcohols in water, meanwhile, the hydrophobic and rigid backbones of plant polyphenols are able to suppress the PtNPs from aggregating, thus ensuring the high dispersion of the PtNPs during reactions. Under mild aerobic conditions, the as-prepared BWT-Pt colloid catalyst exhibited high activity in a series of biphasic oxidation of aromatic alcohols and aliphatic alcohols. As for the cycling stability, the BWT-Pt catalyst showed no obvious decrease during the 7 cycles, revealing superior cycling stability as compared with the counterparts using PVP or PEG as the stabilizer.Plant polyphenols extracted from plants are one of the most abundant biomasses in nature, which are typical water soluble natural polymers. Herein, we reported a facile approach for the synthesis of platinum nanoparticle (PtNP) aqueous colloid by utilizing black wattle tannin (BWT, a typical plant polyphenol) as amphiphilic stabilizer. The phenolic hydroxyls of BWT provide the PtNPs with enough hydrophilicity, and their reduction ability could protect the PtNPs from deactivation caused by oxygen atmosphere. Additionally, the hydrophilic nature of BWT could efficiently promote the oxidation of alcohols in water, meanwhile, the hydrophobic and rigid backbones of plant polyphenols are able to suppress the PtNPs from aggregating, thus ensuring the high dispersion of the PtNPs during reactions. Under mild aerobic conditions, the as-prepared BWT-Pt colloid catalyst exhibited high activity in a series of biphasic oxidation of aromatic alcohols and aliphatic alcohols. As for the cycling stability, the BWT-Pt catalyst showed no obvious decrease during the 7 cycles, revealing superior cycling stability as compared with the counterparts using PVP or PEG as the stabilizer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07897k

  11. Interfacial thermodynamics of water and six other liquid solvents.

    PubMed

    Pascal, Tod A; Goddard, William A

    2014-06-05

    We examine the thermodynamics of the liquid-vapor interface by direct calculation of the surface entropy, enthalpy, and free energy from extensive molecular dynamics simulations using the two-phase thermodynamics (2PT) method. Results for water, acetonitrile, cyclohexane, dimethyl sulfoxide, hexanol, N-methyl acetamide, and toluene are presented. We validate our approach by predicting the interfacial surface tensions (IFT--excess surface free energy per unit area) in excellent agreement with the mechanical calculations using Kirkwood-Buff theory. Additionally, we evaluate the temperature dependence of the IFT of water as described by the TIP4P/2005, SPC/Ew, TIP3P, and mW classical water models. We find that the TIP4P/2005 and SPC/Ew water models do a reasonable job of describing the interfacial thermodynamics; however, the TIP3P and mW are quite poor. We find that the underprediction of the experimental IFT at 298 K by these water models results from understructured surface molecules whose binding energies are too weak. Finally, we performed depth profiles of the interfacial thermodynamics which revealed long tails that extend far into what would be considered bulk from standard Gibbs theory. In fact, we find a nonmonotonic interfacial free energy profile for water, a unique feature that could have important consequences for the absorption of ions and other small molecules.

  12. Sintering of Pt nanoparticles via volatile PtO 2: Simulation and comparison with experiments

    DOE PAGES

    Plessow, Philipp N.; Abild-Pedersen, Frank

    2016-09-23

    It is a longstanding question whether sintering of platinum under oxidizing conditions is mediated by surface migration of Pt species or through the gas phase, by PtO 2(g). Clearly, a rational approach to avoid sintering requires understanding the underlying mechanism. A basic theory for the simulation of ripening through the vapor phase has been derived by Wynblatt and Gjostein. Recent modeling efforts, however, have focused entirely on surface-mediated ripening. In this work, we explicitly model ripening through PtO 2(g) and study how oxygen pressure, temperature, and shape of the particle size distribution affect sintering. On the basis of the availablemore » data on α-quartz, adsorption of monomeric Pt species on the support is extremely weak and has therefore not been explicitly simulated, while this may be important for more strongly interacting supports. Our simulations clearly show that ripening through the gas phase is predicted to be relevant. Assuming clean Pt particles, sintering is generally overestimated. This can be remedied by explicitly including oxygen coverage effects that lower both surface free energies and the sticking coefficient of PtO 2(g). Additionally, mass-transport limitations in the gas phase may play a role. Using a parameterization that accounts for these effects, we can quantitatively reproduce a number of experiments from the literature, including pressure and temperature dependence. Lastly, this substantiates the hypothesis of ripening via PtO 2(g) as an alternative to surface-mediated ripening.« less

  13. Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells.

    PubMed

    Wang, Gongwei; Huang, Bing; Xiao, Li; Ren, Zhandong; Chen, Hao; Wang, Deli; Abruña, Héctor D; Lu, Juntao; Zhuang, Lin

    2014-07-09

    The dependence on Pt catalysts has been a major issue of proton-exchange membrane (PEM) fuel cells. Strategies to maximize the Pt utilization in catalysts include two main approaches: to put Pt atoms only at the catalyst surface and to further enhance the surface-specific catalytic activity (SA) of Pt. Thus far there has been no practical design that combines these two features into one single catalyst. Here we report a combined computational and experimental study on the design and implementation of Pt-skin catalysts with significantly improved SA toward the oxygen reduction reaction (ORR). Through screening, using density functional theory (DFT) calculations, a Pt-skin structure on AuCu(111) substrate, consisting of 1.5 monolayers of Pt, is found to have an appropriately weakened oxygen affinity, in comparison to that on Pt(111), which would be ideal for ORR catalysis. Such a structure is then realized by substituting the Cu atoms in three surface layers of AuCu intermetallic nanoparticles (AuCu iNPs) with Pt. The resulting Pt-skinned catalyst (denoted as Pt(S)AuCu iNPs) has been characterized in depth using synchrotron XRD, XPS, HRTEM, and HAADF-STEM/EDX, such that the Pt-skin structure is unambiguously identified. The thickness of the Pt skin was determined to be less than two atomic layers. Finally the catalytic activity of Pt(S)AuCu iNPs toward the ORR was measured via rotating disk electrode (RDE) voltammetry through which it was established that the SA was more than 2 times that of a commercial Pt/C catalyst. Taking into account the ultralow Pt loading in Pt(S)AuCu iNPs, the mass-specific catalytic activity (MA) was determined to be 0.56 A/mg(Pt)@0.9 V, a value that is well beyond the DOE 2017 target for ORR catalysts (0.44 A/mg(Pt)@0.9 V). These findings provide a strategic design and a realizable approach to high-performance and Pt-efficient catalysts for fuel cells.

  14. In Vivo Neural Recording and Electrochemical Performance of Microelectrode Arrays Modified by Rough-Surfaced AuPt Alloy Nanoparticles with Nanoporosity

    PubMed Central

    Zhao, Zongya; Gong, Ruxue; Zheng, Liang; Wang, Jue

    2016-01-01

    In order to reduce the impedance and improve in vivo neural recording performance of our developed Michigan type silicon electrodes, rough-surfaced AuPt alloy nanoparticles with nanoporosity were deposited on gold microelectrode sites through electro-co-deposition of Au-Pt-Cu alloy nanoparticles, followed by chemical dealloying Cu. The AuPt alloy nanoparticles modified gold microelectrode sites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and in vivo neural recording experiment. The SEM images showed that the prepared AuPt alloy nanoparticles exhibited cauliflower-like shapes and possessed very rough surfaces with many different sizes of pores. Average impedance of rough-surfaced AuPt alloy nanoparticles modified sites was 0.23 MΩ at 1 kHz, which was only 4.7% of that of bare gold microelectrode sites (4.9 MΩ), and corresponding in vitro background noise in the range of 1 Hz to 7500 Hz decreased to 7.5 μVrms from 34.1 μVrms at bare gold microelectrode sites. Spontaneous spike signal recording was used to evaluate in vivo neural recording performance of modified microelectrode sites, and results showed that rough-surfaced AuPt alloy nanoparticles modified microelectrode sites exhibited higher average spike signal-to-noise ratio (SNR) of 4.8 in lateral globus pallidus (GPe) due to lower background noise compared to control microelectrodes. Electro-co-deposition of Au-Pt-Cu alloy nanoparticles combined with chemical dealloying Cu was a convenient way for increasing the effective surface area of microelectrode sites, which could reduce electrode impedance and improve the quality of in vivo spike signal recording. PMID:27827893

  15. Enabling unassisted solar water splitting by iron oxide and silicon

    DOE PAGES

    Jang, Ji-Wook; Du, Chun; Ye, Yifan; ...

    2015-06-16

    A solution for large-scale solar energy storage is photoelectrochemical (PEC) water splitting. However, its development has been impeded by the poor performance of photoanodes, particularly in their capability for photovoltage generation. Many examples employing photovoltaic modules to correct the deficiency for unassisted solar water splitting have been reported to-date. We show that, by using the prototypical photoanode material of haematite as a study tool, structural disorders on or near the surfaces are important causes of the low photovoltages. We develop a facile re-growth strategy to reduce surface disorders and as a consequence, a turn-on voltage of 0.45 V (versus reversiblemore » hydrogen electrode) is achieved. In conclusion, this result permits us to construct a photoelectrochemical device with a haematite photoanode and Si photocathode to split water at an overall efficiency of 0.91%, with NiFeOx and TiO2/Pt overlayers, respectively.« less

  16. Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications

    NASA Technical Reports Server (NTRS)

    Firdosy, Samad A.; Ravi, Vilupanur A.; Valdez, Thomas I.; Kisor, Adam; Narayan, Sri R.

    2013-01-01

    Oxygen reduction reactions (ORRs) at the cathode are the rate-limiting step in fuel cell performance. The ORR is 100 times slower than the corresponding hydrogen oxidation at the anode. Speeding up the reaction at the cathode will improve fuel cell efficiency. The cathode material is generally Pt powder painted onto a substrate (e.g., graphite paper). Recent efforts in the fuel cell area have focused on replacing Pt with Pt-X alloys (where X = Co, Ni, Zr, etc.) in order to (a) reduce cost, and (b) increase ORR rates. One of these strategies is to increase ORR rates by reducing the powder size, which would result in an increase in the surface area, thereby facilitating faster reaction rates. In this work, a process has been developed that creates Pt-Ni or Pt-Co alloys that are finely divided (on the nano scale) and provide equivalent performance at lower Pt loadings. Lower Pt loadings will translate to lower cost. Precursor salts of the metals are dissolved in water and mixed. Next, the salt mixtures are dried on a hot plate. Finally, the dried salt mixture is heattreated in a furnace under flowing reducing gas. The catalyst powder is then used to fabricate a membrane electrode assembly (MEA) for electrochemical performance testing. The Pt- Co catalyst-based MEA showed comparable performance to an MEA fabri cated using a standard Pt black fuel cell catalyst. The main objective of this program has been to increase the overall efficiencies of fuel cell systems to support power for manned lunar bases. This work may also have an impact on terrestrial programs, possibly to support the effort to develop a carbon-free energy source. This catalyst can be used to fabricate high-efficiency fuel cell units that can be used in space as regenerative fuel cell systems, and terrestrially as primary fuel cells. Terrestrially, this technology will become increasingly important when transition to a hydrogen economy occurs.

  17. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao

    2017-10-01

    The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.

  18. The effect of sediment mixing on mercury dynamics in two intertidal mudflats at Great Bay Estuary, New Hampshire, USA

    PubMed Central

    Brown, Lauren E.; Chen, Celia Y.; Voytek, Mary A.; Amirbahman, Aria

    2016-01-01

    Estuarine sediments store particulate contaminants including mercury (Hg). We studied Hg sediment dynamics in two intertidal mudflats at Great Bay estuary, NH, over multiple years. Sediments at both mudflats were physically mixed down to ~10 cm, as determined by 7Be measurements, albeit via different mechanisms. Portsmouth mudflat (PT) sediments were subject to bioturbation by infaunal organisms and Squamscott mudflat (SQ) sediments were subject to erosion and redeposition. The presence of higher concentrations of fresh Fe(III) hydroxide at PT suggested bioirrigation by the polychaetes (Nereis virens). At depths where infaunal bioirrigation was observed, pore-water inorganic Hg (Hgi) and methylmercury (MeHg) were lower potentially due to their interaction with Fe(III) hydroxide. Methylmercury concentrations increased immediately below this zone in some samples, suggesting that the observed increase in material flux in bioirrigated sediments may initiate from lower depths. Pore water in sediment at PT also had higher fractions of more protein-like and labile DOC than those at SQ that can lead to increased MeHg production in PT, especially at depths where Hgi is not removed from solution by Fe(III) hydroxide. Where sediment erosion and redeposition were observed at SQ, Hg species distribution was extended deeper into the sediment column. Moreover, methyl coenzyme M reductase (MCR) and mercury reductase (mer-A) genes were higher at SQ than PT suggesting differences in conditions for Hg cycling. Results showed that the near-surface region of high MeHg concentrations commonly observed in unmixed sediments does not exist in physically mixed sediments that are common in many estuarine environments. PMID:26924879

  19. The effect of sediment mixing on mercury dynamics in two intertidal mudflats at Great Bay Estuary, New Hampshire, USA.

    PubMed

    Brown, Lauren E; Chen, Celia Y; Voytek, Mary A; Amirbahman, Aria

    2015-12-01

    Estuarine sediments store particulate contaminants including mercury (Hg). We studied Hg sediment dynamics in two intertidal mudflats at Great Bay estuary, NH, over multiple years. Sediments at both mudflats were physically mixed down to ~10 cm, as determined by 7 Be measurements, albeit via different mechanisms. Portsmouth mudflat (PT) sediments were subject to bioturbation by infaunal organisms and Squamscott mudflat (SQ) sediments were subject to erosion and redeposition. The presence of higher concentrations of fresh Fe(III) hydroxide at PT suggested bioirrigation by the polychaetes ( Nereis virens ). At depths where infaunal bioirrigation was observed, pore-water inorganic Hg (Hg i ) and methylmercury (MeHg) were lower potentially due to their interaction with Fe(III) hydroxide. Methylmercury concentrations increased immediately below this zone in some samples, suggesting that the observed increase in material flux in bioirrigated sediments may initiate from lower depths. Pore water in sediment at PT also had higher fractions of more protein-like and labile DOC than those at SQ that can lead to increased MeHg production in PT, especially at depths where Hg i is not removed from solution by Fe(III) hydroxide. Where sediment erosion and redeposition were observed at SQ, Hg species distribution was extended deeper into the sediment column. Moreover, methyl coenzyme M reductase (MCR) and mercury reductase ( mer -A) genes were higher at SQ than PT suggesting differences in conditions for Hg cycling. Results showed that the near-surface region of high MeHg concentrations commonly observed in unmixed sediments does not exist in physically mixed sediments that are common in many estuarine environments.

  20. Synthesis and Characterization of Water-Soluble Polythiophene Derivatives for Cell Imaging

    NASA Astrophysics Data System (ADS)

    Wang, Fengyan; Li, Meng; Wang, Bing; Zhang, Jiangyan; Cheng, Yongqiang; Liu, Libing; Lv, Fengting; Wang, Shu

    2015-01-01

    In this work, four water-soluble polythiophene derivatives (PT, PT-DDA, PT-ADA, and PT-ADA-PPR) with different pendant moieties were synthesized via oxidative copolymerization by FeCl3. By increasing the hydrophobic ability of side chain moieties, there is a gradually blue shift for the maximum absorption wavelength and red shift for the maximum emission wavelength, a reducing trend for fluorescence quantum yields, a growing trend for Stokes shift, and an increasing trend for the mean sizes in the order of PT, PT-ADA, and PT-DDA. All the synthesized polymers show low toxicity and good photostability and accumulate in the lysosomes of A549 cells. Furthermore, the introduction of porphyrin group to PT-ADA side chain (PT-ADA-PPR) broadens the absorption and emission ranges of PT-ADA. PT-ADA-PPR could be excited at two different excitation wavelengths (488 nm and 559 nm) and exhibits two emission pathways, and dual-color fluorescence images (orange and red) of PT-ADA-PPR accumulated in A549 cells are observed. Thus, PT-ADA-PPR could be used as an excellent dual-color fluorescent and lysosome-specific imaging material.

  1. Role of structural H 2O in TiO 2 nanotubes in enhancing Pt/C direct ethanol fuel cell anode electro-catalysts

    NASA Astrophysics Data System (ADS)

    Song, Huanqiao; Qiu, Xinping; Guo, Daojun; Li, Fushen

    TiO 2 nanotubes (TNTs) with different structural water were obtained by heat treatment under different temperatures. The role of the structural water in TNTs co-catalyzing ethanol oxidation with Pt/C catalyst was studied systematically. Electrochemical studies using cyclic voltammetry and CO stripping voltammetry indicated that more structural water in TNTs was favorable for improving the tolerance of Pt/C to poisoning species; while chronoamperometry curves and repeated cyclic voltammograms showed that slightly less structural water in TNTs actually led to higher catalytic activity and better stability of Pt/C catalysts for ethanol oxidation. This strange result has been analyzed and was ascribed to the appropriate balance of bi-functional mechanism and ethanol transfer in the catalyst layer with less structural water.

  2. Laser irradiation in water for the novel, scalable synthesis of black TiOx photocatalyst for environmental remediation

    PubMed Central

    Zimbone, Massimo; Boutinguiza, Mohamed; Privitera, Vittorio; Grimaldi, Maria Grazia

    2017-01-01

    Since 1970, TiO2 photocatalysis has been considered a possible alternative for sustainable water treatment. This is due to its material stability, abundance, nontoxicity and high activity. Unfortunately, its wide band gap (≈3.2 eV) in the UV portion of the spectrum makes it inefficient under solar illumination. Recently, so-called “black TiO2” has been proposed as a candidate to overcome this issue. However, typical synthesis routes require high hydrogen pressure and long annealing treatments. In this work, we present an industrially scalable synthesis of TiO2-based material based on laser irradiation. The resulting black TiOx shows a high activity and adsorbs visible radiation, overcoming the main concerns related to the use of TiO2 under solar irradiation. We employed a commercial high repetition rate green laser in order to synthesize a black TiOx layer and we demonstrate the scalability of the present methodology. The photocatalyst is composed of a nanostructured titanate film (TiOx) synthetized on a titanium foil, directly back-contacted to a layer of Pt nanoparticles (PtNps) deposited on the rear side of the same foil. The result is a monolithic photochemical diode with a stacked, layered structure (TiOx/Ti/PtNps). The resulting high photo-efficiency is ascribed to both the scavenging of electrons by Pt nanoparticles and the presence of trap surface states for holes in an amorphous hydrogenated TiOx layer. PMID:28243557

  3. Surface decorated platinum carbonyl clusters

    NASA Astrophysics Data System (ADS)

    Ciabatti, Iacopo; Femoni, Cristina; Iapalucci, Maria Carmela; Longoni, Giuliano; Zacchini, Stefano; Zarra, Salvatore

    2012-06-01

    Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters.Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters. CCDC 867747 and 867748. For crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30400g

  4. Site-Dependent Vibrational Coupling of CO Adsorbates on Well-Defined Step and Terrace Sites of Monocrystalline Platinum: Mixed-Isotope Studies at Pt(335) and Pt(111) in the Aqueous Electrochemical Environment

    DTIC Science & Technology

    1994-09-15

    and Terrace Sites of Monocrystalline Platinum: Mixed-Isotope Studies at Pt(335) and Pt(1 11) in the Aqueous Electrochemical Environment by Chung S. Kim... monocrystalline metals. These materials have structurally well-defined step and kink structures, which serve as models for the surface defect sites found on...and molecular interactions at stepped monocrystalline electrode surfaces [3,4]. A notable property of Pt(335)/CO is that the CO occupancy at step and

  5. A sinter-resistant catalytic system fabricated by maneuvering the selectivity of SiO2 deposition onto the TiO2 surface versus the Pt nanoparticle surface.

    PubMed

    Lu, Ping; Campbell, Charles T; Xia, Younan

    2013-10-09

    A triphasic catalytic system (Pt/TiO2-SiO2) with an "islands in the sea" configuration was fabricated by controlling the selectivity of SiO2 deposition onto the surface of TiO2 versus the surface of Pt nanoparticles. The Pt surface was exposed, while the nanoparticles were supported on TiO2 and isolated from each other by SiO2 to achieve both significantly improved sinter resistance up to 700 °C and outstanding activity after high-temperature calcination. This work not only demonstrates the feasibility of using a new triphasic system with uncovered catalyst to maximize the thermal stability and catalytic activity but also offers a general approach to the synthesis of high-performance catalytic systems with tunable compositions.

  6. Grid-Based Projector Augmented Wave (GPAW) Implementation of Quantum Mechanics/Molecular Mechanics (QM/MM) Electrostatic Embedding and Application to a Solvated Diplatinum Complex.

    PubMed

    Dohn, A O; Jónsson, E Ö; Levi, G; Mortensen, J J; Lopez-Acevedo, O; Thygesen, K S; Jacobsen, K W; Ulstrup, J; Henriksen, N E; Møller, K B; Jónsson, H

    2017-12-12

    A multiscale density functional theory-quantum mechanics/molecular mechanics (DFT-QM/MM) scheme is presented, based on an efficient electrostatic coupling between the electronic density obtained from a grid-based projector augmented wave (GPAW) implementation of density functional theory and a classical potential energy function. The scheme is implemented in a general fashion and can be used with various choices for the descriptions of the QM or MM regions. Tests on H 2 O clusters, ranging from dimer to decamer show that no systematic energy errors are introduced by the coupling that exceeds the differences in the QM and MM descriptions. Over 1 ns of liquid water, Born-Oppenheimer QM/MM molecular dynamics (MD) are sampled combining 10 parallel simulations, showing consistent liquid water structure over the QM/MM border. The method is applied in extensive parallel MD simulations of an aqueous solution of the diplatinum [Pt 2 (P 2 O 5 H 2 ) 4 ] 4- complex (PtPOP), spanning a total time period of roughly half a nanosecond. An average Pt-Pt distance deviating only 0.01 Å from experimental results, and a ground-state Pt-Pt oscillation frequency deviating by <2% from experimental results were obtained. The simulations highlight a remarkable harmonicity of the Pt-Pt oscillation, while also showing clear signs of Pt-H hydrogen bonding and directional coordination of water molecules along the Pt-Pt axis of the complex.

  7. Anthropogenic platinum and palladium in the sediments of Boston Harbor

    USGS Publications Warehouse

    Tuit, C.B.; Ravizza, G.E.; Bothner, Michael H.

    2000-01-01

    Anthropogenic activity has increased recent sediment concentrations of Pt and Pd in Boston Harbor by approximately 5 times background concentrations. Surface sediments and downcore profiles were investigated to evaluate Pt and Pd accumulation and behavior in urban coastal sediments. There is no clear correlation between temporal changes in Pt and Pd consumption and sediment concentration. However, Pt/Pb and Pd/Pb ratios suggest that Pt and Pd flux into the Harbor may not be decreasing with cessation of sludge input as rapidly as other metals. This is supported by the large discrepancy between fluxes associated with sludge and effluent release and those calculated from surface sediment concentrations. This evidence supports catalytic converters as a major source of Pd and Pt to Boston Harbor but cannot preclude other sources. Pd does not exhibit signs of post-burial remobilization below the mixed layer in the sediment cores, although near-surface variability in Pd concentrations may indicate a labile Pd component. Pt displays an inverse correlation with Mn above the oxic/suboxic transition, similar to behavior seen in pristine sediments where Pt is thought to be chemically mobile. This study does not support the use of Pd and Pt as tracers of recent contaminated sedimentation. However, the possibility of a labile Pt and Pd in these sediments highlights the need for further study of the biological uptake of these metals.

  8. 3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports.

    PubMed

    Sneed, Brian T; Cullen, David A; Reeves, Kimberly S; Dyck, Ondrej E; Langlois, David A; Mukundan, Rangachary; Borup, Rodney L; More, Karren L

    2017-09-06

    Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of the cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Furthermore, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.

  9. 3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports

    DOE PAGES

    Sneed, Brian T.; Cullen, David A.; Reeves, Kimberly S.; ...

    2017-08-15

    Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of themore » cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Moreover, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.« less

  10. 3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sneed, Brian T.; Cullen, David A.; Reeves, Kimberly S.

    Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of themore » cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Moreover, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.« less

  11. New Method to Synthesize Highly Active and Durable Chemically Ordered fct-PtCo Cathode Catalyst for PEMFCs.

    PubMed

    Jung, Won Suk; Popov, Branko N

    2017-07-19

    In the bottom-up synthesis strategy performed in this study, the Co-catalyzed pyrolysis of chelate-complex and activated carbon black at high temperatures triggers the graphitization reaction which introduces Co particles in the N-doped graphitic carbon matrix and immobilizes N-modified active sites for the oxygen reduction reaction (ORR) on the carbon surface. In this study, the Co particles encapsulated within the N-doped graphitic carbon shell diffuse up to the Pt surface under the polymer protective layer and forms a chemically ordered face-centered tetragonal (fct) Pt-Co catalyst PtCo/CCCS catalyst as evidenced by structural and compositional studies. The fct-structured PtCo/CCCS at low-Pt loading (0.1 mg Pt cm -2 ) shows 6% higher power density than that of the state-of-the-art commercial Pt/C catalyst. After the MEA durability test of 30 000 potential cycles, the performance loss of the catalyst is negligible. The electrochemical surface area loss is less than 40%, while that of commercial Pt/C is nearly 80%. After the accelerated stress test, the uniform catalyst distribution is retained and the mean particle size increases approximate 1 nm. The results obtained in this study indicated that highly stable compositional and structural properties of chemically ordered PtCo/CCCS catalyst contribute to its exceptional catalyst durability.

  12. A Kinetic and DRIFTS Study of Supported Pt Catalysts for NO Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toops, Todd J; Ji, Yaying; Graham, Uschi

    NO oxidation was studied over Pt/CeO2 and Pt/SiO2 catalysts. Apparent activation energies (Ea) of 31.4 and 40.6 kJ/mole were determined for Pt/CeO2 and Pt/SiO2, respectively, while reaction orders for NO and O2 were fractional and positive for both catalysts. Pre-treatment of the catalysts with SO2 caused a decrease in the Ea values, while the reaction orders were only slightly changed. In situ DRIFTS measurements indicated that high concentrations of nitrate species were formed on the surface of Pt/CeO2 during NO oxidation, while almost no surface species could be detected on Pt/SiO2. The addition of SO2 resulted in the formation ofmore » a highly stable sulfate at the expense of nitrate species and caused an irreversible loss of catalytic activity for Pt/CeO2.« less

  13. Ultrathin Wall (1 nm) and Superlong Pt Nanotubes with Enhanced Oxygen Reduction Reaction Performance.

    PubMed

    Tao, Lu; Yu, Dan; Zhou, Junshuang; Lu, Xiong; Yang, Yunxia; Gao, Faming

    2018-05-01

    The synthesis of Pt nanotubes catalysts remains a substantial challenge, especially for those with both sub-nanometer wall thickness and micrometer-scale length characteristics. Combining techniques of insulin fibril template with Pd nanowire template, numerous Pt nanotubes with diameter of 5.5 nm, tube-length of several micrometers, and ultrathin wall thickness of 1 nm are assembled. These tubular catalysts with both open ends deliver electrochemical active surface area (ECSA) of 91.43 m 2 g pt -1 which results from multiple Pt atoms exposed on the inner and outer surfaces that doubled Pt atoms can participate in catalytic reactions, further with enhanced electrocatalytic performance for oxygen reduction reaction (ORR). The ultrafine Pt nanotubes represent a class of hollow nanostructure with increased Pt-utilization and large ECSA, which is regarded as a type of cost-effective catalysts for ORR. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration

    USGS Publications Warehouse

    Sumner, D.M.; Jacobs, J.M.

    2005-01-01

    Actual evapotranspiration (ETa) was measured at 30-min resolution over a 19-month period (September 28, 2000-April 23, 2002) from a nonirrigated pasture site in Florida, USA, using eddy correlation methods. The relative magnitude of measured ETa (about 66% of long-term annual precipitation at the study site) indicates the importance of accurate ET a estimates for water resources planning. The time and cost associated with direct measurements of ETa and the rarity of historical measurements of ETa make the use of methods relying on more easily obtainable data desirable. Several such methods (Penman-Monteith (PM), modified Priestley-Taylor (PT), reference evapotranspiration (ET 0), and pan evaporation (Ep)) were related to measured ETa using regression methods to estimate PM bulk surface conductance, PT ??, ET0 vegetation coefficient, and Ep pan coefficient. The PT method, where the PT ?? is a function of green-leaf area index (LAI) and solar radiation, provided the best relation with ET a (standard error (SE) for daily ETa of 0.11 mm). The PM method, in which the bulk surface conductance was a function of net radiation and vapor-pressure deficit, was slightly less effective (SE=0.15 mm) than the PT method. Vegetation coefficients for the ET0 method (SE=0.29 mm) were found to be a simple function of LAI. Pan coefficients for the Ep method (SE=0.40 mm) were found to be a function of LAI and Ep. Historical or future meteorological, LAI, and pan evaporation data from the study site could be used, along with the relations developed within this study, to provide estimates of ETa in the absence of direct measurements of ETa. Additionally, relations among PM, PT, and ET0 methods and ETa can provide estimates of ETa in other, environmentally similar, pasture settings for which meteorological and LAI data can be obtained or estimated. ?? 2004 Elsevier B.V. All rights reserved.

  15. Effects of zero point vibration on the reaction dynamics of water dimer cations following ionization.

    PubMed

    Tachikawa, Hiroto

    2017-06-30

    Reactions of water dimer cation (H2O)2+ following ionization have been investigated by means of a direct ab initio molecular dynamics method. In particular, the effects of zero point vibration and zero point energy (ZPE) on the reaction mechanism were considered in this work. Trajectories were run on two electronic potential energy surfaces (PESs) of (H2O)2+: ground state ( 2 A″-like state) and the first excited state ( 2 A'-like state). All trajectories on the ground-state PES lead to the proton-transferred product: H 2 O + (Wd)-H 2 O(Wa) → OH(Wd)-H 3 O + (Wa), where Wd and Wa refer to the proton donor and acceptor water molecules, respectively. Time of proton transfer (PT) varied widely from 15 to 40 fs (average time of PT = 30.9 fs). The trajectories on the excited-state PES gave two products: an intermediate complex with a face-to-face structure (H 2 O-OH 2 ) + and a PT product. However, the proton was transferred to the opposite direction, and the reverse PT was found on the excited-state PES: H 2 O(Wd)-H 2 O + (Wa) → H 3 O + (Wd)-OH(Wa). This difference occurred because the ionizing water molecule in the dimer switched between the ground and excited states. The reaction mechanism of (H2O)2+ and the effects of ZPE are discussed on the basis of the results. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Oxygen reduction reaction on stepped platinum surfaces in alkaline media.

    PubMed

    Rizo, Ruben; Herrero, Enrique; Feliu, Juan M

    2013-10-07

    The oxygen reduction reaction (ORR) in 0.1 M NaOH on platinum single crystal electrodes has been studied using hanging meniscus rotating disk electrode configuration. Basal planes and stepped surfaces with (111) and (100) terraces have been employed. The results indicate that the Pt(111) electrode has the highest electrocatalytic activity among all the studied surfaces. The addition of steps on this electrode surface significantly diminishes the reactivity of the surface towards the ORR. In fact, the reactivity of the steps on the surfaces with wide terraces can be considered negligible with respect to that measured for the terrace. On the other hand, Pt(100) and Pt(110) electrodes have much lower activity than the Pt(111) electrode. These results have been compared with those obtained in acid media to understand the effect of the pH and the adsorbed OH on the mechanism. It is proposed that the surface covered by adsorbed OH is active for the reduction of the oxygen molecules.

  17. Platinum nanoparticles on carbon-nanotube support prepared by room-temperature reduction with H2 in ethylene glycol/water mixed solvent as catalysts for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zheng, Yuying; Dou, Zhengjie; Fang, Yanxiong; Li, Muwu; Wu, Xin; Zeng, Jianhuang; Hou, Zhaohui; Liao, Shijun

    2016-02-01

    Polyol approach is commonly used in synthesizing Pt nanoparticles in polymer electrolyte membrane fuel cells. However, the application of this process consumes a great deal of time and energy, as the reduction of precursors requires elevated temperatures and several hours. Moreover, the ethylene glycol and its oxidizing products bound to Pt are difficult to remove. In this work, we utilize the advantages of ethylene glycol and prepare Pt nanoparticles through a room-temperature hydrogen gas reduction in an ethylene glycol/water mixed solvent, which is followed by subsequent harvesting by carbon nanotubes as electrocatalysts. This method is simple, facile, and time-efficient, as the entire room-temperature reduction process is completed in a few minutes. As the solvent changes from water to an ethylene glycol/water mix, the size of Pt nanoparticles varies from 10 to 3 nm and their shape transitions from polyhedral to spherical. Pt nanoparticles prepared in a 1:1 volume ratio mixture of ethylene glycol/water are uniformly dispersed with an average size of ∼3 nm. The optimized carbon nanotube-supported Pt electrocatalyst exhibits excellent methanol oxidation and oxygen reduction activities. This work demonstrates the potential use of mixed solvents as an approach in materials synthesis.

  18. Synthesis of Platinum-nickel Nanowires and Optimization for Oxygen Reduction Performance.

    PubMed

    Alia, Shaun M; Pivovar, Bryan S

    2018-04-27

    Platinum-nickel (Pt-Ni) nanowires were developed as fuel cell electrocatalysts, and were optimized for the performance and durability in the oxygen reduction reaction. Spontaneous galvanic displacement was used to deposit Pt layers onto Ni nanowire substrates. The synthesis approach produced catalysts with high specific activities and high Pt surface areas. Hydrogen annealing improved Pt and Ni mixing and specific activity. Acid leaching was used to preferentially remove Ni near the nanowire surface, and oxygen annealing was used to stabilize near-surface Ni, improving durability and minimizing Ni dissolution. These protocols detail the optimization of each post-synthesis processing step, including hydrogen annealing to 250 °C, exposure to 0.1 M nitric acid, and oxygen annealing to 175 °C. Through these steps, Pt-Ni nanowires produced increased activities more than an order of magnitude than Pt nanoparticles, while offering significant durability improvements. The presented protocols are based on Pt-Ni systems in the development of fuel cell catalysts. These techniques have also been used for a variety of metal combinations, and can be applied to develop catalysts for a number of electrochemical processes.

  19. Inhibited phase behavior of gas hydrates in graphene oxide: influences of surface and geometric constraints.

    PubMed

    Kim, Daeok; Kim, Dae Woo; Lim, Hyung-Kyu; Jeon, Jiwon; Kim, Hyungjun; Jung, Hee-Tae; Lee, Huen

    2014-11-07

    Porous materials have provided us unprecedented opportunities to develop emerging technologies such as molecular storage systems and separation mechanisms. Pores have also been used as supports to contain gas hydrates for the application in gas treatments. Necessarily, an exact understanding of the properties of gas hydrates in confining pores is important. Here, we investigated the formation of CO2, CH4 and N2 hydrates in non-interlamellar voids in graphene oxide (GO), and their thermodynamic behaviors. For that, low temperature XRD and P-T traces were conducted to analyze the water structure and confirm hydrate formation, respectively, in GO after its exposure to gaseous molecules. Confinement and strong interaction of water with the hydrophilic surface of graphene oxide reduce water activity, which leads to the inhibited phase behavior of gas hydrates.

  20. On the Preparation and Testing of Fuel Cell Catalysts Using the Thin Film Rotating Disk Electrode Method.

    PubMed

    Inaba, Masanori; Quinson, Jonathan; Bucher, Jan Rudolf; Arenz, Matthias

    2018-03-16

    We present a step-by-step tutorial to prepare proton exchange membrane fuel cell (PEMFC) catalysts, consisting of Pt nanoparticles (NPs) supported on a high surface area carbon, and to test their performance in thin film rotating disk electrode (TF-RDE) measurements. The TF-RDE methodology is widely used for catalyst screening; nevertheless, the measured performance sometimes considerably differs among research groups. These uncertainties impede the advancement of new catalyst materials and, consequently, several authors discussed possible best practice methods and the importance of benchmarking. The visual tutorial highlights possible pitfalls in the TF-RDE testing of Pt/C catalysts. A synthesis and testing protocol to assess standard Pt/C catalysts is introduced that can be used together with polycrystalline Pt disks as benchmark catalysts. In particular, this study highlights how the properties of the catalyst film on the glassy carbon (GC) electrode influence the measured performance in TF-RDE testing. To obtain thin, homogeneous catalyst films, not only the catalyst preparation, but also the ink deposition and drying procedures are essential. It is demonstrated that an adjustment of the ink's pH might be necessary, and how simple control measurements can be used to check film quality. Once reproducible TF-RDE measurements are obtained, determining the Pt loading on the catalyst support (expressed as Pt wt%) and the electrochemical surface area is necessary to normalize the determined reaction rates to either surface area or Pt mass. For the surface area determination, so-called CO stripping, or the determination of the hydrogen underpotential deposition (Hupd) charge, are standard. For the determination of the Pt loading, a straightforward and cheap procedure using digestion in aqua regia with subsequent conversion of Pt(IV) to Pt(II) and UV-vis measurements is introduced.

  1. On the Preparation and Testing of Fuel Cell Catalysts Using the Thin Film Rotating Disk Electrode Method

    PubMed Central

    Inaba, Masanori; Quinson, Jonathan; Bucher, Jan Rudolf; Arenz, Matthias

    2018-01-01

    We present a step-by-step tutorial to prepare proton exchange membrane fuel cell (PEMFC) catalysts, consisting of Pt nanoparticles (NPs) supported on a high surface area carbon, and to test their performance in thin film rotating disk electrode (TF-RDE) measurements. The TF-RDE methodology is widely used for catalyst screening; nevertheless, the measured performance sometimes considerably differs among research groups. These uncertainties impede the advancement of new catalyst materials and, consequently, several authors discussed possible best practice methods and the importance of benchmarking. The visual tutorial highlights possible pitfalls in the TF-RDE testing of Pt/C catalysts. A synthesis and testing protocol to assess standard Pt/C catalysts is introduced that can be used together with polycrystalline Pt disks as benchmark catalysts. In particular, this study highlights how the properties of the catalyst film on the glassy carbon (GC) electrode influence the measured performance in TF-RDE testing. To obtain thin, homogeneous catalyst films, not only the catalyst preparation, but also the ink deposition and drying procedures are essential. It is demonstrated that an adjustment of the ink's pH might be necessary, and how simple control measurements can be used to check film quality. Once reproducible TF-RDE measurements are obtained, determining the Pt loading on the catalyst support (expressed as Pt wt%) and the electrochemical surface area is necessary to normalize the determined reaction rates to either surface area or Pt mass. For the surface area determination, so-called CO stripping, or the determination of the hydrogen underpotential deposition (Hupd) charge, are standard. For the determination of the Pt loading, a straightforward and cheap procedure using digestion in aqua regia with subsequent conversion of Pt(IV) to Pt(II) and UV-vis measurements is introduced. PMID:29608166

  2. Molecular-Orbital Models for the Catayltic Activity and Selectivity of Coordinatively Unsaturated Platinum Surfaces and Complexes.

    DTIC Science & Technology

    1980-12-31

    surfaces. Reactions involving the Pt(O)- triphenylphosphine complexes Pt(PPh 3)n, where n = 2, 3, 4, have been shown to have precise analogues on Pt...12], the triphenylphosphine (PPh 3 ) group is modeled by the simpler but chemically similar phosphine (PH3) group. The appropriate Pt-P bond distances...typically refractory oxides ) are of sufficient magnitude as to suggest significant chemical and electronic modifications of the metal at the metal-support

  3. Morphology of size-selected Ptn clusters on CeO2(111)

    NASA Astrophysics Data System (ADS)

    Shahed, Syed Mohammad Fakruddin; Beniya, Atsushi; Hirata, Hirohito; Watanabe, Yoshihide

    2018-03-01

    Supported Pt catalysts and ceria are well known for their application in automotive exhaust catalysts. Size-selected Pt clusters supported on a CeO2(111) surface exhibit distinct physical and chemical properties. We investigated the morphology of the size-selected Ptn (n = 5-13) clusters on a CeO2(111) surface using scanning tunneling microscopy at room temperature. Ptn clusters prefer a two-dimensional morphology for n = 5 and a three-dimensional (3D) morphology for n ≥ 6. We further observed the preference for a 3D tri-layer structure when n ≥ 10. For each cluster size, we quantitatively estimated the relative fraction of the clusters for each type of morphology. Size-dependent morphology of the Ptn clusters on the CeO2(111) surface was attributed to the Pt-Pt interaction in the cluster and the Pt-O interaction between the cluster and CeO2(111) surface. The results obtained herein provide a clear understanding of the size-dependent morphology of the Ptn clusters on a CeO2(111) surface.

