Science.gov

Sample records for surface wave propagation

  1. Surface acoustic wave propagation in graphene

    NASA Astrophysics Data System (ADS)

    Thalmeier, Peter; Dóra, Balázs; Ziegler, Klaus

    2010-01-01

    Surface acoustic wave (SAW) propagation is a powerful method to investigate two-dimensional (2D) electron systems. We show how SAW observables are influenced by coupling to the 2D massless Dirac electrons of graphene and argue that Landau oscillations in SAW propagation can be observed as function of gate voltage for constant field. Contrary to other transport measurements, the zero-field SAW propagation gives the wave-vector dependence of graphene conductivity for small wave numbers. We predict a crossover from Schrödinger to Dirac-like behavior as a function of gate voltage, with no attenuation in the latter for clean samples.

  2. Shallow water sound propagation with surface waves.

    PubMed

    Tindle, Chris T; Deane, Grant B

    2005-05-01

    The theory of wavefront modeling in underwater acoustics is extended to allow rapid range dependence of the boundaries such as occurs in shallow water with surface waves. The theory allows for multiple reflections at surface and bottom as well as focusing and defocusing due to reflection from surface waves. The phase and amplitude of the field are calculated directly and used to model pulse propagation in the time domain. Pulse waveforms are obtained directly for all wavefront arrivals including both insonified and shadow regions near caustics. Calculated waveforms agree well with a reference solution and data obtained in a near-shore shallow water experiment with surface waves over a sloping bottom.

  3. Surface acoustic wave propagation in graphene film

    SciTech Connect

    Roshchupkin, Dmitry Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry; Ortega, Luc; Zizak, Ivo; Erko, Alexei; Tynyshtykbayev, Kurbangali; Insepov, Zinetula

    2015-09-14

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  4. Surface acoustic wave propagation in graphene film

    NASA Astrophysics Data System (ADS)

    Roshchupkin, Dmitry; Ortega, Luc; Zizak, Ivo; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Erko, Alexei; Tynyshtykbayev, Kurbangali; Irzhak, Dmitry; Insepov, Zinetula

    2015-09-01

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  5. Propagation and excitation of multiple surface waves

    NASA Astrophysics Data System (ADS)

    Faryad, Muhammad

    Surface waves are the solutions of the frequency-domain Maxwell equations at the planar interface of two dissimilar materials. The time-averaged Poynting vector of a surface wave (i) has a significant component parallel to the interface and (ii) decays at sufficiently large distances normal to the interface. If one of the partnering materials is a metal and the other a dielectric, the surface waves are called surface plasmon-polariton (SPP) waves. If both partnering materials are dielectric, with at least one being periodically nonhomogeneous normal to the interface, the surface waves are called Tamm waves; and if that dielectric material is also anisotropic, the surface waves are called Dyakonov--Tamm waves. SPP waves also decays along the direction of propagation, whereas Tamm and Dyakonov--Tamm waves propagate with negligible losses. The propagation and excitation of multiple SPP waves guided by the interface of a metal with a periodically nonhomogeneous sculptured nematic thin film (SNTF), and the interface of a metal with a rugate filter were theoretically investigated. The SNTF is an anisotropic material with a permittivity dyadic that is periodically nonhomogeneous in the thickness direction. A rugate filter is also a periodically nonhomogeneous dielectric material; however, it is an isotropic material. Multiple SPP waves of the same frequency but with different polarization states, phase speeds, attenuation rates, and spatial field profiles were found to be guided by a metal/SNTF interface, a metal/rugate-filter interface, and a metal slab in the SNTF. Multiple Dyakonov--Tamm waves of the same frequency but different polarization states, phase speeds, and spatial field profiles were found to be guided by a structural defect in an SNTF, and by a dielectric slab in an SNTF. The characteristics of multiple SPP and Dyakonov--Tamm waves were established by the investigations on canonical boundary-value problems. The Turbadar-Kretschmann-Raether (TKR) and the

  6. Mechanical Surface Waves Accompany Action Potential Propagation

    NASA Astrophysics Data System (ADS)

    Machta, Benjamin; El Hady, Ahmed

    2015-03-01

    The action potential (AP) is the basic mechanism by which information is transmitted along neuronal axons. Although the excitable nature of axons is understood to be primarily electrical, many experimental studies have shown that a mechanical displacement of the axonal membrane co-propagates with the electrical signal. While the experimental evidence for co-propagating mechanical waves is diverse and compelling, there is no consensus for their physical underpinnings. We present a model in which these mechanical displacements arise from the driving of mechanical surface waves, in which potential energy is stored in elastic deformations of the neuronal membrane and cytoskeleton while kinetic energy is stored in the movement of the axoplasmic fluid. In our model these surface waves are driven by the traveling wave of electrical depolarization that characterizes the AP, altering the electrostatic forces across the membrane as it passes. Our model allows us to predict the shape of the displacement that should accompany any traveling wave of voltage, including the well-characterized AP. We expect our model to serve as a framework for understanding the physical origins and possible functional roles of these AWs in neurobiology. See Arxiv/1407.7600

  7. Ultrasonic Surface Wave Propagation and Interaction with Surface Defects

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Dixon, S.; Edwards, R. S.; Jian, X.

    2007-03-01

    Electromagnetic acoustic transducers (EMATs) are non-contact ultrasonic transducers capable of generating wideband surface acoustic waves on metallic samples. We describe some lab based ultrasonic measurements using EMATs to generate wideband, low frequency (approximately 50-500kHz) ultrasonic surface waves on a number of samples including aluminum billets and sections of rail track that contain simulated defects. A stabilized Michelson interferometer has been used to measure accurately the absolute out-of-plane displacement of the ultrasonic waves generated on the sample, which propagate along the sample to interact with a simulated surface breaking defect. Transient finite element analysis has been used to model the ultrasonic wave propagation on the sample and the interaction of these waves with surface breaking defects. These simulations compare very favorably with the experimental results obtained using the Michelson interferometer to measure the out-of-plane displacement of the surface waves. We describe different approaches that can be used to determine the depth and presence of the crack. The non-contact nature of EMATs and the pitch-catch test geometry that we propose to use for testing make them especially suitable for online detection and depth gauging of surface breaking cracks at high inspection speeds.

  8. Polarization controlled directional propagation of Bloch surface wave.

    PubMed

    Kovalevich, Tatiana; Boyer, Philippe; Suarez, Miguel; Salut, Roland; Kim, Myun-Sik; Herzig, Hans Peter; Bernal, Maria-Pilar; Grosjean, Thierry

    2017-03-06

    Bloch surface waves (BSWs) are recently developing alternative to surface plasmon polaritons (SPPs). Due to dramatically enhanced propagation distance and strong field confinement these surface states can be successfully used in on-chip all-optical integrated devices of increased complexity. In this work we propose a highly miniaturized grating based BSW coupler which is gathering launching and directional switching functionalities in a single element. This device allows to control with polarization the propagation direction of Bloch surface waves at subwavelength scale, thus impacting a large panel of domains such as optical circuitry, function design, quantum optics, etc.

  9. Estimating propagation velocity through a surface acoustic wave sensor

    DOEpatents

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  10. Surface wave propagation in thin silver films under residual stress

    NASA Astrophysics Data System (ADS)

    Njeh, Anuar; Wieder, Thomas; Schneider, D.; Fuess, Hartmut; Ben Ghozlen, M. H.

    Investigations using surface acoustic waves provide information on the elastic properties of thin films. Residual stresses change the phase velocity of the surface waves. We have calculated phase velocity and dispersion of surface waves in thin silver films with a strong [111]-fibre texture. A non-linear description of surface waves propagating along the [110]-direction of the substrate has been developed on the basis of an acoustoelastic theory, taking into account residual stresses. The relative change delta_v/v of the velocity v was found to be lin-ear for large excitation frequencies. The dispersion curves were measured using a photoa-coustic method. For sputtered polycrystalline thin silver films we found good agreement be-tween the experimental and calculated dispersion curves for frequencies up to 225 MHz.

  11. Surface wave propagation in non-ideal plasmas

    NASA Astrophysics Data System (ADS)

    Pandey, B. P.; Dwivedi, C. B.

    2015-03-01

    The properties of surface waves in a partially ionized, compressible magnetized plasma slab are investigated in this work. The waves are affected by the non-ideal magnetohydrodynamic (MHD) effects which causes finite drift of the magnetic field in the medium. When the magnetic field drift is ignored, the characteristics of the wave propagation in a partially ionized plasma fluid is similar to the fully ionized ideal MHD except now the propagation properties depend on the fractional ionization as well as on the compressibility of the medium. The phase velocity of the sausage and kink waves increases marginally (by a few per cent) due to the compressibility of the medium in both ideal as well as Hall-diffusion-dominated regimes. However, unlike ideal regime, only waves below certain cut-off frequency can propagate in the medium in Hall dominated regime. This cut-off for a thin slab has a weak dependence on the plasma beta whereas for thick slab no such dependence exists. More importantly, since the cut-off is introduced by the Hall diffusion, the fractional ionization of the medium is more important than the plasma compressibility in determining such a cut-off. Therefore, for both compressible as well incompressible medium, the surface modes of shorter wavelength are permitted with increasing ionization in the medium. We discuss the relevance of these results in the context of solar photosphere-chromosphere.

  12. Modeling anomalous surface - wave propagation across the Southern Caspian basin

    SciTech Connect

    Priestly, K.F.; Patton, H.J.; Schultz, C.A.

    1998-01-09

    The crust of the south Caspian basin consists of 15-25 km of low velocity, highly attenuating sediment overlying high velocity crystalline crust. The Moho depth beneath the basin is about 30 km as compared to about 50 km in the surrounding region. Preliminary modeling of the phase velocity curves shows that this thick sediments of the south Caspian basin are also under-lain by a 30-35 km thick crystalline crust and not by typical oceanic crust. This analysis also suggest that if the effect of the over-pressuring of the sediments is to reduce Poissons` ratio, the over-pressured sediments observed to approximately 5 km do not persist to great depths. It has been shown since 1960`s that the south Caspian basin blocks the regional phase Lg. Intermediate frequency (0.02-0.04 Hz) fundamental mode Raleigh waves propagating across the basin are also severely attenuated, but the low frequency surface waves are largely unaffected. This attenuation is observed along the both east-to-west and west-to-east great circle paths across the basin, and therefore it cannot be related to a seismograph site effect. We have modeled the response of surface waves in an idealized rendition of the south Caspian basin model using a hybrid normal mode / 2-D finite difference approach. To gain insight into the features of the basin which cause the anomalous surface wave propagation, we have varied parameters of the basin model and computed synthetic record sections to compare with the observed seismograms. We varied the amount of mantel up-warp, the shape of the boundaries, the thickness and shear wave Q of the sediments and mantle, and the depth of the water layer. Of these parameters, the intermediate frequency surface waves are most severely affected by the sediments thickness and shear wave attenuation. fundamental mode Raleigh wave phase velocities measure for paths crossing the basin are extremely low.

  13. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves.

    PubMed

    Sun, Shulin; He, Qiong; Xiao, Shiyi; Xu, Qin; Li, Xin; Zhou, Lei

    2012-04-01

    The arbitrary control of electromagnetic waves is a key aim of photonic research. Although, for example, the control of freely propagating waves (PWs) and surface waves (SWs) has separately become possible using transformation optics and metamaterials, a bridge linking both propagation types has not yet been found. Such a device has particular relevance given the many schemes of controlling electromagnetic waves at surfaces and interfaces, leading to trapped rainbows, lensing, beam bending, deflection, and even anomalous reflection/refraction. Here, we demonstrate theoretically and experimentally that a specific gradient-index meta-surface can convert a PW to a SW with nearly 100% efficiency. Distinct from conventional devices such as prism or grating couplers, the momentum mismatch between PW and SW is compensated by the reflection-phase gradient of the meta-surface, and a nearly perfect PW-SW conversion can happen for any incidence angle larger than a critical value. Experiments in the microwave region, including both far-field and near-field characterizations, are in excellent agreement with full-wave simulations. Our findings may pave the way for many applications, including high-efficiency surface plasmon couplers, anti-reflection surfaces, light absorbers, and so on.

  14. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves

    NASA Astrophysics Data System (ADS)

    Sun, Shulin; He, Qiong; Xiao, Shiyi; Xu, Qin; Li, Xin; Zhou, Lei

    2012-05-01

    The arbitrary control of electromagnetic waves is a key aim of photonic research. Although, for example, the control of freely propagating waves (PWs; refs , , , , , ) and surface waves (SWs; refs , , , ) has separately become possible using transformation optics and metamaterials, a bridge linking both propagation types has not yet been found. Such a device has particular relevance given the many schemes of controlling electromagnetic waves at surfaces and interfaces, leading to trapped rainbows, lensing, beam bending, deflection, and even anomalous reflection/refraction. Here, we demonstrate theoretically and experimentally that a specific gradient-index meta-surface can convert a PW to a SW with nearly 100% efficiency. Distinct from conventional devices such as prism or grating couplers, the momentum mismatch between PW and SW is compensated by the reflection-phase gradient of the meta-surface, and a nearly perfect PW-SW conversion can happen for any incidence angle larger than a critical value. Experiments in the microwave region, including both far-field and near-field characterizations, are in excellent agreement with full-wave simulations. Our findings may pave the way for many applications, including high-efficiency surface plasmon couplers, anti-reflection surfaces, light absorbers, and so on.

  15. Modeling the propagation of electromagnetic waves over the surface of the human body

    NASA Astrophysics Data System (ADS)

    Vendik, I. B.; Vendik, O. G.; Kirillov, V. V.; Pleskachev, V. V.; Tural'chuk, P. A.

    2016-12-01

    The results of modeling and an experimental study of electromagnetic (EM) waves in microwave range propagating along the surface of the human body have been presented. The parameters of wave propagation, such as the attenuation and phase velocity, have also been investigated. The calculation of the propagation of EM waves by the numerical method FDTD (finite difference time domain), as well as the use of the analytical model of the propagation of the EM wave along flat and curved surfaces has been fulfilled. An experimental study on a human body has been conducted. It has been shown that creeping waves are slow and exhibit a noticeable dispersion, while the surface waves are dispersionless and propagate at the speed of light in free space. A comparison of the results of numerical simulation, analytical calculation, and experimental investigations at a frequency of 2.55 GHz has been carried out.

  16. Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-02-01

    High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained.

  17. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, E.S.

    1980-05-09

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  18. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, Edward S.

    1982-01-01

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  19. Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality

    SciTech Connect

    Wang, Bingnan

    2009-01-01

    Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based

  20. Formation and Propagation of Love Waves in a Surface Layer with a P-Wave Source

    DTIC Science & Technology

    1990-04-01

    AD- A225 559 GL-TR-90-0100 Formation and Propagation of Love Waves in a Surface Layer with a P-Wave Source A. L. Florence S. A. Miller PTh FILE COP...describing outgoing waves is (p(r,t) = - f(s) s = t - (r- a)/ cr (27) In terms of the function f(s), the displacement, velocity, and stresses are cr r2...28) cr r2 (29) CyrpC2 - +2(1- 2,0) ’ + = 1 -1 (r2 (30) ce P21 - I -M I= I$ C(2r )x + ) (31) in which 1) is Poisson’s ratio. For a given cavity wall

  1. Geometric effects of global lateral heterogeneity on long-period surface wave propagation

    NASA Technical Reports Server (NTRS)

    Lay, T.; Kanamori, H.

    1985-01-01

    The present investigation has the objective to document examples of anomalous long-period surface wave amplitude behavior and to provide a preliminary appraisal of the effects of global lateral heterogeneity on surface wave propagation from a ray theory perspective. Attention is given to remarkable long-period surface wave anomalies described in literature, an equidistance azimuthal plot centered on the Iranian source region, Rayleigh wave and Love wave spectra for the 256-s period arrivals for the Tabas earthquake, constrained moment tensor and fault model inversion solutions ofr Iranian earthquakes, aspects of surface wave ray tracing, and a table of Rayleigh wave amplitude anomalies for Iranian earthquakes. Surface wave ray-tracing calculations for models of global phase velocity variations proposed by Nakanishi and Anderson (1984) are found to show that large-amplitude anomalies will be observed for Love and Rayleigh waves with periods of 100-250 s.

  2. Study of Surface Wave Propagation in Fluid-Saturated Porous Solids.

    NASA Astrophysics Data System (ADS)

    Azcuaga, Valery Francisco Godinez

    1995-01-01

    This study addresses the surface wave propagation phenomena on fluid-saturated porous solids. The analytical method for calculation of surface wave velocities (Feng and Johnson, JASA, 74, 906, 1983) is extended to the case of a porous solid saturated with a wetting fluid in contact with a non-wetting fluid, in order to study a material combination suitable for experimental investigation. The analytical method is further extended to the case of a non-wetting fluid/wetting fluid-saturated porous solid interface with an arbitrary finite surface stiffness. These extensions of the analytical method allows to theoretically study surface wave propagation phenomena during the saturation process. A modification to the 2-D space-time reflection Green's function (Feng and Johnson, JASA, 74, 915, 1983) is introduced in order to simulate the behavior of surface wave signals detected during the experimental investigation of surface wave propagation on fluid-saturated porous solids (Nagy, Appl. Phys. Lett., 60, 2735, 1992). This modification, together with the introduction of an excess attenuation for the Rayleigh surface mode, makes it possible to explain the apparent velocity changes observed on the surface wave signals during saturation. Experimental results concerning the propagation of surface waves on an alcohol-saturated porous glass are presented. These experiments were performed at frequencies of 500 and 800 kHz and show the simultaneous propagation of the two surface modes predicted by the extended analytical method. Finally an analysis of the displacements associated with the different surface modes is presented. This analysis reveals that it is possible to favor the generation of the Rayleigh surface mode or of the slow surface mode, simply by changing the type of transducer used in the generation of surface waves. Calculations show that a shear transducer couples more energy into the Rayleigh mode, whereas a longitudinal transducer couples more energy into the slow

  3. A Model for the Propagation of Nonlinear Surface Waves over Viscous Muds

    DTIC Science & Technology

    2007-07-05

    Coastal Geosciences Hsiao, S.V., Shemdin , O.H., 1980. Interaction of ocean waves with a soft Program (AS; award N00014-03-1-0200). Dr. Johan C...locate/coastaleng A model for the propagation of nonlinear surface waves over viscous muds James M. Kaihatu a,, Alexandru Sheremet b K. Todd Holland c...The effect of a thin viscous fluid-mud layer on nearshore nonlinear wave - wave interactions is studied using a parabolic frequency-domain nonlinear

  4. Visualization of terahertz surface waves propagation on metal foils

    PubMed Central

    Wang, Xinke; Wang, Sen; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Yan, Haitao; Ye, Jiasheng; Zhang, Yan

    2016-01-01

    Exploitation of surface plasmonic devices (SPDs) in the terahertz (THz) band is always beneficial for broadening the application potential of THz technologies. To clarify features of SPDs, a practical characterization means is essential for accurately observing the complex field distribution of a THz surface wave (TSW). Here, a THz digital holographic imaging system is employed to coherently exhibit temporal variations and spectral properties of TSWs activated by a rectangular or semicircular slit structure on metal foils. Advantages of the imaging system are comprehensively elucidated, including the exclusive measurement of TSWs and fall-off of the time consumption. Numerical simulations of experimental procedures further verify the imaging measurement accuracy. It can be anticipated that this imaging system will provide a versatile tool for analyzing the performance and principle of SPDs. PMID:26729652

  5. Nonreciprocal propagation of surface acoustic wave in Ni/LiNbO 3

    NASA Astrophysics Data System (ADS)

    Sasaki, R.; Nii, Y.; Iguchi, Y.; Onose, Y.

    2017-01-01

    We investigated surface acoustic wave propagation in a Ni/LiNbO3 hybrid device. We found that the absorption and phase velocity are dependent on the sign of the wave vector, which indicates that the surface acoustic wave propagation has nonreciprocal characteristics induced by simultaneous breaking of time-reversal and spatial inversion symmetries. The nonreciprocity was reversed by 180∘ rotation of the magnetic field. The origin of the nonreciprocity is ascribed to interference of shear-type and longitudinal-type magnetoelastic couplings.

  6. Surface Current Density Mapping for Identification of Gastric Slow Wave Propagation

    PubMed Central

    Bradshaw, L. A.; Cheng, L. K.; Richards, W. O.; Pullan, A. J.

    2009-01-01

    The magnetogastrogram records clinically relevant parameters of the electrical slow wave of the stomach noninvasively. Besides slow wave frequency, gastric slow wave propagation velocity is a potentially useful clinical indicator of the state of health of gastric tissue, but it is a difficult parameter to determine from noninvasive bioelectric or biomagnetic measurements. We present a method for computing the surface current density (SCD) from multichannel magnetogastrogram recordings that allows computation of the propagation velocity of the gastric slow wave. A moving dipole source model with hypothetical as well as realistic biomagnetometer parameters demonstrates that while a relatively sparse array of magnetometer sensors is sufficient to compute a single average propagation velocity, more detailed information about spatial variations in propagation velocity requires higher density magnetometer arrays. Finally, the method is validated with simultaneous MGG and serosal EMG measurements in a porcine subject. PMID:19403355

  7. Observation of Wood's anomalies on surface gravity waves propagating on a channel.

    PubMed

    Schmessane, Andrea

    2016-09-01

    I report on experiments demonstrating the appearance of Wood's anomalies in surface gravity waves propagating along a channel with a submerged obstacle. Space-time measurements of surface gravity waves allow one to compute the stationary complex field of the wave and the amplitude growth of localized and propagative modes over all the entire channel, including the scattering region. This allows one to access the near and far field dynamics, which constitute a new and complementary way of observation of mode resonances of the incoming wave displaying Wood's anomalies. Transmission coefficient, dispersion relations and normalized wave energy of the incoming wave and the excited mode are measured and found to be in good agreement with theoretical predictions.

  8. Review of the role of dielectric anisotropy in Dyakonov surface-wave propagation

    NASA Astrophysics Data System (ADS)

    Nelatury, Sudarshan R., II; Polo, John A., Jr.; Lakhtakia, Akhlesh

    2008-08-01

    Surface waves (SWs) are localized waves that travel along the planar interface between two different mediums when certain dispersion relations are satisfied. If both mediums have purely dielectric constitutive properties, the characteristics of SW propagation are determined by the anisotropy of both mediums. Surface waves are then called Dyakonov SWs (DSWs), after Dyakonov who theoretically established the possibility of SW propagation at the planar interface of an isotropic dielectric and a positive uniaxial dielectric. Since then, DSW propagation guided by interfaces between a variety of dielectrics has been studied. With an isotropic dielectric on one side, the dielectric on the other side of the interface can be not only positive uniaxial but also biaxial. DSW propagation can also occur along an interface between two uniaxial or biaxial dielectrics that are twisted about a common axis with respect to each other but are otherwise identical. Recently, DSW propagation has been studied taking (i) uniaxial dielectrics such as calomel and dioptase crystals; (ii) biaxial dielectrics such as hemimorphite, crocoite, tellurite, witherite, and cerussite; and (iii) electro-optic materials such as potassium niobate. With materials that are significantly anisotropic, the angular regime of directions for DSW propagation turns out to be narrow. In the case of naturally occurring crystals, one has to accept the narrow angular existence domain (AED). However, exploiting the Pockels effect not only facilitates dynamic electrical control of DSW propagation, but also widens the AED for DSW propagation.

  9. Analysis of surface wave propagation in a grounded dielectric slab covered by a resistive sheet

    NASA Technical Reports Server (NTRS)

    Shively, David G.

    1992-01-01

    Both parallel and perpendicular polarized surface waves are known to propagate on lossless and lossy grounded dielectric slabs. Surface wave propagation on a grounded dielectric slab covered with a resistive sheet is considered. Both parallel and perpendicular polarizations are examined. Transcendental equations are derived for each polarization and are solved using iterative techniques. Attenuation and phase velocity are shown for representative geometries. The results are applicable to both a grounded slab with a resistive sheet and an ungrounded slab covered on each side with a resistive sheet.

  10. On Lamb wave propagation from small surface explosions in the atmospheric boundary layer

    SciTech Connect

    ReVelle, D.O.; Kulichkov, S.N.

    1998-12-31

    The problem of Lamb waves propagation from small explosions in the atmospheric boundary layer are discussed. The results of lamb waves registrations from surface explosions with yields varied from 3 tons up to a few hundred tons (TNT equivalent) are presented. The source-receiver distances varied from 20 km up to 310 km. Most of the explosions were conducted during the evening and early morning hours when strong near-surface temperature and wind inversions existed. The corresponding profiles of effective sound velocity are presented. Some of the explosions had been realized with 15 minute intervals between them when morning inversion being destroyed. Corresponding transformation of Lamb waves was observed. The Korteveg-de Vrize equation to explain experimental data on Lamb waves propagation along earth surface is used.

  11. Excitation and propagation of shear-horizontal-type surface and bulk acoustic waves.

    PubMed

    Hashimoto, K Y; Yamaguchi, M

    2001-09-01

    This paper reviews the basic properties of shear-horizontal (SH)-type surface acoustic waves (SAWs) and bulk acoustic waves (BAWs). As one of the simplest cases, the structure supporting Bleustein-Gulyaev-Shimizu waves is considered, and their excitation and propagation are discussed from various view points. First, the formalism based on the complex integral theory is presented, where the surface is assumed to be covered with an infinitesimally thin metallic film, and it is shown how the excitation and propagation of SH-type waves are affected by the surface perturbation. Then, the analysis is extended to a periodic grating structure, and the behavior of SH-type SAWs under the grating structure is discussed. Finally, the origin of the leaky nature is explained.

  12. Magnetostatic surface waves propagation at dissipative ferrite-MTMs-metal structure.

    PubMed

    Al-Sahhar, Zeyad I; Shabat, Mohammed M; El-Khozondar, Hala J

    2013-01-01

    The magnetostatic surface waves (MSSW) propagation in a layered structure composed of ferrite film covered by air and on top of metamaterial (MTM) placed on metal is discussed. Dispersion equations which relate the parameters of different layers are derived and used to analyse propagation of MSSW. It is found that the MSSW excitation band depends on the thickness of the MTM layer and ferrite layer.

  13. Enhanced nonlinearity of the propagation constant of a long-range surface-plasma wave

    SciTech Connect

    Sarid, D.; Deck, R.T.; Fasano, J.J.

    1982-10-01

    We calculate the power-dependent propagation constant of a surface-plasma wave as a function of the thickness of the metal film on which it propagates when the metal film is bounded by a nonlinear semiconductor. In the case of a Cu film bounded by InSb at a wavelength of approx.5 ..mu..m and a temperature of 5 K, we find that the effect of the nonlinearity on the propagation constant is enhanced by a factor of 10 as the metal thickness decreases from 120 to 15 nm.

  14. Visualization of Bloch surface waves and directional propagation effects on one-dimensional photonic crystal substrate.

    PubMed

    Hung, Yu-Ju; Lin, I-Sheng

    2016-07-11

    This paper reports a novel approach to the direct observation of Bloch surface waves, wherein a layer of fluorescent material is deposited directly on the surface of a semi-infinite periodic layered cell. A set of surface nano-gratings is used to couple pumping light to Bloch surface waves, while the sample is rotated until the pumping light meets the quasi-phase matching conditions. This study investigated the directional propagation of waves on stripe and circular one-dimensional grating structures by analyzing the dispersion relationship of the first two eigen modes. Our results demonstrate the efficacy of the proposed scheme in visualizing Bloch surface waves, which could be extended to a variety of other devices.

  15. Slow Surface Wave Propagation in an Azimuthally-Magnetized Millimeter-Wave Solid-Plasma Coaxial Waveguide

    NASA Astrophysics Data System (ADS)

    Obunai, Tetsuo; Hakamada, Katsuhiro

    1984-08-01

    The propagation characteristics in an azimuthally-magnetized partially-filled solid-plasma coaxial waveguide using n-type InSb at 77 K as the plasma material have been analyzed theoretically and calculated numerically. The results are compared with those for parallel-plate plasma waveguide studied previously. When the proper cross-sectional configuration and field parameters are employed, slow surface wave resonance takes place in the waveguide and a much slower wave propagation velocity at a reduced resonant magnetic field is obtained.

  16. Acoustic waves generated from seismic surface waves: propagation properties determined from Doppler sounding observations and normal-mode modelling

    NASA Astrophysics Data System (ADS)

    Artru, Juliette; Farges, Thomas; Lognonné, Philippe

    2004-09-01

    Since 1960, experiments have shown that perturbations of the ionosphere can occur after earthquakes, by way of dynamic coupling between seismic surface waves and the atmosphere. The atmospheric wave is amplified exponentially while propagating upwards due to the decrease of density, and interaction with the ionospheric plasma leads to clearly identified signals on both ground-based or satellite ionospheric measurements. In 1999 and 2000, after an upgrade of the HF Doppler sounder, the Commisariat à l'Énergie Atomique systematically recorded these effects in the ionosphere with the Francourville (France) network, by measuring vertical oscillations of ionospheric layers with the Doppler technique. Normal-mode theory extended to a solid Earth with an atmosphere allows successful modelling of such signals, even if this 1-D approach is probably too crude, especially in the solid Earth, where 20 s surface waves see large lateral variations in the crust. The combination of observations and simulations provides a new tool to determine acoustic gravity wave propagation characteristics from the ground to ionospheric height. Observed velocity and amplification of the atmospheric waves show good agreement from the ground up to moderate sounding altitudes (140-150 km); however, at higher altitudes the propagation speed is found to be much smaller than predicted and attenuation is underestimated. This shows that the standard formalism of acoustic gravity waves in the atmosphere cannot efficiently describe propagation in the ionized atmosphere. Further work is needed to characterize the propagation of acoustic waves in this altitude range: we believe that seismic waves can provide a well-constrained source for such study.

  17. Influence of surface stress and atomic defect generation on Rayleigh wave propagation in laser-excited solids

    NASA Astrophysics Data System (ADS)

    Mirzade, F. Kh.

    2013-07-01

    The surface stress effects on the Rayleigh wave propagation characteristics in solids with distributions of laser-induced atomic defects (vacancies, interstitial atoms) are studied. Defect-density fields are governed by the strain-induced generation, recombination and diffusion of atomic defects. Formulation of the general surface wave propagation problem has been made, and the corresponding frequency equation has been derived and analyzed. Some important frequency equations, as obtained by other authors, have been deduced as special cases from the frequency equation for Rayleigh waves. The combined effects of surface stress and defect density field on the Rayleigh wave velocities are shown by numerical calculations and graphs. It is found that the Rayleigh waves are generally dispersive; and in the case of low frequency with residual surface tension, a critical wave length exists, below which the propagation of Rayleigh waves is not possible. This critical wave length depends on both the residual stress and the defect distribution.

  18. Inspection of the lids of shallowly buried concrete structures based on the propagation of surface waves

    NASA Astrophysics Data System (ADS)

    Tremblay, Simon-Pierre; Karray, Mourad; Chekired, Mohamed; Bessette, Carole; Jinga, Livius

    2017-01-01

    The inspection of underground concrete utility structures can be a challenging task due to their inaccessibility. This article presents a nondestructive inspection technique for the lids of such structures based on the propagation of elastic waves where the variation in soil vertical acceleration following an impact is recorded along a given line at the surface of the soil. The structures investigated are made of reinforced concrete and are located below a shallow homogeneous soil layer which is covered by a pavement. It is shown through finite difference numerical modeling that elastic waves are affected by the state of degradation of the underground concrete structure. It is also shown that the difference in dynamic properties between the soil and the concrete structure causes the latter to act as a waveguide that affects the variation of the vertical acceleration measured at the surface of the model. The propagation of elastic waves within different underground profiles is studied in terms of the variation of their energy and of their group and phase velocity. Theoretical models, computed using the propagator matrix technique, are presented in the appendix to demonstrate the importance of the waveguide effects, caused by the presence of the concrete structure, on the group and phase velocity dispersion curves of Rayleigh waves. Finally, some of the results obtained from the inspection of two different real underground structures are also presented. These results show that the proposed inspection technique, developed based on 1D and 2D numerical testing, is also effective for real structures.

  19. Three-Dimensional Finite Difference Modeling of Surface Wave Propagation Across the Barents Shelf

    DTIC Science & Technology

    1991-10-01

    crust in the vicinity of Spitsbergen and Franz Josef Land. For propagation paths to Europe, Greenland, and North America the surface waves must... Franz Josef Land, to the southwest by the Kola and Kanin Peninsulas, and to the south by the Pechora Basin. Novaya Zemlya is considered an extension...reduced sedimentary cover. Similarly, the Svalbard platform and regions around Spitsbergen and Franz Josef Land to the north are continental crust (40 kin

  20. Guided wave propagation in metallic and resin plates loaded with water on single surface

    NASA Astrophysics Data System (ADS)

    Hayashi, Takahiro; Inoue, Daisuke

    2016-02-01

    Our previous papers reported dispersion curves for leaky Lamb waves in a water-loaded plate and wave structures for several typical modes including quasi-Scholte waves [1,2]. The calculations were carried out with a semi-analytical finite element (SAFE) method developed for leaky Lamb waves. This study presents SAFE calculations for transient guided waves including time-domain waveforms and animations of wave propagation in metallic and resin water-loaded plates. The results show that non-dispersive and non-attenuated waves propagating along the interface between the fluid and the plate are expected for effective non-destructive evaluation of such fluid-loaded plates as storage tanks and transportation pipes. We calculated transient waves in both steel and polyvinyl chloride (PVC) plates loaded with water on a single side and input dynamic loading from a point source on the other water-free surface as typical examples of metallic and resin plates. For a steel plate, there exists a non-dispersive and non-attenuated mode, called the quasi-Scholte wave, having an almost identical phase velocity to that of water. The quasi-Scholte wave has superior generation efficiency in the low frequency range due to its broad energy distribution across the plate, whereas it is localized near the plate-water interface at higher frequencies. This means that it has superior detectability of inner defects. For a PVC plate, plural non-attenuated modes exist. One of the non-attenuated modes similar to the A0 mode of the Lamb wave in the form of a group velocity dispersion curve is promising for the non-destructive evaluation of the PVC plate because it provides prominent characteristics of generation efficiency and low dispersion.

  1. Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjuan; Zhu, Guiqiang; Sun, Liguo; Lin, Fujiang

    2015-01-01

    Corrugated metal surface with underlayer metal as ground is designed as spoof surface plasmons polaritons (SSPPs) structure in microwave frequencies. Efficient conversion from guided wave to SSPP is required for energy feeding into and signal extracting from such plasmonic structure. In this paper, first a high efficient transition design is presented by using gradient corrugated strip with underlayer metal as ground and by using the impedance matching theory. The SSPP wave is highly confined within the teeth part of the corrugated surface. By using this characteristic, then the simple wire-based metamaterial is added below the strip to manipulate the SSPP wave within the propagating band. Two aforementioned devices are designed and fabricated. The simulated and measured results on the scattering coefficients demonstrate the excellent conversion and excellent manipulating of SSPP transmitting. Such results have very important value to develop advanced plasmonic integrated circuits in the microwave frequencies.

  2. Effects of dissipation on propagation of surface electromagnetic and acoustic waves

    NASA Astrophysics Data System (ADS)

    Nagaraj, Nagaraj

    With the recent emergence of the field of metamaterials, the study of subwavelength propagation of plane waves and the dissipation of their energy either in the form of Joule losses in the case of electomagnetic waves or in the form of viscous dissipation in the case of acoustic waves in different interfaced media assumes great importance. With this motivation, I have worked on problems in two different areas, viz., plasmonics and surface acoustics. The first part (chapters 2 & 3) of the dissertation deals with the emerging field of plasmonics. Researchers have come up with various designs in an effort to fabricate efficient plasmonic waveguides capable of guiding plasmonic signals. However, the inherent dissipation in the form of Joule losses limits efficient usage of surface plasmon signal. A dielectric-metal-dielectric planar structure is one of the most practical plasmonic structures that can serve as an efficient waveguide to guide electromagnetic waves along the metal-dielectric boundary. I present here a theoretical study of propagation of surface plasmons along a symmetric dielectric-metal-dielectric structure and show how proper orientation of the optical axis of the anisotropic substrate enhances the propagation length. An equation for propagation length is derived in a wide range of frequencies. I also show how the frequency of coupled surface plasmons can be modulated by changing the thickness of the metal film. I propose a Kronig-Penny model for the plasmonic crystal, which in the long wavelength limit, may serve as a homogeneous dielectric substrate with high anisotropy which do not exist for natural optical crystals. In the second part (chapters 4 & 5) of the dissertation, I discuss an interesting effect of extraordinary absorption of acoustic energy due to resonant excitation of Rayleigh waves in a narrow water channel clad between two metal plates. Starting from the elastic properties of the metal plates, I derive a dispersion equation that gives

  3. Wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes with surface and nonlocal effects

    NASA Astrophysics Data System (ADS)

    Zhen, Ya-Xin

    2017-02-01

    In this paper, the transverse wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes is investigated based on nonlocal elasticity theory with consideration of surface effect. The governing equation is formulated utilizing nonlocal Euler-Bernoulli beam theory and Kelvin-Voigt model. Explicit wave dispersion relation is developed and wave phase velocities and frequencies are obtained. The effect of the fluid flow velocity, structural damping, surface effect, small scale effects and tube diameter on the wave propagation properties are discussed with different wave numbers. The wave frequency increases with the increase of fluid flow velocity, but decreases with the increases of tube diameter and wave number. The effect of surface elasticity and residual surface tension is more significant for small wave number and tube diameter. For larger values of wave number and nonlocal parameters, the real part of frequency ratio raises.

  4. The effect of surface stress on the propagation of Lamb waves.

    PubMed

    Chakraborty, A

    2010-06-01

    This work investigates the possibility of the propagation of Lamb waves in thin solid layers with external traction free surfaces, in the presence of surface elasticity, inertia and residual stress. It is demonstrated that such waves do exist and that their characteristics can be quite different from their classical counterparts. The governing equations with non-classical boundary conditions involving the bulk and surface stress are solved exactly in the frequency-wavenumber domain. This solution is utilized to compute the Lamb wave modes for different layer thicknesses. An efficient strategy to capture all the modes of Lamb waves within a given frequency window is outlined. It is shown that the effect of surface elasticity and inertia becomes significant with increasing frequency and decreasing layer thickness, where the number of modes participating within a given frequency window is more than that permitted by the classical theory. Further, it is observed that the nature of the Lamb wave modes (in terms of negative dispersion) in the presence of surface stress is similar to what predicted by the nonlocal theory and microstructure based continuum theory.

  5. The effect of surface wave propagation on neural responses to vibration in primate glabrous skin.

    PubMed

    Manfredi, Louise R; Baker, Andrew T; Elias, Damian O; Dammann, John F; Zielinski, Mark C; Polashock, Vicky S; Bensmaia, Sliman J

    2012-01-01

    Because tactile perception relies on the response of large populations of receptors distributed across the skin, we seek to characterize how a mechanical deformation of the skin at one location affects the skin at another. To this end, we introduce a novel non-contact method to characterize the surface waves produced in the skin under a variety of stimulation conditions. Specifically, we deliver vibrations to the fingertip using a vibratory actuator and measure, using a laser Doppler vibrometer, the surface waves at different distances from the locus of stimulation. First, we show that a vibration applied to the fingertip travels at least the length of the finger and that the rate at which it decays is dependent on stimulus frequency. Furthermore, the resonant frequency of the skin matches the frequency at which a subpopulation of afferents, namely Pacinian afferents, is most sensitive. We show that this skin resonance can lead to a two-fold increase in the strength of the response of a simulated afferent population. Second, the rate at which vibrations propagate across the skin is dependent on the stimulus frequency and plateaus at 7 m/s. The resulting delay in neural activation across locations does not substantially blur the temporal patterning in simulated populations of afferents for frequencies less than 200 Hz, which has important implications about how vibratory frequency is encoded in the responses of somatosensory neurons. Third, we show that, despite the dependence of decay rate and propagation speed on frequency, the waveform of a complex vibration is well preserved as it travels across the skin. Our results suggest, then, that the propagation of surface waves promotes the encoding of spectrally complex vibrations as the entire neural population is exposed to essentially the same stimulus. We also discuss the implications of our results for biomechanical models of the skin.

  6. A numerical study on the effects of wave-current-surge interactions on the height and propagation of sea surface waves in Charleston Harbor during Hurricane Hugo 1989

    NASA Astrophysics Data System (ADS)

    Liu, Huiqing; Xie, Lian

    2009-06-01

    The effects of wave-current interactions on ocean surface waves induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal waters are examined by using a three-dimensional (3D) wave-current coupled modeling system. The 3D storm surge modeling component of the coupled system is based on the Princeton Ocean Model (POM), the wave modeling component is based on the third generation wave model, Simulating WAves Nearshore (SWAN), and the inundation model is adopted from [Xie, L., Pietrafesa, L. J., Peng, M., 2004. Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model. J. Coastal Res., 20, 1209-1223]. The results indicate that the change of water level associated with the storm surge is the primary cause for wave height changes due to wave-surge interaction. Meanwhile, waves propagating on top of surge cause a feedback effect on the surge height by modulating the surface wind stress and bottom stress. This effect is significant in shallow coastal waters, but relatively small in offshore deep waters. The influence of wave-current interaction on wave propagation is relatively insignificant, since waves generally propagate in the direction of the surface currents driven by winds. Wave-current interactions also affect the surface waves as a result of inundation and drying induced by the storm. Waves break as waters retreat in regions of drying, whereas waves are generated in flooded regions where no waves would have occurred without the flood water.

  7. Surface/interface effects on the effective propagation constants of coherent waves in composites with random parallel nanofibers.

    PubMed

    Kong, Zhi; Wei, Peijun; Jiao, Fengyu

    2016-07-01

    The effective propagation constants of elastic waves in an inhomogeneous medium with randomly distributed parallel cylindrical nanofibers are studied. First, the surface energy theory proposed by Huang and Wang (Handbook of Micromechanics and Nanomechanics, 2013) is used to derive the nontraditional boundary conditions on the surfaces of the nanoholes and the interfaces between the nanofibers and the host. Then, the scattering matrix of individual scatterer (cylindrical hole or nanofiber) is derived from the nontraditional boundary condition. The total wave field is obtained by considering the multiple scattering processes among the dispersive scatterers. The configuration average of the total wave field results in the coherent waves or the averaged waves. By using the corrected Linton-Martin formula, the effective propagation constants (effective speed and effective attenuation) of the coherent waves are estimated. The in-plane waves (P and SV waves) and the anti-plane waves (SH wave) are considered, respectively, and the numerical results are shown graphically. Apart from the effects of surface elasticity, the effects of inertia of surface/interface and the effects of residual surface tension (which are often ignored in the previous literature) are also considered. Moreover, the influences of the nonsymmetric parts of in-plane surface stress and the out-of-plane parts of the surface stress are both discussed first based on the numerical examples. These investigations show the underestimation and overestimation of effective propagation constants caused by various simplifications.

  8. SH surface acoustic wave propagation in a cylindrically layered piezomagnetic/piezoelectric structure.

    PubMed

    Du, Jianke; Xian, Kai; Wang, Ji

    2009-01-01

    SH surface acoustic wave (SH-SAW) propagation in a cylindrically layered magneto-electro-elastic structure is investigated analytically, where a piezomagnetic (or piezoelectric) material layer is bonded to a piezoelectric (or piezomagnetic) substrate. By means of transformation, the governing equations of the coupled waves are reduced to Bessel equation and Laplace equation. The boundary conditions imply that the displacements, shear stresses, electric potential, and electric displacements are continuous across the interface between the layer and the substrate together with the traction free at the surface of the layer. The magneto-electrically open and shorted conditions at cylindrical surface are taken to solve the problem. The phase velocity is numerically calculated for different thickness of the layer and wavenumber for piezomagnetic ceramics CoFe(2)O(4) and piezoelectric ceramics BaTiO(3). The effects of magnetic permeability on propagation properties of SH-SAW are discussed in detail. The distributions of displacement, magnetic potential and magneto-electromechanical coupling factor are also figured and discussed.

  9. Electron energy distribution functions in low-pressure oxygen plasma columns sustained by propagating surface waves

    SciTech Connect

    Stafford, L.; Margot, J.; Moisan, M.; Khare, R.; Donnelly, V. M.

    2009-01-12

    Electron energy distribution functions (EEDFs) were measured in a 50 mTorr oxygen plasma column sustained by propagating surface waves. Trace-rare-gas-optical-emission spectroscopy was used to derive EEDFs by selecting lines to extract ''electron temperature''(T{sub e}) corresponding to either lower energy electrons that excite high-lying levels through stepwise excitation via metastable states or higher energy electrons that excite emission directly from the ground state. Lower energy T{sub e}'s decreased from 8 to 5.5 eV with distance from the wave launcher, while T{sub e}{approx_equal}6 eV for higher energy electrons and T{sub e}>20 eV for a high-energy tail. Mechanisms for such EEDFs are discussed.

  10. Wave Propagation Program

    SciTech Connect

    McCandless, Kathleen; Petersson, Anders; Nilsson, Stefan; Sjogreen, Bjorn

    2007-01-08

    WPP is a massively parallel, 3D, C++, finite-difference elastodynamic wave propagation code. Typical applications for wave propagation with WPP include: evaluation of seismic event scenarios and damage from earthquakes, non-destructive evaluation of materials, underground facility detection, oil and gas exploration, predicting the electro-magnetic fields in accelerators, and acoustic noise generation. For more information, see User’s Manual [1].

  11. Propagation of pulsed surface spin-wave signals at millikelvin temperatures

    NASA Astrophysics Data System (ADS)

    van Loo, Arjan; Morris, Richard; Karenowska, Alexy

    Propagating microwave-frequency magnons in magnetic films attract increasing attention on account of their potential interface with superconducting quantum circuit and qubit systems. Their rich dynamics and slow speeds make magnons an interesting addition to the circuit quantum electrodynamics toolbox and, at the same time, superconducting circuit technology promises to be a powerful tool in the investigation of their quantum properties. We have studied the propagation of pulsed surface spin-wave signals over millimeter distances in yttrium iron garnet waveguides at ~ 10 mK . Input microwave pulses and pulse trains with various envelope shapes were applied to an inductive input antenna, and the resulting magnons were detected by an output antenna of identical design. The shape of the output signal was observed to depend on the frequency content (carrier and pulse shape) of the input pulse. By performing measurements at varying frequencies and magnetic fields we have been able to map out the dispersion relation for surface magnon modes. These experiments were undertaken as a first step towards coupling propagating magnons in thin films to other quantum systems with microwave-frequency transition energies, and superconducting qubits in particular. The authors acknowledge support from the EPSRC (EP/K032690/1).

  12. Marine Atmospheric Surface Layer and Its Application to Electromagnetic Wave Propagation

    NASA Astrophysics Data System (ADS)

    Wang, Q.

    2015-12-01

    An important application of the atmospheric surface layer research is to characterize the near surface vertical gradients in temperature and humidity in order to predict radar and radio communication conditions in the environment. In this presentation, we will give an overview of a new research initiative funded under the Office of Naval Research (ONR) Multi-University Research Initiative (MURI): the Coupled Air-Sea Processes and EM Ducting Research (CASPER). The objective is to fully characterize the marine atmospheric boundary layer (MABL) as an electromagnetic (EM) propagation environment with the emphasis of spatial and temporal heterogeneities and surface wave/swell effects, both of which contravene the underlying assumptions of Monin-Obukhov Similarity Theory (MOST) used in coupled environmental forecast models. Furthermore, coastal variability in the inversion atop the MABL presents a challenge to forecast models and also causes practical issues in EM prediction models. These issues are the target of investigation of CASPER. CASPER measurement component includes two major field campaigns: CASPER-East (2015 Duck, NC) and CASPER-West (2018 southern California). This presentation will show the extensive measurements to be made during the CASPER -East field campaign with the focus on the marine atmospheric surface layer measurements with two research vessels, two research aircraft, surface flux buoy, wave gliders, ocean gliders, tethered balloons, and rawinsondes. Unlike previous research on the marine surface layer with the focus on surface fluxes and surface flux parameterization, CASPER field campaigns also emphasize of the surface layer profiles and the validation of the surface layer flux-profile relationship originally derived over land surfaces. Results from CASPER pilot experiment and preliminary results from CASPER-East field campaign will be discussed.

  13. Propagation of surface waves and waveguide modes guided by a dielectric slab inserted in a sculptured nematic thin film

    SciTech Connect

    Faryad, Muhammad; Lakhtakia, Akhlesh

    2011-01-15

    Wave propagation guided by a dielectric slab inserted in a sculptured nematic thin film (SNTF) was studied theoretically. Two types of guided waves can be identified: (i) surface (Dyakonov-Tamm) waves guided by one or both of the two planar interfaces of the dielectric slab and the SNTF, and (ii) waveguide modes in the dielectric waveguide formed by the slab with the SNTF as the cladding. As the thickness of the dielectric slab is increased, the number of waveguide modes increases. If the slab thickness is less than twice the e-folding distance into the dielectric slab, the Dyakonov-Tamm waves propagate coupled to both interfaces; the coupling decreases and eventually vanishes as the slab thickness increases, so that Dyakonov-Tamm waves are guided by the individual dielectric-SNTF interfaces independently. The chosen structure supports the propagation of Dyakonov-Tamm waves in all directions, in contrast to the restricted range of propagation supported by a single SNTF-dielectric interface. Propagation of both Dyakonov-Tamm waves and waveguide modes should occur in practice with negligible attenuation, in contrast to that of surface-plasmon-polariton waves that are guided when the dielectric slab is replaced by a metal slab.

  14. Propagation of surface waves and waveguide modes guided by a dielectric slab inserted in a sculptured nematic thin film

    NASA Astrophysics Data System (ADS)

    Faryad, Muhammad; Lakhtakia, Akhlesh

    2011-01-01

    Wave propagation guided by a dielectric slab inserted in a sculptured nematic thin film (SNTF) was studied theoretically. Two types of guided waves can be identified: (i) surface (Dyakonov-Tamm) waves guided by one or both of the two planar interfaces of the dielectric slab and the SNTF, and (ii) waveguide modes in the dielectric waveguide formed by the slab with the SNTF as the cladding. As the thickness of the dielectric slab is increased, the number of waveguide modes increases. If the slab thickness is less than twice the e-folding distance into the dielectric slab, the Dyakonov-Tamm waves propagate coupled to both interfaces; the coupling decreases and eventually vanishes as the slab thickness increases, so that Dyakonov-Tamm waves are guided by the individual dielectric-SNTF interfaces independently. The chosen structure supports the propagation of Dyakonov-Tamm waves in all directions, in contrast to the restricted range of propagation supported by a single SNTF-dielectric interface. Propagation of both Dyakonov-Tamm waves and waveguide modes should occur in practice with negligible attenuation, in contrast to that of surface-plasmon-polariton waves that are guided when the dielectric slab is replaced by a metal slab.

  15. Pumping of nutrients to ocean surface waters by the action of propagating planetary waves.

    PubMed

    Uz, B M; Yoder, J A; Osychny, V

    2001-02-01

    Primary productivity in the oceans is limited by the lack of nutrients in surface waters. These nutrients are mostly supplied from nutrient-rich subsurface waters through upwelling and vertical mixing, but in the ocean gyres these mechanisms do not fully account for the observed productivity. Recently, the upward pumping of nutrients, through the action of eddies, has been shown to account for the remainder of the primary productivity; however, these were regional studies which focused on mesoscale (100-km-scale) eddies. Here we analyse remotely sensed chlorophyll and sea-surface-height data collected over two years and show that 1,000-km-scale planetary waves, which propagate in a westward direction in the oceans, are associated with about 5 to 20% of the observed variability in chlorophyll concentration (after low-frequency and large-scale variations are removed from the data). Enhanced primary production is the likely explanation for this observation, and if that is the case, propagating disturbances introduce nutrients to surface waters on a global scale--similar to the nutrient pumping that occurs within distinct eddies.

  16. a Finite Difference Numerical Model for the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors Over Hard and Porous Surfaces

    NASA Astrophysics Data System (ADS)

    Sparrow, Victor Ward

    1990-01-01

    This study has concerned the propagation of finite amplitude, i.e. weakly non-linear, acoustical blast waves from explosions over hard and porous media models of outdoor ground surfaces. The nonlinear acoustic propagation effects require a numerical solution in the time domain. To model a porous ground surface, which in the frequency domain exhibits a finite impedance, the linear phenomenological porous model of Morse and Ingard was used. The phenomenological equations are solved in the time domain for coupling with the time domain propagation solution in the air. The numerical solution is found through the method of finite differences. The second-order in time and fourth -order in space MacCormack method was used in the air, and the second-order in time and space MacCormack method was used in the porous medium modeling the ground. Two kinds of numerical absorbing boundary conditions were developed for the air propagation equations to truncate the physical domain for solution on a computer. Radiation conditions first were used on those sides of the domain where there were outgoing waves. Characteristic boundary conditions secondly are employed near the acoustic source. The numerical model agreed well with the Pestorius algorithm for the propagation of electric spark pulses in the free field, and with a result of Pfriem for normal plane reflection off a hard surface. In addition, curves of pressure amplification versus incident angle for waves obliquely incident on the hard and porous surfaces were produced which are similar to those in the literature. The model predicted that near grazing finite amplitude acoustic blast waves decay with distance over hard surfaces as r to the power -1.2. This result is consistent with the work of Reed. For propagation over the porous ground surface, the model predicted that this surface decreased the decay rate with distance for the larger blasts compared to the rate expected in the linear acoustics limit.