  4. Spectroscopic Study of the Thermal Degradation of PVP-capped Rh and Pt Nanoparticles in H2 and O2 Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borodko, Yuri; Lee, Hyun Sook; Joo, Sang Hoon

    2009-09-15

    Poly(N-vinylpyrrolidone) (PVP) capped platinum and rhodium nanoparticles (7-12 nm) have been studied with UV-VIS, FTIR and Raman spectroscopy. The absorption bands in the region 190-900 nm are shown to be sensitive to the electronic structure of surface Rh and Pt atoms as well as to the aggregation of the nanoparticles. In-situ FTIR-DRIFT spectroscopy of the thermal decay of PVP stabilized Rh and Pt nanoparticles in H{sub 2} and O{sub 2} atmospheres in temperatures ranging from 30 C-350 C reveal that decomposition of PVP above 200 C, PVP transforms into a 'polyamidpolyene' - like material that is in turn converted intomore » a thin layer of amorphous carbon above 300 C. Adsorbed carbon monoxide was used as a probing molecule to monitor changes of electronic structure of surface Rh and Pt atoms and accessible surface area. The behavior of surface Rh and Pt atoms with ligated CO and amide groups of pyrrolidones resemble that of surface coordination compounds.« less

  5. The Role of Citric Acid in Perfecting Platinum Monolayer on Palladium Nanoparticles during the Surface Limited Redox Replacement Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Shangqian; Yue, Jeffrey; Qin, Xueping

    Cu-mediated-Pt-displacement method that involves the displacement of an underpotentially deposited (UPD) Cu monolayer by Pt has been extensively studied to prepare core-shell catalysts. It has been found that Pt clusters instead of a uniform Pt monolayer were formed in the gram batch synthesis. With a suitable surfactant, such as citric acid, the Pt shell could be much more uniform. In this study, the role of citric acid in controlling the Cu-Pt displacement reaction kinetics was studied by electrochemical techniques and theoretical approaches. It was found that citric acid strongly adsorbed on Pd, Pt, Cu/Pd, and Pt/Pd surfaces, especially in themore » double layer region in acid solutions. The strong adsorption of citric acid slowed down the Cu-Pt displacement reaction. The main characteristics of such strong interaction most likely arises from the OH groups in the citric acid molecule according to the molecular dynamics simulation results.« less

  6. The Role of Citric Acid in Perfecting Platinum Monolayer on Palladium Nanoparticles during the Surface Limited Redox Replacement Reaction

    DOE PAGES

    Zhu, Shangqian; Yue, Jeffrey; Qin, Xueping; ...

    2016-07-28

    Cu-mediated-Pt-displacement method that involves the displacement of an underpotentially deposited (UPD) Cu monolayer by Pt has been extensively studied to prepare core-shell catalysts. It has been found that Pt clusters instead of a uniform Pt monolayer were formed in the gram batch synthesis. With a suitable surfactant, such as citric acid, the Pt shell could be much more uniform. In this study, the role of citric acid in controlling the Cu-Pt displacement reaction kinetics was studied by electrochemical techniques and theoretical approaches. It was found that citric acid strongly adsorbed on Pd, Pt, Cu/Pd, and Pt/Pd surfaces, especially in themore » double layer region in acid solutions. The strong adsorption of citric acid slowed down the Cu-Pt displacement reaction. The main characteristics of such strong interaction most likely arises from the OH groups in the citric acid molecule according to the molecular dynamics simulation results.« less

  7. High-performance transition metal-doped Pt 3Ni octahedra for oxygen reduction reaction

    DOE PAGES

    Huang, Xiaoqing; Zhao, Zipeng; Cao, Liang; ...

    2015-06-11

    Bimetallic platinum-nickel (Pt-Ni) nanostructures represent an emerging class of electrocatalysts for oxygen reduction reaction (ORR) in fuel cells, but practical applications have been limited by catalytic activity and durability. We surface-doped Pt 3Ni octahedra supported on carbon with transition metals, termed M-Pt 3Ni/C, where M is vanadium, chromium, manganese, iron, cobalt, molybdenum (Mo), tungsten, or rhenium. The Mo-Pt 3Ni/C showed the best ORR performance, with a specific activity of 10.3 mA/cm2 and mass activity of 6.98 A/mgPt, which are 81- and 73-fold enhancements compared with the commercial Pt/C catalyst (0.127 mA/cm 2 and 0.096 A/mg Pt). In conclusion, theoretical calculationsmore » suggest that Mo prefers subsurface positions near the particle edges in vacuum and surface vertex/edge sites in oxidizing conditions, where it enhances both the performance and the stability of the Pt3Ni catalyst.« less

  8. Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Park, Hyanjoo; Choe, Seunghoe; Kim, Hoyoung; Kim, Dong-Kwon; Cho, GeonHee; Park, YoonSu; Jang, Jong Hyun; Ha, Don-Hyung; Ahn, Sang Hyun; Kim, Soo-Kil

    2018-06-01

    Pt catalysts for water electrolysis were prepared on carbon paper by using both direct current and pulse electrodeposition. Controlling the mass transfer of Pt precursor in the electrolyte by varying the deposition potential enables the formation of various Pt particle shapes such as flower-like and polyhedral particles. Further control of the deposition parameters for pulse electrodeposition resulted in changes to the particle size and density. In particular, the upper potential of pulse was found to be the critical parameter controlling the morphology of the particles and their catalytic activity. In addition to the typical electrochemical measurements, Pt samples deposited on carbon paper were used as cathodes for a proton exchange membrane water electrolyser. This single cell test revealed that our Pt particle samples have exceptional mass activity while being cost effective.

  9. Effects of multiple root canal usage on the surface topography and fracture of two different Ni-Ti rotary file systems.

    PubMed

    Kottoor, Jojo; Velmurugan, Natanasabapathy; Gopikrishna, Velayutham; Krithikadatta, Jogikalmat

    2013-01-01

    The purpose of this study was to evaluate the effect of multiple root canal usage on the surface topography and fracture of Twisted File (TF) and ProTaper (PT) rotary Ni-Ti file systems, using scanning electron microscope (SEM). Ten sets of PT and TF instruments were used to prepare the mesial canals of mandibular first molars. TF 25, 0.06 taper and PT F1 instruments were analyzed by SEM when new and thereafter every three root canal usages. This sequence was repeated for both the TF and PT groups until 12 uses. Two images of the instrument were recorded, one of the instrument tip and the other 5 mm from the tip, both at × 100 magnification. The sequential use was continued till the instrument fractured and the number of root canal usages for the file to fracture was noted. All fracture surfaces were examined under the SEM. Fresh TF instruments showed no surface wear when compared to PT instruments (P < 0.05). Spiral distortion scores remained the same for both the groups till the 6 th usage (P > 0.05), while at the 9 th usage TF showed a steep increase in the spiral distortion score when compared to PT (P < 0.05). PT instruments fractured at a mean root canal usage of 17.4, while TF instruments showed a mean root canal usage of 11.8. Fractographically, all the TF instruments failed due to torsion, while all the PT instruments failed because of cyclic fatigue. PT instruments showed more resistance to fracture than TF instruments.

  10. Dissolution of Pt during Oxygen Reduction Reaction Produces Pt Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Je Hyun; Brocenschi, Ricardo F.; Kisslinger, Kim

    The loss of Pt during the oxygen reduction reaction (ORR) affects the performance and economic viability of fuel cells and sensors. Our group previously observed the dissolution of Pt nanoelectrodes at moderately negative potentials during the ORR. Here we report a more detailed study of this process and identify its product. The nanoporous Pt surface formed during the ORR was visualized by AFM and high-resolution SEM, which also showed ~5 nm sized Pt particles on the glass surface surrounding the electrode. Furthermore, the release of these nanoparticles into the solution was confirmed by monitoring their catalytically amplified collisions with amore » Hg-coated microelectrode used as the tip in the scanning electrochemical microscope (SECM).« less

  11. Dissolution of Pt during Oxygen Reduction Reaction Produces Pt Nanoparticles

    DOE PAGES

    Bae, Je Hyun; Brocenschi, Ricardo F.; Kisslinger, Kim; ...

    2017-11-15

    The loss of Pt during the oxygen reduction reaction (ORR) affects the performance and economic viability of fuel cells and sensors. Our group previously observed the dissolution of Pt nanoelectrodes at moderately negative potentials during the ORR. Here we report a more detailed study of this process and identify its product. The nanoporous Pt surface formed during the ORR was visualized by AFM and high-resolution SEM, which also showed ~5 nm sized Pt particles on the glass surface surrounding the electrode. Furthermore, the release of these nanoparticles into the solution was confirmed by monitoring their catalytically amplified collisions with amore » Hg-coated microelectrode used as the tip in the scanning electrochemical microscope (SECM).« less

  12. Localized-Surface-Plasmon Enhanced the 357 nm Forward Emission from ZnMgO Films Capped by Pt Nanoparticles

    PubMed Central

    2009-01-01

    The Pt nanoparticles (NPs), which posses the wider tunable localized-surface-plasmon (LSP) energy varying from deep ultraviolet to visible region depending on their morphology, were prepared by annealing Pt thin films with different initial mass-thicknesses. A sixfold enhancement of the 357 nm forward emission of ZnMgO was observed after capping with Pt NPs, which is due to the resonance coupling between the LSP of Pt NPs and the band-gap emission of ZnMgO. The other factors affecting the ultraviolet emission of ZnMgO, such as emission from Pt itself and light multi-scattering at the interface, were also discussed. These results indicate that Pt NPs can be used to enhance the ultraviolet emission through the LSP coupling for various wide band-gap semiconductors. PMID:20596433

  13. The adsorption and dissociation of O2 on Pd and Pt modified TaC (1 0 0) surface: A first principles study

    NASA Astrophysics Data System (ADS)

    Meng, Yanan; Zhang, Xilin; Mao, Jianjun; Xu, Xiaopei; Yang, Zongxian

    2018-05-01

    The adsorption and dissociation of O2 on the palladium and platinum modified TaC (1 0 0) surfaces were investigated based on the density functional theory calculations. It is found that the adsorption sites of O2 are the Ta-Ta bridge sites on both the partially covered TaC (1 0 0) surfaces by Pd and Pt, M4/TaC (1 0 0) (M = Pd and Pt), while the 4-fold metal hollow sites and the metal-metal bridge sites are preferred on the fully covered TaC (1 0 0) surfaces by Pd and Pt monolayer, MML/TaC (1 0 0), respectively. The deposition of Pd or Pt can enhance the oxidation resistance of TaC (1 0 0). Meanwhile, the TaC (1 0 0) decorated by monolayer Pd still exhibited outstanding catalytic activity for O2 dissociation. Our study might be useful to designing efficient catalysts for the oxygen reduction reaction.

  14. Drag increase and drag reduction found in phytoplankton and bacterial cultures in laminar flow: Are cell surfaces and EPS producing rheological thickening and a Lotus-leaf Effect?

    NASA Astrophysics Data System (ADS)

    Jenkinson, Ian R.; Sun, Jun

    2014-03-01

    The laminar-flow viscosity of ocean and other natural waters consists of a Newtonian aqueous component contributed by water and salts, and a non-Newtonian one contributed mainly by exopolymeric polymers (EPS) derived largely from planktonic algae and bacteria. Phytoplankton and EPS form thin layers in stratified waters, often associated with density discontinuities. A recent model (Jenkinson and Sun, 2011. J. Plankton Res., 33, 373-383) investigated possible thalassorheological control of pycnocline thickness (PT) by EPS secreted by the harmful dinoflagellate Karenia mikimotoi. The model, based on published measurements of viscosity increase by this species, found that whether it can influence PT depends on the relationship between increased viscosity, deformation rates/stresses and length scale, which the present work has investigated. To do this, flow rate vs. hydrostatic pressure (and hence wall stress) was measured in cultures (relative to that in reference water) in capillaries of 5 radii 0.35-1.5 mm, close to oceanic-turbulence Kolmogorov length. We compared cultures of the potentially harmful algae, K. mikimotoi, Alexandrium catenella, Prorocentrum donghaiense, Skeletonema costatum, Phaeodactylum tricornutum and the bacterium Escherichia coli. Drag increase, ascribed to rheological thickening by EPS, occurred in the smallest capillaries, but drag reduction (DR) occurred in the largest ones. Since this occurred at Reynolds numbers Re too small for turbulence (or turbulent DR) to occur, this was laminar-flow DR. It may have been superhydrophobic DR (SDR), associated with the surfaces of the plankton and bacteria. SDR is associated with the self-cleaning Lotus-leaf Effect, in which water and dirt are repelled from surfaces bearing nm- to μm-sized irregularities coated with hydrophobic polymers. Because DR decreased measured viscosity and EPS thickening increased it, we could not validate the model. DR, however, represents hitherto unknown phenomenon in the oceans. Along with rheological thickening, Laminar-Flow DR may represent a new tool for plankton to manage ambient flow fields.

  15. A surfactant free preparation of ultradispersed surface-clean Pt catalyst with highly stable electrocatalytic performance

    NASA Astrophysics Data System (ADS)

    Tao, Lu; Zhao, Yueping; Zhao, Yufeng; Huang, Shifei; Yang, Yunxia; Tong, Qi; Gao, Faming

    2018-02-01

    High efficiency platinum-based catalyst demands the ultrafine size and well dispersion of Pt nanoparticles (NPs), with clean surface and strong interactions between the supports. In this work, we demonstrate a simple strategy for the preparation of ultra-dispersed surface-clean Pt catalyst with high stability, in which the Pt nanoparticles (NPs) with 1.8 ± 0.6 nm in size are anchored tightly on a 3D hierarchical porous graphitized carbon (3D-HPG) through galvanic replacement reaction. The as-obtained catalyst can undergo 2000 voltage cycles with negligible activity decay and no apparent structure and size changes for MOR during the durability test, and its mass activity for ORR only reduce 18.3% after 5000 cycles. The excellent performance is attributed to strong anchoring effect between carbon support and Pt nanoparticles.

  16. High-performance electrochemical mercury aptasensor based on synergistic amplification of Pt nanotube arrays and Fe3O4/rGO nanoprobes.

    PubMed

    Luo, Jingyi; Jiang, Danfeng; Liu, Tao; Peng, Jingmeng; Chu, Zhenyu; Jin, Wanqin

    2018-05-01

    In this work, a novel sandwich-type aptasensor was designed for the ultrasensitive recognition of trace mercury ions in water. Numerous oriented platinum nanotube arrays (PtNAs) were in-situ crystallized on a flexible electrode as a sensing interface, while thionine labelled Fe 3 O 4 /rGO nanocomposites as signal amplifiers. Both PtNAs/CF and nanocomposites were synthesized by easy hydrothermal processes. With their large surface area, it was favorable for electrochemical performance and immobilization of capture DNAs (cDNA) and report DNAs (rDNA). Upon the existence of Hg 2+ , partial linker DNAs were tightly bound with cDNAs through thymine-Hg 2+ -thymine pairing (T-Hg 2+ -T). Then rDNAs attached Fe 3 O 4 /rGO nanoprobes were fixed on the electrode through the match of remaining linker DNAs and rDNAs. Under the optimal conditions, the Hg 2+ aptasensor showed a synergistic amplification performance with a wide linear range from 0.1nM to 100nM, as well as a low detection limit of 30pM. Moreover, the as-prepared aptasensor also exhibited reliable performance for assay in real lake water samples. Copyright © 2017. Published by Elsevier B.V.

  17. Post-formation copper-nitrogen species on carbon black: their chemical structures and active sites for oxygen reduction reaction.

    PubMed

    Xie, Xin; Liu, Jingjun; Li, Tuanfeng; Song, Ye; Wang, Feng

    2018-05-16

    Note that 3d transition metal and nitrogen co-doped carbon materials (TM-N-C) are considered as the most promising next-generation electrocatalysts alternative to precious Pt for oxygen reduction reaction (ORR). Herein, we have fabricated a Cu-N-C catalyst through directly grafting copper-nitrogen complexes composed by cuprous chloride and ammonia water onto the surface of an industrial carbon black at 500℃. In an alkaline environment, the synthesized catalyst exhibits excellent ORR catalytic activity, which is comparable to the state-of-the-art Pt/C catalyst but far exceeding that obtained by the original carbon. Moreover, the catalyst displays much better stability than the Pt/C. The enhanced ORR performance is proven to originate from the post-formation Cu(I)-N2 and Cu(II)-N4 sites at the carbon surface, as evidenced by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The possible ORR process catalyzed by these Cu-Nx species is discussed at atomic level. This work provides a simple and fast synthesis strategy for efficient TM-N-C catalysts on a large scale for energy storage and conversion systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Dealloyed Pt3Co nanoparticles with higher geometric strain for superior hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Saquib, Mohammad; Halder, Aditi

    2018-06-01

    In the present work, the effect of surface strain in the carbon supported Pt3Co dealloy catalyst towards hydrogen evolution reaction (HER) has been reported. Dealloying process is adopted to generate the geometric strain in Pt3Co/C alloy by preferential dissolution of non-noble metal (Co) from the alloy. The developed geometric strain has been estimated by different microstructural characterization techniques. Electrochemical studies showed that the highest current density for HER was obtained for Pt3Co/C dealloy catalyst and it was nearly 2 and 5 times higher than Pt3Co/C alloy and Pt/C respectively. Tafel slope for HER was improved from 49 (Pt/C) to 34 mV dec-1 (Pt3Co/C dealloy), indicating that the surface strain plays important role in the improvement of the catalytic activity of Pt3Co catalyst. The chronoamperometry data, LSV curves and ECSA values before and after chronoamperometry confirmed that Pt3Co/C dealloy catalyst was a stable as well as a durable electrocatalyst for HER.

  19. Comparison of iridium- and ruthenium-based, Pt-surface-enriched, nanosize catalysts for the oxygen-reduction reaction

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Goor, M.; Alon, M.; Tsizin, S.; Burstein, L.; Rosenberg, Y.; Popov, I.; Peled, E.

    2016-02-01

    Pt-surface-enriched nanosize catalysts (Pt-SENS catalysts) with ruthenium and iridium cores, supported on XC72, were synthesized and characterized. The structure and composition of the catalysts are determined by Energy-Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS), Scanning Transmission Electron Microscopy (STEM) and X-Ray Diffraction (XRD). Electrochemical characterization tests, including oxygen-reduction-catalysis activity and durability studies of catalysts are performed with the use of cyclic-voltammetry and rotating-disk-electrode (RDE) techniques at room temperature. The ORR activity of the homemade catalysts is also compared to ORR activity of commercial 50%Pt/C catalyst. It is determined that the Ir-based catalyst (Pt/Ir/XC72) shows higher ORR activity in terms of A g-1 of Pt (at 0.85 V vs. RHE) than the Ru-based catalyst (Pt/Ru/XC72) and the commercial 50%Pt/C. The Ru-based catalyst shows similar ORR activity in terms of A g-1 of Pt, to that of the commercial 50%Pt/C, but with much lower durability.

  20. Effect of Organic Capping Layers over Monodisperse Platinum Nanoparticles upon Activity for Ethylene Hydrogenation and Carbon Monoxide Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhn, John N.; Tsung, Chia-Kuang; Huang, Wenyu

    2009-03-24

    The influence of oleylamine (OA), trimethyl tetradecyl ammonium bromide (TTAB), and polyvinlypyrrolidone (PVP) capping agents upon the catalytic properties of Pt/silica catalysts was evaluated. Pt nanoparticles that were 1.5 nm in size were synthesized by the same procedure (ethylene glycol reduction under basic conditions) with the various capping agents added afterward for stabilization. Before examining catalytic properties for ethylene hydrogenation and CO oxidation, the Pt NPs were deposited onto mesoporous silica (SBA-15) supports and characterized by transmission electron microscopy (TEM), H{sub 2} chemisorption, and elemental analysis (ICP-MS). PVP- and TTAB-capped Pt yielded mass-normalized reaction rates that decreased with increasing pretreatmentmore » temperature, and this trend was attributed to the partial coverage of the Pt surface with decomposition products from the organic capping agent. Once normalized to the Pt surface area, similar intrinsic activities were obtained regardless of the pretreatment temperature, which indicated no influence on the nature of the active sites. Consequently, a chemical probe technique using intrinsic activity for ethylene hydrogenation was demonstrated as an acceptable method for estimating the metallic surface areas of Pt. Amine (OA) capping exhibited a detrimental influence on the catalytic properties as severe deactivation and low activity were observed for ethylene hydrogenation and CO oxidation, respectively. These results were consistent with amine groups being strong poisons for Pt surfaces, and revealed the need to consider the effects of capping agents on the catalytic properties.« less

  1. Ambient-temperature diffusion and gettering of Pt atoms in GaN with surface defect region under 60Co gamma or MeV electron irradiation

    NASA Astrophysics Data System (ADS)

    Hou, Ruixiang; Li, Lei; Fang, Xin; Xie, Ziang; Li, Shuti; Song, Weidong; Huang, Rong; Zhang, Jicai; Huang, Zengli; Li, Qiangjie; Xu, Wanjing; Fu, Engang; Qin, G. G.

    2018-01-01

    Generally, the diffusion and gettering of impurities in GaN needs high temperature. Calculated with the ambient-temperature extrapolation value of the high temperature diffusivity of Pt atoms in GaN reported in literature, the time required for Pt atoms diffusing 1 nm in GaN at ambient temperature is about 19 years. Therefore, the ambient-temperature diffusion and gettering of Pt atoms in GaN can hardly be observed. In this work, the ambient-temperature diffusion and gettering of Pt atoms in GaN is reported for the first time. It is demonstrated by use of secondary ion mass spectroscopy that in the condition of introducing a defect region on the GaN film surface by plasma, and subsequently, irradiated by 60Co gamma-ray or 3 MeV electrons, the ambient-temperature diffusion and gettering of Pt atoms in GaN can be detected. It is more obvious with larger irradiation dose and higher plasma power. With a similar surface defect region, the ambient-temperature diffusion and gettering of Pt atoms in GaN stimulated by 3 MeV electron irradiation is more marked than that stimulated by gamma irradiation. The physical mechanism of ambient-temperature diffusion and gettering of Pt atoms in a GaN film with a surface defect region stimulated by gamma or MeV electron irradiation is discussed.

  2. Use of Hydrogen Chemisorption and Ethylene Hydrogenation as Predictors for Aqueous Phase Reforming of Lactose over Ni@Pt and Co@Pt Bimetallic Overlayer Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Qinghua; Skoglund, Michael D.; Zhang, Chen

    Overlayer Pt on Ni (Ni@Pt) or Co (Co@Pt) were synthesized and tested for H2 generation from APR of lactose. H2 chemisorption descriptor showed that Ni@Pt and Co@Pt overlayer catalysts had reduced H2 adsorption strength compared to a Pt only catalyst, which agree with computational predictions. The overlayer catalysts also demonstrated lower activity for ethylene hydrogenation than the Pt only catalyst, which likely resulted from decreased H2 binding strength decreasing the surface coverage of H2. XAS results showed that overlayer catalysts exhibited higher white line intensity than the Pt catalyst, which indicates a negative d-band shift for the Pt overlayer, furthermore » providing evidence for overlayer formation. Lactose APR studies showed that lactose can be used as feedstock to produce H2 and CO under desirable reaction conditions. The Pt active sites of Ni@Pt and Co@Pt overlayer catalysts showed significantly enhanced H2 production selectivity and activity when compared with that of a Pt only catalyst. The single deposition overlayer with the largest d-band shift showed the highest H2 activity. The results suggest that overlayer formation using directed deposition technique could modify the behavior of the surface metal and ultimately modify the APR activity.« less

  3. Synchrotron-Based In Situ Characterization of Carbon-Supported Platinum and Platinum Monolayer Electrocatalysts

    DOE PAGES

    Sasaki, Kotaro; Marinkovic, Nebojsa; Isaacs, Hugh S.; ...

    2015-11-17

    Understanding oxidation/dissolution mechanisms of Pt is critical in designing durable catalysts for the oxygen reduction reaction (ORR), but exact mechanisms remain unclear. Our present work explores the oxidation/dissolution of Pt and Pt monolayer (ML) electrocatalysts over a wide range of applied potentials using cells that facilitate in situ measurements by combining X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) measurements. Furthermore, the X-ray absorption near edge structure (XANES) measurement demonstrated that Pt nanoparticle surfaces were oxidized from metallic Pt to α-PtO 2-type oxide during the potential sweep from 0.41 to 1.5 V, and the transition state of O or OHmore » adsorption on Pt and the onset of the place exchange process were revealed by the delta mu (Δμ) method. Only the top layers of Pt nanoparticles were oxidized, while the inner Pt atoms remained intact. At a higher potential over 1.9 V, α-PtO 2-type surface oxides dissolve due to local acidification caused by the oxygen evolution reaction and carbon corrosion. Pt oxidation of Pt ML on the Pd nanoparticle electrocatalyst is considerably hampered compared with the Pt/C catalyst, presumably because preferential Pd oxidation proceeds at the defects in Pt MLs up to 0.91 V and through O penetrated through the Pt MLs by the place exchange process above 1.11 V.« less

  4. Lattice parameter evolution in Pt nanoparticles during photo-thermally induced sintering and grain growth

    DOE PAGES

    Kelly, B.G.; Loether, A.; DiChiara, A. D.; ...

    2017-04-20

    An in-situ optical pump/x-ray probe technique has been used to study the size dependent lattice parameter of Pt nanoparticles subjected to picosecond duration optical laser pulses. The as-prepared Pt nanoparticles exhibited a contracted lattice parameter consistent with the response of an isolated elastic sphere to a compressive surface stress. During photo-thermally induced sintering and grain growth, however, the Pt lattice parameter did not evolve with the inverse particle size dependence predicted by simple surface stress models. Lastly, the observed behavior could be attributed to the combined effects of a compressive surface/interface stress and a tensile stress arising from intergranular material.

  5. Lattice parameter evolution in Pt nanoparticles during photo-thermally induced sintering and grain growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, B.G.; Loether, A.; DiChiara, A. D.

    An in-situ optical pump/x-ray probe technique has been used to study the size dependent lattice parameter of Pt nanoparticles subjected to picosecond duration optical laser pulses. The as-prepared Pt nanoparticles exhibited a contracted lattice parameter consistent with the response of an isolated elastic sphere to a compressive surface stress. During photo-thermally induced sintering and grain growth, however, the Pt lattice parameter did not evolve with the inverse particle size dependence predicted by simple surface stress models. Lastly, the observed behavior could be attributed to the combined effects of a compressive surface/interface stress and a tensile stress arising from intergranular material.

  6. Fabrication of Monolithic Sapphire Membranes for High Tc Bolometer Array Development

    NASA Technical Reports Server (NTRS)

    Pugel, D. E.; Lakew, B.; Aslam, S.; Wang, L.

    2003-01-01

    This paper examines the effectiveness of Pt/Cr thin film masks for the architecture of monolithic membrane structures in r-plane sapphire. The development of a pinhole-free Pt/Cr composite mask that is resistant to hot H2SO4:H3PO4 etchant, will lead to the fabrication of smooth sapphire membranes whose surfaces are well-suited for the growth of low-noise high Tc films. In particular, the relationship of thermal annealing conditions on the Pt/Cr composite mask system to: (1) changes in the surface morphology and elemental concentration of the Pt/Cr thin film layers and (2) etch pit formation on the sapphire surface will be presented.

  7. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Karamat, S.; Sonuşen, S.; Çelik, Ü.; Uysallı, Y.; Oral, A.

    2016-04-01

    In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH)2 for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and LiOH was ∼6 min and for NaOH and Ba(OH)2 it was ∼15 min. KOH and LiOH peeled off graphene very efficiently as compared to NaOH and Ba(OH)2 from the Pt electrode. In case of copper, the peeling time is ∼3-5 min. Different characterizations like optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were done to analyze the as grown and transferred graphene samples.

  8. Preparation of Pt/polypyrrole-para toluene sulfonate hydrogen peroxide sensitive electrode for the utilizing as a biosensor.

    PubMed

    Çete, Servet; Bal, Özgür

    2013-12-01

    A film electrode with electropolymerization of pyrrole (Py) and para-toluene sulfonate (pTS) as a anionic dopant is prepared and its sensitivity to hydrogen peroxide is investigated. The polypyrrole is deposited on a 0.5 cm(2) Pt plate an electrochemically prepared pTS ion-doped polypyrrole film by scanning the electrode potential between - 0.8 and + 0.8 V at a scan rate of 20 mV/s. The electrode's sensitivity to hydrogen peroxide is investigated at room temperature using 0.1 M phosphate buffer at pH 7.5. The working potential is found as a 0.3 V. The concentrations of pyrrole and pTS are 50mM M and 25 mM. Polypyrrole was coated on the electrode surface within 10 cycles. İmmobilization of glucose oxidase carried out on Pt/polypyrrole-para toluene sulfonate (Pt/PPy-pTS) film by cross-linking with glutaraldehyde. The morphology of electrodes was characterized by SEM and AFM. Moreover, contact angle measurements were made with 1 μL water of polymer film and enzyme electrode. It has shown that enzyme electrode is very sensitive against to glucose.

  9. Pt-like Hydrogen Evolution Electrocatalysis on PANI/CoP Hybrid Nanowires by Weakening the Shackles of Hydrogen Ions on the Surfaces of Catalysts.

    PubMed

    Feng, Jin-Xian; Tong, Si-Yao; Tong, Ye-Xiang; Li, Gao-Ren

    2018-04-18

    The search for high active, stable, and cost-efficient hydrogen evolution reaction (HER) electrocatalysts for water electrolysis has attracted great interest. The coordinated water molecules in the hydronium ions will obviously reduce the positive charge density of H + and hamper the ability of H + to receive electrons from the cathode, leading to large overpotential of HER on nonprecious metal catalysts. Here we realize Pt-like hydrogen evolution electrocatalysis on polyaniline (PANI) nanodots (NDs)-decorated CoP hybrid nanowires (HNWs) supported on carbon fibers (CFs) (PANI/CoP HNWs-CFs) as PANI can effectively capture H + from hydronium ions to form protonated amine groups that have higher positive charge density than those of hydronium ions and can be electro-reduced easily. The PANI/CoP HNWs-CFs as low-cost electrocatalysts show excellent catalytic performance toward HER in acidic solution, such as super high catalytic activity, small Tafel slope, and superior stability.

  10. Synthesizing 2D MoS2 Nanofins on carbon nanospheres as catalyst support for Proton Exchange Membrane Fuel Cells.

    PubMed

    Hu, Yan; Chua, Daniel H C

    2016-06-15

    Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt(-1) as compared to standard carbon black of 7.4 W.mgPt(-1) under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support.

  11. Photoactivation of Diiodido-Pt(IV) Complexes Coupled to Upconverting Nanoparticles.

    PubMed

    Perfahl, Stefanie; Natile, Marta M; Mohamad, Heba S; Helm, Christiane A; Schulzke, Carola; Natile, Giovanni; Bednarski, Patrick J

    2016-07-05

    The preparation, characterization, and surface modification of upconverting lanthanide-doped hexagonal NaGdF4 nanocrystals attached to light sensitive diiodido-Pt(IV) complexes is presented. The evaluation for photoactivation and cytotoxicity of the novel carboxylated diiodido-Pt(IV) cytotoxic prodrugs by near-infrared (NIR) light (λ = 980 nm) is also reported. We attempted two different strategies for attachment of light-sensitive diiodido-Pt(IV) complexes to Yb,Er- and Yb,Tm-doped β-NaGdF4 upconverting nanoparticles (UCNPs) in order to provide nanohybrids, which offer unique opportunities for selective drug activation within the tumor cells and subsequent spatiotemporal controlled drug release by NIR-to-visible light-upconversion: (A) covalent attachment of the Pt(IV) complex via amide bond formation and (B) carboxylate exchange of oleate on the surface of the UCNPs with diiodido-Pt(IV) carboxylato complexes. Initial feasibility studies showed that NIR applied by a 980 nm laser had only a slight effect on the stability of the various diiodido-Pt(IV) complexes, but when UCNPs were present more rapid loss of the ligand-metal-charge transfer (LMCT) bands of the diiodido-Pt(IV) complexes was observed. Furthermore, Pt released from the Pt(IV) complexes platinated calf-thymus DNA (ct-DNA) more rapidly when NIR was applied compared to dark controls. Of the two attachment strategies, method A with the covalently attached diiodido-Pt(IV) carboxylates via amide bond formation proved to be the most effective method for generating UCNPs that release Pt when irradiated with NIR; the released Pt was also able to bind irreversibly to calf thymus DNA. Nonetheless, only ca. 20% of the Pt on the surface of the UCNPs was in the Pt(IV) oxidation state, the rest was Pt(II), indicating chemical reduction of the diiodido-Pt(IV) prodrug by the UCNPs. Cytotoxicity studies with the various UCNP-Pt conjugates and constructs, tested on human leukemia HL60 cells in culture, indicated a substantial increase in cytotoxicity when modified UCNPs were combined with five rounds of 30 min irradiation with NIR compared to dark controls, but NIR alone also had a significant cytotoxic effect at this duration.

  12. Leg extensor muscle strength, postural stability, and fear of falling after a 2-month home exercise program in women with severe knee joint osteoarthritis.

    PubMed

    Rätsepsoo, Monika; Gapeyeva, Helena; Sokk, Jelena; Ereline, Jaan; Haviko, Tiit; Pääsuke, Mati

    2013-01-01

    BACKGROUND AND OBJECTIVE. The aim of this study was to compare the leg extensor muscle strength, the postural stability, and the fear of falling in the women with severe knee joint osteoarthritis (OA) before and after a 2-month home exercise program (HEP). MATERIAL AND METHODS. In total, 17 women aged 46-72 years with late-stage knee joint OA scheduled for total knee arthroplasty participated in this study before and after the 2-month HEP with strengthening, stretching, balance, and step exercises. The isometric peak torque (PT) of the leg extensors and postural stability characteristics when standing on a firm or a foam surface for 30 seconds were recorded. The fear of falling and the pain intensity (VAS) were estimated. RESULTS. A significant increase in the PT and the PT-to-body weight (PT-to-BW) ratio of the involved leg as well as the bilateral PT and the PT-to-BW ratio was found after the 2-month HEP compared with the data before the HEP (P<0.05). The PT and the PT-to-BW ratio of the involved leg were significantly lower compared with the uninvolved leg before the HEP (P<0.05). The center of the pressure sway length (foam surface) decreased significantly after the HEP (P<0.05). Significant correlations were found between the PT of the involved leg and the bilateral PT and the fear of falling and between the PT of the involved leg and the postural sway (foam surface) before the HEP. CONCLUSIONS. After the 2-month HEP, the leg extensor muscle strength increased and the postural sway length on a foam surface decreased. The results indicate that the increased leg extensor muscle strength improves postural stability and diminishes the fear of falling in women with late-stage knee joint OA.

  13. Dissolved Platinum Concentrations in Coastal Seawater: Boso to Sanriku Areas, Japan.

    PubMed

    Mashio, Asami Suzuki; Obata, Hajime; Gamo, Toshitaka

    2017-08-01

    Platinum, one of the rarest elements in the earth's crust, is now widely used in a range of products, such as catalytic converters in automobiles and anticancer drugs. Increasing use and dispersal of platinum has the potential to affect aquatic environments. Platinum concentrations in open ocean seawater have been found to be very low (approximately 0.2 pmol/L); however, Pt distributions and biogeochemical cycles in coastal areas are unknown. In this study, we investigated Pt concentrations in coastal waters between the Boso and Sanriku areas, Japan, after the 2011 tsunami. We determined sub-picomolar levels of dissolved Pt using isotope-dilution Inductively coupled plasma mass spectrometry after column preconcentration with an anion exchange resin. Dissolved Pt concentrations were found to be in the range 0.20-1.5 pmol/L, with the highest concentration in bottom water of the Boso coastal area, and at stations close to Tokyo Bay. Assuming thermodynamical equilibrium, Pt was determined to be present in the form PtCl 5 (OH) 2- , even in low-oxygen coastal waters. Vertical profiles indicated Pt levels increased toward seafloors near coastal stations and were similar to those of the open ocean at trench stations. High concentrations of dissolved Pt are thought to be derived from coastal sediments.

  14. Charge optimized many body (COMB) potentials for Pt and Au.

    PubMed

    Antony, A C; Akhade, S A; Lu, Z; Liang, T; Janik, M J; Phillpot, S R; Sinnott, S B

    2017-06-07

    Interatomic potentials for Pt and Au are developed within the third generation charge optimized many-body (COMB3) formalism. The potentials are capable of reproducing phase order, lattice constants, and elastic constants of Pt and Au systems as experimentally measured or calculated by density functional theory. We also fit defect formation energies, surface energies and stacking fault energies for Pt and Au metals. The resulting potentials are used to map a 2D contour of the gamma surface and simulate the tensile test of 16-grain polycrystalline Pt and Au structures at 300 K. The stress-strain behaviour is investigated and the primary slip systems {1 1 1}〈1 [Formula: see text] 0〉 are identified. In addition, we perform high temperature (1800 K for Au and 2300 K for Pt) molecular dynamics simulations of 30 nm Pt and Au truncated octahedron nanoparticles and examine morphological changes of each particle. We further calculate the activation energy barrier for surface diffusion during simulations of several nanoseconds and report energies of [Formula: see text] eV for Pt and [Formula: see text] eV for Au. This initial parameterization and application of the Pt and Au potentials demonstrates a starting point for the extension of these potentials to multicomponent systems within the COMB3 framework.

  15. Direct Imaging Mass Spectrometry of Plant Leaves Using Surface-assisted Laser Desorption/Ionization with Sputter-deposited Platinum Film.

    PubMed

    Ozawa, Tomoyuki; Osaka, Issey; Hamada, Satoshi; Murakami, Tatsuya; Miyazato, Akio; Kawasaki, Hideya; Arakawa, Ryuichi

    2016-01-01

    Plant leaves administered with systemic insecticides as agricultural chemicals were analyzed using imaging mass spectrometry (IMS). Matrix-assisted laser desorption/ionization (MALDI) is inadequate for the detection of insecticides on leaves because of the charge-up effect that occurs on the non-conductive surface of the leaves. In this study, surface-assisted laser desorption/ionization with a sputter-deposited platinum film (Pt-SALDI) was used for direct analysis of chemicals in plant leaves. Sputter-deposited platinum (Pt) films were prepared on leaves administered with the insecticides. A sputter-deposited Pt film with porous structure was used as the matrix for Pt-SALDI. Acephate and acetamiprid contained in the insecticides on the leaves could be detected using Pt-SALDI-MS, but these chemical components could not be adequately detected using MALDI-MS because of the charge-up effect. Enhancement of ion yields for the insecticides was achieved using Pt-SALDI, accompanied by prevention of the charge-up effect by the conductive Pt film. The movement of systemic insecticides in plants could be observed clearly using Pt-SALDI-IMS. The distribution and movement of components of systemic insecticides on leaves could be analyzed directly using Pt-SALDI-IMS. Additionally, changes in the properties of the chemicals with time, as an indicator of the permeability of the insecticides, could be evaluated.