  17. Long-Range Transhorizon Lunar Surface Radio Wave Propagation in the Presence of a Regolith and a Sparse Exospheric Plasma

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2008-01-01

    Long-range, over-the-horizon (transhorizon) radio wave propagation is considered for the case of the Moon. In the event that relay satellites are not available or otherwise unwarranted for use, transhorizon communication provides for a contingency or backup option for non line-of-sight lunar surface exploration scenarios. Two potential low-frequency propagation mechanisms characteristic of the lunar landscape are the lunar regolith and the photoelectron induced plasma exosphere enveloping the Moon. Although it was hoped that the regolith would provide for a spherical waveguide which could support a trapped surface wave phenomena, it is found that, in most cases, the regolith is deleterious to long range radio wave propagation. However, the presence of the plasma of the lunar exosphere supports wave propagation and, in fact, surpasses the attenuation of the regolith. Given the models of the regolith and exosphere adopted here, it is recommended that a frequency of 1 MHz be considered for low rate data transmission along the lunar surface. It is also recommended that further research be done to capture the descriptive physics of the regolith and the exospheric plasma so that a more complete model can be obtained. This comprehensive theoretical study is based entirely on first principles and the mathematical techniques needed are developed as required; it is self-contained and should not require the use of outside resources for its understanding.

  18. Monitoring of surface-fatigue crack propagation in a welded steel angle structure using guided waves and principal component analysis

    NASA Astrophysics Data System (ADS)

    Lu, Mingyu; Qu, Yongwei; Lu, Ye; Ye, Lin; Zhou, Limin; Su, Zhongqing

    2012-04-01

    An experimental study is reported in this paper demonstrating monitoring of surface-fatigue crack propagation in a welded steel angle structure using Lamb waves generated by an active piezoceramic transducer (PZT) network which was freely surface-mounted for each PZT transducer to serve as either actuator or sensor. The fatigue crack was initiated and propagated in welding zone of a steel angle structure by three-point bending fatigue tests. Instead of directly comparing changes between a series of specific signal segments such as S0 and A0 wave modes scattered from fatigue crack tips, a variety of signal statistical parameters representing five different structural status obtained from marginal spectrum in Hilbert-huang transform (HHT), indicating energy progressive distribution along time period in the frequency domain including all wave modes of one wave signal were employed to classify and distinguish different structural conditions due to fatigue crack initiation and propagation with the combination of using principal component analysis (PCA). Results show that PCA based on marginal spectrum is effective and sensitive for monitoring the growth of fatigue crack although the received signals are extremely complicated due to wave scattered from weld, multi-boundaries, notch and fatigue crack. More importantly, this method indicates good potential for identification of integrity status of complicated structures which cause uncertain wave patterns and ambiguous sensor network arrangement.

  19. Monitoring of surface-fatigue crack propagation in a welded steel angle structure using guided waves and principal component analysis

    NASA Astrophysics Data System (ADS)

    Lu, Mingyu; Qu, Yongwei; Lu, Ye; Ye, Lin; Zhou, Limin; Su, Zhongqing

    2011-11-01

    An experimental study is reported in this paper demonstrating monitoring of surface-fatigue crack propagation in a welded steel angle structure using Lamb waves generated by an active piezoceramic transducer (PZT) network which was freely surface-mounted for each PZT transducer to serve as either actuator or sensor. The fatigue crack was initiated and propagated in welding zone of a steel angle structure by three-point bending fatigue tests. Instead of directly comparing changes between a series of specific signal segments such as S0 and A0 wave modes scattered from fatigue crack tips, a variety of signal statistical parameters representing five different structural status obtained from marginal spectrum in Hilbert-huang transform (HHT), indicating energy progressive distribution along time period in the frequency domain including all wave modes of one wave signal were employed to classify and distinguish different structural conditions due to fatigue crack initiation and propagation with the combination of using principal component analysis (PCA). Results show that PCA based on marginal spectrum is effective and sensitive for monitoring the growth of fatigue crack although the received signals are extremely complicated due to wave scattered from weld, multi-boundaries, notch and fatigue crack. More importantly, this method indicates good potential for identification of integrity status of complicated structures which cause uncertain wave patterns and ambiguous sensor network arrangement.

  20. Propagation and attenuation characteristics of azimuthal symmetric surface waves in un-magnetized plasma column

    NASA Astrophysics Data System (ADS)

    Li, Wenqiu; Wang, Gang; Xiang, Dong; Su, Xiaobao

    2016-11-01

    Phase and attenuation properties of azimuthal symmetric surface waves are investigated analytically in an un-magnetized cylindrical plasma column based on the transcendental dispersion relation. A novel method of calculating the wave power deposition in terms of complex electric conductivity is proposed. Electron density distribution is obtained theoretically through charged particle balance theory. It is shown that the effect of the electron temperature on the dispersion curve can be neglected when kzα < 1. Both the phase/attenuation characteristics and wave energy deposition properties of the azimuthal symmetric surface wave have an evident dependence on the electron density and the electron collision frequency.

  1. Ultralong propagation of a surface plasmon polariton wave within an ultrawide bandwidth via phase-sensitive optical parametric amplification.

    PubMed

    Izadi, Mohammad Amin; Nouroozi, Rahman

    2017-04-15

    The propagation length enhancement of surface plasmon polariton (SPP) waves could lead to practical applications. This Letter proposes the numerically verified phase-sensitive nonlinear χ(2)-based optical parametric amplification (OPA) for ultralong propagation of a SPP wave within an ultrawide bandwidth. The strong nonlinear interaction between the SPP mode and the hybrid guided mode, which limits the length enhancement, is mitigated in a silver-coated linearly chirped periodically poled lithium niobate planar waveguide via slowly phase-matched OPA. Obtained results indicate an ultralong propagation length for a SPP mode of about 4 cm when a 135 MW/cm pump intensity is launched. The acceptance bandwidth of the amplified SPP shows its dependency on the pump intensity; for a pump intensity range between 70 and 135 MW/cm, the acceptance bandwidth is still ultrawide, varying from 28 to 18 nm, respectively.

  2. Stimulated Raman signals at conical intersections: Ab initio surface hopping simulation protocol with direct propagation of the nuclear wave function.

    PubMed

    Kowalewski, Markus; Mukamel, Shaul

    2015-07-28

    Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C-H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings.

  3. Stimulated Raman signals at conical intersections: Ab initio surface hopping simulation protocol with direct propagation of the nuclear wave function

    SciTech Connect

    Kowalewski, Markus Mukamel, Shaul

    2015-07-28

    Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C—H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings.

  4. The nonlinear dispersive Davey-Stewartson system for surface waves propagation in shallow water and its stability

    NASA Astrophysics Data System (ADS)

    Selima, Ehab S.; Seadawy, Aly R.; Yao, Xiaohua

    2016-12-01

    The three-dimensional (3-D) nonlinear and dispersive PDEs system for surface waves propagating at undisturbed water surface under the gravity force and surface tension effects are studied. By applying the reductive perturbation method, we derive the (2 + 1) -dimensions form of the Davey-Stewartson (DS) system for the modulation of 2-D harmonic waves. By using the simplest equation method, we find exact traveling wave solutions and a general form of the multiple-soliton solution of the DS model. The dispersion analysis as well as the conservation law of the DS system are discussed. It is revealed that the consistency of the results with the conservation of the potential energy increases with increasing Ursell parameter. Also, the stability of the ODEs form of the DS system is presented by using the phase portrait method.

  5. Slow wave propagation in soft adhesive interfaces.

    PubMed

    Viswanathan, Koushik; Sundaram, Narayan K; Chandrasekar, Srinivasan

    2016-11-16

    Stick-slip in sliding of soft adhesive surfaces has long been associated with the propagation of Schallamach waves, a type of slow surface wave. Recently it was demonstrated using in situ experiments that two other kinds of slow waves-separation pulses and slip pulses-also mediate stick-slip (Viswanathan et al., Soft Matter, 2016, 12, 5265-5275). While separation pulses, like Schallamach waves, involve local interface detachment, slip pulses are moving stress fronts with no detachment. Here, we present a theoretical analysis of the propagation of these three waves in a linear elastodynamics framework. Different boundary conditions apply depending on whether or not local interface detachment occurs. It is shown that the interface dynamics accompanying slow waves is governed by a system of integral equations. Closed-form analytical expressions are obtained for the interfacial pressure, shear stress, displacements and velocities. Separation pulses and Schallamach waves emerge naturally as wave solutions of the integral equations, with oppositely oriented directions of propagation. Wave propagation is found to be stable in the stress regime where linearized elasticity is a physically valid approximation. Interestingly, the analysis reveals that slow traveling wave solutions are not possible in a Coulomb friction framework for slip pulses. The theory provides a unified picture of stick-slip dynamics and slow wave propagation in adhesive contacts, consistent with experimental observations.

  6. Shallow structure and surface wave propagation characteristics of the Juan de Fuca plate from seismic ambient noise

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Shen, W.; Ritzwoller, M. H.

    2013-12-01

    Ambient noise cross-correlation analysis has been widely used to investigate the continental lithosphere, but the method has been applied much less to study the oceanic lithosphere due to the relative shortage of continuous ocean bottom seismic measurements. The Cascadia Initiative experiment possesses a total of 62 ocean bottom seismometers that spans much of the Juan de Fuca plate and provides data to investigate both the structure and evolution of the oceanic lithosphere near the Juan De Fuca ridge and the characteristics of surface waves and overtones propagating within the oceanic lithosphere. We produce ambient noise cross correlations for the first year of Cascadia OBS data for both the vertical and the horizontal components. The observed empirical Green's functions are first used to test the hypothesis that the near-ridge phase speeds can be described by a simple age-dependent formula, which we invert for an age-dependent shear wave speed model (Figure 1a). A shallow low shear velocity zone with a velocity minimum at about 20km depth is observed in Vsv and the lithosphere thickens with age faster than predicted by a half-space conductive cooling model (Figure 1b). To further understand the oceanic surface waves, we analyze the first higher mode Rayleigh waves that propagate within the Juan De Fuca plate and emerge on the North American continent and investigate the existence of radial anisotropy beneath the ridge by exploring the Rayleigh and Love wave Green's functions. The results of the study are summarized with the age-dependent shear velocity model along with some preliminary observations of both Love wave and higher mode Rayleigh waves.

  7. Propagation of waves along an impedance boundary

    NASA Technical Reports Server (NTRS)

    Wenzel, A. R.

    1974-01-01

    A theoretical analysis of the scalar wave field due to a point source above a plane impedance boundary is presented. A surface wave is found to be an essential component of the total wave field. It is shown that, as a result of ducting of energy by the surface wave, the amplitude of the total wave near the boundary can be greater than it would be if the boundary were perfectly reflecting. Asymptotic results, valid near the boundary, are obtained both for the case of finite impedance (the soft-boundary case) and for the limiting case in which the impedance becomes infinite (the hard-boundary case). In the latter, the wave amplitude in the farfield decreases essentially inversely as the horizontal propagation distance; in the former (if the surface-wave term is neglected), it decreases inversely as the square of the horizontal propagation distance.

  8. High Density Waves of the Bacterium Pseudomonas aeruginosa in Propagating Swarms Result in Efficient Colonization of Surfaces

    PubMed Central

    Du, Huijing; Xu, Zhiliang; Anyan, Morgen; Kim, Oleg; Leevy, W. Matthew; Shrout, Joshua D.; Alber, Mark

    2012-01-01

    This work describes a new, to our knowledge, strategy of efficient colonization and community development where bacteria substantially alter their physical environment. Many bacteria move in groups, in a mode described as swarming, to colonize surfaces and form biofilms to survive external stresses, including exposure to antibiotics. One such bacterium is Pseudomonas aeruginosa, which is an opportunistic pathogen responsible for both acute and persistent infections in susceptible individuals, as exampled by those for burn victims and people with cystic fibrosis. Pseudomonas aeruginosa often, but not always, forms branched tendril patterns during swarming; this phenomena occurs only when bacteria produce rhamnolipid, which is regulated by population-dependent signaling called quorum sensing. The experimental results of this work show that P. aeruginosa cells propagate as high density waves that move symmetrically as rings within swarms toward the extending tendrils. Biologically justified cell-based multiscale model simulations suggest a mechanism of wave propagation as well as a branched tendril formation at the edge of the population that depends upon competition between the changing viscosity of the bacterial liquid suspension and the liquid film boundary expansion caused by Marangoni forces. Therefore, P. aeruginosa efficiently colonizes surfaces by controlling the physical forces responsible for expansion of thin liquid film and by propagating toward the tendril tips. The model predictions of wave speed and swarm expansion rate as well as cell alignment in tendrils were confirmed experimentally. The study results suggest that P. aeruginosa responds to environmental cues on a very short timescale by actively exploiting local physical phenomena to develop communities and efficiently colonize new surfaces. PMID:22947877

  9. Strong and large area field enhancement outside a microcavity due to propagating surface plasmons and standing wave effect

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Wang, Bin; Sun, Xin; Li, Haoyu; Wang, Feng; Zhang, Yunxia; Huang, Senpeng; Xu, Xiaoxuan; Wang, Yufang; Zhang, Cunzhou

    2016-10-01

    We investigated the optical property of periodic inverted pyramidal microcavities and observed large area field enhancement outside a cavity when the incident wavelength and structure parameters match certain relations. The mechanism of this phenomenon has been studied. Propagating surface plasmons and the standing wave effect both contribute to the field enhancement outside the cavity. The relations between the incident wavelength and structure parameters have been clarified. Based on the relations, one can control the field enhancement outside the cavity for a specific laser wavelength.

  10. Experimental study of propagation characteristics of a pulse-modulated surface-wave argon plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-Jie; Li, Shou-Zhe; Wu, Yue; Li, Zhen-Ye; Zhang, Jialiang; Wang, Yong-Xing

    2016-12-01

    An atmospheric-pressure, pulse-modulated surface wave argon plasma is investigated with respect to its propagation of the ionization front. The time-resolved photographs about the advance of the ionization front are taken using a high speed camera. The ionization front velocity and its rise time when propagating along the discharge tube are measured with respect to a series of values of input power, duty ratio, and the pulse repetition frequency. The interpretations are given on the basis of the ionization and diffusion processes. And it is also found that the reduced electric field and memory effect from previous discharge impose the influence on both the ionization front velocity and its rise time strongly.

  11. Surface-wave propagation and phase-velocity structure from observations on the USArray Transportable Array

    NASA Astrophysics Data System (ADS)

    Foster, Anna E.

    observation of bands of arrival-angle anomalies crossing the footprint of the USArray Transportable array in the propagation direction. These bands of deviations may result from heterogeneous velocity structure within the array, or on the larger source-to-array path. We use two global tomographic models to predict arrival-angle anomaly patterns, with both ray-theory-based prediction methods and measurements on synthetic waveforms calculated using SPECFEM3D Globe, a finite element package. We show that both models predict well the long-wavelength patterns of anomalies observed, but not the short-wavelength variations. Experiments with crustal structure indicate that greater heterogeneity is needed in the models. Predictions from the spectral-element-method synthetic waveforms contain the type of complexity seen in the observed patterns, and not obtained with the ray-theoretical methods, indicating that full synthetics are needed to compare model predictions to observed arrival-angle anomalies. We further examine possible overtone interference in the mini-array arrival-angle and local phase-velocity measurements for Love waves at long periods. Love wave fundamental-mode and higher-mode waves at the same period travel with similar group velocity, making them difficult to separate; the waves have different phase velocities, resulting in a beating interference pattern that oscillates with distance. We show this interference pattern for single-station, two-station, and mini-array phase-velocity measurements. Using measurements on synthetic waveforms calculated using both mode summation and SPECFEM3D Globe, we show that contamination of single-station measurements can largely be explained by interference between the fundamental and first-higher mode only. Interference causes small variations in the single-station phase velocity, up to 1%, and the oscillations about the expected values are asymmetric. The two array-based measurement techniques can be thought of as a spatial gradient

  12. Rotation Rate Sensing via Magnetostatic Surface Wave Propagation on a Thick Yig Ring.

    DTIC Science & Technology

    1979-12-03

    Magnetostatic Waves Along Curved Ferrite Surfaces."I IEES Transactions on Microwave Theory and Techniques, 2674:252-256 (Ari 16, Von Aulock, W.*H * Handbook of... Microwave Ferrite Materi- als. Academic Pre;ssInc.,New York, 𔃻-9-5- - P4 I ADSGO 372 AIR FORCE INST OF TECH WRIGHT-PATTERSON AF9 OH SCHOO--e F/G 20.3...tunable microwave oscilla- tors (Ref 8) and variable delay lines (Ref 1) operating within the microwave frequency spectrum. A further ex- tension of this

  13. ZnO films on /001/-cut (110)-propagating GaAs substrates for surface acoustic wave device applications

    NASA Technical Reports Server (NTRS)

    Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei; Kim, Yoonkee; Hunt, William D.

    1995-01-01

    A potential application for piezoelectric films substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on /001/-cut group of (110) zone axes-propagating GaAs substrates are investigated in this article, including SAW velocity, effective piezoelectric coupling constant, propagation loss, diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films of different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(sup 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2 or Si3N4 on /001/-cut GaAs samples are reported using two different techniques: (1) knife-edge laser probe, (2) line-focus-beam scanning acoustic microscope. It was found that near the group of (110) zone axes propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the (100) direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.

  14. ZnO Films on {001}-Cut <110>-Propagating GaAs Substrates for Surface Acoustic Wave Device Applications

    NASA Technical Reports Server (NTRS)

    Kim, Yoonkee; Hunt, William D.; Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei

    1995-01-01

    A potential application for piezoelectric films on GaAs substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on {001}-cut <110> -propagating GaAs substrates are investigated in this article, including SAW Velocity effective piezoelectric coupling constant, propagation loss. diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films or different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(exp 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2, or Si3N4 on {001}-cut GaAs samples are reported using two different techniques: 1) knife-edge laser probe, 2) line-focus-beam scanning acoustic microscope. It was found that near the <110> propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the <100> direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.

  15. Free films of a partially wetting liquid under the influence of a propagating MHz surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Altshuler, Gennady; Manor, Ofer

    2016-07-01

    We use both theory and experiment to study the response of thin and free films of a partially wetting liquid to a MHz vibration, propagating in the solid substrate in the form of a Rayleigh surface acoustic wave (SAW). We generalise the previous theory for the response of a thin fully wetting liquid film to a SAW by including the presence of a small but finite three phase contact angle between the liquid and the solid. The SAW in the solid invokes a convective drift of mass in the liquid and leaks sound waves. The dynamics of a film that is too thin to support the accumulation of the sound wave leakage is governed by a balance between the drift and capillary stress alone. We use theory to demonstrate that a partially wetting liquid film, supporting a weak capillary stress, will spread along the path of the SAW. A partially wetting film, supporting an appreciable capillary stress, will however undergo a concurrent dynamic wetting and dewetting at the front and the rear, respectively, such that the film will displace, rather than spread, along the path of the SAW. The result of the theory for a weak capillary stress is in agreement with the previous experimental and theoretical studies on the response of thin silicon oil films to a propagating SAW. No corresponding previous results exist for the case of an appreciable capillary stress. We thus complement the large capillary limit of our theory by undertaking an experimental procedure where we explore the response of films of water and a surfactant solutions to a MHz SAW, which is found to be in qualitative agreement with the theory at this limit.

  16. Nonlinear Wave Propagation

    DTIC Science & Technology

    2009-02-09

    of parameters. Hence one expects that the solutions of the two equations , PES and NLS, are comparable. In Fig. 3 we plot the two solutions for...power saturated term, in the PES equation ) have stable soliton solutions or mode-locking evolution. In general the solitons are found to be unstable...literature. Generally speaking, the above lattice equations omitting nonlinear terms have solutions propagating along z direction, i.e., ψ(r, z) = e−iµzϕ(r

  17. Reconstruction of nonlinear wave propagation

    DOEpatents

    Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie

    2013-04-23

    Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.

  18. Wave propagation in ballistic gelatine.

    PubMed

    Naarayan, Srinivasan S; Subhash, Ghatu

    2017-01-23

    Wave propagation characteristics in long cylindrical specimens of ballistic gelatine have been investigated using a high speed digital camera and hyper elastic constitutive models. The induced transient deformation is modelled with strain rate dependent Mooney-Rivlin parameters which are determined by modelling the stress-strain response of gelatine at a range of strain rates. The varying velocity of wave propagation through the gelatine cylinder is derived as a function of prestress or stretch in the gelatine specimen. A finite element analysis is conducted using the above constitutive model by suitably defining the impulse imparted by the polymer bar into the gelatine specimen. The model results are found to capture the experimentally observed wave propagation characteristics in gelatine effectively.

  19. Nonlinear Wave Propagation.

    DTIC Science & Technology

    1987-11-23

    generalized wave equation (GWE) when (z) 0 (1-Z2)/2: - X(z). (1.5) The compatibility condition required for the existence of solutions to these B~icklund...Phys. tion of a class of nonlocal nonlinear evolution equations , A 15 (1982) 781. INS *47, Clarkson University (1985), to be published in J. Math... semilinear form. The above approach will fail if there exist linearizable quasilinear equations which can not be mapped to a semilinear from. It is shown in

  20. Nonlinear Wave Propagation

    DTIC Science & Technology

    2015-05-07

    honeycomb lattices, M.J. Ablowitz and Y. Zhu, SIAM J. Appl. Math. 87 (2013) 19591979 11. Nonlinear Temporal-Spatial Surface Plasmon Polaritons , M. J. Ablowitz...temporal-spatial surface plasmon polaritons . Op- tics Communications, 330:49–55, 2014. 37 [39] M.C. Rechtsman, Y. Plotnik, J.M. Zeuner, , D. Song, Z...honeycomb lattices, M.J. Ablowitz and Y. Zhu, SIAM J. Appl. Math., Vol. 87 (2013) 1959-1979 11. Nonlinear Temporal-Spatial Surface Plasmon Polaritons

  1. Theoretical analysis of surface acoustic wave propagating properties of Y-cut nano lithium niobate film on silicon dioxide

    SciTech Connect

    Chen, Jing Zhang, Qiaozhen; Han, Tao; Zhou, Liu; Tang, Gongbin; Liu, Boquan; Ji, Xiaojun

    2015-08-15

    The surface acoustic wave (SAW) propagating characteristics of Y-cut nano LiNbO{sub 3} (LN) film on SiO{sub 2}/LN substrate have been theoretically calculated. The simulated results showed a shear horizontal (SH) SAW with enhanced electromechanical coupling factor K{sup 2} owing to a dimensional effect of the nanoscale LN film. However, a Rayleigh SAW and two other resonances related to thickness vibrations caused spurious responses for wideband SAW devices. These spurious waves could be fully suppressed by properly controlling structural parameters including the electrode layer height, thickness, and the Euler angle (θ) of the LN thin film. Finally, a pure SH SAW was obtained with a wide θ range, from 0° to 5° and 165° to 180°. The largest K{sup 2} achieved for the pure SH SAW was about 35.1%. The calculated results demonstrate the promising application of nano LN film to the realization of ultra-wideband SAW devices.

  2. Correlation between propagation loss and silicon dioxide film properties for surface acoustic wave devices.

    PubMed

    Matsuda, Satoru; Miura, Michio; Matsuda, Takashi; Ueda, Masanori; Satoh, Yoshio; Hashimoto, Ken-Ya

    2013-05-01

    The correlation between the propagation loss and SiO2 film properties has been studied for temperature-compensated SAW devices using the SiO2/LiNbO3 structure. The SAW devices were prepared under different deposition temperatures for SiO2 film. Although they possessed excellent temperature coefficient of elasticity characteristics, devices prepared at lower temperature showed lower Q-factors. The SiO2 films were also deposited on a Si substrate under the same deposition conditions used for the SAW device preparation. Optical characterization was performed with Fourier transform infrared spectroscopy (FT-IR), spectrometer measurement, and Raman spectroscopy. IR absorbance spectra were almost same in the FT-IR measurement. However, optical attenuation in the UV region decreased with the deposition temperature in the spectrometer measurement. The optical attenuation is caused by the increase of the extinction coefficient in the SiO2 layer, and its optical wavelength dependence indicated that observed excess attenuation is caused by Rayleigh scattering. The Raman scattering also decreased with the deposition temperature in the Raman spectroscopy. The scattering is caused by the distortion of the SiO2 network. These results indicate that the Rayleigh scattering caused by the distortion of the SiO2 network is the main contributor to the excess SAW propagation loss in this case.

  3. A New Boussinesq-Type Model for Surface Water Wave Propagation

    DTIC Science & Technology

    1998-01-01

    velocity-related variable (e.g. depth-averaged velocity, total mass flux, velocity potential at the bottom, etc). Korteweg and deVries (1895) used the same...multiplying each expansion by a coefficient and solving the system of equations resulting from setting the combination of coefficients of the higher...authors have found approximate solutions for the solitary wave, in- cluding the early works of Boussinesq (1871) and Korteweg and deVries (1895

  4. Investigating seismic anisotropy beneath the Reykjanes Ridge using models of mantle flow, crystallographic evolution, and surface wave propagation

    NASA Astrophysics Data System (ADS)

    Gallego, A.; Ito, G.; Dunn, R. A.

    2013-08-01

    Surface wave studies of the Reykjanes Ridge (RR) and the Iceland hotspot have imaged an unusual and enigmatic pattern of two zones of negative radial anisotropy on each side of the RR. We test previously posed and new hypotheses for the origin of this anisotropy, by considering lattice preferred orientation (LPO) of olivine A-type fabric in simple models with 1-D, layered structures, as well as in 2-D and 3-D geodynamic models with mantle flow and LPO evolution. Synthetic phase velocities of Love and Rayleigh waves traveling parallel to the ridge axis are produced and then inverted to mimic the previous seismic studies. Results of 1-D models show that strong negative radial anisotropy can be produced when olivine a axes are preferentially aligned not only vertically but also subhorizontally in the plane of wave propagation. Geodynamic models show that negative anisotropy on the sides of the RR can occur when plate spreading impels a corner flow, and in turn a subvertical alignment of olivine a axes, on the sides of the ridge axis. Mantle dehydration must be invoked to form a viscous upper layer that minimizes the disturbance of the corner flow by the Iceland mantle plume. While the results are promising, important discrepancies still exist between the observed seismic structure and the predictions of this model, as well as models of a variety of types of mantle flow associated with plume-ridge interaction. Thus, other factors that influence seismic anisotropy, but not considered in this study, such as power-law rheology, water, melt, or time-dependent mantle flow, are probably important beneath the Reykjanes Ridge.

  5. Propagation of Weakly-Nonlinear Surface Water Waves in Regions with Varying Depth and Current.

    DTIC Science & Technology

    1983-07-01

    elliptic equation of the form C which must be solved as a boundary value problem together with appropriate boundary conditions. Here, (V, C, and C are the... solved as a coupled pair in the general case. I 65 4.3 Time-Dependent Equations for A In this section, we use the assumed form for j to derive a time...S .1.. 100 Equation (5.2.15) is solved on a truncated domain 04zjzmax, where zmax is cnosen such that the wave profile V for the nighest desired edge

  6. Wave propagation in fluid-conveying viscoelastic carbon nanotubes under longitudinal magnetic field with thermal and surface effect via nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Zhen, Yaxin; Zhou, Lin

    2017-03-01

    Based on nonlocal strain gradient theory, wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes (SWCNTs) is studied in this paper. With consideration of thermal effect and surface effect, wave equation is derived for fluid-conveying viscoelastic SWCNTs under longitudinal magnetic field utilizing Euler-Bernoulli beam theory. The closed-form expressions are derived for the frequency and phase velocity of the wave motion. The influences of fluid flow velocity, structural damping coefficient, temperature change, magnetic flux and surface effect are discussed in detail. SWCNTs’ viscoelasticity reduces the wave frequency of the system and the influence gets remarkable with the increase of wave number. The fluid in SWCNTs decreases the frequency of wave propagation to a certain extent. The frequency (phase velocity) gets larger due to the existence of surface effect, especially when the diameters of SWCNTs and the wave number decrease. The wave frequency increases with the increase of the longitudinal magnetic field, while decreases with the increase of the temperature change. The results may be helpful for better understanding the potential applications of SWCNTs in nanotechnology.

  7. Wave equations for pulse propagation

    SciTech Connect

    Shore, B.W.

    1987-06-24

    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation.

  8. Wave Propagation in Bimodular Geomaterials

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Maria; Pasternak, Elena; Dyskin, Arcady; Pelinovsky, Efim

    2016-04-01

    Observations and laboratory experiments show that fragmented or layered geomaterials have the mechanical response dependent on the sign of the load. The most adequate model accounting for this effect is the theory of bimodular (bilinear) elasticity - a hyperelastic model with different elastic moduli for tension and compression. For most of geo- and structural materials (cohesionless soils, rocks, concrete, etc.) the difference between elastic moduli is such that their modulus in compression is considerably higher than that in tension. This feature has a profound effect on oscillations [1]; however, its effect on wave propagation has not been comprehensively investigated. It is believed that incorporation of bilinear elastic constitutive equations within theory of wave dynamics will bring a deeper insight to the study of mechanical behaviour of many geomaterials. The aim of this paper is to construct a mathematical model and develop analytical methods and numerical algorithms for analysing wave propagation in bimodular materials. Geophysical and exploration applications and applications in structural engineering are envisaged. The FEM modelling of wave propagation in a 1D semi-infinite bimodular material has been performed with the use of Marlow potential [2]. In the case of the initial load expressed by a harmonic pulse loading strong dependence on the pulse sign is observed: when tension is applied before compression, the phenomenon of disappearance of negative (compressive) strains takes place. References 1. Dyskin, A., Pasternak, E., & Pelinovsky, E. (2012). Periodic motions and resonances of impact oscillators. Journal of Sound and Vibration, 331(12), 2856-2873. 2. Marlow, R. S. (2008). A Second-Invariant Extension of the Marlow Model: Representing Tension and Compression Data Exactly. In ABAQUS Users' Conference.

  9. Surface stress, initial stress and Knudsen-dependent flow velocity effects on the electro-thermo nonlocal wave propagation of SWBNNTs

    NASA Astrophysics Data System (ADS)

    Ghorbanpour Arani, A.; Roudbari, M. A.

    2014-11-01

    This paper investigates the electro-thermal nonlocal wave propagation of fluid-conveying single-walled Boron Nitride nanotubes (SWBNNTs) using nonlocal piezoelasticity with surface stress, initial stress and Knudsen-dependent flow velocity effect. SWBNNT is embedded in a vicsoelastic medium which is simulated as visco-Pasternak foundation. Using Euler-Bernoulli beam (EBB) model, Hamilton's principle and nonlocal piezoelasticity theory, the higher order governing equation is derived. A detailed parametric study is conducted, focusing on the combined effects of the electric parameters, viscoelastic medium, initial stress, surface stress, Knudsen number (Kn) and small scale on the wave propagation behaviour of the fluid-conveying SWBNNT. The results show that for smaller values of wave number the dispersion relation for different fluid viscosities seems to be similar. At the higher values of wave numbers, increase in the wave frequency values is remarkable due to increase in fluid viscosity. The electric field as a smart controller, surface effect, initial stress, temperature change and slip velocity effect have significant role on the wave frequency. The results of this work is hoped to be of use in design and manufacturing of smart MEMS/NEMS in advanced medical applications such as drug delivery systems with great applications in biomechanics.

  10. Theoretical and experimental investigation of surface acoustic wave propagation on a hollow spherical shell using laser ultrasound

    NASA Astrophysics Data System (ADS)

    Ma, Xiaojun; Tang, Xing; Wang, Zongwei; Gao, Dangzhong; Tang, Yongjian

    2016-12-01

    An analytical model of surface acoustic waves on the surface of a hollow spherical shell generated by a pulsed laser source is proposed using the Legendre polynomials expansion and contour integration method. The model predicts two interesting phenomena. The dispersive characteristic of thick spherical shells is mainly determined by the spherical Rayleigh waves, but the corresponding characteristic of thin spherical shells is dominated by zero-order anti-symmetric plate waves; The hollow spherical spheres with the same ratio of thickness to radius have the same dispersive characteristic. Using laser ultrasound technique, the proposed model is confirmed experimentally on a hollow polymer sphere of mm-sized diameter.

  11. Propagation of Love waves with surface effects in an electrically-shorted piezoelectric nanofilm on a half-space elastic substrate.

    PubMed

    Zhang, Sijia; Gu, Bin; Zhang, Hongbin; Feng, Xi-Qiao; Pan, Rongying; Alamusi; Hu, Ning

    2016-03-01

    The propagation of Love waves in the structure consisting of a nanosized piezoelectric film and a semi-infinite elastic substrate is investigated in the present paper with the consideration of surface effects. In our analysis, surface effects are taken into account in terms of the surface elasticity theory and the electrically-shorted conditions are adopted on the free surface of the piezoelectric film and the interface between the film and the substrate. This work focuses on the new features in the dispersion relations of different modes due to surface effects. It is found that with the existence of surface effects, the frequency dispersion of Love waves shows the distinct dependence on the thickness and the surface constants when the film thickness reduces to nanometers. In general, phase velocities of all dispersion modes increase with the decrease of the film thickness and the increase of the surface constants. However, surface effects play different functions in the frequency dispersions of different modes, especially for the first mode dispersion. Moreover, different forms of Love waves are observed in the first mode dispersion, depending on the presence of the surface effects on the surface and the interface.

  12. Simulations of Seismic Wave Propagation on Mars

    NASA Astrophysics Data System (ADS)

    Bozdağ, Ebru; Ruan, Youyi; Metthez, Nathan; Khan, Amir; Leng, Kuangdai; van Driel, Martin; Wieczorek, Mark; Rivoldini, Attilio; Larmat, Carène S.; Giardini, Domenico; Tromp, Jeroen; Lognonné, Philippe; Banerdt, Bruce W.

    2017-03-01

    We present global and regional synthetic seismograms computed for 1D and 3D Mars models based on the spectral-element method. For global simulations, we implemented a radially-symmetric Mars model with a 110 km thick crust (Sohl and Spohn in J. Geophys. Res., Planets 102(E1):1613-1635, 1997). For this 1D model, we successfully benchmarked the 3D seismic wave propagation solver SPECFEM3D_GLOBE (Komatitsch and Tromp in Geophys. J. Int. 149(2):390-412, 2002a; 150(1):303-318, 2002b) against the 2D axisymmetric wave propagation solver AxiSEM (Nissen-Meyer et al. in Solid Earth 5(1):425-445, 2014) at periods down to 10 s. We also present higher-resolution body-wave simulations with AxiSEM down to 1 s in a model with a more complex 1D crust, revealing wave propagation effects that would have been difficult to interpret based on ray theory. For 3D global simulations based on SPECFEM3D_GLOBE, we superimposed 3D crustal thickness variations capturing the distinct crustal dichotomy between Mars' northern and southern hemispheres, as well as topography, ellipticity, gravity, and rotation. The global simulations clearly indicate that the 3D crust speeds up body waves compared to the reference 1D model, whereas it significantly changes surface waveforms and their dispersive character depending on its thickness. We also perform regional simulations with the solver SES3D (Fichtner et al. Geophys. J. Int. 179:1703-1725, 2009) based on 3D crustal models derived from surface composition, thereby addressing the effects of various distinct crustal features down to 2 s. The regional simulations confirm the strong effects of crustal variations on waveforms. We conclude that the numerical tools are ready for examining more scenarios, including various other seismic models and sources.

  13. Voltage modulation of propagating spin waves in Fe

    SciTech Connect

    Nawaoka, Kohei; Shiota, Yoichi; Miwa, Shinji; Tamura, Eiiti; Tomita, Hiroyuki; Mizuochi, Norikazu; Shinjo, Teruya; Suzuki, Yoshishige

    2015-05-07

    The effect of a voltage application on propagating spin waves in single-crystalline 5 nm-Fe layer was investigated. Two micro-sized antennas were employed to excite and detect the propagating spin waves. The voltage effect was characterized using AC lock-in technique. As a result, the resonant field of the magnetostatic surface wave in the Fe was clearly modulated by the voltage application. The modulation is attributed to the voltage induced magnetic anisotropy change in ferromagnetic metals.

  14. Hypersonic phonon propagation in one-dimensional surface phononic crystal

    NASA Astrophysics Data System (ADS)

    Graczykowski, B.; Sledzinska, M.; Kehagias, N.; Alzina, F.; Reparaz, J. S.; Sotomayor Torres, C. M.

    2014-03-01

    Hypersonic, thermally activated surface acoustic waves propagating in the surface of crystalline silicon patterned with periodic stripes were studied by Brillouin light scattering. Two characteristic directions (normal and parallel to the stripes) of surface acoustic waves propagation were examined exhibiting a distinctive propagation behavior. The measured phononic band structure exhibits diverse features, such as zone folding, band gap opening, and hybridization to local resonance for waves propagating normal to the stripes, and a variety of dispersive modes propagating along the stripes. Experimental results were supported by theoretical calculations performed using finite element method.

  15. Modeling Propagation of Shock Waves in Metals

    SciTech Connect

    Howard, W M; Molitoris, J D

    2005-08-19

    We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P {approx} 300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and shear modulus depend on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. At melt the yield strength and shear modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that give the correct detonation velocity and C-J pressure (P {approx} 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov.

  16. Solitary surface waves on a plasma cylinder

    NASA Astrophysics Data System (ADS)

    Gradov, O. M.; Stenflo, L.

    1983-03-01

    By considering electrostatic surface waves propagating along a plasma cylinder, it is demonstrated that solitary variations in the cylinder radius may appear. The properties of these slow perturbations are determined by the surface wave intensities.

  17. Whistler wave propagation in a large magnetoplasma

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.

    1976-01-01

    A large collisionless quiescent plasma source is developed for investigating the phase and amplitude distribution of antenna-launched whistler waves in a specified parameter regime relating wave frequency to electron cyclotron frequency. Wave dispersion is studied both by interferometer techniques with monochromatic waves and by propagation of short phase-coherent wave bursts. The wave damping mechanism is examined by propagating perfectly ducted whistler waves. The dispersion of single frequency waves and wave packets is demonstrated. Trough ducting for wave frequency to electron cyclotron frequency ratio greater than 1/2 is verified, and new eigenmodes in nonuniform plasmas at ratio values less than 1/2 are observed. It is shown that geometric effects due to ray divergence and wave refraction dominate over collisional damping.

  18. On neutron surface waves

    SciTech Connect

    Ignatovich, V. K.

    2009-01-15

    It is shown that neutron surface waves do not exist. The difference between the neutron wave mechanics and the wave physics of electromagnetic and acoustic processes, which allows the existence of surface waves, is analyzed.

  19. Making and Propagating Elastic Waves: Overview of the new wave propagation code WPP

    SciTech Connect

    McCandless, K P; Petersson, N A; Nilsson, S; Rodgers, A; Sjogreen, B; Blair, S C

    2006-05-09

    We are developing a new parallel 3D wave propagation code at LLNL called WPP (Wave Propagation Program). WPP is being designed to incorporate the latest developments in embedded boundary and mesh refinement technology for finite difference methods, as well as having an efficient portable implementation to run on the latest supercomputers at LLNL. We are currently exploring seismic wave applications, including a recent effort to compute ground motions for the 1906 Great San Francisco Earthquake. This paper will briefly describe the wave propagation problem, features of our numerical method to model it, implementation of the wave propagation code, and results from the 1906 Great San Francisco Earthquake simulation.

  20. Asymptotic wave propagation in excitable media.

    PubMed

    Bernus, Olivier; Vigmond, Edward

    2015-07-01

    Wave shape and velocity are important issues in reaction-diffusion systems, and are often the result of competition in media with heterogeneous conduction properties. Asymptotic wave front propagation at maximal conduction velocity has been previously reported in the context of anisotropic cardiac tissue, but it is unknown whether this is a universal property of excitable tissues where conduction velocity can be locally modulated by mechanisms other than anisotropy. Here, we investigate the impact of conduction heterogeneities and boundary effects on wave propagation in excitable media. Following a theoretical analysis, we find that wave-front cusps occur where local velocity is reduced and that asymptotic wave fronts propagate at the maximal translational conduction velocity. Simulations performed in different reaction-diffusion systems, including cardiac tissue, confirm our theoretical findings. We conclude that this property can be found in a wide range of reaction-diffusion systems with excitable dynamics and that asymptotic wave-front shapes can be predicted.

  1. Seismic wave propagation in granular media

    NASA Astrophysics Data System (ADS)

    Tancredi, Gonzalo; López, Francisco; Gallot, Thomas; Ginares, Alejandro; Ortega, Henry; Sanchís, Johnny; Agriela, Adrián; Weatherley, Dion

    2016-10-01

    Asteroids and small bodies of the Solar System are thought to be agglomerates of irregular boulders, therefore cataloged as granular media. It is a consensus that many asteroids might be considered as rubble or gravel piles.Impacts on their surface could produce seismic waves which propagate in the interior of these bodies, thus causing modifications in the internal distribution of rocks and ejections of particles and dust, resulting in a cometary-type comma.We present experimental and numerical results on the study of propagation of impact-induced seismic waves in granular media, with special focus on behavior changes by increasing compression.For the experiment, we use an acrylic box filled with granular materials such as sand, gravel and glass spheres. Pressure inside the box is controlled by a movable side wall and measured with sensors. Impacts are created on the upper face of the box through a hole, ranging from free-falling spheres to gunshots. We put high-speed cameras outside the box to record the impact as well as piezoelectic sensors and accelerometers placed at several depths in the granular material to detect the seismic wave.Numerical simulations are performed with ESyS-Particle, a software that implements the Discrete Element Method. The experimental setting is reproduced in the numerical simulations using both individual spherical particles and agglomerates of spherical particles shaped as irregular boulders, according to rock models obtained with a 3D scanner. The numerical experiments also reproduces the force loading on one of the wall to vary the pressure inside the box.We are interested in the velocity, attenuation and energy transmission of the waves. These quantities are measured in the experiments and in the simulations. We study the dependance of these three parameters with characteristics like: impact speed, properties of the target material and the pressure in the media.These results are relevant to understand the outcomes of impacts in

  2. Radio wave propagation and acoustic sounding

    NASA Astrophysics Data System (ADS)

    Singal, S. P.

    Radio wave propagation of the decimetric and centimetric waves depends to a large extent on the boundary layer meteorological conditions which give rise to severe fadings, very often due to multipath propagation. Sodar is one of the inexpensive remote sensing techniques which can be employed to probe the boundary layer structure. In the paper a historical perspective has been given of the simultaneously conducted studies on radio waves and sodar at various places. The radio meteorological information needed for propagation studies has been clearly spelt out and conditions of a ray path especially in the presence of a ducting layer have been defined as giving rise to fading or signal enhancement conditions. Finally the potential of the sodar studies to obtain information about the boundary layer phenomena has been stressed, clearly spelling out the use of acoustic sounding in radio wave propagation studies.

  3. Calibration of seismic wave propagation in Kuwait

    SciTech Connect

    Al-Awadhi, J; Endo, E; Fryall, F; Harris, D; Mayeda, K; Rodgers, A; Ruppert, S; Sweeney, J

    1999-07-23

    The Kuwait Institute of Scientific Research (KISR), the USGS and LLNL are collaborating to calibrate seismic wave propagation in Kuwait and surrounding regions of the northwest Arabian Gulf using data from the Kuwait National Seismic Network (KNSN). Our goals are to develop local and regional propagation models for locating and characterizing seismic events in Kuwait and portions of the Zagros mountains close to Kuwait. The KNSN consists of 7 short-period stations and one broadband (STS-2) station. Constraints on the local velocity structure may be derived from joint inversions for hypocenters of local events and the local velocity model, receiver functions from three-component observations of teleseisms, and surface wave phase velocity estimated from differential dispersion measurements made across the network aperture. Data are being collected to calibrate travel-time curves for the principal regional phases for events in the Zagros mountains. The available event observations span the distance range from approximately 2.5 degrees to almost 9 degrees. Additional constraints on structure across the deep sediments of the Arabian Gulf will be obtained from long-period waveform modeling.

  4. Decaying surface waves in inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Begmatov, A.

    2016-11-01

    Two problems on plane decaying surface waves in an inhomogeneous medium are under consideration: the problem where the waves similar to Rayleigh waves propagate in an isotropic elastic half-space that borders with a layer of an ideal incompressible fluid and the problem where the waves similar to Love waves propagate in a semi-infinite saturated porous medium that borders with a layer of an isotropic elastic medium.

  5. Longitudinal nonlinear wave propagation through soft tissue.

    PubMed

    Valdez, M; Balachandran, B

    2013-04-01

    In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated

  6. Calibration of seismic wave propagation in Jordan

    SciTech Connect

    Al-Husien, A; Amrat, A; Harris, D; Mayeda, K; Nakanishi, K; Rodgers, A; Ruppert, S; Ryall, F; Skinnell, K; Yazjeen, T

    1999-07-23

    The Natural Resources Authority of Jordan (NRA), the USGS and LLNL have a collaborative project to improve the calibration of seismic propagation in Jordan and surrounding regions. This project serves common goals of CTBT calibration and earthquake hazard assessment in the region. These objectives include accurate location of local and regional earthquakes, calibration of magnitude scales, and the development of local and regional propagation models. In the CTBT context, better propagation models and more accurately located events in the Dead Sea rift region can serve as (potentially GT5) calibration events for generating IMS location corrections. The detection and collection of mining explosions underpins discrimination research. The principal activity of this project is the deployment of two broadband stations at Hittiyah (south Jordan) and Ruweishid (east Jordan). These stations provide additional paths in the region to constrain structure with surface wave and body wave tomography. The Ruweishid station is favorably placed to provide constraints on Arabian platform structure. Waveform modeling with long-period observations of larger earthquakes will provide constraints on 1-D velocity models of the crust and upper mantle. Data from these stations combined with phase observations from the 26 short-period stations of the Jordan National Seismic Network (JNSN) may allow the construction of a more detailed velocity model of Jordan. The Hittiyah station is an excellent source of ground truth information for the six phosphate mines of southern Jordan and Israel. Observations of mining explosions collected by this station have numerous uses: for definition of templates for screening mining explosions, as ground truth events for calibrating travel-time models, and as explosion populations in development and testing discriminants. Following previously established procedures for identifying explosions, we have identified more than 200 explosions from the first 85 days of

  7. Inward propagating chemical waves in Taylor vortices

    NASA Astrophysics Data System (ADS)

    Thompson, Barnaby W.; Novak, Jan; Wilson, Mark C. T.; Britton, Melanie M.; Taylor, Annette F.

    2010-04-01

    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses—also observed experimentally.

  8. Inward propagating chemical waves in Taylor vortices.

    PubMed

    Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F

    2010-04-01

    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.

  9. Wave propagation into the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Hirota, I.

    1989-01-01

    Recent observations of various types of waves propagating into the middle atmosphere are reviewed. Emphasis is made on the excitation processes in the lower atmosphere and their vertical propagation through the background flow as a function of the latitude, height and season. The following subjects are discussed: (1) Vertical propagation of quasi-stationary forced Rossby waves into the winter stratosphere in connection with the sudden warming; (2) Spectral distribution and seasonal characteristics of normal mode (free) Rossby waves and the asymmetry of the Northern and Southern Hemispheres; and (3) Seasonal variation of internal gravity waves in the middle atmosphere. Further discussions are presented for future studies based on accumulated observational data during the MAP period.

  10. Turbulent Transitions in Optical Wave Propagation

    NASA Astrophysics Data System (ADS)

    Pierangeli, D.; Di Mei, F.; Di Domenico, G.; Agranat, A. J.; Conti, C.; DelRe, E.

    2016-10-01

    We report the direct observation of the onset of turbulence in propagating one-dimensional optical waves. The transition occurs as the disordered hosting material passes from being linear to one with extreme nonlinearity. As the response grows, increased wave interaction causes a modulational unstable quasihomogeneous flow to be superseded by a chaotic and spatially incoherent one. Statistical analysis of high-resolution wave behavior in the turbulent regime unveils the emergence of concomitant rogue waves. The transition, observed in a photorefractive ferroelectric crystal, introduces a new and rich experimental setting for the study of optical wave turbulence and information transport in conditions dominated by large fluctuations and extreme nonlinearity.

  11. Shear horizontal (SH) ultrasound wave propagation around smooth corners.

    PubMed

    Petcher, P A; Burrows, S E; Dixon, S

    2014-04-01

    Shear horizontal (SH) ultrasound guided waves are being used in an increasing number of non-destructive testing (NDT) applications. One advantage SH waves have over some wave types, is their ability to propagate around curved surfaces with little energy loss; to understand the geometries around which they could propagate, the wave reflection must be quantified. A 0.83mm thick aluminium sheet was placed in a bending machine, and a shallow bend was introduced. Periodically-poled magnet (PPM) electromagnetic acoustic transducers (EMATs), for emission and reception of SH waves, were placed on the same side of the bend, so that reflected waves were received. Additional bending of the sheet demonstrated a clear relationship between bend angles and the reflected signal. Models suggest that the reflection is a linear superposition of the reflections from each bend segment, such that sharp turns lead to a larger peak-to-peak amplitude, in part due to increased phase coherence.

  12. Wave Propagation Through The Far Infrared Beamline At The CLS

    SciTech Connect

    Reininger, R.; May, T.

    2004-05-12

    One of the beamlines to become operational in the first phase at the Canadian Light Source will be dedicated to high resolution spectroscopy in the far infrared (FIR). The beamline includes three ellipsoidal mirrors and several plane mirrors that transport the beam from the bending magnet source to the FIR spectrometer. The F-number of the spectrometer is matched by the beamline optics, which relay the light via intermediate foci rather than by collimation used in mid infrared beamlines. The beamline has been designed using regular ray tracing and by propagating the electric fields generated at the magnet through the beamline optics. The fields were calculated using SRW and the propagations were performed with SRW, which assumes ideal lenses, and with a wave propagating program using the real optical surfaces. The simulations, based on wave propagation, show the significant diffraction effects at both the foci and optical surfaces due to the small electron beam, beamline aperture, and mirrors sizes.

  13. RF Wave Propagation and Scattering in Tokamaks

    NASA Astrophysics Data System (ADS)

    Horton, Wendell; Goniche, Marc; Arefiev, Alex; Peysson, Yves; Ekedahl, Annika; InstituteFusion Studies Collaboration; IRFM CEA Collaboration

    2016-10-01

    The propagation, scattering and absorption of the lower hybrid and electron cyclotron RF waves used to control fusion plasmas is reviewed. Drift wave turbulence driven by the steep ion and electron temperature gradients in H-mode divertor tokamaks produces strong scattering of the RF waves used for heating and plasma currents drive Both the 3-5GHz lower-hybrid (LH) and the 170GHZ electron cyclotron (EC) waves experience scattering and diffraction as propagating through the statistically complex density of the plasma. Ray equations are used to calculate the spread of the rays and the associated change in the parallel phase, polarization and group velocity of the RF waves in the propagation through the fusion plasma. A Fokker Planck equation for the phase space of the RF plasmons is one method to describe the spread of the RF wave power in the complex geometry of a divertor tokamak using the ray tracing codes. The evolution of the electron distribution function from the resonant electron-wave interactions is summarized for several scenarios. The resulting X-ray spectrum is broaden giving better agreement with the measured X-ray spectrum than that calculated in the absence of the turbulent scattering of the RF waves. M. Goniche et al., and Tore Supra Team, Phys. Plasmas 21, 2014.

  14. Regional Wave Propagation in Southeastern United States

    NASA Astrophysics Data System (ADS)

    Jemberie, A. L.; Langston, C. A.

    2003-12-01

    Broad band seismograms from the April 29, 2003, M4.6 Fort Payne, Alabama earthquake are analyzed to infer mechanisms of crustal wave propagation, crust and upper mantle velocity structure in southeastern United States, and source parameters of the event. In particular, we are interested in producing deterministic models of the distance attenuation of earthquake ground motions through computation of synthetic seismograms. The method first requires constraining the source parameters of an earthquake and then modeling the amplitude and times of broadband arrivals within the waveforms to infer appropriate layered earth models. A first look at seismograms recorded by stations outside the Mississippi Embayment (ME) show clear body phases such P, sP, Pnl, Sn and Lg. The ME signals are qualitatively different from others because they have longer durations and large surface waves. A straightforward interpretation of P wave arrival times shows a typical upper mantle velocity of 8.18 km/s. However, there is evidence of significantly higher P phase velocities at epicentral distances between 400 and 600km, that may be caused by a high velocity upper mantle anomaly; triplication of P-waves is seen in these seismograms. The arrival time differences between regional P and the depth phase sP at different stations are used to constrain the depth of the earthquake. The source depth lies between 9.5 km and 13km which is somewhat more shallow than the network location that was constrained to 15km depth. The Fort Payne earthquake is the largest earthquake to have occurred within the Eastern Tennessee Seismic Zone.

  15. Surface Plasmon Propagation in Nanostructured Metallic Waveguides

    NASA Astrophysics Data System (ADS)

    Calm, Y. M.; Merlo, J. M.; Rose, A. H.; Nesbitt, N. T.; Boyce, A. M.; McMahon, G.; Burns, M. J.; Kempa, K.; Naughton, M. J.

    2015-03-01

    Visible frequencies of light can be routed on subwavelength scales with nanostructured, metallic waveguides by coupling optical energy to surface plasmon (SP) modes at a metal-insulator interface. Epitaxially-grown Ag nanowires and nanocoaxes provide a low-loss, ``model'' system to characterize the propagation of SP waves. We have studied these structures by electron, focused ion, scanning probe, and optical microscopies, and have observed propagation lengths exceeding 15λvac with confinement on the order of 0 . 07(λvac) 2 . Experimental efforts towards lithographically-fabricated metal-insulator-metal waveguides are discussed. Finally, an architecture for a nanocoax-based optical microscope, which extracts near-field (evanescent) information and propagates it into the far-field, is presented. Supported by the W.M. Keck Foundation.

  16. The nonlinear Schrödinger equation and the propagation of weakly nonlinear waves in optical fibers and on the water surface

    SciTech Connect

    Chabchoub, A.; Kibler, B.; Finot, C.; Millot, G.; Onorato, M.; Dudley, J.M.; Babanin, A.V.

    2015-10-15

    The dynamics of waves in weakly nonlinear dispersive media can be described by the nonlinear Schrödinger equation (NLSE). An important feature of the equation is that it can be derived in a number of different physical contexts; therefore, analogies between different fields, such as for example fiber optics, water waves, plasma waves and Bose–Einstein condensates, can be established. Here, we investigate the similarities between wave propagation in optical Kerr media and water waves. In particular, we discuss the modulation instability (MI) in both media. In analogy to the water wave problem, we derive for Kerr-media the Benjamin–Feir index, i.e. a nondimensional parameter related to the probability of formation of rogue waves in incoherent wave trains.

  17. Propagation of shock waves through clouds

    NASA Astrophysics Data System (ADS)

    Zhou, Xin Xin

    1990-10-01

    The behavior of a shock wave propagating into a cloud consisting of an inert gas, water vapor and water droplets was investigated. This has particular application to sonic bangs propagating in the atmosphere. The finite different method of MacCormack is extended to solve the one and two dimensional, two phase flow problems in which mass, momentum and energy transfers are included. The FCT (Fluid Corrected Transport) technique developed by Boris and Book was used in the basic numerical scheme as a powerful corrective procedure. The results for the transmitted shock waves propagating in a one dimensional, semi infinite cloud obtained by the finite difference approach are in good agreement with previous results by Kao using the method characteristics. The advantage of the finite difference method is its adaptability to two and three dimensional problems. Shock wave propagation through a finite cloud and into an expansion with a 90 degree corner was investigated. It was found that the transfer processes between the two phases in two dimensional flow are much more complicated than in the one dimensional flow cases. This is mainly due to the vortex and expansion wave generated at the corner. In the case considered, further complications were generated by the reflected shock wave from the floor. Good agreement with experiment was found for one phase flow but experimental data for the two phase case is not yet available to validate the two phase calculations.

  18. Enhanced Propagating Surface Plasmon Signal Detection

    SciTech Connect

    Gong, Y.; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2016-12-21

    Overcoming the dissipative nature of propagating surface plasmons (PSPs) is pre-requisite to realizing functional plasmonic circuitry, in which large bandwidth signals can be manipulated over length scales far-below the diffraction limit of light. To this end, we report on a novel PSP enhanced signal detection technique achieved in an all-metallic substrate. We take advantage of two strategically spatio-temporally separated phase-locked femtosecond laser pulses, incident onto lithographically patterned PSP coupling structures. We follow PSP propagation with joint femtosecond temporal and nanometer spatial resolution in a time-resolved non-linear photoemission electron microscopy scheme. Initially, a PSP signal wave packet is launched from a hole etched into the silver surface from where it propagates through an open trench structure and is decoded through the use of a timed probe pulse. FDTD calculations demonstrate that PSP signal waves may traverse open trenches in excess of 10 microns in diameter, thereby allowing remote detection even through vacuum regions. This arrangement results in a 10X enhancement in photoemission relative to readout from the bare metal surface. The enhancement is attributed to an all-optical homodyne detection technique that mixes signal and reference PSP waves in a non-linear scheme. Larger readout trenches achieve higher readout levels, however reduced transmission through the trench limits the trench size to 6 microns for maximum readout levels. However, the use of an array of trenches increases the maximum enhancement to near 30X. The attainable enhancement factor may be harnessed to achieve extended coherent PSP propagation in ultrafast plasmonic circuitry.

  19. Characterization of a low-pressure chlorine plasma column sustained by propagating surface waves using phase-sensitive microwave interferometry and trace-rare-gas optical emission spectroscopy

    SciTech Connect

    Mattei, S.; Boudreault, O.; Stafford, L.; Khare, R.; Donnelly, V. M.

    2011-06-01

    Phase-sensitive microwave interferometry and trace-rare-gas optical emission spectroscopy were used to measure the line-integrated electron density, n{sub e}, and electron temperature, T{sub e}, in a high-density chlorine plasma sustained in a quartz discharge tube (inner diameter = 6 mm) by an electromagnetic surface wave at 2.45 GHz. For pressures in the 0.1-1 Torr range, n{sub e} decreased nearly linearly along the tube's z-axis down to the critical density for surface wave propagation, where the plasma decayed abruptly. At lower pressures (< 50 mTorr), however, the plasma extended well beyond this critical point, after which n{sub e} decreased quasiexponentially toward the end of the plasma column. The length of this expansion region increased with decreasing pressure, going from {approx}8 cm at 5 mTorr to {approx}1 cm at 50 mTorr. T{sub e} was nearly independent of the axial position in the main plasma region and strongly decreased in the expansion region at lower pressures. The Cl{sub 2} percent dissociation, {tau}{sub D}, obtained from the calibrated Cl{sub 2} (306 nm)-to-Xe (828 nm) emission ratio, displayed behavior similar to that of n{sub e} and T{sub e}. For example, at 5 mTorr, {tau}{sub D} was close to 100% near the wave launcher and {approx}70% at 0.5 cm from the end of the plasma column.

  20. Wave propagation in metamaterial lattice sandwich plates

    NASA Astrophysics Data System (ADS)

    Fang, Xin; Wen, Jihong; Yin, Jianfei; Yu, Dianlong

    2016-04-01

    This paper designed a special acoustic metamaterial 3D Kagome lattice sandwich plate. Dispersion properties and vibration responses of both traditional plate and metamaterial plate are investigated based on FEA methods. The traditional plate does not have low-frequency complete bandgaps, but the metamaterial plate has low-frequency complete bandgap (at 620Hz) coming from the symmetrical local cantilever resonators. The bandgap frequency is approximate to the first-order natural frequency of the oscillator. Complex wave modes are analyzed. The dispersion curves of longitudinal waves exist in the flexural bandgap. The dispersion properties demonstrate the metamaterial design is advantageous to suppress the low-frequency flexural wave propagation in lattice sandwich plate. The flexural vibrations near the bandgap are also suppressed efficiently. The longitudinal excitation stimulates mainly longitudinal waves and lots of low-frequency flexural vibration modes are avoided. Furthermore, the free edge effects in metamaterial plate provide new method for damping optimizations. The influences of damping on vibrations of the metamaterial sandwich plate are studied. Damping has global influence on the wave propagation; stronger damping will induce more vibration attenuation. The results enlighten us damping and metamaterial design approaches can be unite in the sandwich plates to suppress the wave propagations.

  1. Antenna Construction and Propagation of Radio Waves.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…

  2. Wave propagation in elastic medium with heterogeneous quadratic nonlinearity

    SciTech Connect

    Tang Guangxin; Jacobs, Laurence J.; Qu Jianmin

    2011-06-23

    This paper studies the one-dimensional wave propagation in an elastic medium with spatially non-uniform quadratic nonlinearity. Two problems are solved analytically. One is for a time-harmonic wave propagating in a half-space where the displacement is prescribed on the surface of the half-space. It is found that spatial non-uniformity of the material nonlinearity causes backscattering of the second order harmonic, which when combined with the forward propagating waves generates a standing wave in steady-state wave motion. The second problem solved is the reflection from and transmission through a layer of finite thickness embedded in an otherwise linearly elastic medium of infinite extent, where it is assumed that the layer has a spatially non-uniform quadratic nonlinearity. The results show that the transmission coefficient for the second order harmonic is proportional to the spatial average of the nonlinearity across the thickness of the layer, independent of the spatial distribution of the nonlinearity. On the other hand, the coefficient of reflection is proportional to a weighted average of the nonlinearity across the layer thickness. The weight function in this weighted average is related to the propagating phase, thus making the coefficient of reflection dependent on the spatial distribution of the nonlinearity. Finally, the paper concludes with some discussions on how to use the reflected and transmitted second harmonic waves to evaluate the variance and autocorrelation length of nonlinear parameter {beta} when the nonlinearity distribution in the layer is a stochastic process.

  3. Propagation of seismic waves in tall buildings

    USGS Publications Warehouse

    Safak, E.

    1998-01-01

    A discrete-time wave propagation formulation of the seismic response of tall buildings is introduced. The building is modeled as a layered medium, similar to a layered soil medium, and is subjected to vertically propagating seismic shear waves. Soil layers and the bedrock under the foundation are incorporated in the formulation as additional layers. Seismic response is expressed in terms of the wave travel times between the layers, and the wave reflection and transmission coefficients at the layer interfaces. The equations account for the frequency-dependent filtering effects of the foundation and floor masses. The calculation of seismic response is reduced to a pair of simple finite-difference equations for each layer, which can be solved recursively starting from the bedrock. Compared to the commonly used vibration formulation, the wave propagation formulation provides several advantages, including simplified calculations, better representation of damping, ability to account for the effects of the soil layers under the foundation, and better tools for identification and damage detection from seismic records. Examples presented show the versatility of the method. ?? 1998 John Wiley & Sons, Ltd.

  4. Large-scale Globally Propagating Coronal Waves.

    PubMed

    Warmuth, Alexander

    Large-scale, globally propagating wave-like disturbances have been observed in the solar chromosphere and by inference in the corona since the 1960s. However, detailed analysis of these phenomena has only been conducted since the late 1990s. This was prompted by the availability of high-cadence coronal imaging data from numerous spaced-based instruments, which routinely show spectacular globally propagating bright fronts. Coronal waves, as these perturbations are usually referred to, have now been observed in a wide range of spectral channels, yielding a wealth of information. Many findings have supported the "classical" interpretation of the disturbances: fast-mode MHD waves or shocks that are propagating in the solar corona. However, observations that seemed inconsistent with this picture have stimulated the development of alternative models in which "pseudo waves" are generated by magnetic reconfiguration in the framework of an expanding coronal mass ejection. This has resulted in a vigorous debate on the physical nature of these disturbances. This review focuses on demonstrating how the numerous observational findings of the last one and a half decades can be used to constrain our models of large-scale coronal waves, and how a coherent physical understanding of these disturbances is finally emerging.

  5. Speeding up tsunami wave propagation modeling

    NASA Astrophysics Data System (ADS)

    Lavrentyev, Mikhail; Romanenko, Alexey

    2014-05-01

    Trans-oceanic wave propagation is one of the most time/CPU consuming parts of the tsunami modeling process. The so-called Method Of Splitting Tsunami (MOST) software package, developed at PMEL NOAA USA (Pacific Marine Environmental Laboratory of the National Oceanic and Atmospheric Administration, USA), is widely used to evaluate the tsunami parameters. However, it takes time to simulate trans-ocean wave propagation, that is up to 5 hours CPU time to "drive" the wave from Chili (epicenter) to the coast of Japan (even using a rather coarse computational mesh). Accurate wave height prediction requires fine meshes which leads to dramatic increase in time for simulation. Computation time is among the critical parameter as it takes only about 20 minutes for tsunami wave to approach the coast of Japan after earthquake at Japan trench or Sagami trench (as it was after the Great East Japan Earthquake on March 11, 2011). MOST solves numerically the hyperbolic system for three unknown functions, namely velocity vector and wave height (shallow water approximation). The system could be split into two independent systems by orthogonal directions (splitting method). Each system can be treated independently. This calculation scheme is well suited for SIMD architecture and GPUs as well. We performed adaptation of MOST package to GPU. Several numerical tests showed 40x performance gain for NVIDIA Tesla C2050 GPU vs. single core of Intel i7 processor. Results of numerical experiments were compared with other available simulation data. Calculation results, obtained at GPU, differ from the reference ones by 10^-3 cm of the wave height simulating 24 hours wave propagation. This allows us to speak about possibility to develop real-time system for evaluating tsunami danger.

  6. Impact of mountain gravity waves on infrasound propagation

    NASA Astrophysics Data System (ADS)

    Damiens, Florentin; Lott, François; Millet, Christophe

    2016-04-01

    Linear theory of acoustic propagation is used to analyze how mountain waves can change the characteristics of infrasound signals. The mountain wave model is based on the integration of the linear inviscid Taylor-Goldstein equation forced by a nonlinear surface boundary condition. For the acoustic propagation we solve the wave equation using the normal mode method together with the effective sound speed approximation. For large-amplitude mountain waves we use direct numerical simulations to compute the interactions between the mountain waves and the infrasound component. It is shown that the mountain waves perturb the low level waveguide, which leads to significant acoustic dispersion. The mountain waves also impact the arrival time and spread of the signals substantially and can produce a strong absorption of the wave signal. To interpret our results we follow each acoustic mode separately and show which mode is impacted and how. We also show that the phase shift between the acoustic modes over the horizontal length of the mountain wave field may yield to destructive interferences in the lee side of the mountain, resulting in a new form of infrasound absorption. The statistical relevance of those results is tested using a stochastic version of the mountain wave model and large enough sample sizes.

  7. Wave Propagation in Polymers, Part II

    NASA Astrophysics Data System (ADS)

    Newlander, David C.; Charest, Jacques A.; Lilly, Martin D.; Eisler, Robert D.

    1999-06-01

    Work reported in a previous study (Wave Propagations in Polymers, Part I, J.A. Charest, M.D. Lilly, 44th ARA Meeting Munich, Germany Sept. 17-20, 1993) discussed gas gun plane wave impact work and the measurements of stress wave profiles in Polycarbonate at around 2 kbars. The wave profiles were obtained using combined carbon and PVDF thin film stress gauges. The results showed amplitude attenuation and dispersion effects which were neither expected nor predictable from available hydrocode models. The data have been revisited using a modified material model and the PUFF74 computer code. These new wave profile calculations show remarkable agreement with the previous experiments in Polycarbonate. The model treats the material as viscoelastic-plastic using methods developed by Bade (Dynamic Response Model for PMMA, W. L. Bade, AVCO Systems Division, TR K500-74-WLB-204, Oct. 1, 1974). The measured and calculated results are quite different from those exhibited by PMMA at similar impact conditions. This work is expected to further our understanding of the processes that control wave propagation in highly-compressible and viscoelastic/viscoplastic media. It is also expected to provide clues on the effects of high strain rates on properties such as the modulus of elasticity, strength, and material loading behavior.

  8. Propagation of Axially Symmetric Detonation Waves

    SciTech Connect

    Druce, R L; Roeske, F; Souers, P C; Tarver, C M; Chow, C T S; Lee, R S; McGuire, E M; Overturf, G E; Vitello, P A

    2002-06-26

    We have studied the non-ideal propagation of detonation waves in LX-10 and in the insensitive explosive TATB. Explosively-driven, 5.8-mm-diameter, 0.125-mm-thick aluminum flyer plates were used to initiate 38-mm-diameter, hemispherical samples of LX-10 pressed to a density of 1.86 g/cm{sup 3} and of TATB at a density of 1.80 g/cm{sup 3}. The TATB powder was a grade called ultrafine (UFTATB), having an arithmetic mean particle diameter of about 8-10 {micro}m and a specific surface area of about 4.5 m{sup 2}/g. Using PMMA as a transducer, output pressure was measured at 5 discrete points on the booster using a Fabry-Perot velocimeter. Breakout time was measured on a line across the booster with a streak camera. Each of the experimental geometries was calculated using the Ignition and Growth Reactive Flow Model, the JWL++ Model and the Programmed Burn Model. Boosters at both ambient and cold (-20 C and -54 C) temperatures have been experimentally and computationally studied. A comparison of experimental and modeling results is presented.

  9. Surface and guided waves on structured surfaces and inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Polanco, Javier

    Surface and guided waves on structured surfaces and inhomogeneous media studies the propagation of waves in systems with spatially varying parameters. In the rainbow case (chapter 1), the dielectric constant changes with coordinates. In the cylinder case: boundary and the metal (chapter 2), it is a curved surface. Finally, in the last case (chapter 3), the dielectric constant changes in z-direction.

  10. A stochastic response surface formulation for the description of acoustic propagation through an uncertain internal wave field.

    PubMed

    Gerdes, Frank; Finette, Steven

    2012-10-01

    A modeling and simulation study is performed in a littoral ocean waveguide subject to uncertainty in four quantities: source depth, tidal forcing, initial thermocline structure, and sediment sound speed. In this partially known shelf-break environment, tidal forcing over a density-stratified water column produces internal tides and solitary wave packets. The resulting uncertainty in the space-time oceanographic field is mapped into the sound speed distribution which, in turn, introduces uncertainty into the acoustic wave field. The latter is treated as a stochastic field whose intensity is described by a polynomial chaos expansion. The expansion coefficients are estimated through constrained multivariate linear regression, and an analysis of the chaos coefficients provides insight into the relative contribution of the uncertain acoustic and oceanographic quantities. Histograms of acoustic intensity are estimated and compared to a reference solution obtained through Latin Hypercube sampling. A sensitivity analysis is performed to illustrate the relative importance of the four contributions of incomplete information about the environment. The simulation methodology represents an end-to-end analysis approach including both oceanographic and acoustic field uncertainty where the latter is quantified using stochastic basis expansions in the form of a polynomial chaos representation.

  11. VLF/LF long wave propagation study

    NASA Astrophysics Data System (ADS)

    Verplanck, P.; Kahler, R. C.; Donohoe, J. B.

    1981-11-01

    A program of ARCAS rocket measurements provided field strength data from 0 to 75 km altitude, in both Transverse Magnetic (TM) and Transverse Electric (TE) polarizations. Sky wave parameters related to survivable ground wave communications were measured at a frequency of 100 kHz, and a method of communicating with short (ground wave) pulses was demonstrated on a 230 km propagation path. Measurements were made in New York state, and in Brazil, to further define the nature of pulse reflections from ionospheric heights below the classical D-region. Instrumentation was developed to detect small changes in 100 kHz ground wave propagation velocity which might correlate with tropospheric conditions. Preliminary mechanical considerations indicate that it might be possible to deploy long center-fed dipole antennas from an Earth satellite. The program of high-resolution ionosounding with TM pulses in Greenland was augmented by transmitting TE pulses from an unused powerline at Thule Air Base. It was demonstrated that the effects of ionospheric disturbances can now be observed simultaneously with both polarizations. Input resistances and reactances of the powerline antenna were measured as functions of frequency in preparation for a follow-on program of long range propagation tests.

  12. Wave propagation in spatially modulated tubes

    NASA Astrophysics Data System (ADS)

    Ziepke, A.; Martens, S.; Engel, H.

    2016-09-01

    We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi-two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we observe finite intervals of propagation failure of waves induced by the tube's modulation and derive an analytically tractable condition for their occurrence. For the highly diffusive limit, using the Fick-Jacobs approach, we show that wave velocities within modulated tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pulse trains. We observe period changes by integer fractions dependent on the bottleneck width and the period of the entering pulse train.

  13. Wave propagation in one-dimensional microscopic granular chains

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Hsun; Daraio, Chiara

    2016-11-01

    We employ noncontact optical techniques to generate and measure stress waves in uncompressed, one-dimensional microscopic granular chains, and support our experiments with discrete numerical simulations. We show that the wave propagation through dry particles (150 μm radius) is highly nonlinear and it is significantly influenced by the presence of defects (e.g., surface roughness, interparticle gaps, and misalignment). We derive an analytical relation between the group velocity and gap size, and define bounds for the formation of highly nonlinear solitary waves as a function of gap size and axial misalignment.

  14. Ultrasonic guided wave propagation in pipes with elbows

    NASA Astrophysics Data System (ADS)

    Breon, Luke J.

    Guided wave inspection of pipelines is an important and growing area of Non-Destructive Evaluation (NDE). This technique can be used for remote inspection or monitoring of buried pipelines, or pipelines with insulation. Guided waves are sensitive to flaws such as corrosion pits and cracks. They can be used to locate flaws existing on either the outer or the inner surface of a pipe. Guided wave energy focusing can be performed to concentrate guided wave energy at particular combinations of circumferential and axial locations in straight pipes. When it can be used, this practice enhances the circumferential resolution of defects. Elbows in a piping system are sufficiently disruptive to guided wave energy that the focusing methods used in practical inspections of straight pipe have not been extended to the region beyond an elbow. Counter-intuitively, elbows with a 45 degree bend are more harmful to guided waves than those with a 90 degree bend. A simple and elegant explanation for this phenomenon is provided in this dissertation. Theoretical advancements to guided wave physics propagating around an elbow have tended to be few and slow. This is at least partly due to the complexity of the mathematics involved in the conventional description of guided wave mechanics. Parametric focusing for pipes with bends has not been previously possible as it is for straight sections of pipes. While some techniques such as time-reversal mirrors and blind finite-element-method modeling have existed for focusing beyond elbows, these techniques have been limited and largely of academic value. Also, the understanding of wave behavior in a pipe elbow has in the past been generally unclear. Consequently, signal interpretation has also been very limited for guided waves initiating in, or returning from, the far side of an elbow. A new approach to understanding guided wave propagation is developed in this work. This understanding consists of the idea that the pathway a guided wave will take

  15. Lattice Boltzmann model for wave propagation.

    PubMed

    Zhang, Jianying; Yan, Guangwu; Shi, Xiubo

    2009-08-01

    A lattice Boltzmann model for two-dimensional wave equation is proposed by using the higher-order moment method. The higher-order moment method is based on the solution of a series of partial differential equations obtained by using multiscale technique and Chapman-Enskog expansion. In order to obtain the lattice Boltzmann model for the wave equation with higher-order accuracy of truncation errors, we removed the second-order dissipation term and the third-order dispersion term by employing the moments up to fourth order. The reversibility in time appears owing to the absence of the second-order dissipation term and the third-order dispersion term. As numerical examples, some classical examples, such as interference, diffraction, and wave passing through a convex lens, are simulated. The numerical results show that this model can be used to simulate wave propagation.

  16. Propagating wave correlations in complex systems

    NASA Astrophysics Data System (ADS)

    Creagh, Stephen C.; Gradoni, Gabriele; Hartmann, Timo; Tanner, Gregor

    2017-01-01

    We describe a novel approach for computing wave correlation functions inside finite spatial domains driven by complex and statistical sources. By exploiting semiclassical approximations, we provide explicit algorithms to calculate the local mean of these correlation functions in terms of the underlying classical dynamics. By defining appropriate ensemble averages, we show that fluctuations about the mean can be characterised in terms of classical correlations. We give in particular an explicit expression relating fluctuations of diagonal contributions to those of the full wave correlation function. The methods have a wide range of applications both in quantum mechanics and for classical wave problems such as in vibro-acoustics and electromagnetism. We apply the methods here to simple quantum systems, so-called quantum maps, which model the behaviour of generic problems on Poincaré sections. Although low-dimensional, these models exhibit a chaotic classical limit and share common characteristics with wave propagation in complex structures.

  17. Seismic wave propagation in cracked porous media

    NASA Astrophysics Data System (ADS)

    Pointer, Tim; Liu, Enru; Hudson, John A.

    2000-07-01

    The movement of interstitial fluids within a cracked solid can have a significant effect on the properties of seismic waves of long wavelength propagating through the solid. We consider three distinct mechanisms of wave-induced fluid flow: flow through connections between cracks in an otherwise non-porous material, fluid movement within partially saturated cracks, and diffusion from the cracks into a porous matrix material. In each case the cracks may be aligned or randomly oriented, leading, respectively, to anisotropic or isotropic wave speeds and attenuation factors. In general, seismic velocities exhibit behaviour that is intermediate between that of empty cracks and that of isolated liquid-filled cracks if fluid flow is significant. In the range of frequencies for which considerable fluid flow occurs there is high attenuation and dispersion of seismic waves. Fluid flow may be on either a wavelength scale or a local scale depending on the model and whether the cracks are aligned or randomly oriented, resulting in completely different effects on seismic wave propagation. A numerical analysis shows that all models can have an effect over the exploration seismic frequency range.

  18. METHODOLOGICAL NOTES: Negative refractive index for a surface magnetostatic wave propagating through the boundary between a ferrite and ferrite-insulator-metal media

    NASA Astrophysics Data System (ADS)

    Vashkovskii, Anatolii V.; Lokk, Edwin H.

    2004-06-01

    Refraction of a slow surface electromagnetic wave (magnetostatic wave) at the boundary between ferrite and ferrite-insulator-metal media is investigated experimentally and theoretically. The boundary is created in an yttrium iron garnet film by placing a metal plate at a certain distance from its surface. The refractive index is found to depend on the angle of incidence of the wave and can take on any positive or negative values. It is shown that in anisotropic media, in particular, in ferromagnets, due to the noncollinearity of the wave vector and the group velocity vector, negative refraction can occur not only in the earlier predicted case where the incident wave is forward and the refracted wave is backward, but also in the case where both waves are forward.

  19. Wave Propagation in Jointed Geologic Media

    SciTech Connect

    Antoun, T

    2009-12-17

    Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.

  20. Spectra of Surface Waves

    DTIC Science & Technology

    1989-03-22

    with a wave follower during Marsen. J. Gophysical Res. 88, 9844-9849. 11. Hughes, B.A., 1978. The effects on internal waves on surface waves : 2...Spectra of Surface Waves K. Watson March 1989 JSR-88-130 Approved for public release; distribution unlimited. DTIC SELECTE JUN0 11989 0 JASONE The...Arlington, VA 22209 8503Z 11. TITLE (hlde Secvfty Cof.kaftn) SPECTRA OF SURFACE WAVES (U) 12. PERSONAL AUTHOfRS) K. Watson 13a. TYPE OF REPORT 13b. TIME

  1. S-Wave Normal Mode Propagation in Aluminum Cylinders

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2010-01-01

    Large amplitude waveform features have been identified in pulse-transmission shear-wave measurements through cylinders that are long relative to the acoustic wavelength. The arrival times and amplitudes of these features do not follow the predicted behavior of well-known bar waves, but instead they appear to propagate with group velocities that increase as the waveform feature's dominant frequency increases. To identify these anomalous features, the wave equation is solved in a cylindrical coordinate system using an infinitely long cylinder with a free surface boundary condition. The solution indicates that large amplitude normal-mode propagations exist. Using the high-frequency approximation of the Bessel function, an approximate dispersion relation is derived. The predicted amplitude and group velocities using the approximate dispersion relation qualitatively agree with measured values at high frequencies, but the exact dispersion relation should be used to analyze normal modes for full ranges of frequency of interest, particularly at lower frequencies.

  2. Frozen Gaussian approximation for 3-D seismic wave propagation

    NASA Astrophysics Data System (ADS)

    Chai, Lihui; Tong, Ping; Yang, Xu

    2017-01-01

    We present a systematic introduction on applying frozen Gaussian approximation (FGA) to compute synthetic seismograms in 3-D earth models. In this method, seismic wavefield is decomposed into frozen (fixed-width) Gaussian functions, which propagate along ray paths. Rather than the coherent state solution to the wave equation, this method is rigorously derived by asymptotic expansion on phase plane, with analysis of its accuracy determined by the ratio of short wavelength over large domain size. Similar to other ray-based beam methods (e.g. Gaussian beam methods), one can use relatively small number of Gaussians to get accurate approximations of high-frequency wavefield. The algorithm is embarrassingly parallel, which can drastically speed up the computation with a multicore-processor computer station. We illustrate the accuracy and efficiency of the method by comparing it to the spectral element method for a 3-D seismic wave propagation in homogeneous media, where one has the analytical solution as a benchmark. As another proof of methodology, simulations of high-frequency seismic wave propagation in heterogeneous media are performed for 3-D waveguide model and smoothed Marmousi model, respectively. The second contribution of this paper is that, we incorporate the Snell's law into the FGA formulation, and asymptotically derive reflection, transmission and free surface conditions for FGA to compute high-frequency seismic wave propagation in high contrast media. We numerically test these conditions by computing traveltime kernels of different phases in the 3-D crust-over-mantle model.

  3. Frozen Gaussian approximation for three-dimensional seismic wave propagation

    NASA Astrophysics Data System (ADS)

    Chai, Lihui; Tong, Ping; Yang, Xu

    2016-09-01

    We present a systematic introduction on applying frozen Gaussian approximation (FGA) to compute synthetic seismograms in three-dimensional earth models. In this method, seismic wavefield is decomposed into frozen (fixed-width) Gaussian functions, which propagate along ray paths. Rather than the coherent state solution to the wave equation, this method is rigorously derived by asymptotic expansion on phase plane, with analysis of its accuracy determined by the ratio of short wavelength over large domain size. Similar to other ray-based beam methods (e.g. Gaussian beam methods), one can use relatively small number of Gaussians to get accurate approximations of high-frequency wavefield. The algorithm is embarrassingly parallel, which can drastically speed up the computation with a multicore-processor computer station. We illustrate the accuracy and efficiency of the method by comparing it to the spectral element method for a three-dimensional (3D) seismic wave propagation in homogeneous media, where one has the analytical solution as a benchmark. As another proof of methodology, simulations of high-frequency seismic wave propagation in heterogeneous media are performed for 3D waveguide model and smoothed Marmousi model respectively. The second contribution of this paper is that, we incorporate the Snell's law into the FGA formulation, and asymptotically derive reflection, transmission and free surface conditions for FGA to compute high-frequency seismic wave propagation in high contrast media. We numerically test these conditions by computing traveltime kernels of different phases in the 3D crust-over-mantle model.

  4. The Propagation of Slow Wave Potentials in Pea Epicotyls.

    PubMed Central

    Stahlberg, R.; Cosgrove, D. J.

    1997-01-01

    Slow wave potentials are considered to be electric long-distance signals specific for plants, although there are conflicting ideas about a chemical, electrical, or hydraulic mode of propagation. These ideas were tested by comparing the propagation of hydraulic and electric signals in epicotyls of pea (Pisum sativum L). A hydraulic signal in the form of a defined step increase in xylem pressure (Px) was applied to the root of intact seedlings and propagated nearly instantly through the epicotyl axis while its amplitude decreased with distance from the pressure chamber. This decremental propagation was caused by a leaky xylem and created an axial Px gradient in the epicotyl. Simultaneously along the epicotyl surface, depolarizations appeared with lag times that increased acropetally with distance from the pressure chamber from 5 s to 3 min. When measured at a constant distance, the lag times increased as the size of the applied pressure steps decreased. We conclude that the Px gradient in the epicotyl caused local depolarizations with acropetally increasing lag times, which have the appearance of an electric signal propagating with a rate of 20 to 30 mm min-1. This static description of the slow wave potentials challenges its traditional classification as a propagating electric signal. PMID:12223601

  5. Seismic Wave Propagation on the Tablet Computer

    NASA Astrophysics Data System (ADS)

    Emoto, K.

    2015-12-01

    Tablet computers widely used in recent years. The performance of the tablet computer is improving year by year. Some of them have performance comparable to the personal computer of a few years ago with respect to the calculation speed and the memory size. The convenience and the intuitive operation are the advantage of the tablet computer compared to the desktop PC. I developed the iPad application of the numerical simulation of the seismic wave propagation. The numerical simulation is based on the 2D finite difference method with the staggered-grid scheme. The number of the grid points is 512 x 384 = 196,608. The grid space is 200m in both horizontal and vertical directions. That is the calculation area is 102km x 77km. The time step is 0.01s. In order to reduce the user waiting time, the image of the wave field is drawn simultaneously with the calculation rather than playing the movie after the whole calculation. P and S wave energies are plotted on the screen every 20 steps (0.2s). There is the trade-off between the smooth simulation and the resolution of the wave field image. In the current setting, it takes about 30s to calculate the 10s wave propagation (50 times image updates). The seismogram at the receiver is displayed below of the wave field updated in real time. The default medium structure consists of 3 layers. The layer boundary is defined by 10 movable points with linear interpolation. Users can intuitively change to the arbitrary boundary shape by moving the point. Also users can easily change the source and the receiver positions. The favorite structure can be saved and loaded. For the advance simulation, users can introduce the random velocity fluctuation whose spectrum can be changed to the arbitrary shape. By using this application, everyone can simulate the seismic wave propagation without the special knowledge of the elastic wave equation. So far, the Japanese version of the application is released on the App Store. Now I am preparing the

  6. Vortex Rossby wave propagation in baroclinic tropical cyclone-like vortices

    NASA Astrophysics Data System (ADS)

    Gao, Cen; Zhu, Ping

    2016-12-01

    This study extends the vortex Rossby wave (VRW) propagation theory into baroclinic tropical cyclone-like vortices. Dispersion relation, group velocities, and stagnation radius/height of propagating wave packets in baroclinic conditions are derived using the Wenzel-Kramers-Brillouin approximation. It is found that the VRW dispersion relation in baroclinic vortices in isentropic coordinates has the same mathematical form as that in barotropic vortices in pseudoheight coordinates. However, baroclinicity causes the vertical wave number to increase as wave packets propagate upward, resulting in different wave propagation features from those in barotropic vortices. The stagnation radius and level are constrained by a "critical" surface where the initial central angular phase velocity equals the angular velocity of the vortex. Depending on the specific structure of vortex basic-state baroclinicity and positions where asymmetries are located, the excited waves can either be trapped vertically and behave like those in barotropic conditions or effectively propagate upward but with their radial propagation largely suppressed.

  7. Wave propagation in axially moving periodic strings

    NASA Astrophysics Data System (ADS)

    Sorokin, Vladislav S.; Thomsen, Jon Juel

    2017-04-01

    The paper deals with analytically studying transverse waves propagation in an axially moving string with periodically modulated cross section. The structure effectively models various relevant technological systems, e.g. belts, thread lines, band saws, etc., and, in particular, roller chain drives for diesel engines by capturing both their spatial periodicity and axial motion. The Method of Varying Amplitudes is employed in the analysis. It is shown that the compound wave traveling in the axially moving periodic string comprises many components with different frequencies and wavenumbers. This is in contrast to non-moving periodic structures, for which all components of the corresponding compound wave feature the same frequency. Due to this "multi-frequency" character of the wave motion, the conventional notion of frequency band-gaps appears to be not applicable for the moving periodic strings. Thus, for such structures, by frequency band-gaps it is proposed to understand frequency ranges in which the primary component of the compound wave attenuates. Such frequency band-gaps can be present for a moving periodic string, but only if its axial velocity is lower than the transverse wave speed, and, the higher the axial velocity, the narrower the frequency band-gaps. The revealed effects could be of potential importance for applications, e.g. they indicate that due to spatial inhomogeneity, oscillations of axially moving periodic chains always involve a multitude of frequencies.

  8. Undulations from amplified low frequency surface waves

    SciTech Connect

    Coutant, Antonin; Parentani, Renaud

    2014-04-15

    We study the linear scattering of gravity waves in longitudinal inhomogeneous stationary flows. When the flow becomes supercritical, it is known that counterflow propagating shallow waves are blocked and converted into deep waves. Here we show that in the zero-frequency limit, the reflected waves are amplified in such a way that the free surface develops an undulation, i.e., a zero-frequency wave of large amplitude with nodes located at specific places. This amplification involves negative energy waves and implies that flat surfaces are unstable against incoming perturbations of arbitrary small amplitude. The relation between this instability and black hole radiation (the Hawking effect) is established.

  9. Experimental and theoretical study of Rayleigh-Lamb wave propagation

    NASA Technical Reports Server (NTRS)

    Rogers, Wayne P.; Datta, Subhendu K.; Ju, T. H.

    1990-01-01

    Many space structures, such as the Space Station Freedom, contain critical thin-walled components. The structural integrity of thin-walled plates and shells can be monitored effectively using acoustic emission and ultrasonic testing in the Rayleigh-Lamb wave frequency range. A new PVDF piezoelectric sensor has been developed that is well suited to remote, inservice nondestructive evaluation of space structures. In the present study the new sensor was used to investigate Rayleigh-Lamb wave propagation in a plate. The experimental apparatus consisted of a glass plate (2.3 m x 25.4 mm x 5.6 mm) with PVDF sensor (3 mm diam.) mounted at various positions along its length. A steel ball impact served as a simulated acoustic emission source, producing surface waves, shear waves and longitudinal waves with dominant frequencies between 1 kHz and 200 kHz. The experimental time domain wave-forms were compared with theoretical predictions of the wave propagation in the plate. The model uses an analytical solution for the Green's function and the measured response at a single position to predict response at any other position in the plate. Close agreement was found between the experimental and theoretical results.

  10. Nonlinear thermal surface waves

    NASA Astrophysics Data System (ADS)

    Gradov, O. M.; Stenflo, L.

    1984-09-01

    It is shown that density profile modifications near a plasma surface can survive at moving localized spots because of the radiation pressure of leaking wave field fluctuations. The properties of these luminous surface cavitons are studied.

  11. Torsional wave propagation in solar tornadoes

    NASA Astrophysics Data System (ADS)

    Vasheghani Farahani, S.; Ghanbari, E.; Ghaffari, G.; Safari, H.

    2017-02-01

    Aims: We investigate the propagation of torsional waves in coronal structures together with their collimation effects in the context of magnetohydrodynamic (MHD) theory. The interplay of the equilibrium twist and rotation of the structure, e.g. jet or tornado, together with the density contrast of its internal and external media is studied to shed light on the nature of torsional waves. Methods: We consider a rotating magnetic cylinder embedded in a plasma with a straight magnetic field. This resembles a solar tornado. In order to express the dispersion relations and phase speeds of the axisymmetric magnetohydrodynamic waves, the second-order thin flux tube approximation is implemented for the internal medium and the ideal MHD equations are implemented for the external medium. Results: The explicit expressions for the phase speed of the torsional wave show the modification of the torsional wave speed due to the equilibrium twist, rotation, and density contrast of the tornado. The speeds could be either sub-Alfvénic or ultra-Alfvénic depending on whether the equilibrium twist or rotation is dominant. The equilibrium twist increases the phase speed while the equilibrium rotation decreases it. The good agreement between the explicit versions for the phase speed and that obtained numerically proves adequate for the robustness of the model and method. The density ratio of the internal and external media also play a significant role in the speed and dispersion. Conclusions: The dispersion of the torsional wave is an indication of the compressibility of the oscillations. When the cylinder is rotating or twisted, in contrast to when it only possesses a straight magnetic field, the torsional wave is a collective mode. In this case its phase speed is determined by the Alfvén waves inside and outside the tornado.

  12. Truncation and Accumulated Errors in Wave Propagation

    NASA Astrophysics Data System (ADS)

    Chiang, Yi-Ling F.

    1988-12-01

    The approximation of the truncation and accumulated errors in the numerical solution of a linear initial-valued partial differential equation problem can be established by using a semidiscretized scheme. This error approximation is observed as a lower bound to the errors of a finite difference scheme. By introducing a modified von Neumann solution, this error approximation is applicable to problems with variable coefficients. To seek an in-depth understanding of this newly established error approximation, numerical experiments were performed to solve the hyperbolic equation {∂U}/{∂t} = -C 1(x)C 2(t) {∂U}/{∂x}, with both continuous and discontinuous initial conditions. We studied three cases: (1) C1( x)= C0 and C2( t)=1; (2) C1( x)= C0 and C2( t= t; and (3) C 1(x)=1+( {solx}/{a}) 2 and C2( t)= C0. Our results show that the errors are problem dependent and are functions of the propagating wave speed. This suggests a need to derive problem-oriented schemes rather than the equation-oriented schemes as is commonly done. Furthermore, in a wave-propagation problem, measurement of the error by the maximum norm is not particularly informative when the wave speed is incorrect.

  13. Sound wave propagation through glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Stepaniuk, Vadim P.

    This work investigates the use of glow discharge plasma for acoustic wave manipulation. The broader goal is the suppression of aerodynamic noise using atmospheric glow discharge plasma as a sound barrier. Part of the effort was devoted to the development of a system for the generation of a large volume stable DC glow discharge in air both at atmospheric and at reduced pressures. The single tone sound wave propagation through the plasma was systematically studied. Attenuation of the acoustic wave passing through the glow discharge was measured for a range of experimental conditions including different discharge currents, electrode configurations, air pressures and sound frequencies including audible sound and ultrasound. Sound attenuation by glow discharge plasma as high as -28 dB was recorded in the experiments. Two types of possible mechanisms were considered that can potentially cause the observed sound attenuation. One is a global mechanism and the other is a local mechanism. The global mechanism considered is based on the reflection and refraction of acoustic wave due to the gas temperature gradients that form around the plasma. The local mechanism, on the other hand, is essentially the interaction of the acoustic wave with the plasma as it propagates inside the discharge and it can be viewed as a feedback system. Detailed temperature measurements, using laser-induced Rayleigh scattering technique, were carried out in the glow discharge plasma in order to evaluate the role of global mechanism in the observed attenuation. These measurements were made for a range of conditions in the atmospheric glow discharge. Theoretical analysis of the sound attenuation was carried out to identify the physical mechanism for the observed sound attenuation by plasma. It was demonstrated that the global mechanism is the dominant mechanism of sound attenuation. As a result of this study, the potentials and limitations of the plasma noise suppression technology were determined and

  14. Lightning location with variable radio wave propagation velocity

    NASA Astrophysics Data System (ADS)

    Liu, Zhongjian; Koh, Kuang Liang; Mezentsev, Andrew; Sugier, Jacqueline; Fullekrug, Martin

    2016-04-01

    Lightning discharges can be located by triangulation of their broadband electromagnetic pulses in long-baseline (~500 km) radio receiver networks. Here we apply the time of arrival difference (TOA) method to electric field recordings with a low frequency radio receiver array consisting of four stations in western Europe. The electromagnetic wave propagation velocity at low radio frequencies is an important input parameter for the TOA calculation and it is normally assumed to be equal to the speed of light. However, the radio wave propagation depends for example on the frequency, ground conductivity and the ionospheric height and small variations can cause location differences from hundreds to thousands of meters, as demonstrated in this study. The radio wave propagation from two VLF transmissions at 20.9 kHz and 23.4 kHz are compared. The results show that the apparent phase velocities are 0.6% slower and 0.5% faster than the speed of light respectively. As a result, a variable velocity is implemented in the TOA method using continuously recorded data on the 8th August 2014, when a mesoscale convective system developed over central France. The lightning locations inferred with a variable wave propagation velocity are more clustered than those using a fixed velocity. The distribution of the lightning velocities in a given geographic area fits a normal distribution that is not centred at the speed of light. As a result, representative velocities can be calculated for smaller regions to generate a velocity map over a larger area of enhanced lightning activity. These results suggest a connection with the ground elevation and/or surface conductivity that might have an impact on the observed wave propagation velocities.

  15. Propagation of longitudinal thermoplastic waves in layered structures

    NASA Astrophysics Data System (ADS)

    Li, Chen; Cetinkaya, Cetin

    2000-05-01

    The recent advances in photonics and laser instrumentation have been creating a favorable environment for thermal-based elastic wave generation techniques and their applications in various fields, such as nondestructive testing and smart structures. The main advantages of laser-based NDE include noncontact evaluation, freedom for complex surface geometry, high spatial and temporal resolution, easy access to cavities, and fast scanning. Two disadvantages are that the laser-based method requires a good physical understanding of thermoelastic wave propagation in solids, which is considerably more complicated than elastic wave propagation, and more complicated instrumentation needed for data collection. In an idealized solid, thermal energy is transported by two different mechanisms: by quantized electronic excitations, which are called free electrons, and the quanta of lattice vibrations, which are called phonons. These quanta undergo collisions of a dissipative nature, giving rise to thermal resistance in the medium. A relaxation time is associated with the average communication time between these collisions for the commencement of resistive flow. There are a number of optical methods available for elastic wave generation and detection. The most commonly utilized techniques include interferometric and noninterferometric techniques, optical heterodyning, differential interferometry, and time-delay interferometry. In the current work, a transfer matrix formulation including the second sound effect is developed for a thermoelastic layer. The second sound effect is included to eliminate the thermal wave travelling with infinite velocity as predicted by the diffusion heat transfer model, and, consequently, the immediate arrival of waves. Utilizing this formulation and the periodic systems framework, the attenuation and propagation properties of one-dimensional thermoelastic wave in both continuum and layered structures are studied. A perturbation analysis is carried out

  16. Elastic Wave Propagation and Generation in Seismology

    NASA Astrophysics Data System (ADS)

    Lees, Jonathan M.

    The majority of mature seismologists of my generation were introduced to theoretical seismology via classic textbooks written in the early 1980s. Since this generation has matured and taken the mantle of teaching seismology to a new generation, several new books have been put forward as replacements, or alternatives, to the original classical texts. The target readers of the new texts range from beginner through intermediate to more advanced, although all have been attempts to improve upon what is now considered standard convention in quantitative seismology. To this plethora of choices we now have a new addition by Jose Pujol, titledElastic Wave Propagation and Generation in Seismology.

  17. Elastic Wave Propagation Mechanisms in Underwater Acoustic Environments

    DTIC Science & Technology

    2015-09-30

    Elastic wave propagation mechanisms in underwater acoustic environments Scott D. Frank Marist College Department of Mathematics Poughkeepsie...conversion from elastic propagation to acoustic propagation, and intense interface waves on underwater acoustic environments with elastic bottoms... acoustic energy in the water column. Elastic material parameters will be varied for analysis of the dissipation of water column acoustic energy

  18. Wave propagation in polymers. Part II

    NASA Astrophysics Data System (ADS)

    Newlander, C. D.; Cherest, J. A.; Lilly, M. C.; Eisler, R. D.

    2000-04-01

    Wave profile measurements made in Polycarbonate at around 2.2 kbars were previously reported showing dispersion and amplitude attenuation that were neither expected nor predicted from available models. This data is being re-visited here and analyzed using a modified material model and the PUFF74 computer code. The new computation shows remarkable agreement with the experiments. The modeling treated the material as a visco-elastic/plastic medium using the method developed by Bade. This work is expected to further our understanding of wave propagation in highly compressible and visco-elastic/plastic media. It is also expected to provide insights on the role of strain rate effects on material properties such as elastic moduli, strengths and loading behaviors.

  19. On the generation of internal wave modes by surface waves

    NASA Astrophysics Data System (ADS)

    Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian

    2016-04-01

    Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.

  20. Propagation of gravity waves across the tropopause

    NASA Astrophysics Data System (ADS)

    Bense, Vera; Spichtinger, Peter

    2015-04-01

    The tropopause region is characterised by strong gradients in various atmospheric quantities that exhibit different properties in the troposphere compared to the stratosphere. The temperature lapse rate typically changes from negative to near-zero values resulting in a strong increase in stability. Accordingly, the buoyancy frequency often undergoes a jump at the tropopause. Analysis of radiosounding data also shows the existence of a strong inversion layer (tropopause inversion layer, TIL) characterised by a strong maximum in buoyancy frequency just above the tropopause, see e.g. Birner et al. (2002). Additionally, the magnitude of the vertical wind shear of the horizontal wind maximizes at the tropopause and the region also exhibits characteristical gradients of trace gases. Vertically propagating gravity waves can be excited in the troposphere by several mechanisms, e.g. by flow over topography (e.g. Durran, 1990), by jets and fronts (for a recent review: Plougonven and Zhang, 1990) or by convection (e.g. Clark et al., 1986). When these waves enter the tropopause region, their properties can be changed drastically by the changing stratification and strong wind shear. Within this work, the EULAG (Eulerian/semi-Lagrangian fluid solver, see e.g. Smolarkiewicz and Margolin, 1997) model is used to investigate the impact of the tropopause on vertically propagating gravity waves excited by flows over topography. The choice of topography (sine-shaped mountains, bell-shaped mountain) along with horizontal wind speed and tropospheric value of buoyancy frequency determine the spectrum of waves (horizontal and vertical wavelengths) that is excited in the tropsphere. In order to analyse how these spectra change for several topographies when a tropopause is present, we investigate different idealized cases in a two-dimensional domain. By varying the vertical profiles of buoyancy frequency (step-wise vs. continuos change, including TIL) and wind shear, the tropopause

  1. Lamb waves propagation in layered piezoelectric/piezomagnetic plates.

    PubMed

    Ezzin, Hamdi; Ben Amor, Morched; Ben Ghozlen, Mohamed Hédi

    2017-04-01

    A dynamic solution is presented for the propagation of harmonic waves in magneto-electro-elastic plates composed of piezoelectric BaTiO3(B) and magnetostrictive CoFe2O4(F) material. The state-vector approach is employed to derive the propagator matrix which connects the field variables at the upper interface to those at the lower interface of each layer. The ordinary differential approach is employed to determine the wave propagating characteristics in the plate by imposing the traction-free boundary condition on the top and bottom surfaces of the layered plate. The dispersion curves of the piezoelectric-piezomagnetic plate are shown for different thickness ratios. The numerical results show clearly the influence of different stacking sequences as well as thickness ratio on dispersion curves and on magneto-electromechanical coupling factor. These findings could be relevant to the analysis and design of high-performance surface acoustic wave (SAW) devices constructed from piezoelectric and piezomagnetic materials.

  2. WAVE: Interactive Wave-based Sound Propagation for Virtual Environments.

    PubMed

    Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh

    2015-04-01

    We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments.

  3. Circular polarization of obliquely propagating whistler wave magnetic field

    SciTech Connect

    Bellan, P. M.

    2013-08-15

    The circular polarization of the magnetic field of obliquely propagating whistler waves is derived using a basis set associated with the wave partial differential equation. The wave energy is mainly magnetic and the wave propagation consists of this magnetic energy sloshing back and forth between two orthogonal components of magnetic field in quadrature. The wave electric field energy is small compared to the magnetic field energy.

  4. Propagation of waves of acoustic frequencies in curved ducts

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1973-01-01

    The propagation of waves of acoustic frequencies in curved ducts is studied for the first four modes. The analysis makes use of Bessel functions to construct curves of wave number in the duct versus imposed wave number. The results apply to ducts of arbitrary width and arbitrary radii of curvature. The characteristics of motion in a bend are compared with propagation of waves in a straight duct, and important differences in the behavior of waves are noted.

  5. Three-dimensional modeling of propagating precipitation waves.

    PubMed

    Tinsley, Mark R; Collison, Darrell; Showalter, Kenneth

    2015-06-01

    A general three-dimensional model for propagating precipitation waves is presented. Structural features identified in experimental studies of propagating waves in the AlCl3/NaOH and NaAl(OH)4/HCl systems are described by the 3D model. Two forms of precipitate with different physical properties play key mechanistic roles in the wave propagation. Experimentally observed circular and spiral waves are simulated by the 3D model, as well as wave annihilation on the collision of two waves.

  6. Some Numerical Experiments on Detonation Wave Propagation

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    In this paper we present the results of a series of numerical experiments done on the propagation and initiation of a detonation wave. The calculations are performed in one-dimension, with considerable grid resolution. Of particular interest are the following questions: (1) the nature of periodic and chaotic instabilities generated by the wave; (2) the influence of the grid resolution on these instabilities; (3) the influence of the 'quality' of the numerical scheme; and (4) the influence of 'noise'. In the calculations, we use a second-order Total Variation Diminishing (TVD) scheme as the basic numerical method, with grid spacings as low as a fraction of a micron. Detonations waves are generated at the closed end of a tube, and allowed to propagate for approximately 20 cm. The required energy for successful initiation of the detonation will be measured for different cases of grid resolution and numerical schemes. A modified version of the TVD scheme has also been devised, which allows for much lower numerical diffusion of the radical species in the exponentially growing region behind the shock. The effect of this modification will be demonstrated. Oscillations in peak pressure and induction length are seen to develop in some cases: the oscillations can go through a sequence of modes, from a regular, high frequency mode to a low frequency mode with period doubling. A chaotic regime can also be obtained. General conclusions on the quality of algorithms will be presented. We will also discuss the performance of a version of the code developed on the IBM SP2 parallel computer.