  16. Investigation of the Alkaline Electrochemical Interface and Development of Composite Metal/Metal-Oxides for Hydrogen and Oxygen Electrodes

    NASA Astrophysics Data System (ADS)

    Bates, Michael

    Understanding the fundamentals of electrochemical interfaces will undoubtedly reveal a path forward towards a society based on clean and renewable energy. In particular, it has been proposed that hydrogen can play a major role as an energy carrier of the future. To fully utilize the clean energy potential of a hydrogen economy, it is vital to produce hydrogen via water electrolysis, thus avoiding co-production of CO2 inherent to reformate hydrogen. While significant research efforts elsewhere are focused on photo-chemical hydrogen production from water, the inherent low efficiency of this method would require a massive land-use footprint to achieve sufficient hydrogen production rates to integrate hydrogen into energy markets. Thus, this research has primarily focused on the water splitting reactions on base-metal catalysts in the alkaline environment. Development of high-performance base-metal catalysts will help move alkaline water electrolysis to the forefront of hydrogen production methods, and when paired with solar and wind energy production, represents a clean and renewable energy economy. In addition to the water electrolysis reactions, research was conducted to understand the de-activation of reversible hydrogen electrodes in the corrosive environment of the hydrogen-bromine redox flow battery. Redox flow batteries represent a promising energy storage option to overcome the intermittency challenge of wind and solar energy production methods. Optimization of modular and scalable energy storage technology will allow higher penetration of renewable wind and solar energy into the grid. In Chapter 1, an overview of renewable energy production methods and energy storage options is presented. In addition, the fundamentals of electrochemical analysis and physical characterization of the catalysts are discussed. Chapter 2 reports the development of a Ni-Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline electrolyte. The HER kinetics of numerous binary & ternary Ni-alloys and composite Ni/metal-oxide/C samples were evaluated in aqueous 0.1 M KOH electrolyte. Furthermore a model of the double layer interface is proposed, which helps explain the observed ensemble effect in the presence of AEI. In Chapter 3, Ni-Fe and Ni-Fe-Co mixed-metal-oxide (MMO) films were investigated for oxygen evolution reaction (OER) activity in 0.1M KOH on high surface area Raney-Nickel supports. During investigations of MMO activity, aniline was identified as a useful "capping agent" for synthesis of high-surface area MMO-polyaniline (PANI) composite materials. A Ni-Fe-Co/PANI-Raney-Ni catalyst was developed which exhibits enhanced mass-activity compared to state-of-the-art Ni-Fe OER electrocatalysts reported to date. The morphology of the MMO catalyst film on PANI/Raney-Ni support provides excellent dispersion of active-sites and should maintain high active-site utilization for catalyst loading on gas-diffusion electrodes. In Chapter 4, the de-activation of reversible-hydrogen electrode catalysts was investigated and the development of a Pt-Ir-Nx/C catalyst is reported, which exhibits significantly increased stability in the HBr/Br 2 electrolyte. In contrast a Pt-Ir/C catalyst exhibited increased tolerance to high-voltage cycling and in particular showed recovery of electrocatalytic activity after reversible de-activation (presumably from bromide adsorption and subsequent oxidative bromide stripping). Under the harshest testing conditions of high-voltage cycling or exposure to Br2 the Pt-based catalyst showed a trend in stability: Pt < Pt-Ir < Pt-Ir-Nx. (Abstract shortened by UMI.).

  17. Stability investigation of a high number density Pt1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM

    NASA Astrophysics Data System (ADS)

    Duan, Sibin; Wang, Rongming; Liu, Jingyue

    2018-05-01

    Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt1/Fe2O3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 °C under various gas environments that are relevant to CO oxidation, water–gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe2O3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H2O molecules to the CO or H2 significantly accelerates the sintering of the Fe2O3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal–support interaction.

  18. Experimental and Theoretical Structural Investigation of AuPt Nanoparticles Synthesized using a Direct Electrochemical Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapp, Aliya S.; Duan, Zhiyao; Marcella, Nicholas

    In this report we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2-, a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H-atom capping layer prevents deposition of Pt multilayers. We applied this method to ~1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to themore » well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).« less

  19. Experimental and Theoretical Structural Investigation of AuPt Nanoparticles Synthesized using a Direct Electrochemical Method

    DOE PAGES

    Lapp, Aliya S.; Duan, Zhiyao; Marcella, Nicholas; ...

    2018-06-01

    In this report we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2-, a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H-atom capping layer prevents deposition of Pt multilayers. We applied this method to ~1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to themore » well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).« less

  20. Experimental and Theoretical Structural Investigation of AuPt Nanoparticles Synthesized Using a Direct Electrochemical Method.

    PubMed

    Lapp, Aliya S; Duan, Zhiyao; Marcella, Nicholas; Luo, Long; Genc, Arda; Ringnalda, Jan; Frenkel, Anatoly I; Henkelman, Graeme; Crooks, Richard M

    2018-05-11

    In this report, we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2- , a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H atom capping layer prevents deposition of Pt multilayers. We applied this method to ∼1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to the well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).

  1. Electron attachment to the guanine-cytosine nucleic acid base pair and the effects of monohydration and proton transfer.

    PubMed

    Gupta, Ashutosh; Jaeger, Heather M; Compaan, Katherine R; Schaefer, Henry F

    2012-05-17

    The guanine-cytosine (GC) radical anion and its interaction with a single water molecule is studied using ab initio and density functional methods. Z-averaged second-order perturbation theory (ZAPT2) was applied to GC radical anion for the first time. Predicted spin densities show that the radical character is localized on cytosine. The Watson-Crick monohydrated GC anion is compared to neutral GC·H2O, as well as to the proton-transferred analogue on the basis of structural and energetic properties. In all three systems, local minima are identified that correspond to water positioned in the major and minor grooves of macromolecular DNA. On the anionic surface, two novel structures have water positioned above or below the GC plane. On the neutral and anionic surfaces, the global minimum can be described as water interacting with the minor groove. These structures are predicted to have hydration energies of 9.7 and 11.8 kcal mol(-1), respectively. Upon interbase proton-transfer (PT), the anionic global minimum has water positioned in the major groove, and the hydration energy increases to 13.4 kcal mol(-1). PT GC·H2O(•-) has distonic character; the radical character resides on cytosine, while the negative charge is localized on guanine. The effects of proton transfer are further investigated through the computed adiabatic electron affinities (AEA) of GC and monohydrated GC, and the vertical detachment energies (VDE) of the corresponding anions. Monohydration increases the AEAs and VDEs by only 0.1 eV, while proton-transfer increases the VDEs substantially (0.8 eV). The molecular charge distribution of monohydrated guanine-cytosine radical anion depends heavily on interbase proton transfer.

  2. Multifunctional shape and size specific magneto-polymer composite particles.

    PubMed

    Nunes, Janine; Herlihy, Kevin P; Mair, Lamar; Superfine, Richard; DeSimone, Joseph M

    2010-04-14

    Interest in uniform multifunctional magnetic particles is driven by potential applications in biomedical and materials science. Here we demonstrate the fabrication of highly tailored nanoscale and microscale magneto-polymer composite particles using a template based approach. Regiospecific surface functionalization of the particles was performed by chemical grafting and evaporative Pt deposition. Manipulation of the particles by an applied magnetic field was demonstrated in water and hydrogen peroxide.

  3. Kinetics, Assembling and Conformation Control of L-Cysteine Adsorption on Pt by In Situ FTIR Spectroscopy and QCM-D.

    PubMed

    Cordoba de Torresi, Susana Ines; Dourado, Andre H B; Silva, Rubens A; Torresi, Roberto M; Sumodjo, Paulo T A; Arenz, Matthias

    2018-06-05

    A quartz crystal microbalance method with dissipation (QCM-D) and attenuated total reflection infrared (ATR-FTIRS) spectroscopy were used to study the adsorption of L-cysteine (L-Cys) on Pt. Using QCM-D, it was possible to verify that the viscoelastic properties of the adsorbed species play an important role in the adsorption, rendering Sauerbrey's equation inapplicable. The modelling of QCM-D data exposed two different processes for the adsorption reaction. The first one had an activation time and is fast, whereas the second is slow. These processes were also resolved by ATR-FTIRS identified to be water and anion adsorption preceded by L-Cys adsorption. Both techniques reveal that the degree of surface coverage is pH dependent. Spectroscopic data indicate that the conformation of L-Cys(ads) changes with pH and that the structures do not fully agree with those proposed in literature for other metallic surfaces. The assembling of the adsorbed monolayer appeared to be very fast, and it was not possible to determine or quantify this kinetics. The conformation is also controlled by applied potential, and the anion adsorption and interfacial water depends on the conformation of the adsorbed molecules. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fabrication of Highly Stable and Efficient PtCu Alloy Nanoparticles on Highly Porous Carbon for Direct Methanol Fuel Cells.

    PubMed

    Khan, Inayat Ali; Qian, Yuhong; Badshah, Amin; Zhao, Dan; Nadeem, Muhammad Arif

    2016-08-17

    Boosting the durability of Pt nanoparticles by controlling the composition and morphology is extremely important for fuel cells commercialization. We deposit the Pt-Cu alloy nanoparticles over high surface area carbon in different metallic molar ratios and optimize the conditions to achieve desired material. The novel bimetallic electro-catalyst {Pt-Cu/PC-950 (15:15%)} offers exceptional electrocatalytic activity when tested for both oxygen reduction reaction and methanol oxidation reactions. A high mass activity of 0.043 mA/μgPt (based on Pt mass) is recorded for ORR. An outstanding longevity of this electro-catalyst is noticed when compared to 20 wt % Pt loaded either on PC-950 or commercial carbon. The high surface area carbon support offers enhanced activity and prevents the nanoparticles from agglomeration, migration, and dissolution as evident by TEM analysis.

  5. Electrochemical and in vitro neuronal recording characteristics of multi-electrode arrays surface-modified with electro-co-deposited gold-platinum nanoparticles.

    PubMed

    Kim, Yong Hee; Kim, Ah Young; Kim, Gook Hwa; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2016-02-01

    In order to complement the high impedance electrical property of gold nanoparticles (Au NPs) we have performed electro-co-deposition of gold-platinum nanoparticles (Au-Pt NPs) onto the Au multi-electrode array (MEA) and modified the Au-Pt NPs surface with cell adhesive poly-D-lysine via thiol chemistry based covalent binding. The Au-Pt NPs were analyzed to have bimetallic nature not the mixture of Au NPs and Pt NPs by X-ray diffraction analysis and to have impedance value (4.0 × 10(4) Ω (at 1 kHz)) comparable to that of Pt NPs. The performance of Au-Pt NP-modified MEAs was also checked in relation to neuronal signal recording. The noise level in Au-Pt NP-modified MEAs was lower than in that of Au NP-modified MEA.

  6. CuPt and CuPtRu Nanostructures for Ammonia Oxidation Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manso, R H.; Song, L.; Liang, Z.

    Liquid fuels, such as methanol, ethanol, and ammonia, are attractive alternative to hydrogen for fuel cells due to their lower costs for storage and distribution. However, lack of sufficiently active catalysts for their oxidation reactions is a roadblock. Our previous study found that Pt 3Cu nanodendrites yielded higher activity and durability than Pt nanoparticles for methanol oxidation reaction (MOR) in acid. In this study, we synthesized two types of nanostructures of CuPt and CuPtRu catalysts via seed-mediated growth of Pt and Ru on Cu and tested their performance for ammonia oxidation reaction (AOR) in alkaline solution. Unlike for MOR, themore » nanodendrites do not promote AOR activity - CuPt performs similar to Pt and CuPtRu is less active than Pt. Interestingly, the AOR peak current is increased by 64% on CuPt nanowires and 330% on CuPtRu nanowires as compared to Pt nanoparticles. These results suggest that AOR prefers extended surface on long nanowires, distinctly differing from MOR. This can be contributed to two factors: NH 3 oxidization to N 2 involves dimerization of two N-containing intermediates to form the N-N bond and diffusion batters for adsorbed intermediates are generally lower on terrace than at low-coordination sites. This demonstrated strong effect of surface morphology will be further studied and utilized in developing advanced AOR nanocatalysts.« less

  7. Au-Pt alloy nanoparticles obtained by nanosecond laser irradiation of gold and platinum bulk targets in an ethylene glycol solution

    NASA Astrophysics Data System (ADS)

    Moniri, Samira; Reza Hantehzadeh, Mohammad; Ghoranneviss, Mahmood; Asadi Asadabad, Mohsen

    2017-07-01

    Au-Pt alloy nanoparticles (NPs) of different compositions ( Au0Pt100 , Au30Pt70 , Au50Pt50 , Au70Pt30 , and Au100Pt0 were obtained using the nanosecond laser ablation of gold and platinum bulk targets in ethylene glycol, followed by mixing highly monodisperse Au and Pt nanocolloids, for the first time. UV-vis absorption spectra of NPs showed that by increasing the Au content in the Au-Pt NPs, the surface plasmon resonance (SPR) peak red-shifted, from 260 to 573nm in a nonlinear way. In addition, the mean crystalline size, crystal structure, d-spacing, and lattice parameters of NPs were estimated from the XRD spectra. Microscopy studies revealed the most NPs have a spherical or near-spherical shape, and the average sizes of Au0Pt100 , Au30Pt70 , Au50Pt50 , Au70Pt30 , and Au100Pt0 NPs were calculated to be 12.50, 14.15, 18.53, 19.29, and 26.38nm, respectively. Also, the chemical identity of the molecules adhering to the NPs surface was considered by Raman and FT-IR spectroscopy techniques. Among different synthesis methods, the demonstrated technique allows easy synthesis of alloy NPs in aqueous media at room temperature with no formation of by-products.

  8. CuPt and CuPtRu Nanostructures for Ammonia Oxidation Reaction

    DOE PAGES

    Manso, R H.; Song, L.; Liang, Z.; ...

    2018-04-01

    Liquid fuels, such as methanol, ethanol, and ammonia, are attractive alternative to hydrogen for fuel cells due to their lower costs for storage and distribution. However, lack of sufficiently active catalysts for their oxidation reactions is a roadblock. Our previous study found that Pt 3Cu nanodendrites yielded higher activity and durability than Pt nanoparticles for methanol oxidation reaction (MOR) in acid. In this study, we synthesized two types of nanostructures of CuPt and CuPtRu catalysts via seed-mediated growth of Pt and Ru on Cu and tested their performance for ammonia oxidation reaction (AOR) in alkaline solution. Unlike for MOR, themore » nanodendrites do not promote AOR activity - CuPt performs similar to Pt and CuPtRu is less active than Pt. Interestingly, the AOR peak current is increased by 64% on CuPt nanowires and 330% on CuPtRu nanowires as compared to Pt nanoparticles. These results suggest that AOR prefers extended surface on long nanowires, distinctly differing from MOR. This can be contributed to two factors: NH 3 oxidization to N 2 involves dimerization of two N-containing intermediates to form the N-N bond and diffusion batters for adsorbed intermediates are generally lower on terrace than at low-coordination sites. This demonstrated strong effect of surface morphology will be further studied and utilized in developing advanced AOR nanocatalysts.« less

  9. Area-selective atomic layer deposition of platinum using photosensitive polyimide.

    PubMed

    Vervuurt, René H J; Sharma, Akhil; Jiao, Yuqing; Kessels, Wilhelmus Erwin M M; Bol, Ageeth A

    2016-10-07

    Area-selective atomic layer deposition (AS-ALD) of platinum (Pt) was studied using photosensitive polyimide as a masking layer. The polyimide films were prepared by spin-coating and patterned using photolithography. AS-ALD of Pt using poly(methyl-methacrylate) (PMMA) masking layers was used as a reference. The results show that polyimide has excellent selectivity towards the Pt deposition, after 1000 ALD cycles less than a monolayer of Pt is deposited on the polyimide surface. The polyimide film could easily be removed after ALD using a hydrogen plasma, due to a combination of weakening of the polyimide resist during Pt ALD and the catalytic activity of Pt traces on the polyimide surface. Compared to PMMA for AS-ALD of Pt, polyimide has better temperature stability. This resulted in an improved uniformity of the Pt deposits and superior definition of the Pt patterns. In addition, due to the absence of reflow contamination using polyimide the nucleation phase during Pt ALD is drastically shortened. Pt patterns down to 3.5 μm were created with polyimide, a factor of ten smaller than what is possible using PMMA, at the typical Pt ALD processing temperature of 300 °C. Initial experiments indicate that after further optimization of the polyimide process Pt features down to 100 nm should be possible, which makes AS-ALD of Pt using photosensitive polyimide a promising candidate for patterning at the nanoscale.

  10. Pulse plating of Pt on n-GaAs ( 1 0 0 ) wafer surfaces: Synchrotron induced photoelectron spectroscopy and XPS of wet fabrication processes

    NASA Astrophysics Data System (ADS)

    Ensling, D.; Hunger, R.; Kraft, D.; Mayer, Th.; Jaegermann, W.; Rodriguez-Girones, M.; Ichizli, V.; Hartnagel, H. L.

    2003-01-01

    Preparation steps of Pt/n-GaAs Schottky contacts as applied in the fabrication process of varactor diode arrays for THz applications are analysed by photoelectron spectroscopy. Pulsed cathodic deposition of Pt onto GaAs (1 0 0) wafer surfaces from acidic solution has been studied by core level photoelectron spectroscopy using different excitation energies. A laboratory AlKα source as well as synchrotron radiation of hν=130 and 645 eV at BESSY was used. Chemical analyses and semiquantitative estimates of layer thickness are given for the natural oxide of an untreated wafer surface, a surface conditioning NH 3 etching step, and stepwise pulse plating of Pt. The structural arrangement of the detected species and interface potentials are considered.

  11. Adsorption and ring-opening of lactide on the chiral metal surface Pt(321)S studied by density functional theory

    NASA Astrophysics Data System (ADS)

    Franke, J.-H.; Kosov, D. S.

    2015-01-01

    We study the adsorption and ring-opening of lactide on the naturally chiral metal surface Pt(321)S. Lactide is a precursor for polylactic acid ring-opening polymerization, and Pt is a well known catalyst surface. We study, here, the energetics of the ring-opening of lactide on a surface that has a high density of kink atoms. These sites are expected to be present on a realistic Pt surface and show enhanced catalytic activity. The use of a naturally chiral surface also enables us to study potential chiral selectivity effects of the reaction at the same time. Using density functional theory with a functional that includes the van der Waals forces in a first-principles manner, we find modest adsorption energies of around 1.4 eV for the pristine molecule and different ring-opened states. The energy barrier to be overcome in the ring-opening reaction is found to be very small at 0.32 eV and 0.30 eV for LL- and its chiral partner DD-lactide, respectively. These energies are much smaller than the activation energy for a dehydrogenation reaction of 0.78 eV. Our results thus indicate that (a) ring-opening reactions of lactide on Pt(321) can be expected already at very low temperatures, and Pt might be a very effective catalyst for this reaction; (b) the ring-opening reaction rate shows noticeable enantioselectivity.

  12. Active and stable Ir@Pt core–shell catalysts for electrochemical oxygen reduction

    DOE PAGES

    Strickler, Alaina L.; Jackson, Ariel; Jaramillo, Thomas F.

    2016-12-28

    Electrochemical oxygen reduction is an important reaction for many sustainable energy technologies, such as fuel cells and metal–air batteries. Kinetic limitations of this reaction, expensive electrocatalysts, and catalyst instability, however, limit the commercial viability of such devices. Herein, we report an active Ir@Pt core–shell catalyst that combines platinum overlayers with nanostructure effects to tune the oxygen binding to the Pt surface, thereby achieving enhanced activity and stability for the oxygen reduction reaction. Ir@Pt nanoparticles with several shell thicknesses were synthesized in a scalable, inexpensive, one-pot polyol method. Electrochemical analysis demonstrates the activity and stability of the Ir@Pt catalyst, with specificmore » and mass activities increasing to 2.6 and 1.8 times that of commercial Pt/C (TKK), respectively, after 10 000 stability cycles. Furthermore, activity enhancement of the Ir@Pt catalyst is attributed to weakening of the oxygen binding to the Pt surface induced by the Ir core.« less

  13. Adsorption of xenon on vicinal copper and platinum surfaces

    NASA Astrophysics Data System (ADS)

    Baker, Layton

    The adsorption of xenon was studied on Cu(111), Cu(221), Cu(643) and on Pt(111), Pt(221), and Pt(531) using low energy electron diffraction (LEED), temperature programmed desorption (TPD) of xenon, and ultraviolet photoemission of adsorbed xenon (PAX). These experiments were performed to study the atomic and electronic structure of stepped and step-kinked, chiral metal surfaces. Xenon TPD and PAX were performed on each surface in an attempt to titrate terrace, step edge, and kink adsorption sites by adsorption energetics (TPD) and local work function differences (PAX). Due to the complex behavior of xenon on the vicinal copper and platinum metal surfaces, adsorption sites on these surfaces could not be adequately titrated by xenon TPD. On Cu(221) and Cu(643), xenon desorption from step adsorption sites was not apparent leading to the conclusion that the energy difference between terrace and step adsorption is minuscule. On Pt(221) and Pt(531), xenon TPD indicated that xenon prefers to bond at step edges and that the xenon-xenon interaction at step edges in repulsive but no further indication of step-kink adsorption was observed. The Pt(221) and Pt(531) TPD spectra indicated that the xenon overlayer undergoes strong compression near monolayer coverage on these surfaces due to repulsion between step-edge adsorbed xenon and other encroaching xenon atoms. The PAX experiments on the copper and platinum surfaces demonstrated that the step adsorption sites have lower local work functions than terrace adsorption sites and that higher step density leads to a larger separation in the local work function of terrace and step adsorption sites. The PAX spectra also indicated that, for all surfaces studied at 50--70 K, step adsorption is favored at low coverage but the step sites are not saturated until monolayer coverage is reached; this observation is due to the large entropy difference between terrace and step adsorption states and to repulsive interactions between xenon atoms adsorbed at step edges (on the platinum surfaces). The results herein provide several novel observations regarding the adsorptive behavior of xenon on vicinal copper and platinum surfaces.

  14. Pt Catalyst Degradation in Aqueous and Fuel Cell Environments studied via In-Operando Anomalous Small-Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, James A.; Kariuki, Nancy N.; Wang, Xiaoping

    2015-08-01

    The evolution of Pt nanoparticle cathode electrocatalyst size distribution in a polymer electrolyte membrane fuel cell (PEMFC) was followed during accelerated stress tests using in-operando anomalous small-angle X-ray scattering (ASAXS). This evolution was compared to that observed in an aqueous electrolyte environment using stagnant electrolyte, flowing electrolyte, and flowing electrolyte at elevated temperature to reveal the different degradation trends in the PEMFC and aqueous environments and to determine the relevance of aqueous measurements to the stability of Pt nanoparticle catalyst in the fuel cell environment. The observed changes in the particle size distributions (PSDs) were analyzed to elucidate the extentmore » and mechanisms of particle growth and corresponding mass and active surface area losses in the different environments. These losses indicate a Pt nanoparticle surface area loss mechanism controlled by Pt dissolution, the particle size dependence of Pt dissolution, the loss of dissolved Pt into the membrane and electrolyte, and, to a lesser extent, the re-deposition of dissolved Pt onto larger particles. Based on the geometric surface area loss, mass loss, and mean particle size increase trends, the aqueous environment best reflecting the fuel cell environment was found to be one in which the electrolyte is flowing rather than stagnant. Pt nanoparticle surface area loss resulting from potential cycling can be inhibited by reducing the number of particles smaller than a critical particle diameter (CPD), which was found to be similar to 3.5 to similar to 4 nm, with the CPD dependent on both the cycling protocol (square wave vs triangle wave) and the catalyst environment (fuel cell, aqueous stagnant, aqueous flowing electrolyte, or elevated temperature flowing electrolyte)« less

  15. Novel synthesis of core-shell Au-Pt dendritic nanoparticles supported on carbon black for enhanced methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Cao, Ribing; Xia, Tiantian; Zhu, Ruizhi; Liu, Zhihua; Guo, Jinming; Chang, Gang; Zhang, Zaoli; Liu, Xiong; He, Yunbin

    2018-03-01

    Core-shell Au-Pt dendritic nanoparticles (Au-Pt NPs) has been synthesized via a facile seed-mediated growth method, in which dendritic Pt nanoparticles as shell grow on the surface of gold nanocores by using ascorbic acid (AA) as "green" reducing reagents. The morphologies and compositions of the as-prepared nanocomposites with core-shell structure are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Electrochemical experiments, including cyclic voltammetry (CV) and chronoamperometry (CA) are performed to investigate the electrocatalytic properties of the Au-Pt NPs loaded carbon black composites (Au-Pt NPs/V) towards methanol oxidation in an alkaline solution. It is found that the reduction time of AA could regulate the thickness and amount of Pt on the Au nanocores, which significantly affect catalytic activity of the Au-Pt NPs/V toward methanol oxidation. Au-Pt NPs/V with optimum reduction time 4 h exhibit 2.3-times higher electrocatalytic activity than that of a commercial catalyst (Pt/carbon black) and an excellent CO tolerance toward methanol oxidation. This behavior is attributed to large active electrochemical area of the bimetallic nanocomposites and the change in the electronic structure of Pt when Au surface modified with fewer Pt nanoparticles.

  16. Electrodeposition of Highly Porous Pt Nanoparticles Studied by Quantitative 3D Electron Tomography: Influence of Growth Mechanisms and Potential Cycling on the Active Surface Area.

    PubMed

    Ustarroz, Jon; Geboes, Bart; Vanrompay, Hans; Sentosun, Kadir; Bals, Sara; Breugelmans, Tom; Hubin, Annick

    2017-05-17

    Nanoporous Pt nanoparticles (NPs) are promising fuel cell catalysts due to their large surface area and increased electrocatalytic activity toward the oxygen reduction reaction (ORR). Herein, we report on the influence of the growth mechanisms on the surface properties of electrodeposited Pt dendritic NPs with large surface areas. The electrochemically active surface was studied by hydrogen underpotential deposition (H UPD) and compared for the first time to high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) quantitative 3D electron tomography of individual nanoparticles. Large nucleation overpotential leads to a large surface coverage of roughened spheroids, which provide a large roughness factor (R f ) but low mass-specific electrochemically active surface area (EASA). Lowering the nucleation overpotential leads to highly porous Pt NPs with pores stretching to the center of the structure. At the expense of smaller R f , the obtained EASA values of these structures are in the range of those of large surface area supported fuel cell catalysts. The active surface area of the Pt dendritic NPs was measured by electron tomography, and it was found that the potential cycling in the H adsorption/desorption and Pt oxidation/reduction region, which is generally performed to determine the EASA, leads to a significant reduction of that surface area due to a partial collapse of their dendritic and porous morphology. Interestingly, the extrapolation of the microscopic tomography results in macroscopic electrochemical parameters indicates that the surface properties measured by H UPD are comparable to the values measured on individual NPs by electron tomography after the degradation caused by the H UPD measurement. These results highlight that the combination of electrochemical and quantitative 3D surface analysis techniques is essential to provide insights into the surface properties, the electrochemical stability, and, hence, the applicability of these materials. Moreover, it indicates that care must be taken with widely used electrochemical methods of surface area determination, especially in the case of large surface area and possibly unstable nanostructures, since the measured surface can be strongly affected by the measurement itself.

  17. Synthesis of Platinum-nickel Nanowires and Optimization for Oxygen Reduction Performance

    DOE PAGES

    Alia, Shaun M.; Pivovar, Bryan S.

    2018-01-01

    Platinum-nickel (Pt-Ni) nanowires were developed as fuel cell electrocatalysts, and were optimized for the performance and durability in the oxygen reduction reaction. Spontaneous galvanic displacement was used to deposit Pt layers onto Ni nanowire substrates. The synthesis approach produced catalysts with high specific activities and high Pt surface areas. Hydrogen annealing improved Pt and Ni mixing and specific activity. Acid leaching was used to preferentially remove Ni near the nanowire surface, and oxygen annealing was used to stabilize near-surface Ni, improving durability and minimizing Ni dissolution. These protocols detail the optimization of each post-synthesis processing step, including hydrogen annealing tomore » 250 degrees C, exposure to 0.1 M nitric acid, and oxygen annealing to 175 degrees C. Through these steps, Pt-Ni nanowires produced increased activities more than an order of magnitude than Pt nanoparticles, while offering significant durability improvements. The presented protocols are based on Pt-Ni systems in the development of fuel cell catalysts. Furthermore, these techniques have also been used for a variety of metal combinations, and can be applied to develop catalysts for a number of electrochemical processes.« less

  18. Synthesis of Platinum-nickel Nanowires and Optimization for Oxygen Reduction Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alia, Shaun M.; Pivovar, Bryan S.

    Platinum-nickel (Pt-Ni) nanowires were developed as fuel cell electrocatalysts, and were optimized for the performance and durability in the oxygen reduction reaction. Spontaneous galvanic displacement was used to deposit Pt layers onto Ni nanowire substrates. The synthesis approach produced catalysts with high specific activities and high Pt surface areas. Hydrogen annealing improved Pt and Ni mixing and specific activity. Acid leaching was used to preferentially remove Ni near the nanowire surface, and oxygen annealing was used to stabilize near-surface Ni, improving durability and minimizing Ni dissolution. These protocols detail the optimization of each post-synthesis processing step, including hydrogen annealing tomore » 250 degrees C, exposure to 0.1 M nitric acid, and oxygen annealing to 175 degrees C. Through these steps, Pt-Ni nanowires produced increased activities more than an order of magnitude than Pt nanoparticles, while offering significant durability improvements. The presented protocols are based on Pt-Ni systems in the development of fuel cell catalysts. Furthermore, these techniques have also been used for a variety of metal combinations, and can be applied to develop catalysts for a number of electrochemical processes.« less

  19. Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation.

    PubMed

    Maillard, F; Lu, G-Q; Wieckowski, A; Stimming, U

    2005-09-01

    This feature article concerns Pt surfaces modified (decorated) by ruthenium as model fuel cell electrocatalysts for electrooxidation processes. This work reveals the role of ruthenium promoters in enhancing electrocatalytic activity toward organic fuels for fuel cells, and it particularly concerns the methanol decomposition product, surface CO. A special focus is on surface mobility of the CO as it is catalytically oxidized to CO(2). Different methods used to prepare Ru-decorated Pt single crystal surfaces as well as Ru-decorated Pt nanoparticles are reviewed, and the methods of characterization and testing of their activity are discussed. The focus is on the origin of peak splitting involved in the voltammetric electrooxidation of CO on Ru-decorated Pt surfaces, and on the interpretative consequences of the splitting for single crystal and nanoparticle Pt/Ru bimetallic surfaces. Apparently, screening through the literature allows formulating several models of the CO stripping reaction, and the validity of these models is discussed. Major efforts are made in this article to compare the results reported by the Urbana-Champaign group and the Munich group, but also by other groups. As electrocatalysis is progressively more and more driven by theory, our review of the experimental findings may serve to summarize the state of the art and clarify the roads ahead. Future studies will deal with highly dispersed and reactive nanoscale surfaces and other more advanced catalytic materials for fuel cell catalysis and related energy applications. It is expected that the metal/metal and metal/substrate interactions will be increasingly investigated on atomic and electronic levels, with likewise increasing participation of theory, and the structure and reactivity of various monolayer catalytic systems involving more than two metals (that is ternary and quaternary systems) will be interrogated.

  20. Synthesis and structural, magnetic and electrochemical characterization of PtCo nanoparticles prepared by water-in-oil microemulsion

    NASA Astrophysics Data System (ADS)

    Solla-Gullón, J.; Gómez, Elvira; Vallés, Elisa; Aldaz, Antonio; Feliu, Juan M.

    2010-05-01

    PtCo nanoparticles with homogeneous size (around 3-4 nm) have been synthesized in a water-in-oil microemulsion of water/polyethylenglycol-dodecylether (BRIJ®30)/n-heptane. X-ray diffraction study revealed the formation of a cubic phase with a gradual decrease of the cell parameter with increasing cobalt incorporation in the crystalline lattice of platinum. In relation to their magnetic properties, the PtCo nanoparticles present a superparamagnetic behaviour even after annealing, although higher permeability was induced by the thermal treatment. Finally, the electrocatalytic activity of the particles towards oxalic acid oxidation in H2SO4 was evaluated. The Pt74Co26 nanoparticles showed the highest reactivity for this reaction.

  1. Intermetallic structures with atomic precision for selective hydrogenation of nitroarenes

    DOE PAGES

    Pei, Yuchen; Qi, Zhiyuan; Goh, Tian Wei; ...

    2017-11-14

    It is essential to bridge the structure-properties relationship of bimetallic catalysts for the rational design of heterogeneous catalysts. Different from random alloys, intermetallic compounds (IMCs) present atomically-ordered structures, which is advantageous for catalytic mechanism studies. Here, we used Pt-based intermetallic nanoparticles (iNPs), individually encapsulated in mesoporous silica shells, as catalysts for the hydrogenation of nitroarenes to functionalized anilines. With the capping-free nature and ordered atomic structure, PtSn iNPs show >99% selectivity to hydrogenate the nitro group of 3-nitrostyrene albeit with a lower activity, in contrast to Pt 3Sn iNPs and Pt NPs. The geometric structure of PtSn iNPs in eliminatingmore » Pt threefold sites hampers the adsorption/dissociation of molecular H 2 and leads to a non-Horiuti-Polanyi hydrogenation pathway, while Pt 3Sn and Pt surfaces are saturated by atomic H. Calculations using density functional theory (DFT) suggest a preferential adsorption of the nitro group on the intermetallic PtSn surface contributing to its high selectivity.« less

  2. CO 2 Adsorption on Anatase TiO 2 (101) Surfaces in the Presence of Subnanometer Ag/Pt Clusters: Implications for CO 2 Photoreduction

    DOE PAGES

    Yang, Chi-Ta; Wood, Brandon C.; Bhethanabotla, Venkat R.; ...

    2014-10-20

    We show how CO 2 adsorption on perfect and reduced anatase TiO 2 (101) surfaces can be substantially modified by the presence of surface Ag and Pt octamer clusters, using density functional theory calculations. Furthermore, we found that adsorption was affected even at sites where the adsorbate was not in direct contact with the octamer, which we attributed to charge donation to CO 2 from the Ag/Pt-modified surface, as well as an electrostatic competition between attractive (Ti–O) and repulsive (Ti–C) interactions. Additionally, TiO 2-supported Pt octamers offer key advantages that could be leveraged for CO 2 photoreduction, including providing additionalmore » stable adsorption sites for bent CO 2 species and facilitating charge transfer to aid in CO 2– anion formation. Electronic structure analysis suggests these factors arise primarily from the hybridization of the bonding molecular orbitals of CO 2 with d orbitals of the Pt atoms. Our results show that, for adsorption on TiO 2-supported Pt octamers, the O–C–O bending and C–O asymmetric stretching frequencies can be used as reliable indicators of the presence of the CO 2– anion intermediate as well as to distinguish unique adsorption geometries or sites. Finally, we suggest a possible pathway for subsequent CO 2 dissociation to CO at the surface of a reduced anatase TiO 2 (101)-supported Pt octamer, which has a computed energy barrier of 1.01 eV.« less

  3. High thermal stability of La 2O 3 and CeO 2-stabilized tetragonal ZrO 2

    DOE PAGES

    Wang, Shichao; Xie, Hong; Lin, Yuyuan; ...

    2016-02-15

    Catalyst support materials of tetragonal ZrO 2, stabilized by either La 2O 3 (La 2O 3-ZrO 2) or CeO 2 (CeO 2-ZrO 2), were synthesized under hydrothermal conditions at 200 °C with NH 4OH or tetramethylammonium hydroxide as the mineralizer. From In Situ synchrotron powder X-ray diffraction and small-angle X-ray scattering measurements, the calcined La 2O 3-ZrO 2 and CeO 2-ZrO 2 supports were nonporous nanocrystallites that exhibited rectangular shapes with thermal stability up to 1000 °C in air. These supports had an average size of ~10 nm and a surface area of 59-97 m 2/g. The catalysts Pt/La 2Omore » 3-ZrO 2 and Pt/CeO 2-ZrO 2 were prepared by using atomic layer deposition with varying Pt loadings from 6.3-12.4 wt %. Mono-dispersed Pt nanoparticles of ~3 nm were obtained for these catalysts. As a result, the incorporation of La 2O 3 and CeO 2 into the t-ZrO 2 structure did not affect the nature of the active sites for the Pt/ZrO 2 catalysts for the water-gas-shift (WGS) reaction.« less

  4. Synthesis of Cluster-Derived PtFe/SiO(2) Catalysts for the Oxidation of CO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siani, A.; Alexeev, O.S.; Captain, B.

    2009-05-27

    Infrared (FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopy measurements were used to characterize the species formed after impregnation of Pt{sub 5}Fe{sub 2}(COD){sub 2}(CO){sub 12} onto silica, before and after removal of the organic ligands. The results indicate that the Pt{sub 5}Fe{sub 2}(COD){sub 2}(CO){sub 12} cluster adsorbs weakly on the SiO{sub 2} surface. Nevertheless, partial disintegration of the cluster was observed during aging even under He and at room temperature, related to the loss of CO ligands due to their interactions with silanol groups of the support. The organic ligands can be removed from a freshly impregnated cluster bymore » thermal treatment in either He or H{sub 2}, but the surface species formed in each case have different structures. Treatment in He at 350 {sup o}C leads to a complete disintegration of the Pt-Fe bimetallic core and results in the formation of highly dispersed Pt clusters with a nuclearity of six, along with surface Fe oxide-like species. In contrast, bimetallic PtFe nanoparticles with an average size of approximately 1 nm were formed when a similar H{sub 2} treatment was used. In this case, a greater degree of metal dispersion and a larger fraction of Pt-Fe interactions were observed compared to the PtFe/SiO{sub 2} samples prepared by co-impregnation of monometallic salt precursors. Electronic interactions between Pt and Fe atoms in such cluster-derived samples led to an increased electron density on platinum, as indicated by a red shift of the frequencies of FTIR bands for adsorbed NO and CO. These electronic interactions affect the strength of the CO adsorption on platinum. All bimetallic samples were found to be more active than Pt/SiO{sub 2} for the oxidation of CO in air; however, the activity depends strongly on the structure of the surface species, the fraction of Pt-Fe bimetallic contributions, the degree of electronic interactions between Pt and Fe, and the strength of the CO adsorption on platinum.« less

  5. Probing Interaction Between Platinum Group Metal (PGM) and Non-PGM Support Through Surface Characterization and Device Performance

    NASA Astrophysics Data System (ADS)

    Saha, Shibely

    High cost and limited abundance of Platinum (Pt) have hindered effective commercialization of Proton Exchange Membrane Fuel Cell and Electrolyzer. Efforts have been undertaken to reduce precious group metal (PGM) requirement for these devices without compromising the activity of the catalyst by using transition metal carbides (TMC) as non-PGM support thanks to their similar electronic and geometric structures as Pt. In this work Mo2C was selected as non-PGM support and Pt was used as the PGM of interest. We hypothesize that the hollow nanotube morphology of Mo2C support combined with Pt nano particles deposited on it via atomic layer deposition (ALD) technique would allow increased interaction between them which may increase the activity of Pt and Mo2C as well as maximize the Pt active surface area. Specifically, a rotary ALD equipment was used to grow Pt particles from atomic level to 2--3 nanometers by simply adjusting number of ALD cycles in order to probe the interaction between the deposited Pt nanoparticles and Mo2C nanotube support. Interaction between the Pt and Mo2 C was analyzed via surface characterization and electrochemical characterization. Interaction between Pt and Mo2C arises due to the lattice mismatch between Pt and Mo2C as well as electron migration between them. Lattice spacing analysis using high resolution transmission electron microscopy (HRTEM) images, combined with Pt binding energy shift in XPS results, clearly showed strong bonding between Pt nanoparticles and the Mo2C nanotube support in all the resultant Pt/Mo2C samples. We postulate that this strong interaction is responsible for the significantly enhanced durability observed in our constant potential electrolysis (CPE) and accelerated degradation testing (ADT). Of the three samples from different ALD cycles (15, 50 and 100), Mo2C nanotubes modified by 50 (1.07 wt% Pt loading) and 100 cycles (4.4 wt% Pt) of Pt deposition, showed higher HER and HOR activity per Pt mass than commercial 20% Pt supported on carbon black. Finally, we report the systematic investigation of the feasibility of this nanoscale Pt/Mo 2C catalyst in a practical device setting. The ORR activity of 100 Pt/Mo 2C was determined using the catalyst in the cathode of the MEA. Performance of this catalyst led the Pt utilization to be 10.35kWgPt-1 outperforming the target set by DOE for 2017--2020 by 30%.

  6. Facile fabrication of ultrathin Pt overlayers onto nanoporous metal membranes via repeated Cu UPD and in situ redox replacement reaction.