  7. Wave propagation in predator-prey systems

    NASA Astrophysics Data System (ADS)

    Fu, Sheng-Chen; Tsai, Je-Chiang

    2015-12-01

    In this paper, we study a class of predator-prey systems of reaction-diffusion type. Specifically, we are interested in the dynamical behaviour for the solution with the initial distribution where the prey species is at the level of the carrying capacity, and the density of the predator species has compact support, or exponentially small tails near x=+/- ∞ . Numerical evidence suggests that this will lead to the formation of a pair of diverging waves propagating outwards from the initial zone. Motivated by this phenomenon, we establish the existence of a family of travelling waves with the minimum speed. Unlike the previous studies, we do not use the shooting argument to show this. Instead, we apply an iteration process based on Berestycki et al 2005 (Math Comput. Modelling 50 1385-93) to construct a set of super/sub-solutions. Since the underlying system does not enjoy the comparison principle, such a set of super/sub-solutions is not based on travelling waves, and in fact the super/sub-solutions depend on each other. With the aid of the set of super/sub-solutions, we can construct the solution of the truncated problem on the finite interval, which, via the limiting argument, can in turn generate the wave solution. There are several advantages to this approach. First, it can remove the technical assumptions on the diffusivities of the species in the existing literature. Second, this approach is of PDE type, and hence it can shed some light on the spreading phenomenon indicated by numerical simulation. In fact, we can compute the spreading speed of the predator species for a class of biologically acceptable initial distributions. Third, this approach might be applied to the study of waves in non-cooperative systems (i.e. a system without a comparison principle).

  8. Solitary surface waves

    NASA Astrophysics Data System (ADS)

    Gradov, O. M.; Stenflo, L.

    1982-06-01

    Surface solitons excited at the edge of a plasma sheet can propagate across the sheet along its surface and, depending on the parameters chosen, collide with surface solitons at the edge. The strong electric field created in such a collision may produce a spot of light. Attention is given to surface solitons on a semi-infinite plasma, using cold electron plasma equations. Because all characteristic times of the processes in question are much smaller than the inverse ion plasma frequency, the ions may be regarded as immobile. This situation is relevant to a plasma bounded by a dielectric which prevents distortion of the surface.

  9. Conformal surface plasmons propagating on ultrathin and flexible films.

    PubMed

    Shen, Xiaopeng; Cui, Tie Jun; Martin-Cano, Diego; Garcia-Vidal, Francisco J

    2013-01-02

    Surface plasmon polaritons (SPPs) are localized surface electromagnetic waves that propagate along the interface between a metal and a dielectric. Owing to their inherent subwavelength confinement, SPPs have a strong potential to become building blocks of a type of photonic circuitry built up on 2D metal surfaces; however, SPPs are difficult to control on curved surfaces conformably and flexibly to produce advanced functional devices. Here we propose the concept of conformal surface plasmons (CSPs), surface plasmon waves that can propagate on ultrathin and flexible films to long distances in a wide broadband range from microwave to mid-infrared frequencies. We present the experimental realization of these CSPs in the microwave regime on paper-like dielectric films with a thickness 600-fold smaller than the operating wavelength. The flexible paper-like films can be bent, folded, and even twisted to mold the flow of CSPs.

  10. Wave propagation in a random medium

    NASA Technical Reports Server (NTRS)

    Lee, R. W.; Harp, J. C.

    1969-01-01

    A simple technique is used to derive statistical characterizations of the perturbations imposed upon a wave (plane, spherical or beamed) propagating through a random medium. The method is essentially physical rather than mathematical, and is probably equivalent to the Rytov method. The limitations of the method are discussed in some detail; in general they are restrictive only for optical paths longer than a few hundred meters, and for paths at the lower microwave frequencies. Situations treated include arbitrary path geometries, finite transmitting and receiving apertures, and anisotropic media. Results include, in addition to the usual statistical quantities, time-lagged functions, mixed functions involving amplitude and phase fluctuations, angle-of-arrival covariances, frequency covariances, and other higher-order quantities.

  11. Simulation of the interaction of electromagnetic waves with dispersed particles in the propagation of breather in the surface layer of a liquid medium

    SciTech Connect

    Zabolotin, V.V.; Uvarova, L.A.

    2015-03-10

    A numerical simulation of the interaction of laser radiation with dispersed particles in the course of propagation of breather in the surface layer of the liquid breather was performed. The shape and amplitude of the acoustic signal formed in this interaction were obtained. Two acoustic signals, before and after the impact of a breather on the process of optical sound generation, were compared. Results of the comparison showed that the breather spreading over the surface of the liquid medium affecst the acoustic signal and its effect must be considered in the measurements.

  12. Nonlinear Propagation of Planet-Generated Tidal Waves

    NASA Technical Reports Server (NTRS)

    Rafikov, R. R.

    2002-01-01

    The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to shock formation and wake dissipation, is followed in the weakly nonlinear regime. The 2001 local approach of Goodman and Rafikov is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process spanning a significant fraction of the disk. Torques induced by the planet could be significant drivers of disk evolution on timescales of approx. 10(exp 6)-10(exp 7) yr, even in the absence of strong background viscosity. A global prescription for angular momentum deposition is developed that could be incorporated into the study of gap formation in a gaseous disk around the planet.

  13. Propagation of nonlinearly generated harmonic spin waves in microscopic stripes

    SciTech Connect

    Rousseau, O.; Yamada, M.; Miura, K.; Ogawa, S.; Otani, Y.

    2014-02-07

    We report on the experimental study of the propagation of nonlinearly generated harmonic spin waves in microscopic CoFeB stripes. Using an all electrical technique with coplanar waveguides, we find that two kinds of spin waves can be generated by nonlinear frequency multiplication. One has a non-uniform spatial geometry and thus requires appropriate detector geometry to be identified. The other corresponds to the resonant fundamental propagative spin waves and can be efficiently excited by double- or triple-frequency harmonics with any geometry. Nonlinear excited spin waves are particularly efficient in providing an electrical signal arising from spin wave propagation.

  14. Wave propagation in sandwich panels with a poroelastic core.

    PubMed

    Liu, Hao; Finnveden, Svante; Barbagallo, Mathias; Arteaga, Ines Lopez

    2014-05-01

    Wave propagation in sandwich panels with a poroelastic core, which is modeled by Biot's theory, is investigated using the waveguide finite element method. A waveguide poroelastic element is developed based on a displacement-pressure weak form. The dispersion curves of the sandwich panel are first identified as propagating or evanescent waves by varying the damping in the panel, and wave characteristics are analyzed by examining their motions. The energy distributions are calculated to identify the dominant motions. Simplified analytical models are also devised to show the main physics of the corresponding waves. This wave propagation analysis provides insight into the vibro-acoustic behavior of sandwich panels lined with elastic porous materials.

  15. Acoustoelastic lamb wave propagation in a homogeneous, isotropic aluminum plate

    SciTech Connect

    Gandhi, Navneet; Michaels, Jennifer E.; Lee, Sang Jun

    2011-06-23

    The effect of stress on Lamb wave propagation is relevant to both nondestructive evaluation and structural health monitoring because of changes in received signals due to both the associated strain and the acoustoelastic effect. A homogeneous plate that is initially isotropic becomes anisotropic under uniaxial stress, and dispersion of propagating waves becomes directionally dependent. The problem is similar to Lamb wave propagation in an anisotropic plate, except the fourth order tensor in the resulting wave equation does not have the same symmetry as that for the unstressed anisotropic plate, and the constitutive equation relating incremental stress to incremental strain is more complicated. Here we consider the theory of acoustoelastic Lamb wave propagation and show how dispersion curves shift anisotropically for an aluminum plate under uniaxial tension. Theoretical predictions of changes in phase velocity as a function of propagation direction are compared to experimental results for a single wave mode.

  16. Oscillations above sunspots: Evidence for propagating waves?

    NASA Astrophysics Data System (ADS)

    O'Shea, E.; Muglach, K.; Fleck, B.

    2002-05-01

    We present results of an analysis of time series data observed in sunspot umbral regions. The data were obtained in the context of the SOHO Joint Observing Program (JOP) 97 in September 2000. This JOP included the Coronal Diagnostic Spectrometer (CDS) and the Michelson Doppler Imaging (MDI) instrument, both part of SOHO, the TRACE satellite and various ground based observatories. The data was analysed by using both Fourier and wavelet time series analysis techniques. We find that oscillations are present in the umbra at all temperatures investigated, from the temperature minimum as measured by TRACE 1700 Å up to the upper corona as measured by CDS Fe Xvi 335 Å (log T=6.4 K). Oscillations are found to be present with frequencies in the range of 5.4 mHz (185 s) to 8.9 mHz (112 s). Using the techniques of cross-spectral analysis time delays were found between low and high temperature emission suggesting the possibility of both upward and downward wave propagation. It is found that there is typically a good correlation between the oscillations measured at the different emission temperatures, once the time delays are taken into account. We find umbral oscillations both inside and outside of sunspot plume locations which indicates that umbral oscillations can be present irrespective of the presence of these sunspot plumes. We find that a number of oscillation frequencies can exist co-spatially and simultaneously i.e. for one pixel location three different frequencies at 5.40, 7.65 and 8.85 mHz were measured. We investigate the variation of the relative amplitudes of oscillation with temperature and find that there is a tendency for the amplitudes to reach a maximum at the temperature of O Iii (and less typically O V and Mg Ix) and then to decrease to reach a minimum at the temperature of Mg X (log T=6.0 K), before increasing again at the temperature of Fe Xvi. We discuss a number of possible theoretical scenarios that might explain these results. From a measurement of

  17. Numerical Simulations of Upstream Propagating Solitary Waves and Wave Breaking In A Stratified Fjord

    NASA Astrophysics Data System (ADS)

    Stastna, M.; Peltier, W. R.

    In this talk we will discuss ongoing numerical modeling of the flow of a stratified fluid over large scale topography motivated by observations in Knight Inlet, a fjord in British Columbia, Canada. After briefly surveying the work done on the topic in the past we will discuss our latest set of simulations in which we have observed the gener- ation and breaking of three different types of nonlinear internal waves in the lee of the sill topography. The first type of wave observed is a large lee wave in the weakly strat- ified main portion of the water column, The second is an upward propagating internal wave forced by topography that breaks in the strong, near-surface pycnocline. The third is a train of upstream propagating solitary waves that, in certain circumstances, form as breaking waves consisting of a nearly solitary wave envelope and a highly unsteady core near the surface. Time premitting, we will comment on the implications of these results for our long term goal of quantifying tidally driven mixing in Knight Inlet.

  18. Pressure wave propagation studies for oscillating cascades

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    1992-01-01

    The unsteady flowfield around an oscillating cascade of flat plates is studied using a time marching Euler code. Exact solutions based on linear theory serve as model problems to study pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step is demonstrated. Results show that an approximate non-reflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer than cases using reflective boundary conditions. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates does a better job of capturing the unsteady flowfield than cases using uniform grids as long as the CFL number is less than one for a sufficient portion of the grid. Results for various stagger angles and oscillation frequencies show good agreement with linear theory as long as the grid is properly resolved.

  19. Pressure wave propagation studies for oscillating cascades

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    1992-01-01

    The unsteady flow field around an oscillating cascade of flat plates is studied using a time marching Euler code. Exact solutions based on linear theory serve as model problems to study pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step is demonstrated. Results show that an approximate non-reflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer than cases using reflective boundary conditions. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates does a better job of capturing the unsteady flow field than cases using uniform grids as long as the CFL number is less than one for a sufficient portion of the grid. Results for various stagger angles and oscillation frequencies show good agreement with linear theory as long as the grid is properly resolved.

  20. Effect of Resolution on Propagating Detonation Wave

    SciTech Connect

    Menikoff, Ralph

    2014-07-10

    Simulations of the cylinder test are used to illustrate the effect of mesh resolution on a propagating detonation wave. For this study we use the xRage code with the SURF burn model for PBX 9501. The adaptive mesh capability of xRage is used to vary the resolution of the reaction zone. We focus on two key properties: the detonation speed and the cylinder wall velocity. The latter is related to the release isentrope behind the detonation wave. As the reaction zone is refined (2 to 15 cells for cell size of 62 to 8μm), both the detonation speed and final wall velocity change by a small amount; less than 1 per cent. The detonation speed decreases with coarser resolution. Even when the reaction zone is grossly under-resolved (cell size twice the reaction-zone width of the burn model) the wall velocity is within a per cent and the detonation speed is low by only 2 per cent.

  1. Understanding and Prediction of Nonlinear Effects in Wave Propagation

    DTIC Science & Technology

    2013-02-20

    by a JONSWAP wave spectrum with a significant wave height of Hs = 4m, a peak period of Tp =8s and an enhancement parameter =3.0. The time...for public release; distribution is unlimited In ocean wave-field evolution, nonlinear effects affect the propagation velocity of each wave component...exceeding wave height and/or wave crest height probability functions for wide ranges of nonlinear spectrum parameters, which will enable the

  2. Wave propagation, scattering and emission in complex media

    NASA Astrophysics Data System (ADS)

    Jin, Ya-Qiu

    I. Polarimetric scattering and SAR imagery. EM wave propagation and scattering in polarimetric SAR interferometry / S. R. Cloude. Terrain topographic inversion from single-pass polarimetric SAR image data by using polarimetric stokes parameters and morphological algorithm / Y. Q. Jin, L. Luo. Road detection in forested area using polarimetric SAR / G. W. Dong ... [et al.]. Research on some problems about SAR radiometric resolution / G. Dong ... [et al.]. A fast image matching algorithm for remote sensing applications / Z. Q. Hou ... [et al.]. A new algorithm of noised remote sensing image fusion based on steerable filters / X. Kang ... [et al.]. Adaptive noise reduction of InSAR data based on anisotropic diffusion models and their applications to phase unwrapping / C. Wang, X. Gao, H. Zhang -- II. Scattering from randomly rough surfaces. Modeling tools for backscattering from rough surfaces / A. K. Fung, K. S. Chen. Pseudo-nondiffracting beams from rough surface scattering / E. R. Méndez, T. A. Leskova, A. A. Maradudin. Surface roughness clutter effects in GPR modeling and detection / C. Rappaport. Scattering from rough surfaces with small slopes / M. Saillard, G. Soriano. Polarization and spectral characteristics of radar signals reflected by sea-surface / V. A. Butko, V. A. Khlusov, L. I. Sharygina. Simulation of microwave scattering from wind-driven ocean surfaces / M. Y. Xia ... [et al.]. HF surface wave radar tests at the Eastern China Sea / X. B. Wu ... [et al.] -- III. Electromagnetics of complex materials. Wave propagation in plane-parallel metamaterial and constitutive relations / A. Ishimaru ... [et al.]. Two dimensional periodic approach for the study of left-handed metamaterials / T. M. Grzegorczyk ... [et al.]. Numerical analysis of the effective constitutive parameters of a random medium containing small chiral spheres / Y. Nanbu, T. Matsuoka, M. Tateiba. Wave propagation in inhomogeneous media: from the Helmholtz to the Ginzburg -Landau equation / M

  3. Generation, propagation, and breaking of internal solitary waves.

    PubMed

    Grue, John

    2005-09-01

    Tidal, two-layer flow over topography generates a kink of the interface separating an upstream interfacial elevation from a depression above the topography. Upstream undular bores and solitary waves of large amplitude are generated from the interfacial kink. The waves propagate upstream when the tide turns. Interfacial simulations of this kind of generation process fit with the observations at Knight Inlet in British Columbia, in the Sulu Sea experiment, and undular bores generated by internal tides in the Strait of Gibraltar. Fully nonlinear interfacial computations compare successfully with experimental observations of solitary waves in the laboratory and in the field for wave amplitudes ranging from small to maximal values. The waves exhibit only minor sensitivity to a finite thickness of the pycnocline. Analytical solitary waves are recaptured in the small amplitude limit. Shear-induced breaking appears first in the top part of the pycnocline and is expressed in terms of the Richardson number. Convective breaking in the top part of the water column occurs beyond a threshold amplitude when a pronounced stratification continues all the way to the ocean surface.

  4. Earthquake ground motion amplification for surface waves

    NASA Astrophysics Data System (ADS)

    Bowden, Daniel C.; Tsai, Victor C.

    2017-01-01

    Surface waves from earthquakes are known to cause strong damage, especially for larger structures such as skyscrapers and bridges. However, common practice in characterizing seismic hazard at a specific site considers the effect of near-surface geology on only vertically propagating body waves. Here we show that surface waves have a unique and different frequency-dependent response to known geologic structure and that this amplification can be analytically calculated in a manner similar to current hazard practices. Applying this framework to amplification in the Los Angeles Basin, we find that peak ground accelerations for certain large regional earthquakes are underpredicted if surface waves are not properly accounted for and that the frequency of strongest ground motion amplification can be significantly different. Including surface-wave amplification in hazards calculations is therefore essential for accurate predictions of strong ground motion for future San Andreas Fault ruptures.

  5. Wave-propagation formulation of seismic response of multistory buildings

    USGS Publications Warehouse

    Safak, E.

    1999-01-01

    This paper presents a discrete-time wave-propagation method to calculate the seismic response of multistory buildings, founded on layered soil media and subjected to vertically propagating shear waves. Buildings are modeled as an extension of the layered soil media by considering each story as another layer in the wave-propagation path. The seismic response is expressed in terms of wave travel times between the layers and wave reflection and transmission coefficients at layer interfaces. The method accounts for the filtering effects of the concentrated foundation and floor masses. Compared with commonly used vibration formulation, the wave-propagation formulation provides several advantages, including simplicity, improved accuracy, better representation of damping, the ability to incorporate the soil layers under the foundation, and providing better tools for identification and damage detection from seismic records. Examples are presented to show the versatility and the superiority of the method.

  6. Propagation of Long-Wavelength Nonlinear Slow Sausage Waves in Stratified Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    Barbulescu, M.; Erdélyi, R.

    2016-05-01

    The propagation of nonlinear, long-wavelength, slow sausage waves in an expanding magnetic flux tube, embedded in a non-magnetic stratified environment, is discussed. The governing equation for surface waves, which is akin to the Leibovich-Roberts equation, is derived using the method of multiple scales. The solitary wave solution of the equation is obtained numerically. The results obtained are illustrative of a solitary wave whose properties are highly dependent on the degree of stratification.

  7. Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering

    SciTech Connect

    Kondorskiy, Alexey D.; Nanbu, Shinkoh

    2015-09-21

    We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporate the effect of nonadiabatic coupling into the wave packet dynamics. This provides an interface between a general adiabatic frozen Gaussian wave packet propagation method and the trajectory surface hopping technique. The basic idea suggested in [A. D. Kondorskiy and H. Nakamura, J. Chem. Phys. 120, 8937 (2004)] is revisited and complemented in the present work by the elaboration of efficient numerical algorithms. We combine our approach with the adiabatic Herman-Kluk frozen Gaussian approximation. The efficiency and accuracy of the resulting method is demonstrated by applying it to popular benchmark model systems including three Tully’s models and 24D model of pyrazine. It is shown that photoabsorption spectrum is successfully reproduced by using a few hundreds of trajectories. We employ the compact finite difference Hessian update scheme to consider feasibility of the ab initio “on-the-fly” simulations. It is found that this technique allows us to obtain the reliable final results using several Hessian matrix calculations per trajectory.

  8. Stratospheric constituent response to vertically propagating equatorial waves

    NASA Astrophysics Data System (ADS)

    Salby, Murry L.

    1988-02-01

    Planetary-scale equatorial waves play an important role in the dynamics of the tropical atmosphere. They are believed to be excited in unsteady convective heating in the tropical troposphere. From convective centers in the intertropical convergence zone (ITCZ), equatorial waves propagate vertically into the upper atmosphere where they are eventually absorbed, e.g., through radiative dissipation. A spectrum of vertically propagating Kelvin waves was revealed to be trapped about the equator, radiating vertically out of the tropical troposphere. Two other Kelvin waves were found with phase velocities 2 and 4 times as fast. The ultrafast Kelvin waves move at nearly 120 m/s and are seen to propagate to the highest altitude observed by Nimbus-7 LIMS. Each class has the form of a Kelvin wave, a Gaussian centered on the equator and propagating vertically, and all satisfy the dispersion relationship for equatorial Kelvin waves. These vertically propagating Kelvin waves account for a substantial fraction of the temperature variability in the tropical stratosphere. In combination, they lead to temperature fluctuations in excess of 5K in the upper stratosphere and mesosphere. Because several chemical constituents are photochemically controlled in this region, vertically propagating Kelvin waves are expected to lead to variations in the abundances of such species.

  9. Peculiarities of the Propagation of Supersonic Seismic Waves to the Upper Atmosphere.

    NASA Astrophysics Data System (ADS)

    Gavrilov, Nikolai M.; Kshevetskii, Sergey P.

    2016-04-01

    Seismic waves generated before and after earthquakes produce vertical and horizontal motion of the Earth's surface. The perturbations can propagate upwards and produce variations and oscillations of atmospheric characteristics at different altitudes. One of the mechanisms of such ionospheric perturbations is propagation of acoustic-gravity waves (AGWs) in the atmosphere caused by seismic excitations at the ground surface. The main difficulties in such explanation are high phase speeds of surface seismic waves, much exceeding the sound speed in the atmosphere near the ground. The strongest ground seismic waves are the surface Rayleigh waves, having phase speeds 3 - 4 km/s (sometimes up to 10 km/s). Traditional theory of atmospheric AGWs predicts that such supersonic excitation should produce not propagating, but trapped (or evanescent) gravity wave modes with amplitudes exponentially decaying with altitude. This can raise questions about the importance of seismic-excited supersonic waves in the formation of ionospheric disturbances. In the present study, we use the recently developed nonlinear numerical Whole-altitude Acoustic-Gravity Wave Model (WAGWM) to simulate propagation of supersonic wave modes from the ground to the upper atmosphere. The WAGWM is a three-dimensional model and uses the plain geometry. It calculates atmospheric velocity components and deviations of temperature, pressure, and density from their background values. Gavrilov and Kshevetskii (2014) described the set of used nonlinear three-dimensional equations of continuity, motion and heat balance. At the upper boundary z = 500 km we assume zero vertical velocity and zero vertical gradients of the other wave parameters. In the present research, we made calculations in rectangle region of the atmosphere and assume horizontal periodicity of wave solutions. Variations of vertical velocity produced by propagating seismic waves at the Earth's surface serve to force the waves in the model. Calculations

  10. Seismic wave propagation effects in the upper volcanic edifice

    NASA Astrophysics Data System (ADS)

    Martínez Montesinos, Beatriz; Bean, Chris; Lokmer, Ivan

    2015-04-01

    A seismogram contains information about the seismic source and the wave path. Understanding the path effect is important for both source inversions and geophysical imagery. In the case of volcanoes, the correct interpretation of the signals helps us to determine their internal state. For instance, long-period events are commonly associated to magma movements in resonant conduits. We present an application of the adjoint methodology proposed in Tromp et al. [2004] to study the seismic wave propagation effects in the upper volcanic edifice. We do this by calculating sensitivity kernels, that is, investigating the sensitivity of different parts of a seismogram to different parts of the velocity model. In particular, we examine the influence of near-surface low-velocity volcanic structure to the recorded signals. We use the SPECFEM 2D software, a two-dimensional elastic wave propagation code based on the spectral-element method, to simulate examples for Mount Etna, Italy. We calculate synthetic seismograms in 2D heterogeneous models with topography, for the sources with different dominant frequency and locations. Then, we calculate the adjoint wavefield by time-reversing the calculated seismograms and "playing" them back into the medium as simultaneous seismic sources at the original receiver positions. In the last step, by combining the forward and adjoint wavefields, we calculate the traveltime sensitivity kernels of Mount Etna. In order to be able to capture a complex wave travel path, we examine the sensitivity of different parts of a seismic wavefield, that is, different time-window on a seimogram to different parts of the structural models. Preliminary results show the importance of the velocity structure at the near surface on the recorded traces. This means that we cannot ignore the heterogeneity of the upper volcanic edifice at the time of the interpretation of the recorded signals.

  11. Wave propagation in laminated orthotropic circular cylindrical shells

    NASA Technical Reports Server (NTRS)

    Srinivas, S.

    1976-01-01

    An exact three-dimensional analysis of wave propagation in laminated orthotropic circular cylindrical-shells is developed. Numerical results are presented for three-ply shells, and for various axial wave lengths, circumferential wave numbers, and thicknesses. Results from a thin shell theory and a refined approximate theory are compared with the exact results.

  12. ON THE SOURCE OF PROPAGATING SLOW MAGNETOACOUSTIC WAVES IN SUNSPOTS

    SciTech Connect

    Prasad, S. Krishna; Jess, D. B.; Khomenko, Elena

    2015-10-10

    Recent high-resolution observations of sunspot oscillations using simultaneously operated ground- and space-based telescopes reveal the intrinsic connection between different layers of the solar atmosphere. However, it is not clear whether these oscillations are externally driven or generated in situ. We address this question by using observations of propagating slow magnetoacoustic waves along a coronal fan loop system. In addition to the generally observed decreases in oscillation amplitudes with distance, the observed wave amplitudes are also found to be modulated with time, with similar variations observed throughout the propagation path of the wave train. Employing multi-wavelength and multi-instrument data, we study the amplitude variations with time as the waves propagate through different layers of the solar atmosphere. By comparing the amplitude modulation period in different layers, we find that slow magnetoacoustic waves observed in sunspots are externally driven by photospheric p-modes, which propagate upward into the corona before becoming dissipated.

  13. Studies of Gravity Wave Propagation in the Middle Atmosphere.

    DTIC Science & Technology

    2014-09-26

    34 . . . . . • * * . , . • :’ . . . , ",.,,- -. ’’’ " . ’-- o p - %"""" * " AFOSR.TR. 85-0505 physical dynamics,inc. PD-NW-85-330R L n STUDIES OF GRAVITY WAVE PROPAGATION IN...8217.. , .,- - -. ( %’. , .;: :..............,....... .-... . ~.b .. .. - ..... ,......... ..-. ....-.. PD-NW-85-330R STUDIES OF GRAVITY WAVE PROPAGATION...Include SewftY CsuiclUon STUDIES OF GRAVITY WAVE PROPAGATION IN THE MIDD E 12. PERSONAL AUTHORE) TMOPHU. r Timothy J. Dunkerton a13a. TYPE OF REPORT I3k

  14. A wave action equation for water waves propagating on vertically sheared flows

    NASA Astrophysics Data System (ADS)

    Quinn, Brenda; Toledo, Yaron; Shrira, Victor

    2015-04-01

    The coexistence of motions of different scales in oceans and other natural water basins presents a challenge for their dynamic modeling. For water waves on currents, an asymptotic procedure exploiting the separation of scales allows the modeling of two motions of a qualitatively different nature, the fast shortwaves on the surface and the dynamics of the slow, long currents. Most wave forecast models are based on the wave action equation which is a conservation equation which takes into account the propagation of the wave energy in geographic space, shoaling, refraction, diffraction and also source terms which account for generation, wave-wave interactions and dissipation of the energy. Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for this shortcoming. Combining two previous theoretical approaches [Voronovich, 1976; Skop, 1987], the developed wave action formulation greatly improves the representation of linear wave-current interaction in the case of tidal inlets

  15. Propagation of ultrasonic Love waves in nonhomogeneous elastic functionally graded materials.

    PubMed

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Wieja, K

    2016-02-01

    This paper presents a theoretical study of the propagation behavior of ultrasonic Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in the mechanics of solids. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved by using two methods: i.e., (1) Finite Difference Method, and (2) Haskell-Thompson Transfer Matrix Method. The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The effect of elastic non-homogeneities on the dispersion curves of Love waves is discussed. Two Love wave waveguide structures are analyzed: (1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and (2) a semi-infinite nonhomogeneous elastic half-space. Obtained in this work, the phase and group velocity dispersion curves of Love waves propagating in the considered nonhomogeneous elastic waveguides have not previously been reported in the scientific literature. The results of this paper may give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials, and can provide theoretical guidance for the design and optimization of Love wave based devices.

  16. Micromechanics of Seismic Wave Propagation in Granular Rocks

    NASA Astrophysics Data System (ADS)

    Nihei, Kurt Toshimi

    1992-09-01

    This thesis investigates the details of seismic wave propagation in granular rocks by examining the micromechanical processes which take place at the grain level. Grain contacts are identified as the primary sites of attenuation in dry and fluid-saturated rocks. In many sedimentary rocks such as sandstones and limestones, the process of diagenesis leaves the grains only partially cemented together. When viewed at the micron scale, grain contacts are non-welded interfaces similar in nature to large scale joints and faults. Using a lumped properties approximation, the macroscopic properties of partially cemented grain contacts are modeled using a displacement-discontinuity boundary condition. This model is used to estimate the magnitude and the frequency dependence of the grain contact scattering attenuation for an idealized grain packing geometry. Ultrasonic P- and S-wave group velocity and attenuation measurements on sintered glass beads, alundum, and Berea sandstones were performed to determine the effects of stress, frequency, and pore fluid properties in granular materials with sintered and partially sintered grain contacts. P - and S-wave attenuation displayed the same overall trends for tests with n-decane, water, silicone oil, and glycerol. The magnitudes of the attenuation coefficients were, in general, higher for S-waves. The experimental measurements reveal that viscosity-dependent attenuation dominates in material with sintered grain contacts. Viscosity-dependent attenuation is also observed in Berea sandstone but only at hydrostatic stresses in excess of 15 MPa where the grain contacts are highly stiffened. Fluid surface chemistry-related attenuation was observed in Berea sandstone loaded uniaxially. These measurements suggest that attenuation in fluid-saturated rocks with partially cemented grain contacts is dependent on both the fluid properties and the state of stress at the grain contacts. A numerical method for simulating seismic wave propagation in

  17. Analysis of guided wave propagation in a tapered composite panel

    NASA Astrophysics Data System (ADS)

    Wandowski, Tomasz; Malinowski, Pawel; Moll, Jochen; Radzienski, Maciej; Ostachowicz, Wieslaw

    2015-03-01

    Many studies have been published in recent years on Lamb wave propagation in isotropic and (multi-layered) anisotropic structures. In this paper, adiabatic wave propagation phenomenon in a tapered composite panel made out of glass fiber reinforced polymers (GFRP) will be considered. Such structural elements are often used e.g. in wind turbine blades and aerospace structures. Here, the wave velocity of each wave mode does not only change with frequency and the direction of wave propagation. It further changes locally due to the varying cross-section of the GFRP panel. Elastic waves were excited using a piezoelectric transducer. Full wave-field measurements using scanning Laser Doppler vibrometry have been performed. This approach allows the detailed analysis of elastic wave propagation in composite specimen with linearly changing thickness. It will be demonstrated here experimentally, that the wave velocity changes significantly due to the tapered geometry of the structure. Hence, this work motivates the theoretical and experimental analysis of adiabatic mode propagation for the purpose of Non-Destructive Testing and Structural Health Monitoring.

  18. APPARENT CROSS-FIELD SUPERSLOW PROPAGATION OF MAGNETOHYDRODYNAMIC WAVES IN SOLAR PLASMAS

    SciTech Connect

    Kaneko, T.; Yokoyama, T.; Goossens, M.; Doorsselaere, T. Van; Soler, R.; Terradas, J.; Wright, A. N.

    2015-10-20

    In this paper we show that the phase-mixing of continuum Alfvén waves and/or continuum slow waves in the magnetic structures of the solar atmosphere as, e.g., coronal arcades, can create the illusion of wave propagation across the magnetic field. This phenomenon could be erroneously interpreted as fast magnetosonic waves. The cross-field propagation due to the phase-mixing of continuum waves is apparent because there is no real propagation of energy across the magnetic surfaces. We investigate the continuous Alfvén and slow spectra in two-dimensional (2D) Cartesian equilibrium models with a purely poloidal magnetic field. We show that apparent superslow propagation across the magnetic surfaces in solar coronal structures is a consequence of the existence of continuum Alfvén waves and continuum slow waves that naturally live on those structures and phase-mix as time evolves. The apparent cross-field phase velocity is related to the spatial variation of the local Alfvén/slow frequency across the magnetic surfaces and is slower than the Alfvén/sound velocities for typical coronal conditions. Understanding the nature of the apparent cross-field propagation is important for the correct analysis of numerical simulations and the correct interpretation of observations.

  19. Local effects of gravity wave propagation and saturation

    NASA Technical Reports Server (NTRS)

    Fritts, D. C.

    1985-01-01

    In recent years, gravity waves were recognized to play a major role in the dynamics of the middle atmosphere. Perhaps the major effect of such motions are the reversal of the vertical shear of the mean zonal wind and the occurrence of a large turbulent diffusivity in the mesosphere due to gravity wave saturation. Yet, despite the importance of these gravity wave effects, the processes and the consequences of gravity wave propagation and saturation are only beginning to be understood in detail. The linear saturation theory predicts drag and turbulent diffusion due to saturating wave motion. This theory, however, fails to address a number of issues that are certain to be important for gravity wave propagation and saturation in the middle atmosphere. These issues, including wave transience, wave superposition, local convective adjustment, and nonlinearity, are discussed.

  20. Simulation of guided wave propagation near numerical Brillouin zones

    NASA Astrophysics Data System (ADS)

    Kijanka, Piotr; Staszewski, Wieslaw J.; Packo, Pawel

    2016-04-01

    Attractive properties of guided waves provides very unique potential for characterization of incipient damage, particularly in plate-like structures. Among other properties, guided waves can propagate over long distances and can be used to monitor hidden structural features and components. On the other hand, guided propagation brings substantial challenges for data analysis. Signal processing techniques are frequently supported by numerical simulations in order to facilitate problem solution. When employing numerical models additional sources of errors are introduced. These can play significant role for design and development of a wave-based monitoring strategy. Hence, the paper presents an investigation of numerical models for guided waves generation, propagation and sensing. Numerical dispersion analysis, for guided waves in plates, based on the LISA approach is presented and discussed in the paper. Both dispersion and modal amplitudes characteristics are analysed. It is shown that wave propagation in a numerical model resembles propagation in a periodic medium. Consequently, Lamb wave propagation close to numerical Brillouin zone is investigated and characterized.

  1. Acoustoelastic Lamb Wave Propagation in Biaxially Stressed Plates (Preprint)

    DTIC Science & Technology

    2012-03-01

    particularly as compared to most bulk wave NDE methods, Lamb wave are particularly sensitive to changes in the propagation environment, such as... Wilcox , and J. E. Michaels, “Efficient temperature compensation strategies for guided wave structural health monitoring,” Ultrasonics, 50, pp. 517...Liu, “Effects of residual stress on guided waves in layered media,” Rev. Prog. Quant. NDE , 17, D. O. Thompson and D. E. Chimenti (Eds.), Plenum Press

  2. On the Propagation and Interaction of Spherical Blast Waves

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Freeman, Robert

    2007-01-01

    The characteristics and the scaling laws of isolated spherical blast waves have been briefly reviewed. Both self-similar solutions and numerical solutions of isolated blast waves are discussed. Blast profiles in the near-field (strong shock region) and the far-field (weak shock region) are examined. Particular attention is directed at the blast overpressure and shock propagating speed. Consideration is also given to the interaction of spherical blast waves. Test data for the propagation and interaction of spherical blast waves emanating from explosives placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure.

  3. Wave Propagation in Isotropic Media with Two Orthogonal Fracture Sets

    NASA Astrophysics Data System (ADS)

    Shao, S.; Pyrak-Nolte, L. J.

    2016-10-01

    Orthogonal intersecting fracture sets form fracture networks that affect the hydraulic and mechanical integrity of a rock mass. Interpretation of elastic waves propagated through orthogonal fracture networks is complicated by guided modes that propagate along and between fractures, by multiple internal reflections, as well as by scattering from fracture intersections. The existence of some or all of these potentially overlapping modes depends on local stress fields that can preferentially close or open either one or both sets of fractures. In this study, an acoustic wave front imaging system was used to examine the effect of bi-axial loading conditions on acoustic wave propagation in isotropic media containing two orthogonal fracture sets. From the experimental data, orthogonal intersecting fracture sets support guided waves that depend on fracture spacing and fracture-specific stiffnesses. In addition, fracture intersections have stronger effects on propagating wave fronts than merely the superposition of the effects of two independent fractures because of energy partitioning among transmitted/reflected waves, scattered waves and guided modes. Interpretation of the properties of fractures or fracture sets from seismic measurements must consider non-uniform fracture stiffnesses within and among fracture sets, as well as considering the striking effects of fracture intersections on wave propagation.

  4. Regional wave propagation using the discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Wenk, S.; Pelties, C.; Igel, H.; Käser, M.

    2012-08-01

    We present an application of the discontinuous Galerkin (DG) method to regional wave propagation. The method makes use of unstructured tetrahedral meshes, combined with a time integration scheme solving the arbitrary high-order derivative (ADER) Riemann problem. The ADER-DG method is high-order accurate in space and time, beneficial for reliable simulations of high-frequency wavefields over long propagation distances. Due to the ease with which tetrahedral grids can be adapted to complex geometries, undulating topography of the Earth's surface and interior interfaces can be readily implemented in the computational domain. The ADER-DG method is benchmarked for the accurate radiation of elastic waves excited by an explosive and a shear dislocation source. We compare real data measurements with synthetics of the 2009 L'Aquila event (central Italy). We take advantage of the geometrical flexibility of the approach to generate a European model composed of the 3-D EPcrust model, combined with the depth-dependent ak135 velocity model in the upper-mantle. The results confirm the applicability of the ADER-DG method for regional scale earthquake simulations, which provides an alternative to existing methodologies.

  5. Regional wave propagation using the discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Wenk, S.; Pelties, C.; Igel, H.; Käser, M.

    2013-01-01

    We present an application of the discontinuous Galerkin (DG) method to regional wave propagation. The method makes use of unstructured tetrahedral meshes, combined with a time integration scheme solving the arbitrary high-order derivative (ADER) Riemann problem. This ADER-DG method is high-order accurate in space and time, beneficial for reliable simulations of high-frequency wavefields over long propagation distances. Due to the ease with which tetrahedral grids can be adapted to complex geometries, undulating topography of the Earth's surface and interior interfaces can be readily implemented in the computational domain. The ADER-DG method is benchmarked for the accurate radiation of elastic waves excited by an explosive and a shear dislocation source. We compare real data measurements with synthetics of the 2009 L'Aquila event (central Italy). We take advantage of the geometrical flexibility of the approach to generate a European model composed of the 3-D EPcrust model, combined with the depth-dependent ak135 velocity model in the upper mantle. The results confirm the applicability of the ADER-DG method for regional scale earthquake simulations, which provides an alternative to existing methodologies.

  6. Spectral solution of acoustic wave-propagation problems

    NASA Technical Reports Server (NTRS)

    Kopriva, David A.

    1990-01-01

    The Chebyshev spectral collocation solution of acoustic wave propagation problems is considered. It is shown that the phase errors decay exponentially fast and that the number of points per wavelength is not sufficient to estimate the phase accuracy. Applications include linear propagation of a sinusoidal acoustic wavetrain in two space dimensions, and the interaction of a sound wave with the bow shock formed by placing a cylinder in a uniform Mach 4 supersonic free stream.

  7. Computational Modeling of Wave Propagation in a Geophysical Domain

    DTIC Science & Technology

    2008-10-01

    finite element software with desktop computing hardware. 8. References 1. Pujol , J., Elastic Wave Propagation and Generation in Seismology ...half-space loading with an impact and develops a general closed-form solution against which to compare the computational results. These results... generic problem of a seismic wave that is generated at a source, propagates through a media, and is measured at a receiver. Some researchers are

  8. Teaching Wave Propagation and the Emergence of Viete's Formula

    ERIC Educational Resources Information Center

    Cullerne, J. P.; Goekjian, M. C. Dunn

    2012-01-01

    The well-known result for the frequency of a simple spring-mass system may be combined with elementary concepts like speed = wavelength x frequency to obtain wave propagation speeds for an infinite chain of springs and masses (masses "m" held apart at equilibrium distance "a" by springs of stiffness "gamma"). These propagation speeds are dependent…

  9. Ultrafast Imaging of Surface Plasmons Propagating on a Gold Surface

    SciTech Connect

    Gong, Yu; Joly, Alan G.; Hu, Dehong; El-Khoury, Patrick Z.; Hess, Wayne P.

    2015-05-13

    We record time-resolved nonlinear photoemission electron microscopy (tr-PEEM) images of propagating surface plasmons (PSPs) launched from a lithographically patterned rectangular trench on a flat gold surface. Our tr-PEEM scheme involves a pair of identical, spatially separated, and interferometrically-locked femtosecond laser pulses. Power dependent PEEM images provide experimental evidence for a sequential coherent nonlinear photoemission process, in which one laser source creates a PSP polarization state through a linear interaction, and the second subsequently probes the prepared state via two photon photoemission. The recorded time-resolved movies of a PSP allow us to directly measure various properties of the surface-bound wave packet, including its carrier wavelength (785 nm) and group velocity (0.95c). In addition, tr-PEEM in concert with finite-difference time domain simulations together allow us to set a lower limit of 75 μm for the decay length of the PSP on a 100 nm thick gold film.

  10. Control surface plasmon polaritons propagation efficiently with only one holographic line

    NASA Astrophysics Data System (ADS)

    Yin, Juan; Chen, Yue-Gang

    2017-04-01

    Controlling surface plasmon polaritons (SPPs) propagation on metal surface is significant for wide applications. Simple and effective structures are needed for SPP propagation controlling. In this paper, the line holography method is proposed to design a simple structure to control SPP wave propagation. The designed structure is composed of only one metal line, rather than a number of grooves in the holograms designed by the common surface electromagnetic wave holography method (SWH). The holographic line structure can control SPPs propagation effectively. Through the line holography method, two holographic line structures are designed to focus aside a plane SPP wave to one or two points. The finite-difference time-domain (FDTD) method is used to simulate the control process. Results show that the holographic line can control the SPP wave propagation with efficiency of 55%, higher than that of the common SWH method (19%).

  11. Time dependent wave envelope finite difference analysis of sound propagation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1984-01-01

    A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.

  12. Self-similar propagation of Hermite-Gauss water-wave pulses.

    PubMed

    Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady

    2016-01-01

    We demonstrate both theoretically and experimentally propagation dynamics of surface gravity water-wave pulses, having Hermite-Gauss envelopes. We show that these waves propagate self-similarly along an 18-m wave tank, preserving their general Hermite-Gauss envelopes in both the linear and the nonlinear regimes. The measured surface elevation wave groups enable observing the envelope phase evolution of both nonchirped and linearly frequency chirped Hermite-Gauss pulses, hence allowing us to measure Gouy phase shifts of high-order Hermite-Gauss pulses for the first time. Finally, when increasing pulse amplitude, nonlinearity becomes essential and the second harmonic of Hermite-Gauss waves was observed. We further show that these generated second harmonic bound waves still exhibit self-similar Hermite-Gauss shapes along the tank.

  13. Generation and propagation of Alfvenic waves in spicules

    NASA Astrophysics Data System (ADS)

    De Pontieu, B.; Okamoto, T. J.; Rouppe van der Voort, L.; Hansteen, V. H.; Carlsson, M.

    2011-12-01

    Both spicules and Alfven waves have recently been implicated in playing a role in the heating of the outer atmosphere. Yet we do not know how spicules or Alfven waves are generated. Here we focus on the properties of Alfvenic waves in spicules and their role in forming spicules. We use high-resolution observations taken with the Solar Optical Telescope onboard Hinode, and with the CRISP Fabry-Perot Interferometer at the Swedish Solar Telescope (SST) in La Palma to study the generation and propagation of Alfvenic waves in spicules and their disk counterparts. Using automated detection algorithms to identify propagating waves in limb spicules, we find evidence for both up- and downward propagating as well as standing waves. Our data suggests significant reflection of waves in and around spicules and provides constraints for theoretical models of spicules and wave propagation through the chromosphere. We also show observational evidence (using SST data) of the generation of Alfven waves and the role they play in forming spicules.

  14. Influence of Plasma Pressure Fluctuation on RF Wave Propagation

    NASA Astrophysics Data System (ADS)

    Liu, Zhiwei; Bao, Weimin; Li, Xiaoping; Liu, Donglin; Zhou, Hui

    2016-02-01

    Pressure fluctuations in the plasma sheath from spacecraft reentry affect radio-frequency (RF) wave propagation. The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory, plasma theory, and electromagnetic wave theory. We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling. We analyzed the variations in reflection and transmission properties induced by pressure fluctuations. Our results show that, at the GPS frequency, if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection, transmission, and absorption properties. In extreme situations, the fluctuations can even cause blackout. At the Ka frequency, the influences are obvious when the waves are not totally transmitted. The influences are more pronounced at the GPS frequency than at the Ka frequency. This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves, as well as the influences of plasma fluctuations on wave propagation. Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations, the influences on link budgets should be taken into consideration. supported by the National Basic Research Program of China (No. 2014CB340205) and National Natural Science Foundation of China (No. 61301173)

  15. Surface electromagnetic wave equations in a warm magnetized quantum plasma

    SciTech Connect

    Li, Chunhua; Yang, Weihong; Wu, Zhengwei; Chu, Paul K.

    2014-07-15

    Based on the single-fluid plasma model, a theoretical investigation of surface electromagnetic waves in a warm quantum magnetized inhomogeneous plasma is presented. The surface electromagnetic waves are assumed to propagate on the plane between a vacuum and a warm quantum magnetized plasma. The quantum magnetohydrodynamic model includes quantum diffraction effect (Bohm potential), and quantum statistical pressure is used to derive the new dispersion relation of surface electromagnetic waves. And the general dispersion relation is analyzed in some special cases of interest. It is shown that surface plasma oscillations can be propagated due to quantum effects, and the propagation velocity is enhanced. Furthermore, the external magnetic field has a significant effect on surface wave's dispersion equation. Our work should be of a useful tool for investigating the physical characteristic of surface waves and physical properties of the bounded quantum plasmas.

  16. Ocean Acoustic Propagation Measurements and Wave Propagation in Random Media

    DTIC Science & Technology

    1993-04-01

    medium focus follows closely the prediction of Spivack and Uscinski3 5 . Using numerical solutions to the 4th moment equation, the (I’, Z) dependence...32(1), 71-89 (1985). 13. B.J. Uscinski, C. Macaskill and M. Spivack , "Path integrals for wave intensity fluctuations in random media," J. Sound and...intensity in a turbulent atmosphere-- the distribution function," Soy. Phys. JETP 47(6), 1028-1030 (1978). 35. M. Spivack and BJ. Uscinski, "Accurate

  17. Correlation of wave propagation modes in helicon plasma with source tube lengths

    NASA Astrophysics Data System (ADS)

    Niu, Chen; Zhao, Gao; Wang, Yu; Liu, Zhongwei; Chen, Qiang

    2017-01-01

    Helicon wave plasma demonstrates lots of advantages in high coupling efficiency, high density, and low magnetic field. However, the helicon wave plasma still meets challenges in applications of material deposition, surface treatment, and electromagnetic thrusters owing to the changeable coupled efficiency and the remarkable non-uniformity. In this paper, we explore the wave propagation characterization by the B-dot probe in various lengths of source tubes. We find that in a long source tube the standing wave appears under the antenna zone, while the traveling wave is formed out of the antenna region. The apparent modulation of wave amplitude is formed in upstream rather than in downstream of the antenna. In a short source tube, however, there is only standing wave propagation.

  18. Controlling wave propagation through nonlinear engineered granular systems

    NASA Astrophysics Data System (ADS)

    Leonard, Andrea

    We study the fundamental dynamic behavior of a special class of ordered granular systems in order to design new, structured materials with unique physical properties. The dynamic properties of granular systems are dictated by the nonlinear, Hertzian, potential in compression and zero tensile strength resulting from the discrete material structure. Engineering the underlying particle arrangement of granular systems allows for unique dynamic properties, not observed in natural, disordered granular media. While extensive studies on 1D granular crystals have suggested their usefulness for a variety of engineering applications, considerably less attention has been given to higher-dimensional systems. The extension of these studies in higher dimensions could enable the discovery of richer physical phenomena not possible in 1D, such as spatial redirection and anisotropic energy trapping. We present experiments, numerical simulation (based on a discrete particle model), and in some cases theoretical predictions for several engineered granular systems, studying the effects of particle arrangement on the highly nonlinear transient wave propagation to develop means for controlling the wave propagation pathways. The first component of this thesis studies the stress wave propagation resulting from a localized impulsive loading for three different 2D particle lattice structures: square, centered square, and hexagonal granular crystals. By varying the lattice structure, we observe a wide range of properties for the propagating stress waves: quasi-1D solitary wave propagation, fully 2D wave propagation with tunable wave front shapes, and 2D pulsed wave propagation. Additionally the effects of weak disorder, inevitably present in real granular systems, are investigated. The second half of this thesis studies the solitary wave propagation through 2D and 3D ordered networks of granular chains, reducing the effective density compared to granular crystals by selectively placing wave

  19. WAVE PROPAGATION AND JET FORMATION IN THE CHROMOSPHERE

    SciTech Connect

    Heggland, L.; Hansteen, V. H.; Carlsson, M.; De Pontieu, B.

    2011-12-20

    We present the results of numerical simulations of wave propagation and jet formation in solar atmosphere models with different magnetic field configurations. The presence in the chromosphere of waves with periods longer than the acoustic cutoff period has been ascribed to either strong inclined magnetic fields, or changes in the radiative relaxation time. Our simulations include a sophisticated treatment of radiative losses, as well as fields with different strengths and inclinations. Using Fourier and wavelet analysis techniques, we investigate the periodicity of the waves that travel through the chromosphere. We find that the velocity signal is dominated by waves with periods around 5 minutes in regions of strong, inclined field, including at the edges of strong flux tubes where the field expands, whereas 3 minute waves dominate in regions of weak or vertically oriented fields. Our results show that the field inclination is very important for long-period wave propagation, whereas variations in the radiative relaxation time have little effect. Furthermore, we find that atmospheric conditions can vary significantly on timescales of a few minutes, meaning that a Fourier analysis of wave propagation can be misleading. Wavelet techniques take variations with time into account and are more suitable analysis tools. Finally, we investigate the properties of jets formed by the propagating waves once they reach the transition region, and find systematic differences between the jets in inclined-field regions and those in vertical field regions, in agreement with observations of dynamic fibrils.

  20. Propagation of acoustic waves in multifractional polydisperse gas suspension

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Teregulova, E. A.

    2017-01-01

    The propagation of acoustic waves in multifractional polydisperse gas suspension is studied. A mathematical model is presented, the dispersion equation is obtained, dispersion curves are calculated. The influence of the particle size and the parameters of the dispersed phase for multifractional gas mixture with ice particles, aluminum and sand on dissipation and dispersion of sound waves is analyzed.

  1. Relationship between directions of wave and energy propagation for cold plasma waves

    NASA Technical Reports Server (NTRS)

    Musielak, Zdzislaw E.

    1986-01-01

    The dispersion relation for plasma waves is considered in the 'cold' plasma approximation. General formulas for the dependence of the phase and group velocities on the direction of wave propagation with respect to the local magnetic field are obtained for a cold magnetized plasma. The principal cold plasma resonances and cut-off frequencies are defined for an arbitrary angle and are used to establish basic regimes of frequency where the cold plasma waves can propagate or can be evanescent. The relationship between direction of wave and energy propagation, for cold plasma waves in hydrogen atmosphere, is presented in the form of angle diagrams (angle between group velocity and magnetic field versus angle between phase velocity and magnetic field) and polar diagrams (also referred to as 'Friedrich's diagrams') for different directions of wave propagation. Morphological features of the diagrams as well as some critical angles of propagation are discussed.

  2. Influence of atmospheric structure and topography on infrasonic wave propagation

    NASA Astrophysics Data System (ADS)

    Lacanna, G.; Ichihara, M.; Iwakuni, M.; Takeo, M.; Iguchi, M.; Ripepe, M.

    2014-04-01

    The effects of topography and atmospheric structures on infrasonic wave propagation from a volcanic source were investigated using observations and numerical modeling. This paper presents the first long-term observational data set showing spatiotemporal variations in patterns of infrasound propagation at distances of up to 60 km from a persistently active infrasound source (Sakurajima Volcano, Japan). The data show that the amplitudes of infrasonic waves received at distant stations relative to those received at a reference station close to the source can vary up to an order of magnitude over short time intervals and short distances and that they do not follow the theoretical geometric decay expected for homogeneous media. Moreover, waveforms also change significantly in both time and space. Numerical simulations were performed using a two-dimensional finite difference time domain (2-D FDTD) method. Effects of atmospheric structure and topography are included in a vertical section parallel to the wave propagation direction. The simulation successfully reproduced the variations of amplitudes and waveforms. Results are interpreted in terms of wave refraction due to sound and wind speed gradients and wave diffraction at topographic barriers. Our numerical results indicate that both atmospheric and topographic propagation effects are nonnegligible. To evaluate the propagation effects and determine source processes in spatially and temporally varying infrasound data, atmospheric data with a time resolution higher than is currently available are required. If the data are available, the present results suggest that the propagation effects could be evaluated using 2-D FDTD modeling at realistic calculation times.

  3. Numerical simulation of wave propagation in cancellous bone.

    PubMed

    Padilla, F; Bossy, E; Haiat, G; Jenson, F; Laugier, P

    2006-12-22

    Numerical simulation of wave propagation is performed through 31 3D volumes of trabecular bone. These volumes were reconstructed from high synchrotron microtomography experiments and are used as the input geometry in a simulation software developed in our laboratory. The simulation algorithm accounts for propagation into both the saturating fluid and bone but absorption is not taken into account. We show that 3D simulation predicts phenomena observed experimentally in trabecular bones : linear frequency dependence of attenuation, increase of attenuation and speed of sound with the bone volume fraction, negative phase velocity dispersion in most of the specimens, propagation of fast and slow wave depending on the orientation of the trabecular network compared to the direction of propagation of the ultrasound. Moreover, the predicted attenuation is in very close agreement with the experimental one measured on the same specimens. Coupling numerical simulation with real bone architecture therefore provides a powerful tool to investigate the physics of ultrasound propagation in trabecular structures.

  4. Sensitivity of Radar Wave Propagation Power to the Marine Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lentini, N.; Hackett, E. E.

    2014-12-01

    Radar is a remote sensor used for scientific, meteorological, and military applications. Radar waves are affected by the medium through which they propagate, impacting the accuracy of radar measurements. Thus, environmental effects should be understood and quantified. The marine atmospheric boundary layer (MABL) is highly dynamic and turbulent, and affects radar wave propagation. The ocean surface roughness impacts scattering behavior. These effects cause variability in constructive and destructive interference patterns due to reflection from the ocean surface, known as multipath. The atmospheric effects cause radar waves to attenuate and refract; this study focuses on the refractive effects. A high-fidelity, physics-based, parabolic wave equation simulation is used to model the radar propagation and accounts for effects of the rough ocean surface (wind seas and swell) as well as variable refractivity with height and range. We use a robust, variance based, sensitivity analysis method called the Extended Fourier Amplitude Sensitivity Test to quantify which environmental parameters have the most significant effect on the modeled radar wave propagation. In this sensitivity study, the environment is parameterized by 16 variables, 8 ocean surface and 8 atmospheric. Sensitivity analysis is performed for 3 radar frequencies (3, 9, and 15 GHz) and 2 polarizations (horizontal and vertical). Results indicate that radar wave propagation is more sensitive to atmospheric parameters than ocean surface parameters. The mixed layer has the most far-reaching effect over the entire model domain (a range of 60 km and altitudes up to 1 km), characterized by its height and refractivity gradient. The remaining important factors have a predominantly local effect in the region where they occur in the MABL atmospheric structure. At low altitudes, radar wave propagation power is most sensitive to the gradient and curvature of the vertical refractivity profile. This research provides insight

  5. Propagation and Dissipation of MHD Waves in Coronal Holes

    NASA Astrophysics Data System (ADS)

    Dwivedi, B. N.

    2006-11-01

    bholadwivedi@gmail.com In view of the landmark result on the solar wind outflow, starting between 5 Mm and 20 Mm above the photosphere in magnetic funnels, we investigate the propagation and dissipation of MHD waves in coronal holes. We underline the importance of Alfvén wave dissipation in the magnetic funnels through the viscous and resistive plasma. Our results show that Alfvén waves are one of the primary energy sources in the innermost part of coronal holes where the solar wind outflow starts. We also consider compressive viscosity and thermal conductivity to study the propagation and dissipation of long period slow longitudinal MHD waves in polar coronal holes. We discuss their likely role in the line profile narrowing, and in the energy budget for coronal holes and the solar wind. We compare the contribution of longitudinal MHD waves with high frequency Alfvén waves.

  6. Electron acceleration in the ionosphere by obliquely propagating electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Burke, William J.; Ginet, Gregory P.; Heinemann, Michael A.; Villalon, Elena

    The paper presents an analysis of the relativistic equations of motion for electrons in magnetized plasma and externally imposed electromagnetic fields that propagate at arbitrary angles to the background magnetic field. The relativistic Lorentz equation for a test electron moving under the influence of an electromagnetic wave in a cold magnetized plasma and wave propagation through the ionospheric 'radio window' are examined. It is found that at wave energy fluxes greater than 10 to the 8th mW/sq m, initially cold electrons can be accelerated to energies of several MeV in less than a millisecond. Plans to test the theoretical results with rocket flights are discussed.

  7. Self-focusing of ion-acoustic surface waves

    NASA Astrophysics Data System (ADS)

    Stenflo, L.; Gradov, O. M.

    1996-06-01

    An electrostatic ion-acoustic surface wave propagating along the boundary of a semi-infinite plasma is considered. It is shown that a nonlinear Schrödinger equation can describe the development of the wave amplitude. The self-focusing length of a wave beam is estimated.

  8. Local Wave Propagation in the Kachchh Basin, India: Synergy With the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Langston, C. A.; Kang, D.; Bodin, P.; Horton, S.

    2002-12-01

    Aftershocks of the Mw7.6 Bhuj earthquake are used to infer velocity structure and the nature of wave propagation within the Kachchh Basin, India. The data were collected from a joint MAEC/ISTAR deployment of seismographs within 3 weeks of the main event and from existing broadband stations in the region under the India Meteorological Department. Waveforms are available from events that span the entire thickness of the crust and display a variety of wave propagation effects due to low-velocity near-surface site structure and larger structure of the Mesozoic Kachchh basin. These effects include near-site, high frequency reverberations in P and S waves, Sp and Ps mode conversions, PL waves within the Mesozoic basin, basin S multiples, and surface waves. Surface wave group velocity dispersion yields estimates of basin shear wave velocity, and when coupled to analysis of large observed Sp conversions, give a migrated image of stratigraphy within the Banni plains that agrees favorably with published stratigraphy. Identification of basin structure effects allows constraints to be placed on aftershock source depths that are needed in evaluating standard earthquake locations. Structure models are used to construct Green's functions for determining source parameters through waveform modeling. Although stations of the aftershock network were situated on a variety of sites that varied from consolidated Mesozoic bedrock to unconsolidated recent sediments, all stations show major wave propagation effects due to basin fill that must be included in source parameter estimation. These effects seen in India have many similarities to wave propagation effects observed within the Mississippi embayment from microearthquakes in the New Madrid Seismic Zone (NMSZ) of the central U.S. Joint waveform studies are motivating new ways of understanding wave propagation and source processes within both areas.

  9. Depth propagation and surface construction in 3-D vision.

    PubMed

    Georgeson, Mark A; Yates, Tim A; Schofield, Andrew J

    2009-01-01

    In stereo vision, regions with ambiguous or unspecified disparity can acquire perceived depth from unambiguous regions. This has been called stereo capture, depth interpolation or surface completion. We studied some striking induced depth effects suggesting that depth interpolation and surface completion are distinct stages of visual processing. An inducing texture (2-D Gaussian noise) had sinusoidal modulation of disparity, creating a smooth horizontal corrugation. The central region of this surface was replaced by various test patterns whose perceived corrugation was measured. When the test image was horizontal 1-D noise, shown to one eye or to both eyes without disparity, it appeared corrugated in much the same way as the disparity-modulated (DM) flanking regions. But when the test image was 2-D noise, or vertical 1-D noise, little or no depth was induced. This suggests that horizontal orientation was a key factor. For a horizontal sine-wave luminance grating, strong depth was induced, but for a square-wave grating, depth was induced only when its edges were aligned with the peaks and troughs of the DM flanking surface. These and related results suggest that disparity (or local depth) propagates along horizontal 1-D features, and then a 3-D surface is constructed from the depth samples acquired. The shape of the constructed surface can be different from the inducer, and so surface construction appears to operate on the results of a more local depth propagation process.

  10. Direct excitation of propagating spin waves by focused ultrashort optical pulses.

    PubMed

    Au, Y; Dvornik, M; Davison, T; Ahmad, E; Keatley, P S; Vansteenkiste, A; Van Waeyenberge, B; Kruglyak, V V

    2013-03-01

    An all-optical experiment long utilized to image phonons excited by ultrashort optical pulses has been applied to a magnetic sample. In addition to circular ripples due to surface acoustic waves, we observe an X-shaped pattern formed by propagating spin waves. The emission of spin waves from the optical pulse epicenter in the form of collimated beams is qualitatively reproduced by micromagnetic simulations. We explain the observed pattern in terms of the group velocity distribution of Damon-Eshbach magnetostatic spin waves in the reciprocal space and the wave vector spectrum of the focused ultrafast laser pulse.

  11. Direct Excitation of Propagating Spin Waves by Focused Ultrashort Optical Pulses

    NASA Astrophysics Data System (ADS)

    Au, Y.; Dvornik, M.; Davison, T.; Ahmad, E.; Keatley, P. S.; Vansteenkiste, A.; Van Waeyenberge, B.; Kruglyak, V. V.

    2013-03-01

    An all-optical experiment long utilized to image phonons excited by ultrashort optical pulses has been applied to a magnetic sample. In addition to circular ripples due to surface acoustic waves, we observe an X-shaped pattern formed by propagating spin waves. The emission of spin waves from the optical pulse epicenter in the form of collimated beams is qualitatively reproduced by micromagnetic simulations. We explain the observed pattern in terms of the group velocity distribution of Damon-Eshbach magnetostatic spin waves in the reciprocal space and the wave vector spectrum of the focused ultrafast laser pulse.

  12. P-SV-wave propagation in heterogeneous media: grid method

    NASA Astrophysics Data System (ADS)

    Jianfeng, Zhang; Tielin, Liu

    1999-02-01

    We present a new numerical modelling algorithm for P-SV-wave propagation in heterogeneous media, which is named the grid method in this paper. Similar to the finite-element method in the discretization of a numerical mesh, the grid method is flexible in incorporating surface topography and curved interfaces. The grid method, in the same way as the staggered-grid finite-difference scheme, is developed from the first-order velocity-stress hyperbolic system of elastic wave equations. The free-surface conditions are satisfied naturally for the grid method. The method, with its small numerical dispersion and good stability, is of high accuracy and low computational cost. Each time step needs 34M+N multiplication operations and 26M+N addition operations for N nodes and M triangular grids. In this paper, the triangular grid method is discussed in detail, and the numerical dispersion, stability criterion and numerical simulations are presented. The grid method based on triangular grids and quadrangular grids is also studied here.

  13. Surface wave tomography

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1984-01-01

    Vertically polarized shear wave velocity (VSV), determined primarily from fundamental mode Rayleigh waves, and the difference between the velocity of horizontally polarized shear waves (VSH) and VSV, therefore a measure of anisotropy, are shown.

  14. Modelling propagation of deflagration waves out of hot spots

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2015-06-01

    It is widely accepted that shock initiation and detonation of heterogeneous explosives come about by a two-step process known as ignition and growth. In the first step a shock sweeping an explosive cell (control volume) creates hot spots that become ignition sites. In the second step deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in a cell depends on the speed of those deflagration waves and on the average distance between neighbouring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration wave depends on both pressure and temperature, where pressure dependence is dominant at low shock level, and temperature dependence is dominant at a higher shock level. From the simulation we obtain deflagration (or burn) fronts emanating out of the hot spots. For intermediate shock levels the deflagration waves consume the explosive between hot spots. For higher shock levels the deflagration waves strengthen to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds and show how they depend on reaction rate and on other material parameters.

  15. Diurnal Variability and Kelvin Wave Propagation Through Maritime Continent

    NASA Astrophysics Data System (ADS)

    Flatau, M. K.; Baranowski, D. B.; Flatau, P. J.; Matthews, A. J.

    2014-12-01

    The 10 year series of the equatorial Kelvin waves obtained from the analysis of TRMM precipitation were examined to evaluate the impact of the diurnal variability of convection on the wave propagation through Maritime Continent. The convection in the Kelvin waves appears to be strongly phase locked in the area of the Maritime continent with the pronounced afternoon maximum. The diurnal phase locking is also evident as Kelvin waves propagate trough the Indian Ocean basin, suggesting that at least some Kelvin waves in this area are forced by the diurnally varying heat source related either to the convection over the land such as Eastern Africa or Madagascar, or over ocean areas with the high SST variability. We examine the hypothesis that the "matching" of the convective phase of the waves with the afternoon maximum of convection over Sumatra influences the wave strength after it crosses the Maritime Continent and can contribute to MJO propagation. The observational results based on observed Kelvin waves are supported by the results of the shallow water model of the interaction of the dry Kelvin wave with the diurnally oscillating heat source.

  16. Longitudinally propagating traveling waves of the mammalian tectorial membrane.

    PubMed

    Ghaffari, Roozbeh; Aranyosi, Alexander J; Freeman, Dennis M

    2007-10-16

    Sound-evoked vibrations transmitted into the mammalian cochlea produce traveling waves that provide the mechanical tuning necessary for spectral decomposition of sound. These traveling waves of motion that have been observed to propagate longitudinally along the basilar membrane (BM) ultimately stimulate the mechano-sensory receptors. The tectorial membrane (TM) plays a key role in this process, but its mechanical function remains unclear. Here we show that the TM supports traveling waves that are an intrinsic feature of its visco-elastic structure. Radial forces applied at audio frequencies (2-20 kHz) to isolated TM segments generate longitudinally propagating waves on the TM with velocities similar to those of the BM traveling wave near its best frequency place. We compute the dynamic shear storage modulus and shear viscosity of the TM from the propagation velocity of the waves and show that segments of the TM from the basal turn are stiffer than apical segments are. Analysis of loading effects of hair bundle stiffness, the limbal attachment of the TM, and viscous damping in the subtectorial space suggests that TM traveling waves can occur in vivo. Our results show the presence of a traveling wave mechanism through the TM that can functionally couple a significant longitudinal extent of the cochlea and may interact with the BM wave to greatly enhance cochlear sensitivity and tuning.

  17. Nonlinear electron magnetohydrodynamics physics. II. Wave propagation and wave-wave interactions

    SciTech Connect

    Urrutia, J. M.; Stenzel, R. L.; Strohmaier, K. D.

    2008-04-15

    The propagation of low-frequency whistler modes with wave magnetic field exceeding the ambient field is investigated experimentally. Such nonlinear waves are excited with magnetic loop antennas whose axial field is aligned with the background magnetic field and greatly exceeds its strength. The oscillatory antenna field excites propagating wave packets with field topologies alternating between whistler spheromaks and mirrors. The propagation speed of spheromaks is observed to decrease with amplitude while that of mirrors increases with amplitude. The field distribution varies with amplitude: Spheromaks contract axially while mirrors spread out compared to linear whistlers. Consequently, the peak magnetic field and current densities in spheromaks exceed that of mirrors. Wave-wave interactions of nonlinear whistler modes is also studied. Counterpropagating spheromaks collide inelastically and form a stationary field-reversed configuration. The radius of the toroidal current ring depends on current and can be larger than that of the loop antenna. A tilted field-reversed configuration precesses in the direction of the electron drift. The free magnetic energy is dissipated in the plasma volume and converted into electron heat.

  18. Modeling of acoustic and gravity waves propagation through the atmosphere with spectral element method

    NASA Astrophysics Data System (ADS)

    Brissaud, Q.; Garcia, R.; Martin, R.; Komatitsch, D.

    2014-12-01

    Low-frequency events such as tsunamis generate acoustic and gravity waves which quickly propagate in the atmosphere. Since the atmospheric density decreases exponentially as the altitude increases and from the conservation of the kinetic energy, those waves see their amplitude raise (to the order of 105 at 200km of altitude), allowing their detection in the upper atmosphere. Various tools have been developed through years to model this propagation, such as normal modes modeling or to a greater extent time-reversal techniques, but none offer a low-frequency multi-dimensional atmospheric wave modelling.A modeling tool is worthy interest since there are many different phenomena, from quakes to atmospheric explosions, able to propagate acoustic and gravity waves. In order to provide a fine modeling of the precise observations of these waves by GOCE satellite data, we developed a new numerical modeling tool.Starting from the SPECFEM program that already propagate waves in solid, porous or fluid media using a spectral element method, this work offers a tool with the ability to model acoustic and gravity waves propagation in a stratified attenuating atmosphere with a bottom forcing or an atmospheric source.Atmospheric attenuation is required in a proper modeling framework since it has a crucial impact on acoustic wave propagation. Indeed, it plays the role of a frequency filter that damps high-frequency signals. The bottom forcing feature has been implemented due to its ability to easily model the coupling with the Earth's or ocean's surface (that vibrates when a surface wave go through it) but also huge atmospheric events.

  19. Generation and propagation of stick-slip waves over a fault with rate-independent friction

    NASA Astrophysics Data System (ADS)

    Karachevtseva, Iuliia; Dyskin, Arcady; Pasternak, Elena

    2014-05-01

    Earthquakes generated at faults are either produced by rapid (sometimes supersonic) propagation of shear cracks/ruptures along the fault or originated in the stick-slip sliding over the fault. In some cases, supersonic (faster than the shear wave velocity) propagation of earthquake-generating shear ruptures or sliding is observed. This gave rise to the concept of supersonic shear crack propagation, much researched in the literature. Here we consider another mechanisms of supersonic sliding propagation. We concentrate on the stick-slip sliding as the earthquake mechanism. It is conventionally assumed that the mechanism of stick-slip lies in intermittent change between static and kinetic friction and the rate dependence of the friction coefficient. However the accumulation of elastic energy in the sliding plates on both sides of the fault can produce oscillations in the velocity of sliding even if the friction coefficient is constant. These oscillations resemble stick-slip movement, but they manifest themselves in terms of sliding velocity rather than displacement. Furthermore, over long faults the sliding exhibits wave-like propagation. We developed a model that shows that the zones of non-zero sliding velocities propagate along the fault with the velocity of p-wave. The mechanism of such fast movement is in the fact that sliding of every element of the rock at the fault surface creates normal (tensile/compressive) stresses in the neighbouring elements (normal stresses on the planes normal to the fault surface). The strains associated with these stresses are controlled by the Young's modulus rather than shear modulus resulting in the p-wave velocity of propagation of the sliding zone. This results in the observed supersonic (with respect to the s-waves) propagation of the apparent shear rupture. Keywords: Stick-slip, Rate-independent friction, Supersonic propagation.

  20. Solitary wave propagation through two-dimensional treelike structures.

    PubMed

    Falls, William J; Sen, Surajit

    2014-02-01

    It is well known that a velocity perturbation can travel through a mass spring chain with strongly nonlinear interactions as a solitary and antisolitary wave pair. In recent years, nonlinear wave propagation in 2D structures have also been explored. Here we first consider the propagation of such a velocity perturbation for cases where the system has a 2D "Y"-shaped structure. Here each of the three pieces that make up the "Y" are made of a small mass spring chain. In addition, we consider a case where multiple "Y"-shaped structures are used to generate a "tree." We explore the early time dynamical behavior associated with the propagation of a velocity perturbation initiated at the trunk and at the extremities for both cases. We are looking for the energy transmission properties from one branch to another of these "Y"-shaped structures. Our dynamical simulations suggest the following broad observations: (i) for strongly nonlinear interactions, mechanical energy propagation resembles pulse propagation with the energy propagation being dispersive in the linear case; (ii) for strong nonlinear interactions, the tree-like structure acts as an energy gate showing preference for large perturbations in the system while the behavior of the linear case shows no such preference, thereby suggesting that such structures can possibly act as switches that activate at sufficiently high energies. The study aspires to develop insights into the nature of nonlinear wave propagation through a network of linear chains.

  1. Propagation and amplitude decay mechanisms of internal solitary waves

    NASA Astrophysics Data System (ADS)

    Wang, Ling-ling; Wang, Chun-ling; Tang, Hong-wu; Chen, Hong

    2016-12-01

    In this paper, a modified dynamic coherent eddy model (DCEM) of large eddy simulation is applied to study internal solitary waves in a numerical flume. The model was verified by physical experiment and applied to investigate the potential influence factors on internal wave amplitude. In addition, we discussed the energy loss of internal solitary wave as well as hydrodynamics in the propagation. The results of our study show that (1) Step-depth is the most sensitive factor on wave amplitude for the "step-pool" internal wave generation method and the wave amplitudes obey a linear increase with step depth, and the increase rate is about 0.4. (2) Wave energy loss obeys a linear decrease with the propagation distance and its loss rate of large amplitude waves is smaller than that of small amplitude waves. (3) Loss of kinetic energy in wave valley is larger than that near the interface due to relative high fluctuating frequency. (4) Discovered boundary jet-flow can intensify the bottom shear, which might be one of the mechanisms of substance transportation, and the boundary layers of jet flows are easily influenced by the adjacent waves.

  2. Surface acoustic wave propagation properties in 0.67Pb(Mg(13)Nb(23))O(3)-0.33PbTiO(3) single crystal poled along [111](c).

    PubMed

    Li, Xiuming; Zhang, Rui; Huang, Naixing; Lü, Tianquan; Cao, Wenwu

    2009-12-14

    Surface acoustic wave (SAW) propagation properties in relaxor-based 0.67Pb(Mg(13)Nb(23))O(3)-0.33PbTiO(3) (PMN-33%PT) ferroelectric single crystals poled along [111](c) has been analyzed theoretically. We found that the X-cut PMN-33%PT has lower phase velocity and higher electromechanical coupling coefficient compared to traditional piezoelectric materials. The power flow angle (PFA) can be zero in specific directions, which could drastically improve the performance of SAW devices. Our theoretical results indicate that the direction about 5 degrees canted from [111](c) is the optimum direction for the X-cut [111](c) poled crystals in SAW device applications. Characteristic curves were also obtained for the phase velocity, electromechanical coupling coefficient, and PFA in Z-cut single-domain PMN-33%PT single crystals.

  3. Spin-wave propagation steered by electric field modulated exchange interaction

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Guan, Xiawei; Cheng, Xiaomin; Lian, Chen; Huang, Ting; Miao, Xiangshui

    2016-09-01

    Combined ab initio and micromagnetic simulations are carried out to demonstrate the feasibility on the electrical manipulation of spin-wave propagation in ultrathin Fe films. It is discovered that the exchange interaction can be substantially weakened under the influence of electric field applied perpendicular to the magnetic film surface. Furthermore, we demonstrate that the electric field modified exchange constant could effectively control the propagation of spin waves. To be specific, an external applied electric field of 5 V/nm can effectively weaken exchange interaction by 80% and is sufficient to induce nearly twofold change of the wavenumber. This discovery may open a door to energy-efficient local manipulation of the spin wave propagation utilizing electric fields, which is crucial for both fundamental research and spin wave based logic applications.

  4. Spin-wave propagation steered by electric field modulated exchange interaction

    PubMed Central

    Wang, Sheng; Guan, Xiawei; Cheng, Xiaomin; Lian, Chen; Huang, Ting; Miao, Xiangshui

    2016-01-01

    Combined ab initio and micromagnetic simulations are carried out to demonstrate the feasibility on the electrical manipulation of spin-wave propagation in ultrathin Fe films. It is discovered that the exchange interaction can be substantially weakened under the influence of electric field applied perpendicular to the magnetic film surface. Furthermore, we demonstrate that the electric field modified exchange constant could effectively control the propagation of spin waves. To be specific, an external applied electric field of 5 V/nm can effectively weaken exchange interaction by 80% and is sufficient to induce nearly twofold change of the wavenumber. This discovery may open a door to energy-efficient local manipulation of the spin wave propagation utilizing electric fields, which is crucial for both fundamental research and spin wave based logic applications. PMID:27587083

  5. Wave propagation in fiber composite laminates, part 2

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1976-01-01

    An experimental investigation was conducted to determine the wave propagation characteristics, transient strains and residual properties in unidirectional and angle-ply boron/epoxy and graphite/epoxy laminates impacted with silicone rubber projectiles at velocities up to 250 MS-1. The predominant wave is flexural, propagating at different velocities in different directions. In general, measured wave velocities were higher than theoretically predicted values. The amplitude of the in-plane wave is less than ten percent of that of the flexural wave. Peak strains and strain rates in the transverse to the (outer) fiber direction are much higher than those in the direction of the fibers. The dynamics of impact were also studied with high speed photography.

  6. Spatial damping of propagating sausage waves in coronal cylinders

    NASA Astrophysics Data System (ADS)

    Guo, Ming-Zhe; Chen, Shao-Xia; Li, Bo; Xia, Li-Dong; Yu, Hui

    2015-09-01

    Context. Sausage modes are important in coronal seismology. Spatially damped propagating sausage waves were recently observed in the solar atmosphere. Aims: We examine how wave leakage influences the spatial damping of sausage waves propagating along coronal structures modeled by a cylindrical density enhancement embedded in a uniform magnetic field. Methods: Working in the framework of cold magnetohydrodynamics, we solve the dispersion relation (DR) governing sausage waves for complex-valued, longitudinal wavenumber k at given real angular frequencies ω. For validation purposes, we also provide analytical approximations to the DR in the low-frequency limit and in the vicinity of ωc, the critical angular frequency separating trapped from leaky waves. Results: In contrast to the standing case, propagating sausage waves are allowed for ω much lower than ωc. However, while able to direct their energy upward, these low-frequency waves are subject to substantial spatial attenuation. The spatial damping length shows little dependence on the density contrast between the cylinder and its surroundings, and depends only weakly on frequency. This spatial damping length is of the order of the cylinder radius for ω ≲ 1.5vAi/a, where a and vAi are the cylinder radius and the Alfvén speed in the cylinder, respectively. Conclusions: If a coronal cylinder is perturbed by symmetric boundary drivers (e.g., granular motions) with a broadband spectrum, wave leakage efficiently filters out the low-frequency components.

  7. Surface waves affect frontogenesis

    NASA Astrophysics Data System (ADS)

    Suzuki, Nobuhiro; Fox-Kemper, Baylor; Hamlington, Peter E.; Van Roekel, Luke P.

    2016-05-01

    This paper provides a detailed analysis of momentum, angular momentum, vorticity, and energy budgets of a submesoscale front undergoing frontogenesis driven by an upper-ocean, submesoscale eddy field in a Large Eddy Simulation (LES). The LES solves the wave-averaged, or Craik-Leibovich, equations in order to account for the Stokes forces that result from interactions between nonbreaking surface waves and currents, and resolves both submesoscale eddies and boundary layer turbulence down to 4.9 m × 4.9 m × 1.25 m grid scales. It is found that submesoscale frontogenesis differs from traditional frontogenesis theory due to four effects: Stokes forces, momentum and kinetic energy transfer from submesoscale eddies to frontal secondary circulations, resolved turbulent stresses, and unbalanced torque. In the energy, momentum, angular momentum, and vorticity budgets for the frontal overturning circulation, the Stokes shear force is a leading-order contributor, typically either the second or third largest source of frontal overturning. These effects violate hydrostatic and thermal wind balances during submesoscale frontogenesis. The effect of the Stokes shear force becomes stronger with increasing alignment of the front and Stokes shear and with a nondimensional scaling. The Stokes shear force and momentum transfer from submesoscale eddies significantly energize the frontal secondary circulation along with the buoyancy.

  8. Asymmetric wave propagation in nonlinear systems.

    PubMed

    Lepri, Stefano; Casati, Giulio

    2011-04-22

    A mechanism for asymmetric (nonreciprocal) wave transmission is presented. As a reference system, we consider a layered nonlinear, nonmirror-symmetric model described by the one-dimensional discrete nonlinear Schrödinger equation with spatially varying coefficients embedded in an otherwise linear lattice. We construct a class of exact extended solutions such that waves with the same frequency and incident amplitude impinging from left and right directions have very different transmission coefficients. This effect arises already for the simplest case of two nonlinear layers and is associated with the shift of nonlinear resonances. Increasing the number of layers considerably increases the complexity of the family of solutions. Finally, numerical simulations of asymmetric wave packet transmission are presented which beautifully display the rectifying effect.

  9. Geometric effects on stress wave propagation.

    PubMed

    Johnson, K L; Trim, M W; Horstemeyer, M F; Lee, N; Williams, L N; Liao, J; Rhee, H; Prabhu, R

    2014-02-01

    The present study, through finite element simulations, shows the geometric effects of a bioinspired solid on pressure and impulse mitigation for an elastic, plastic, and viscoelastic material. Because of the bioinspired geometries, stress wave mitigation became apparent in a nonintuitive manner such that potential real-world applications in human protective gear designs are realizable. In nature, there are several toroidal designs that are employed for mitigating stress waves; examples include the hyoid bone on the back of a woodpecker's jaw that extends around the skull to its nose and a ram's horn. This study evaluates four different geometries with the same length and same initial cross-sectional diameter at the impact location in three-dimensional finite element analyses. The geometries in increasing complexity were the following: (1) a round cylinder, (2) a round cylinder that was tapered to a point, (3) a round cylinder that was spiraled in a two dimensional plane, and (4) a round cylinder that was tapered and spiraled in a two-dimensional plane. The results show that the tapered spiral geometry mitigated the greatest amount of pressure and impulse (approximately 98% mitigation) when compared to the cylinder regardless of material type (elastic, plastic, and viscoelastic) and regardless of input pressure signature. The specimen taper effectively mitigated the stress wave as a result of uniaxial deformational processes and an induced shear that arose from its geometry. Due to the decreasing cross-sectional area arising from the taper, the local uniaxial and shear stresses increased along the specimen length. The spiral induced even greater shear stresses that help mitigate the stress wave and also induced transverse displacements at the tip such that minimal wave reflections occurred. This phenomenon arose although only longitudinal waves were introduced as the initial boundary condition (BC). In nature, when shearing occurs within or between materials

  10. Wave propagation in a plate after impact by a projectile

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Wagner, P.

    1987-01-01

    The wave propagation in a circular plate after impact by a cylindrical projectile is studied. In the vicinity of impact, the pressure is computed numerically. An intense pressure pulse is generated that peaks 0.2 microns after impact, then drops sharply to a plateau. The response of the plate is determined adopting a modal solution of Mindlin's equations. Velocity and acceleration histories display both propagating and dispersive features.

  11. Mass sensitivity of layered shear-horizontal surface acoustic wave devices for sensing applications

    NASA Astrophysics Data System (ADS)

    Kalantar-Zadeh, Kourosh; Trinchi, Adrian; Wlodarski, Wojtek; Holland, Anthony; Galatsis, Kosmas

    2001-11-01

    Layered Surface Acoustic Wave (SAW) devices that allow the propagation of Love mode acoustic waves will be studied in this paper. In these devices, the substrate allows the propagation of Surface Skimming Bulks Waves (SSBWs). By depositing layers, that the speed of Shear Horizontal (SH) acoustic wave propagation is less than that of the substrate, the propagation mode transforms to Love mode. Love mode devices which will be studied in this paper, have SiO2 and ZnO acoustic guiding layers. As Love mode of propagation has no movement of particles component normal to the active sensor surface, they can be employed for the sensing applications in the liquid media.

  12. Efficient counter-propagating wave acoustic micro-particle manipulation

    NASA Astrophysics Data System (ADS)

    Grinenko, A.; Ong, C. K.; Courtney, C. R. P.; Wilcox, P. D.; Drinkwater, B. W.

    2012-12-01

    A simple acoustic system consisting of a pair of parallel singe layered piezoelectric transducers submerged in a fluid used to form standing waves by a superposition of two counter-propagating waves is reported. The nodal positions of the standing wave are controlled by applying a variable phase difference to the transducers. This system was used to manipulate polystyrene micro-beads trapped at the nodal positions of the standing wave. The demonstrated good manipulation capability of the system is based on a lowering of the reflection coefficient in a narrow frequency band near the through-thickness resonance of the transducer plates.

  13. Propagating spectroscopy of backward volume spin waves in a metallic FeNi film

    SciTech Connect

    Sato, N.; Ishida, N.; Kawakami, T.; Sekiguchi, K.

    2014-01-20

    We report a propagating spin wave spectroscopy for a magnetostatic backward volume spin wave in a metallic Fe{sub 19}Ni{sub 81} film. We show that the mutual-inductance between two independent antennas detects a small but clear propagation signal of backward volume spin waves. All experimental data are consistent with the time-domain propagating spin-wave spectroscopy. The control of propagating backward spin wave enables to realize the miniaturize spin-wave circuit.

  14. Special Course on Acoustic Wave Propagation

    DTIC Science & Technology

    1979-08-01

    l.Recipient’s Reference 2.Originator’s Reference 3.Further Reference 4.Security Classification of Document AGARD-R-686 ISBN 92-835-0248-5 UNCLASSIFIED 5...3L t’acoustique eat d’Ariatote (384-322 av. .Y.C.) qui a effectud una classification des diffdrentes branches de l’acoustique en cansacrant une part...silence a cotia- tique at balistique. DepuiS la econde guerre mondiale de tres nombreux travaux Sur la propagation acoustique dans les fluides et das

  15. Electrostatic surface waves on a plasma with non-uniform boundary

    NASA Astrophysics Data System (ADS)

    Stenflo, L.; Gradov, O. M.

    1990-10-01

    A new analytical method is introduced to consider electrostatic surface waves propagating on a cold plasma. A very simple dispersion relation is derived for a plasma bounded by two dielectrics. Previous theory for solitary surface waves is also generalized.

  16. Spherical Wave Propagation in a Nonlinear Elastic Medium

    SciTech Connect

    Korneev, Valeri A.

    2009-07-01

    Nonlinear propagation of spherical waves generated by a point-pressure source is considered for the cases of monochromatic and impulse primary waveforms. The nonlinear five-constant elastic theory advanced by Murnaghan is used where general equations of motion are put in the form of vector operators, which are independent of the coordinate system choice. The ratio of the nonlinear field component to the primary wave in the far field is proportional to ln(r) where r is a propagation distance. Near-field components of the primary field do not contribute to the far field of nonlinear component.

  17. Voltage induced mechanical/spin wave propagation over long distances

    NASA Astrophysics Data System (ADS)

    Chen, C.; Barra, A.; Mal, A.; Carman, G.; Sepulveda, A.

    2017-02-01

    We simulated the generation and propagation of spin waves (SWs) using two excitation methods, namely, magnetic field and voltage induced strain. A fully coupled non-linear magnetoelastic model, combining Landau-Lifshitz-Gilbert with elastodynamic equations, is used to study the propagation characteristics of SWs in magnetoelastic materials. Simulation results show that for excitation frequencies above ferromagnetic resonance (FMR), SWs excited by voltage induced strain propagate over longer distances compared to SWs excited by magnetic field. In addition, strain mediated SWs exhibit loss characteristics, which are relatively independent of the magnetic losses (Gilbert damping). Moreover, it is also shown that strain induced SWs can also be excited at frequencies below FMR.

  18. Maxwell Equation for the Coupled Spin-Charge Wave Propagation

    SciTech Connect

    Bernevig, B.Andrei; Yu, Xiaowei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    We show that the dissipationless spin current in the ground state of the Rashba model gives rise to a reactive coupling between the spin and charge propagation, which is formally identical to the coupling between the electric and the magnetic fields in the 2 + 1 dimensional Maxwell equation. This analogy leads to a remarkable prediction that a density packet can spontaneously split into two counter propagation packets, each carrying the opposite spins. In a certain parameter regime, the coupled spin and charge wave propagates like a transverse 'photon'. We propose both optical and purely electronic experiments to detect this effect.

  19. Propagation of sound waves in tubes of noncircular cross section

    NASA Technical Reports Server (NTRS)

    Richards, W. B.

    1986-01-01

    Plane-acoustic-wave propagation in small tubes with a cross section in the shape of a flattened oval is described. Theoretical descriptions of a plane wave propagating in a tube with circular cross section and between a pair of infinite parallel plates, including viscous and thermal damping, are expressed in similar form. For a wide range of useful duct sizes, the propagation constant (whose real and imaginary parts are the amplitude attenuation rate and the wave number, respectively) is very nearly the same function of frequency for both cases if the radius of the circular tube is the same as the distance between the parallel plates. This suggests that either a circular-cross-section model or a flat-plate model can be used to calculate wave propagation in flat-oval tubing, or any other shape tubing, if its size is expressed in terms of an equivalent radius, given by g = 2 x (cross-sectional area)/(length of perimeter). Measurements of the frequency response of two sections of flat-oval tubing agree with calculations based on this idea. Flat-plate formulas are derived, the use of transmission-line matrices for calculations of plane waves in compound systems of ducts is described, and examples of computer programs written to carry out the calculations are shown.

  20. MULTI-LAYER STUDY OF WAVE PROPAGATION IN SUNSPOTS

    SciTech Connect

    Felipe, T.; Khomenko, E.; Collados, M.; Beck, C.

    2010-10-10

    We analyze the propagation of waves in sunspots from the photosphere to the chromosphere using time series of co-spatial Ca II H intensity spectra (including its line blends) and polarimetric spectra of Si I {lambda}10,827 and the He I {lambda}10,830 multiplet. From the Doppler shifts of these lines we retrieve the variation of the velocity along the line of sight at several heights. Phase spectra are used to obtain the relation between the oscillatory signals. Our analysis reveals standing waves at frequencies lower than 4 mHz and a continuous propagation of waves at higher frequencies, which steepen into shocks in the chromosphere when approaching the formation height of the Ca II H core. The observed nonlinearities are weaker in Ca II H than in He I lines. Our analysis suggests that the Ca II H core forms at a lower height than the He I {lambda}10,830 line: a time delay of about 20 s is measured between the Doppler signal detected at both wavelengths. We fit a model of linear slow magnetoacoustic wave propagation in a stratified atmosphere with radiative losses according to Newton's cooling law to the phase spectra and derive the difference in the formation height of the spectral lines. We show that the linear model describes well the wave propagation up to the formation height of Ca II H, where nonlinearities start to become very important.

  1. Propagation of elastic waves through textured polycrystals: application to ice.

    PubMed

    Maurel, Agnès; Lund, Fernando; Montagnat, Maurine

    2015-05-08

    The propagation of elastic waves in polycrystals is revisited, with an emphasis on configurations relevant to the study of ice. Randomly oriented hexagonal single crystals are considered with specific, non-uniform, probability distributions for their major axis. Three typical textures or fabrics (i.e. preferred grain orientations) are studied in detail: one cluster fabric and two girdle fabrics, as found in ice recovered from deep ice cores. After computing the averaged elasticity tensor for the considered textures, wave propagation is studied using a wave equation with elastic constants c=〈c〉+δc that are equal to an average plus deviations, presumed small, from that average. This allows for the use of the Voigt average in the wave equation, and velocities are obtained solving the appropriate Christoffel equation. The velocity for vertical propagation, as appropriate to interpret sonic logging measurements, is analysed in more details. Our formulae are shown to be accurate at the 0.5% level and they provide a rationale for previous empirical fits to wave propagation velocities with a quantitative agreement at the 0.07-0.7% level. We conclude that, within the formalism presented here, it is appropriate to use, with confidence, velocity measurements to characterize ice fabrics.

  2. Propagation of elastic waves through textured polycrystals: application to ice

    PubMed Central

    Maurel, Agnès; Lund, Fernando; Montagnat, Maurine

    2015-01-01

    The propagation of elastic waves in polycrystals is revisited, with an emphasis on configurations relevant to the study of ice. Randomly oriented hexagonal single crystals are considered with specific, non-uniform, probability distributions for their major axis. Three typical textures or fabrics (i.e. preferred grain orientations) are studied in detail: one cluster fabric and two girdle fabrics, as found in ice recovered from deep ice cores. After computing the averaged elasticity tensor for the considered textures, wave propagation is studied using a wave equation with elastic constants c=〈c〉+δc that are equal to an average plus deviations, presumed small, from that average. This allows for the use of the Voigt average in the wave equation, and velocities are obtained solving the appropriate Christoffel equation. The velocity for vertical propagation, as appropriate to interpret sonic logging measurements, is analysed in more details. Our formulae are shown to be accurate at the 0.5% level and they provide a rationale for previous empirical fits to wave propagation velocities with a quantitative agreement at the 0.07–0.7% level. We conclude that, within the formalism presented here, it is appropriate to use, with confidence, velocity measurements to characterize ice fabrics. PMID:27547099

  3. Surface gravity-wave lensing.

    PubMed

    Elandt, Ryan B; Shakeri, Mostafa; Alam, Mohammad-Reza

    2014-02-01

    Here we show that a nonlinear resonance between oceanic surface waves caused by small seabed features (the so-called Bragg resonance) can be utilized to create the equivalent of lenses and curved mirrors for surface gravity waves. Such gravity wave lenses, which are merely small changes to the seafloor topography and therefore are surface noninvasive, can focus or defocus the energy of incident waves toward or away from any desired focal point. We further show that for a broadband incident wave spectrum (i.e., a wave group composed of a multitude of different-frequency waves), a polychromatic topography (occupying no more than the area required for a monochromatic lens) can achieve a broadband lensing effect. Gravity wave lenses can be utilized to create localized high-energy wave zones (e.g., for wave energy harvesting or creating artificial surf zones) as well as to disperse waves in order to create protected areas (e.g., harbors or areas near important offshore facilities). In reverse, lensing of oceanic waves may be caused by natural seabed features and may explain the frequent appearance of very high amplitude waves in certain bodies of water.

  4. Two-wave propagation in in vitro swine distal ulna

    NASA Astrophysics Data System (ADS)

    Mano, Isao; Horii, Kaoru; Matsukawa, Mami; Otani, Takahiko

    2015-07-01

    Ultrasonic transmitted waves were obtained in an in vitro swine distal ulna specimen, which mimics a human distal radius, that consists of interconnected cortical bone and cancellous bone. The transmitted waveforms appeared similar to the fast waves, slow waves, and overlapping fast and slow waves measured in the specimen after removing the surface cortical bone (only cancellous bone). In addition, the circumferential waves in the cortical bone and water did not affect the fast and slow waves. This suggests that the fast-and-slow-wave phenomenon can be observed in an in vivo human distal radius.

  5. Plate damage identification using wave propagation and impedance methods.

    SciTech Connect

    Wait, J. R.; Park, G. H.; Sohn, H.; Farrar, C. R.

    2004-01-01

    This paper illustrates an integrated approach for identifying structural damage in an aluminum plate. Piezoelectric (PZT) materials are used to actuatehense the dynamic response of the structure. Two damage identification techniques are integrated in this study, including Lamb wave propagations and impedance methods. In Lamb wave propagations, one PZT launches an elastic wave through the structure, and responses are measured by an array of PZT sensors. The changes in both wave attenuation and reflection are used to detect and locate the damage. The impedance method monitors the variations in structural mechanical impedance, which is coupled with the electrical impedance of the PZT. Both methods operate in high frequency ranges at which there are measurable changes in structural responses even for incipient damage such as small cracks or loose connections. This paper summarizes two methods used for damage identification, experimental procedures, and additional issues that can be used as a guideline for future investigations.

  6. Interactive propagation of photosensitive chemical waves on two circular routes.

    PubMed

    Nakata, Satoshi; Morishima, Sayaka; Kitahata, Hiroyuki

    2006-03-16

    The propagation of chemical waves in the photosensitive Belousov-Zhabotinsky (BZ) reaction was investigated using an excitable field composed of two rings in slight contact, which were drawn using computer software and then projected on a film soaked with BZ solution using a liquid-crystal projector. When the initial phase difference between the two chemical waves in the individual rings was smaller than a critical value, this initial value was maintained after collision of the chemical waves. However, when the initial phase difference was larger than this critical value, the phase difference converged to the same value after the second collision. The critical value increased with an increase in the thickness of the rings. These experimental results on the geometry of the excitable field are discussed in relation to the nature of chemical wave propagation. These results suggest that the photosensitive BZ reaction may be useful for creating spatiotemporal patterns that depend on the geometric arrangement of excitable fields.

  7. Instability of propagating axial symmetric waves generated by a vertically oscillating sphere

    NASA Astrophysics Data System (ADS)

    Shen, Meng; Liu, Yuming

    2015-11-01

    We study the instability of propagating axial symmetric waves in a basin that are generated by a vertically oscillating sphere. Laboratory experiments indicate that when the oscillation amplitude exceeds a threshold value, the axial symmetric propagating waves abruptly transfigure into non-axial symmetric waves. Fully-nonlinear time-domain numerical simulation of wave-body interaction is applied to describe the nonlinear temporal and spatial evolution dynamics of the propagating waves. Transition matrix method is employed to analyze the stability of the nonlinear time periodic wave-body interaction system. We identify the fundamental mechanism leading to the instability of the wave-body system and investigate the critical condition for the occurrence of the instability. We quantify the growth rate and dominant modes of unstable disturbances and study their dependence on physical parameters including body motion frequency and amplitude, body geometry, surface tension and basin size. Moreover, the long-time evolution dynamics of the unstable wave-bod y system including wave patterns and responsive body forces are also investigated.

  8. The rarefaction wave propagation in transparent windows

    NASA Astrophysics Data System (ADS)

    Glam, B.; Porat, E.; Horovitz, Y.; Yosef-Hai, A.

    2017-01-01

    The radial (lateral) rarefaction wave velocity of polymethyl methacrylate (PMMA) and Lithium Fluoride (LiF) windows were studied by plate impact experiments that were carried out at Soreq NRC up to a pressure of 146 kbar in the PMMA and 334 kbar in the LiF. The windows were glued to Lead targets that were impacted by a copper impactor. The VISAR measurement was done in the window interface with the target. This information was utilized to identify the radial rarefaction arrival time at the center of different diameter windows after the shock event, and served as a measurement to the radial wave velocity in the shocked material. It was found that for both windows, LiF or PMMA, the measured radial wave velocity increases with the pressure. Furthermore, this velocity is significantly higher compared to the expected longitudinal sound velocity at the same pressure, calculated by the Steinberg EOS in the PMMA and by ab initio calculation in the LiF. Here we present the experimental results and a comparison with analytical calculation of the sound velocity using the Steinberg EOS.

  9. Tamm-Langmuir surface waves

    NASA Astrophysics Data System (ADS)

    Golenitskii, K. Â. Yu.; Koshelev, K. Â. L.; Bogdanov, A. Â. A.

    2016-10-01

    In this work we develop a theory of surface electromagnetic waves localized at the interface of periodic metal-dielectric structures. We have shown that the anisotropy of plasma frequency in metal layers lifts the degeneracy of plasma oscillations and opens a series of photonic band gaps. This results in appearance of surface waves with singular density of states—we refer to them as Tamm-Langmuir waves. Such naming is natural since we have found that their properties are very similar to the properties of both bulk Langmuir and surface Tamm waves. Depending on the anisotropy parameters, Tamm-Langmuir waves can be either forward or backward waves. Singular density of states and high sensitivity of the dispersion to the anisotropy of the structure makes Tamm-Langmuir waves very promising for potential applications in nanophotonics and biosensing.

  10. A Study of Alfven Wave Propagation and Heating the Chromosphere

    NASA Astrophysics Data System (ADS)

    Tu, J.; Song, P.

    2013-12-01

    Alfven wave propagation, reflection and heating of the solar atmosphere are studied for a one-dimensional solar atmosphere by self-consistently solving plasma and neutral fluid equations and Maxwell's equations with incorporation of the Hall effect, strong electron-neutral, electron-ion, and ion-neutral collisions. The governing equations are very stiff because of the strong coupling between the charged and neutral fluids. We have developed a numerical model based on an implicit backward difference formula (BDF2) of second order accuracy both in time and space to overcome the stiffness. A non-reflecting boundary condition is applied to the top boundary of the simulation domain so that the wave reflection within the domain due to the density gradient can be unambiguously determined. It is shown that the Alfven waves are partially reflected throughout the chromosphere. The reflection is increasingly stronger at higher altitudes and the strongest reflection occurs at the transition region. The waves are damped in the lower chromosphere dominantly through Joule dissipation due to electron collisions with neutrals and ions. The heating resulting from the wave damping is strong enough to balance the radiation energy loss for the quiet chromosphere. The collisional dissipation of the Alfven waves in the weakly collisional corona is negligible. The heating rates are larger for weaker background magnetic fields. In addition, higher frequency waves are subject to heavier damping. There is an upper cutoff frequency, depending on the background magnetic field, above which the waves are completely damped. At the frequencies below which the waves are not strongly damped, the waves may be strongly reflected at the transition region. The reflected waves interacting with the upward propagating waves may produce power at their double frequencies, which leads to more damping. Due to the reflection and damping, the energy flux of the waves transmitted to the corona is one order of

  11. Temporal coherence of propagating surface plasmons.

    PubMed

    Wang, Tao; Comtet, Geneviève; Le Moal, Eric; Dujardin, Gérald; Drezet, Aurélien; Huant, Serge; Boer-Duchemin, Elizabeth

    2014-12-01

    The temporal coherence of propagating surface plasmons is investigated using a local, broadband plasmon source consisting of a scanning tunneling microscope. A variant of Young's experiment is performed using a sample consisting of a 200-nm-thick gold film perforated by two 1-μm-diameter holes (separated by 4 or 6 μm). The resulting interference fringes are studied as a function of hole separation and source bandwidth. From these experiments, we conclude that apart from plasmon decay in the metal, there is no further loss of plasmon coherence from propagation, scattering at holes, or other dephasing processes. As a result, the plasmon coherence time may be estimated from its spectral bandwidth.

  12. Design Optimization and Simulation of Wave Propagation in Metamaterials

    DTIC Science & Technology

    2014-09-24

    AFRL-OSR-VA-TR-2014-0232 Design Optimizations Simulation of Wave Propagation in Metamaterials Robert Freund MASSACHUSETTS INSTITUTE OF TECHNOLOGY...In Metamaterials FA9550-11-1-0141 FA9550-11-1-0141 Freund, Robert Peraire, Jaime Nguyen, Cuong Massachusetts Institute of Technology 77...cannot be achieved with conventional materials. For instance, metamaterials can be designed to bend electromagnetic waves around an object so that

  13. Analysis of wave propagation in periodic 3D waveguides

    NASA Astrophysics Data System (ADS)

    Schaal, Christoph; Bischoff, Stefan; Gaul, Lothar

    2013-11-01

    Structural Health Monitoring (SHM) is a growing research field in the realm of civil engineering. SHM concepts are implemented using integrated sensors and actuators to evaluate the state of a structure. Within this work, wave-based techniques are addressed. Dispersion effects for propagating waves in waveguides of different materials are analyzed for various different cross-sections. Since analytical theory is limited, a general approach based on the Waveguide Finite Element Method is applied. Numerical results are verified experimentally.

  14. Effects of ionospheric disturbances on high latitude radio wave propagation

    NASA Astrophysics Data System (ADS)

    Larsen, T. R.

    The effects of anomalous high-latitude ionization on radio wave propagation are described for the main types of disturbances, that is, sudden ionospheric disturbances, relativistic electron events, magnetic storms, auroral disturbances, and polar cap events. Examples of radio wave characteristics for such conditions are given for the frequencies between the very low (3-3000 Hz) and high (3-30 MHz) frequency domains.

  15. Regulation of Spontaneous Propagating Waves in the Embryonic Mouse Brainstem

    PubMed Central

    Bosma, Martha M.

    2017-01-01

    Spontaneous activity (SA) modulates many aspects of neural development, including neuronal phenotype, axon path-finding and synaptic connectivity. In the embryonic mouse brainstem, SA initially is recorded in isolated cells at embryonic day (E) 9.5, and 48 h later takes the form of propagating waves. The majority of these waves originate from one midline initiation zone (InZ), which is situated within the developing serotonergic raphe. InZ cells express a t-type calcium channel, are depolarized, and have high membrane resistance, the combination of which allows spontaneous depolarization. Propagating events require signaling at metabotropic 5-HT receptors; a possible source could be 5-HT released by newly differentiating 5-HT neurons. At E11.5, waves propagate throughout the hindbrain, with some events crossing into the midbrain. At E12.5, lateral cells (further than 150 μm from the midline) up-regulate expression of a K channel that increases resting conductance and hyperpolarizes them, preventing the propagation of waves laterally. At the same stage, cells in the isthmus up-regulate t-type calcium channels, permitting more events to cross into the midbrain, some of which form recurring loops of activity that are able to keep intracellular calcium levels high for many minutes. At E13.5, caudal hindbrain cells hyperpolarize utilizing the same K conductance, and 24 h later, at E14.5, the InZ hyperpolarizes and no longer undergoes spontaneous events. Thus, 5-HT receptor-dependent propagating waves in the embryonic brainstem are generated and propagated by regulation of membrane conductance. We discuss these mechanisms, and the possible role of this SA in neuronal development. PMID:28101007

  16. Propagation of Lamb waves in an immersed periodically grooved plate: experimental detection of the scattered converted backward waves.