    PubMed

    Liu, Pengpeng; Ge, Xingbo; Wang, Rongyue; Ma, Houyi; Ding, Yi

    2009-01-06

    Ultrathin Pt films from one to several atomic layers are successfully decorated onto nanoporous gold (NPG) membranes by utilizing under potential deposition (UPD) of Cu onto Au or Pt surfaces, followed by in situ redox replacement reaction (RRR) of UPD Cu by Pt. The thickness of Pt layers can be controlled precisely by repeating the Cu-UPD-RRR cycles. TEM observations coupled with electrochemical testing suggest that the morphology of Pt overlayers changes from an ultrathin epitaxial film in the case of one or two atomic layers to well-dispersed nanoislands in the case of four and more atomic layers. Electron diffraction (ED) patterns confirm that the as-prepared NPG-Pt membranes maintain a single-crystalline structure, even though the thickness of Pt films reaches six atomic layers, indicating the decorated Pt films hold the same crystallographic relationship to the NPG substrate during the entire fabrication process. Due to the regular modulation of Pt utilization, the electrocatalytic activity of NPG-Pt exhibits interesting surface structure dependence in methanol, ethanol, and CO electrooxidation reactions. These novel bimetallic nanocatalysts show excellent electrocatalytic activity and much enhanced poison tolerance as compared to the commercial Pt/C catalysts. The success in the fabrication of NPG-Pt-type materials provides a new path to prepare electrocatalysts with ultralow Pt loading and high Pt utilization, which is of great significance in energy-related applications, such as direct alcohol fuel cells (DAFCs).

  7. Fabrication of Monolithic Sapphire Membranes for High T(sub c) Bolometer Array Development

    NASA Technical Reports Server (NTRS)

    Pugel, D. E.; Lakew, B.; Aslam, S.; Wang, L.

    2004-01-01

    This paper examines the effectiveness of Pt/Cr thin film masks for the architecture of monolithic membrane structures in r-plane single crystal sapphire. The development of a pinhole-free Pt/Cr composite mask that is resistant to boiling H2SO4:H3PO4 etchant will lead to the fabrication of smooth sapphire membranes whose surfaces are well-suited for the growth of low-noise high Tc films. In particular, the relationship of thermal annealing conditions on the Pt/Cr composite mask system to: (1) changes in the surface morphology (2) elemental concentration of the Pt/Cr thin film layers and (3) etch pit formation on the sapphire surface will be presented.

  8. Free Electrons to Molecular Bonds and Back: Closing the Energetic Oxygen Reduction (ORR)-Oxygen Evolution (OER) Cycle Using Core-Shell Nanoelectrocatalysts.

    PubMed

    Strasser, Peter

    2016-11-15

    Nanomaterial science and electrocatalytic science have entered a successful "nanoelectrochemical" symbiosis, in which novel nanomaterials offer new frontiers for studies on electrocatalytic charge transfer, while electrocatalytic processes give meaning and often practical importance to novel nanomaterial concepts. Examples of this fruitful symbiosis are dealloyed core-shell nanoparticle electrocatalysts, which often exhibit enhanced kinetic charge transfer rates at greatly improved atom-efficiency. As such, they represent ideal electrocatalyst architectures for the acidic oxygen reduction reaction to water (ORR) and the acidic oxygen evolution reaction from water (OER) that require scarce Pt- and Ir-based catalysts. Together, these two reactions constitute the "O-cycle", a key elemental process loop in the field of electrochemical energy interconversion between electricity (free electrons) and molecular bonds (H 2 O/O 2 ), realized in the combination of water electrolyzers and hydrogen/oxygen fuel cells. In this Account, we describe our recent efforts to design, synthesize, understand, and test noble metal-poor dealloyed Pt and Ir core-shell nanoparticles for deployment in acidic polymer electrolyte membrane (PEM) electrolyzers and PEM fuel cells. Spherical dealloyed Pt core-shell particles, derived from PtNi 3 precursor alloys, showed favorable ORR activity. More detailed size-activity correlation studies further revealed that the 6-8 nm diameter range is a most desirable initial particle size range in order to maximize the particle Ni content after ORR testing and to preserve performance stability. Similarly, dealloyed and oxidized IrO x core-shell particles derived from Ni-rich Ir-Ni precursor particles proved highly efficient oxygen evolution reaction (OER) catalysts in acidic conditions. In addition to the noble metal savings in the particle cores, the Pt core-shell particles are believed to benefit in terms of their mass-based electrochemical kinetics from surface lattice strain effects that tune the adsorption energies and barriers of elementary steps. The molecular mechanism of the kinetic benefit of the dealloyed IrO x particle needs more attention, but there is mounting evidence for ligand hole effects in defect-rich IrO x shells that generate preactive oxygen centers.

  9. Sampling of suspended particulate matter using particle traps in the Rhône River: Relevance and representativeness for the monitoring of contaminants.

    PubMed

    Masson, M; Angot, H; Le Bescond, C; Launay, M; Dabrin, A; Miège, C; Le Coz, J; Coquery, M

    2018-05-10

    Monitoring hydrophobic contaminants in surface freshwaters requires measuring contaminant concentrations in the particulate fraction (sediment or suspended particulate matter, SPM) of the water column. Particle traps (PTs) have been recently developed to sample SPM as cost-efficient, easy to operate and time-integrative tools. But the representativeness of SPM collected with PTs is not fully understood, notably in terms of grain size distribution and particulate organic carbon (POC) content, which could both skew particulate contaminant concentrations. The aim of this study was to evaluate the representativeness of SPM characteristics (i.e. grain size distribution and POC content) and associated contaminants (i.e. polychlorinated biphenyls, PCBs; mercury, Hg) in samples collected in a large river using PTs for differing hydrological conditions. Samples collected using PTs (n = 74) were compared with samples collected during the same time period by continuous flow centrifugation (CFC). The grain size distribution of PT samples shifted with increasing water discharge: the proportion of very fine silts (2-6 μm) decreased while that of coarse silts (27-74 μm) increased. Regardless of water discharge, POC contents were different likely due to integration by PT of high POC-content phytoplankton blooms or low POC-content flood events. Differences in PCBs and Hg concentrations were usually within the range of analytical uncertainties and could not be related to grain size or POC content shifts. Occasional Hg-enriched inputs may have led to higher Hg concentrations in a few PT samples (n = 4) which highlights the time-integrative capacity of the PTs. The differences of annual Hg and PCB fluxes calculated either from PT samples or CFC samples were generally below 20%. Despite some inherent limitations (e.g. grain size distribution bias), our findings suggest that PT sampling is a valuable technique to assess reliable spatial and temporal trends of particulate contaminants such as PCBs and Hg within a river monitoring network. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Durable pectin/chitosan membranes with self-assembling, water resistance and enhanced mechanical properties.

    PubMed

    Martins, Jéssica G; de Oliveira, Ariel C; Garcia, Patrícia S; Kipper, Matt J; Martins, Alessandro F

    2018-05-15

    Processing water-soluble polysaccharides, like pectin (PT), into materials with desirable stability and mechanical properties has been challenging. Here we report a new method to create water stable and mechanical resistant polyelectrolyte complex (PEC) membranes from PT and chitosan (CS) assemblies, without covalent crosslinking. This new method overcomes challenges of obtaining stable and durable complexes, by performing the complexation at low pH, enabling complex formation even when using an excess of PT, and when using PT with high degree of O-methoxylation. By performing the complexation at low pH, the complexes form with a high degree of intermolecular association, instead of forming by electrostatic complexation. This method avoids precipitation, and overcomes the aqueous instability typical of PT/CS complexes. After neutralization, the PEC membranes display features characteristic of a high degree of intermolecular association because of the self-assembling of polymer chains. The PT/CS ratio can be tuned to enhance the mechanical strength (σ = 39 MPa) of the membranes. These polysaccharide-based materials can demonstrate advantages over synthetic materials for technological applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Controllable deposition of platinum layers on oxide surfaces for the synthesis of fuel cell catalysts

    DOE PAGES

    Vukmirovic, Miomir B.; Kuttiyiel, Kurian A.; Meng, Hui; ...

    2016-09-13

    Reducing the amount of Pt, the most costly component of both anode and cathode fuel cell catalysts, has attracted considerable attention from the research community. An approach is reported herein to deposit sub-monolayer to multilayer amounts of Pt and other noble metals on metal oxides and oxidized carbon materials. The process is exemplified by Pt deposition on RuO 2(110). The Pt deposit consists of Pt atoms arranged in a c(2×2) array, that is, a 0.25 monolayer (ML). The deposit has lower catalytic activity for the oxygen reduction reaction (ORR) and similar activity for the hydrogen oxidation reaction compared to Pt(111).more » These activities are explained by a large calculated upshift of the d-band center of Pt atoms and larger Pt–Pt interatomic distances than those of Pt(111). A catalyst with Pt coverage larger than 0.25 ML on oxide surfaces and oxidized carbon materials is shown to be active for the ORR as well as for other electrocatalytic reactions. A PtRhSnO 2/C catalyst shows high activity for ethanol oxidation as a result of its ability to effectively cleave the C–C bond in ethanol. Furthermore, Pt deposited on reduced graphene oxide shows high Pt mass ORR activity and good stability.« less

  12. Ultralow content of Pt on Pd–Co–Cu/C ternary nanoparticles with excellent electrocatalytic activity and durability for the oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Sufen; Xiao, Weiping; Wang, Jie

    Optimizing the utilization of Pt to catalyze the sluggish kinetics of the oxygen reduction reaction (ORR) is of vital importance in proton exchange membrane fuel cells. One of the strategies is to spread Pt atoms over the surface of a substrate to increase the surface area. We report a facile method to synthesize Pd6CoCu@Pt/C core-shell nanoparticles with an ultralow amount of Pt. It was found that Pt-coated layer on Pd6CoCu cores plays a vital role in enhancing the ORR activity and the cycling stability. The half-wave potential of Pd6CoCu@Pt/C positively shifts about 50 mV and 17 mV relative to Pd6CoCu/Cmore » and Pt/C, respectively. The Pt mass activity on Pd6CoCu@Pt/C was calculated to be about 27 times higher than that on Pt/C catalysts at 0.9 V. Furthermore, the Pd6CoCu@Pt/C nanoparticles exhibit superior stability with almost no decay for the ORR polarization curves during 10,000 potential cycles and the core-shell structure remains with only a slight increase in the thickness of the Pt overlayer. Our findings provide a methodology for synthesizing highly efficient catalytic materials for the cathodic application in fuel cells.« less

  13. Ultralow content of Pt on Pd–Co–Cu/C ternary nanoparticles with excellent electrocatalytic activity and durability for the oxygen reduction reaction

    DOE PAGES

    Liu, Sufen; Xiao, Weiping; Wang, Jie; ...

    2016-08-01

    Optimizing the utilization of Pt to catalyze the sluggish kinetics of the oxygen reduction reaction (ORR) is of vital importance in proton exchange membrane fuel cells. One of the strategies is to spread Pt atoms over the surface of a substrate to increase the surface area. We report a facile method to synthesize Pd6CoCu@Pt/C core-shell nanoparticles with an ultralow amount of Pt. It was found that Pt-coated layer on Pd6CoCu cores plays a vital role in enhancing the ORR activity and the cycling stability. The half-wave potential of Pd6CoCu@Pt/C positively shifts about 50 mV and 17 mV relative to Pd6CoCu/Cmore » and Pt/C, respectively. The Pt mass activity on Pd6CoCu@Pt/C was calculated to be about 27 times higher than that on Pt/C catalysts at 0.9 V. Furthermore, the Pd6CoCu@Pt/C nanoparticles exhibit superior stability with almost no decay for the ORR polarization curves during 10,000 potential cycles and the core-shell structure remains with only a slight increase in the thickness of the Pt overlayer. Our findings provide a methodology for synthesizing highly efficient catalytic materials for the cathodic application in fuel cells.« less

  14. Differential Expression of Osteo-Modulatory Molecules in Periodontal Ligament Stem Cells in Response to Modified Titanium Surfaces

    PubMed Central

    Kim, So Yeon; Yoo, Ji-Yeon; Ohe, Joo-Young; Lee, Jung-Woo; Moon, Ji-Hoi; Kwon, Yong-Dae; Heo, Jung Sun

    2014-01-01

    This study assessed differential gene expression of signaling molecules involved in osteogenic differentiation of periodontal ligament stem cells (PDLSCs) subjected to different titanium (Ti) surface types. PDLSCs were cultured on tissue culture polystyrene (TCPS), and four types of Ti discs (PT, SLA, hydrophilic PT (pmodPT), and hydrophilic SLA (modSLA)) with no osteoinductive factor and then osteogenic activity, including alkaline phosphatase (ALP) activity, mRNA expression of runt-related gene 2, osterix, FOSB, FRA1, and protein levels of osteopontin and collagen type IA, were examined. The highest osteogenic activity appeared in PDLSCs cultured on SLA, compared with the TCPS and other Ti surfaces. The role of surface properties in affecting signaling molecules to modulate PDLSC behavior was determined by examining the regulation of Wnt pathways. mRNA expression of the canonical Wnt signaling molecules, Wnt3a and β-catenin, was higher on SLA and modSLA than on smooth surfaces, but gene expression of the calcium-dependent Wnt signaling molecules Wnt5a, calmodulin, and NFATc1 was increased significantly on PT and pmodPT. Moreover, integrin α2/β1, sonic hedgehog, and Notch signaling molecules were affected differently by each surface modification. In conclusion, surface roughness and hydrophilicity can affect differential Wnt pathways and signaling molecules, targeting the osteogenic differentiation of PDLSCs. PMID:25057487

  15. Differential expression of osteo-modulatory molecules in periodontal ligament stem cells in response to modified titanium surfaces.

    PubMed

    Kim, So Yeon; Yoo, Ji-Yeon; Ohe, Joo-Young; Lee, Jung-Woo; Moon, Ji-Hoi; Kwon, Yong-Dae; Heo, Jung Sun

    2014-01-01

    This study assessed differential gene expression of signaling molecules involved in osteogenic differentiation of periodontal ligament stem cells (PDLSCs) subjected to different titanium (Ti) surface types. PDLSCs were cultured on tissue culture polystyrene (TCPS), and four types of Ti discs (PT, SLA, hydrophilic PT (pmodPT), and hydrophilic SLA (modSLA)) with no osteoinductive factor and then osteogenic activity, including alkaline phosphatase (ALP) activity, mRNA expression of runt-related gene 2, osterix, FOSB, FRA1, and protein levels of osteopontin and collagen type IA, were examined. The highest osteogenic activity appeared in PDLSCs cultured on SLA, compared with the TCPS and other Ti surfaces. The role of surface properties in affecting signaling molecules to modulate PDLSC behavior was determined by examining the regulation of Wnt pathways. mRNA expression of the canonical Wnt signaling molecules, Wnt3a and β-catenin, was higher on SLA and modSLA than on smooth surfaces, but gene expression of the calcium-dependent Wnt signaling molecules Wnt5a, calmodulin, and NFATc1 was increased significantly on PT and pmodPT. Moreover, integrin α2/β1, sonic hedgehog, and Notch signaling molecules were affected differently by each surface modification. In conclusion, surface roughness and hydrophilicity can affect differential Wnt pathways and signaling molecules, targeting the osteogenic differentiation of PDLSCs.

  16. Metastability in plyometric training on unstable surfaces: a pilot study

    PubMed Central

    2014-01-01

    Background In the past, plyometric training (PT) has been predominantly performed on stable surfaces. The purpose of this pilot study was to examine effects of a 7-week lower body PT on stable vs. unstable surfaces. This type of exercise condition may be denoted as metastable equilibrium. Methods Thirty-three physically active male sport science students (age: 24.1 ± 3.8 years) were randomly assigned to a PT group (n = 13) exercising on stable (STAB) and a PT group (n = 20) on unstable surfaces (INST). Both groups trained countermovement jumps, drop jumps, and practiced a hurdle jump course. In addition, high bar squats were performed. Physical fitness tests on stable surfaces (hexagonal obstacle test, countermovement jump, hurdle drop jump, left-right hop, dynamic and static balance tests, and leg extension strength) were used to examine the training effects. Results Significant main effects of time (ANOVA) were found for the countermovement jump, hurdle drop jump, hexagonal test, dynamic balance, and leg extension strength. A significant interaction of time and training mode was detected for the countermovement jump in favor of the INST group. No significant improvements were evident for either group in the left-right hop and in the static balance test. Conclusions These results show that lower body PT on unstable surfaces is a safe and efficient way to improve physical performance on stable surfaces. PMID:25089202

  17. Three dimensional graphene foam supported platinum-ruthenium bimetallic nanocatalysts for direct methanol and direct ethanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Kung, Chih-Chien; Lin, Po-Yuan; Xue, Yuhua; Akolkar, Rohan; Dai, Liming; Yu, Xiong; Liu, Chung-Chiun

    2014-06-01

    A novel composite material of hierarchically structured platinum-ruthenium (PtRu) nanoparticles grown on large surface area three dimensional graphene foam (3D GF) is reported. 3D GF was incorporated with PtRu bimetallic nanoparticles as an electrochemical nanocatalyst for methanol and ethanol oxidation. PtRu/3D GF nanocatalyst showed a higher tolerance to poisoning by CO and exhibited improved catalytic activity for both methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). Cyclic voltammetry (CV) results and long-term cycling stability tests demonstrated that GF provided a promising platform for the development of electrochemical nanocatalysts. Specifically, PtRu/3D GF nanocatalyst showed excellent catalytic activity toward MOR and EOR compared with PtRu/Graphene (Commercial graphene), PtRu/C (Vulcan XC-72R carbon), and PtRu alone. The crystal size of PtRu on 3D GF was reduced to 3.5 nm and its active surface area was enhanced to 186.2 m2 g-1. Consequently, the MOR and EOR rates were nearly doubled on PtRu/3D GF compared to those on PtRu/Graphene.

  18. Availability of surface boron species in improved oxygen reduction activity of Pt catalysts: A first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Libo; Zhou, Gang, E-mail: gzhou@mail.buct.edu.cn

    2016-04-14

    The oxidation process of boron (B) species on the Pt(111) surface and the beneficial effects of boron oxides on the oxygen reduction activity are investigated by first-principles calculations. The single-atom B anchored on the Pt surface has a great attraction for the oxygen species in the immediate environment. With the dissociation of molecular oxygen, a series of boron oxides is formed in succession, both indicating exothermic oxidation reactions. After BO{sub 2} is formed, the subsequent O atom immediately participates in the oxygen reduction reaction. The calculated O adsorption energy is appreciably decreased as compared to Pt catalysts, and more approximatemore » to the optimal value of the volcano plot, from which is clear that O hydrogenation kinetics is improved. The modulation mechanism is mainly based on the electron-deficient nature of stable boron oxides, which normally reduces available electronic states of surface Pt atoms that bind the O by facilitating more electron transfer. This modification strategy from the exterior opens the new way, different from the alloying, to efficient electrocatalyst design for PEMFCs.« less

  19. DNA-templated synthesis of Pt nanoparticles on single-walled carbon nanotubes.

    PubMed

    Dong, Lifeng

    2009-11-18

    A series of electron microscopy characterizations demonstrate that single-stranded deoxyribonucleic acid (ssDNA) can bind to nanotube surfaces and disperse bundled single-walled carbon nanotubes (SWCNTs) into individual tubes. The ssDNA molecules on the nanotube surfaces demonstrate various morphologies, such as aggregated clusters and spiral wrapping around a nanotube with different pitches and spaces, indicating that the morphology of the SWCNT/DNA hybrids is not related solely to the base sequence of the ssDNA or the chirality or the diameter of the nanotubes. In addition to serving as a non-covalent dispersion agent, the ssDNA molecules bonded to the nanotube surface can provide addresses for localizing Pt(II) complexes along the nanotubes. The Pt nanoparticles obtained by a reduction of the Pt2+-DNA adducts are crystals with a size of < or =1-2 nm. These results expand our understanding of the interactions between ssDNA and SWCNTs and provide an efficient approach for positioning Pt and other metal particles, with uniform sizes and without aggregations, along the nanotube surfaces for applications in direct ethanol/methanol fuel cells and nanoscale electronics.

  20. Hydrogen peroxide sensor based on carbon nanowalls grown by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Tomatsu, Masakazu; Hiramatsu, Mineo; Foord, John S.; Kondo, Hiroki; Ishikawa, Kenji; Sekine, Makoto; Takeda, Keigo; Hori, Masaru

    2017-06-01

    Fabrication of an electrochemical sensor for hydrogen peroxide (H2O2) detection was demonstrated. H2O2 is a major messenger molecule in various redox-dependent cellular signaling transductions. Therefore, sensitive detection of H2O2 is greatly important in health inspection and environmental protection. Carbon nanowalls (CNWs) are composed of few-layer graphenes standing almost vertically on a substrate forming a three-dimensional structure. In this work, CNWs were used as a platform for H2O2 sensing, which is based on the large surface area of conducting carbon and surface decoration with platinum (Pt) nanoparticles (NPs). CNWs were grown on carbon fiber paper (CFP) by inductively coupled plasma-enhanced chemical vapor deposition to increase the surface area. Then, the CNW surface was decorated with Pt-NPs by the reduction of H2PtCl6. Cyclic voltammetry results indicate that the Pt-decorated CNW/CFP electrode possesses excellent electrocatalytic activity for the reduction of H2O2. Amperometric responses indicate the high-sensitivity detection capability of the Pt-decorated CNW/CFP electrode for H2O2.

  1. Stabilization of Pt monolayer catalysts under harsh conditions of fuel cells

    DOE PAGES

    Zhang, Xiaoming; Liu, Ping; Yu, Shansheng; ...

    2015-05-21

    We employed density functional theory (DFT) to explore the stability of core (M = Cu, Ru, Rh, Pd, Ag, Os, Ir, Au)-shell (Pt) catalysts under harsh conditions, including solutions and reaction intermediates involved in the oxygen reduction reaction (ORR) in fuel cells. A pseudomorphic surface alloy (PSA) with a Pt monolayer (Pt 1ML) supported on an M surface, Pt 1ML/M(111) or (001), was considered as a model system. Different sets of candidate M cores were identified to achieve a stable Pt 1ML shell depending on the conditions. In vacuum conditions, the Pt 1ML shell can be stabilized on the mostmore » of M cores except Cu, Ag, and Au. The situation varies under various electrochemical conditions. Depending on the solutions and the operating reaction pathways of the ORR, different M should be considered. Pd and Ir are the only core metals studied, being able to keep the Pt ML shell intact in perchloric acid, sulfuric acid, phosphoric acid, and alkaline solutions as well as under the ORR conditions via different pathways. Ru and Os cores should also be paid attention, which only fall during the ORR via the *OOH intermediate. Rh core works well as long as the ORR does not undergo the pathway via *O intermediate. Our results show that PSAs can behave differently from the near surface alloy, Pt 1ML/M 1ML/Pt(111), highlighting the importance of considering both chemical environments and the atomic structures in rational design of highly stable core-shell nanocatalysts. Finally, the roles that d-band center of a core M played in determining the stability of supported Pt 1ML shell were also discussed.« less

  2. Stabilization of Pt monolayer catalysts under harsh conditions of fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoming; Yu, Shansheng; Zheng, Weitao, E-mail: wtzheng@jlu.edu.cn, E-mail: pingliu3@bnl.gov

    2015-05-21

    We employed density functional theory to explore the stability of core (M = Cu, Ru, Rh, Pd, Ag, Os, Ir, Au)-shell (Pt) catalysts under harsh conditions, including solutions and reaction intermediates involved in the oxygen reduction reaction (ORR) in fuel cells. A pseudomorphic surface alloy (PSA) with a Pt monolayer (Pt{sub 1ML}) supported on an M surface, Pt{sub 1ML}/M(111) or (001), was considered as a model system. Different sets of candidate M cores were identified to achieve a stable Pt{sub 1ML} shell depending on the conditions. In vacuum conditions, the Pt{sub 1ML} shell can be stabilized on the most ofmore » M cores except Cu, Ag, and Au. The situation varies under various electrochemical conditions. Depending on the solutions and the operating reaction pathways of the ORR, different M should be considered. Pd and Ir are the only core metals studied, being able to keep the Pt{sub ML} shell intact in perchloric acid, sulfuric acid, phosphoric acid, and alkaline solutions as well as under the ORR conditions via different pathways. Ru and Os cores should also be paid attention, which only fall during the ORR via the *OOH intermediate. Rh core works well as long as the ORR does not undergo the pathway via *O intermediate. Our results show that PSAs can behave differently from the near surface alloy, Pt{sub 1ML}/M{sub 1ML}/Pt(111), highlighting the importance of considering both chemical environments and the atomic structures in rational design of highly stable core-shell nanocatalysts. Finally, the roles that d-band center of a core M played in determining the stability of supported Pt{sub 1ML} shell were also discussed.« less

  3. Vibrational Fingerprints of Low-Lying Pt(n)P(2n) (n = 1-5) Cluster Structures from Global Optimization Based on Density Functional Theory Potential Energy Surfaces.

    PubMed

    Jedidi, Abdesslem; Li, Rui; Fornasiero, Paolo; Cavallo, Luigi; Carbonniere, Philippe

    2015-12-03

    Vibrational fingerprints of small Pt(n)P(2n) (n = 1-5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first Pt(n)P(2n) isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the Pt(n)P(2n) structures.

  4. Nonfaradaic nanoporous electrochemistry for conductometry at high electrolyte concentration.

    PubMed

    Bae, Je Hyun; Kang, Chung Mu; Choi, Hyoungseon; Kim, Beom Jin; Jang, Woohyuk; Lim, Sung Yul; Kim, Hee Chan; Chung, Taek Dong

    2015-02-17

    Nanoporous electrified surfaces create a unique nonfaradaic electrochemical behavior that is sensitively influenced by pore size, morphology, ionic strength, and electric field modulation. Here, we report the contributions of ion concentration and applied ac frequency to the electrode impedance through an electrical double layer overlap and ion transport along the nanopores. Nanoporous Pt with uniform pore size and geometry (L2-ePt) responded more sensitively to conductivity changes in aqueous solutions than Pt black with poor uniformity despite similar real surface areas and enabled the previously difficult quantitative conductometry measurements at high electrolyte concentrations. The nanopores of L2-ePt were more effective in reducing the electrode impedance and exhibited superior linear responses to not only flat Pt but also Pt black, leading to successful conductometric detection in ion chromatography without ion suppressors and at high ionic strengths.

  5. Magnetic porous PtNi/SiO2 nanofibers for catalytic hydrogenation of p-nitrophenol

    NASA Astrophysics Data System (ADS)

    Guan, Huijuan; Chao, Cong; Kong, Weixiao; Hu, Zonggao; Zhao, Yafei; Yuan, Siguo; Zhang, Bing

    2017-06-01

    In this work, the mesoporous SiO2 nanofibers from pyrolyzing precursor of electrospun nanofibers were employed as support to immobilize PtNi nanocatalyst (PtNi/SiO2 nanofibers). AFM, XRD, SEM, TEM, XPS, ICP-AES and N2 adsorption/desorption analysis were applied to systematically investigate the morphology and microstructure of as-prepared products. Results showed that PtNi alloy nanoparticles with average diameter of 18.7 nm were formed and could be homogeneously supported on the surface of porous SiO2 nanofiber, which further indicated that the SiO2 nanofibers with well-developed porous structure, large specific surface area, and roughened surface was a benefit for the support of PtNi alloy nanoparticles. The PtNi/SiO2 nanofibers catalyst exhibited an excellent catalytic activity towards the reduction of p-nitrophenol, and the catalyst's kinetic parameter ( k n = 434 × 10-3 mmol s-1 g-1) was much higher than those of Ni/SiO2 nanofibers (18 × 10-3 mmol s-1 g-1), Pt/SiO2 nanofibers (55 × 10-3 mmol s-1 g-1) and previous reported PtNi catalysts. The catalyst could be easily recycled from heterogeneous reaction system based on its good magnetic properties (the Ms value of 11.48 emu g-1). In addition, PtNi/SiO2 nanofibers also showed an excellent stability and the conversion rate of p-nitrophenol still could maintain 94.2% after the eighth using cycle.

  6. Biomechanical evaluation of primary stiffness of tibiotalocalcaneal fusion with intramedullary nails.

    PubMed

    Mückley, Thomas; Eichorn, Stephan; Hoffmeier, Konrad; von Oldenburg, Geert; Speitling, Andreas; Hoffmann, Gunther O; Bühren, Volker

    2007-02-01

    Intramedullary implants are being used with increasing frequency for tibiotalocalcaneal fusion (TTCF). Clinically, the question arises whether intramedullary (IM) nails should have a compression mode to enhance biomechanical stiffness and fusion-site compression. This biomechanical study compared the primary stability of TTCF constructs using compressed and uncompressed retrograde IM nails and a screw technique in a bone model. For each technique, three composite bone models were used. The implants were a Biomet nail (static locking mode and compressed mode), a T2 femoral nail (compressed mode); a prototype IM nail 1 (PT1, compressed mode), a prototype IM nail 2 (PT2, dynamic locking mode and compressed mode), and a three-screw construct. The compressed contact surface of each construct was measured with pressure-sensitive film and expressed as percent of the available fusion-site area. Stiffness was tested in dorsiflexion and plantarflexion (D/P), varus and valgus (V/V), and internal rotation and external rotation (I/E) (20 load cycles per loading mode). Mean contact surfaces were 84.0 +/- 6.0% for the Biomet nail, 84.0 +/- 13.0% for the T2 nail, 70.0 +/- 7.2% for the PTI nail, and 83.5 +/- 5.5% for the compressed PT2 nail. The greatest primary stiffness in D/P was obtained with the compressed PT2, followed by the compressed Biomet nail. The dynamically locked PT2 produced the least primary stiffness. In V/V, PT1 had the (significantly) greatest primary stiffness, followed by the compressed PT2. The statically locked Biomet nail and the dynamically locked PT2 had the least primary stiffness in V/V. In I/E, the compressed PT2 had the greatest primary stiffness, followed by the PT1 and the T2 nails, which did not differ significantly from each other. The dynamically locked PT2 produced the least primary stiffness. The screw construct's contact surface and stiffness were intermediate. The IM nails with compression used for TTCF produced good contact surfaces and primary stiffness. They were significantly superior in these respects to the uncompressed nails and the screw construct. The large contact surfaces and great primary stiffness provided by the IM nails in a bone model may translate into improved union rates in patients who have TTCF.

  7. Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Liming; Fu, Honggang, E-mail: fuhg@vip.sina.com; Key Laboratory of Functional Inorganic Material Chemistry, Heilongjiang University, Harbin 150080

    2014-01-01

    Graphical abstract: The WC nanoparticles are well dispersed in the carbon matrix. The size of WC nanoparticles is about 30 nm. It can be concluded that tungsten carbide and carbon composite was successfully prepared by the present synthesis conditions. - Highlights: • The WC/PC composite with high specific surface area was prepared by a simple way. • The Pt/WC/PC catalyst has superior performance toward methanol electro-oxidation. • The current density for methanol electro-oxidation is as high as 595.93 A g{sup −1} Pt. • The Pt/WC/PC catalyst shows better durability and stronger CO electro-oxidation. • The performance of Pt/WC/PC is superiormore » to the commercial Pt/C (JM) catalyst. - Abstract: Tungsten carbide/porous carbon (WC/PC) composites have been successfully synthesized through a surfactant assisted evaporation-induced-assembly method, followed by a thermal treatment process. In particular, WC/PC-35-1000 composite with tungsten content of 35% synthesized at the carbonized temperature of 1000 °C, exhibited a specific surface area (S{sub BET}) of 457.92 m{sup 2} g{sup −1}. After loading Pt nanoparticles (NPs), the obtained Pt/WC/PC-35-1000 catalyst exhibits the highest unit mass electroactivity (595.93 A g{sup −1} Pt) toward methanol electro-oxidation, which is about 2.6 times as that of the commercial Pt/C (JM) catalyst. Furthermore, the Pt/WC/PC-35-1000 catalyst displays much stronger resistance to CO poisoning and better durability toward methanol electrooxidation compared with the commercial Pt/C (JM) catalyst. The high electrocatalytic activity, strong poison-resistivity and good stability of Pt/WC/PC-35-1000 catalyst are attributed to the porous structures and high specific surface area of WC/PC support could facilitate the rapid mass transportation. Moreover, synergistic effect between WC and Pt NPs is favorable to the higher catalytic performance.« less

  8. The selective hydrogenation of crotonaldehyde over bimetallic catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoeb, Ann M.

    1997-10-17

    The selective hydrogenation of crotonaldehyde has been investigated over a monometallic Pt/SiO 2 catalyst and platinum bimetallic catalysts where the second metal was either silver, copper, or tin. The effects of addition of a second metal to the Pt/SiO 2 system on the selectivity to crotyl alcohol were investigated. The Pt-Sn bimetallic catalysts were characterized by hydrogen chemisorption, 1H NMR and microcalorimetry. The Pt-Ag/SiO 2 and Pt-Cu/SiO 2 catalysts were characterized by hydrogen chemisorption. Pt-Sn/SiO 2 catalysts selectively hydrogenated crotonaldehyde to crotyl alcohol and the method of preparation of these catalysts affected the selectivity. The most selective Pt-Sn/SiO 2 catalystsmore » for the hydrogenation of crotonaldehyde to crotyl alcohol were those in which the Sn precursor was dissolved in a HCl solution. Sn increased both the rate of formation of butyraldehyde and the rate of formation of crotyl alcohol. The Pt/SiO 2, Pt-Ag/SiO 2 and Pt-Cu/SiO 2 catalysts produced only butyraldehyde. Initial heats of adsorption (~90 kJ/mol) measured using microcalorimetry were not affected by the presence of Sn on Pt. We can conclude that there is no through metal electronic interaction between Pt and Sn at least with respect to hydrogen surface bonds since the Pt and Pt-Sn at least with respect to hydrogen surface bonds since the Pt and Pt-Sn had similar initial heats of adsorption coupled with the invariance of the 1H NMR Knight shift.« less

  9. Solar Spectrum Photocatalytic Conversion of CO2 and Water Vapor Into Hydrocarbons Using TiO2 Nanoparticle Membranes

    NASA Astrophysics Data System (ADS)

    Rani, Sanju; Bao, Ningzhong; Roy, Somnath C.

    2014-01-01

    A viable option for recycling carbon dioxide is through the sunlight-powered photocatalytic conversion of CO2 and water vapor into hydrocarbon fuels over highly active nanocatalysts. With photocatalytic CO2 reduction sunlight, a renewable energy source as durable as the sun, is used to drive the catalytic reaction with the resultant fuel products compatible with the current hydrocarbon-based energy infrastructure. The use of co-catalyst (Cu, Pt)-sensitized TiO2 nanoparticle wafers in the photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels, with optimal humidity levels and exposure times established. We also attempted to increase product formation by sputtering both co-catalysts on the nanoparticle wafer's surface, with the resulting product rates significantly higher than that of either the Cu or Pt coated samples. When the TiO2 nanoparticle wafers are used in a flow-through membrane implementation we find a significant increase in product rates of formation, including methane, hydrogen, and carbon monoxide. We believe that nanocatalyst-based flow-through membranes are a viable route for achieving large-scale and low cost photocatalytic solar fuel production.

  10. In situ NAP-XPS spectroscopy during methane dry reforming on ZrO2/Pt(1 1 1) inverse model catalyst

    NASA Astrophysics Data System (ADS)

    Rameshan, C.; Li, H.; Anic, K.; Roiaz, M.; Pramhaas, V.; Rameshan, R.; Blume, R.; Hävecker, M.; Knudsen, J.; Knop-Gericke, A.; Rupprechter, G.

    2018-07-01

    Due to the need of sustainable energy sources, methane dry reforming is a useful reaction for conversion of the greenhouse gases CH4 and CO2 to synthesis gas (CO  +  H2). Syngas is the basis for a wide range of commodity chemicals and can be utilized for fuel production via Fischer–Tropsch synthesis. The current study focuses on spectroscopic investigations of the surface and reaction properties of a ZrO2/Pt inverse model catalyst, i.e. ZrO2 particles (islands) grown on a Pt(1 1 1) single crystal, with emphasis on in situ near ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) during MDR reaction. In comparison to technological systems, model catalysts facilitate characterization of the surface (oxidation) state, surface adsorbates, and the role of the metal-support interface. Using XPS and infrared reflection absorption spectroscopy we demonstrated that under reducing conditions (UHV or CH4) the ZrO2 particles transformed to an ultrathin ZrO2 film that started to cover (wet) the Pt surface in an SMSI-like fashion, paralleled by a decrease in surface/interface oxygen. In contrast, (more oxidizing) dry reforming conditions with a 1:1 ratio of CH4 and CO2 were stabilizing the ZrO2 particles on the model catalyst surface (or were even reversing the strong metal support interaction (SMSI) effect), as revealed by in situ XPS. Carbon deposits resulting from CH4 dissociation were easily removed by CO2 or by switching to dry reforming conditions (673–873 K). Thus, at these temperatures the active Pt surface remained free of carbon deposits, also preserving the ZrO2/Pt interface.

  11. Compatibility of grain-stabilized platinum with candidate propellants for resistojets

    NASA Technical Reports Server (NTRS)

    Whalen, M. V.; Grisnik, S. P.

    1985-01-01

    Resistojets are candidates for space station auxiliary propulsion, and should be characterized by both long life and multipropellant operations, requirements limited by available materials. Grain stabilized platinum is examined for use as a resistojet thruster material. Use of platinum in other applications indicates it can be used at moderately high temperatures for extended periods of time. Past results indicate that grain-stabilized platinum should be sufficiently inert in candidate propellant environments. Therefore, compatibility of platinum-yttria (P/Y2O3) and platinum-zirconia (Pt/ZrO2) with carbon dioxide, methane, hydrogen and ammonia is examined. A series of 1000 hr tests in CO2, H2, and NH3 is conducted at 1400 C and a series of 1000 hr tests in CH4 is conducted at about 500 C. Scanning electron microscopy, Auger electron spectroscopy and depth profiling analysis are then used to determine the effects of propellants on the material surface, to evaluate possible material contamination and to evaluate grain growth. The results indicate that there is carbon deposition on the surface of the Pt/Y2O3 and Pt/ZrO2 in both the CO2 and CH4 environments. In the H2 environment, the Pt/Y2O3 and Pt/ZrO2 specimen surfaces are roughened. After exposure to the NH3 environment, the Pt/Y2O3 and Pt/ZrO2 are roughened and pitted over the entire heated area with some pitted areas along the grain boundaries. SEM photos show grain growth in cross-sectional views of all the Pt/Y2O3 samples and the Pt/ZrO2 samples, except that tested in methane. Mass loss measurements indicate that Pt/Y2O3 and Pt/ZrO2 would last in excess of 200,000 hr in each propellant environment. However, in NH3 both Pt/Y2O3 and Pt/ZrO2 are severely pitted, with voids up to 50 percent into the material. Pt/Y2O3 and Pt/ZrO2 are not recommended for high temperature service in NH3.

  12. Growth of Pt/Cu(100): An Atomistic Modeling Comparison with the Pd/Cu(100) Surface Alloy

    NASA Technical Reports Server (NTRS)

    Demarco, Gustavo; Garces, Jorge E.; Bozzolo, Guillermo

    2002-01-01

    The Bozzolo, Ferrante, and Smith (BFS) method for alloys is applied to the study of Pt deposition on Cu(100). The formation of a Cu-Pt surface alloy is discussed within the framework of previous results for Pd/Cu(100). In spite of the fact that both Pd and Pt share the same basic behavior when deposited on Cu, it is seen that subtle differences become responsible for the differences in growth observed at higher cover-ages. In agreement with experiment, all the main features of Pt/Cu(100) and Pd/Cu(100) are obtained by means of a simple modeling scheme, and explained in terms of a few basic ingredients that emerge from the BFS analysis.

  13. Vertically aligned carbon nanotubes/carbon fiber paper composite to support Pt nanoparticles for direct methanol fuel cell application

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Yi, Xi-bin; Liu, Shuo; Fan, Hui-Li; Ju, Wei; Wang, Qi-Chun; Ma, Jie

    2017-03-01

    Vertically aligned carbon nanotubes (VACNTs) grown on carbon fiber paper (CFP) by plasma enhanced chemical vapor deposition is introduced as a catalyst support material for direct methanol fuel cells (DMFCs). Well dispersed Pt nanoparticles on VACNTs surface are prepared by impregnation-reduction method. The VACNTs on CFP possess well-maintained alignment, large surface area and good electrical conductivity, which leading to the formation of Pt particles with a smaller size and enhance the Pt utilization rate. The structure and nature of resulting Pt/VACNTs/CFP catalysts for methanol oxidation are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD) and scanning electron microscope (SEM). With the aid of VACNTs, well-dispersed Pt catalysts enable the reversibly rapid redox kinetic since electron transport efficiently passes through a one-dimensional pathway, which leads to enhance the catalytic activity and Pt utilization rate. Compared with the Pt/XC-72/CFP electrode, the electrochemical measurements results display that the Pt/VACNTs/CFP catalyst shows much higher electrocatalytic activity and better stability for methanol oxidation. In addition, the oxidation current from 200 to 1200 s decayed more slowly for the Pt/VACNTs/CFP than that of the Pt/XC-72/CFP catalysts, indicating less accumulation of adsorbed CO species. All those results imply that the Pt/VACNTs/CFP has a great potential for applications in DMFCs.