    PubMed

    Harhad, Nadia; El-Kettani, Mounsif Ech-Cherif; Djelouah, Hakim; Izbicki, Jean-Louis; Predoi, Mihai Valentin

    2014-03-01

    Guided waves propagation in immersed plates with irregular surfaces has potential application to detection and assessment of the extent, depth and pattern of the irregularity. The complexity of the problem, due to the large number of involved parameters, has limited the number of existing studies. The simplest case of irregularities of practical interest is the two-dimensional corrosion profile. Even this case is in general so complex, that one can extract several amplitude dominant periodic surfaces only by using a Fourier spectrum of the surface. Guided waves in plates, with one or both free surfaces having periodic perturbations of different shapes, have been presented in specialized literature. In this paper is studied the propagation of Lamb waves in an aluminum plate with a periodic grooved surface on only one side and immersed in water. The interaction between an incident Lamb wave and the grating gives rise to retro-converted waves. Preliminary numerical simulation by the finite element method is performed in order to obtain key parameters for the experiments. It is shown that retro-converted waves radiating into the water are detectable although their amplitudes are small. The phonon relation is verified for the leaky Lamb modes. The damping coefficients of the leaky Lamb modes in the grooved immersed plate are evaluated.

  17. Impact of Fog on Electromagnetic Wave Propagation

    NASA Astrophysics Data System (ADS)

    Morris, Jonathon; Fleisch, Daniel

    2002-04-01

    This experiment was designed to explore the impact of fog on electromagnetic radiation, in particular microwaves and infrared light. For years law enforcement agencies have used microwave radiation (radar guns) to measure the speed of vehicles, and the last ten years has seen increased use of LIDAR, which uses 905-nm infrared radiation rather than microwaves. To evaulate the effect of fog on the operation of these devices, we have constructed a fog chamber with microwave and optical portals to allow light from a HeNe laser and 10.6-GHz microwaves to propagate through various densities of fog. Data is acquired using Vernier Logger Pro and analyzed using MATLAB and Mathematica. Using the attenuation of the laser light to determine fog density, the impact of fog on the signal-to-noise ratio of both microwave and IR devices may be quantified, and the maximum useful range may be calculated.

  18. Skewon field and cosmic wave propagation

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou

    2014-03-01

    We study the propagation of the Hehl-Obukhov-Rubilar skewon field in weak gravity field/dilute matter or with weak violation of the Einstein Equivalence Principle (EEP), and further classify it into Type I and Type II skewons. From the dispersion relation we show that no dissipation/no amplification condition implies that the additional skewon field must be of Type II. For Type I skewon field, the dissipation/amplification is proportional to the frequency and the CMB spectrum would deviate from Planck spectrum. From the high precision agreement of the CMB spectrum with 2.755 K Planck spectrum, we constrain the Type I cosmic skewon field |χijkl(SkI)| to ⩽ a few ×10-35. The skewon part of constitutive tensor constructed from asymmetric metric is of Type II, hence it is allowed. This study may also be applied to macroscopic electrodynamics in the case of laser pumped medium or dissipative medium.

  19. Numerical modeling of acoustic and gravity waves propagation in the atmosphere using a spectral element method

    NASA Astrophysics Data System (ADS)

    Martin, Roland; Brissaud, Quentin; Garcia, Raphael; Komatitsch, Dimitri

    2015-04-01

    During low-frequency events such as tsunamis, acoustic and gravity waves are generated and quickly propagate in the atmosphere. Due to the exponential decrease of the atmospheric density with the altitude, the conservation of the kinetic energy imposes that the amplitude of those waves increases (to the order of 105 at 200km of altitude), which allows their detection in the upper atmosphere. This propagation bas been modelled for years with different tools, such as normal modes modeling or to a greater extent time-reversal techniques, but a low-frequency multi-dimensional atmospheric wave modelling is still crucially needed. A modeling tool is worth of interest since there are many different sources, as earthquakes or atmospheric explosions, able to propagate acoustic and gravity waves. In order to provide a fine modeling of the precise observations of these waves by GOCE satellite data, we developed a new numerical modeling tool. By adding some developments to the SPECFEM package that already models wave propagation in solid, porous or fluid media using a spectral element method, we show here that acoustic and gravity waves propagation can now be modelled in a stratified attenuating atmosphere with a bottom forcing or an atmospheric source. The bottom forcing feature has been implemented to easily model the coupling with the Earth's or ocean's vibrating surfaces but also huge atmospheric events. Atmospheric attenuation is also introduced since it has a crucial impact on acoustic wave propagation. Indeed, it plays the role of a frequency filter that damps high-frequency signals.

  20. Excitation and Propagation of Electromagnetic Waves: RBSP Observation and Modeling

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Xiao, F.; Yang, C.; Liu, S.; Spence, H. E.; Geoffrey, R.; Funsten, H. O.; Blake, J. B.; Baker, D. N.; Wygant, J. R.

    2015-12-01

    During the recovery phase of the geomagnetic storm on 30-31 March 2013, Van Allen Probe A detected enhanced magnetosonic (MS) waves in a broad range of L = 1.8-4.7 and magnetic local time (MLT) = 17-22 h, with a frequency range ˜10-100 Hz. In the meanwhile, distinct proton ring distributions with peaks at energies of ˜10 keV, were also observed in L = 3.2-4.6 and L = 5.0-5.6. Using a subtracted bi-Maxwellian distribution to model the observed proton ring distribution, we perform three-dimensional ray tracing to investigate the instability, propagation, and spatial distribution of MS waves. Numerical results show that nightside MS waves are produced by proton ring distribution and grow rapidly from the source location L = 5.6 to the location L = 5.0 but remain nearly stable at locations L < 5.0. Moreover, waves launched toward lower L shells with different initial azimuthal angles propagate across different MLT regions with divergent paths at first, then gradually turn back toward higher L shells and propagate across different MLT regions with convergent paths. The current results further reveal that MS waves are generated by a ring distribution of ˜10 keV proton and proton ring in one region can contribute to the MS wave power in another region.

  1. Wave propagation in carbon nanotubes under shear deformation

    NASA Astrophysics Data System (ADS)

    Dong, K.; Wang, X.

    2006-06-01

    This paper reports the results of an investigation on the effect of shear deformations on wave propagation in carbon nanotubes embedded in an elastic matrix. A multi-walled carbon nanotube is considered as a multiple shell coupled together through van der Waals forces between two adjacent tubes. The surrounding matrix is considered as a spring element defined by the Winkler model. Using the variational calculus of Hamilton's principle, dynamic governing equations considering the shear deformation and rotary inertia terms are derived. Numerical examples describe the effects of shear deformation, rotary inertia and elastic matrix on the velocity, the critical frequency, the cut-off frequency and the amplitude ratio of wave propagation in multi-walled carbon nanotubes embedded in an elastic matrix, respectively. The results obtained show that wave propagation in carbon nanotubes appears in a critical frequency or a cut-off frequency for different wave modes; the effect of shear deformation decreases the value of critical frequency; the critical frequency increases as the matrix stiffness increases; the inertia rotary has an obvious influence on the wave velocity for some wave modes in the higher frequency region.

  2. Effect of fuel stratification on detonation wave propagation

    NASA Astrophysics Data System (ADS)

    Masselot, Damien; Fievet, Romain; Raman, Venkat

    2016-11-01

    Rotating detonation engines (RDEs) form a class of pressure-gain combustion systems of higher efficiency compared to conventional gas turbine engines. One of the key features of the design is the injection system, as reactants need to be continuously provided to the detonation wave to sustain its propagation speed. As inhomogeneities in the reactant mixture can perturb the detonation wave front, premixed fuel jet injectors might seem like the most stable solution. However, this introduces the risk of the detonation wave propagating through the injector, causing catastrophic failure. On the other hand, non-premixed fuel injection will tend to quench the detonation wave near the injectors, reducing the likelihood of such failure. Still, the effects of such non-premixing and flow inhomogeneities ahead of a detonation wave have yet to be fully understood and are the object of this study. A 3D channel filled with O2 diluted in an inert gas with circular H2 injectors is simulated as a detonation wave propagates through the system. The impact of key parameters such as injector spacing, injector size, mixture composition and time variations will be discussed. PhD Candidate.

  3. Stress Wave Propagation in Two-dimensional Buckyball Lattice

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Zheng, Bowen

    2016-11-01

    Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices.

  4. Linear and nonlinear propagation of water wave groups

    NASA Technical Reports Server (NTRS)

    Pierson, W. J., Jr.; Donelan, M. A.; Hui, W. H.

    1992-01-01

    Results are presented from a study of the evolution of waveforms with known analytical group shapes, in the form of both transient wave groups and the cloidal (cn) and dnoidal (dn) wave trains as derived from the nonlinear Schroedinger equation. The waveforms were generated in a long wind-wave tank of the Canada Centre for Inland Waters. It was found that the low-amplitude transients behaved as predicted by the linear theory and that the cn and dn wave trains of moderate steepness behaved almost as predicted by the nonlinear Schroedinger equation. Some of the results did not fit into any of the available theories for waves on water, but they provide important insight on how actual groups of waves propagate and on higher-order effects for a transient waveform.

  5. Stress Wave Propagation in Two-dimensional Buckyball Lattice

    PubMed Central

    Xu, Jun; Zheng, Bowen

    2016-01-01

    Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices. PMID:27892963

  6. Propagating Stress Waves During Epithelial Expansion

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya; Utuje, Kazage J. C.; Marchetti, M. Cristina

    2015-06-01

    Coordinated motion of cell monolayers during epithelial wound healing and tissue morphogenesis involves mechanical stress generation. Here we propose a model for the dynamics of epithelial expansion that couples mechanical deformations in the tissue to contractile activity and polarization in the cells. A new ingredient of our model is a feedback between local strain, polarization, and contractility that naturally yields a mechanism for viscoelasticity and effective inertia in the cell monolayer. Using a combination of analytical and numerical techniques, we demonstrate that our model quantitatively reproduces many experimental findings [Nat. Phys. 8, 628 (2012)], including the buildup of intercellular stresses, and the existence of traveling mechanical waves guiding the oscillatory monolayer expansion.

  7. Wave Propagation through Axially Symmetric Dielectric Shells.

    DTIC Science & Technology

    1981-06-01

    1-8 2..2 Sc lr .o en i.. . . . . ..........eo oe e .eoe. o. eeeeo. oo....... 2 1 1.2 Baekground: Analytical Methods Based on Flat Sheet Appr oatei...Fields Near a Radome Consist of Constituent Waves. 1-2 - -t . -__-_-_-_-_-_-_..._._._._._._. 1.2 BACKGROUND: ANALYTICAL METHODS BASED ON FLAT SHEET...2.4.2. So A2 ikR x (4 ) = (K-1) E feik Cos2 dado dz (2-100) x 2 R2 o where = (aa - ap cos - zz’) R - 1 (2-101) and -11 = [6 (a+6p)-6 (a-6p)-a 1. (2

  8. Elastic wave propagation in finitely deformed layered materials

    NASA Astrophysics Data System (ADS)

    Galich, Pavel I.; Fang, Nicholas X.; Boyce, Mary C.; Rudykh, Stephan

    2017-01-01

    We analyze elastic wave propagation in highly deformable layered media with isotropic hyperelastic phases. Band gap structures are calculated for the periodic laminates undergoing large deformations. Compact explicit expressions for the phase and group velocities are derived for the long waves propagating in the finitely deformed composites. Elastic wave characteristics and band gaps are shown to be highly tunable by deformation. The influence of deformation on shear and pressure wave band gaps for materials with various composition and constituent properties are studied, finding advantageous compositions for producing highly tunable complete band gaps in low-frequency ranges. The shear wave band gaps are influenced through the deformation induced changes in effective material properties, whereas pressure wave band gaps are mostly influenced by deformation induced geometry changes. The wide shear wave band gaps are found in the laminates with small volume fractions of a soft phase embedded in a stiffer material; pressure wave band gaps of the low-frequency range appear in the laminates with thin highly compressible layers embedded in a nearly incompressible phase. Thus, by constructing composites with a small amount of a highly compressible phase, wide complete band gaps at the low-frequency range can be achieved; furthermore, these band gaps are shown to be highly tunable by deformation.

  9. Surface acoustic wave microfluidics.

    PubMed

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2013-09-21

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next.

  10. Surface acoustic wave microfluidics

    PubMed Central

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S.; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2014-01-01

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering, and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting, and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next. PMID:23900527

  11. Surface wave acoustics of granular packing under gravity

    SciTech Connect

    Clement, Eric; Andreotti, Bruno; Bonneau, Lenaic

    2009-06-18

    Due to the non-linearity of Hertzian contacts, the speed of sound in granular matter increases with pressure. For a packing under gravity and in the presence of a free surface, bulk acoustic waves cannot propagate due to the inherent refraction toward the surface (the mirage effect). Thus, only modes corresponding to surface waves (Raleigh-Hertz modes) are able to propagate the acoustic signal. First, based on a non-linear elasticity model, we describe the main features associated to these surface waves. We show that under gravity, a granular packing is from the acoustic propagation point of view an index gradient waveguide that selects modes of two distinct families i.e. the sagittal and transverse waves localized in the vicinity of the free surface. A striking feature of these surface waves is the multi-modal propagation: for both transverse and sagittal waves, we show the existence of a infinite but discrete series of propagating modes. In each case, we determine the mode shape and and the corresponding dispersion relation. In the case of a finite size system, a geometric waveguide is superimposed to the index gradient wave guide. In this later case, the dispersion relations are modified by the appearance of a cut-off frequency that scales with depth. The second part is devoted to an experimental study of surface waves propagating in a granular packing confined in a long channel. This set-up allows to tune a monomodal emission by taking advantage of the geometric waveguide features combined with properly designed emitters. For both sagittal and transverses waves, we were able to isolate a single mode (the fundamental one) and to plot the dispersion relation. This measurements agree well with the Hertzian scaling law as predicted by meanfield models. Furthermore, it allows us to determine quantitatively relations on the elastic moduli. However, we observe that our data yield a shear modulus abnormally weak when compared to several meanfield predictions.

  12. A mechanism of stick-slip fault sliding without friction rate dependence and supersonic wave propagation

    NASA Astrophysics Data System (ADS)

    Karachevtseva, Iuliia; Dyskin, Arcady; Pasternak, Elena

    2015-04-01

    Stick-slip sliding is often observed at various scales and in particular in fault sliding and the accompanied seismic events. Stick-slip is conventionally associated with rate-dependent friction, in particular the intermittent change between static and kinetic friction. However the accumulation of elastic energy in the sliding plates on both sides of the fault can produce oscillations in the velocity of sliding even if the friction coefficient is constant. This manifests itself in terms of oscillations in the sliding velocity somewhat resembling the stick-slip movement. Furthermore, over long faults the sliding exhibits wave-like propagation. We present a model that shows that the zones of non-zero sliding velocities propagate along the fault with the velocity of p-wave. The mechanism of such fast wave propagation is the normal (tensile/compressive) stresses in the neighbouring elements (normal stresses on the planes normal to the fault surface). The strains associated with these stresses are controlled by the Young's modulus rather than shear modulus resulting in the p-wave velocity of propagation of the sliding zone. This manifests itself as a supersonic (with respect to the s-waves) propagation of an apparent shear rupture.

  13. Seismic Wave Propagation in Stratified Media

    NASA Astrophysics Data System (ADS)

    Frazer, Neil

    In order to fully appreciate this book, it is necessary to recall some of the recent history of body wave seismology. Until the late 1960s, most of our knowledge of subsurface structure came from travel time studies. Pekeris [1948] and Haskell [1953] had shown how to model seismic data, but existing computers limited the use of their methods to the computation of dispersion curves for simple earth models. Then Helmberger [1968] used the Cagniard-de Hoop method [de Hoop, 1960] to model refraction arrivals and thereby demonstrated the practicality of seismic modeling in the time domain. The Cagniard-de Hoop method is a generalized ray method, which means (in practical terms) that it is good for synthesizing first motions but not so good for the later parts of the seismogram. Accordingly, Fuchs and Muller [1971] returned to the methods of Pekeris and Haskell and showed that with large modern computers, the whole seismogram could be synthesized. However, problems remained, because Haskell matrices are numerically unstable when used to synthesize SV body waves. Methods of overcoming this instability were found (and are still being found), but they are all, with the possible exception of the methods of Schmidt and Tango [1986] and of Chin et al. [1984], complicated, difficult to program, and lacking in physical insight.

  14. Gravity Forcing Of Surface Waves

    NASA Astrophysics Data System (ADS)

    Kenyon, K. E.

    2005-12-01

    Surface waves in deep water are forced entirely by gravity at the air-sea interface when no other forces act tangent to the surface. Then according to Newton's second law, the fluid acceleration parallel to the surface must equal the component of gravity parallel to the surface. Between crest and trough the fluid accelerates; between trough and crest the fluid decelerates. By replacing Bernoulli's law, gravity forcing becomes the dynamic boundary condition needed to solve the mathematical problem of these waves. Irrotational waves with a sinusoidal profile satisfy the gravity forcing condition, with the usual dispersion relation, provided the slope is small compared to one, as is true also of the Stokes development. However, the exact wave shape can be calculated using the gravity forcing method in a way that is less complex and less time consuming than that of the Stokes perturbation expansion. To the second order the surface elevation is the same as the Stokes result; the third order calculation has not been made yet. Extensions of the gravity forcing method can easily be carried out for multiple wave trains, solitary waves and bores, waves in finite constant mean depths, and internal waves in a two-layer system. For shoaling surface waves gravity forcing provides a physical understanding of the progressive steepening often observed near shore.

  15. Numerical simulation of propagation of the MHD waves in sunspots

    NASA Astrophysics Data System (ADS)

    Parchevsky, K.; Kosovichev, A.; Khomenko, E.; Olshevsky, V.; Collados, M.

    2010-11-01

    We present results of numerical 3D simulation of propagation of MHD waves in sunspots. We used two self consistent magnetohydrostatic background models of sunspots. There are two main differences between these models: (i) the topology of the magnetic field and (ii) dependence of the horizontal profile of the sound speed on depth. The model with convex shape of the magnetic field lines near the photosphere has non-zero horizorntal perturbations of the sound speed up to the depth of 7.5 Mm (deep model). In the model with concave shape of the magnetic field lines near the photosphere Δ c/c is close to zero everywhere below 2 Mm (shallow model). Strong Alfven wave is generated at the wave source location in the deep model. This wave is almost unnoticeable in the shallow model. Using filtering technique we separated magnetoacoustic and magnetogravity waves. It is shown, that inside the sunspot magnetoacoustic and magnetogravity waves are not spatially separated unlike the case of the horizontally uniform background model. The sunspot causes anisotropy of the amplitude distribution along the wavefront and changes the shape of the wavefront. The amplitude of the waves is reduced inside the sunspot. This effect is stronger for the magnetogravity waves than for magnetoacoustic waves. The shape of the wavefront of the magnetogravity waves is distorted stronger as well. The deep model causes bigger anisotropy for both mgnetoacoustic and magneto gravity waves than the shallow model.

  16. Millimetre Wave Propagation Over the Sea

    DTIC Science & Technology

    1990-10-29

    platform with high inertia (natural period 40 s) in order to eliminate horizontal accelarations due to pitching, rolling and the mooring of the buoy...vertical velocity of the particles tends towards zero with great depths. - ondition of constant pressure at the free surface (dynamic condition). - Condition...of hydrodynamic equilibrum or kinematic condition. This gives expression to the fact that the water particles follow the surface movement. These

  17. Gas sensing with surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Martin, S. J.; Schweizer, K. S.; Ricco, A. J.; Zipperian, T. E.

    1985-03-01

    The use of a ZnO-on-Si surface acoustic wave (SAW) resonator as a gas sensor is discussed. In particular, the sensitivity of the device to organic vapors is examined. The planar nature of the SAW device, in which the acoustic energy is confined to within roughly one acoustic wavelength of the surface, makes the device extremely sensitive to surface perturbations. This characteristic has been exploited in the construction of SAW gas sensors in which the surface wave propagation characteristics are altered by species adsorbed from the ambient gas. The porous nature of the sputtered ZnO film, in conjunction with the microbalance capability of the SAW device, gives the sensor the ability to distinguish molecules on the basis of both size and mass.

  18. A compendium of millimeter wave propagation studies performed by NASA

    NASA Technical Reports Server (NTRS)

    Kaul, R.; Rogers, D.; Bremer, J.

    1977-01-01

    Key millimeter wave propagation experiments and analytical results were summarized. The experiments were performed with the Ats-5, Ats-6 and Comstar satellites, radars, radiometers and rain gage networks. Analytic models were developed for extrapolation of experimental results to frequencies, locations, and communications systems.

  19. Electromagnetic wave propagation in rain and polarization effects

    PubMed Central

    OKAMURA, Sogo; OGUCHI, Tomohiro

    2010-01-01

    This paper summarizes our study on microwave and millimeter-wave propagation in rain with special emphasis on the effects of polarization. Starting from a recount of our past findings, we will discuss developments with these and how they are connected with subsequent research. PMID:20551593

  20. Wave propagation in turbulent media: use of convergence acceleration methods.

    PubMed

    Baram, A; Tsadka, S; Azar, Z; Tur, M

    1988-06-01

    We propose the use of convergence acceleration methods for the evaluation of integral expressions of an oscillatory nature, often encountered in the study of optical wave propagation in the turbulent atmosphere. These techniques offer substantial savings in computation time with appreciable gain in accuracy. As an example, we apply the Levin u acceleration scheme to the problem of remote sensing of transversal wind profiles.

  1. Normal Wave Propagation Velocity in a Static Web.

    DTIC Science & Technology

    1986-12-01

    34 " " ’ . " . " . " " . " , " " . " -" " " " . " " . " " " " . " * . - " " " , 4 . " . " . " " " . " " "." "-" "." " . . . . . " " " " -w A- INah . . . . . . - - 1 NORMAL WAVE PROPAGATION VELOCITY IN A STATIC WEB By

  2. Corrigendum and addendum. Modeling weakly nonlinear acoustic wave propagation

    DOE PAGES

    Christov, Ivan; Christov, C. I.; Jordan, P. M.

    2014-12-18

    This article presents errors, corrections, and additions to the research outlined in the following citation: Christov, I., Christov, C. I., & Jordan, P. M. (2007). Modeling weakly nonlinear acoustic wave propagation. The Quarterly Journal of Mechanics and Applied Mathematics, 60(4), 473-495.

  3. Wave propagation of myocardial stretch: correlation with myocardial stiffness.

    PubMed

    Pislaru, Cristina; Pellikka, Patricia A; Pislaru, Sorin V

    2014-01-01

    The mechanism of flow propagation during diastole in the left ventricle (LV) has been well described. Little is known about the associated waves propagating along the heart walls. These waves may have a mechanism similar to pulse wave propagation in arteries. The major goal of the study was to evaluate the effect of myocardial stiffness and preload on this wave transmission. Longitudinal late diastolic deformation and wave speed (Vp) of myocardial stretch in the anterior LV wall were measured using sonomicrometry in 16 pigs. Animals with normal and altered myocardial stiffness (acute myocardial infarction) were studied with and without preload alterations. Elastic modulus estimated from Vp (E VP; Moens-Korteweg equation) was compared to incremental elastic modulus obtained from exponential end-diastolic stress-strain relation (E SS). Myocardial distensibility and α- and β-coefficients of stress-strain relations were calculated. Vp was higher at reperfusion compared to baseline (2.6 ± 1.3 vs. 1.3 ± 0.4 m/s; p = 0.005) and best correlated with E SS (r2 = 0.80, p < 0.0001), β-coefficient (r2 = 0.78, p < 0.0001), distensibility (r2 = 0.47, p = 0.005), and wall thickness/diameter ratio (r2 = 0.42, p = 0.009). Elastic moduli (E VP and E SS) were strongly correlated (r2 = 0.83, p < 0.0001). Increasing preload increased Vp and E VP and decreased distensibility. At multivariate analysis, E SS, wall thickness, and end-diastolic and systolic LV pressures were independent predictors of Vp (r2 model = 0.83, p < 0.0001). In conclusion, the main determinants of wave propagation of longitudinal myocardial stretch were myocardial stiffness and LV geometry and pressure. This local wave speed could potentially be measured noninvasively by echocardiography.

  4. Active micromixer using surface acoustic wave streaming

    SciTech Connect

    Branch; Darren W. , Meyer; Grant D. , Craighead; Harold G.

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  5. Wave Propagation in the Vicinities of Rock Fractures Under Obliquely Incident Wave

    NASA Astrophysics Data System (ADS)

    Zou, Yang; Li, Jianchun; He, Lei; laloui, Lyesse; Zhao, Jian

    2016-05-01

    Though obliquely incident plane wave across rock fractures has been extensively investigated by theoretical analysis, the quantitative identification of each wave emerged from fractures has not been achieved either in numerical simulation or laboratory experiment. On the other hand, there are no theoretical results describing the stress/velocity state of the rocks beside a fracture. The superposition of the multiple waves propagating in the media results in the variation of the stress/velocity state. To understand the superposition of the wave components in the adjacent rocks of a facture, based on the geometrical analysis of the wave paths, the lag times among passing waves at an arbitrary point are determined. The normalised critical distances from the fracture to the measuring locations where the corresponding harmonic waves depart from other waves for a certain duration are then derived. Discussion on the correction for an arbitrary incident wave is then carried out considering the changes of the duration of the reflected and transmitted waves. Under the guidance of the analysis, wave superposition is performed for theoretical results and separated waves are obtained from numerical model. They are demonstrated to be consistent with each other. The measurement and the data processing provide an approach for wave separation in a relatively unbounded media. In addition, based on the mechanical analysis on the wave front, an indirect wave separation method is proposed which provides a possibility for laboratory experiments of wave propagation with an arbitrary incident angle.

  6. Effects of D region ionization on radio wave propagation

    NASA Technical Reports Server (NTRS)

    Larsen, T. R.

    1979-01-01

    The effects of anomalous D region ionization upon radio wave propagation are described for the main types of disturbances: sudden ionospheric disturbances, relativistic electron events, magnetic storms, auroral disturbances, polar cap events, and stratospheric warmings. Examples of radio wave characteristics for such conditions are given for the frequencies between the extremely low (3-3000 Hz) and high (3-30 MHz) frequency domains. Statistics on the disturbance effects and radio wave data are given in order to contribute towards the evaluation of possibilities for predicting the radio effects.

  7. Shock Wave Propagation through Aerated Water

    DTIC Science & Technology

    2007-11-02

    tourmaline pressure gauges were placed at standoff distances from the charge of 6.1 in., 8.1 in., and 12.5 in. as shown in Figure 2-7. In each experiment...gauges were coated with Rainx to reduce the surface tension between the gauges and the bubbles. Figure 2-8 shows the Rainx-coated tourmaline pressure

  8. Excitation of coherent propagating spin waves by pure spin currents

    PubMed Central

    Demidov, Vladislav E.; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O.

    2016-01-01

    Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics. PMID:26818232

  9. Spiral Calcium Wave Propagation and Annihilation in Xenopus laevis Oocytes

    NASA Astrophysics Data System (ADS)

    Lechleiter, James; Girard, Steven; Peralta, Ernest; Clapham, David

    1991-04-01

    Intracellular calcium (Ca2+) is a ubiquitous second messenger. Information is encoded in the magnitude, frequency, and spatial organization of changes in the concentration of cytosolic free Ca2+. Regenerative spiral waves of release of free Ca2+ were observed by confocal microscopy in Xenopus laevis oocytes expressing muscarinic acetylcholine receptor subtypes. This pattern of Ca2+ activity is characteristic of an intracellular milieu that behaves as a regenerative excitable medium. The minimal critical radius for propagation of focal Ca2+ waves (10.4 micrometers) and the effective diffusion constant for the excitation signal (2.3 x 10-6 square centimeters per second) were estimated from measurements of velocity and curvature of circular wavefronts expanding from foci. By modeling Ca2+ release with cellular automata, the absolute refractory period for Ca2+ stores (4.7 seconds) was determined. Other phenomena expected of an excitable medium, such as wave propagation of undiminished amplitude and annihilation of colliding wavefronts, were observed.

  10. Quasinormal modes and classical wave propagation in analogue black holes

    SciTech Connect

    Berti, Emanuele; Cardoso, Vitor; Lemos, Jose P.S.

    2004-12-15

    Many properties of black holes can be studied using acoustic analogues in the laboratory through the propagation of sound waves. We investigate in detail sound wave propagation in a rotating acoustic (2+1)-dimensional black hole, which corresponds to the 'draining bathtub' fluid flow. We compute the quasinormal mode frequencies of this system and discuss late-time power-law tails. Because of the presence of an ergoregion, waves in a rotating acoustic black hole can be superradiantly amplified. We also compute superradiant reflection coefficients and instability time scales for the acoustic black hole bomb, the equivalent of the Press-Teukolsky black hole bomb. Finally we discuss quasinormal modes and late-time tails in a nonrotating canonical acoustic black hole, corresponding to an incompressible, spherically symmetric (3+1)-dimensional fluid flow.

  11. Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity

    NASA Astrophysics Data System (ADS)

    Arda, Mustafa; Aydogdu, Metin

    2016-03-01

    Torsional wave propagation in multiwalled carbon nanotubes is studied in the present work. Governing equation of motion of multiwalled carbon nanotube is obtained using Eringen's nonlocal elasticity theory. The effect of van der Waals interaction coefficient is considered between inner and outer nanotubes. Dispersion relations are obtained and discussed in detail. Effect of nonlocal parameter and van der Waals interaction to the torsional wave propagation behavior of multiwalled carbon nanotubes is investigated. It is obtained that torsional van der Waals interaction between adjacent tubes can change the rotational direction of multiwalled carbon nanotube as in-phase or anti-phase. The group and escape velocity of the waves converge to a limit value in the nonlocal elasticity approach.

  12. Simulation of wave propagation in three-dimensional random media

    NASA Technical Reports Server (NTRS)

    Coles, William A.; Filice, J. P.; Frehlich, R. G.; Yadlowsky, M.

    1993-01-01

    Quantitative error analysis for simulation of wave propagation in three dimensional random media assuming narrow angular scattering are presented for the plane wave and spherical wave geometry. This includes the errors resulting from finite grid size, finite simulation dimensions, and the separation of the two-dimensional screens along the propagation direction. Simple error scalings are determined for power-law spectra of the random refractive index of the media. The effects of a finite inner scale are also considered. The spatial spectra of the intensity errors are calculated and compared to the spatial spectra of intensity. The numerical requirements for a simulation of given accuracy are determined for realizations of the field. The numerical requirements for accurate estimation of higher moments of the field are less stringent.

  13. Obliquely Propagating Electromagnetic Waves in Magnetized Kappa Plasmas

    NASA Astrophysics Data System (ADS)

    Gaelzer, R.

    2015-12-01

    The effects of velocity distribution functions (VDFs) that exhibit a power-law dependence on the high-energy tail have been the subjectof intense research by the space plasma community. Such functions, known as kappa or superthermal distributions, have beenfound to provide a better fitting to the VDF measured by spacecraft in the solar wind. One of the problems that is being addressed on this new light is the temperature anisotropy of solar wind protons and electrons. An anisotropic kappa VDF contains a large amount of free energy that can excite waves in the solar wind. Conversely, the wave-particle interaction is important to determine the shape of theobserved particle distributions.In the literature, the general treatment for waves excited by (bi-)Maxwellian plasmas is well-established. However, for kappa distributions, either isotropic or anisotropic, the wave characteristics have been studied mostly for the limiting cases of purely parallel or perpendicular propagation. Contributions for the general case of obliquely-propagating electromagnetic waves have been scarcely reported so far. The absence of a general treatment prevents a complete analysis of the wave-particle interaction in kappa plasmas, since some instabilities, such as the firehose, can operate simultaneously both in the parallel and oblique directions.In a recent work [1], we have obtained expressions for the dielectric tensor and dispersion relations for the low-frequency, quasi-perpendicular dispersive Alfvén waves resulting from a kappa VDF. In the present work, we generalize the formalism introduced by [1] for the general case of electrostatic and/or electromagnetic waves propagating in a kappa plasma in any frequency range and for arbitrary angles.We employ an isotropic distribution, but the methods used here can be easily applied to more general anisotropic distributions,such as the bi-kappa or product-bi-kappa. [1] R. Gaelzer and L. F. Ziebell, Journal of Geophysical Research 119, 9334

  14. Propagation Dynamics of Nonspreading Cosine-Gauss Water-Wave Pulses.

    PubMed

    Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady

    2015-12-18

    Linear gravity water waves are highly dispersive; therefore, the spreading of initially short wave trains characterizes water surface waves, and is a universal property of a dispersive medium. Only if there is sufficient nonlinearity does this envelope admit solitary solutions which do not spread and remain in fixed forms. Here, in contrast to the nonlinear localized wave packets, we present both theoretically and experimentally a new type of linearly nondispersive water wave, having a cosine-Gauss envelope, as well as its higher-order Hermite cosine-Gauss variations. We show that these waves preserve their width despite the inherent dispersion while propagating in an 18-m wave tank, accompanied by a slowly varying carrier-envelope phase. These wave packets exhibit self-healing; i.e., they are restored after bypassing an obstacle. We further demonstrate that these nondispersive waves are robust to weakly nonlinear perturbations. In the strong nonlinear regime, symmetry breaking of these waves is observed, but their cosine-Gauss shapes are still approximately preserved during propagation.

  15. Propagation Dynamics of Nonspreading Cosine-Gauss Water-Wave Pulses

    NASA Astrophysics Data System (ADS)

    Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady

    2015-12-01

    Linear gravity water waves are highly dispersive; therefore, the spreading of initially short wave trains characterizes water surface waves, and is a universal property of a dispersive medium. Only if there is sufficient nonlinearity does this envelope admit solitary solutions which do not spread and remain in fixed forms. Here, in contrast to the nonlinear localized wave packets, we present both theoretically and experimentally a new type of linearly nondispersive water wave, having a cosine-Gauss envelope, as well as its higher-order Hermite cosine-Gauss variations. We show that these waves preserve their width despite the inherent dispersion while propagating in an 18-m wave tank, accompanied by a slowly varying carrier-envelope phase. These wave packets exhibit self-healing; i.e., they are restored after bypassing an obstacle. We further demonstrate that these nondispersive waves are robust to weakly nonlinear perturbations. In the strong nonlinear regime, symmetry breaking of these waves is observed, but their cosine-Gauss shapes are still approximately preserved during propagation.

  16. Attenuation of propagating spin wave induced by layered nanostructures

    NASA Astrophysics Data System (ADS)

    Sekiguchi, K.; Vader, T. N.; Yamada, K.; Fukami, S.; Ishiwata, N.; Seo, S. M.; Lee, S. W.; Lee, K. J.; Ono, T.

    2012-03-01

    Spin wave attenuation in the layered [FeNi/Pt]6/FeNi thin films was investigated by the time-domain electrical measurement. The spin-wave waveform was detected with an asymmetric coplanar strip transmission line, as an induced voltage flowing into a fast oscilloscope. We report that the amplitude of a spin-wave packet was systematically changed by controlling the thickness of a platinum layer, up to a maximum change of 50%. The virtues of spin wave, ultrafast propagation velocity and non-reciprocal emission, are preserved in this manner. This means that the Pt layer can manipulate an arbitral power-level of spin-wave input signal (reliable attenuator).

  17. Nonlinear propagation of stress waves during high speed cutting

    NASA Astrophysics Data System (ADS)

    Jiang, Yifei; Zhang, Jun; He, Yong; Liu, Hongguang; Zhao, Wanhua

    2016-11-01

    Stress waves induced by high speed cutting (HSC) were demonstrated visually, and the dependence of their nonlinear propagation characteristics on cutting speed was studied. The time-resolved photoelasticity imaging technique in the bright-field mode was used to observe stress waves in the workpiece, and the obtained photoelastic images were evaluated semi-quantitatively. The experimental results were quantitatively reproduced via the lattice model, which helped explain our observations by analyzing the superposition of stress waves. According to the further simulation, we find that as the cutting speed increases, the stress intensity of the workpiece near the cutting tool is not in a linear enhancement process, with strong distortion of stress field under the superposition of different stress wave components. These help us have a deep understanding about the HSC mechanism under stress waves' effects.

  18. LF radio wave propagation at equatorial regions

    NASA Astrophysics Data System (ADS)

    Boudjada, Mohammed Y.; Sawas, Sami; Galopeau, Patrick H. M.; Eichelberger, Hans; Schwingenschuh, Konrad

    2016-04-01

    We analyse night-side electric field observations recorded by the ICE experiment onboard the DEMETER micro-satellite. We show the presence of multiple spaced frequency bands between 30 kHz and 500 kHz, and sometimes in the range 3 MHz - 3.5 MHz, the upper frequency of the instrument. The frequency bandwidth is found to be less than 5 kHz and the time duration about several minutes. The frequency bands are recorded close to the equatorial plane, when the satellite latitudes extend between -05° and +05°. Particular enhancements occur at two geographical longitudes: 130°E and 160°W. Those LF radio waves may be associated to density irregularities in the equatorial region. These irregularities are occurring along the ray path between the emission source region and the satellite. We discuss in this study the locations where such frequency bands are generated, and we show that the observed spectral features may be comparable to the kilometric continuum radiation which is considered as a non-thermal radio emission.

  19. Solitary surface waves on a magnetized plasma cylinder

    NASA Astrophysics Data System (ADS)

    Gradov, O. M.; Stenflo, L.; Sünder, D.

    1985-02-01

    We analyse high-frequency electrostatic solitary surface waves that propagate along a plasma cylinder in the presence of a constant axial magnetic field. The width of such a solitary wave, which is found to be inversely proportional to its amplitude, is expressed as a function of the magnitude of the external magnetic field.

  20. Conversion of evanescent Lamb waves into propagating waves via a narrow aperture edge.

    PubMed

    Yan, Xiang; Yuan, Fuh-Gwo

    2015-06-01

    This paper presents a quantitative study of conversion of evanescent Lamb waves into propagating in isotropic plates. The conversion is substantiated by prescribing time-harmonic Lamb displacements/tractions through a narrow aperture at an edge of a semi-infinite plate. Complex-valued dispersion and group velocity curves are employed to characterize the conversion process. The amplitude coefficient of the propagating Lamb modes converted from evanescent is quantified based on the complex reciprocity theorem via a finite element analysis. The power flow generated into the plate can be separated into radiative and reactive parts made on the basis of propagating and evanescent Lamb waves, where propagating Lamb waves are theoretically proved to radiate pure real power flow, and evanescent Lamb waves carry reactive pure imaginary power flow. The propagating power conversion efficiency is then defined to quantitatively describe the conversion. The conversion efficiency is strongly frequency dependent and can be significant. With the converted propagating waves from evanescent, sensors at far-field can recapture some localized damage information that is generally possessed in evanescent waves and may have potential application in structural health monitoring.

  1. ATS-6 mm-wave propagation experiment

    NASA Technical Reports Server (NTRS)

    Davis, C. C.; Ekstrom, P. A.

    1976-01-01

    Attenuation on a Space-to-Earth path was measured at 20 GHz for a ground terminal at approximately 1 km elevation in an arid (16 cm annual precipitation) region of eastern Washington state. Precipitation intensity and radiometric sky temperature at 20 GHz were also measured. Attenuation greater than 1 dB was observed only in the presence of wet snow on antenna surfaces. Ten thousand (10,000) hours of radiometric sky temperature data recorded over an 18-month period indicated atmospheric attenuation of 5 to 7 dB during two instances of rain intensity of approximately 1 inch per hour.

  2. Generation and propagation of nonlinear internal waves in Massachusetts Bay

    USGS Publications Warehouse

    Scotti, A.; Beardsley, R.C.; Butman, B.

    2007-01-01

    During the summer, nonlinear internal waves (NLIWs) are commonly observed propagating in Massachusetts Bay. The topography of the area is unique in the sense that the generation area (over Stellwagen Bank) is only 25 km away from the shoaling area, and thus it represents an excellent natural laboratory to study the life cycle of NLIWs. To assist in the interpretation of the data collected during the 1998 Massachusetts Bay Internal Wave Experiment (MBIWE98), a fully nonlinear and nonhydrostatic model covering the generation/shoaling region was developed, to investigate the response of the system to the range of background and driving conditions observed. Simplified models were also used to elucidate the role of nonlinearity and dispersion in shaping the NLIW field. This paper concentrates on the generation process and the subsequent evolution in the basin. The model was found to reproduce well the range of propagation characteristics observed (arrival time, propagation speed, amplitude), and provided a coherent framework to interpret the observations. Comparison with a fully nonlinear hydrostatic model shows that during the generation and initial evolution of the waves as they move away from Stellwagen Bank, dispersive effects play a negligible role. Thus the problem can be well understood considering the geometry of the characteristics along which the Riemann invariants of the hydrostatic problem propagate. Dispersion plays a role only during the evolution of the undular bore in the middle of Stellwagen Basin. The consequences for modeling NLIWs within hydrostatic models are briefly discussed at the end.

  3. Efficient way to convert propagating waves into guided waves via gradient wire structures.

    PubMed

    Chu, Hong Chen; Luo, Jie; Lai, Yun

    2016-08-01

    We propose a method for the design of gradient wire structures that are capable of converting propagating waves into guided waves along the wire. The conversion process is achieved by imposing an additional wave vector to the scattered waves via the gradient wire structure, such that the wave vector of scattered waves is beyond the wave number in the background medium. Thus, the scattered waves turn into evanescent waves. We demonstrate that two types of gradient wire structures, with either a gradient permittivity and a fixed radius, or a gradient radius and a fixed permittivity, can both be designed to realize such a wave conversion effect. The principle demonstrated in our work has potential applications in various areas including nanophotonics, silicone photonics, and plasmonics.

  4. Impact of coronary bifurcation morphology on wave propagation

    PubMed Central

    Rivolo, Simone; Hadjilucas, Lucas; Sinclair, Matthew; van Horssen, Pepijn; van den Wijngaard, Jeroen; Wesolowski, Roman; Chiribiri, Amedeo; Smith, Nicolas P.

    2016-01-01

    The branching pattern of the coronary vasculature is a key determinant of its function and plays a crucial role in shaping the pressure and velocity wave forms measured for clinical diagnosis. However, although multiple scaling laws have been proposed to characterize the branching pattern, the implications they have on wave propagation remain unassessed to date. To bridge this gap, we have developed a new theoretical framework by combining the mathematical formulation of scaling laws with the wave propagation theory in the pulsatile flow regime. This framework was then validated in multiple species using high-resolution cryomicrotome images of porcine, canine, and human coronary networks. Results demonstrate that the forward well-matchedness (no reflection for pressure/flow waves traveling from the coronary stem toward the microcirculation) is a salient feature in the coronary vasculature, and this result remains robust under many scenarios of the underlying pulse wave speed distribution assumed in the network. This result also implies a significant damping of the backward traveling waves, especially for smaller vessels (radius, <0.3 mm). Furthermore, the theoretical prediction of increasing area ratios (ratio between the area of the mother and daughter vessels) in more symmetric bifurcations found in the distal circulation was confirmed by experimental measurements. No differences were observed by clustering the vessel segments in terms of transmurality (from epicardium to endocardium) or perfusion territories (left anterior descending, left circumflex, and right coronary artery). PMID:27402665

  5. Extraction of near-surface properties for a lossy layered medium using the propagator matrix

    USGS Publications Warehouse

    Mehta, K.; Snieder, R.; Graizer, V.

    2007-01-01

    Near-surface properties play an important role in advancing earthquake hazard assessment. Other areas where near-surface properties are crucial include civil engineering and detection and delineation of potable groundwater. From an exploration point of view, near-surface properties are needed for wavefield separation and correcting for the local near-receiver structure. It has been shown that these properties can be estimated for a lossless homogeneous medium using the propagator matrix. To estimate the near-surface properties, we apply deconvolution to passive borehole recordings of waves excited by an earthquake. Deconvolution of these incoherent waveforms recorded by the sensors at different depths in the borehole with the recording at the surface results in waves that propagate upwards and downwards along the array. These waves, obtained by deconvolution, can be used to estimate the P- and S-wave velocities near the surface. As opposed to waves obtained by cross-correlation that represent filtered version of the sum of causal and acausal Green's function between the two receivers, the waves obtained by deconvolution represent the elements of the propagator matrix. Finally, we show analytically the extension of the propagator matrix analysis to a lossy layered medium for a special case of normal incidence. ?? 2007 The Authors Journal compilation ?? 2007 RAS.

  6. Dynamics and Predictability of Deep Propagating Atmospheric Gravity Waves

    NASA Astrophysics Data System (ADS)

    Doyle, J.; Fritts, D. C.; Smith, R.; Eckermann, S. D.

    2012-12-01

    An overview will be provided of the first field campaign that attempts to follow deeply propagating gravity waves (GWs) from their tropospheric sources to their mesospheric breakdown. The DEEP propagating gravity WAVE experiment over New Zealand (DEEPWAVE-NZ) is a comprehensive, airborne and ground-based measurement and modeling program focused on providing a new understanding of GW dynamics and impacts from the troposphere through the mesosphere and lower thermosphere (MLT). This program will employ the new NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. The NGV will be equipped with new lidar and airglow instruments for the DEEPWAVE measurement program, providing temperatures and vertical winds spanning altitudes from immediately above the NGV flight altitude (~13 km) to ~100 km. The region near New Zealand is chosen since all the relevant GW sources occur strongly here, and upper-level winds in austral winter permit GWs to propagate to very high altitudes. Given large-amplitude GWs that propagate routinely into the MLT, the New Zealand region offers an ideal natural laboratory for studying these important GW dynamics and effects impacting weather and climate over a much deeper atmospheric layer than previous campaigns have attempted (0-100 km altitude). The logistics of making measurements in the vicinity of New Zealand are potentially easier than from the Andes and Drake Passage region. A suite of GW-focused modeling and predictability tools will be used to guide NGV flight planning to GW events of greatest scientific significance. These models will also drive scientific interpretation of the GW measurements, together providing answers to the key science questions posed by DEEPWAVE about GW dynamics, morphology, predictability and impacts from 0-100 km. Preliminary results will be presented from high-resolution and adjoint models applied over areas featuring deep wave propagation. The high

  7. RESONANTLY DAMPED PROPAGATING KINK WAVES IN LONGITUDINALLY STRATIFIED SOLAR WAVEGUIDES

    SciTech Connect

    Soler, R.; Verth, G.; Goossens, M.; Terradas, J.

    2011-07-20

    It has been shown that resonant absorption is a robust physical mechanism for explaining the observed damping of magnetohydrodynamic kink waves in the solar atmosphere due to naturally occurring plasma inhomogeneity in the direction transverse to the direction of the magnetic field. Theoretical studies of this damping mechanism were greatly inspired by the first observations of post-flare standing kink modes in coronal loops using the Transition Region and Coronal Explorer. More recently, these studies have been extended to explain the attenuation of propagating coronal kink waves observed by the Coronal Multi-Channel Polarimeter. In the present study, for the first time we investigate the properties of propagating kink waves in solar waveguides including the effects of both longitudinal and transverse plasma inhomogeneity. Importantly, it is found that the wavelength is only dependent on the longitudinal stratification and the amplitude is simply a product of the two effects. In light of these results the advancement of solar atmospheric magnetoseismology by exploiting high spatial/temporal resolution observations of propagating kink waves in magnetic waveguides to determine the length scales of the plasma inhomogeneity along and transverse to the direction of the magnetic field is discussed.

  8. SPATIAL DAMPING OF PROPAGATING KINK WAVES IN PROMINENCE THREADS

    SciTech Connect

    Soler, R.; Oliver, R.; Ballester, J. L.

    2011-01-10

    Transverse oscillations and propagating waves are frequently observed in threads of solar prominences/filaments and have been interpreted as kink magnetohydrodynamic (MHD) modes. We investigate the spatial damping of propagating kink MHD waves in transversely nonuniform and partially ionized prominence threads. Resonant absorption and ion-neutral collisions (Cowling's diffusion) are the damping mechanisms taken into account. The dispersion relation of resonant kink waves in a partially ionized magnetic flux tube is numerically solved by considering prominence conditions. Analytical expressions of the wavelength and damping length as functions of the kink mode frequency are obtained in the thin tube and thin boundary approximations. For typically reported periods of thread oscillations, resonant absorption is an efficient mechanism for the kink mode spatial damping, while ion-neutral collisions have a minor role. Cowling's diffusion dominates both the propagation and damping for periods much shorter than those observed. Resonant absorption may explain the observed spatial damping of kink waves in prominence threads. The transverse inhomogeneity length scale of the threads can be estimated by comparing the observed wavelengths and damping lengths with the theoretically predicted values. However, the ignorance of the form of the density profile in the transversely nonuniform layer introduces inaccuracies in the determination of the inhomogeneity length scale.

  9. Tunable hybrid surface waves supported by a graphene layer

    NASA Astrophysics Data System (ADS)

    Iorsh, I. V.; Shadrivov, I. V.; Belov, P. A.; Kivshar, Yu. S.

    2013-05-01

    We study electromagnetic waves localized near the surface of a semi-infinite dielectric medium covered by a graphene layer in the presence of a strong external magnetic field. We demonstrate that a novel type of hybrid TE-TM polarized surface plasmons can propagate along the graphene layer. We analyze the effect of the Hall conductivity on the polarization properties of these hybrid surface waves and suggest a possibility to tune the graphene plasmons by the external magnetic field.

  10. Mapping of spin wave propagation in a one-dimensional magnonic crystal

    NASA Astrophysics Data System (ADS)

    Ordóñez-Romero, César L.; Lazcano-Ortiz, Zorayda; Drozdovskii, Andrey; Kalinikos, Boris; Aguilar-Huerta, Melisa; Domínguez-Juárez, J. L.; Lopez-Maldonado, Guillermo; Qureshi, Naser; Kolokoltsev, Oleg; Monsivais, Guillermo

    2016-07-01

    The formation and evolution of spin wave band gaps in the transmission spectrum of a magnonic crystal have been studied. A time and space resolved magneto inductive probing system has been used to map the spin wave propagation and evolution in a geometrically structured yttrium iron garnet film. Experiments have been carried out using (1) a chemically etched magnonic crystal supporting the propagation of magnetostatic surface spin waves, (2) a short microwave pulsed excitation of the spin waves, and (3) direct spin wave detection using a movable magneto inductive probe connected to a synchronized fast oscilloscope. The results show that the periodic structure not only modifies the spectra of the transmitted spin waves but also influences the distribution of the spin wave energy inside the magnonic crystal as a function of the position and the transmitted frequency. These results comprise an experimental confirmation of Bloch's theorem in a spin wave system and demonstrate good agreement with theoretical observations in analogue phononic and photonic systems. Theoretical prediction of the structured transmission spectra is achieved using a simple model based on microwave transmission lines theory. Here, a spin wave system illustrates in detail the evolution of a much more general physical concept: the band gap.

  11. Observing Propagation of Magnetoacoustic Waves from the Photosphere to the Corona in Sunspot Regions

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Chen, R.

    2015-12-01

    Running penumbral waves in the chromosphere and slow magnetoacoustic waves in the lower coronal loops have been observed and studied for a long time. However, it is not clear whether these waves are connected, whether they have photospheric counterparts, and how they get excited. Recently, through cross-correlating oscillation signals in sunspots' umbrae with those in penumbrae and the sunspots' vicinity observed by SDO/HMI, we identified a fast-moving wave propagating from the sunspots to their outside. It is interesting to see whether this type of the photospheric wave is related to those waves observed above the photosphere in the chromopshere and corona. In this work, we analyze a well-observed sunspot region, using SDO/HMI data for the photosphere, AIA 1600Å and 1700Å data for the lower chromosphere, BBSO/NST Hα data for the chromosphere, AIA 304Å data for the transition region, and AIA 171Å data for the lower corona. Our results show that the wave phenomena observed at different atmospheric heights using different spectrum lines are actually a same slow magnetoacoustic wave propagating upward, likely with a wave source located a few megameters below the sunspots' surface.

  12. Multichannel analysis of surface waves

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Xia, J.

    1999-01-01

    The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of

  13. High-order Two-way Artificial Boundary Conditions for Nonlinear Wave Propagation with Backscattering

    NASA Technical Reports Server (NTRS)

    Fibich, Gadi; Tsynkov, Semyon

    2000-01-01

    When solving linear scattering problems, one typically first solves for the impinging wave in the absence of obstacles. Then, by linear superposition, the original problem is reduced to one that involves only the scattered waves driven by the values of the impinging field at the surface of the obstacles. In addition, when the original domain is unbounded, special artificial boundary conditions (ABCs) that would guarantee the reflectionless propagation of waves have to be set at the outer boundary of the finite computational domain. The situation becomes conceptually different when the propagation equation is nonlinear. In this case the impinging and scattered waves can no longer be separated, and the problem has to be solved in its entirety. In particular, the boundary on which the incoming field values are prescribed, should transmit the given incoming waves in one direction and simultaneously be transparent to all the outgoing waves that travel in the opposite direction. We call this type of boundary conditions two-way ABCs. In the paper, we construct the two-way ABCs for the nonlinear Helmholtz equation that models the laser beam propagation in a medium with nonlinear index of refraction. In this case, the forward propagation is accompanied by backscattering, i.e., generation of waves in the direction opposite to that of the incoming signal. Our two-way ABCs generate no reflection of the backscattered waves and at the same time impose the correct values of the incoming wave. The ABCs are obtained for a fourth-order accurate discretization to the Helmholtz operator; the fourth-order grid convergence is corroborated experimentally by solving linear model problems. We also present solutions in the nonlinear case using the two-way ABC which, unlike the traditional Dirichlet boundary condition, allows for direct calculation of the magnitude of backscattering.

  14. Frequency and wavelength prediction of ultrasonic induced liquid surface waves.

    PubMed

    Mahravan, Ehsan; Naderan, Hamid; Damangir, Ebrahim

    2016-12-01

    A theoretical investigation of parametric excitation of liquid free surface by a high frequency sound wave is preformed, using potential flow theory. Pressure and velocity distributions, resembling the sound wave, are applied to the free surface of the liquid. It is found that for impinging wave two distinct capillary frequencies will be excited: One of them is the same as the frequency of the sound wave, and the other is equal to the natural frequency corresponding to a wavenumber equal to the horizontal wavenumber of the sound wave. When the wave propagates in vertical direction, mathematical formulation leads to an equation, which has resonance frequency equal to half of the excitation frequency. This can explain an important contradiction between the frequency and the wavelength of capillary waves in the two cases of normal and inclined interaction of the sound wave and the free surface of the liquid.

  15. Propagation of VLF waves through the equatorial anomaly

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Cairo, L.

    1980-12-01

    The propagation characteristics of artificial VLF waves (NBA, 24.0 kHz) through the equatorial ionosphere have been studied by means of data obtained onboard the FR-1 satellite at 750 km altitude over Latin America. Large latitudinal variations of the vertical component of the wave normal generally appear in the evening at geomagnetic latitudes of 10 to 15 deg, and they also appear on most of the passes examined at night at latitudes of 5 to 10 deg. Ray and wave normal directions of the VLF waves are computed in various models of field-aligned equatorial anomaly. The latitudinal variations in the evening are due to large negative latitudinal gradients of electron density associated with the equatorial anomaly, and the latitudinal variations at night are due to relatively small density gradients.

  16. Asymptotic analysis of numerical wave propagation in finite difference equations

    NASA Technical Reports Server (NTRS)

    Giles, M.; Thompkins, W. T., Jr.

    1983-01-01

    An asymptotic technique is developed for analyzing the propagation and dissipation of wave-like solutions to finite difference equations. It is shown that for each fixed complex frequency there are usually several wave solutions with different wavenumbers and the slowly varying amplitude of each satisfies an asymptotic amplitude equation which includes the effects of smoothly varying coefficients in the finite difference equations. The local group velocity appears in this equation as the velocity of convection of the amplitude. Asymptotic boundary conditions coupling the amplitudes of the different wave solutions are also derived. A wavepacket theory is developed which predicts the motion, and interaction at boundaries, of wavepackets, wave-like disturbances of finite length. Comparison with numerical experiments demonstrates the success and limitations of the theory. Finally an asymptotic global stability analysis is developed.

  17. Wave speed propagation measurements on highly attenuative heated materials

    SciTech Connect

    Moore, David G.; Ober, Curtis C.; Rodacy, Phil J.; Nelson, Ciji L.

    2015-09-19

    Ultrasonic wave propagation decreases as a material is heated. Two factors that can characterize material properties are changes in wave speed and energy loss from interactions within the media. Relatively small variations in velocity and attenuation can detect significant differences in microstructures. This paper discusses an overview of experimental techniques that document the changes within a highly attenuative material as it is either being heated or cooled from 25°C to 90°C. The experimental set-up utilizes ultrasonic probes in a through-transmission configuration. The waveforms are recorded and analyzed during thermal experiments. To complement the ultrasonic data, a Discontinuous-Galerkin Model (DGM) was also created which uses unstructured meshes and documents how waves travel in these anisotropic media. This numerical method solves particle motion travel using partial differential equations and outputs a wave trace per unit time. As a result, both experimental and analytical data are compared and presented.

  18. Elastic wave propagation through a material with voids

    NASA Astrophysics Data System (ADS)

    Wright, Thomas W.

    1998-10-01

    An exact mathematical analogy exists between plane wave propagation through a material with voids and axial wave propagation along a circular cylindrical rod with radial shear and inertia. In both cases the internal energy can be regarded as a function of a displacement gradient, an internal variable, and the gradient of the internal variable. In the rod the internal variable represents radial strain, and in the material with voids it is related to changes in void volume fraction. In both cases kinetic energy is associated not only with particle translation, but also with the internal variable. In the rod this microkinetic energy represents radial inertia ; in the material with voids it represents dilitational inertia around the voids. Thus, the basis for the analogy is that in both cases there are two kinematic degrees of freedom, the Lagrangians are identical in form, and therefore, the Euler-Lagrange equations are also identical in form. Of course, the constitutive details and the internal length scales for the two cases are very different, but insight into the behavior of rods can be transferred directly to interpreting the effects of wave propagation in a material with voids. The main result is that just as impact on the end of a rod produces a pulse that first travels with the longitudinal wave speed and then transfers the bulk of its energy into a dispersive wave that travels with the bar speed (calculated using Youngs modulus), so impact on the material with voids produces a pulse that also begins with the longitudinal speed but then transfers to a slower dispersive wave whose speed is determined by an effective longitudinal modulus. The rate of transfer and the strength of the dispersive effect depend on the details in the two cases.

  19. Modeling and measurement of angle-beam wave propagation in a scatterer-free plate

    NASA Astrophysics Data System (ADS)

    Dawson, Alexander J.; Michaels, Jennifer E.; Michaels, Thomas E.

    2017-02-01

    Wavefield imaging has been shown to be a powerful tool for improving the understanding and characterization of wave propagation and scattering in plates. The complete measurement of surface displacement over a 2-D grid provided by wavefield imaging has the potential to serve as a useful means of validating ultrasonic models. Here, a preliminary study of ultrasonic angle-beam wave propagation in a scatterer-free plate using a combination of wavefield measurements and 2-D finite element models is described. Both wavefield imaging and finite element analysis are used to study the propagation of waves at a refracted angle of 56.8° propagating in a 6.35 mm thick aluminum plate. Wavefield imaging is performed using a laser vibrometer mounted on an XYZ scanning stage, which is programmed to move point-to-point on a rectilinear grid to acquire waveform data. The commercial finite element software package, PZFlex, which is specifically designed to handle large, complex ultrasonic problems, is used to create a 2-D cross-sectional model of the transducer and plate. For model validation, vertical surface displacements from both the wavefield measurements and the PZFlex finite element model are compared and found to be in excellent agreement. The validated PZFlex model is then used to explain the mechanism of Rayleigh wave generation by the angle-beam wedge. Since the wavefield measurements are restricted to the specimen surface, the cross-sectional PZFlex model is able to provide insights the wavefield data cannot. This study illustrates how information obtained from ultrasonic experiments and modeling results can be combined to improve understanding of angle-beam wave generation and propagation.

  20. Magnetic resonance imaging of shear wave propagation in excised tissue.

    PubMed

    Bishop, J; Poole, G; Leitch, M; Plewes, D B

    1998-01-01

    The propagation of shear waves in ex vivo tissue samples, agar/gel phantoms, and human volunteers was investigated. A moving coil apparatus was constructed to generate low acoustic frequency shear perturbations of 50 to 400 Hz. Oscillating gradients phase-locked with the shear stimulus were used to generate a series of phase contrast images of the shear waves at different time-points throughout the wave cycle. Quantitative measurements of wave velocity and attenuation were obtained to evaluate the effects of temperature, frequency, and tissue anisotropy. Results of these experiments demonstrate significant variation in shear wave behavior with tissue type, whereas frequency and anisotropic behavior was mixed. Temperature-dependent behavior related mainly to the presence of fat. Propagation velocities ranged from 1 to 5 m/sec, and attenuation coefficients of from 1 to 3 nepers/unit wavelength, depending on tissue type. These results confirm the potential of elastic imaging attributable to the intrinsic variability of elastic properties observed in normal tissue, although some difficulty may be experienced in clinical implementation because of viscous attenuation in fat.

  1. Wave Propagation in Discontinuous Media by the Scattering Matrix Method

    NASA Astrophysics Data System (ADS)

    Perino, A.; Orta, R.; Barla, G.

    2012-09-01

    Propagation of elastic waves in discontinuous media is studied in this paper by the scattering matrix method (SMM). An electromagnetic transmission line analogy is also used to set up the mathematical model. The SMM operates in the frequency domain and allows for all wave polarizations (P, SV and SH). Rock masses are examples of discontinuous media in which the discontinuities (fractures or joints) influence wave propagation. Both elastic and viscoelastic joints are considered and the latter are described by Kelvin-Voigt, Maxwell and Burgers models. Rock joints with Coulomb slip behavior are also analyzed, by applying the averaging principle of Caughy (J Appl Mech 27:640-643, 1960). The evaluation of the effects of periodic discontinuities in a homogeneous medium is presented by introducing the concept of Bloch waves. The dispersion curves of these waves are useful to explain the existence of frequency bands of strong attenuation, also in the case of lossless (perfectly elastic) structures. Simple expressions of transmission and reflection coefficients are obtained. Finally, the SMM results are compared with those computed via the distinct element method (DEM). The comparisons are performed on a medium with joints with Coulomb slip behavior and the agreement is satisfactory, although the SMM must be applied in conjunction with the equivalent linearization technique. Even if the DEM is much more general, the SMM in these simple cases is extremely faster and provides a higher physical insight.

  2. Wave propagation in a moving cold magnetized plasma

    NASA Astrophysics Data System (ADS)

    Hebenstreit, H.

    1980-03-01

    Polarization relations and dispersion equations are derived for media that are electrically anisotropic in the comoving frame. Three-dimensional calculations for media at rest recover the known dispersion equations, i.e., Astrom's dispersion equation for magnetized cold plasmas and Fresnel's wave normal equation for uniaxial crystals. An analogous four-dimensional calculation yields the generalization to moving media. The dispersion equations so obtained for moving gyrotropic media are then discussed qualitatively for various special media and special directions of wave propagation. Finally, the polarization relations are specialized to media gyrotropic in the comoving frame.

  3. A numerical formulation for nonlinear ultrasonic waves propagation in fluids.

    PubMed

    Vanhille, C; Campos-Pozuelo, C

    2004-08-01

    A finite-difference algorithm is developed for analysing the nonlinear propagation of pulsed and harmonic ultrasonic waves in fluid media. The time domain model allows simulations from linear to strongly nonlinear plane waves including weak shock. Effects of absorption are included. All the harmonic components are obtained from only one solving process. The evolution of any original signal can be analysed. The nonlinear solution is obtained by the implicit scheme via a fast linear solver. The numerical model is validated by comparison to analytical data. Numerical experiments are presented and commented. The effect of the initial pulse shape on the evolution of the pressure waveform is especially analysed.

  4. Wave propagation in a quasi-chemical equilibrium plasma

    NASA Technical Reports Server (NTRS)

    Fang, T.-M.; Baum, H. R.

    1975-01-01

    Wave propagation in a quasi-chemical equilibrium plasma is studied. The plasma is infinite and without external fields. The chemical reactions are assumed to result from the ionization and recombination processes. When the gas is near equilibrium, the dominant role describing the evolution of a reacting plasma is played by the global conservation equations. These equations are first derived and then used to study the small amplitude wave motion for a near-equilibrium situation. Nontrivial damping effects have been obtained by including the conduction current terms.

  5. Propagation of waves in a medium with high radiation pressure

    NASA Technical Reports Server (NTRS)

    Bisnovatyy-Kogan, G. S.; Blinnikov, S. I.

    1979-01-01

    The propagation and mutual transformation of acoustic and thermal waves are investigated in media with a high radiative pressure. The equations of hydrodynamics for matter and the radiative transfer equations in a moving medium in the Eddington approximation are used in the investigation. Model problems of waves in a homogeneous medium with an abrupt jump in opacity and in a medium of variable opacity are presented. The characteristic and the times of variability are discussed. Amplitude for the brightness fluctuations for very massive stars are discussed.

  6. Electrostatic wave propagation and trapping near the magnetic equator

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1985-01-01

    Results of a two-dimensional ray tracing computer code, based on Snell's law, for electrostatic wave propagation in a dipole magnetic field are discussed. A survey of possible ray paths varying a wide range of parameters is conducted for low-harmonic Bernstein modes in a high-density plasma. It is shown that the ray paths exhibit similarity with radial distance and that there exists the possibility of two classes of wave statistics of the equator: a broad emission region extending to about + or - 4 deg and a class of events restricted to the smaller region of 1-2 deg about the magnetic equator. The regulating parameter between these two types of events is the transition energy from the isotropic background electrons to the unstable distribution of superthermals. Ray paths for propagation in the magnetic equatorial plane are considered and an explanation is given for ray focusing in the equatorial plane based on electron gyroradius considerations.

  7. Wave propagation in non-Gaussian random media

    NASA Astrophysics Data System (ADS)

    Franco, Mariano; Calzetta, Esteban

    2015-01-01

    We develop a compact perturbative series for acoustic wave propagation in a medium with a non-Gaussian stochastic speed of sound. We use Martin-Siggia and Rose auxiliary field techniques to render the classical wave propagation problem into a ‘quantum’ field theory one, and then frame this problem within the so-called Schwinger-Keldysh of closed time-path (CTP) formalism. Variation of the so-called two-particle irreducible (2PI) effective action (EA), whose arguments are both the mean fields and the irreducible two point correlations, yields the Schwinger-Dyson and the Bethe-Salpeter equations. We work out the loop expansion of the 2PI CTP EA and show that, in the paradigmatic problem of overlapping spherical intrusions in an otherwise homogeneous medium, non-Gaussian corrections might be much larger than Gaussian ones at the same order of loops.

  8. Fracture Phenomena in Foams: From Film Instability to Wave Propagation

    NASA Astrophysics Data System (ADS)

    Hilgenfeldt, Sascha; Stewart, Peter

    2016-11-01

    Injection of a gas into a gas/liquid foam is known to give rise to instability phenomena on a variety of time and length scales. Macroscopically, one observes a propagating gas-filled structure that can display properties of liquid finger propagation as well as of fracture in solids. The observation of both large-scale, finger-like cracks (without film breakage) and brittle cleavage phenomena (consisting of successive film ruptures) is explained through careful modeling of phenomena ranging from thin-film instabilities to friction between bubbles and confining plates. Whereas we use a network approach with full representation of the foam microstructure to model the cracks, we also derive a continuum limit description in order to investigate possible modes of wave propagation and their feedback on the fracture process.

  9. Scattered surface wave energy in the seismic coda

    USGS Publications Warehouse

    Zeng, Y.

    2006-01-01

    One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.

  10. Wave propagation in tyres and the resultant noise radiation

    NASA Astrophysics Data System (ADS)

    Gi-Jeon, Kim

    Tyre noise has become an increasingly important road traffic noise source. This is because other sources on the vehicle, such as the air intake system, the exhaust system and the engine, have tended to become relatively quieter. This situation forces the tyre noise component to be reduced in order to achieve a reduction in the overall traffic noise level. In the research reported here, vibration, sound radiation and sound transmission of a passenger car radial tyre were investigated. The first half of this thesis discusses the vibration characteristics using two methods; (1)FEM to analysis modal behaviour in detail, (2)Analytical models to interpret the FEM results. These methods have both advantages and disadvantages in investigating tyre vibration. Combining the two methods is necessary in order to a fully understand the vibration behaviour of a tyre. Dispersion relationships and the related frequency of tyre modes is analysed by FEM and the flexural wave propagation in the tyre shell and the sound radiation of the tyre wall by flexural modes is analyzed using plate and shell theory. The second part of this thesis discusses the radiation and transmission of tyre noise. To predict the radiation of sound with only a knowledge of the surface vibration velocity, the experimental Green's functions were estimated by using the acoustic reciprocity principle. This technique was also applied to separate airborne structure borne noise for identification of the transmission path of tyre noise into a vehicle cabin and quantification of the relative contribution of various regions of the vibrating tyre surface to vehicle interior noise. The application of acoustic reciprocity for the tyre noise problem was verified and compared with BEM analysis.

  11. Computational study of nonlinear plasma waves: 1: Simulation model and monochromatic wave propagation

    NASA Technical Reports Server (NTRS)

    Matda, Y.; Crawford, F. W.

    1974-01-01

    An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described.

  12. The effect of microscale random Alfven waves on the propagation of large-scale Alfven waves

    NASA Astrophysics Data System (ADS)

    Namikawa, T.; Hamabata, H.

    1983-04-01

    The ponderomotive force generated by random Alfven waves in a collisionless plasma is evaluated taking into account mean magnetic and velocity shear and is expressed as a series involving spatial derivatives of mean magnetic and velocity fields whose coefficients are associated with the helicity spectrum function of random velocity field. The effect of microscale random Alfven waves through ponderomotive and mean electromotive forces generated by them on the propagation of large-scale Alfven waves is also investigated.

  13. Simplified theory of large-amplitude wave propagation

    NASA Technical Reports Server (NTRS)

    Kim, H.

    1976-01-01

    An orbit perturbation procedure was applied to the description of monochromatic, large-amplitude, electrostatic plasma wave propagation. In the lowest order approximation, untrapped electrons were assumed to follow constant-velocity orbits and trapped electrons were assumed to execute simple harmonic motion. The deviations of these orbits from the actual orbits were regarded as perturbations. The nonlinear damping rate and frequency shift were then obtained in terms of simple functions. The results are in good agreement with previous less approximate analyses.

  14. Monograph on propagation of sound waves in curved ducts

    NASA Technical Reports Server (NTRS)

    Rostafinski, Wojciech

    1991-01-01

    After reviewing and evaluating the existing material on sound propagation in curved ducts without flow, it seems strange that, except for Lord Rayleigh in 1878, no book on acoustics has treated the case of wave motion in bends. This monograph reviews the available analytical and experimental material, nearly 30 papers published on this subject so far, and concisely summarizes what has been learned about the motion of sound in hard-wall and acoustically lined cylindrical bends.

  15. Wave propagation in the chromosphere and transition region

    NASA Technical Reports Server (NTRS)

    Steffens, S.; Deubner, F.-L.; Fleck, B.; Wilhelm, K.; Harrison, R.; Gurman, J.

    1997-01-01

    The results from a joint observing program involving the solar ultraviolet measurement of emitted radiation (SUMER), the coronal diagnostic spectrometer (CDS) and the extreme-ultraviolet imaging telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO) are presented. These operations were coordinated with ground-based observations at the vacuum tower telescope at Izana (Tenerife). The purpose was to characterize the wave propagation properties in the solar atmosphere, from the photosphere through the chromosphere into the transition region.

  16. Spin Wave Propagation in Non-Uniform Magnetic Fields

    DTIC Science & Technology

    2006-11-01

    set-up. The yttrium iron garnet ( YIG ) film strip is magnetized to saturation by a z − dependent static field ( )H z . The microstrip transducer is...time- and space-resolved measurements of spin wave pulse propagation properties in a magnetic film strip magnetized to saturation with non-uniform...EXPERIMENT Figure 1 shows a schematic of the experimental set- up. The magnetic medium was a yttrium iron garnet ( YIG ) film strip cut from a

  17. Acoustic Bloch Wave Propagation in a Periodic Waveguide

    DTIC Science & Technology

    1991-07-24

    electrical conductivity. In the quantum theory, the electron is represented by De Broglie/ Schr ~ dinger matter waves which propagate in an electrical conductor...waveguide loaded with a periodic array of rigid spheres. They based their approach on the Webster horn equation and compared the results of a strained...governing equations , we simply use the dissi- pative equations in the limit as the heat conductivity and viscosity approach zero. In such a limit the

  18. Horizontal propagation of Gravity Waves in the ionosphere

    NASA Astrophysics Data System (ADS)

    Chum, J.; Base, J.; Hruska, F.; Buresova, D.; McKinnell, L. A.; Athieno, R.

    2010-12-01

    Using a multi-point Continuous Doppler sounding system we investigate propagation directions and velocities of Gravity Waves (GWs) in the ionosphere at altitudes from ~150 km to ~250 km. The velocities and directions are computed from the time delays between the observations of corresponding GWs at different reflection points that correspond to various sounding paths. We focused on the GWs that produce an S-shaped trace in Doppler shift spectrograms since it is know that these patterns are formed if the disturbances (waves) mainly propagate in the horizontal plane. The S-shaped signatures also make it possible to estimate the errors of measurements. The system that we used was developed in the Institute of Atmospheric Physics, Czech Republic and has been operated in the western part of the Czech Republic. A statistical study based on the analysis of about 100 events during the last solar minimum show that the analyzed GWs propagate with typical horizontal velocities from ~100 to ~200 m/s. The north-south component of GW velocities depends on the season and/or daytime. At the same time, it has an opposite sign than the north-south component of neutral winds calculated by the HWM07 model. A similar system was also installed in the South Africa, close to Cape Town at the end of May 2010. The first results of the observation of GW propagation in the ionosphere over the South Africa will also be presented.

  19. Radio Wave Propagation Handbook for Communication on and Around Mars

    NASA Technical Reports Server (NTRS)

    Ho, Christian; Golshan, Nasser; Kliore, Arvydas

    2002-01-01

    This handbook examines the effects of the Martian environment on radio wave propagation on Mars and in the space near the planet. The environmental effects include these from the Martian atmosphere, ionosphere, global dust storms, aerosols, clouds, and geomorphologic features. Relevant Martian environmental parameters were extracted from the measurements of Mars missions during the past 30 years, especially from Mars Pathfinder and Mars Global Surveyor. The results derived from measurements and analyses have been reviewed through an extensive literature search. The updated parameters have been theoretically analyzed to study their effects on radio propagation. This handbook also provides basic information about the entire telecommunications environment on and around Mars for propagation researchers, system engineers, and link analysts. Based on these original analyses, some important recommendations have been made, including the use of the Martian ionosphere as a reflector for Mars global or trans-horizon communication between future Martian colonies, reducing dust storm scattering effects, etc. These results have extended our wave propagation knowledge to a planet other than Earth; and the tables, models, and graphics included in this handbook will benefit telecommunication system engineers and scientific researchers.

  20. Equivalent Continuum Modeling for Shock Wave Propagation in Jointed Media

    SciTech Connect

    Vorobiev, O; Antoun, T

    2009-12-11

    This study presents discrete and continuum simulations of shock wave propagating through jointed media. The simulations were performed using the Lagrangian hydrocode GEODYN-L with joints treated explicitly using an advanced contact algorithm. They studied both isotropic and anisotropic joint representations. For an isotropically jointed geologic medium, the results show that the properties of the joints can be combined with the properties of the intact rock to develop an equivalent continuum model suitable for analyzing wave propagation through the jointed medium. For an anisotropically jointed geologic medium, they found it difficult to develop an equivalent continuum (EC) model that matches the response derived from mesoscopic simulation. They also performed simulations of wave propagation through jointed media. Two appraoches are suggested for modeling the rock mass. In one approach, jointed are modeled explicitly in a Lagrangian framework with appropriate contact algorithms used to track motion along the interfaces. In the other approach, the effect of joints is taken into account using a constitutive model derived from mesoscopic simulations.

  1. Instability and Wave Propagation in Structured 3D Composites

    NASA Astrophysics Data System (ADS)

    Kaynia, Narges; Fang, Nicholas X.; Boyce, Mary C.

    2014-03-01

    Many structured composites found in nature possess undulating and wrinkled interfacial layers that regulate mechanical, chemical, acoustic, adhesive, thermal, electrical and optical functions of the material. This research focused on the complex instability and wrinkling pattern arising in 3D structured composites and the effect of the buckling pattern on the overall structural response. The 3D structured composites consisted of stiffer plates supported by soft matrix on both sides. Compression beyond the critical strain led to complex buckling patterns in the initially straight plates. The motivation of our work is to elaborate the formation of a system of prescribed periodic scatterers (metamaterials) due to buckling, and their effect to interfere wave propagation through the metamaterial structures. Such metamaterials made from elastomers enable large reversible deformation and, as a result, significant changes of the wave propagation properties. We developed analytical and finite element models to capture various aspects of the instability mechanism. Mechanical experiments were designed to further explore the modeling results. The ability to actively alter the 3D composite structure can enable on-demand tunability of many different functions, such as active control of wave propagation to create band-gaps and waveguides.

  2. A computational study of laser-supported detonation waves propagating up an oblique incident beam

    NASA Astrophysics Data System (ADS)

    Bohn, C. L.; Crawford, M. L.

    1987-01-01

    A series of numerical experiments was conducted to study the propagation of laser-supported detonation waves (LSDWs) in the case that a CO2 laser beam strikes an aluminum surface obliquely in air. A reflected shock formed at the aluminum surface was more prominent at higher angles of incidence theta of the beam, but otherwise the hydrodynamics of the plasma and the LSDW were insensitive to theta. Furthermore, the total impulse delivered to the aluminum varied approximately as 1/cos theta, a result that can be modeled with elementary blast-wave theory.

  3. Spin-wave propagation in ultra-thin YIG based waveguides

    NASA Astrophysics Data System (ADS)

    Collet, M.; Gladii, O.; Evelt, M.; Bessonov, V.; Soumah, L.; Bortolotti, P.; Demokritov, S. O.; Henry, Y.; Cros, V.; Bailleul, M.; Demidov, V. E.; Anane, A.

    2017-02-01

    Spin-wave propagation in microfabricated 20 nm thick, 2.5 μm wide Yttrium Iron Garnet (YIG) waveguides is studied using propagating spin-wave spectroscopy (PSWS) and phase resolved micro-focused Brillouin Light Scattering (μ-BLS) spectroscopy. We demonstrate that spin-wave propagation in 50 parallel waveguides is robust against microfabrication induced imperfections and extract spin-wave propagation parameters for the Damon-Eshbach configuration in a wide range of excitation frequencies. As expected from its low damping, YIG allows for the propagation of spin waves over long distances; the attenuation lengths is 25 μm at μ 0 H = 45 mT. Moreover, direct mapping of spin waves by μ-BLS allows us to reconstruct the spin-wave dispersion relation and to confirm the multi-mode propagation in the waveguides, glimpsed by propagating spin-wave spectroscopy.

  4. Resonance wave pumping with surface waves

    NASA Astrophysics Data System (ADS)

    Carmigniani, Remi; Gharib, Morteza; Violeau, Damien; Caltech-ENPC Collaboration

    2015-11-01

    The valveless impedance pump enables the production or amplification of a flow without the use of integrated mobile parts, thus delaying possible failures. It is usually composed of fluid-filled flexible tubing, closed by solid tubes. The flexible tube is pinched at an off-centered position relative to the tube ends. This generates a complex wave dynamic that results in a pumping phenomenon. It has been previously reported that pinching at intrinsic resonance frequencies of the system results in a strong pulsating flow. A case of a free surface wave pump is investigated. The resonance wave pump is composed of a rectangular tank with a submerged plate separating the water into a free surface and a recirculation rectangular section connected through two openings at each end of the tank. A paddle placed at an off-center position above the submerged plate is controlled in a heaving motion with different frequencies and amplitudes. Similar to the case of valveless impedance pump, we observed that near resonance frequencies strong pulsating flow is generated with almost no oscillations. A linear theory is developed to pseudo-analytically evaluate these frequencies. In addition, larger scale applications were simulated using Smoothed Particle Hydrodynamic codes.

  5. Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals

    SciTech Connect

    Foteinopoulou, Stavroula

    2003-01-01

    In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates with the observed

  6. Self-consistent description of solitary surface waves on a plasma cylinder

    NASA Astrophysics Data System (ADS)

    Gradov, O. M.; Stenflo, L.; Suender, D.

    1984-03-01

    Considering a high-frequency electrostatic surface wave that propagates along a plasma cylinder, it is shown that a local change of the axial wavelength of the wave potential may cause solitary variations in the cylinder radius. The magnitudes of these surface displacements are found to depend essentially only on the wavelength perturbation of the high-frequency wave whereas their propagation velocities are defined by the wave intensity. Previous results, which only included short-wavelength oscillations, are also generalized.

  7. Piezoelectrically-induced guided wave propagation for health monitoring of honeycomb sandwich structures

    NASA Astrophysics Data System (ADS)

    Song, Fei

    Honeycomb sandwich structures have been widely used in marine and aerospace applications due to their high strength/stiffness-to-weight ratio. However, an excessive load or repeated loading in the core tends to induce debonding along the skin-core interface, threatening the integrity and safety of the whole structure. This dissertation focuses on development of guided wave strategies for health monitoring of honeycomb sandwich structures, based on a piezoelectric actuator/sensor network. The honeycomb sandwich panels, which are composed of aluminum alloy (T6061) skins and hexagonal-celled Nomex core, are specifically considered in the study. First, elastic wave propagation mechanism in honeycomb sandwich structures is numerically and experimentally investigated, based on a piezoelectric actuator/sensor system. Influences of cell geometry parameters upon wave propagation are also discussed. Some wave propagation characteristics, such as wave group velocity dispersion relation and mode tuning capabilities, in the honeycomb composite panels are experimentally characterized. Secondly, effects of skin-core debonding upon the leaky guided wave propagation in honeycomb sandwich structures are studied by the finite element simulation. An appropriate signal difference coefficient is defined to represent the differential features caused by debonding. By means of probability analysis of differential features of transmitted guided waves and the image fusion, the final image of the structure is constructed with improved detection precision. A multilevel sensor network strategy is proposed to detect multiple debondings in the honeycomb sandwich structure. Thirdly, an analytical model considering coupled piezo-elastodynamics is developed to quantitatively describe dynamic load transfer between a surface-bonded piezoelectric wafer actuator and a prestressed plate. The finite element method is used to evaluate the accuracy of the analytical prediction. Effects of prestresses on the

  8. Efficient techniques for wave-based sound propagation in interactive applications

    NASA Astrophysics Data System (ADS)

    Mehra, Ravish

    Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data

  9. Combined wave propagation analysis of earthquake recordings from borehole and building sensors

    NASA Astrophysics Data System (ADS)

    Petrovic, B.; Parolai, S.; Dikmen, U.; Safak, E.; Moldobekov, B.; Orunbaev, S.

    2015-12-01

    In regions highly exposed to natural hazards, Early Warning Systems can play a central role in risk management and mitigation procedures. To improve at a relatively low cost the spatial resolution of regional earthquake early warning (EEW) systems, decentralized onsite EEW and building monitoring, a wireless sensing unit, the Self-Organizing Seismic Early Warning Information Network (SOSEWIN) was developed and further improved to include the multi-parameter acquisition. SOSEWINs working in continuous real time mode are currently tested on various sites. In Bishkek and Istanbul, an instrumented building is located close to a borehole equipped with downhole sensors. The joint data analysis of building and borehole earthquake recordings allows the study of the behavior of the building, characteristics of the soil, and soil-structure interactions. The interferometric approach applied to recordings of the building response is particularly suitable to characterize the wave propagation inside a building, including the propagation velocity of shear waves and attenuation. Applied to borehole sensors, it gives insights into velocity changes in different layers, reflections and mode conversion, and allows the estimation of the quality factor Qs. We used combined building and borehole data from the two test sites: 1) to estimate the characteristics of wave propagation through the building to the soil and back, and 2) to obtain an empirical insight into soil-structure interactions. The two test sites represent two different building and soil types, and soil structure impedance contrasts. The wave propagation through the soil to the building and back is investigated by the joint interferometric approach. The propagation of up and down-going waves through the building and soil is clearly imaged and the reflection of P and S waves from the earth surface and the top of the building identified. An estimate of the reflected and transmitted energy amounts is given, too.

  10. Deterministic forward scatter from surface gravity waves.

    PubMed

    Deane, Grant B; Preisig, James C; Tindle, Chris T; Lavery, Andone; Stokes, M Dale

    2012-12-01

    Deterministic structures in sound reflected by gravity waves, such as focused arrivals and Doppler shifts, have implications for underwater acoustics and sonar, and the performance of underwater acoustic communications systems. A stationary phase analysis of the Helmholtz-Kirchhoff scattering integral yields the trajectory of focused arrivals and their relationship to the curvature of the surface wave field. Deterministic effects along paths up to 70 water depths long are observed in shallow water measurements of surface-scattered sound at the Martha's Vineyard Coastal Observatory. The arrival time and amplitude of surface-scattered pulses are reconciled with model calculations using measurements of surface waves made with an upward-looking sonar mounted mid-way along the propagation path. The root mean square difference between the modeled and observed pulse arrival amplitude and delay, respectively, normalized by the maximum range of amplitudes and delays, is found to be 0.2 or less for the observation periods analyzed. Cross-correlation coefficients for modeled and observed pulse arrival delays varied from 0.83 to 0.16 depending on surface conditions. Cross-correlation coefficients for normalized pulse energy for the same conditions were small and varied from 0.16 to 0.06. In contrast, the modeled and observed pulse arrival delay and amplitude statistics were in good agreement.

  11. A Kinetic Approach to Propagation and Stability of Detonation Waves

    NASA Astrophysics Data System (ADS)

    Monaco, R.; Bianchi, M. Pandolfi; Soares, A. J.

    2008-12-01

    The problem of the steady propagation and linear stability of a detonation wave is formulated in the kinetic frame for a quaternary gas mixture in which a reversible bimolecular reaction takes place. The reactive Euler equations and related Rankine-Hugoniot conditions are deduced from the mesoscopic description of the process. The steady propagation problem is solved for a Zeldovich, von Neuman and Doering (ZND) wave, providing the detonation profiles and the wave thickness for different overdrive degrees. The one-dimensional stability of such detonation wave is then studied in terms of an initial value problem coupled with an acoustic radiation condition at the equilibrium final state. The stability equations and their initial data are deduced from the linearized reactive Euler equations and related Rankine-Hugoniot conditions through a normal mode analysis referred to the complex disturbances of the steady state variables. Some numerical simulations for an elementary reaction of the hydrogen-oxygen chain are proposed in order to describe the time and space evolution of the instabilities induced by the shock front perturbation.

  12. Low frequency piezoresonance defined dynamic control of terahertz wave propagation

    PubMed Central

    Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G.; Bhalla, Amar S.; Guo, Ruyan

    2016-01-01

    Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators. PMID:27901070

  13. Guided wave propagation in porous unidirectional carbon fiber reinforced plastic

    NASA Astrophysics Data System (ADS)

    Dobmann, Nicolas; Bach, Martin

    2017-02-01

    Networks of piezoelectric transducers mounted on aircraft structures for Acousto Ultrasonics (AU) purposes are designed to be applied during the service life of the aircraft. The approach to integrate these sensor networks already during the manufacture of carbon fiber reinforced plastic (CFRP) host structures prompts ideas to achieve an additional benefit by their application for cure monitoring, thus extending their use to the manufacturing chain. This benefit could be extended even further if guided waves generated by AU sensor networks could be used for porosity testing extensively applied for CFRP aircraft structures. In light of this, an experimental study was conducted to investigate effects of porosity on the propagation of guided waves in a basic configuration of unidirectional CFRP. Several samples were manufactured at different porosity levels by variation of the processing pressure. Wave fields were acquired using an ultrasonic scanning device. In the present work, phase velocities are chosen as best measurable and quantifiable propagation feature and the approach for the analysis of phase velocities in porosity samples is outlined. First results are presented and discussed regarding the influence of porosity on guided wave phase velocity and basic applicability for porosity testing of aircraft structures.

  14. Experiment to Study Alfven Wave Propagation in Plasma Loops

    NASA Astrophysics Data System (ADS)

    Kendall, Mark; Bellan, Paul

    2010-11-01

    Arched plasma-filled twisted magnetic flux tubes are generated in the laboratory using pulsed power techniques (J.F. Hansen, S.K.P. Tripathi, P.M. Bellan, 2004). Their structure and time evolution exhibit similarities with both solar coronal loops and spheromaks. We are now developing a method to excite propagating torsional Alfven wave modes in such plasma loops by superposing a ˜10kA, ˜100ns current pulse upon the ˜50kA, 10μs main discharge current that flows along the ˜20cm long, 2cm diameter arched flux tube. To achieve this high power 100ns pulse, a magnetic pulse compression technique based on saturable reactors is employed. A low power prototype has been successfully tested, and design and construction of a full-power device is nearing completion. The full-power device will compress an initial 2μs pulse by a factor of nearly 20; the final stage utilizes a water-filled transmission line with ultra-low inductance to attain the final timescale. This new pulse device will subsequently be used to investigate interactions between Alfven waves and the larger-scale loop evolution; one goal will be to directly image the wave using high-speed photography. Attention will be paid to wave propagation including dispersion and reflection, as well as dissipation mechanisms and possible energetic particle generation.

  15. Low frequency piezoresonance defined dynamic control of terahertz wave propagation

    NASA Astrophysics Data System (ADS)

    Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G.; Bhalla, Amar S.; Guo, Ruyan

    2016-11-01

    Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.

  16. Vibration response and harmonic wave propagation of ultrasonic arc drivers

    NASA Astrophysics Data System (ADS)

    Smithmaitrie, Pruittikorn; DeHaven, J. G.; Higuchi, K.; Tzou, H. S.

    2007-02-01

    A piezoelectric curvilinear arc driver designed for an ultrasonic curvilinear motor is evaluated in this study. A design of piezoelectric curvilinear arc driver is proposed and its governing equations, vibration behaviour and wave propagation are investigated. Then, analysis of forced vibration response or driving characteristics to harmonic excitations in the modal domain is conducted. Finite element modelling and analysis of the arc driver are also discussed. Analytical results of free vibration characteristics are compared favourably with the finite element results. Harmonic analyses of the three finite element models reveal changes of dynamic behaviours of three models and also imply operating frequencies with a significant travelling wave component. Parametric study of mathematical and finite element simulation results suggests that stable travelling waves can be generated to drive a rotor on the proposed curvilinear arc motor system.

  17. Determination of particle size distributions from acoustic wave propagation measurements

    SciTech Connect

    Spelt, P.D.; Norato, M.A.; Sangani, A.S.; Tavlarides, L.L.

    1999-05-01

    The wave equations for the interior and exterior of the particles are ensemble averaged and combined with an analysis by Allegra and Hawley [J. Acoust. Soc. Am. {bold 51}, 1545 (1972)] for the interaction of a single particle with the incident wave to determine the phase speed and attenuation of sound waves propagating through dilute slurries. The theory is shown to compare very well with the measured attenuation. The inverse problem, i.e., the problem of determining the particle size distribution given the attenuation as a function of frequency, is examined using regularization techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, the success of solving the inverse problem is limited since it depends strongly on the nature of particles and the frequency range used in inverse calculations. {copyright} {ital 1999 American Institute of Physics.}

  18. The Development of Nonlinear Surface and Internal Wave Groups.

    DTIC Science & Technology

    1982-11-01

    propagating in groups in near-shore regions. In these regions strong coastal currents, enhanced density gradients from river outflow and from greater influence ...D-A122 103 THE DEVELOPMENT OF NONLINERR SURFACE AND INTERNAL WAVE 1/4 GROUPS (U) WOODS H4OLE OCEANOGRAPHIC INSTITUTION MA T K~ CHERESKIN NOV 82 WHOI...TECHNOLOGY * PROGRAM IN op GOCEANOGRAPHY II!AND OCEAN ENGINEERING -0 DOCTORAL DISSERTATION THE DEVELOPMENT OF NONLINEAR SURFACE AND INTERNAL WAVE GROUPS BY

  19. Ultra-Scalable Algorithms for Large-Scale Uncertainty Quantification in Inverse Wave Propagation

    DTIC Science & Technology

    2016-03-04

    associated uncertainty, the heterogeneity of a medium or shape of a scatterer from reflected/transmitted waves (acoustic, elastic, electromagnetic ) at very...elastic, and electromagnetic wave propagation; discontinuous Petrov Galerkin method; volume integral equations; fast multipole method; FFT; inverse...reflected/transmitted waves (acoustic, elastic, electromagnetic ) at very large scale. The resulting Bayesian wave inverse propagation problem has been

  20. Effect of small floating disks on the propagation of gravity waves

    NASA Astrophysics Data System (ADS)

    De Santi, F.; Olla, P.

    2017-04-01

    A dispersion relation for gravity waves in water covered by disk-like impurities embedded in a viscous matrix is derived. The macroscopic equations are obtained by ensemble-averaging the fluid equations at the disk scale in the asymptotic limit of long waves and low disk surface fraction. Various regimes are identified depending on the disk radii and the thickness and viscosity of the top layer. Semi-quantitative analysis in the close-packing regime suggests dramatic modification of the dynamics, with orders of magnitude increase in wave damping and wave dispersion. A simplified model working in this regime is proposed. Possible applications to wave propagation in an ice-covered ocean are discussed and comparison with field data is provided.

  1. Zero-group-velocity propagation of electromagnetic wave through nanomaterial

    NASA Astrophysics Data System (ADS)

    Fan, Taian

    This research will investigate the problem on the propagation of electromagnetic wave through a specific nanomaterial. The nanomaterial analyzed is a material consisting of a field of Pt nanorods. This field of Pt nanorods are deposited on a substrate which consists of a RuO2 nano structure. When the nanorod is exposed to an electron beam emitted by a TEM (Transmission electron microscopy). A wave disturbance has been observed. A video taken within the chamber shows a wave with a speed in the scale of um/s (10-6 m/s), which is 14 orders of magnitude lower than speed of light in free space (approximate 3x108 m/s ). A physical and mathematical model is developed to explain this phenomenon. Due to the process of fabrication, the geometry of the decorated Pt nanorod field is assumed to be approximately periodic. The nanomaterials possess properties similar to a photonic crystal. Pt, as a noble metal, shows dispersive behaviours that is different from those ones of a perfect or good conductors. A FDTD algorithm is implemented to calculate the band diagram of the nanomaterials. To explore the dispersive properties of the Pt nanorod field, the FDTD algorithm is corrected with a Drude Model. The analysis of the corrected band diagram illustrates that the group velocity of the wave packet propagating through the nanomaterial can be positive, negative or zero. The possible zero-group velocity is therefore used to explain the extremely low velocity of wave (wave envelope) detected in the TEM.

  2. Low frequency guided plate wave propagation in fiber reinforced composites

    SciTech Connect

    Lih, S.S.; Mal, A.K.; Bar-Cohen, Y.

    1995-12-31

    The behavior of low frequency guided waves in composite laminates was studied theoretically and experimentally. The objective of this study is to develop a contact-coupling ultrasonic method of determining of the stiffness constants of composite materials. The solution for the low frequency guided wave modes was derived from exact and approximate plate theories. A parametric study was curried out to examine the influence of variations in the elastic stiffness constants on the guided wave modes. A comparison was made between the measured and calculated group velocities to corroborate the theoretical calculations. The experimental setup consisted of a contact coupled pair of transmitting and receiving transducers using pulsed waves and a broadband ultrasonic system. Graphite/epoxy laminates were tested by transmitting the wave along various angles of propagation with the fibers. The received signals were analyzed to determine the group velocity of the low frequency wave modes. Test results have shown a very, good agreement of the calculated and measured elastic constants.

  3. ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES

    SciTech Connect

    Goossens, M.; Van Doorsselaere, T.; Soler, R.; Verth, G.

    2013-05-10

    Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

  4. Propagation of photosensitive chemical waves on the circular routes.

    PubMed

    Kitahata, Hiroyuki; Yamada, Akiko; Nakata, Satoshi; Ichino, Takatoshi

    2005-06-09

    The propagation of chemical waves in the photosensitive Belousov-Zhabotinsky (BZ) reaction was investigated using an excitable field in the shape of a circular ring or figure "8" that was drawn by computer software and then projected on a film soaked with BZ solution using a liquid-crystal projector. For a chemical wave in a circular reaction field, the shape of the chemical wave was investigated depending on the ratio of the inner and outer radii. When two chemical waves were generated on a field shaped like a figure "8" (one chemical wave in each circle) as the initial condition, the location of the collision of the waves either was constant or alternated depending on the degree of overlap of the two circular rings. These experimental results were analyzed on the basis of a geometrical discussion and theoretically reproduced on the basis of a reaction-diffusion system using a modified Oregonator model. These results suggest that the photosensitive BZ reaction may be useful for creating spatio-temporal patterns depending on the geometric arrangement of excitable fields.

  5. Higher order acoustoelastic Lamb wave propagation in stressed plates.

    PubMed

    Pei, Ning; Bond, Leonard J

    2016-11-01

    Modeling and experiments are used to investigate Lamb wave propagation in the direction perpendicular to an applied stress. Sensitivity, in terms of changes in velocity, for both symmetrical and anti-symmetrical modes was determined. Codes were developed based on analytical expressions for waves in loaded plates and they were used to give wave dispersion curves. The experimental system used a pair of compression wave transducers on variable angle wedges, with set separation, and variable frequency tone burst excitation, on an aluminum plate 0.16 cm thick with uniaxial applied loads. The loads, which were up to 600 με, were measured using strain gages. Model results and experimental data are in good agreement. It was found that the change in Lamb wave velocity, due to the acoustoelastic effect, for the S1 mode exhibits about ten times more sensitive, in terms of velocity change, than the traditional bulk wave measurements, and those performed using the fundamental Lamb modes. The data presented demonstrate the potential for the use of higher order Lamb modes for online industrial stress measurement in plate, and that the higher sensitivity seen offers potential for improved measurement systems.

  6. Visualization of Acoustic Waves Propagating within a Single Anisotropic Crystalline Plate

    SciTech Connect

    Chiaki Miyasaka; Kenneth L. Telschow; Jeffry T. Sadler; Roman. Gr. Maev

    2007-04-01

    High frequency acoustic waves propagating within a thin anisotropic plate were imaged using a hybrid system consisting of an acoustic lens (Frequency: 200MHz; Point Focus) for point excitation on one side and a laser displacement interferometer for point detection on the opposite side. The laser beam spot was about 5µm diameter on the surface and the sample was scanned to provide an image of the lateral spatial distribution of the resultant displacement. Theoretical prediction of the resultant displacement was performed using the Angular Spectrum Analysis approach for propagation through the [100] oriented silicon. Comparison of the theoretical predictions with experimental measurements is presented.

  7. Topology optimization for wave propagation and vibration phenomena in elastic and piezoelectric solids

    NASA Astrophysics Data System (ADS)

    Rupp, Cory J.

    Topology optimization is a versatile design tool for the synthesis of heterogeneous engineering systems where the optimal distribution of constituent materials is sought such that a prescribed measure of performance is optimized. In this dissertation, topology optimization methodologies are developed for solving problems associated with wave propagation and vibration in elastic and piezoelectric media. These methodologies utilize the finite element method in conjunction with gradient-based optimization algorithms to create functional materials, structures, and devices. The methodologies are demonstrated in a number of examples and illustrative studies that progress the state-of-the-art in the fields of topology optimization, elastic waveguides, phononic band-gap materials, and piezoelectric energy harvesting systems. These include the design of bulk and surface wave elastic waveguides in two and three dimensions that guide various forms of wave energy as desired, band-gap structures that provide tailored frequency transmission spectrums for bulk waves and surface waves, band-gap materials that prevent wave propagation within certain frequencies, and piezoelectric energy harvesting systems designed to optimize power output. Also addressed are previously unreported issues with the application of topology optimization to these types of problems including the role of physical phenomena in the solutions, mesh dependency effects, non-uniqueness, and the impact of small feature sizes.

  8. Wave propagation in fluid-saturated porous media

    NASA Astrophysics Data System (ADS)

    Ren, Jiaxiang

    The wave propagation in fluid-saturated porous media is studied by solving the Biot equations, the governing equations for the motion of the porous medium. Methods are devised to solve the Biot equations for different problems and medium models. The problem of the reflection and transmission at an interface is solved by using the eigen-analysis of the Biot equations. The displacement-stress vectors in the media on both sides of the interface are represented by corresponding upgoing and downgoing wave vectors which are then linked by the boundary conditions on the interface. The reflection and transmission coefficients are extracted from the proportionalities between the upgoing and downgoing waves. For an incident fast wave or shear wave, the reflection and transmission coefficients for the reflected and transmitted slow waves are very sensitive to frequency and interface permeability (kappasb{I}); while those for the reflected and transmitted fast waves and shear waves are not, except when incident angles are close to and greater than critical angles. For sandstones, the amplitudes of the reflected and transmitted slow waves could be several percent of the amplitude of the incident fast wave or shear wave. Higher interface permeabilities favor the generation of the slow wave. The slow waves generated at an open interface (kappasb{I}->infty) and a sealed interface (kappasb{I}=0) could be one-order different in amplitude. The reflection and transmission at an interface have been extended to the model composed of multi-layers of porous media. An algorithm based on the compact finite-difference method is developed for 2-D seismic modeling. The compact finite-difference method is used to estimate the spatial derivatives in the Biot equations, with a 6sp{th}-order accuracy. It needs fewer grid intervals to represent a mono-wavelength function than the traditional 2sp{nd}-order central-difference method. Therefore, the algorithm based on the compact finite

  9. Fluctuations in millimeter-wave signals propagated through inclement weather

    NASA Astrophysics Data System (ADS)

    Bohlander, Ronald A.; McMillan, Robert W.; Patterson, E. M.; Clifford, Steven F.; Hill, Reginald J.

    1988-05-01

    Results are presented from measurements of the effects of inclement weather on the fluctuations in amplitude and phase of millimeter-wave (MMW) signals propagated through the atmosphere. These measurements were made at frequencies near 116, 140, 173, and 230 GHz at a site near Champaign-Urbana, Illinois, in a community chosen for its exceptional flatness and lack of terrain features that might perturb the atmosphere. It was found that this inclement weather fluctuations are generally smaller than those observed in clear air under sunny conditions, and are also smaller than the corresponding effects observed at visible and near-infrared wavelengths. Typical values of the intensity standard deviation observed (in 20-s intervals) were 1 percent in rain, 0.2 percent in fog, and 1.5-2.5 percent in snow. Typical values of the standard deviation of wavefront angle-of-arrival were 40, 5, 4, and 1 microrad from clear air, snow, rain, and fog, respectively. It was also found that rain has the greatest effect on MMW transmission, causing large, slow changes in received signal strength as a function of rain rate. It should also be noted that rain caused the only observed loss of the propagation link, during a thunderstorm in which the rain rate was as high as 60 mm/h. It is concluded that, in general, millimeter-wave radiation propagates well in adverse weather, with rain causing the major problems observed during this series of measurements.

  10. Evolution of the average steepening factor for nonlinearly propagating waves.

    PubMed

    Muhlestein, Michael B; Gee, Kent L; Neilsen, Tracianne B; Thomas, Derek C

    2015-02-01

    Difficulties arise in attempting to discern the effects of nonlinearity in near-field jet-noise measurements due to the complicated source structure of high-velocity jets. This article describes a measure that may be used to help quantify the effects of nonlinearity on waveform propagation. This measure, called the average steepening factor (ASF), is the ratio of the average positive slope in a time waveform to the average negative slope. The ASF is the inverse of the wave steepening factor defined originally by Gallagher [AIAA Paper No. 82-0416 (1982)]. An analytical description of the ASF evolution is given for benchmark cases-initially sinusoidal plane waves propagating through lossless and thermoviscous media. The effects of finite sampling rates and measurement noise on ASF estimation from measured waveforms are discussed. The evolution of initially broadband Gaussian noise and signals propagating in media with realistic absorption are described using numerical and experimental methods. The ASF is found to be relatively sensitive to measurement noise but is a relatively robust measure for limited sampling rates. The ASF is found to increase more slowly for initially Gaussian noise signals than for initially sinusoidal signals of the same level, indicating the average distortion within noise waveforms occur more slowly.

  11. Transient processes in the parametric interaction of counter-propagating waves

    SciTech Connect

    Slabko, V V; Rasskazova, E V; Tkachenko, V A; Moskalev, A K; Popov, A K; Myslivets, S A

    2015-12-31

    We present a comparative analysis of transient processes in media with a negative refractive index for the parametric interaction of co- and counter-propagating waves. The transient time for the interaction of counter-propagating waves is shown to considerably exceed that for the interaction of co-propagating waves. In the case of counter-propagating waves, we present fitting results for the generated wave amplitude as a function of time and for the transient time vs. the amplitude of the pump wave and the length of the medium. (optical metamaterials)

  12. Wave propagation through an inhomogeneous slab sandwiched by the piezoelectric and the piezomagnetic half spaces.

    PubMed

    Jiao, Fengyu; Wei, Peijun; Li, Li

    2017-01-01

    Wave propagation through a gradient slab sandwiched by the piezoelectric and the piezomagnetic half spaces are studied in this paper. First, the secular equations in the transverse isotropic piezoelectric/piezomagnetic half spaces are derived from the general dynamic equation. Then, the state vectors at piezoelectric and piezomagnetic half spaces are related to the amplitudes of various possible waves. The state transfer equation of the functionally graded slab is derived from the equations of motion by the reduction of order, and the transfer matrix of the functionally gradient slab is obtained by solving the state transfer equation with the spatial-varying coefficient. Finally, the continuous interface conditions are used to lead to the resultant algebraic equations. The algebraic equations are solved to obtain the amplitude ratios of various waves which are further used to obtain the energy reflection and transmission coefficients of various waves. The numerical results are shown graphically and are validated by the energy conservation law. Based on the numerical results on the fives of gradient profiles, the influences of the graded slab on the wave propagation are discussed. It is found that the reflection and transmission coefficients are obviously dependent upon the gradient profile. The various surface waves are more sensitive to the gradient profile than the bulk waves.