  14. Preparation and characterization of ultraflat Pt facets by atom-height-resolved differential optical microscopy

    NASA Astrophysics Data System (ADS)

    Azhagurajan, M.; Wen, R.; Kim, Y. G.; Itoh, T.; Sashikata, K.; Itaya, K.

    2015-01-01

    We recently demonstrated that improvements to our technique, laser confocal microscopy with differential interference microscopy (LCM-DIM), has rendered it fully capable of resolving monatomic steps with heights of ca. 0.25 nm on Au(111) and Pd(111) surfaces, even as low as 0.14 nm on Si(100), in aqueous solution. In this paper, we describe in detail a method to prepare and characterize, via atomic-layer-resolved LCM-DIM, ultraflat Pt(111) and Pt(100) facets over a wide surface area. The preparation of ultraflat surfaces is important in the characterization at the atomic scale of electrochemical processes under reaction conditions. To showcase the elegance of LCM-DIM, the anodic dissolution of Pt in aqueous HCl is briefly recounted.

  15. Time-of-flight scattering and recoiling spectrometry (TOF-SARS) analysis of Pt{110}. II. The (1 × 2)-to-(1 × 3) interconversion and characterization of the (1 × 3) phase

    NASA Astrophysics Data System (ADS)

    Masson, F.; Rabalais, J. W.

    1991-08-01

    The (1 × 3) phase of Pt{110} is shown to be stabilized by Ca and K impurities in the outermost layers of the surface. This structural phase is characterized by time-of-flight scattering and recoiling spectrometry (TOF-SARS). The results reveal that the surface is reconstructed into (1 × 3) troughs in which part of the central second-layer rows remain. Å 0.24 ± 0.08 Å inward relaxation of the first layer atoms is observed. The proposed structure of (1 × 3)-Pt{110} is contrasted with previous work on the (1 × 3)-{110} surfaces of Pt, Au, and Ir.

  16. Exploration of the Ionizable Metal Cluster-Electrode Surface Analogy: Infrared Spectroelectrochemistry of (Pt24(CO)30)n, (Pt26(CO)32)n, and (Pt38(CO) 44)n (n=0 to -10), and Comparisons with Potential-Dependent Spectra of CO adlayers on Platinum Surfaces

    DTIC Science & Technology

    1992-05-01

    100"C under vacuum for 24 hours. The corresponding tetraethylammonium hexafluorophosphate (TEAH) was prepared similarly by using ammonium...the four electrolytes examined in acetonitrile (Table III). Nevertheless, use of lithium perchlorate in acetonitrile restricted the range of cluster

  17. Crystal Phase and Architecture Engineering of Lotus-Thalamus-Shaped Pt-Ni Anisotropic Superstructures for Highly Efficient Electrochemical Hydrogen Evolution.

    PubMed

    Zhang, Zhicheng; Liu, Guigao; Cui, Xiaoya; Chen, Bo; Zhu, Yihan; Gong, Yue; Saleem, Faisal; Xi, Shibo; Du, Yonghua; Borgna, Armando; Lai, Zhuangchai; Zhang, Qinghua; Li, Bing; Zong, Yun; Han, Yu; Gu, Lin; Zhang, Hua

    2018-06-07

    The rational design and synthesis of anisotropic 3D nanostructures with specific composition, morphology, surface structure, and crystal phase is of significant importance for their diverse applications. Here, the synthesis of well-crystalline lotus-thalamus-shaped Pt-Ni anisotropic superstructures (ASs) via a facile one-pot solvothermal method is reported. The Pt-Ni ASs with Pt-rich surface are composed of one Ni-rich "core" with face-centered cubic (fcc) phase, Ni-rich "arms" with hexagonal close-packed phase protruding from the core, and facet-selectively grown Pt-rich "lotus seeds" with fcc phase on the end surfaces of the "arms." Impressively, these unique Pt-Ni ASs exhibit superior electrocatalytic activity and stability toward the hydrogen evolution reaction under alkaline conditions compared to commercial Pt/C and previously reported electrocatalysts. The obtained overpotential is as low as 27.7 mV at current density of 10 mA cm -2 , and the turnover frequency reaches 18.63 H 2 s -1 at the overpotential of 50 mV. This work provides a new strategy for the synthesis of highly anisotropic superstructures with a spatial heterogeneity to boost their promising application in catalytic reactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Oxidation of platinum nickel nanowires to improve durability of oxygen-reducing electrocatalysts

    DOE PAGES

    Alia, Shaun M.; Pylypenko, Svitlana; Dameron, Arrelaine; ...

    2016-01-12

    In this study, the impact of heat treating platinum-coated nickel (Pt-Ni) nanowires in oxygen is examined to determine the effect on oxygen reduction (ORR) activity and durability. Pt-Ni nanowires exhibit promising ORR mass activities (3 times greater than Pt nanoparticles, 1.5 times greater than U.S. Department of Energy target) both before and after potential cycling for all but the highest annealing temperatures explored. The annealing of Pt-Ni nanowires in oxygen with increasing temperature is found to reduce surface area and ORR activity in comparison to the untreated material, but also reduces activity losses following durability testing. Following potential cycling, unannealedmore » Pt-Ni nanowires show significant losses in surface area (23%) and specific activity (18%) while Pt-Ni nanowires annealed at 200°C show modest increases in surface area (2%) and specific activity (6%) after potential cycling. Increasing annealing temperatures also show a clear trend of decreasing Ni dissolution rates. While oxygen annealing has shown the ability to improve durability of Pt-Ni nanowires, significant Ni dissolution was observed in all samples and suggests oxide passivation while showing promise for improved durability, when employed by itself is insufficient to prevent all contamination concerns involving Ni dissolution.« less

  19. Carbon nanotubes based methanol sensor for fuel cells application.

    PubMed

    Kim, D W; Lee, J S; Lee, G S; Overzet, L; Kozlov, M; Aliev, A E; Park, Y W; Yang, D J

    2006-11-01

    An electrochemical sensor is built using vertically grown multi-walled carbon nanotubes (MWNTs) micro-array to detect methanol concentration in water. This study is done for the potential use of the array as methanol sensor for portable units of direct methanol fuel cells (DMFCs). Platinum (Pt) nanoparticles electro-deposited CNTs (Pt/CNTs) electrode shows high sensitivity in the measurement of methanol concentration in water with cyclic voltammetry (CV) measurement at room temperature. Further investigation has also been undertaken to measure the concentration by changing the amount of the mixture of methanol and formic acid in water. We compared the performance of our micro array sensor built with Pt/CNTs electrodes versus that of Pt wire electrode using CV measurement. We found that our Pt/CNTs array sensor shows high sensitivity and detects methanol concentrations in the range of 0.04 M to 0.10 M. In addition, we found that co-use of formic acid as electrolyte enables us to measure up to 1.0 M methanol concentration.

  20. Study of different nanostructured carbon supports for fuel cell catalysts

    NASA Astrophysics Data System (ADS)

    Mirabile Gattia, Daniele; Antisari, Marco Vittori; Giorgi, Leonardo; Marazzi, Renzo; Piscopiello, Emanuela; Montone, Amelia; Bellitto, Serafina; Licoccia, Silvia; Traversa, Enrico

    Pt clusters were deposited by an impregnation process on three carbon supports: multi-wall carbon nanotubes (MWNT), single-wall carbon nanohorns (SWNH), and Vulcan XC-72 carbon black to investigate the effect of the carbon support structure on the possibility of reducing Pt loading on electrodes for direct methanol (DMFC) fuel cells without impairing performance. MWNT and SWNH were in-house synthesised by a DC and an AC arc discharge process between pure graphite electrodes, respectively. UV-vis spectrophotometry, scanning and transmission electron microscopy, X-ray diffraction, and cyclic voltammetry measurements were used to characterize the Pt particles deposited on the three carbon supports. A differential yield for Pt deposition, not strictly related to the surface area of the carbon support, was observed. SWNH showed the highest surface chemical activity toward Pt deposition. Pt deposited in different forms depending on the carbon support. Electrochemical characterizations showed that the Pt nanostructures deposited on MWNT are particularly efficient in the methanol oxidation reaction.

  1. Preparation and Thermoelectric Characteristics of ITO/PtRh:PtRh Thin Film Thermocouple

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaohui; Wang, Hongmin; Zhao, Zixiang; Zhang, Wanli; Jiang, Hongchuan

    2017-12-01

    Thin film thermocouples (TFTCs) can provide more precise in situ temperature measurement for aerospace propulsion systems without disturbance of gas flow and surface temperature distribution of the hot components. ITO /PtRh:PtRh TFTC with multilayer structure was deposited on alumina ceramic substrate by magnetron sputtering. After annealing, the TFTC was statically calibrated for multiple cycles with temperature up to 1000 °C. The TFTC with excellent stability and repeatability was realized for the negligible variation of EMF in different calibration cycles. It is believed that owing to oxygen diffusion barriers by the oxidation of top PtRh layer and Schottky barriers formed at the grain boundaries of ITO, the variation of the carrier concentration of ITO film is minimized. Meanwhile, the life time of TFTC is more than 30 h in harsh environment. This makes ITO/PtRh:PtRh TFTC a promising candidate for precise surface temperature measurement of hot components of aeroengines.

  2. Control of Architecture in Rhombic Dodecahedral Pt–Ni Nanoframe Electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becknell, Nigel; Son, Yoonkook; Kim, Dohyung

    Platinum-based alloys are known to demonstrate advanced properties in electrochemical reactions that are relevant for proton exchange membrane fuel cells and electrolyzers. Further development of Pt alloy electrocatalysts relies on the design of architectures with highly active surfaces and optimized utilization of the expensive elpment, Pt. Here, we show that the three-dimensional Pt anisotropy of Pt-Ni rhombic dodecahedra can be tuned by controlling the ratio between Pt and Ni precursors such that either a completely hollow nanoframe or a new architecture, the excavated nanoframe, can be obtained. The excavated nanoframe showed similar to 10 times higher specific and similar tomore » 6 times higher mass activity for the oxygen reduction reaction than Pt/C, and twice the mass activity of the hollow nanoframe. The high activity is attributed to enhanced Ni content in the near-surface region and the extended two-dimensional sheet structure within the nanoframe that minimizes the number of buried Pt sites.« less

  3. Preparation and Thermoelectric Characteristics of ITO/PtRh:PtRh Thin Film Thermocouple.

    PubMed

    Zhao, Xiaohui; Wang, Hongmin; Zhao, Zixiang; Zhang, Wanli; Jiang, Hongchuan

    2017-12-15

    Thin film thermocouples (TFTCs) can provide more precise in situ temperature measurement for aerospace propulsion systems without disturbance of gas flow and surface temperature distribution of the hot components. ITO/PtRh:PtRh TFTC with multilayer structure was deposited on alumina ceramic substrate by magnetron sputtering. After annealing, the TFTC was statically calibrated for multiple cycles with temperature up to 1000 °C. The TFTC with excellent stability and repeatability was realized for the negligible variation of EMF in different calibration cycles. It is believed that owing to oxygen diffusion barriers by the oxidation of top PtRh layer and Schottky barriers formed at the grain boundaries of ITO, the variation of the carrier concentration of ITO film is minimized. Meanwhile, the life time of TFTC is more than 30 h in harsh environment. This makes ITO/PtRh:PtRh TFTC a promising candidate for precise surface temperature measurement of hot components of aeroengines.

  4. In situ glass antifouling using Pt nanoparticle coating for periodic electrolysis of seawater

    NASA Astrophysics Data System (ADS)

    Xue, Yuxi; Zhao, Jin; Qiu, Ri; Zheng, Jiyong; Lin, Cunguo; Ma, Bojiang; Wang, Peng

    2015-12-01

    In situ electrochemical chlorination is a promising way to prohibit the biofouling on glass used for optical devices in seawater. To make this approach practical, a conductive glass should have low overpotential to generate Cl2, so that the electrical energy consumption, a critical issue for field application, will be low. Moreover, a long sustainability should also be taken into consideration from the application perspective. Following these criteria, we propose Pt/ITO surface to electrochemically generate Cl2, which immunizes biofouling for glass substrate. In this report, firstly, Pt nanoparticle/ITO is prepared via an electrodeposition approach. Secondly, electrocatalysis capability of Pt/ITO is elucidated, which shows the catalysis for Cl2 generation from NaCl solution and seawater has been sparked with Pt on the surface. Also, Pt/ITO is more sustainable and efficient than the bare ITO in natural seawater. Thirdly, the antifouling property is evaluated taking diatom as the target organism. Electrochemical chlorination on Pt/ITO can efficiently prevent the glass from fouling.

  5. Mobility and Oxidation of Adsorbed CO on Shape-Controlled Pt Nanoparticles in Acidic Medium.

    PubMed

    Farias, Manuel J S; Busó-Rogero, Carlos; Vidal-Iglesias, Francisco J; Solla-Gullón, José; Camara, Giuseppe A; Feliu, Juan M

    2017-01-31

    The knowledge about how CO occupies and detaches from specific surface sites on well-structured Pt surfaces provides outstanding information on both dynamics/mobility of CO ads and oxidation of this molecule under electrochemical conditions. This work reports how the potentiostatic growth of different coverage CO adlayers evolves with time on both cubic and octahedral Pt nanoparticles in acidic medium. Data suggest that during the growth of the CO adlayer, CO ads molecules slightly shift toward low coordination sites only on octahedral Pt nanoparticles, so that these undercoordinated sites are the first filled on octahedral Pt nanoparticles. Conversely, on cubic Pt nanoparticles, adsorbed CO behaves as an immobile species, and low coordinated sites as well as (100) terraces are apparently filled uniformly and simultaneously. However, once the adlayer is complete, irrespectively of whether the CO is oxidized in a single step or in a sequence of different potential steps, results suggest that CO ads behaves as an immobile species during its oxidation on both octahedral and cubic Pt nanoparticles.

  6. Platinum-coated non-noble metal-noble metal core-shell electrocatalysts

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir

    2015-04-14

    Core-shell particles encapsulated by a thin film of a catalytically active metal are described. The particles are preferably nanoparticles comprising a non-noble core with a noble metal shell which preferably do not include Pt. The non-noble metal-noble metal core-shell nanoparticles are encapsulated by a catalytically active metal which is preferably Pt. The core-shell nanoparticles are preferably formed by prolonged elevated-temperature annealing of nanoparticle alloys in an inert environment. This causes the noble metal component to surface segregate and form an atomically thin shell. The Pt overlayer is formed by a process involving the underpotential deposition of a monolayer of a non-noble metal followed by immersion in a solution comprising a Pt salt. A thin Pt layer forms via the galvanic displacement of non-noble surface atoms by more noble Pt atoms in the salt. The overall process is a robust and cost-efficient method for forming Pt-coated non-noble metal-noble metal core-shell nanoparticles.

  7. First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arevalo, Ryan Lacdao; Escaño, Mary Clare Sison; Kasai, Hideaki, E-mail: kasai@dyn.ap.eng.osaka-u.ac.jp

    2015-03-15

    Catalytic oxidation of NO to NO{sub 2} is a significant research interest for improving the quality of air through exhaust gas purification systems. In this paper, the authors studied this reaction on pure Pt and Pt overlayer on 3d transition metals using kinetic Monte Carlo simulations coupled with density functional theory based first principles calculations. The authors found that on the Pt(111) surface, NO oxidation proceeds via the Eley–Rideal mechanism, with O{sub 2} dissociative adsorption as the rate-determining step. The oxidation path via the Langmuir–Hinshelwood mechanism is very slow and does not significantly contribute to the overall reaction. However, inmore » the Pt overlayer systems, the oxidation of NO on the surface is more thermodynamically and kinetically favorable compared to pure Pt. These findings are attributed to the weaker binding of O and NO on the Pt overlayer systems and the binding configuration of NO{sub 2} that promotes easier N-O bond formation. These results present insights for designing affordable and efficient catalysts for NO oxidation.« less

  8. FT-IR, FT-FIR and computerized Raman studies of the vibrational spectra and structure of ethylene complexes.

    NASA Astrophysics Data System (ADS)

    Mink, J.; Gal, M.; Goggin, P. L.; Spencer, J. L.

    1986-03-01

    Skeletal modes of [M(C 2H 4) 3] (where M=Ni(O) or Pt(O)), and [Pt(C 2H 4Cl 3][NBu 4] have been measured and assigned. A new model for the normal coordinate treament of π-complexes has been adopted to calculate metal—ligand force constants. The Pt-ehtylene stretching force constants were 1.66, and 2.54 Ncm -1, and the Pt-ehtylene tilting force constants were 2.04, and 2.84 Ncm -1 for [Pt(C 2H 4) 3], and [Pt(C 2H 4)Cl 3] -1 respectively. These force constants suggest that the π-bonding dominates for tris(ethylene)platinum but that σ- and π-bonding are of almost equal importance for the Zeise's salt analogue. The CC valence force constants of chemisorbed ehtylene suggest that C is rehybridised nearly to sp 3 on Ni(lll) and Pt(lll) surfaces but not on Pd(lll). The surface-ehtylene stretching force constants indicate that the bond strengths are in the order Pt>Ni>>Pd.

  9. Effects of a TiC substrate on the catalytic activity of Pt for NO reduction.

    PubMed

    Chu, Xingli; Fu, Zhaoming; Li, Shasha; Zhang, Xilin; Yang, Zongxian

    2016-05-11

    Density functional theory calculations are used to elucidate the catalytic properties of a Pt monolayer supported on a TiC(001) substrate (Pt/TiC) toward NO reduction. It is found that the compound system of Pt/TiC has a good stability due to the strong Pt-TiC interaction. The diverse dissociation paths (namely the direct dissociation mechanism and the dimeric mechanism) are investigated. The transition state searching calculations suggest that NO has strong diffusion ability and small activation energy for dissociation on the Pt/TiC. For NO reduction on the Pt/TiC surface, we have found that the direct dissociation mechanisms (NO + N + O → NO2 + N and NO + N + O → N2 + O + O) are easier with a smaller dissociation barrier than those on the Pt(111) surface; and the dimeric process (NO + NO → (NO)2 → N2O + O → N2 + O + O) is considered to be dominant or significant with even a lower energy barrier than that of the direct dissociation. The results show that Pt/TiC can serve as an efficient catalyst for NO reduction.

  10. Platinum and Palladium Overlayers Dramatically Enhance the Activity of Ruthenium Nanotubes for Alkaline Hydrogen Oxidation

    DOE PAGES

    St. John, Samuel; Atkinson, Robert W.; Unocic, Kinga A.; ...

    2015-10-18

    Templated vapor synthesis and thermal annealing were used to synthesize unsupported metallic Ru nanotubes with Pt or Pd overlayers. By controlling the elemental composition and thickness of these overlayers, we obtain nanostructures with very high alkaline hydrogen oxidation activity. For nanotubes with a nominal atomic composition of Ru 0.90Pt 0.10 display a surface-specific activity (2.4 mA/cm 2) that is 35 times greater than that of pure Ru nanotubes at a 50 mV overpotential and 2.5 times greater than that of pure Pt nanotubes (0.98 mA/cm 2). The surface-segregated structure also confers dramatically increased Pt utilization efficiency. We find a platinum-mass-specificmore » activity of 1240 A/gPt for the optimized nanotube versus 280 A/gPt for carbon-supported Pt nanoparticles and 109 A/gPt for monometallic Pt nanotubes. Here, we attribute the enhancement of both area- and platinum-mass-specific activity to the atomic-scale homeomorphism of the nanotube form factor with adlayer-modified polycrystals. Subsurface ligand and bifunctional effects previously observed on segregated, adlayer-modified polycrystals are translated to nanoscale catalysts.« less

  11. Desorption of oxygen from alloyed Ag/Pt(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jankowski, Maciej; Wormeester, Herbert, E-mail: h.wormeester@utwente.nl; Zandvliet, Harold J. W.

    2014-06-21

    We have investigated the interaction of oxygen with the Ag/Pt(111) surface alloy by thermal desorption spectroscopy (TDS). The surface alloy was formed during the deposition of sub-monolayer amounts of silver on Pt(111) at 800 K and subsequent cooling to 300 K. The low-temperature phase of the surface alloy is composed of nanometer-sized silver rich stripes, embedded within platinum-rich domains, which were characterized with spot profile analysis low energy electron diffraction. The TDS measurements show that oxygen adsorption is blocked on Ag sites: the saturation coverage of oxygen decreases with increasing Ag coverage. Also, the activation energy for desorption (E{sub des})more » decreases with Ag coverage. The analysis of the desorption spectra from clean Pt(111) shows a linear decay of E{sub des} with oxygen coverage, which indicates repulsive interactions between the adsorbed oxygen atoms. In contrast, adsorption on alloyed Ag/Pt(111) leads to an attractive interaction between adsorbed oxygen atoms.« less

  12. Atomic structure of (111) SrTiO3/Pt interfaces

    NASA Astrophysics Data System (ADS)

    Schmidt, Steffen; Klenov, Dmitri O.; Keane, Sean P.; Lu, Jiwei; Mates, Thomas E.; Stemmer, Susanne

    2006-03-01

    Atomic resolution high-angle annular dark field (HAADF) imaging in scanning transmission electron microscopy was used to investigate the interface atomic structure of epitaxial, (111) oriented SrTiO3 films on epitaxial Pt electrodes grown on (0001) sapphire. The cube-on-cube orientation relationship of SrTiO3 on Pt was promoted by the use of a Ti adhesion layer underneath the Pt electrode. While a Ti-rich Pt surface was observed before SrTiO3 growth, HAADF images showed an atomically abrupt SrTiO3/Pt interface with no interfacial layers. The SrTiO3 films contained two twin variants that were related by a 180° rotation about the ⟨111⟩ surface normal. HAADF images showed two different interface atomic arrangements for the two twins. The role of Ti in promoting (111) epitaxy and the implications for the dielectric properties are discussed.

  13. Effect of sacrificial agents on the dispersion of metal cocatalysts for photocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Cao, Shaowen; Shen, Baojia; Huang, Qian; Chen, Zhe

    2018-06-01

    Surface photodeposition of noble metal cocatalyst has been regarded as an effective approach to facilitate the separation of charge carriers and reduce the over-potential of water reduction, thus to enhance the photocatalytic H2-production activities of semiconductor photocatalyst. Herein, the influences of sacrificial agents used in the photodeposition process on the dispersion of noble metal nanoparticles are investigated, via a series of technique of photocatalytic hydrogen evolution test, microstructure analysis and photoelectrochemical measurement. As a result, the sacrificial agents are found to show large impact on the loading amount, particle size and distribution of different metals on the surface of g-C3N4. The real loading amount of Pt and Au is higher in methanol solution than that in triethanolamine solution. Better distribution and smaller size of Pt nanoparticles are achieved in the presence of methanol; while better distribution and smaller size of Au nanoparticles are achieved in the presence of triethanolamine. As a result, quite different charge transfer ability is achieved for the synthesized Pt and Au decorated g-C3N4, which subsequently leads to disparate photocatalytic activities of the same g-C3N4 photocatalyst under various conditions. The finding in this work indicates that the valid deposition content, particle size and distribution of metal cocatalysts should be carefully taken into account when comparing the photocatalytic activities among various samples.

  14. Novel 2D RuPt core-edge nanocluster catalyst for CO electro-oxidation

    NASA Astrophysics Data System (ADS)

    Grabow, Lars C.; Yuan, Qiuyi; Doan, Hieu A.; Brankovic, Stanko R.

    2015-10-01

    A single layer, bi-metallic RuPt catalyst on Au(111) is synthesized using surface limited red-ox replacement of underpotentially deposited Cu and Pb monolayers though a two-step process. The resulting 2D RuPt monolayer nanoclusters have a unique core-edge structure with a Ru core and Pt at the edge along the perimeter. The activity of this catalyst is evaluated using CO monolayer oxidation as the probe reaction. Cyclic voltammetry demonstrates that the 2D RuPt core-edge catalyst morphology is significantly more active than either Pt or Ru monolayer catalysts. Density functional theory calculations in combination with infra-red spectroscopy data point towards oscillating variations (ripples) in the adsorption energy landscape along the radial direction of the Ru core as the origin of the observed behavior. Both, CO and OH experience a thermodynamic driving force for surface migration towards the Ru-Pt interface, where they adsorb most strongly and react rapidly. We propose that the complex interplay between epitaxial strain, ligand and finite size effects is responsible for the formation of the rippled RuPt monolayer cluster, which provides optimal conditions for a quasi-ideal bi-functional mechanism for CO oxidation, in which CO is adsorbed mainly on Pt, and Ru provides OH to the active Pt-Ru interface.

  15. Metal nanostructures with complex surface morphology: The case of supported lumpy Pd and Pt nanoparticles produced by laser processing of metal films

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Maugeri, P.; Cacciato, G.; Zimbone, M.; Grimaldi, M. G.

    2016-09-01

    In this work we report on the formation of lumpy Pd and Pt nanoparticles on fluorine-doped tin oxide/glass (FTO/glass) substrate by a laser-based approach. In general, complex-surface morphology metal nanoparticles can be used in several technological applications exploiting the peculiarities of their physical properties as modulated by nanoscale morphology. For example plasmonic metal nanoparticles presenting a lumpy morphology (i.e. larger particles coated on the surface by smaller particles) can be used in plasmonic solar cell devices providing broadband scattering enhancement over the smooth nanoparticles leading, so, to the increase of the device efficiency. However, the use of plasmonic lumpy nanoparticles remains largely unexplored due to the lack of simply, versatile, low-cost and high-throughput methods for the controllable production of such nanostructures. Starting from these considerations, we report on the observation that nanoscale-thick Pd and Pt films (17.6 and 27.9 nm, 12.1 and 19.5 nm, respectively) deposited on FTO/glass surface irradiated by nanosecond pulsed laser at fluences E in the 0.5-1.5 J/cm2 range, produce Pd and Pt lumpy nanoparticles on the FTO surface. In addition, using scanning electron microscopy analyses, we report on the observation that starting from each metal film of fixed thickness h, the fraction F of lumpy nanoparticles increases with the laser fluence E and saturates at the higher fluences. For each fixed fluence, F was found higher starting from the Pt films (at each starting film thickness h) with respect to the Pd films. For each fixed metal and fluence, F was found to be higher decreasing the starting thickness of the deposited film. To explain the formation of the lumpy Pd and Pt nanoparticles and the behavior of F as a function of E and h both for Pd and Pt, the thermodynamic behavior of the Pd and Pt films and nanoparticles due to the interaction with the nanosecond laser is discussed. In particular, the photothermal vaporization and Coulomb explosion processes of the Pd and Pt nanoparticles are invoked as possible mechanisms for the lumpy nanoparticles formation.

  16. Hydrogen production by aqueous phase reforming of light oxygenated hydrocarbons

    NASA Astrophysics Data System (ADS)

    Shabaker, John William

    Aqueous phase reforming (APR) of renewable oxygenated hydrocarbons (e.g., methanol, ethylene glycol, glycerol, sorbitol, glucose) is a promising new technology for the catalytic production of high-purity hydrogen for fuel cells and chemical processing. Supported Pt catalysts are effective catalysts for stable and rapid H2 production at temperatures near 500 K (H 2 turnover frequencies near 10 min-1). Inexpensive Raney Ni-based catalysts have been developed using a combination of fundamental and high-throughput studies that have similar catalytic properties as Pt-based materials. Promotion of Raney Ni with Sn by controlled surface reaction of organometallic tin compounds is necessary to control formation of thermodynamically-favorable alkane byproducts. Detailed characterization by Mossbauer spectroscopy, electron microscopy, adsorption studies, and x-ray photoelectron spectroscopy (XPS/ESCA) has shown that NiSn alloys are formed during heat treatment, and may be responsible for enhanced stability and selectivity for hydrogen production. Detailed kinetic studies led to the development of a kinetic mechanism for the APR reaction on Pt and NiSn catalysts, in which the oxygenate decomposes through C--H and O--H cleavage, followed by C--C cleavage and water gas shift of the CO intermediate. The rate limiting step on Pt surfaces is the initial dehydrogenation, while C--C cleavage appears rate limiting over NiSn catalysts. Tin promotion of Raney Ni catalysts suppresses C--O bond scission reactions that lead to alkane formation without inhibiting fast C--C and C--H cleavage steps that are necessary for high rates of reforming. A window of operating temperature, pressure, and reactor residence time has been identified for use of the inexpensive NiSn catalysts as a Pt substitute. Concentrated feed stocks and aggressive pretreatments have been found to counteract catalyst deactivation by sintering in the hydrothermal APR environment and allow stable, long-term production of H2 over Raney-NiSn materials.

  17. Interfacial functionalization and engineering of nanoparticles

    NASA Astrophysics Data System (ADS)

    Song, Yang

    The intense research interest in nanoscience and nanotechnology is largely fueled by the unique properties of nanoscale materials. In this dissertation, the research efforts are focused on surface functionalization and interfacial engineering of functional nanoparticles in the preparation of patchy nanoparticles (e.g., Janus nanoparticles and Neapolitan nanoparticles) such that the nanoparticle structures and properties may be manipulated to an unprecedented level of sophistication. Experimentally, Janus nanoparticles were prepared by an interfacial engineering method where one hemisphere of the originally hydrophobic nanoparticles was replaced with hydrophilic ligands at the air|liquid or solid|liquid interface. The amphiphilic surface characters of the Janus nanoparticles were verified by contact angle measurements, as compared to those of the bulk-exchange counterparts where the two types of ligands were distributed rather homogeneously on the nanoparticle surface. In a further study, a mercapto derivative of diacetylene was used as the hydrophilic ligands to prepare Janus nanoparticles by using hydrophobic hexanethiolate-protected gold nanoparticles as the starting materials. Exposure to UV irradiation led to effective covalent cross-linking between the diacetylene moieties of neighboring ligands and hence marked enhancement of the structural integrity of the Janus nanoparticles, which was attributable to the impeded surface diffusion of the thiol ligands on the nanoparticle surface, as manifested in fluorescence measurements of aged nanoparticles. More complicated bimetallic AgAu Janus nanoparticles were prepared by interfacial galvanic exchange reactions of a Langmuir-Blodgett monolayer of 1-hexanethiolate-passivated silver nanoparticles on a glass slide with gold(I)-mercaptopropanediol complex in a water/ethanol solution. The resulting nanoparticles exhibited an asymmetrical distribution not only of the organic capping ligands on the nanoparticle surface but also of the metal elements in the nanoparticle cores, in contrast to the bulk-exchange counterparts where these distributions were homogeneous within the nanoparticles, as manifested in contact angle, UV--vis, XPS, and TEM measurements. More interestingly, the electrocatalytic performance of the Janus nanoparticles was markedly better than the bulk-exchange ones, suggesting that the segregated distribution of the polar ligands from the apolar ones might further facilitate charge transfer from Ag to Au in the nanoparticle cores, leading to additional improvement of the adsorption and reduction of oxygen. This interfacial protocol was then adopted to prepare trimetallic Ag AuPt Neapolitan nanoparticles by two sequential galvanic exchange reactions of 1-hexanethiolate-capped silver nanoparticles with gold(I)-thiomalic acid and platinum(II)-hexanethiolate complexes. As both reactions were confined to an interface, the Au and Pt elements were situated on two opposite poles of the original Ag nanoparticles, which was clearly manifested in elemental mapping of the nanoparticles, and consistent with the damping and red-shift of the nanoparticle surface plasmon resonance. As nanoscale analogs to conventional amphiphilic molecules, the resulting Janus nanoparticles were found to form oil-in-water micelle-like or water-in-oil reverse micelle-like superparticulate structures depending on the solvent media. These unique characteristics were exploited for the effective transfer of diverse guest nanoparticles between organic and water phase. The transfer of hydrophobic nanoparticles from organic to water media or water-soluble nanoparticles to the organic phase was evidenced by TEM, DLS, UV-Vis, and PL measurements. In particular, line scans based on EDS analysis showed that the vesicle-like structures consisted of multiple layers of the Janus nanoparticles, which encapsulated the guest nanoparticles in the cores. The results highlight the unique effectiveness of using Janus nanoparticles in the formation of functional nanocomposites. Part of the dissertation research was also devoted to graphene quantum dots (GQDs)-supported platinum (Pt/G) nanoparticles and their electrocatalytic activity in oxygen reduction reaction. These Pt/G nanocomposites were prepared by a hydrothermal procedure at controlled temperatures. Spectroscopic measurements based on FTIR, Raman and XPS confirmed the formation of various oxygenated structural defects on GQDs and the variation of their concentrations with the hydrothermal conditions. Interestingly, electrocatalytic activity of GQD/Pt composites exhibited a volcano-shaped variation with the GQD structural defects, with the best identified as the samples prepared at 160 °C for 6 h where the mass activity was found to meet the DOE target for 2015. This remarkable performance was accounted for by the deliberate manipulation of the adsorption of oxygen and reaction intermediates on platinum by the GQD structural defects through partial charge transfer. The strategy presented herein may offer a new paradigm in the design and engineering of nanoparticle catalysts for fuel cell electrochemistry. In addition, studies were also carried out to study intervalence charge transfer between ferrocenyl moieties bonded on carbon nanoparticle surfaces by diazonium reaction. Electrochemical studies exhibited two pairs of voltammetric waves with a difference of their formal potentials at about 78 mV, suggesting nanoparticle-mediated intraparticle charge delocalization at mixed valence as a result of the strong core-ligand covalent bonds and the conductive sp 2 carbon matrix of the graphitic cores. Consistent behaviors were observed in near-infrared measurements, indicating that the particles behaved analogously to a Class I/II mixed-valence compound.

  18. Time dependent density functional theory study of the near-edge x-ray absorption fine structure of benzene in gas phase and on metal surfaces.

    PubMed

    Asmuruf, Frans A; Besley, Nicholas A

    2008-08-14

    The near-edge x-ray absorption fine structure of benzene in the gas phase and adsorbed on the Au(111) and Pt(111) surfaces is studied with time dependent density functional theory. Excitation energies computed with hybrid exchange-correlation functionals are too low compared to experiment. However, after applying a constant shift the spectra are in good agreement with experiment. For benzene on the Au(111) surface, two bands arising from excitation to the e(2u)(pi(*)) and b(2g)(pi(*)) orbitals of benzene are observed for photon incidence parallel to the surface. On Pt(111) surface, a broader band arises from excitation to benzene orbitals that are mixed with the surface and have both sigma(*)(Pt-C) and pi(*) characters.

  19. Surface structure of MgO underlayer with Ti diffusion for (002) oriented L10 FePt-based heat assisted magnetic recording media

    NASA Astrophysics Data System (ADS)

    Hinata, Sintaro; Jo, Shin; Saito, Shin

    2018-05-01

    Surface morphology of the MgO layer and magnetic properties of FePt-C layer deposited on the MgO were investigated for the FePt-based heat assisted magnetic recording media. Stacking structure of the underlayer for the FePt-C layer was MgO (0-5 nm)/Cr80Mn20 (0-30 nm)/Cr50Ti50 (0-50 nm)/glass sub.. Surface observation result for the MgO film by using an atomic force microscope revealed the existence of nodules with a height of about 2 nm and a network-like convex structure with a height difference of about sub nm (boundary wall, BW) on the MgO crystal grain boundary. Density of the nodules largely depends on the surface roughness of the CrTi layer, RaCrTi and it is suppressed from 10 to 2/0.5 μm2 by reducing RaCrTi from 420 to 260 pm. Height of the BW depends on thickness of the MgO layer, tMgO and it can be suppressed by reducing tMgO to less than 4 nm. From the cross-sectional energy dispersive x-ray mapping, it is clarified that the BW is formed by atomic diffusion of Ti atoms from CrTi layer due to the substrate heating process, and a compound consists of Mg, Ti and O atoms. This BW can be used as a template to magnetically isolate the FePt column in the FePt-based granular film, such as FePt-SiO2, if the size of the BW is reduced to less than 10 nm. M-H loop of the FePt-C granular film deposited on the underlayer showed that the nodule and BW induce oxidation of the FePt grains, and reduction of intergranular exchange coupling.

  20. Glucose oxidase immobilization on different modified surfaces of platinum nanowire for application in glucose detection

    NASA Astrophysics Data System (ADS)

    Thanh Tuyen Le, Thi; Duy Tran, Phu; Pham, Xuan Tung; Hien Tong, Duy; Chien Dang, Mau

    2010-09-01

    In this work, the surface of platinum (Pt) nanowires was modified by using several chemicals, including a compound of gelatin gel with SiO2, polyvinyl alcohol (PVA) with Prussian blue (PB) mediator and cysteamine self-assembled monolayers (SAM). Then, glucose oxidase (GOD) enzyme was immobilized on the modified surfaces of Pt nanowire electrodes by using techniques of electrochemical adsorption and chemical binding. The GOD immobilized Pt nanowires were used for application in glucose detection by performing a cyclic voltammetry measurement. The detection results showed that GOD was immobilized on all of the tested surfaces and the highest glucose detection sensitivity of 60 μM was obtained when the Pt nanowires were modified by PVA with PB mediator. Moreover, the sensors showed very high current response when the Pt nanowires were modified with the cysteamine SAM. The stability and catalyst activity of GOD are also reported here. For instance, the catalyst activity of GOD retained about 60% of its initial value after it was stored at 4 °C in a 100 mM PBS buffer solution with a pH of 7.2 for a period of 30 days.

  1. The control of Pt and Ru nanoparticle size on high surface area supports.

    PubMed

    Liu, Qiuli; Joshi, Upendra A; Über, Kevin; Regalbuto, John R

    2014-12-28

    Supported Ru and Pt nanoparticles are synthesized by the method of strong electrostatic adsorption and subsequently treated under different steaming-reduction conditions to achieve a series of catalysts with controlled particle sizes, ranging from 1 to 8 nm. While in the case of oxidation-reduction conditions, only Pt yielded particles ranging from 2.5 to 8 nm in size and a loss of Ru was observed. Both Ru and Pt sinter faster in air than in hydrogen. This methodology allows the control of particle size using a "production-scalable" catalyst synthesis method which can be applied to high surface area supports with common metal precursors.

  2. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation.

    PubMed

    Mao, Junjie; Chen, Wenxing; He, Dongsheng; Wan, Jiawei; Pei, Jiajing; Dong, Juncai; Wang, Yu; An, Pengfei; Jin, Zhao; Xing, Wei; Tang, Haolin; Zhuang, Zhongbin; Liang, Xin; Huang, Yu; Zhou, Gang; Wang, Leyu; Wang, Dingsheng; Li, Yadong

    2017-08-01

    Developing cost-effective, active, and durable electrocatalysts is one of the most important issues for the commercialization of fuel cells. Ultrathin Pt-Mo-Ni nanowires (NWs) with a diameter of ~2.5 nm and lengths of up to several micrometers were synthesized via a H 2 -assisted solution route (HASR). This catalyst was designed on the basis of the following three points: (i) ultrathin NWs with high numbers of surface atoms can increase the atomic efficiency of Pt and thus decrease the catalyst cost; (ii) the incorporation of Ni can isolate Pt atoms on the surface and produce surface defects, leading to high catalytic activity (the unique structure and superior activity were confirmed by spherical aberration-corrected electron microscopy measurements and ethanol oxidation tests, respectively); and (iii) the incorporation of Mo can stabilize both Ni and Pt atoms, leading to high catalytic stability, which was confirmed by experiments and density functional theory calculations. Furthermore, the developed HASR strategy can be extended to synthesize a series of Pt-Mo-M (M = Fe, Co, Mn, Ru, etc.) NWs. These multimetallic NWs would open up new opportunities for practical fuel cell applications.

  3. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells

    NASA Astrophysics Data System (ADS)

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-09-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications.

  4. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation

    PubMed Central

    Mao, Junjie; Chen, Wenxing; He, Dongsheng; Wan, Jiawei; Pei, Jiajing; Dong, Juncai; Wang, Yu; An, Pengfei; Jin, Zhao; Xing, Wei; Tang, Haolin; Zhuang, Zhongbin; Liang, Xin; Huang, Yu; Zhou, Gang; Wang, Leyu; Wang, Dingsheng; Li, Yadong

    2017-01-01

    Developing cost-effective, active, and durable electrocatalysts is one of the most important issues for the commercialization of fuel cells. Ultrathin Pt-Mo-Ni nanowires (NWs) with a diameter of ~2.5 nm and lengths of up to several micrometers were synthesized via a H2-assisted solution route (HASR). This catalyst was designed on the basis of the following three points: (i) ultrathin NWs with high numbers of surface atoms can increase the atomic efficiency of Pt and thus decrease the catalyst cost; (ii) the incorporation of Ni can isolate Pt atoms on the surface and produce surface defects, leading to high catalytic activity (the unique structure and superior activity were confirmed by spherical aberration–corrected electron microscopy measurements and ethanol oxidation tests, respectively); and (iii) the incorporation of Mo can stabilize both Ni and Pt atoms, leading to high catalytic stability, which was confirmed by experiments and density functional theory calculations. Furthermore, the developed HASR strategy can be extended to synthesize a series of Pt-Mo-M (M = Fe, Co, Mn, Ru, etc.) NWs. These multimetallic NWs would open up new opportunities for practical fuel cell applications. PMID:28875160

  5. Development of a DNA Sensor Based on Nanoporous Pt-Rich Electrodes

    NASA Astrophysics Data System (ADS)

    Van Hao, Pham; Thanh, Pham Duc; Xuan, Chu Thi; Hai, Nguyen Hoang; Tuan, Mai Anh

    2017-06-01

    Nanoporous Pt-rich electrodes with 72 at.% Pt composition were fabricated by sputtering a Pt-Ag alloy, followed by an electrochemical dealloying process to selectively etch away Ag atoms. The surface properties of nanoporous membranes were investigated by energy-dispersive x-ray spectroscopy (EDS), scanning electron microscopy (SEM), atomic force microscopy (AFM), a documentation system, and a gel image system (Gel Doc Imager). A single strand of probe deoxyribonucleic acid (DNA) was immobilized onto the electrode surface by physical adsorption. The DNA probe and target hybridization were measured using a lock-in amplifier and an electrochemical impedance spectroscope (EIS). The nanoporous Pt-rich electrode-based DNA sensor offers a fast response time of 3.7 s, with a limit of detection (LOD) of 4.35 × 10-10 M of DNA target.

  6. Atomic Layer-by-Layer Deposition of Pt on Pd Nanocubes for Catalysts with Enhanced Activity and Durability toward Oxygen Reduction

    DOE PAGES

    Xie, Shuifen; Choi, Sang -Il; Lu, Ning; ...

    2014-05-05

    Here, an effective strategy for reducing the Pt content while retaining the activity of a Pt-based catalyst is to deposit the Pt atoms as ultrathin skins of only a few atomic layers thick on nanoscale substrates made of another metal. During deposition, however, the Pt atoms often take an island growth mode because of a strong bonding between Pt atoms. Here we report a versatile route to the conformal deposition of Pt as uniform, ultrathin shells on Pd nanocubes in a solution phase. The introduction of the Pt precursor at a relatively slow rate and high temperature allowed the depositedmore » Pt atoms to spread across the entire surface of a Pd nanocube to generate a uniform shell. The thickness of the Pt shell could be controlled from one to six atomic layers by varying the amount of Pt precursor added into the system. Compared to a commercial Pt/C catalyst, the Pd@Pt nL (n = 1–6) core–shell nanocubes showed enhancements in specific activity and durability toward the oxygen reduction reaction (ORR). Density functional theory (DFT) calculations on model (100) surfaces suggest that the enhancement in specific activity can be attributed to the weakening of OH binding through ligand and strain effects, which, in turn, increases the rate of OH hydrogenation. A volcano-type relationship between the ORR specific activity and the number of Pt atomic layers was derived, in good agreement with the experimental results. Both theoretical and experimental studies indicate that the ORR specific activity was maximized for the catalysts based on Pd@Pt 2–3L nanocubes. Because of the reduction in Pt content used and the enhancement in specific activity, the Pd@Pt 1L nanocubes showed a Pt mass activity with almost three-fold enhancement relative to the Pt/C catalyst.« less

  7. Spontaneous formation of Au-Pt alloyed nanoparticles using pure nano-counterparts as starters: a ligand and size dependent process.

    PubMed

    Usón, Laura; Sebastian, Victor; Mayoral, Alvaro; Hueso, Jose L; Eguizabal, Adela; Arruebo, Manuel; Santamaria, Jesus

    2015-06-14

    In this work we investigate the formation of PtAu monodisperse alloyed nanoparticles by ageing pure metallic Au and Pt small nanoparticles (sNPs), nanoparticle size <5 nm, under certain conditions. We demonstrate that those bimetallic entities can be obtained by controlling the size of the initial metallic sNPs separately prepared and by selecting their appropriate capping agents. The formation of this spontaneous phenomenon was studied using HR-STEM, EDS, ionic conductivity, UV-Vis spectroscopy and cyclic voltammetry. Depending on the type of capping agent used and the size of the initial Au sNPs, three different materials were obtained: (i) AuPt bimetallic sNPs showing a surface rich in Au atoms, (ii) segregated Au and Pt sNPs and (iii) a mixture of bimetallic nanoparticles as well as Pt sNPs and Au NPs. Surface segregation energies and the nature of the reaction environment are the driving forces to direct the distribution of atoms in the bimetallic sNPs. PtAu alloyed nanoparticles were obtained after 150 h of reaction at room temperature if a weak capping agent was used for the stabilization of the nanoparticles. It was also found that Au atoms diffuse towards Pt sNPs, producing a surface enriched in Au atoms. This study shows that even pure nanoparticles are prone to be modified by the surrounding nanoparticles to give rise to new nanomaterials if atomic diffusion is feasible.

  8. Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface.

    PubMed

    Nan, Tianxiang; Zhou, Ziyao; Liu, Ming; Yang, Xi; Gao, Yuan; Assaf, Badih A; Lin, Hwaider; Velu, Siddharth; Wang, Xinjun; Luo, Haosu; Chen, Jimmy; Akhtar, Saad; Hu, Edward; Rajiv, Rohit; Krishnan, Kavin; Sreedhar, Shalini; Heiman, Don; Howe, Brandon M; Brown, Gail J; Sun, Nian X

    2014-01-14

    Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/PMN-PT interface by using a Ni0.79Fe0.21/Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling.

  9. Adsorption of benzene on low index surfaces of platinum in the presence of van der Waals interactions

    NASA Astrophysics Data System (ADS)

    K, Ayishabi P.; Chatanathodi, Raghu

    2017-10-01

    We have studied the adsorption of benzene on three low index surfaces of platinum using plane-wave Density Functional Theory (DFT) calculations, taking into consideration van der Waals (vdW) interaction. Experimentally, it is known that benzene adsorbs at the bridge site on the (111) surface, but in case of (110) and (100), this is not known yet. Our calculations show that benzene preferably adsorbs on bridge position on Pt(111) surface, whereas on Pt(110) and Pt(100) surfaces, the hollow position is energetically more favoured. The structural and electronic modifications of molecule and the surfaces are also examined. In all cases, adsorption-induced distortions of adsorbate-substrate complex are found to be modest in character, but relatively maximum in case of the (110) facet. The molecule is bound most strongly to the (110) surface. Importantly, we find that adsorption at bridge and atop positions are energetically feasible on the (110) surface, with the canting of benzene ring at a small angle from the metal plane. We study changes in electronic structure and the net charge transfer upon adsorption of benzene on all three low index planes. Inclusion of vdW interactions is important for obtaining realistic adsorption strengths for benzene on various Pt facets.

  10. Ultrasonically treated multi-walled carbon nanotubes (MWCNTs) as PtRu catalyst supports for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Yang, Chunwei; Hu, Xinguo; Wang, Dianlong; Dai, Changsong; Zhang, Liang; Jin, Haibo; Agathopoulos, Simeon

    In the quest of fabricating supported catalysts, experimental results of transmission electron microscopy, Raman and infrared spectroscopy indicate that ultrasonic treatment effectively functionalizes multi-walled carbon nanotubes (MWCNTs), endowing them with groups that can act as nucleation sites which can favor well-dispersed depositions of PtRu clusters on their surface. Ultrasonic treatment seems to be superior than functionalization via regular refluxing. This is confirmed by the determination of the electrochemistry active surface area (ECA) and the CO-tolerance performance of the PtRu catalysts, measured by adsorbed CO-stripping voltammetry in 0.5 M sulfuric acid solution, and the real surface area of the PtRu catalysts, evaluated by Brunauer-Emmett-Teller (BET) measurements. Finally, the effectiveness for methanol oxidation is assessed by cyclic voltammetry (CV) in a sulfuric acid and methanol electrolyte.

  11. Optimizing the ORR activity of Pd based nanocatalysts by tuning their strain and particle size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Weiping; Liutheviciene Cordeiro, Marco Aurelio; Gong, Mingxing

    Controlling of the particle size and surface strain is the key to tuning the surface chemistry and optimizing the catalytic performance of electrocatalysts. In this study, we show that by introducing both Fe and Co into Pd lattices, the surface strain of Pd nanocatalysts can be tuned to optimize their oxygen reduction activity in both fuel cells and Zn–air batteries. The Pd 2FeCo/C alloy particles are uniquely coated with an ultrathin Fe 2O 3 shell which is in situ formed during a thermal annealing treatment. The thin shell acts as an effective barrier that prevents the coalescence and ripening ofmore » Pd 2FeCo/C nanoparticles. Compared with Pd/C, Pd 2FeCo/C exhibits higher catalytic activity and long-term stability for the ORR, signifying changes in catalytic behavior due to particle sizes and strain effects. Moreover, by spontaneous decoration of Pt on the surface of Pd 2FeCo/C, the Pd 2FeCo@Pt/C core@shell structure was formed and the Pt mass activity was about 37.6 and 112.5 times higher than that on Pt/C in a 0.1 M HClO 4 and KOH solution at 0.9 V, respectively, suggesting an enhanced ORR performance after Pt decoration. More interestingly, Pd 2FeCo@Pt/C also shows a power density of ~308 mW cm -2, which is much higher than that of Pt/C (175 mW cm -2), and excellent durability in a home-made Zn–air battery.« less

  12. Optimizing the ORR activity of Pd based nanocatalysts by tuning their strain and particle size

    DOE PAGES

    Xiao, Weiping; Liutheviciene Cordeiro, Marco Aurelio; Gong, Mingxing; ...

    2017-04-18

    Controlling of the particle size and surface strain is the key to tuning the surface chemistry and optimizing the catalytic performance of electrocatalysts. In this study, we show that by introducing both Fe and Co into Pd lattices, the surface strain of Pd nanocatalysts can be tuned to optimize their oxygen reduction activity in both fuel cells and Zn–air batteries. The Pd 2FeCo/C alloy particles are uniquely coated with an ultrathin Fe 2O 3 shell which is in situ formed during a thermal annealing treatment. The thin shell acts as an effective barrier that prevents the coalescence and ripening ofmore » Pd 2FeCo/C nanoparticles. Compared with Pd/C, Pd 2FeCo/C exhibits higher catalytic activity and long-term stability for the ORR, signifying changes in catalytic behavior due to particle sizes and strain effects. Moreover, by spontaneous decoration of Pt on the surface of Pd 2FeCo/C, the Pd 2FeCo@Pt/C core@shell structure was formed and the Pt mass activity was about 37.6 and 112.5 times higher than that on Pt/C in a 0.1 M HClO 4 and KOH solution at 0.9 V, respectively, suggesting an enhanced ORR performance after Pt decoration. More interestingly, Pd 2FeCo@Pt/C also shows a power density of ~308 mW cm -2, which is much higher than that of Pt/C (175 mW cm -2), and excellent durability in a home-made Zn–air battery.« less

  13. Comparative Study of the ORR Activity and Stability of Pt and PtM (M = Ni, Co, Cr, Pd) Supported on Polyaniline/Carbon Nanotubes in a PEM Fuel Cell.

    PubMed

    Kaewsai, Duanghathai; Hunsom, Mali

    2018-05-04

    The oxygen reduction reaction (ORR) activity and stability of platinum (Pt) and PtM (M = Ni, Co, Cr, Pd) supported on polyaniline/carbon nanotube (PtM/PANI-CNT) were explored and compared with the commercial Pt/C catalyst (ETEK). The Pt/PANI-CNT catalyst exhibited higher ORR activity and stability than the commercial Pt/C catalyst even though it had larger crystallite/particle sizes, lower catalyst dispersion and lower electrochemical surface area (ESA), probably because of its high electrical conductivity. The addition of second metal (M) enhanced the ORR activity and stability of the Pt/PANI-CNT catalyst, because the added M induced the formation of a PtM alloy and shifted the d -band center to downfield, leading to a weak chemical interaction between oxygenated species and the catalyst surface and, therefore, affected positively the catalytic activity. Among all the tested M, the addition of Cr was optimal. Although it improved the ORR activity of the Pt/PANI-CNT catalyst slightly less than that of Pd (around 4.98%) in low temperature (60 °C)/pressure (1 atm abs), it reduced the ESA loss by around 14.8% after 1000 cycles of repetitive cyclic voltammetry (CV). In addition, it is cheaper than Pd metal. Thus, Cr was recommended as the second metal to alloy with Pt on the PANI-CNT support.

  14. Comparative Study of the ORR Activity and Stability of Pt and PtM (M = Ni, Co, Cr, Pd) Supported on Polyaniline/Carbon Nanotubes in a PEM Fuel Cell

    PubMed Central

    Kaewsai, Duanghathai; Hunsom, Mali

    2018-01-01

    The oxygen reduction reaction (ORR) activity and stability of platinum (Pt) and PtM (M = Ni, Co, Cr, Pd) supported on polyaniline/carbon nanotube (PtM/PANI-CNT) were explored and compared with the commercial Pt/C catalyst (ETEK). The Pt/PANI-CNT catalyst exhibited higher ORR activity and stability than the commercial Pt/C catalyst even though it had larger crystallite/particle sizes, lower catalyst dispersion and lower electrochemical surface area (ESA), probably because of its high electrical conductivity. The addition of second metal (M) enhanced the ORR activity and stability of the Pt/PANI-CNT catalyst, because the added M induced the formation of a PtM alloy and shifted the d-band center to downfield, leading to a weak chemical interaction between oxygenated species and the catalyst surface and, therefore, affected positively the catalytic activity. Among all the tested M, the addition of Cr was optimal. Although it improved the ORR activity of the Pt/PANI-CNT catalyst slightly less than that of Pd (around 4.98%) in low temperature (60 °C)/pressure (1 atm abs), it reduced the ESA loss by around 14.8% after 1000 cycles of repetitive cyclic voltammetry (CV). In addition, it is cheaper than Pd metal. Thus, Cr was recommended as the second metal to alloy with Pt on the PANI-CNT support. PMID:29734719

  15. Photo-induced water oxidation at the aqueous GaN (101¯0) interface: Deprotonation kinetics of the first proton-coupled electron-transfer step

    DOE PAGES

    Ertem, Mehmed Z.; Kharche, Neerav; Batista, Victor S.; ...

    2015-03-12

    Photoeclectrochemical water splitting plays a key role in a promising path to the carbon-neutral generation of solar fuels. Wurzite GaN and its alloys ( e.g., GaN/ZnO and InGaN) are demonstrated photocatalysts for water oxidation, and they can drive the overall water splitting reaction when coupled with co-catalysts for proton reduction. In the present work, we investigate the water oxidation mechanism on the prototypical GaN (101¯0) surface using a combined ab initio molecular dynamics and molecular cluster model approach taking into account the role of water dissociation and hydrogen bonding within the first solvation shell of the hydroxylated surface. The investigationmore » of free-energy changes for the four proton-coupled electron-transfer (PCET) steps of the water oxidation mechanism shows that the first PCET step for the conversion of –Ga-OH to –Ga-O˙⁻ requires the highest energy input. We further examine the sequential PCETs, with the proton transfer (PT) following the electron transfer (ET), and find that photo-generated holes localize on surface –NH sites is thermodynamically more favorable than –OH sites. However, proton transfer from –OH sites with subsequent localization of holes on oxygen atoms is kinetically favored owing to hydrogen bonding interactions at the GaN (101¯0)–water interface. We find that the deprotonation of surface –OH sites is the limiting factor for the generation of reactive oxyl radical ion intermediates and consequently for water oxidation.« less

  16. Direct observation of surface ethyl to ethane interconversion upon C2H4 hydrogenation over Pt/Al2O3 catalyst by time-resolved FT-IR spectroscopy.

    PubMed

    Wasylenko, Walter; Frei, Heinz

    2005-09-08

    Time-resolved FT-IR spectra of ethylene hydrogenation over alumina-supported Pt catalyst were recorded at 25 ms resolution in the temperature range of 323-473 K using various H2 concentrations (1 atm total gas pressure). Surface ethyl species (2870 and 1200 cm(-1)) were detected at all temperatures along with the gas-phase ethane product (2954 and 2893 cm(-1)). The CH3CH2Pt growth was instantaneous on the time scale of 25 ms under all experimental conditions. At 323 K, the decay time of surface ethyl (122 +/- 10 ms) coincides with the rise time of ethane (144 +/- 14 ms). This establishes direct kinetic evidence for surface ethyl as the relevant reaction intermediate. Such a direct link between the temporal behavior of an unstable surface intermediate and the final product in a heterogeneous catalytic system has not been demonstrated before. A fraction (25%) of the asymptotic ethane growth at 323 K is prompt, indicating that there are surface ethyl species that react much faster than the majority of the CH3CH2Pt intermediates. The dispersive kinetics is attributed to the varying strength of interaction of the ethyl species with the Pt surface caused by heterogeneity of the surface environment. At 473 K, the majority of ethyl intermediates are hydrogenated prior to the recording of the first time slice (24 ms), and a correspondingly large prompt growth of ethane is observed. The yield and kinetics of the surface ethylidyne are in agreement with the known spectator nature of this species.

  17. Construction of Polarized Carbon-Nickel Catalytic Surfaces for Potent, Durable, and Economic Hydrogen Evolution Reactions.

    PubMed

    Zhou, Min; Weng, Qunhong; Popov, Zakhar I; Yang, Yijun; Antipina, Liubov Yu; Sorokin, Pavel B; Wang, Xi; Bando, Yoshio; Golberg, Dmitri

    2018-05-22

    Electrocatalytic hydrogen evolution reaction (HER) in alkaline solution is hindered by its sluggish kinetics toward water dissociation. Nickel-based catalysts, as low-cost and effective candidates, show great potentials to replace platinum (Pt)-based materials in the alkaline media. The main challenge regarding this type of catalysts is their relatively poor durability. In this work, we conceive and construct a charge-polarized carbon layer derived from carbon quantum dots (CQDs) on Ni 3 N nanostructure (Ni 3 N@CQDs) surfaces, which simultaneously exhibit durable and enhanced catalytic activity. The Ni 3 N@CQDs shows an overpotential of 69 mV at a current density of 10 mA cm -2 in a 1 M KOH aqueous solution, lower than that of Pt electrode (116 mV) at the same conditions. Density functional theory (DFT) simulations reveal that Ni 3 N and interfacial oxygen polarize charge distributions between originally equal C-C bonds in CQDs. The partially negatively charged C sites become effective catalytic centers for the key water dissociation step via the formation of new C-H bond (Volmer step) and thus boost the HER activity. Furthermore, the coated carbon is also found to protect interior Ni 3 N from oxidization/hydroxylation and therefore guarantees its durability. This work provides a practical design of robust and durable HER electrocatalysts based on nonprecious metals.

  18. A Comparative Study of Hydrodeoxygenation of Furfural Over Fe/Pt(111) and Fe/Mo 2C Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Weiming; Jiang, Zhifeng; Chen, Jingguang G.

    It is desirable to convert biomass-derived furfural to 2-methylfuran through the hydrodeoxygenation (HDO) reaction using an inexpensive catalyst with high stability. In this work, Mo 2C was used as an alternative substrate to replace precious Pt to support monolayer Fe for the HDO reaction of furfural. The HDO activity and stability of Fe/Pt(111) and Fe/Mo 2C/Mo(110) surfaces were compared. Density functional theory calculations and vibrational spectroscopy results indicated that both surfaces bonded to furfural with similar adsorption geometries and should be active toward the furfural HDO reaction. Temperature programmed desorption experiments confirmed a similar HDO activity between the two surfaces,more » with Fe/Mo 2C/Mo(110) being more thermally stable than Fe/Pt(111). As a result, the combined theoretical and experimental results demonstrated that Fe/Mo 2C should be a promising non-precious metal catalyst for the HDO reaction of furfural to produce 2-methylfuran.« less

  19. A Comparative Study of Hydrodeoxygenation of Furfural Over Fe/Pt(111) and Fe/Mo 2C Surfaces

    DOE PAGES

    Wan, Weiming; Jiang, Zhifeng; Chen, Jingguang G.

    2018-01-19

    It is desirable to convert biomass-derived furfural to 2-methylfuran through the hydrodeoxygenation (HDO) reaction using an inexpensive catalyst with high stability. In this work, Mo 2C was used as an alternative substrate to replace precious Pt to support monolayer Fe for the HDO reaction of furfural. The HDO activity and stability of Fe/Pt(111) and Fe/Mo 2C/Mo(110) surfaces were compared. Density functional theory calculations and vibrational spectroscopy results indicated that both surfaces bonded to furfural with similar adsorption geometries and should be active toward the furfural HDO reaction. Temperature programmed desorption experiments confirmed a similar HDO activity between the two surfaces,more » with Fe/Mo 2C/Mo(110) being more thermally stable than Fe/Pt(111). As a result, the combined theoretical and experimental results demonstrated that Fe/Mo 2C should be a promising non-precious metal catalyst for the HDO reaction of furfural to produce 2-methylfuran.« less

  20. Fabrication of efficient TiO2-RGO heterojunction composites for hydrogen generation via water-splitting: Comparison between RGO, Au and Pt reduction sites

    NASA Astrophysics Data System (ADS)

    El-Bery, Haitham M.; Matsushita, Yoshihisa; Abdel-moneim, Ahmed

    2017-11-01

    A facile one-step synthesis approach of M/TiO2/RGO (M = Au or Pt) ternary composite by hydrothermal treatment for hydrogen generation via water-splitting was investigated. Photocurrent response measurements revealed that TiO2 (P25) nanoparticles anchored on the reduced graphene oxide (RGO) surface exhibited a p-n heterojunction interface by changing the photocurrent direction with the applied bias from reverse to forward potential. H2 evolution rate of TiO2/RGO (5 wt.%) composite was substantially enhanced by 12-fold in comparison to bare TiO2 under simulated solar light irradiation. Cyclic volatmmetry measurements manifested, that the optimized 0.3 wt.% of platinum metal loaded on TiO2/RGO composite was the most active catalytic reduction sites for hydrogen generation reaction with an initial hydrogen rate of 670 μmol h-1. This study sheds the light on the tunable semiconductor type of TiO2/RGO composite fabricated by solution mixing pathway and its merits to improve the photocatalytic activity.

  1. Electrode-Modified Zeolites - Electrode Microstructures Contained in and on a Heterogeneous Catalyst

    DTIC Science & Technology

    1988-07-15

    zeolite Type Y and Pt supported on gamma-alumina. The electrolytic response of zeolite-supported Pt in the absence of added electrolyte salt for water or...character of metals at sizes where’ bulk metallic properties may not be exhibited. Furthermore, electrolyses are now allowed using loadings of catalysts which...in water until the filtrate tested negatively for Cl with AgNO 3; PtY was then dried a- 135 C. Equilibrium exchnge occurs at these low weight

  2. H2 spillover enhanced hydrogenation capability of TiO2 used for photocatalytic splitting of water: a traditional phenomenon for new applications.

    PubMed

    Zhu, Yingming; Liu, Dongsheng; Meng, Ming

    2014-06-07

    Black TiO2 was usually obtained via hydrogenation at high pressure and high temperature. Herein, we reported a facile hydrogenation of TiO2 in the presence of a small amount of Pt at relatively low temperature and atmospheric pressure. The hydrogen spillover from Pt to TiO2 accounts well for the greatly enhanced hydrogenation capability. The as-synthesized Pt/TiO2 exhibits remarkably improved photocatalytic activity for water splitting.

  3. Control of crystallographic texture and surface morphology of Pt/Tio2 templates for enhanced PZT thin film texture.

    PubMed

    Fox, Austin J; Drawl, Bill; Fox, Glen R; Gibbons, Brady J; Trolier-McKinstry, Susan

    2015-01-01

    Optimized processing conditions for Pt/TiO2/SiO2/Si templating electrodes were investigated. These electrodes are used to obtain [111] textured thin film lead zirconate titanate (Pb[ZrxTi1-x ]O3 0 ≤ x ≤ 1) (PZT). Titanium deposited by dc magnetron sputtering yields [0001] texture on a thermally oxidized Si wafer. It was found that by optimizing deposition time, pressure, power, and the chamber pre-conditioning, the Ti texture could be maximized while maintaining low surface roughness. When oxidized, titanium yields [100]-oriented rutile. This seed layer has as low as a 4.6% lattice mismatch with [111] Pt; thus, it is possible to achieve strongly oriented [111] Pt. The quality of the orientation and surface roughness of the TiO2 and the Ti directly affect the achievable Pt texture and surface morphology. A transition between optimal crystallographic texture and the smoothest templating surface occurs at approximately 30 nm of original Ti thickness (45 nm TiO2). This corresponds to 0.5 nm (2 nm for TiO2) rms roughness as determined by atomic force microscopy and a full-width at half-maximum (FWHM) of the rocking curve 0002 (200) peak of 5.5/spl degrees/ (3.1/spl degrees/ for TiO2). A Pb[Zr0.52Ti 0.48]O3 layer was deposited and shown to template from the textured Pt electrode, with a maximum [111] Lotgering factor of 87% and a minimum 111 FWHM of 2.4/spl degrees/ at approximately 30 nm of original Ti.

  4. Selective oxidation of carbon monoxide in fuel processor gas

    NASA Astrophysics Data System (ADS)

    Manasilp, Akkarat

    The trace amount of CO present in the hydrogen-rich stream coming from fuel reformers poisons the platinum anode electrode of proton exchange membrane (PEM) fuel cells and reduces the power output. Removal of low levels of CO present in the reformed gas must take place before the gas enters the fuel cell. The tolerable level of CO is around 10 ppm. We investigated the performance of single step sol-gel prepared Pt/alumina catalyst and Pt supported on sol gel made alumina. The effect of water vapor, carbon dioxide, CO and oxygen concentrations, temperature, and Pt loading on the activity and selectivity are presented. Our results showed that a 2%Pt/alumina sol-gel catalyst can selectively oxide CO down to a few ppm with constant selectivity and high space velocity. Water vapor in the feed increases the activity of catalysts dramatically and in the absence of water vapor, CO2 in the feed stream decreases the activity of the catalysts significantly. We also found that the presence of potassium as an electron donor did not improve the performance of Pt/alumina catalyst to the selective CO oxidation. For Pt supported on sol gel made alumina, we found that the combination of CO2 and H2O in the gas feed has a strong effect on selective CO oxidation over Pt/Al2O3. It could be a positive or negative effect depending upon Pt loading in the catalyst. With high Pt loading, the CO2 effect tends to dominate the H2O effect resulting in the decrease in CO conversion. Moreover, the presence of CeO2 as an oxygen storage compound promotes the performance of Pt supported on alumina at low temperature ˜90°C when Pt loading was 5%. Amongst the examined catalysts, the 5%Pt/15%CeO2/Al 2O3 catalyst showed the highest selectivity, with high CO conversion at a low temperature ˜90°C. The beneficial effect of the addition of CeO2 is most likely due to spillover of O2 from CeO2 to Pt at the Pt sites at the interface of Pt and CeO 2.

  5. Experimental Observation of Temperature Variation of Surface Magnetization on a Nanostructured Co/Pt Thin Film

    NASA Astrophysics Data System (ADS)

    Nwokoye, Chidubem; Della Torre, Edward; Bennett, Lawrence; Siddique, Abid; Narducci, Frank A.

    2015-04-01

    Magneto-optic Kerr effect, MOKE, is used to observe the complex rotation of the polarization plane of linearly polarized incident light reflected from the surface of a magnetic material. The rotation is directly related to the surface magnetization of the material. We report work that extends the experiments in that studied Bose-Einstein Condensation (BEC) of magnons in confined nanostructures. We report the MOKE experimental results of an investigation of surface magnetic remanence and coercivity on a Co/Pt ferromagnetic thin film at low-temperatures. Our findings are explained and are attributed to the BEC of confined magnons in the Co/Pt thin film. We recognize financial support from the Naval Air Systems Command Section 219 grant.

  6. High-density platinum nanoparticle-decorated titanium dioxide nanofiber networks for efficient capillary photocatalytic hydrogen generation

    Treesearch

    Zhaodong Li; Chunhua Yao; Yi-Cheng Wang; Solomon Mikael; Sundaram Gunasekaran; Zhenqiang Ma; Zhiyong Cai; Xudong Wang

    2016-01-01

    Aldehyde-functionalized cellulose nanofibers (CNFs) were applied to synthesize Pt nanoparticles (NPs) on CNF surfaces via on-site Pt ion reduction and achieve high concentration and uniform Pt NP loading. ALD could then selectively deposit TiO2 on CNFs and keep the Pt NPs uncovered due to their drastically different hydro-affinity properties. The...

  7. Cell-targeted platinum nanoparticles and nanoparticle clusters.

    PubMed

    Papst, Stefanie; Brimble, Margaret A; Evans, Clive W; Verdon, Daniel J; Feisst, Vaughan; Dunbar, P Rod; Tilley, Richard D; Williams, David E

    2015-06-21

    Herein, we report the facile preparation of cell-targeted platinum nanoparticles (PtNPs), through the design of peptides that, as a single molecule added in small concentration during the synthesis, control the size of PtNP clusters during their growth, stabilise the PtNPs in aqueous suspension and enable the functionalisation of the PtNPs with a versatile range of cell-targeting ligands. Water-soluble PtNPs targeted respectively at blood group antigens and at integrin receptors are demonstrated.

  8. Nano-engineered intrapores in nanoparticles of PtNi networks for increased oxygen reduction reaction activity

    NASA Astrophysics Data System (ADS)

    Ding, Jieting; Ji, Shan; Wang, Hui; Key, Julian; Brett, Dan J. L.; Wang, Rongfang

    2018-01-01

    Network-like metallic alloys of solid nanoparticles have been frequently reported as promising electrocatalysts for fuel cells. The three-dimensional structure of such networks is rich in pores in the form of voids between nanoparticles, which collectively expose a large surface area for catalytic activity. Herein, we present a novel solution to this problem using a precursor comprising a flocculent core-shell PtNi@Ni to produce PtNi network catalysts with nanoparticle intraporosity after carefully controlled electrochemical dealloying. Physical characterization shows a hierarchical level of nanoporosity (intrapores within nanoparticles and pores between them) evolves during the controlled electrochemical dealloying, and that a Pt-rich surface also forms after 22 cycles of Ni leaching. In ORR cycling, the PtNi networks gain 4-fold activity in both jECSA and jmass over a state of the art Pt/C electrocatalyst, and also significantly exceed previously reported PtNi networks. In ORR degradation tests, the PtNi networks also proved stable, dropping by 30.4% and 62.6% in jECSA and jmass respectively. The enhanced performance of the catalyst is evident, and we also propose that the presented synthesis procedure can be generally applied to developing other metallic networks.

  9. Elucidating hydrogen oxidation/evolution kinetics in base and acid by enhanced activities at the optimized Pt shell thickness on the Ru core

    DOE PAGES

    Elbert, Katherine; Hu, Jue; Ma, Zhong; ...

    2015-10-05

    Hydrogen oxidation and evolution on Pt in acid are facile processes, while in alkaline electrolytes, they are 2 orders of magnitude slower. Thus, developing catalysts that are more active than Pt for these two reactions is important for advancing the performance of anion exchange membrane fuel cells and water electrolyzers. Herein, we detail a 4-fold enhancement of Pt mass activity that we achieved using single-crystalline Ru@Pt core–shell nanoparticles with two-monolayer-thick Pt shells, which doubles the activity on Pt–Ru alloy nanocatalysts. For Pt specific activity, the two- and one-monolayer-thick Pt shells exhibited enhancement factors of 3.1 and 2.3, respectively, compared tomore » the Pt nanocatalysts in base, differing considerably from the values of 1 and 0.4, respectively, in acid. To explain such behavior and the orders of magnitude difference in activity on going from acid to base, we performed kinetic analyses of polarization curves over a wide range of potential from –250 to 250 mV using the dual-pathway kinetic equation. From acid to base, the activation free energies increase the most for the Volmer reaction, resulting in a switch of the rate-determining step from the Tafel to the Volmer reaction, and a shift to a weaker optimal hydrogen binding energy. Furthermore, the much higher activation barrier for the Volmer reaction in base than in acid is ascribed to one or both of the two catalyst-insensitive factors: slower transport of OH – than H + in water and a stronger O–H bond in water molecules (HO–H) than in hydrated protons (H 2O–H +).« less

  10. Activity descriptor identification for oxygen reduction on platinum-based bimetallic nanoparticles: in situ observation of the linear composition-strain-activity relationship.

    PubMed

    Jia, Qingying; Liang, Wentao; Bates, Michael K; Mani, Prasanna; Lee, Wendy; Mukerjee, Sanjeev

    2015-01-27

    Despite recent progress in developing active and durable oxygen reduction catalysts with reduced Pt content, lack of elegant bottom-up synthesis procedures with knowledge over the control of atomic arrangement and morphology of the Pt-alloy catalysts still hinders fuel cell commercialization. To follow a less empirical synthesis path for improved Pt-based catalysts, it is essential to correlate catalytic performance to properties that can be easily controlled and measured experimentally. Herein, using Pt-Co alloy nanoparticles (NPs) with varying atomic composition as an example, we show that the atomic distribution of Pt-based bimetallic NPs under operating conditions is strongly dependent on the initial atomic ratio by employing microscopic and in situ spectroscopic techniques. The PtxCo/C NPs with high Co content possess a Co concentration gradient such that Co is concentrated in the core and gradually depletes in the near-surface region, whereas the PtxCo/C NPs with low Co content possess a relatively uniform distribution of Co with low Co population in the near-surface region. Despite their different atomic structure, the oxygen reduction reaction (ORR) activity of PtxCo/C and Pt/C NPs is linearly related to the bulk average Pt-Pt bond length (RPt-Pt). The RPt-Pt is further shown to contract linearly with the increase in Co/Pt composition. These linear correlations together demonstrate that (i) the improved ORR activity of PtxCo/C NPs over pure Pt NPs originates predominantly from the compressive strain and (ii) the RPt-Pt is a valid strain descriptor that bridges the activity and atomic composition of Pt-based bimetallic NPs.

  11. Nanoscale Engineering of Efficient Oxygen Reduction Electrocatalysts by Tailoring the Local Chemical Environment of Pt Surface Sites

    DOE PAGES

    Cleve, Tim Van; Moniri, Saman; Belok, Gabrielle; ...

    2016-11-16

    The oxygen reduction reaction is the limiting half-reaction in hydrogen fuel cells. While Pt is the most active single component electrocatalyst for the reaction, it is hampered by high cost and low reaction rates. Most research to overcome these limitations has focused on Pt/3d alloys, which offer higher rates and lower cost. Here, we have synthesized, characterized, and tested alloy materials belonging to a multilayer family of electrocatalysts. The multilayer alloy materials contain an AuCu alloy core of precise composition, surrounded by Au layers and covered by a catalytically active Pt surface layer. Their performance relative to that of themore » commercial Pt standards reaches up to 4 times improved area-specific activity. Characterization studies support the hypothesis that the activity improvement originates from a combination of Au–Pt ligand effects and local strain effects manipulated through the AuCu alloy core. The approach we present to control the strain and ligand effects in the synthesis of Pt-based alloys for the ORR is very general and could lead to promising alloy materials.« less

  12. Pt/glassy carbon model catalysts prepared from PS-b-P2VP micellar templates.

    PubMed

    Gu, Yunlong; St-Pierre, Jean; Ploehn, Harry J

    2008-11-04

    Poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer was used as a micellar template to fabricate arrays of Pt nanoparticles on mica and glassy carbon (GC) supports. Polymer micellar deposition yields Pt nanoparticles with tunable particle size and surface number density on both mica and GC. After deposition of precursor-loaded micelles onto GC, oxygen plasma etching removes the polymer shell, followed by thermal treatment with H2 gas to reduce the Pt. Etching conditions were optimized to maximize removal of the polymer while minimizing damage to the GC. Arrays of Pt nanoparticles with controlled size and surface number density can be prepared on mica (for particle size characterization) and GC to make Pt/GC model catalysts. These model catalysts were characterized by tapping mode atomic force microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry to measure activity for oxidation of carbon monoxide or methanol. Cyclic voltammetry results demonstrate the existence of a correlation between Pt particle size and electrocatalytic properties including onset potential, tolerance of carbonaceous adsorbates, and intrinsic activity (based on active Pt area from CO stripping voltammetry). Results obtained with Pt/GC model catalysts duplicate prior results obtained with Pt/porous carbon catalysts therefore validating the synthesis approach and offering a new, tunable platform to study catalyst structure and other effects such as aging on proton exchange membrane fuel cell (PEMFC) reactions.

  13. Electron-stimulated reactions in nanoscale water films adsorbed on (alpha)-Al2O3(0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Nikolay G.; Kimmel, Gregory A.

    2018-05-11

    The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D2O) films adsorbed on -Al2O3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products ( D2, O2 and D¬2O) and the total sputtering yield increased with increasing D2O coverage up to ~15 water monolayers (i.e. ~15 1015 cm-2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D2O and H2O) demonstrated that the highest water decomposition yields occurred at the interfaces of the nanoscalemore » water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO2(110) interfaces. We propose that the relatively low activity of Al2O3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the molecular hydrogen.« less

  14. Electron-stimulated reactions in nanoscale water films adsorbed on α-Al 2 O 3 (0001)

    DOE PAGES

    Petrik, Nikolay G.; Kimmel, Greg A.

    2018-04-11

    The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D 2O) films adsorbed on an α-Al 2O 3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products (D 2, O 2 and D 2O) and the total sputtering yield increased with increasing D 2O coverage up to ~15 water monolayers (i.e. ~15 x 10 15 cm -2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D 2O and H 2O) demonstrated thatmore » the highest water decomposition yields occurred at the interfaces of the nanoscale water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO 2(110) interfaces. Here, we propose that the relatively low activity of Al 2O 3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the formation of molecular hydrogen.« less

  15. Electron-stimulated reactions in nanoscale water films adsorbed on α-Al 2 O 3 (0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Nikolay G.; Kimmel, Greg A.

    The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D 2O) films adsorbed on an α-Al 2O 3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products (D 2, O 2 and D 2O) and the total sputtering yield increased with increasing D 2O coverage up to ~15 water monolayers (i.e. ~15 x 10 15 cm -2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D 2O and H 2O) demonstrated thatmore » the highest water decomposition yields occurred at the interfaces of the nanoscale water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO 2(110) interfaces. Here, we propose that the relatively low activity of Al 2O 3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the formation of molecular hydrogen.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franke, J.-H.; Kosov, D. S.

    We study the adsorption and ring-opening of lactide on the naturally chiral metal surface Pt(321){sup S}. Lactide is a precursor for polylactic acid ring-opening polymerization, and Pt is a well known catalyst surface. We study, here, the energetics of the ring-opening of lactide on a surface that has a high density of kink atoms. These sites are expected to be present on a realistic Pt surface and show enhanced catalytic activity. The use of a naturally chiral surface also enables us to study potential chiral selectivity effects of the reaction at the same time. Using density functional theory with amore » functional that includes the van der Waals forces in a first-principles manner, we find modest adsorption energies of around 1.4 eV for the pristine molecule and different ring-opened states. The energy barrier to be overcome in the ring-opening reaction is found to be very small at 0.32 eV and 0.30 eV for LL- and its chiral partner DD-lactide, respectively. These energies are much smaller than the activation energy for a dehydrogenation reaction of 0.78 eV. Our results thus indicate that (a) ring-opening reactions of lactide on Pt(321) can be expected already at very low temperatures, and Pt might be a very effective catalyst for this reaction; (b) the ring-opening reaction rate shows noticeable enantioselectivity.« less

  17. Fragile morphotropic phase boundary and phase stability in the near-surface region of the relaxor ferroelectric (1 -x ) Pb (Z n1 /3N b2 /3) O3-x PbTi O3 : [001] field-cooled phase diagrams

    NASA Astrophysics Data System (ADS)

    Wang, Yaojin; Wang, Ding; Yuan, Guoliang; Ma, He; Xu, Feng; Li, Jiefang; Viehland, D.; Gehring, Peter M.

    2016-11-01

    We have examined the effects of field cooling on the phase diagram of the relaxor system (1 -x ) Pb (Z n1 /3N b2 /3) O3-x PbTi O3 (PZN-x PT ) for compositions near the morphotropic phase boundary (MPB). High-resolution diffraction measurements using Cu Kα x rays, which probe ≈3 μ m below the crystal surface, were made on field-cooled (FC) single-crystal specimens of PZN-4.5 %PT and PZN-6.5 %PT under electric fields of 1 and 2 kV/cm applied along [001] and combined with previous neutron diffraction data, which probe the entire crystal volume, for FC PZN-8 %PT [Ohwada et al., Phys. Rev. B 67, 094111 (2003), 10.1103/PhysRevB.67.094111]. A comparison to the zero-field-cooled (ZFC) PZN-x PT phase diagram reveals several interesting features: (1) The short-range monoclinic phase observed in the ZFC state on the low-PT side of the MPB is replaced by a monoclinic MA phase; (2) field cooling extends the tetragonal phase to higher temperatures and lower-PT concentrations; (3) the orthorhombic phase near the MPB is replaced by a monoclinic MC phase; (4) the vertical MPB in the ZFC phase diagram bends significantly towards the low-PT side in the FC state. These results demonstrate that both the phase stability and the nature of the MPB in PZN-PT within the near-surface regions are fragile in the presence of electric fields.

  18. Structural and chemical characterization of terbia thin films grown on hexagonally close packed metal substrates

    NASA Astrophysics Data System (ADS)

    Cartas, William

    Rare earth oxides (REOs) exhibit favorable catalytic performance for a diverse set of chemical transformations, including both partial and complete oxidation reactions. I will discuss our efforts to develop thin film systems of terbia for model surface science investigations of a REO that is effectively reducible, and which is thus expected to promote complete oxidation chemistry of adsorbed species. The growth of terbia on Cu(111) is shown to produce a complex surface that exhibits multiple phases of the oxide as well as exposed substrate. Growing the film on Pt(111) results in more uniform, single phase, and closed film. We used low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) to characterize the structural properties of terbia thin films grown on Pt(111) in ultrahigh vacuum (UHV) using physical vapor deposition. We find that the REO grows as a high quality Tb2O 3(111) film, and adopts oxygen-deficient fluorite structures wherein the metal cations form a hexagonal lattice in registry with the Pt(111) substrate, while oxygen vacancies are randomly distributed within the film. The Tb 2O3(111) films are thermally stable when heated to 1000 K in UHV. LEED and STM show that a fraction of the Tb2O3 forms hexagonal islands when first deposited, and further depositions typically result in three dimensional growth of the film. The Tb2O3 (111) / Pt(111) system produces a coincidence structure, seen very clearly in LEED images. We have also found that Tb2O3(111) films can be oxidized in UHV by exposure to plasma-generated atomic oxygen beams. The oxidized films have an estimated TbO2 stoichiometry and decompose to Tb2O3 during heating, with O2 desorption starting at about 500 K. Terbia films oxidized at 90 K show a weakly bound state of oxygen that is likely chemisorbed. Temperature programmed reaction spectroscopy (TPRS) studies using methanol show that increased oxygen in the film does not modify the chemical selectivity of the film; however, the increased oxygen content does increase the activity of the film toward methanol dehydrogenation. We have found that when methanol is adsorbed onto the terbia-Pt(111) system, it reacts to form formaldehyde and water and reduces the surface. The development of high-quality terbia thin films on Pt(111) provides new opportunities to investigate oxidation chemistry on an REO that has distinct reduction and oxidation properties.

  19. Aqueous synthesis of near-infrared highly fluorescent platinum nanoclusters

    NASA Astrophysics Data System (ADS)

    García Fernández, Jenifer; Trapiella-Alfonso, Laura; Costa-Fernández, José M.; Pereiro, Rosario; Sanz-Medel, Alfredo

    2015-05-01

    A one-step synthesis of near infrared fluorescent platinum nanoclusters (PtNCs) in aqueous medium is described. The proposed optimized procedure for PtNC synthesis is rather simple, fast and it is based on the direct metal reduction with NaBH4. Bidentated thiol ligands (lipoic acid) were selected as nanoclusters stabilizers in water media. The structural characterization revealed attractive features of the PtNCs, including small size, high water solubility, near-infrared luminescence centered at 680 nm, long-term stability and the highest quantum yield in water reported so far (47%) for PtNCs. Moreover, their stability in different pH media and an ionic strength of 0.2 M NaCl was studied and no significant changes in fluorescence emission were detected. In brief, they offer a new type of fluorescent noble metal nanoprobe with a great potential to be applied in several fields, including biolabeling and imaging experiments.

  20. In situ X-ray probing reveals fingerprints of surface platinum oxide.

    PubMed

    Friebel, Daniel; Miller, Daniel J; O'Grady, Christopher P; Anniyev, Toyli; Bargar, John; Bergmann, Uwe; Ogasawara, Hirohito; Wikfeldt, Kjartan Thor; Pettersson, Lars G M; Nilsson, Anders

    2011-01-07

    In situ X-ray absorption spectroscopy (XAS) at the Pt L(3) edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard X-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF code and complementary extended X-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.

  1. Pt-black catalysts sintered at different temperatures: Surface analysis and activity in reactions of n-hexane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paal, Z.; Xu, X.L.; Paal-Lukacs, J.

    Pt-black catalysts sintered at 473 and 633 K ({open_quotes}Pt-473{close_quotes} and {open_quotes}Pt-633{close_quotes}), respectively, have been characterized by X-ray diffraction and analyzed by XPS, UPS, and AES after carrying out n-hexane reactions. The analysis has been repeated after O{sub 2}-H{sub 2} regeneration in the preparation chamber of the UHV apparatus. The surface of the blacks contains some carbon and oxygen impurities even after regeneration. Both Pt-473 and Pt-633 show high Pt 4f line intensity. Decomposition of the C 1s line reveals a higher amount of oxidized carbon polymers on Pt-633. This sample is free from lattice strain. The likely higher abundance ofmore » exposed hexagonal symmetry faces, namely the (111) plane and analogous stepped and kinked structures, may be one of the reasons why fragmentation and aromatization are favored on Pt-633, as opposed to the higher selectivity of isomerization and C{sub 5}-cyclization on Pt-473. The higher amount of oxidized carbonaceous polymer overlayer (serving as {open_quotes}hydrogen catcher{close_quotes}) on Pt-633 as well as the less-retained hydrogen by its crystallites without lattice strain may also contribute to the different selectivity and hydrogen pressure response of the n-hexane reaction over the two samples. Product ratios are suggested as an additional diagnostic tool for characterizing the hydrogen availability on the catalysts. 59 refs., 9 figs., 5 tabs.« less

  2. Controllable pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells.

    PubMed

    Mu, Yongyan; Liang, Hanpu; Hu, Jinsong; Jiang, Li; Wan, Lijun

    2005-12-01

    We report a novel process to prepare well-dispersed Pt nanoparticles on CNTs. Pt nanoparticles, which were modified by the organic molecule triphenylphosphine, were deposited on multiwalled carbon nanotubes by the organic molecule, which acts as a cross linker. By manipulating the relative ratio of Pt nanoparticles and multiwalled carbon nanotubes in solution, Pt/CNT composites with different Pt content were achieved. The so-prepared Pt/CNT composite materials show higher electrocatalytic activity and better tolerance to poisoning species in methanol oxidation than the commercial E-TEK catalyst, which can be ascribed to the high dispersion of Pt nanoparticles on the multiwalled carbon nanotube surface.

  3. Size-depressed critical temperatures for the order-disorder transition of FePt, CoPt, FePb, Cu2S, and ZnS nanostructures

    NASA Astrophysics Data System (ADS)

    Jiang, R.; Zhou, Z. F.; Yang, X. X.; Guo, N. G.; Qi, W. H.; Sun, C. Q.

    2013-01-01

    The size dependency of the critical temperature (TC) for the order-disorder phase transitions of both the bimetallic and the chalcogenide nanoclusters is shown to follow the rule of bond order-length-strength correlation. The loss of the cohesive energy of the undercoordinated atoms in the surface skin dictates the structural stability. Theoretical reproduction of the size TC trends of FePt, CoPt, FePb, Cu2S, and ZnS nanostructures not only confirms our expectations without involving the concepts of surface energy or entropy used for continuum bulk materials but also provides guideline for engineering nanostructured alloys or compounds.

  4. A density functional theory study of self-regenerating catalysts LaFe(1-x)M(x)O(3-y) (M = Pd, Rh, Pt).

    PubMed

    Hamada, Ikutaro; Uozumi, Akifumi; Morikawa, Yoshitada; Yanase, Akira; Katayama-Yoshida, Hiroshi

    2011-11-23

    Periodic density functional theory was used to investigate the stability and electronic structures of precious-metal atoms in the vicinity of LaFe(1-x)M(x)O(3) (M = Pd, Rh, Pt) perovskite catalyst surfaces. It was found that the surface segregation of Pd and Pt is significantly stabilized by the introduction of O vacancies, whereas the solid-solution phase is favorable for Rh, suggesting an important role of O vacancies in the self-regeneration of Pd and Pt. On the basis of the results, we propose a possible scenario for the self-regeneration of the precious metal in the perovskite catalyst.

  5. Activated adsorption of methane on clean and oxygen-modified Pt?111? and Pd?110?

    NASA Astrophysics Data System (ADS)

    Valden, M.; Pere, J.; Hirsimäki, M.; Suhonen, S.; Pessa, M.

    1997-04-01

    Activated adsorption of CH 4 on clean and oxygen modified Pt{111} and Pd{110} has been studied using molecular beam surface scattering. The absolute dissociation probability of CH 4 was measured as a function of the incident normal energy ( E) and the surface temperature ( Ts). The results from clean Pt{111} and Pd{110} are consistent with a direct dissociation mechanism. The dissociative chemisorption dynamics of CH 4 is addressed by using quantum mechanical and statistical models. The influence of adsorbed oxygen on the dissociative adsorption of CH 4 on both Pt{111} and Pd{110} shows that the dissociation probability decreases linearly with increasing oxygen coverage.

  6. Kinetics of pulse photothermal surface deformation as a method of studying the phase interface movement in a first-order phase transition

    NASA Astrophysics Data System (ADS)

    Vintzentz, S. V.; Kiselev, V. F.; Levshin, N. L.; Sandomirskii, V. B.

    1991-01-01

    The photothermal surface deformation (PTSD) method is used for characterization of the first-order phase transition (PT) for the first time. The advantages of the method are demonstrated experimentally for the well known metal-to-semiconductor PT in VO 2. It is found that near the PT temperature the PTSD pulse in a VO 2 film has a sign opposite to that of the thermoelastic response. The conclusion is drawn that this phenomenon is determined primarily by the contribution of the decrease in the specific volume (Δ V/ V) of the substance involved in the semiconductor-to-metal PT. The sign of Δ V/ V for a submicron polycrystalline VO 2 film is determined. Besides, analysis shows that in the PTSD kinetics measured as a whole we can "separate" a law for the metal-semicon- ductor interface movement (i.e. the interface moves towards the interior of the film when the latter is heated and back towards the surface when it is cooling down). The relative density change due to the PT is estimated based on this law.

  7. Synthesis of Pd₃Co₁@Pt/C core-shell catalysts for methanol-tolerant cathodes of direct methanol fuel cells.

    PubMed

    Aricò, Antonino S; Stassi, Alessandro; D'Urso, Claudia; Sebastián, David; Baglio, Vincenzo

    2014-08-18

    A composite Pd-based electrocatalyst consisting of a surface layer of Pt (5 wt.%) supported on a core Pd3Co1 alloy (95 wt.%) and dispersed as nanoparticles on a carbon black support (50 wt.% metal content) was prepared by using a sulphite-complex route. The structure, composition, morphology, and surface properties of the catalyst were investigated by XRD, XRF, TEM, XPS and low-energy ion scattering spectroscopy (LE-ISS). The catalyst showed an enrichment of Pt on the surface and a smaller content of Co in the outermost layers. These characteristics allow a decrease the Pt content in direct methanol fuel cell cathode electrodes (from 1 to 0.06 mg cm(-2)) without significant decay in performance, due also to a better tolerance to methanol permeated through the polymer electrolyte membrane. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electrochemical Generation of a Hydrogen Bubble at a Recessed Platinum Nanopore Electrode.

    PubMed

    Chen, Qianjin; Luo, Long; White, Henry S

    2015-04-21

    We report the electrochemical generation of a single hydrogen bubble within the cavity of a recessed Pt nanopore electrode. The recessed Pt electrode is a conical pore in glass that contains a micrometer-scale Pt disk (1-10 μm radius) at the nanopore base and a nanometer-scale orifice (10-100 nm radius) that restricts diffusion of electroactive molecules and dissolved gas between the nanopore cavity and bulk solution. The formation of a H2 bubble at the Pt disk electrode in voltammetric experiments results from the reduction of H(+) in a 0.25 M H2SO4 solution; the liquid-to-gas phase transformation is indicated in the voltammetric response by a precipitous decrease in the cathodic current due to rapid bubble nucleation and growth within the nanopore cavity. Finite element simulations of the concentration distribution of dissolved H2 within the nanopore cavity, as a function of the H(+) reduction current, indicate that H2 bubble nucleation at the recessed Pt electrode surface occurs at a critical supersaturation concentration of ∼0.22 M, in agreement with the value previously obtained at (nonrecessed) Pt disk electrodes (∼0.25 M). Because the nanopore orifice limits the diffusion of H2 out of the nanopore cavity, an anodic peak corresponding to the oxidation of gaseous and dissolved H2 trapped in the recessed cavity is readily observed on the reverse voltammetric scan. Integration of the charge associated with the H2 oxidation peak is found to approach that of the H(+) reduction peak at high scan rates, confirming the assignment of the anodic peak to H2 oxidation. Preliminary results for the electrochemical generation of O2 bubbles from water oxidation at a recessed nanopore electrode are consistent with the electrogeneration of H2 bubbles.

  9. Melt fracturing and healing: A mechanism for degassing and origin of silicic obsidian

    USGS Publications Warehouse

    Cabrera, A.; Weinberg, R.F.; Wright, H.M.N.; Zlotnik, S.; Cas, Ray A.F.

    2011-01-01

    We present water content transects across a healed fault in pyroclastic obsidian from Lami pumice cone, Lipari, Italy, using synchrotron Fourier transform infrared spectroscopy. Results indicate that rhyolite melt degassed through the fault surface. Transects define a trough of low water content coincident with the fault trace, surrounded on either side by high-water-content plateaus. Plateaus indicate that obsidian on either side of the fault equilibrated at different pressure-temperature (P-T) conditions before being juxtaposed. The curves into the troughs indicate disequilibrium and water loss through diffusion. If we assume constant T, melt equilibrated at pressures differing by 0.74 MPa before juxtaposition, and the fault acted as a low-P permeable path for H2O that diffused from the glass within time scales of 10 and 30 min. Assuming constant P instead, melt on either side could have equilibrated at temperatures differing by as much as 100 ??C, before being brought together. Water content on the fault trace is particularly sensitive to post-healing diffusion. Its preserved value indicates either higher temperature or lower pressure than the surroundings, indicative of shear heating and dynamic decompression. Our results reveal that water contents of obsidian on either side of the faults equilibrated under different P-T conditions and were out of equilibrium with each other when they were juxtaposed due to faulting immediately before the system was quenched. Degassing due to faulting could be linked to cyclical seismic activity and general degassing during silicic volcanic activity, and could be an efficient mechanism of producing low-water-content obsidian. ?? 2011 Geological Society of America.

  10. Size-tunable drug-delivery capsules composed of a magnetic nanoshell.

    PubMed

    Fuchigami, Teruaki; Kitamoto, Yoshitaka; Namiki, Yoshihisa

    2012-01-01

    Nano-sized FePt capsules with two types of ultrathin shell were fabricated using a template method for use in a nano-scale drug delivery system. One capsule was composed of an inorganic-organic hybrid shell of a water-soluble polymer and FePt nanoparticles, and the other capsule was composed of a network of fused FePt nanoparticles. We demonstrated that FePt nanoparticles selectively accumulated on the polymer molecules adsorbed on the template silica particles, and investigated the morphologies of the particle accumulation by changing the concentration of the polymer solution with which the template particles were treated. Capsular size was reduced from 340 to less than 90 nm by changing the size of the silica template particles, and the shell thickness was controlled by changing the amount of FePt nanoparticles adsorbed on the template particles. The hybrid shell was maintained by the connection of FePt nanoparticles and polymer molecules, and the shell thickness was 10 nm at the maximum. The FePt network shell was fabricated by hydrothermal treatment of the FePt/polymer-modified silica composite particles. The FePt network shell was produced from only the FePt alloy, and the shell thickness was 3 nm. Water-soluble anti-cancer drugs could be loaded into the hollow space of FePt network capsules, and lipid-coated FePt network capsules loaded with anti-cancer drugs showed cellular toxicity. The nano-sized capsular structure and the ultrathin shell suggest applicability as a drug carrier in magnetically guided drug delivery systems.

  11. Size-tunable drug-delivery capsules composed of a magnetic nanoshell

    PubMed Central

    Fuchigami, Teruaki; Kitamoto, Yoshitaka; Namiki, Yoshihisa

    2012-01-01

    Nano-sized FePt capsules with two types of ultrathin shell were fabricated using a template method for use in a nano-scale drug delivery system. One capsule was composed of an inorganic-organic hybrid shell of a water-soluble polymer and FePt nanoparticles, and the other capsule was composed of a network of fused FePt nanoparticles. We demonstrated that FePt nanoparticles selectively accumulated on the polymer molecules adsorbed on the template silica particles, and investigated the morphologies of the particle accumulation by changing the concentration of the polymer solution with which the template particles were treated. Capsular size was reduced from 340 to less than 90 nm by changing the size of the silica template particles, and the shell thickness was controlled by changing the amount of FePt nanoparticles adsorbed on the template particles. The hybrid shell was maintained by the connection of FePt nanoparticles and polymer molecules, and the shell thickness was 10 nm at the maximum. The FePt network shell was fabricated by hydrothermal treatment of the FePt/polymer-modified silica composite particles. The FePt network shell was produced from only the FePt alloy, and the shell thickness was 3 nm. Water-soluble anti-cancer drugs could be loaded into the hollow space of FePt network capsules, and lipid-coated FePt network capsules loaded with anti-cancer drugs showed cellular toxicity. The nano-sized capsular structure and the ultrathin shell suggest applicability as a drug carrier in magnetically guided drug delivery systems. PMID:23507895

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elbert, Katherine; Hu, Jue; Ma, Zhong

    Hydrogen oxidation and evolution on Pt in acid are facile processes, while in alkaline electrolytes, they are 2 orders of magnitude slower. Thus, developing catalysts that are more active than Pt for these two reactions is important for advancing the performance of anion exchange membrane fuel cells and water electrolyzers. Herein, we detail a 4-fold enhancement of Pt mass activity that we achieved using single-crystalline Ru@Pt core–shell nanoparticles with two-monolayer-thick Pt shells, which doubles the activity on Pt–Ru alloy nanocatalysts. For Pt specific activity, the two- and one-monolayer-thick Pt shells exhibited enhancement factors of 3.1 and 2.3, respectively, compared tomore » the Pt nanocatalysts in base, differing considerably from the values of 1 and 0.4, respectively, in acid. To explain such behavior and the orders of magnitude difference in activity on going from acid to base, we performed kinetic analyses of polarization curves over a wide range of potential from –250 to 250 mV using the dual-pathway kinetic equation. From acid to base, the activation free energies increase the most for the Volmer reaction, resulting in a switch of the rate-determining step from the Tafel to the Volmer reaction, and a shift to a weaker optimal hydrogen binding energy. Furthermore, the much higher activation barrier for the Volmer reaction in base than in acid is ascribed to one or both of the two catalyst-insensitive factors: slower transport of OH – than H + in water and a stronger O–H bond in water molecules (HO–H) than in hydrated protons (H 2O–H +).« less

  13. Kinetics of oxygen-enhanced water gas shift on bimetallic catalysts and the roles of metals and support

    NASA Astrophysics Data System (ADS)

    Kugai, Junichiro

    The post-processing of reformate is an important step in producing hydrogen (H2) with low carbon monoxide (CO) for low temperature fuel cells from syn-gas. However, the conventional process consists of three steps, i.e. two steps of water gas shift (WGS) and preferential oxidation (PROX) of CO, and it is not suitable for mobile applications due to the large volume of water gas shift (WGS) catalysts and conditioning and/or regeneration necessary for these catalysts. Aiming at replacing those three steps by a simple one-step process, small amount of oxygen was added to WGS (the reaction called oxygen-enhanced water gas shift or OWGS) to promote the reaction kinetics and low pyrophoric ceria-supported bimetallic catalysts were employed for stable performance in this reaction. Not only CO conversion, but also H2 yield was found to increase by the O2 addition on CeO2-supported catalysts. The characteristics of OWGS, high H2 production rate at 200 to 300°C at short contact time where unreacted O2 exists, evidenced the impact of O2 addition on surface species on the catalyst. Around 1.5 of reaction order in CO for various CeO2-supported metal catalysts for OWGS compared to reaction orders in CO ranging from -0.1 to 0.6 depending on metal species for WGS shows O2 addition decreases CO coverage to free up the active sites for co-reactant (H2O) adsorption and activation. Among the monometallic and bimetallic catalysts, Pt-Cu and Pd-Cu bimetallic catalysts were superior to monometallic catalysts in OWGS. These bimetallic components were found to form alloys where noble metal is surrounded mainly by Cu to have strong interaction between noble metal and copper resulting in high OWGS activity and low pyrophoric property. The metal loadings were optimized for CeO2-supported Pd-Cu bimetallic system and 2 wt% Pd with 5 -- 10 wt% Cu were found to be the optimum for the present OWGS condition. In the kinetic study, Pd in Pd-Cu was shown to increase the active sites for H2O dissociation and/or the subsequent reaction with chemisorbed CO as well as Pd keeps Cu in reduced state. Cu was found to keep Pd dispersed, suppress H2 activation on Pd, and facilitate CO 2 desorption from catalyst surface. While composition and structure of metal have large impacts on OWGS performance, CeO2 was shown to create new sites for H2O activation at metal-ceria interfacial region in concert with metal. These new sites strongly activate H2O to drive OWGS and WGS compared to the pure metallic sites which are present in majority on Al2O3-supported catalyst. The observed two regimes of turnover rate, the one dependent on catalyst surface area and the other independent of surface area, strongly suggested bifunctional reaction pathway where the reaction rate is determined by activation of H2O and by association of chemisorbed CO and H 2O. The associative route was also evidenced by pulse response study where the reaction occurs only when CO and H2O pulses are supplied together, and thus pre-adsorbed species such as formate and carbonate identified by FT-IR are proven to be spectators. No correlation between WGS rate and isotopic exchange rate of molecularly adsorbed D2O with H 2 showed H2O dissociation is necessary for WGS to occur. Long duration tests revealed CeO2-supported Pd-Cu, Pt-Cu and Cu catalysts are stable in OWGS condition compared to Pt, Pd, and Al 2O3-supported Pd-Cu catalysts which exhibited continuous deactivation during about 70 hours of test. The addition of Cu prevents agglomeration of monometallic Pd and carbonate formation on monometallic Pt during the reaction. The better activity and stability of Pd-Cu and Pt-Cu bimetallic catalysts in the realistic OWGS condition were ascribed to the unique active sites consisting of highly dispersed Pd in Cu or Pt in Cu on CeO2, which are good for H2O activation with low reaction inhibition by the product gases. Pt monometallic catalyst showed and highest activity in OWGS in the absence of product gases, but this was found vulnerable in the presence of product gases due to strong adsorption of H2 and CO2 on this catalyst. (Abstract shortened by UMI.)

  14. Design of Ultrathin Pt-Based Multimetallic Nanostructures for Efficient Oxygen Reduction Electrocatalysis.

    PubMed

    Lai, Jianping; Guo, Shaojun

    2017-12-01

    Nanocatalysts with high platinum (Pt) utilization efficiency are attracting extensive attention for oxygen reduction reactions (ORR) conducted at the cathode of fuel cells. Ultrathin Pt-based multimetallic nanostructures show obvious advantages in accelerating the sluggish cathodic ORR due to their ultrahigh Pt utilization efficiency. A focus on recent important developments is provided in using wet chemistry techniques for making/tuning the multimetallic nanostructures with high Pt utilization efficiency for boosting ORR activity and durability. First, new synthetic methods for multimetallic core/shell nanoparticles with ultrathin shell sizes for achieving highly efficient ORR catalysts are reviewed. To obtain better ORR activity and stability, multimetallic nanowires or nanosheets with well-defined structure and surface are further highlighted. Furthermore, ultrathin Pt-based multimetallic nanoframes that feature 3D molecularly accessible surfaces for achieving more efficient ORR catalysis are discussed. Finally, the remaining challenges and outlooks for the future will be provided for this promising research field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Structures of small Pd Pt bimetallic clusters by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Cheng, Daojian; Huang, Shiping; Wang, Wenchuan

    2006-11-01

    Segregation phenomena of Pd-Pt bimetallic clusters with icosahedral and decahedral structures are investigated by using Monte Carlo method based on the second-moment approximation of the tight-binding (TB-SMA) potentials. The simulation results indicate that the Pd atoms generally lie on the surface of the smaller clusters. The three-shell onion-like structures are observed in 55-atom Pd-Pt bimetallic clusters, in which a single Pd atom is located in the center, and the Pt atoms are in the middle shell, while the Pd atoms are enriched on the surface. With the increase of Pd mole fraction in 55-atom Pd-Pt bimetallic clusters, the Pd atoms occupy the vertices of clusters first, then edge and center sites, and finally the interior shell. It is noticed that some decahedral structures can be transformed into the icosahedron-like structure at 300 and 500 K. Comparisons are made with previous experiments and theoretical studies of Pd-Pt bimetallic clusters.

  16. Dual role of CO in the stability of subnano Pt clusters at the Fe3O4(001) surface

    PubMed Central

    Bliem, Roland; van der Hoeven, Jessi E. S.; Hulva, Jan; Pavelec, Jiri; Gamba, Oscar; de Jongh, Petra E.; Schmid, Michael; Blaha, Peter; Diebold, Ulrike; Parkinson, Gareth S.

    2016-01-01

    Interactions between catalytically active metal particles and reactant gases depend strongly on the particle size, particularly in the subnanometer regime where the addition of just one atom can induce substantial changes in stability, morphology, and reactivity. Here, time-lapse scanning tunneling microscopy (STM) and density functional theory (DFT)-based calculations are used to study how CO exposure affects the stability of Pt adatoms and subnano clusters at the Fe3O4(001) surface, a model CO oxidation catalyst. The results reveal that CO plays a dual role: first, it induces mobility among otherwise stable Pt adatoms through the formation of Pt carbonyls (Pt1–CO), leading to agglomeration into subnano clusters. Second, the presence of the CO stabilizes the smallest clusters against decay at room temperature, significantly modifying the growth kinetics. At elevated temperatures, CO desorption results in a partial redispersion and recovery of the Pt adatom phase. PMID:27457953

  17. First direct visualization of spillover species emitted from pt nanoparticles.

    PubMed

    Takakusagi, Satoru; Fukui, Ken-ichi; Tero, Ryugo; Asakura, Kiyotaka; Iwasawa, Yasuhiro

    2010-11-02

    We studied the methanol adsorption behavior of Pt nanoparticles that were vacuum-deposited on a TiO(2)(110) surface at room temperature by using an ultrahigh vacuum (UHV) scanning tunneling microscope (STM). A large number of bright spots were observed on fivefold-coordinated Ti (Ti(5c)) rows of the TiO(2)(110) surface after exposure of the Pt/TiO(2)(110) to methanol vapor. We assigned the bright spots to methoxy species. These were mobile and were found to hop along the Ti(5c) rows. In situ time-resolved STM observations of the formation and migration of the bright spots on the Pt/TiO(2)(110) were carried out in the presence of methanol. The bright spots were produced at the periphery of the Pt nanoparticles and migrated to the substrate Ti(5c) rows. We discuss the spillover process and behavior of the methoxy species on the Pt/TiO(2)(110).

  18. Electrochemistry of Metal Surfaces

    DTIC Science & Technology

    1990-06-30

    i) 3-pyridine carboxylic acid ( nicotinic acid, NA) binds to Pt surfaces through both the nitrogen atom and an oxygen atom of the carboxylate group...formed from aqueous electrolytes at Pt(1l1) electrode surfaces have been compared with the IR and Raman spectra of the unadsorbed compounds in order...vibrational absorptivities between EELS spectra of adsorbed species and IR and Raman spectra of the corresponding unadsorbed compounds (146). Of

  19. Roughness evolution in dewetted Ag and Pt nanoscale films

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Grimaldi, M. G.

    2018-01-01

    The surface roughness of nanoscale metal systems plays a key role in determining the systems properties and, therefore, the electrical, optical, etc. response of nanodevices based on them. In this work, we experimentally analyze the roughness evolution in dewetting Ag and Pt films deposited on SiO2 substrate. In particular, after depositing 15 nm-thick Ag or Pt films on the SiO2 substrate, standard annealing processes were performed below the melting temperatures of the metals so to induce the solid-state dewetting of the films. The surface morphology evolution of the Ag and Pt films was studied by means of Atomic Force Microscopy analysis as a function of the annealing temperature T and of the annealing time t. In particular, these analysis allowed to quantify the roughness σ of the Ag and Pt films versus the annealing temperature T and the annealing time t. The analysis of these plots allowed us to draw combined insights on the dewetting process characteristics, on the dewetting-induced roughening properties, and on the material-dependent parameters by the comparison of the results obtained for the Ag film and the Pt film. These analysis, in addition, open perspectives towards the development of a method to produce supported metal films with controlled surface roughness for designed applications.

  20. A facile one-pot self-assembly approach to incorporate SnOx nanoparticles in ordered mesoporous carbon with soft templating for fuel cells.

    PubMed

    Huang, Yingqiang; Zhai, Zhicheng; Luo, Zhigang; Liu, Yingju; Liang, Zhurong; Fang, Yueping

    2014-04-04

    Unique SnO(x) (x = 1,2)/ordered mesoporous carbon nanocomposites (denoted as SnO(x)/OMC) are firstly synthesized through a 'one-pot' synthesis together with the soft template self-assembly approach. The obtained SnO(x)/OMC nanocomposites with various SnO(x) contents exhibit uniform pore sizes between 3.9 and 4.2 nm, high specific surface areas between 497 and 595 m(2) g(-1), and high pore volumes between 0.39 and 0.48 cm(3) g(-1). With loading of Pt, Pt-SnO(x)/OMC with relatively low SnO(x) content exhibits superior electrocatalytic performance, long-term durability, and resistance to CO poisoning for methanol oxidation, as compared to Pt/OMC, PtRu/C and Pt-SnO(x)/C, which may be attributed not only to the synergetic effect of embedded SnO(x), but also to the highly ordered mesostructure with high specific surface areas and large pore volumes affording plenty of surface area for support of Pt nanoparticles. This work supplies an efficient way to synthesize novel ordered mesoporous carbon self-supported metallic oxide as catalyst support and its further potential application to reduce the cost of catalysts in direct methanol fuel cells.

  1. A facile one-pot self-assembly approach to incorporate SnOx nanoparticles in ordered mesoporous carbon with soft templating for fuel cells

    NASA Astrophysics Data System (ADS)

    Huang, Yingqiang; Zhai, Zhicheng; Luo, Zhigang; Liu, Yingju; Liang, Zhurong; Fang, Yueping

    2014-04-01

    Unique SnOx (x = 1,2)/ordered mesoporous carbon nanocomposites (denoted as SnOx/OMC) are firstly synthesized through a ‘one-pot’ synthesis together with the soft template self-assembly approach. The obtained SnOx/OMC nanocomposites with various SnOx contents exhibit uniform pore sizes between 3.9 and 4.2 nm, high specific surface areas between 497 and 595 m2 g-1, and high pore volumes between 0.39 and 0.48 cm3 g-1. With loading of Pt, Pt-SnOx/OMC with relatively low SnOx content exhibits superior electrocatalytic performance, long-term durability, and resistance to CO poisoning for methanol oxidation, as compared to Pt/OMC, PtRu/C and Pt-SnOx/C, which may be attributed not only to the synergetic effect of embedded SnOx, but also to the highly ordered mesostructure with high specific surface areas and large pore volumes affording plenty of surface area for support of Pt nanoparticles. This work supplies an efficient way to synthesize novel ordered mesoporous carbon self-supported metallic oxide as catalyst support and its further potential application to reduce the cost of catalysts in direct methanol fuel cells.

  2. KOH-activated multi-walled carbon nanotubes as platinum supports for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    He, Chaoxiong; Song, Shuqin; Liu, Jinchao; Maragou, Vasiliki; Tsiakaras, Panagiotis

    In the present investigation, multi-walled carbon nanotubes (MWCNTs) thermally treated by KOH were adopted as the platinum supporting material for the oxygen reduction reaction electrocatalysts. FTIR and Raman spectra were used to investigate the surface state of MWCNTs treated by KOH at different temperatures (700, 800, and 900 °C) and showed MWCNTs can be successfully functionalized. The structural properties of KOH-activated MWCNTs supported Pt were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their electrochemical performance was evaluated by the aid of cyclic voltammetry (CV) and rotating disk electrode (RDE) voltammetry. According to the experimental findings of the present work, the surrface of MWCNTs can be successfully functionalized with oxygen-containing groups after activation by KOH, favoring the good dispersion of Pt nanoparticles with narrow size distribution. The as-prepared Pt catalysts supported on KOH treated MWCNTs at higher temperature, possess higher electrochemical surface area and exhibit desirable activity towards oxygen reduction reaction (ORR). More precisely, it has been found that the electrochemical active area of Pt/MWCNTs-900 is approximately two times higher than that of Pt/MWCNTs. It can be concluded that KOH activation is an effective way to decorate MWCNTs' surface with oxygen-containing groups and bigger surface area, which makes them more suitable as electrocatalyst support materials.

  3. Effect of Organic Cations on Hydrogen Oxidation Reaction of Carbon Supported Platinum

    DOE PAGES

    Chung, Hoon Taek; Choe, Yong-Kee; Martinez, Ulises; ...

    2016-11-02

    Effect of organic cations on hydrogen oxidation reaction (HOR) of carbon supported platinum (Pt/C) is investigated using three 0.1 M alkaline electrolytes, tetramethylammonium hydroxide (TMAOH), tetrabutylammonium hydroxide (TBAOH) and tetrabutylphosphonium hydroxide (TBPOH). Rotating disk electrode experiments indicate that the HOR of Pt/C is adversely impacted by time-dependent and potential-driven chemisorption of organic cations. In-situ infrared reflection adsorption spectroscopy experiments indicated that the specific chemisorption of organic cations drives the hydroxide co-adsorption on Pt surface. The co-adsorption of TMA + and hydroxide at 0.1 V vs. reversible hydrogen electrode is the strongest; consequently, complete removal of the co-adsorbed layer from Ptmore » surface is difficult even after exposure the Pt surface to 1.2 V. Conversely, the chemisorption of TBP+ is the weakest, yet notable decrease of HOR current density is still observed. The adsorption energies, ΔE, for TMA +, TBA +, and TBP + on Pt (111) surface from density functional theory are computed to be -2.79, -2.42 and -2.00 eV, respectively. The relatively low adsorption energy of TBP + is explained by the steric hindrance and electronic effect. This study emphasizes the importance of cationic group on HOR activity of alkaline anion exchange membrane fuel cells.« less

  4. Fabrication of reduced graphene oxide/macrocyclic cobalt complex nanocomposites as counter electrodes for Pt-free dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Tsai, Chih-Hung; Shih, Chun-Jyun; Wang, Wun-Shiuan; Chi, Wen-Feng; Huang, Wei-Chih; Hu, Yu-Chung; Yu, Yuan-Hsiang

    2018-03-01

    In this study, macrocyclic Co complexes were successfully grafted onto graphene oxide (GO) to produce GO/Co nanocomposites with a large surface area, high electrical conductivity, and excellent catalytic properties. The novel GO/Co nanocomposites were applied as counter electrodes for Pt-free dye-sensitized solar cells (DSSCs). Various ratios of macrocyclic Co complexes were used as the reductant to react with the GO, with which the surface functional groups of the GO were reduced and the macrocyclic ligand of the Co complexes underwent oxidative dehydrogenation, after which the conjugated macrocyclic Co systems were grafted onto the surface of the reduced GO to form GO/Co nanocomposites. The surface morphology, material structure, and composition of the GO/Co composites and their influences on the power-conversion efficiency of DSSC devices were comprehensively investigated. The results showed that the GO/Co (1:10) counter electrode (CE) exhibited an optimal power conversion efficiency of 7.48%, which was higher than that of the Pt CE. The GO/Co (1:10) CE exhibited superior electric conductivity, catalytic capacity, and redox capacity. Because GO/Co (1:10) CEs are more efficient and cheaper than Pt CEs, they could potentially be used as a replacement for Pt electrodes.

  5. Isotopic Probe Illuminates the Role of the Electrode Surface in Proton Coupled Hydride Transfer Electrochemical Reduction of Pyridinium on Pt(111)

    DOE PAGES

    Zeitler, Elizabeth L.; Ertem, Mehmed Z.; Pander, III, James E.; ...

    2015-10-21

    A recently proposed mechanism for electrochemical CO 2 reduction on Pt (111) catalyzed by aqueous acidic pyridine solutions suggests that the observed redox potential of ca. -600 mV vs. SCE is due to the one-electron reduction of pyridinium through proton coupled electron transfer (PCET) to form H atoms adsorbed on the Pt surface (H ads). The initial pyridinium reduction was probed isotopically via deuterium substitution. A combined experimental and theoretical analysis found equilibrium isotope effects (EIE) due to deuterium substitution at the acidic pyridinium site. A shift in the cathodic cyclic voltammetric half wave potential of -25 mV was observed,more » consistent with the theoretical prediction of -40 mV based on the recently proposed reaction mechanism where pyridinium is essential to establish a high concentration of Bronsted acid in contact with the substrate CO 2 and with the Pt surface. A prefeature in the cyclic voltammogram was examined under isotopic substitution and indicated an H-ads intermediate in pyridinium reduction. In conclusion, the theoretical prediction and observation of an BM supported the assignment of the cathodic wave to the proposed reduction of pyridinium through PCET forming H ads and eventually H 2 on the Pt surface.« less

  6. Identification of the formation of metal-vinylidene interfacial bonds of alkyne-capped platinum nanoparticles by isotopic labeling.

    PubMed

    Hu, Peiguang; Chen, Limei; Deming, Christopher P; Bonny, Lewis W; Lee, Hsiau-Wei; Chen, Shaowei

    2016-10-07

    Stable platinum nanoparticles were prepared by the self-assembly of 1-dodecyne and dodec-1-deuteroyne onto bare platinum colloid surfaces. The nanoparticles exhibited consistent core size and optical properties. FTIR and NMR measurements confirmed the formation of Pt-vinylidene (Pt[double bond, length as m-dash]C[double bond, length as m-dash]CH-) interfacial linkages rather than Pt-acetylide (Pt-C[triple bond, length as m-dash]C-) and platinum-hydride (Pt-H) bonds.

  7. Desorption Kinetics of Ar, Kr, Xe, N2, O2, CO, Methane, Ethane, and Propane from Graphene and Amorphous Solid Water Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R. Scott; May, Robert A.; Kay, Bruce D.

    2016-03-03

    The desorption kinetics for Ar, Kr, Xe, N2, O2, CO, methane, ethane, and propane from grapheme covered Pt(111) and amorphous solid water (ASW) surfaces are investigated using temperature programmed desorption (TPD). The TPD spectra for all of the adsorbates from graphene have well-resolved first, second, third, and multi- layer desorption peaks. The alignment of the leading edges is consistent the zero-order desorption for all of the adsorbates. An Arrhenius analysis is used to obtain desorption energies and prefactors for desorption from graphene for all of the adsorbates. In contrast, the leading desorption edges for the adsorbates from ASW do notmore » align (for coverages < 2 ML). The non-alignment of TPD leading edges suggests that there are multiple desorption binding sites on the ASW surface. Inversion analysis is used to obtain the coverage dependent desorption energies and prefactors for desorption from ASW for all of the adsorbates.« less

  8. Desorption Kinetics of Ar, Kr, Xe, N2, O2, CO, Methane, Ethane, and Propane from Graphene and Amorphous Solid Water Surfaces.

    PubMed

    Smith, R Scott; May, R Alan; Kay, Bruce D

    2016-03-03

    The desorption kinetics for Ar, Kr, Xe, N2, O2, CO, methane, ethane, and propane from graphene-covered Pt(111) and amorphous solid water (ASW) surfaces are investigated using temperature-programmed desorption (TPD). The TPD spectra for all of the adsorbates from graphene have well-resolved first, second, third, and multilayer desorption peaks. The alignment of the leading edges is consistent the zero-order desorption for all of the adsorbates. An Arrhenius analysis is used to obtain desorption energies and prefactors for desorption from graphene for all of the adsorbates. In contrast, the leading desorption edges for the adsorbates from ASW do not align (for coverages < 2 ML). The nonalignment of TPD leading edges suggests that there are multiple desorption binding sites on the ASW surface. Inversion analysis is used to obtain the coverage dependent desorption energies and prefactors for desorption from ASW for all of the adsorbates.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Pingping; Siddiqi, Georges; Vining, William C.

    Catalysts for the dehydrogenation of light alkanes were prepared by dispersing Pt on the surface of a calcined hydrotalcite-like support containing indium, Mg(In)(Al)O. Upon reduction in H{sub 2} at temperatures above 673 K, bimetallic particles of PtIn are observed by TEM, which have an average diameter of 1 nm. Analysis of Pt LIII-edge extended X-ray absorption fine structure (EXAFS) data shows that the In content of the bimetallic particles increases with increasing bulk In/Pt ratio and reduction temperature. Pt LIII-edge X-ray absorption near edge structure (XANES) indicates that an increasing donation of electronic charge from In to Pt occurs withmore » increasing In content in the PtIn particles. The activity and selectivity of the Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants, maximum activity was achieved for a bulk In/Pt ratio of 0.48, and at this In/Pt ratio, the selectivity to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane dehydrogenation, and it was observed that the alloying of Pt with In greatly reduced the amount of coke deposited. Characterization of the deposit by Raman spectroscopy indicates that the coke is present as highly disordered graphite particles <30 nm in diameter. While the amount of coke deposited during ethane and propane dehydrogenation are comparable, the effects on activity are dependent on reactant composition. Coke deposition had no effect on ethane dehydrogenation activity, but caused a loss in propane dehydrogenation activity. This difference is attributed to the greater ease with which coke produced on the surface of PtIn nanoparticles migrates to the support during ethane dehydrogenation versus propane dehydrogenation.« less

  10. Nanoparticles of Ag with a Pt and Pd rich surface supported on carbon as a new catalyst for the oxygen electroreduction reaction (ORR) in acid electrolytes: Part 1

    NASA Astrophysics Data System (ADS)

    Pech-Pech, I. E.; Gervasio, Dominic F.; Godínez-Garcia, A.; Solorza-Feria, O.; Pérez-Robles, J. F.

    2015-02-01

    Silver (Ag) nanoparticles enriched with platinum (Pt) and palladium (Pd) on their surfaces (Ag@Pt0.1Pd0.1) are supported on Vulcan XC-72 carbon (C) to form a new catalyst (Ag@Pt0.1Pd0.1/C) for the oxygen reduction reaction (ORR) in acid electrolytes. This catalyst is prepared in one pot by reducing Ag and then Pt and Pd metal salts with sodium borohydride in the presence of trisodium citrate then adding XC-72 while applying intense ultrasound. The metallic Ag@Pt0.1Pd0.1 nanoparticles contain 2 weight percent of Pt, are spherical and have an average size less than 10 nm as determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). At the ORR potentials, Ag nanoparticles on carbon (Ag/C) rapidly lose Ag by dissolution and show no more catalytic activity for the ORR than the carbon support, whereas Ag@Pt0.1Pd0.1/C is a stable catalyst and exhibits 1.4 and 1.6 fold greater specific activity, also 3.6 and 2.8 fold greater mass activity for ORR in 0.5 M H2SO4 solution than comparable Pt/C and Pt0.5Pd0.5/C catalysts with the same Pt loading as determined for thin-films of these catalysts on a rotating-disk electrode (TF-RDE). Using silver nanoparticles increases Pt utilization and therefore decreases Pt-loading and cost of a catalyst for a proton exchange membrane fuel cell (PEMFC) electrode.

  11. Green synthesis and characterization of Au@Pt core-shell bimetallic nanoparticles using gallic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Guojun; Zheng, Hongmei; Shen, Ming; Wang, Lei; Wang, Xiaosan

    2015-06-01

    In this study, we developed a facile and benign green synthesis approach for the successful fabrication of well-dispersed urchin-like Au@Pt core-shell nanoparticles (NPs) using gallic acid (GA) as both a reducing and protecting agent. The proposed one-step synthesis exploits the differences in the reduction potentials of AuCl4- and PtCl62-, where the AuCl4- ions are preferentially reduced to Au cores and the PtCl62- ions are then deposited continuously onto the Au core surface as a Pt shell. The as-prepared Au@Pt NPs were characterized by transmission electron microscope (TEM); high-resolution transmission electron microscope (HR-TEM); scanning electron microscope (SEM); UV-vis absorption spectra (UV-vis); X-ray diffraction (XRD); Fourier transmission infrared spectra (FT-IR). We systematically investigated the effects of some experimental parameters on the formation of the Au@Pt NPs, i.e., the reaction temperature, the molar ratios of HAuCl4/H2PtCl6, and the amount of GA. When polyvinylpyrrolidone K-30 (PVP) was used as a protecting agent, the Au@Pt core-shell NPs obtained using this green synthesis method were better dispersed and smaller in size. The as-prepared Au@Pt NPs exhibited better catalytic activity in the reaction where NaBH4 reduced p-nitrophenol to p-aminophenol. However, the results showed that the Au@Pt bimetallic NPs had a lower catalytic activity than the pure Au NPs obtained by the same method, which confirmed the formation of Au@Pt core-shell nanostructures because the active sites on the surfaces of the Au NPs were covered with a Pt shell.

  12. Improvement in surface conditions of electroplated Fe-Pt thick-film magnets

    NASA Astrophysics Data System (ADS)

    Yanai, T.; Honda, J.; Hamamura, R.; Omagari, Y.; Yamada, H.; Fujita, N.; Takashima, K.; Nakano, M.; Fukunaga, H.

    2018-05-01

    Fe-Pt thick-films were electroplated on Ta, Ti, Co, Ni, and Cu plates (substrates) using a direct current, and the surface morphology, the magnetic properties, and the crystal structure of the films were evaluated. The films plated on the Co, Ni, and Cu substrates showed much smooth surface compared with those for the Ta and Ti ones, and we confirmed that the Cu plate was the most attractive substrate due to very small cracks after an annealing for L10 ordering. High coercivity (>800 kA/m) for the Cu substrate is almost the same as that for our previous study in which we employed the Ta substrate, and we found that the Cu plate is a hopeful substrate to improve the surface conditions of electroplated Fe-Pt thick-film magnets.

  13. Surface Chemistry of Trimethylaluminum on Pd(111) and Pt(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gharachorlou, Amir; Detwiler, Michael D.; Mayr, Lukas

    The behavior of trimethylaluminum (TMA) was investigated on the surfaces of Pt(111) and Pd(111) single crystals. TMA was found to dissociatively adsorb on both surfaces between 300–473 K. Surfaces species observed by high-resolution electron energy loss spectroscopy (HREELS) and X-ray photoelectron spectroscopy (XPS) after TMA adsorption at 300 K included Al-CH3 and CHx,ads (x = 1, 2, or 3) on Pt(111), and ethylidyne (CCH3), CHx,ads (x = 1, 2, or 3), and metallic Al on Pd(111). Density functional theory (DFT) calculations predicted methylaluminum (MA, Al-CH3) to be the most kinetically favorable TMA decomposition product on (111) terraces of both surfaces,more » however, HREELS signatures for Al-CH3 were detected only on Pt(111), whereas ethylidyne was observed on Pd(111). XPS demonstrated higher amounts of carbonaceous species on Pt(111) than on Pd(111). DFT calculations showed that further dissociation of MA to metallic aluminum and methyl groups to be more kinetically favorable on step sites of both metals. In our proposed reaction mechanism, MA migrates to and dissociates at Pd(111) steps at 300 K forming adsorbed methyl groups and metallic Al. Some methyl groups dehydrogenate and recombine forming ethylidyne. Metallic Al or ejected Pd atoms from steps diffuse across Pd(111) terraces until coalescing into irregularly shaped islands on terraces or steps, as observed by scanning tunneling microscopy (STM). Upon heating above 300 K, the Pd–Al alloy diffuses into the Pd bulk. On Pt(111), a high coverage of carbon-containing species following TMA adsorption at 300 K prevented MA diffusion and dissociation at steps, as evidenced by isolated clusters of MA in STM images. Heating above 300 K resulted in MA dissociation, but no Pt–Al alloy formation was observed. We conclude that the differing abilities of Pd and Pt to hydrogenate carbonaceous species plays a key role in MA dissociation and alloy formation, and therefore, the adsorption and dissociation chemistry of TMA depends on properties of the metal substrate surface and determines thin film morphology and composition.« less

  14. Surface Layering Near Room Temperature in a Nonmetallic Liquid

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Sudeshna; Stripe, Benjamin; Shively, Patrick; Evmenenko, Geunnadi; Dutta, Pulak; Ehrlich, Steven; Mo, Haiding

    2009-03-01

    Oscillatory density profiles (layers) have been observed at the free surfaces of many liquid metals at and above room temperature [1]. A surface-layered state has been previously reported only in one dielectric liquid, tetrakis(2-ethylhexoxy)silane (TEHOS), and only at lower temperatures [2]. We have used x-ray reflectivity to study a molecular liquid, pentaphenyl trimethyl trisiloxane. Below T˜ 267K (well above the freezing point for this liquid), density oscillations appear at the surface. This liquid has a higher Tc (˜1200K) than TEHOS (˜950K), so that layers appear at T/Tc 0.2 in both cases. Our results indicate that surface order is a universal phenomenon in both metallic and dielectric liquids, and that the underlying physics is likely to be the same since layers always appear at T<˜0.2Tc as theoretically predicted [3] [3pt] REFERENCES: [0pt] [1]. e.g. O. M. Magnussen et al., Phys. Rev. Lett. 74, 4444 (1995) [0pt] [2]. H. Mo et al. Phys. Rev. Lett. 96, 096107 (2006); Phys. Rev. B 76, 024206 (2007) [0pt] [3]. e.g. E. Chac'on et al., Phys. Rev. Lett. 87, 166101 (2001)

  15. Screening metal nanoparticles using boron-doped diamond microelectrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivandini, Tribidasari A., E-mail: ivandini.tri@sci.ui.ac.id; Rangkuti, Prasmita K.; Einaga, Yasuaki

    2016-04-19

    Boron-doped diamond (BDD) microelectrodes were used to observe the correlation between electrocatalytic currents caused by individual Pt nanoparticle (Pt-np) collisions at the electrode. The BDD microelectrodes, ∼20 µm diameter and ∼2 µm particle size, were fabricated at the surface of tungsten wires. Pt-np with a size of 1 to 5 nm with agglomerations up to 20 nm was used for observation. The electrolytic currents were observed via catalytic reaction of 15 mM hydrazine in 50 mM phosphate buffer solution at Pt-np at 0.4 V when it collides with the surface of the microelectrodes. The low current noise and wider potential window in the measurements using BDD microelectrodemore » produced a better results, which represents a better correlation to the TEM result of the Pt-np, compared to when gold microelectrodes was used.« less

  16. Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC.

    PubMed

    Jung, Juhae; Park, Byungil; Kim, Junbom

    2012-01-05

    In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells.

  17. Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC

    PubMed Central

    2012-01-01

    In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells. PMID:22221426

  18. Diamond-like carbon (DLC) thin film bioelectrodes: effect of thermal post-treatments and the use of Ti adhesion layer.

    PubMed

    Laurila, Tomi; Rautiainen, Antti; Sintonen, Sakari; Jiang, Hua; Kaivosoja, Emilia; Koskinen, Jari

    2014-01-01

    The effect of thermal post-treatments and the use of Ti adhesion layer on the performance of thin film diamond like carbon bioelectrodes (DLC) have been investigated in this work. The following results were obtained: (i) The microstructure of the DLC layer after the deposition was amorphous and thermal annealing had no marked effect on the structure, (ii) formation of oxygen containing SiOx and Ti[O,C] layers were detected at the Si/Ti and Ti/DLC interfaces with the help of transmission electron microscope (TEM), (iii) thermal post-treatments increased the polar fraction of the surface energy, (iv) cyclic voltammetry (CV) measurements showed that the DLC films had wide water windows and were stable in contact with dilute sulphuric acid and phosphate buffered saline (PBS) solutions, (v) use of Ti interlayer between Pt(Ir) microwire and DLC layer was crucial for the electrodes to survive the electrochemical measurements without the loss of adhesion of the DLC layer, (vi) DLC electrodes with small exposed Pt areas were an order of magnitude more sensitive towards dopamine than Pt electrodes and (vii) thermal post-treatments did not markedly change the electrochemical behavior of the electrodes despite the significant increase in the polar nature of the surfaces. It can be concluded that thin DLC bioelectrodes are stable under physiological conditions and can detect dopamine in micro molar range, but their sensitivity must be further improved. © 2013 Elsevier B.V. All rights reserved.

  19. Reversible insertion of carbon dioxide into Pt(II)-hydroxo bonds.

    PubMed

    Lohr, Tracy L; Piers, Warren E; Parvez, Masood

    2013-10-01

    The reactivity of three monomeric diimine Pt(II) hydroxo complexes, (NN)Pt(OH)R (NN = bulky diimine ligand; R = OH, ; R = C6H5, ; R = CH3, ) towards carbon dioxide has been investigated. Insertion into the Pt-OH bonds was found to be facile and reversible at low temperature for all compounds; the reaction with bis-hydroxide gives an isolable κ(2)-carbonato compound , with elimination of water.

  20. The possibility of using platinum foils with a rippled surface as diffraction gratings

    NASA Astrophysics Data System (ADS)

    Korsukov, V. E.; Ankudinov, A. V.; Butenko, P. N.; Knyazev, S. A.; Korsukova, M. M.; Obidov, B. A.; Shcherbakov, I. P.

    2014-09-01

    The atomic structure and surface relief of thin cold-rolled platinum foils upon recrystallization annealing and loading under ultrahigh vacuum conditions have been studied by low energy electron diffraction (LEED), atomic force microscopy (AFM), and scanning tunneling microscopy (STM). The surface of samples upon high-temperature annealing and subsequent uniaxial extension of recrystallized Pt foils represents a fractal structure of unidirectional ripples on various spatial scales. The total fractal dimension of this surface is D GW = 2.3, while the fractal dimensions along and across ripples are D ‖ ≈ 1 and D ⊥ ≈ 1.3, respectively. The optical spectra of a halogen lamp and a PRK-2 mercury lamp were recorded using these rippled Pt foils as reflection diffraction gratings. It is shown that Pt foils with this surface relief can be used as reflection diffraction gratings for electromagnetic radiation in a broad spectral range.

  1. Hydrodeoxygenation of p -Cresol over Pt/Al 2 O 3 Catalyst Promoted by ZrO 2 , CeO 2 , and CeO 2 –ZrO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Weiyan; Wu, Kui; Liu, Pengli

    2016-07-20

    ZrO 2-Al 2O 3 and CeO 2-Al 2O 3 were prepared by a co-precipitation method and selected as supports for Pt catalysts. The effects of CeO 2 and ZrO 2 on the surface area and Brønsted acidity of Pt/Al 2O 3 were studied. In the hydrodeoxygenation (HDO) of p-cresol, the addition of ZrO 2 promoted the direct deoxygenation activity on Pt/ZrOO 2-Al 2O 3 via Caromatic-O bond scission without benzene ring saturation. Pt/CeOO 2-Al 2O 3 exhibited higher deoxygenation extent than Pt/Al 2O 3 due to the fact that Brønsted acid sites on the catalyst surface favored the adsorption ofmore » p-cresol. With the advantages of CeO 2 and ZrO 2 taken into consideration, CeO 2-ZrOO 2-Al 2O 3 was prepared, leading to the highest HDO activity of Pt/CeO 2-ZrOO 2-Al 2O 3. The deoxygenation extent for Pt/CeO 2-ZrOO 2-Al 2O 3 was 48.4% and 14.5% higher than that for Pt/ZrO2O 2-Al 2O 3 and Pt/CeOO 2-Al 2O 3, respectively.« less

  2. Synthesis of Pd 9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yu; Hsieh, Yu -Chi; Chang, Li -Chung

    2014-11-22

    Nanoparticles of PdRu, Pd₃Ru, and Pd₉Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, Pd xRu/C (x=1/3/9), suggest succesful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of Pd xRu/C. Among these samples, the Pd₉Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in anmore » oxygen-saturated 0.1 M aqueous HClO₄ solution. Subsequently, the Pd₉Ru/C undegoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd₉Ru surface (Pd₉Ru@Pt). The Pd₉Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA μg⁻¹ Pt, as compared to that of commercially available Pt nanoparticles (0.107 mA μg⁻¹ Pt). Thus, the mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd₉Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost.« less

  3. Synthesis of Pd9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Hsieh, Yu-Chi; Chang, Li-Chung; Wu, Pu-Wei; Lee, Jyh-Fu

    2015-03-01

    Nanoparticles of PdRu, Pd3Ru, and Pd9Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, PdxRu/C (x = 1/3/9), suggest successful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of PdxRu/C. Among these samples, the Pd9Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in an oxygen-saturated 0.1 M aqueous HClO4 solution. Subsequently, the Pd9Ru/C undergoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd9Ru surface (Pd9Ru@Pt). The Pd9Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA μg-1Pt, as compared to that of commercially available Pt nanoparticles (0.107 mA μg-1Pt). The mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd9Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost.

  4. High magnetic coercivity of FePt-Ag/MgO granular nanolayers

    NASA Astrophysics Data System (ADS)

    Roghani, R.; Sebt, S. A.; Khajehnezhad, A.

    2018-06-01

    L10-FePt ferromagnetic nanoparticles have a hight coercivity of Tesla order. Thus, these nanoparticles, with size of 10 to 15 nm and uniform surface distribution, are suitable in magnetic data storage technology with density of more than 1GB. In order to improve structural and magnetic properties of FePt nanoparticles, some elements and combinations have been added to compound. In this research, we show that due to the presence of the Ag, the phase transition temperature of FePt from fcc to L10-fct phase decreases. The presence of Ag as an additive in FePt-Ag nanocomposite, increases the magnetic coercivity. This nanocomposite, with 10% Ag, was deposited by magnetron sputtering on the MgO heat layer. VSM results of 10 nm nanoparticles show that coercivity has increased up to 1.4 T. XRD and FESEM results confirm that the size of the L10-FePt nanoparticles are 10 nm and their surface distribution are uniform. Ag gradually form nano scale clusters with separate lattice and FePt-Ag nanocomposite appears. The result of this process is emptiness of Ag position in FePt-fcc lattice. So, the mobility of Fe and Pt atoms in this lattice increases and it can be possible for them to move in lower temperature. This mechanism explain the effect of Ag on decreasing the transition temperature to fct-L10 phase, and hight coercivity of FePt nanoparticles.

  5. Au and Pt selectively deposited on {0 0 1}-faceted TiO2 toward SPR enhanced photocatalytic Cr(VI) reduction: The influence of excitation wavelength

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Lai, Min; Fang, Jiaojiao; Lu, Chunhua

    2018-05-01

    Anatase TiO2 nanosheets with {0 0 1}-{1 0 1} surface heterojunction is employed as the typical photocatalyst to study surface plasmon resonance (SPR) enhanced photocatalytic Cr(VI) reduction with the help of selectively deposited Au and Pt nanoparticles. By employing an UV LED with central wavelength of 365 nm and a green LED with central wavelength of 530 nm as the light sources, results indicate the single green LED has little positive effect on driving the photocatalytic Cr(VI) reduction. In contrast, Au SPR can significantly improve the photocatalytic Cr(VI) reduction efficiency when both the UV LED and green LED are simultaneously irradiated. The {0 0 1}-{1 0 1} surface heterojunction and Pt nanoparticles can further improve the Cr(VI) reduction efficiency because of the facilitated hot electrons' transfer. Our findings suggest that the synergistic effect among {0 0 1}-{1 0 1} surface heterojunction, Au/Pt selective deposition, and excitation wavelength is important for SPR enhanced photocatalytic Cr(VI) reduction activity.

  6. Methane Conversion to Ethylene and Aromatics on PtSn Catalysts

    DOE PAGES

    Gerceker, Duygu; Motagamwala, Ali Hussain; Rivera-Dones, Keishla R.; ...

    2017-02-03

    Pt and PtSn catalysts supported on SiO 2 and H-ZSM-5 were studied for methane conversion under nonoxidative conditions. Addition of Sn to Pt/SiO 2 increased the turnover frequency for production of ethylene by a factor of 3, and pretreatment of the catalyst at 1123 K reduced the extent of coke formation. Pt and PtSn catalysts supported on H-ZSM-5 zeolite were prepared to improve the activity and selectivity to non-coke products. Ethylene formation rates were 20 times faster over a PtSn(1:3)/H-ZSM-5 catalyst with SiO 2:Al 2O 3 = 280 in comparison to those over PtSn(3:1)/SiO 2. H-ZSM-5-supported catalysts were also activemore » for the formation of aromatics, and the rates of benzene and naphthalene formation were increased by using more acidic H-ZSM-5 supports. These catalysts operate through a bifunctional mechanism, in which ethylene is first produced on highly dispersed PtSn nanoparticles and then is subsequently converted to benzene and naphthalene on Brønsted acid sites within the zeolite support. The most active and stable PtSn catalyst forms carbon products at a rate, 2.5 mmol of C/((mol of Pt) s), which is comparable to that of state-of-the-art Mo/H-ZSM-5 catalysts with same metal loading operated under similar conditions (1.8 mmol of C/((mol of Mo) s)). Scanning transmission electron microscopy measurements suggest the presence of smaller Pt nanoparticles on H-ZSM-5-supported catalysts, in comparison to SiO 2-supported catalysts, as a possible source of their high activity. As a result, a microkinetic model of methane conversion on Pt and PtSn surfaces, built using results from density functional theory calculations, predicts higher coupling rates on bimetallic and stepped surfaces, supporting the experimental observations that relate the high catalytic activity to small PtSn particles.« less

  7. Synthesis of honeycomb-like mesoporous nitrogen-doped carbon nanospheres as Pt catalyst supports for methanol oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Zhang, Yunmao; Liu, Yong; Liu, Weihua; Li, Xiying; Mao, Liqun

    2017-06-01

    This paper reports the convenient synthesis of honeycomb-like mesoporous nitrogen-doped carbon spheres (MNCS) using a self-assembly strategy that employs dopamine (DA) as a carbon and nitrogen precursor and a polystyrene-b-poly(ethylene oxide) (PS173-b-PEO170) diblock copolymer as a soft template. The MNCS have large BET surface areas of up to 554 m2 g-1 and high nitrogen contents of up to 6.9 wt%. The obtained MNCS are used as a support for Pt catalysts, which promote methanol oxidation in alkaline media. The MNCS-supported Pt (Pt/MNCS) catalyst has a larger electrochemically active surface area (ESA) (89.2 m2 g-1) than does a commercially available Vulcan XC-72R supported Pt/C catalyst. Compared to the Pt/C catalyst, Pt/MNCS displays a higher peak current density (1007 mA mg-1) and is more stable during methanol oxidation. These improvements are attributed to the honeycomb-like porous structure of the MNCS and the introduction of nitrogen to the carbon support. The MNCS effectively stabilize Pt nanoparticles and assuage the agglomeration of the nanoparticles, suggesting that MNCS are potential and promising application as electrocatalyst supports in alkaline direct methanol fuel cells.

  8. Investigation of oxygen reduction and methanol oxidation reaction activity of PtAu nano-alloy on surface modified porous hybrid nanocarbon supports

    NASA Astrophysics Data System (ADS)

    Parambath Vinayan, Bhaghavathi; Nagar, Rupali; Ramaprabhu, Sundara

    2016-09-01

    We investigate the electrocatalytic activity of PtAu alloy nanoparticles supported on various chemically modified carbon morphologies towards oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR). The surface-modification of graphene nanosheets (f-G), multi-walled carbon nanotubes (f-MWNTs) and (graphene nanosheets-carbon nanotubes) hybrid support (f-G-MWNTs) were carried out by soft functionalization method using a cationic polyelectrolyte poly-(diallyldimethyl ammonium chloride). The Pt and PtAu alloy nanoparticles were dispersed over chemically modified carbon supports by sodium-borohydride assisted modified polyol reduction method. The electrochemical performance of all electrocatalysts were studied by half- and full-cell proton exchange membrane fuel cell (PEMFC) measurements and PtAu/f-G-MWNTs catalyst comparatively yielded the best catalytic performance. PEMFC full cell measurements of PtAu/f-G-MWNTs cathode electrocatalyst yield a maximum power density of 319 mW cm-2 at 60 °C without any back pressure,which is 2.1 times higher than that of cathode electrocatalyst Pt on graphene support. The high ORR and MOR activity of PtAu/f-G-MWNTs electrocatalyst is due to the alloying effect and inherent beneficial properties of porous hybrid nanocarbon support.

  9. Preparation of Platinum (Pt) Counter Electrode Coated by Electrochemical Technique at High Temperature for Dye-sensitized Solar Cell (DSSC) Application

    NASA Astrophysics Data System (ADS)

    Ponken, Tanachai; Tagsin, Kamonlapron; Suwannakhun, Chuleerat; Luecha, Jakkrit; Choawunklang, Wijit

    2017-09-01

    Pt counter electrode was coated by electrochemical method. Electrolyte solution was synthesized by platinum (IV) choloride (PtCl4) powder dissolved in hydrochloric acid solution. Pt films were deposited on the FTO substrate. Deposition time of 10, 30 and 60 minutes, the coating current of 5, 10, 15 and 20 mA and electrolyte solution temperatures for Pt layer synthesis of 25, 30 and 40°C were varied. Surface morphology and optical properties was analyzed by digital microscopic and UV-vis spectrophotometer. Pt films exhibit uniform surface area highly for all the conditions of coating current in the deposition time of 30 and 40 minutes at 40°C. Transmittance values of Pt films deposited on FTO substrate has approximately of 5 to 50 % show that occur high reflection corresponding to dye molecule absorption increases. DSSC device was fabricated from the TiO2 standard and immersed in dye N719 for 24 hours. Efficiency was measured by solar simulator. Efficiency value obtains as high as 5.91 % for the coating current, deposition time and solution temperature of 15 mA, 30 minutes and 40°C. Summary, influence of temperature effects efficiency increasing. Pt counter electrode can be prepared easily and the suitable usefully for DSSC.

  10. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution.

    PubMed

    Salem, Mohamed A; Bakr, Eman A; El-Attar, Heba G

    2018-01-05

    Platinum/silver (Pt@Ag) and palladium/silver (Pd@Ag) core/shell NPs have been synthesized in two steps reaction using the citrate method. The progress of nanoparticle formation was followed by the UV/Vis spectroscopy. Transmission electron microscopy revealed spherical shaped core/shell nanoparticles with average particle diameter 32.17nm for Pt@Ag and 8.8nm for Pd@Ag. The core/shell NPs were further characterized by FT-IR and XRD. Reductive degradation of the Congo red dye was chosen to demonstrate the excellent catalytic activity of these core/shell nanostructures. The nanocatalysts act as electron mediators for the transfer of electrons from the reducing agent (NaBH 4 ) to the dye molecules. Effect of reaction parameters such as nanocatalyst dose, dye and NaBH 4 concentrations on the dye degradation was investigated. A comparison between the catalytic activities of both nanocatalysts was made to realize which of them the best in catalytic performance. Pd@Ag was the higher in catalytic activity over Pt@Ag. Such greater activity is originated from the smaller particle size and larger surface area. Pd@Ag nanocatalyst was catalytically stable through four subsequent reaction runs under the utilized reaction conditions. These findings can thus be considered as possible economical alternative for environmental safety against water pollution by dyes. Copyright © 2017. Published by Elsevier B.V.

  11. Study of the influence of platinum, palladium and rhodium on duckweed (Lemna minor).

    PubMed

    Bednarova, Ivana; Mikulaskova, Hana; Havelkova, Barbora; Strakova, Lenka; Beklova, Miroslava; Sochor, Jiri; Hynek, David; Adam, Vojtech; Kizek, Rene

    2014-01-01

    Road traffic pollutants and the residues of cytostatics that are widely used in anti-cancer therapy are a significant sources of platinum group elements (PGE; Pt, Pd and Rh) in environment. These metals can migrate into sewage and thus pollute surface waters. The purpose of our study was to evaluate the effect of PtCl4 on the antioxidant and enzymatic activity of duckweed (Lemna minor), a bioindicator of the aquatic environment. The study was performed using a 7-day conventional test based on the OECD 221 (CSN EN ISO 20079)--Lemna sp. Growth Inhibition Test. We also conducted a microbiotest to analyse the effects of PtC4, PdCl2 and RhCl3 on the morphology and vegetative growth of colonies of this plant and compared their inhibitory effects during the microbiotest. We observed inhibition of colony growth and clear morphological changes. Antioxidant and enzymatic activities increased with platinum doses increased. The 168hEC50 of PtCl4 was 12.16 μM (95% confidence interval = 9.88-14.44) and the 168hEC50 of PdCl2 was 50.39 (95% confidence interval = 23.83-76.96). The greatest inhibition of growth by RhCl3 was observed at 25 μM. The obtained results suggest that L. minor phytotoxicity tests should be widely used in the biomonitoring.

  12. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed A.; Bakr, Eman A.; El-Attar, Heba G.

    2018-01-01

    Platinum/silver (Pt@Ag) and palladium/silver (Pd@Ag) core/shell NPs have been synthesized in two steps reaction using the citrate method. The progress of nanoparticle formation was followed by the UV/Vis spectroscopy. Transmission electron microscopy revealed spherical shaped core/shell nanoparticles with average particle diameter 32.17 nm for Pt@Ag and 8.8 nm for Pd@Ag. The core/shell NPs were further characterized by FT-IR and XRD. Reductive degradation of the Congo red dye was chosen to demonstrate the excellent catalytic activity of these core/shell nanostructures. The nanocatalysts act as electron mediators for the transfer of electrons from the reducing agent (NaBH4) to the dye molecules. Effect of reaction parameters such as nanocatalyst dose, dye and NaBH4 concentrations on the dye degradation was investigated. A comparison between the catalytic activities of both nanocatalysts was made to realize which of them the best in catalytic performance. Pd@Ag was the higher in catalytic activity over Pt@Ag. Such greater activity is originated from the smaller particle size and larger surface area. Pd@Ag nanocatalyst was catalytically stable through four subsequent reaction runs under the utilized reaction conditions. These findings can thus be considered as possible economical alternative for environmental safety against water pollution by dyes.

  13. Synthesis of silver-platinum nanoferns substrates used in surface-enhanced Raman spectroscopy sensors to detect creatinine

    NASA Astrophysics Data System (ADS)

    Adliha Abdullah, Nur; Abu Bakar, Norhayati; Shapter, Joseph G.; Mat Salleh, Muhamad; Umar, Akrajas Ali

    2017-06-01

    Creatinine is one of the most commonly used bio markers of renal function. This paper reports a study on detection of creatinine using silver-platinum (AgPt) nanoferns substrates to fabricate a surface-enhanced Raman spectroscopy (SERS) sensor. The AgPt nanoferns were synthesized by liquid phase deposition (LPD) where the morphology structures and thickness of the AgPt nanoferns were controlled by varying the concentration of formic acid which was acting as the reducing agent. We have obtained four different nanoferns structures and thicknesses. This study showed that the AgPt nanoferns structure synthesized with 40 mM formic acid give the highest Raman peak intensity for a 0.05 M creatinine sample.

  14. Thermal fatigue behavior of H-13 die steel for aluminum die casting with various ion sputtered coatings

    NASA Technical Reports Server (NTRS)

    Nieh, C. Y.; Wallace, J. F.

    1981-01-01

    Sputtered coatings of Mo, W, Pt, Ag, Au, Co, Cr, Ni, Ag + Cu, Mo + Pt, Si3N4, A1N, Cr3C2, Ta5Si3, and ZrO2 were applied to a 2-inch-square, 7-inch-long thermal fatigue test specimen which was then internally water cooled and alternately immersed in molten aluminum and cooled in air. After 15,000 cycles the thermal fatigue cracks at the specimen corners were measured. Results indicate that a significant improvement in thermal fatigue resistance was obtained with platinum, molybdenum, and tungsten coatings. Metallographic examination indicates that the improvement in thermal fatigue resistance resulted from protection of the surface of the die steel from oxidation. The high yield strength and ductility of molybdenum and tungsten contributed to the better thermal fatigue resistance.

  15. Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Wei, Meng; Jiang, Min; Liu, Xiaobo; Wang, Min; Mu, Shichun

    2016-09-01

    A rational electrode structure can allow proton exchange membrane (PEM) fuel cells own high performance with a low noble metal loading and an optimal transport pathway for reaction species. In this study, we develop a graphene doped polyacrylonitile (PAN)/polyvinylident fluoride (PVDF) (GPP) electrospun nanofiber electrode with improved electrical conductivity and high porosity, which could enhance the triple reaction boundary and promote gas and water transport throughout the porous electrode. Thus the increased electrochemical active surface area (ECSA) of Pt catalysts and fuel cell performance can be expected. As results, the ECSA of hot-pressed electrospun electrodes with 2 wt% graphene oxide (GO) is up to 84.3 m2/g, which is greatly larger than that of the conventional electrode (59.5 m2/g). Significantly, the GPP nanofiber electrospun electrode with Pt loading of 0.2 mg/cm2 exhibits higher fuel cell voltage output and stability than the conventional electrode.

  16. Au and Pt nanoparticle supported catalysts tailored for H-2 production: From models to powder catalysts

    DOE PAGES

    T. D. Nguyen-Phan; Baber, A. E.; Rodriguez, J. A.; ...

    2015-12-10

    The use of metal nanoparticles (NPs), including Au and Pt, supported over oxides has been pivotal, and is ever increasing in enabling catalytic reactions which target the production of hydrogen. We review here the most recent works pertaining to the fundamental understanding of the structure, morphology, growth, characterization, and intrinsic phenomenological properties of Au– and Pt– based catalysts that influence the reactivity and selectivity to target hydrogen production. We draw on surface science and theoretical methods of model and powder catalysts using high resolution imaging, spectroscopy, scattering experiments, and theoretical studies. Based on these insights we identify key aspects ofmore » studies of supported metal nanoparticle (NP) catalysts for several reactions. The main focus of this review is on the intersection of catalytic chemistry related to the water-gas shift (WGS), oxygenate steam reforming (OSR), and solarassisted reactions (SAR).« less

  17. High-Pressure Catalytic Reactions of C6 Hydrocarbons on PlatinumSingle-Crystals and nanoparticles: A Sum Frequency Generation VibrationalSpectroscopic and Kinetic Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bratlie, Kaitlin

    Catalytic reactions of cyclohexene, benzene, n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene on platinum catalysts were monitored in situ via sum frequency generation (SFG) vibrational spectroscopy and gas chromatography (GC). SFG is a surface specific vibrational spectroscopic tool capable of monitoring submonolayer coverages under reaction conditions without gas-phase interference. SFG was used to identify the surface intermediates present during catalytic processes on Pt(111) and Pt(100) single-crystals and on cubic and cuboctahedra Pt nanoparticles in the Torr pressure regime and at high temperatures (300K-450K). At low pressures (<10 -6 Torr), cyclohexene hydrogenated and dehydrogenates to form cyclohexyl (C 6H 11) and π-allyl Cmore » 6H 9, respectively, on Pt(100). Increasing pressures to 1.5 Torr form cyclohexyl, π-allyl C 6H 9, and 1,4-cyclohexadiene, illustrating the necessity to investigate catalytic reactions at high-pressures. Simultaneously, GC was used to acquire turnover rates that were correlated to reactive intermediates observed spectroscopically. Benzene hydrogenation on Pt(111) and Pt(100) illustrated structure sensitivity via both vibrational spectroscopy and kinetics. Both cyclohexane and cyclohexene were produced on Pt(111), while only cyclohexane was formed on Pt(100). Additionally, π-allyl c-C 6H 9 was found only on Pt(100), indicating that cyclohexene rapidly dehydrogenates on the (100) surface. The structure insensitive production of cyclohexane was found to exhibit a compensation effect and was analyzed using the selective energy transfer (SET) model. The SET model suggests that the Pt-H system donates energy to the E 2u mode of free benzene, which leads to catalysis. Linear C 6 (n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene) hydrocarbons were also investigated in the presence and absence of excess hydrogen on Pt(100). Based on spectroscopic signatures, mechanisms for catalytic isomerization and dehydrocyclization of n-hexane were identified. The structure sensitivity of benzene hydrogenation on shape controlled platinum nanoparticles was also studied. The nanoparticles showed similar selectivities to those found for Pt(111) and Pt(100) single-crystals. Additionally, the nanoparticles have lower activation energies than their single-crystal counterparts.« less

  18. One-pot wet-chemical co-reduction synthesis of bimetallic gold-platinum nanochains supported on reduced graphene oxide with enhanced electrocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chen, De-Jun; Zhang, Qian-Li; Feng, Jin-Xia; Ju, Ke-Jian; Wang, Ai-Jun; Wei, Jie; Feng, Jiu-Ju

    2015-08-01

    In this work, a simple, rapid and facile one-pot wet-chemical co-reduction method is developed for synthesis of bimetallic Au-Pt alloyed nanochains supported on reduced graphene oxide (Au-Pt NCs/RGO), in which caffeine is acted as a capping agent and a structure-directing agent, while no any seed, template, surfactant or polymer involved. The as-prepared nanocomposites display enlarged electrochemical active surface area, significantly enhanced catalytic activity and better stability for methanol and ethylene glycol oxidation, compared with commercial Pt-C (Pt 50 wt%), PtRu-C (Pt 30 wt% and Ru 15 wt%) and Pt black.

  19. Synthesis of three-dimensionally ordered macro-/mesoporous Pt with high electrocatalytic activity by a dual-templating approach

    NASA Astrophysics Data System (ADS)

    Zhang, Chengwei; Yang, Hui; Sun, Tingting; Shan, Nannan; Chen, Jianfeng; Xu, Lianbin; Yan, Yushan

    2014-01-01

    Three dimensionally ordered macro-/mesoporous (3DOM/m) Pt catalysts are fabricated by chemical reduction employing a dual-templating synthesis approach combining both colloidal crystal (opal) templating (hard-templating) and lyotropic liquid crystal templating (soft-templating) techniques. The macropore walls of the prepared 3DOM/m Pt exhibit a uniform mesoporous structure composed of polycrystalline Pt nanoparticles. Both the size of the mesopores and Pt nanocrystallites are in the range of 3-5 nm. The 3DOM/m Pt catalyst shows a larger electrochemically active surface area (ECSA), and higher catalytic activity as well as better poisoning tolerance for methanol oxidation reaction (MOR) than the commercial Pt black catalyst.

  20. Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell

    NASA Astrophysics Data System (ADS)

    Devrim, Yilser; Albostan, Ayhan

    2016-08-01

    The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.

Top