  13. Excitation, propagation and damping of helicon waves in a high density, low temperature plasma

    NASA Astrophysics Data System (ADS)

    Caneses, J. F.; Blackwell, B. D.

    2015-11-01

    The MAGnetized Plasma Interaction Experiment (MAGPIE) is a helicon linear plasma device built to study fusion relevant plasma-surface interactions. In this work, we investigate helicon wave propagation in high density (1018-1019 m-3) low temperature (2-4 eV) magnetized (50-200 G) hydrogen plasma produced by a half-helical antenna operated at 7 MHz and 20 kW. Using the cold dielectric tensor with collisional terms (electron-neutral and Coulomb), helicon wave damping is calculated along the length of MAGPIE using a WKB approximation. Comparison with experiment indicates that wave damping, under these conditions, is entirely collisional. Numerical results from a fully electromagnetic wave code and 2D wavefield measurements indicate that helicon waves are excited at the plasma edge by the antenna's transverse current straps while the helical straps play a secondary role. These waves propagate towards the center of the discharge along the whistler wave ray direction (19 degrees to the background magnetic field), interfere on-axis and form the axial interference pattern commonly observed in helicon devices.

  14. Studying propagation of seismic waves across the Valley of Mexico from correlations of seismic noise

    NASA Astrophysics Data System (ADS)

    Rivet, D. N.; Campillo, M.; Shapiro, N. M.; Singh, S.; Cruz Atienza, V. M.; Quintanar, L.; Valdés, C.

    2009-12-01

    We reconstruct Rayleigh and Love waves from cross-correlations of ambient seismic noise recorded at 22 broad-band stations of the MesoAmerica Seismic Experiment (MASE) and Valley of Mexico Experiment (VMEX). The cross-correlations are computed over 2 years of noise data for the 9 MASE stations and over 1 year for the 13 VMEX stations. Surface waves with sufficient signal-to-noise ratio are then used in the group velocity dispersion analysis. We use the reconstructed waveforms to measure group velocity dispersion curves at period of 0.5 to 5 seconds. For traveling path inside the lake-bed zone, the maximum energy is observed at velocity higher than expected for the fundamental mode. This indicates that the propagation within the Mexico basin is dominated by higher modes of surface waves that propagate deeper in the basin. We identify the propagation modes by comparing observations with theoretical dispersion curves and eigenfunctions calculated for Rayleigh and Loves waves associated with a given model of the upper crust. The fundamental mode shows a very low group velocity, <100m/s, which is consistent with previous studies. The domination of the higher modes in the Valley of Mexico may be a determining factor in the long duration of the seismic signal. A better velocity constraint on the deeper structure of the basin is thus needed to fully understand this phenomenon.

  15. Wave-measurement capabilities of the surface contour radar and the airborne oceanographic lidar

    NASA Technical Reports Server (NTRS)

    Walsh, Edward J.; Hancock, David W., III; Hines, Donald E.; Swift, Robert N.; Scott, John F.

    1987-01-01

    The 36-gigahertz surface contour radar and the airborne oceanographic lidar were used in the SIR-B underflight mission off the coast of Chile in October 1984. The two systems and some of their wave-measurement capabilities are described. The surface contour radar can determine the directional wave spectrum and eliminate the 180-degree ambiguity in wave propagation direction that is inherent in some other techniques such as stereophotography and the radar ocean wave spectrometer. The Airborne Oceanographic Lidar can acquire profile data on the waves and produce a spectrum that is close to the nondirectional ocean-wave spectrum for ground tracks parallel to the wave propagation direction.

  16. Air-ground interface: Surface waves, surface impedance and acoustic-to-seismic coupling coefficient

    NASA Technical Reports Server (NTRS)

    Daigle, Gilles; Embleton, Tony

    1990-01-01

    In atmospheric acoustics, the subject of surface waves has been an area of discussion for many years. The existence of an acoustic surface wave is now well established theoretically. The mathematical solution for spherical wave propagation above an impedance boundary includes the possibility of a contribution that possesses all the standard properties for a surface wave. Surface waves exist when the surface is sufficiently porous, relative to its acoustical resistance, that it can influence the airborne particle velocity near the surface and reduce the phase velocity of sound waves in air at the surface. This traps some of the sound energy in the air to remain near the surface as it propagates. Above porous grounds, the existence of surface waves has eluded direct experimental confirmation (pulse experiments have failed to show a separate arrival expected from the reduced phase speed) and indirect evidence for its existence has appeared contradictory. The experimental evidence for the existence of an acoustical surface wave above porous boundaries is reviewed. Recent measurements including pulse experiments are also described. A few years ago the acoustic impedance of a grass-covered surface was measured in the frequency range 30 to 300 Hz. Here, further measurements on the same site are discussed. These measurements include core samples, a shallow refractive survey to determine the seismic velocities, and measurements of the acoustic-to-seismic coupling coefficient.

  17. Shock wave propagation along constant sloped ocean bottoms.

    PubMed

    Maestas, Joseph T; Taylor, Larissa F; Collis, Jon M

    2014-12-01

    The nonlinear progressive wave equation (NPE) is a time-domain model used to calculate long-range shock propagation using a wave-following computational domain. Current models are capable of treating smoothly spatially varying medium properties, and fluid-fluid interfaces that align horizontally with a computational grid that can be handled by enforcing appropriate interface conditions. However, sloping interfaces that do not align with a horizontal grid present a computational challenge as application of interface conditions to vertical contacts is non-trivial. In this work, range-dependent environments, characterized by sloping bathymetry, are treated using a rotated coordinate system approach where the irregular interface is aligned with the coordinate axes. The coordinate rotation does not change the governing equation due to the narrow-angle assumption adopted in its derivation, but care is taken with applying initial, interface, and boundary conditions. Additionally, sound pressure level influences on nonlinear steepening for range-independent and range-dependent domains are used to quantify the pressures for which linear acoustic models suffice. A study is also performed to investigate the effects of thin sediment layers on the propagation of blast waves generated by explosives buried beneath mud line.

  18. Ray Tracing Modeling of Gravity Wave Propagation and Dissipation

    NASA Astrophysics Data System (ADS)

    Vadas, Sharon; Crowley, Geoff

    In this paper, we describe a ray trace model which calculates the wavevector, location and phase of a gravity wave (GW) as it propagates in the lower atmosphere and thermosphere. If used for a discreet transient source (such as a deep convective plume), we describe how this model can calculate the body forcing and the heat/cooling that are created when the GWs within a wave packet dissipate in the thermosphere from kinematic viscosity and thermal diffusivity. Although the body force calculation requires only the divergence of the momentum flux, the heat/cooling calculation requires the reconstructed GW field (e.g., density, velocity perturbations), which in turn requires the GW dissipative polarization relations. We describe these relations. We then describe the results of a recent study involving GWs identified from TIDDBIT HF Doppler sounder data taken at Wallops Island, VI, USA. Using this ray trace model, we determine if the unusual neutral wind profile measured by a rocket experiment at high altitudes (~290-370 km) could have been caused by the propagation and dissipation of several waves observed by TIDDBIT at lower altitudes.

  19. Synthetic observations of wave propagation in a sunspot umbra

    SciTech Connect

    Felipe, T.; Socas-Navarro, H.; Khomenko, E.

    2014-11-01

    Spectropolarimetric temporal series from Fe I λ6301.5 Å and Ca II infrared triplet lines are obtained by applying the Stokes synthesis code NICOLE to a numerical simulation of wave propagation in a sunspot umbra from MANCHA code. The analysis of the phase difference between Doppler velocity and intensity core oscillations of the Fe I λ6301.5 Å line reveals that variations in the intensity are produced by opacity fluctuations rather than intrinsic temperature oscillations, except for frequencies between 5 and 6.5 mHz. On the other hand, the photospheric magnetic field retrieved from the weak field approximation provides the intrinsic magnetic field oscillations associated to wave propagation. Our results suggest that this is due to the low magnetic field gradient of our sunspot model. The Stokes parameters of the chromospheric Ca II infrared triplet lines show striking variations as shock waves travel through the formation height of the lines, including emission self-reversals in the line core and highly abnormal Stokes V profiles. Magnetic field oscillations inferred from the Ca II infrared lines using the weak field approximation appear to be related with the magnetic field strength variation between the photosphere and the chromosphere.

  20. A study on compressive shock wave propagation in metallic foams

    NASA Astrophysics Data System (ADS)

    Wang, Zhihua; Zhang, Yifen; Ren, Huilan; Zhao, Longmao

    2010-02-01

    Metallic foam can dissipate a large amount of energy due to its relatively long stress plateau, which makes it widely applicable in the design of structural crashworthiness. However, in some experimental studies, stress enhancement has been observed when the specimens are subjected to intense impact loads, leading to severe damage to the objects being protected. This paper studies this phenomenon on a 2D mass-spring-bar model. With the model, a constitutive relationship of metal foam and corresponding loading and unloading criteria are presented; a nonlinear kinematics equilibrium equation is derived, where an explicit integration algorithm is used to calculate the characteristic of the compressive shock wave propagation within the metallic foam; the effect of heterogeneous distribution of foam microstructures on the shock wave features is also included. The results reveal that under low impact pulses, considerable energy is dissipated during the progressive collapse of foam cells, which then reduces the crush of objects. When the pulse is sufficiently high, on the other hand, stress enhancement may take place, especially in the heterogeneous foams, where high peak stresses usually occur. The characteristics of compressive shock wave propagation in the foam and the magnitude and location of the peak stress produced are strongly dependent on the mechanical properties of the foam material, amplitude and period of the pulse, as well as the homogeneity of the microstructures. This research provides valuable insight into the reliability of the metallic foams used as a protective structure.

  1. Workshop on Research Techniques in Wave Propagation and Scattering

    NASA Astrophysics Data System (ADS)

    Varadan, V. V.; Varadan, V. K.

    1983-05-01

    A Workshop/Symposium on Research Techniques in Wave Propagation and Scattering was held at the Ohio State University October 18-21, 1982. This workshop was co-sponsored with the generous financial support of the U.S. Army Research Office, U.S. Office of Naval Research, the Center for Welding Research, O.S.U., and the Department of Engineering Mechanics, O.S.U. The workshop format consisted of a core of a general lectures of fifty minutes duration each and several shorter contributions that were of twenty minutes duration each. In addition, there were three panel discussions. The general lectures were of an expository nature on fundamental concepts and basic analytical/numerical techniques for the solution of wave scattering and propagation problems. The speakers were noted for their contribution to these techniques and in many cases have pioneered the techniques that they elaborated upon. These lectures were invaluable to the participants since they were of a pedagogical nature and easily understood by even those not very familiar with the particular method. The written version of many of these lectures will appear in a four volume Handbook on Acoustic, Electromagnetic and Elastic Wave Scattering to be published by North Holland as a separate project.

  2. Double porosity modeling in elastic wave propagation for reservoir characterization

    SciTech Connect

    Berryman, J. G., LLNL

    1998-06-01

    Phenomenological equations for the poroelastic behavior of a double porosity medium have been formulated and the coefficients in these linear equations identified. The generalization from a single porosity model increases the number of independent coefficients from three to six for an isotropic applied stress. In a quasistatic analysis, the physical interpretations are based upon considerations of extremes in both spatial and temporal scales. The limit of very short times is the one most relevant for wave propagation, and in this case both matrix porosity and fractures behave in an undrained fashion. For the very long times more relevant for reservoir drawdown,the double porosity medium behaves as an equivalent single porosity medium At the macroscopic spatial level, the pertinent parameters (such as the total compressibility) may be determined by appropriate field tests. At the mesoscopic scale pertinent parameters of the rock matrix can be determined directly through laboratory measurements on core, and the compressibility can be measured for a single fracture. We show explicitly how to generalize the quasistatic results to incorporate wave propagation effects and how effects that are usually attributed to squirt flow under partially saturated conditions can be explained alternatively in terms of the double-porosity model. The result is therefore a theory that generalizes, but is completely consistent with, Biot`s theory of poroelasticity and is valid for analysis of elastic wave data from highly fractured reservoirs.

  3. Surface and volume waves in ferrodielectric-magnetically active material structures

    NASA Astrophysics Data System (ADS)

    Filatov, L. D.; Sementsov, D. I.

    2017-01-01

    The propagation of surface waves along the interface between a ferrodielectric and a material that represents an array of amorphous ferromagnetic microwires has been studied. The dispersion characteristic of a magnetically controlled TE wave has been obtained, and frequency intervals have been found in which surface or localized, partially localized, and volume waves may exist. It has been shown that a TM wave in the given structure cannot be a surface wave.

  4. Propagation and Reflection of Diffusionless Torsional Waves in a Sphere

    NASA Astrophysics Data System (ADS)

    Maffei, S.; Jackson, A.

    2015-12-01

    The magnetohydrodynamics of stars and planetary cores is usually dominated by the overwhelming importance of rotation compared to other forces. Under these conditions the fluid motions are characterized by a strong invariance along the rotation axis. In the presence of a background magnetic field, magnetohydrodynamic oscillations can be triggered. Among these, of particular interest are the torsional waves, azimuthal perturbations of the fluid that are axisymmetric and invariant along the vertical direction. Their periods depend solely on the intensity of the magnetic field component aligned with the radial direction of propagation. As the detection of the fundamental period could constrain the magnetic field intensity in the Earth's outer core there is a long history of attempted detection of torsional waves from geomagnetic data. There is however a fundamental lack of knowledge concerning the propagation and reflection properties of these waves, as observational studies suggests behaviors that are different from theoretical expectations. In particular, recent findings (Gillet et al., 2011) suggest the lack of reflection at the equator and at the rotation axis. Through numerical simulation and analytical techniques we analyze the temporal evolution of diffusionless torsional waves in spherical geometry, with particular attention on the reflection at the equator and the pseudo-reflection at the rotation axis. We develop a novel analytical solution to the torsional wave eigenvalue problem whose behavior at the boundaries helps us to illustrate the meaning of the boundary conditions. Furthermore we find that for any acceptable magnetic background field, reflections at both boundaries are allowed and we illustrate how the WKBJ approximation is an efficient tool for investigating them.

  5. Propagating Waves of Directionality and Coordination Orchestrate Collective Cell Migration

    PubMed Central

    Zaritsky, Assaf; Kaplan, Doron; Hecht, Inbal; Natan, Sari; Wolf, Lior; Gov, Nir S.; Ben-Jacob, Eshel; Tsarfaty, Ilan

    2014-01-01

    The ability of cells to coordinately migrate in groups is crucial to enable them to travel long distances during embryonic development, wound healing and tumorigenesis, but the fundamental mechanisms underlying intercellular coordination during collective cell migration remain elusive despite considerable research efforts. A novel analytical framework is introduced here to explicitly detect and quantify cell clusters that move coordinately in a monolayer. The analysis combines and associates vast amount of spatiotemporal data across multiple experiments into transparent quantitative measures to report the emergence of new modes of organized behavior during collective migration of tumor and epithelial cells in wound healing assays. First, we discovered the emergence of a wave of coordinated migration propagating backward from the wound front, which reflects formation of clusters of coordinately migrating cells that are generated further away from the wound edge and disintegrate close to the advancing front. This wave emerges in both normal and tumor cells, and is amplified by Met activation with hepatocyte growth factor/scatter factor. Second, Met activation was found to induce coinciding waves of cellular acceleration and stretching, which in turn trigger the emergence of a backward propagating wave of directional migration with about an hour phase lag. Assessments of the relations between the waves revealed that amplified coordinated migration is associated with the emergence of directional migration. Taken together, our data and simplified modeling-based assessments suggest that increased velocity leads to enhanced coordination: higher motility arises due to acceleration and stretching that seems to increase directionality by temporarily diminishing the velocity components orthogonal to the direction defined by the monolayer geometry. Spatial and temporal accumulation of directionality thus defines coordination. The findings offer new insight and suggest a basic

  6. Ion-induced nanopattern propagation on metallic surfaces

    NASA Astrophysics Data System (ADS)

    Škereň, Tomáš; Veselý, Martin; Čapek, Pavel; Král, Jaroslav

    2015-12-01

    We investigate the formation of ion-induced patterns on single-crystalline Ni(001) bombarded with a 20 -keV Ga+ ion beam. For near normal ion incidence isotropic roughness forms on the surface. By moving to grazing incidence this pattern gradually transforms into a pronounced ripple pattern with wave vector perpendicular to the ion beam. By using an in situ scanning electron microscope we were able to analyze the real-time dynamics of the pattern formation process and evaluate the direction and velocity of the net in-plane morphology propagation for different angles of ion incidence. We compare the experimental results to the predictions of the classical theory for the pattern formation.

  7. Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation.

    PubMed

    Jing, Yun; Tao, Molei; Clement, Greg T

    2011-01-01

    A wave-vector-frequency-domain method is presented to describe one-directional forward or backward acoustic wave propagation in a nonlinear homogeneous medium. Starting from a frequency-domain representation of the second-order nonlinear acoustic wave equation, an implicit solution for the nonlinear term is proposed by employing the Green's function. Its approximation, which is more suitable for numerical implementation, is used. An error study is carried out to test the efficiency of the model by comparing the results with the Fubini solution. It is shown that the error grows as the propagation distance and step-size increase. However, for the specific case tested, even at a step size as large as one wavelength, sufficient accuracy for plane-wave propagation is observed. A two-dimensional steered transducer problem is explored to verify the nonlinear acoustic field directional independence of the model. A three-dimensional single-element transducer problem is solved to verify the forward model by comparing it with an existing nonlinear wave propagation code. Finally, backward-projection behavior is examined. The sound field over a plane in an absorptive medium is backward projected to the source and compared with the initial field, where good agreement is observed.

  8. PROPAGATION AND STABILITY OF SUPERLUMINAL WAVES IN PULSAR WINDS

    SciTech Connect

    Mochol, Iwona; Kirk, John G. E-mail: john.kirk@mpi-hd.mpg.de

    2013-07-01

    Nonlinear electromagnetic waves with superluminal phase velocity can propagate in the winds around isolated pulsars, and around some pulsars in binary systems. Using a short-wavelength approximation, we find and analyze an integrable system of equations that govern their evolution in spherical geometry. A confined mode is identified that stagnates to finite pressure at large radius and can form a precursor to the termination shock. Using a simplified criterion, we find this mode is stable for most isolated pulsars, but may be unstable if the external pressure is high, such as in the pulsar wind nebulae in starburst galaxies and in W44. Pulsar winds in eccentric binary systems, such as PSR 1259-63, may go through phases with stable and unstable electromagnetic precursors, as well as phases in which the density is too high for these modes to propagate.

  9. Excitation wave propagation in a patterned multidomain cardiac tissue

    NASA Astrophysics Data System (ADS)

    Kudryashova, N. N.; Teplenin, A. S.; Orlova, Y. V.; Agladze, K. I.

    2015-06-01

    Electrospun fibrous mats are widely used in the contemporary cardiac tissue engineering as the substrates for growing cardiac cells. The substrate with chaotically oriented nanofibers leads to the growth of cardiac tissue with randomly oriented, but internally morphologically anisotropic clusters or domains. The domain structure affects the stability of the excitation propagation and we studied the stability of the propagating excitation waves versus the average size of the domains and the externally applied excitation rate. In an experimental model based on neonatal rat cardiac tissue monolayers, as well as in the computer simulations, we have found that an increase in domain sizes leads to the decrease in the critical stimulation frequencies, thus evidencing that larger domains are having a higher arrhythmogenic effect.

  10. Ultrafast microfluidics using surface acoustic waves

    PubMed Central

    Yeo, Leslie Y.; Friend, James R.

    2009-01-01

    We demonstrate that surface acoustic waves (SAWs), nanometer amplitude Rayleigh waves driven at megahertz order frequencies propagating on the surface of a piezoelectric substrate, offer a powerful method for driving a host of extremely fast microfluidic actuation and micro∕bioparticle manipulation schemes. We show that sessile drops can be translated rapidly on planar substrates or fluid can be pumped through microchannels at 1–10 cm∕s velocities, which are typically one to two orders quicker than that afforded by current microfluidic technologies. Through symmetry-breaking, azimuthal recirculation can be induced within the drop to drive strong inertial microcentrifugation for micromixing and particle concentration or separation. Similar micromixing strategies can be induced in the same microchannel in which fluid is pumped with the SAW by merely changing the SAW frequency to rapidly switch the uniform through-flow into a chaotic oscillatory flow by exploiting superpositioning of the irradiated sound waves from the sidewalls of the microchannel. If the flow is sufficiently quiescent, the nodes of the transverse standing wave that arises across the microchannel also allow for particle aggregation, and hence, sorting on nodal lines. In addition, the SAW also facilitates other microfluidic capabilities. For example, capillary waves excited at the free surface of a sessile drop by the SAW underneath it can be exploited for micro∕nanoparticle collection and sorting at nodal points or lines at low powers. At higher powers, the large accelerations off the substrate surface as the SAW propagates across drives rapid destabilization of the drop free surface giving rise to inertial liquid jets that persist over 1–2 cm in length or atomization of the entire drop to produce 1–10 μm monodispersed aerosol droplets, which can be exploited for ink-jet printing, mass spectrometry interfacing, or pulmonary drug delivery. The atomization of polymer∕protein solutions

  11. Propagation of spiral waves pinned to circular and rectangular obstacles.

    PubMed

    Sutthiopad, Malee; Luengviriya, Jiraporn; Porjai, Porramain; Phantu, Metinee; Kanchanawarin, Jarin; Müller, Stefan C; Luengviriya, Chaiya

    2015-05-01

    We present an investigation of spiral waves pinned to circular and rectangular obstacles with different circumferences in both thin layers of the Belousov-Zhabotinsky reaction and numerical simulations with the Oregonator model. For circular objects, the area always increases with the circumference. In contrast, we varied the circumference of rectangles with equal areas by adjusting their width w and height h. For both obstacle forms, the propagating parameters (i.e., wavelength, wave period, and velocity of pinned spiral waves) increase with the circumference, regardless of the obstacle area. Despite these common features of the parameters, the forms of pinned spiral waves depend on the obstacle shapes. The structures of spiral waves pinned to circles as well as rectangles with the ratio w/h∼1 are similar to Archimedean spirals. When w/h increases, deformations of the spiral shapes are observed. For extremely thin rectangles with w/h≫1, these shapes can be constructed by employing semicircles with different radii which relate to the obstacle width and the core diameter of free spirals.

  12. Wave propagation downstream of a high power helicon in a dipolelike magnetic field

    SciTech Connect

    Prager, James; Winglee, Robert; Roberson, B. Race; Ziemba, Timothy

    2010-01-15

    The wave propagating downstream of a high power helicon source in a diverging magnetic field was investigated experimentally. The magnetic field of the wave has been measured both axially and radially. The three-dimensional structure of the propagating wave is observed and its wavelength and phase velocity are determined. The measurements are compared to predictions from helicon theory and that of a freely propagating whistler wave. The implications of this work on the helicon as a thruster are also discussed.

  13. Gravity Wave Variances and Propagation Derived from AIRS Radiances

    NASA Technical Reports Server (NTRS)

    Gong, Jie; Wu, Dong L.; Eckermann, S. D.

    2012-01-01

    As the first gravity wave (GW) climatology study using nadir-viewing infrared sounders, 50 Atmospheric Infrared Sounder (AIRS) radiance channels are selected to estimate GW variances at pressure levels between 2-100 hPa. The GW variance for each scan in the cross-track direction is derived from radiance perturbations in the scan, independently of adjacent scans along the orbit. Since the scanning swaths are perpendicular to the satellite orbits, which are inclined meridionally at most latitudes, the zonal component of GW propagation can be inferred by differencing the variances derived between the westmost and the eastmost viewing angles. Consistent with previous GW studies using various satellite instruments, monthly mean AIRS variance shows large enhancements over meridionally oriented mountain ranges as well as some islands at winter hemisphere high latitudes. Enhanced wave activities are also found above tropical deep convective regions. GWs prefer to propagate westward above mountain ranges, and eastward above deep convection. AIRS 90 field-of-views (FOVs), ranging from +48 deg. to -48 deg. off nadir, can detect large-amplitude GWs with a phase velocity propagating preferentially at steep angles (e.g., those from orographic and convective sources). The annual cycle dominates the GW variances and the preferred propagation directions for all latitudes. Indication of a weak two-year variation in the tropics is found, which is presumably related to the Quasi-biennial oscillation (QBO). AIRS geometry makes its out-tracks capable of detecting GWs with vertical wavelengths substantially shorter than the thickness of instrument weighting functions. The novel discovery of AIRS capability of observing shallow inertia GWs will expand the potential of satellite GW remote sensing and provide further constraints on the GW drag parameterization schemes in the general circulation models (GCMs).

  14. Deep vertical propagation of mountain waves above Scandinavia

    NASA Astrophysics Data System (ADS)

    Dörnbrack, A.; Witschas, B.; Rahm, S.; Gisinger, S.; Rapp, M.; Baumgarten, G.; Stober, G.; Luebken, F. J.; Achtert, P.; Ehard, B.; Gumbel, J.; Kivi, R.; Wagner, J.

    2014-12-01

    The project "Investigation of the life cycle of gravity waves"(GW-LCYCLE) is part of the German research initiative ROMIC (Role of theMiddle atmosphere In Climate) funded by the ministry of research. Inclose cooperation with Scandinavian partners as the Stockholm Universityand the Finnish Meteorological Institute a first field phase wasconducted in November/December 2013. The field program combinedground-based observations of tropospheric and lower stratospheric flowand stratospheric and mesospheric temperature by lidars and radars atAlomar (N) and at Esrange (S) with airborne and balloonborneobservations. Northern Scandinavia was chosen since the westerly flowacross the mountains is often aligned with the polar night jetpermitting gravity waves (GWs) to propagate into the middle atmosphere.From 2 until 14 December 2013, 24 flight hours of the DLR Falcon flownin four intensive observing periods (IOPs) provided in-situ andremote-sensing observations of atmospheric wind, temperature, watervapour and other trace gases (e.g. CO, N2O, O3) in the vicinity of thetropopause. During three IOPs, the airborne observations were supportedby 3 hourly simultaneous radiosonde launches from Andøya (N), Esrange(S) and Sodankylä (FIN). Additionally, 1.5 hourly high-frequencyradiosonde launches were conducted from the Arena Arctica at Kirunaairport with two systems (Väisälä and GRAW)and different balloonfillings to obtain different ascent rates.During GW-LCYCLE, the atmospheric flow above the Scandinavian mountainswas observed under distinct meteorological conditions enabling orattenuating the deep vertical propagation of mountain-induced gravitywaves. The presentation juxtaposes two different cases and analyses theassociated meteorological conditions. The unique combination of airbornetropospheric wind lidar measurements, flight level data, high-frequencyradiosonde profiles and the ground-based lidar observations allow acomprehensive study of deeply propagating gravity waves

  15. Radio wave propagation at frequencies exceeding MUF-F2 in the short wave band

    NASA Technical Reports Server (NTRS)

    Ashkaliyev, Y. F.; Bocharov, V. I.

    1972-01-01

    The results of measurements of field strength and signal/noise ratio on experimental ionospheric-scattering short wave radio links are presented. It is shown that the seasonal and diurnal variations of field strength are determined by features of solar and meteoric activity. The role of the sporadic E-layer in propagation of short radio waves at frequencies exceeding MUF-F2 is noted.

  16. Investigation of guided waves propagation in pipe buried in sand

    SciTech Connect

    Leinov, Eli; Cawley, Peter; Lowe, Michael J.S.

    2014-02-18

    The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand using a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.

  17. Propagation of unsteady waves in an elastic layer

    NASA Astrophysics Data System (ADS)

    Kuznetsova, E. L.; Tarlakovskii, D. V.; Fedotenkov, G. V.

    2011-10-01

    We consider a plane problem of propagation of unsteady waves in a plane layer of constant thickness filled with a homogeneous linearly elastic isotropic medium in the absence of mass forces and with zero initial conditions. We assume that, on one of the layer boundaries, the normal stresses are given in the form of the Dirac delta function, the tangential stresses are zero, and the second boundary is rigidly fixed. The problem is solved by using the Laplace transform with respect to time and the Fourier transform with respect to the longitudinal coordinate. The normal displacements at an arbitrary point are obtained in the form of finite sums.

  18. Magnetostatic volume wave propagation in multilayer YIG/GGG structures

    NASA Astrophysics Data System (ADS)

    Adam, J. D.; Daniel, M. R.

    1984-09-01

    The growth of multiple epitaxial YIG film structures using epitaxial GGG spacer layers is described. Samarium doping of the epitaxial GGG was used to reduce its lattice mismatch with the GGG substrate to less than 0.002 A and both double and triple YIG films were grown on 50 mm diameter GGG substrates. Measured and calculated results for magnetostatic wave propagation in three different examples are given, i.e., FVWs in double and triple YIG layer structures and BVWs in a four YIG layer structure. In these cases agreement between measurements and calculations was excellent.

  19. Dispersion relations for electromagnetic wave propagation in chiral plasmas

    SciTech Connect

    Gao, M. X.; Guo, B. Peng, L.; Cai, X.

    2014-11-15

    The dispersion relations for electromagnetic wave propagation in chiral plasmas are derived using a simplified method and investigated in detail. With the help of the dispersion relations for each eignwave, we explore how the chiral plasmas exhibit negative refraction and investigate the frequency region for negative refraction. The results show that chirality can induce negative refraction in plasmas. Moreover, both the degree of chirality and the external magnetic field have a significant effect on the critical frequency and the bandwidth of the frequency for negative refraction in chiral plasmas. The parameter dependence of the effects is calculated and discussed.

  20. Regular Wave Propagation Out of Noise in Chemical Active Media

    SciTech Connect

    Alonso, S.; Sendina-Nadal, I.; Perez-Munuzuri, V.; Sancho, J. M.; Sagues, F.

    2001-08-13

    A pacemaker, regularly emitting chemical waves, is created out of noise when an excitable photosensitive Belousov-Zhabotinsky medium, strictly unable to autonomously initiate autowaves, is forced with a spatiotemporal patterned random illumination. These experimental observations are also reproduced numerically by using a set of reaction-diffusion equations for an activator-inhibitor model, and further analytically interpreted in terms of genuine coupling effects arising from parametric fluctuations. Within the same framework we also address situations of noise-sustained propagation in subexcitable media.

  1. Regular wave propagation out of noise in chemical active media.

    PubMed

    Alonso, S; Sendiña-Nadal, I; Pérez-Muñuzuri, V; Sancho, J M; Sagués, F

    2001-08-13

    A pacemaker, regularly emitting chemical waves, is created out of noise when an excitable photosensitive Belousov-Zhabotinsky medium, strictly unable to autonomously initiate autowaves, is forced with a spatiotemporal patterned random illumination. These experimental observations are also reproduced numerically by using a set of reaction-diffusion equations for an activator-inhibitor model, and further analytically interpreted in terms of genuine coupling effects arising from parametric fluctuations. Within the same framework we also address situations of noise-sustained propagation in subexcitable media.

  2. Particle velocity non-uniformity and steady-wave propagation

    NASA Astrophysics Data System (ADS)

    Meshcheryakov, Yu. I.

    2017-03-01

    A constitutive equation grounded in dislocation dynamics is shown to be incapable of describing the propagation of shock fronts in solids. Shock wave experiments and theoretical investigations motivate an additional collective mechanism of stress relaxation that should be incorporated into the model through the standard deviation of the particle velocity, which is found to be proportional to the strain rate. In this case, the governing equation system results in a second-order differential equation of square non-linearity. Solution to this equation and calculations for D16 aluminum alloy show a more precise coincidence of the theoretical and experimental velocity profiles.

  3. Propagation analysis of forward degenerate four-wave mixing

    NASA Astrophysics Data System (ADS)

    Maruani, A.

    1980-05-01

    The problem of forward degenerate four-wave mixing in one- and two-photon absorbing media is shown to be analytically solvable for all current experimental conditions. The resonant interaction is studied in detail, and optical Kerr effect, auto and induced two-photon absorption, and nonlinear gain are taken explicitly into account. It is demonstrated how the Kerr effect limits the efficiency of the process. Around a two-photon resonance, the problem of the nearly parallel propagation of two beams undergoing auto and induced two-photon absorption is solved. The solutions are obtained in a form simple enough to allow numerical computations on a programmable calculator.

  4. Propagation of SH waves in an infinite/semi-infinite piezoelectric/piezomagnetic periodically layered structure.

    PubMed

    Pang, Yu; Liu, Yu-Shan; Liu, Jin-Xi; Feng, Wen-Jie

    2016-04-01

    In this paper, SH bulk/surface waves propagating in the corresponding infinite/semi-infinite piezoelectric (PE)/piezomagnetic (PM) and PM/PE periodically layered composites are investigated by two methods, the stiffness matrix method and the transfer matrix method. For a semi-infinite PE/PM or PM/PE medium, the free surface is parallel to the layer interface. Both PE and PM materials are assumed to be transversely isotropic solids. Dispersion equations are derived by the stiffness/transfer matrix methods, respectively. The effects of electric-magnetic (ME) boundary conditions at the free surface and the layer thickness ratios on dispersion curves are considered in detail. Numerical examples show that the results calculated by the two methods are the same. The dispersion curves of SH surface waves are below the bulk bands or inside the frequency gaps. The ratio of the layer thickness has an important effect not only on the bulk bands but also on the dispersion curves of SH surface waves. Electric and magnetic boundary conditions, respectively, determine the dispersion curves of SH surface waves for the PE/PM and PM/PE semi-infinite structures. The band structures of SH bulk waves are consistent for the PE/PM and PM/PE structures, however, the dispersive behaviors of SH surface waves are indeed different for the two composites. The realization of the above-mentioned characteristics of SH waves will make it possible to design PE/PM acoustic wave devices with periodical structures and achieve the better performance.

  5. Propagation of Nonlinear Waves Passing Over Submerged Step

    NASA Astrophysics Data System (ADS)

    Monsalve, E.; Maurel, A.; Pagneux, V.; Petitjeans, P.

    Nonlinear water waves have been studied for decades. However, numeric models have always been validated with punctual measurements. In this study we measure the surface deformation of water waves with the Fourier Transform Profilometry (FTP) technique, obtaining a complete space-time resolved field. This permits to separate free and bound waves in the shallow water region, revealing the near resonant interaction between those components. When we change the absorbing beach by a reflecting wall at the end of the channel, we observe an interesting resonance for fixed frequencies. At the resonant frequencies, the system shows a chaotic behavior.

  6. Visualization of non-propagating Lamb wave modes for fatigue crack evaluation

    NASA Astrophysics Data System (ADS)

    An, Yun-Kyu; Sohn, Hoon

    2015-03-01

    This article develops a non-propagating Lamb wave mode (NPL) imaging technique for fatigue crack visualization. NPL has a great potential for crack evaluation in that it significantly contributes local mode amplitudes in the vicinity of a crack without spatial propagation. Such unique physical phenomenon is theoretically proven and experimentally measured through laser scanning. Although its measurement is a quite challenging work due to the fact that it is quite localized and coexists with complex propagating Lamb wave modes, a NPL filter proposed in this article overcomes the technical challenge by eliminating all propagating Lamb modes from laser scanned full Lamb wavefields. Through the NPL filtering process, only fatigue crack-induced NPLs can be measured and retained. To verify such physical observation and the corresponding NPL filter, a real micro fatigue crack is created by applying repeated tensile loading, and its detectability is tested using a surface-mounted piezoelectric transducer for generating Lamb waves and a laser Doppler vibrometer for measuring the corresponding responses. The experimental results confirm that even an invisible fatigue crack can be instantaneously visualized and effectively evaluated through the proposed NPL measurement and filtering processes.

  7. Experimental classification of surface waves in optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Zvietcovich, Fernando; Yao, Jianing; Rolland, Jannick P.; Parker, Kevin J.

    2016-03-01

    Various types of waves are produced when a harmonic force is applied to a semi-infinite half space elastic medium. In particular, surface waves are perturbations with transverse and longitudinal components of displacement that propagate in the boundary region at the surface of the elastic solid. Shear wave speed estimation is the standard for characterizing elastic properties of tissue in elastography; however, the penetration depth of Optical Coherence Tomography (OCT) is typically measured in millimeters constraining the measurement region of interest to be near the surface. Plane harmonic Rayleigh waves propagate in solid-vacuum interfaces while Scholte waves exist in solid-fluid interfaces. Theoretically, for an elastic solid with a Poisson's ratio close to 0.5, the ratio of the Rayleigh to shear wave speed is 95%, and 84% for the Scholte to shear wave. Our study demonstrates the evidence of Rayleigh waves propagating in the solid-air boundary of tissue-mimicking elastic phantoms. Sinusoidal tone-bursts of 400Hz and 1000 Hz were excited over the phantom by using a piezoelectric actuator. The wave propagation was detected with a phase-sensitive OCT system, and its speed was measured by tracking the most prominent peak of the tone in time and space. Similarly, this same experiment was repeated with a water interface. In order to obtain the shear wave speed in the material, mechanical compression tests were conducted in samples of the same phantom. A 93.9% Rayleigh-shear and 82.4% Scholte-Shear speed ratio were measured during experiments which are in agreement with theoretical results.

  8. Interaction of High Frequency Acoustic Waves and Optical Waves Propagating in Single Mode Fibers.

    NASA Astrophysics Data System (ADS)

    de Paula, Ramon Perez

    This paper develops a frequency dependent model for the acousto-optic interaction with a single mode fiber of acoustic waves having wavelengths comparable to the fiber diameter. This paper also presents optical techniques for experimental observation and measurement of such effects. The acoustic waves are both normally and obliquelly incident on the fiber. The solutions to the elastic problem studied here are constructed using scalar and vector potentials. The principal strains induced by a plane wave propagating in a fluid is calculated through the solution of the wave equation and the associated boundary condition. The optical beam propagation is analyzed starting with Maxwell's, equations and the required solution for single mode (degenerate double mode) propagation is presented. For the perturbed fiber the anisotropic solution is discussed. The optical indicatrix is derived from the electric energy density, with the major axis parallel to the induced principal strains obtained from the solution of the elastic problem. The solution of the optical indicatrix equation (index ellipsoid) yields two independent propagation modes that are linear polarized plane waves with two different propagation velocities. The induced phase shift and birefringence are calculated from the index ellipsoid. The birefringence and phase shift are also measured experimentally using a fiber optic interferometer and a fiber optic polariscope. The experimental apparatus is discussed in detail and the techniques used to make the measurements are presented. The results are separated into two parts: first, the results for ultrasonic waves of normal incidence are presented, theoretical and experimental results are discussed, and the two compared; second, the results for angular incidence are presented in the same format as above, and compared with the results for perpendicular incidence.

  9. Discretizing singular point sources in hyperbolic wave propagation problems

    NASA Astrophysics Data System (ADS)

    Petersson, N. Anders; O'Reilly, Ossian; Sjögreen, Björn; Bydlon, Samuel

    2016-09-01

    We develop high order accurate source discretizations for hyperbolic wave propagation problems in first order formulation that are discretized by finite difference schemes. By studying the Fourier series expansions of the source discretization and the finite difference operator, we derive sufficient conditions for achieving design accuracy in the numerical solution. Only half of the conditions in Fourier space can be satisfied through moment conditions on the source discretization, and we develop smoothness conditions for satisfying the remaining accuracy conditions. The resulting source discretization has compact support in physical space, and is spread over as many grid points as the number of moment and smoothness conditions. In numerical experiments we demonstrate high order of accuracy in the numerical solution of the 1-D advection equation (both in the interior and near a boundary), the 3-D elastic wave equation, and the 3-D linearized Euler equations.

  10. Discretizing singular point sources in hyperbolic wave propagation problems

    DOE PAGES

    Petersson, N. Anders; O'Reilly, Ossian; Sjogreen, Bjorn; ...

    2016-06-01

    Here, we develop high order accurate source discretizations for hyperbolic wave propagation problems in first order formulation that are discretized by finite difference schemes. By studying the Fourier series expansions of the source discretization and the finite difference operator, we derive sufficient conditions for achieving design accuracy in the numerical solution. Only half of the conditions in Fourier space can be satisfied through moment conditions on the source discretization, and we develop smoothness conditions for satisfying the remaining accuracy conditions. The resulting source discretization has compact support in physical space, and is spread over as many grid points as themore » number of moment and smoothness conditions. In numerical experiments we demonstrate high order of accuracy in the numerical solution of the 1-D advection equation (both in the interior and near a boundary), the 3-D elastic wave equation, and the 3-D linearized Euler equations.« less

  11. Discretizing singular point sources in hyperbolic wave propagation problems

    SciTech Connect

    Petersson, N. Anders; O'Reilly, Ossian; Sjogreen, Bjorn; Bydlon, Samuel

    2016-06-01

    Here, we develop high order accurate source discretizations for hyperbolic wave propagation problems in first order formulation that are discretized by finite difference schemes. By studying the Fourier series expansions of the source discretization and the finite difference operator, we derive sufficient conditions for achieving design accuracy in the numerical solution. Only half of the conditions in Fourier space can be satisfied through moment conditions on the source discretization, and we develop smoothness conditions for satisfying the remaining accuracy conditions. The resulting source discretization has compact support in physical space, and is spread over as many grid points as the number of moment and smoothness conditions. In numerical experiments we demonstrate high order of accuracy in the numerical solution of the 1-D advection equation (both in the interior and near a boundary), the 3-D elastic wave equation, and the 3-D linearized Euler equations.

  12. Ultrasonic wave propagation in concentrated slurries--the modelling problem.

    PubMed

    Challis, Richard E; Pinfield, Valerie J

    2014-09-01

    The suspended particle size distribution in slurries can, in principle, be estimated from measured ultrasonic wave attenuation across a frequency band in the 10s of MHz range. The procedure requires a computational model of wave propagation which incorporates scattering phenomena. These models fail at high particle concentrations due to hydrodynamic effects which they do not incorporate. This work seeks an effective viscosity and density for the medium surrounding the particles, which would enable the scattering model predictions to match experimental data for high solids loading. It is found that the required viscosity model has unphysical characteristics leading to the conclusion that a simple effective medium modification to the ECAH/LB is not possible. The paper confirms the successful results which can be obtained using core-shell scattering models, for smaller particles than had previously been studied, and outlines modifications to these which would permit rapid computation of sufficient stability to support fast particle sizing procedures.

  13. The Millikan shaking experiments and high-frequency seismic wave propagation in Southern California

    NASA Astrophysics Data System (ADS)

    Tanimoto, Toshiro; Okamoto, Taro

    2014-08-01

    In order to study high-frequency seismic wave propagation, seismic wavefields generated by resonant-shaking experiments of the Millikan Library, on the campus of California Institute Technology (Pasadena, California, USA), were analysed. Because the resonant shaking frequencies are 1.12 Hz (the east-west direction) and 1.64 Hz (the north-south direction), this active-source experiment can provide opportunities for studying high-frequency seismic wave propagation in Southern California. Because they are very narrow frequency band data, the analyses must be quite different from ordinary time-domain analyses. We show, theoretically, that the signals must be dominated by surface waves. Adopting this surface wave assumption, we proceed to make two separate analyses, one on spectral amplitude and the other on phase. We present a new method to derive group velocity from phase based on the cross correlations between the station in the Millikan Library (MIK) and stations in the regional network. Our results support that an active-source experiment by resonant shaking of a building is a feasible approach for high-frequency seismic wave studies.

  14. The correlation of VLF propagation variations with atmospheric planetary-scale waves

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Deland, R. J.; Potemra, T. A.; Gavin, R. F.

    1973-01-01

    Variations in the received daytime phase of long distance, cesium-controlled, VLF transmission were compared to the height variations of the 10-mb isobaric surface during the first three months of 1965 and 1969. The VLF phase values are also compared to height variations of constant electron densities in the E-region and to variations of f-min which have been shown to be well correlated with planetary-scale variations in the stratosphere by Deland and Cavalieri (1973). The VLF phase variations show good correlation with these previous ionospheric measurements and with the 10-mb surfaces. The planetary scale waves in the stratosphere are shown to be travelling on the average eastward in 1965 and westward in 1969. These correlations are interpreted as due to the propagation of travelling planetary scale waves with westward tilted wave fronts. Upward energy transport due to the vertical structure of those waves is also discussed. These correlations provide further evidence for the coupling between the lower ionosphere at about 70 km altitude (the daytime VLF reflection height and the stratosphere, and they demonstrate the importance of planetary wave phenomena to VLF propagation.

  15. DETECTION OF FAST-MOVING WAVES PROPAGATING OUTWARD ALONG SUNSPOTS’ RADIAL DIRECTION IN THE PHOTOSPHERE

    SciTech Connect

    Zhao, Junwei; Chen, Ruizhu; Hartlep, Thomas; Kosovichev, Alexander G.

    2015-08-10

    Helioseismic and magnetohydrodynamic waves are abundant in and above sunspots. Through cross-correlating oscillation signals in the photosphere observed by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, we reconstruct how waves propagate away from virtual wave sources located inside a sunspot. In addition to the usual helioseismic wave, a fast-moving wave is detected traveling along the sunspot’s radial direction from the umbra to about 15 Mm beyond the sunspot boundary. The wave has a frequency range of 2.5–4.0 mHz with a phase velocity of 45.3 km s{sup −1}, substantially faster than the typical speeds of Alfvén and magnetoacoustic waves in the photosphere. The observed phenomenon is consistent with a scenario of that a magnetoacoustic wave is excited at approximately 5 Mm beneath the sunspot. Its wavefront travels to and sweeps across the photosphere with a speed higher than the local magnetoacoustic speed. The fast-moving wave, if truly excited beneath the sunspot’s surface, will help open a new window for studying the internal structure and dynamics of sunspots.

  16. Upward propagation of atmospheric waves from the troposphere to the thermosphere and its impact on the thermospheric circulation

    NASA Astrophysics Data System (ADS)

    Miyoshi, Yasunobu

    A general circulation model (GCM) is quite a useful tool for studies of coupling processes between the upper and lower atmosphere. We have developed a GCM which contains the region from the ground surface to the upper thermosphere [Miyoshi and Fujiwara, 2003]. By using this GCM, dynamical coupling processes between the lower and upper atmosphere by atmospheric waves have been investigated [Miyoshi and Fujiwara, 2006]. In this study, day-to-day variations of planetary scale waves (such as Rossby wave and tides) in the lower thermosphere and their relations to the variability in the lower atmosphere are examined. Our results show that the atmospheric variation in the troposphere influences day-to-day variations of the zonal mean zonal wind in the lower thermosphere through the wave-mean flow interaction due to upward propagating planetary scale waves. Furthermore, a higher horizontal resolution GCM (horizontal resolution: 1.4 degrees longitude ×1.4 degrees latitudes) is used to investigate upward propagation of gravity waves from the troposphere to the upper thermosphere. It is found that gravity waves in the lower thermosphere are mainly generated in the troposphere and propagate upward. Fluctuation associated with upward propagating gravity waves above 150 km height is also discussed. In particular, longitudinal and seasonal variations of gravity wave activity in the thermosphere will be shown.

  17. Acoustic wave propagation in high-pressure system.

    PubMed

    Foldyna, Josef; Sitek, Libor; Habán, Vladimír

    2006-12-22

    Recently, substantial attention is paid to the development of methods of generation of pulsations in high-pressure systems to produce pulsating high-speed water jets. The reason is that the introduction of pulsations into the water jets enables to increase their cutting efficiency due to the fact that the impact pressure (so-called water-hammer pressure) generated by an impact of slug of water on the target material is considerably higher than the stagnation pressure generated by corresponding continuous jet. Special method of pulsating jet generation was developed and tested extensively under the laboratory conditions at the Institute of Geonics in Ostrava. The method is based on the action of acoustic transducer on the pressure liquid and transmission of generated acoustic waves via pressure system to the nozzle. The purpose of the paper is to present results obtained during the research oriented at the determination of acoustic wave propagation in high-pressure system. The final objective of the research is to solve the problem of transmission of acoustic waves through high-pressure water to generate pulsating jet effectively even at larger distances from the acoustic source. In order to be able to simulate numerically acoustic wave propagation in the system, it is necessary among others to determine dependence of the sound speed and second kinematical viscosity on operating pressure. Method of determination of the second kinematical viscosity and speed of sound in liquid using modal analysis of response of the tube filled with liquid to the impact was developed. The response was measured by pressure sensors placed at both ends of the tube. Results obtained and presented in the paper indicate good agreement between experimental data and values of speed of sound calculated from so-called "UNESCO equation". They also show that the value of the second kinematical viscosity of water depends on the pressure.

  18. Wave Damping Observed in Upwardly Propagating Sausage-mode Oscillations Contained within a Magnetic Pore

    NASA Astrophysics Data System (ADS)

    Grant, S. D. T.; Jess, D. B.; Moreels, M. G.; Morton, R. J.; Christian, D. J.; Giagkiozis, I.; Verth, G.; Fedun, V.; Keys, P. H.; Van Doorsselaere, T.; Erdélyi, R.

    2015-06-01

    We present observational evidence of compressible MHD wave modes propagating from the solar photosphere through to the base of the transition region in a solar magnetic pore. High cadence images were obtained simultaneously across four wavelength bands using the Dunn Solar Telescope. Employing Fourier and wavelet techniques, sausage-mode oscillations displaying significant power were detected in both intensity and area fluctuations. The intensity and area fluctuations exhibit a range of periods from 181 to 412 s, with an average period ˜290 s, consistent with the global p-mode spectrum. Intensity and area oscillations present in adjacent bandpasses were found to be out of phase with one another, displaying phase angles of 6.°12, 5.°82, and 15.°97 between the 4170 Å continuum-G-band, G-band-Na i D1, and Na i D1-Ca ii K heights, respectively, reiterating the presence of upwardly propagating sausage-mode waves. A phase relationship of ˜0° between same-bandpass emission and area perturbations of the pore best categorizes the waves as belonging to the “slow” regime of a dispersion diagram. Theoretical calculations reveal that the waves are surface modes, with initial photospheric energies in excess of 35,000 W m-2. The wave energetics indicate a substantial decrease in energy with atmospheric height, confirming that magnetic pores are able to transport waves that exhibit appreciable energy damping, which may release considerable energy into the local chromospheric plasma.

  19. Propagation of 3D nonlinear waves over complex bathymetry using a High-Order Spectral method

    NASA Astrophysics Data System (ADS)

    Gouin, Maïté; Ducrozet, Guillaume; Ferrant, Pierre

    2016-04-01

    Scattering of regular and irregular surface gravity waves propagating over a region of arbitrary three-dimensional varying bathymetry is considered here. The three-dimensional High-Order Spectral method (HOS) with an extension to account for a variable bathymetry is used. The efficiency of the model has been proved to be conserved even with this extension. The method is first applied to a bathymetry consisting of an elliptical lens, as used in the Vincent and Briggs (1989) experiment. Incident waves passing across the lens are transformed and a strong convergence region is observed after the elliptical mound. The wave amplification depends on the incident wave. Numerical results for regular and irregular waves are analysed and compared with other methods and experimental data demonstrating the efficiency and practical applicability of the present approach. Then the method is used to model waves propagating over a real bathymetry: the canyons of Scripps/La Jolla in California. The implementation of this complex bathymetry in the model is presented, as well as the first results achieved. They will be compared to the ones obtained with another numerical model.

  20. Anti-plane transverse waves propagation in nanoscale periodic layered piezoelectric structures.

    PubMed

    Chen, A-Li; Yan, Dong-Jia; Wang, Yue-Sheng; Zhang, Chuanzeng

    2016-02-01

    In this paper, anti-plane transverse wave propagation in nanoscale periodic layered piezoelectric structures is studied. The localization factor is introduced to characterize the wave propagation behavior. The transfer matrix method based on the nonlocal piezoelectricity continuum theory is used to calculate the localization factor. Additionally, the stiffness matrix method is applied to compute the wave transmission spectra. A cut-off frequency is found, beyond which the elastic waves cannot propagate through the periodic structure. The size effect or the influence of the ratio of the internal to external characteristic lengths on the cut-off frequency and the wave propagation behavior are investigated and discussed.

  1. Band gaps and localization of surface water waves over large-scale sand waves with random fluctuations.

    PubMed

    Zhang, Yu; Li, Yan; Shao, Hao; Zhong, Yaozhao; Zhang, Sai; Zhao, Zongxi

    2012-06-01

    Band structure and wave localization are investigated for sea surface water waves over large-scale sand wave topography. Sand wave height, sand wave width, water depth, and water width between adjacent sand waves have significant impact on band gaps. Random fluctuations of sand wave height, sand wave width, and water depth induce water wave localization. However, random water width produces a perfect transmission tunnel of water waves at a certain frequency so that localization does not occur no matter how large a disorder level is applied. Together with theoretical results, the field experimental observations in the Taiwan Bank suggest band gap and wave localization as the physical mechanism of sea surface water wave propagating over natural large-scale sand waves.

  2. Full wave propagation modelling in view to integrated ICRH wave coupling/RF sheaths modelling

    NASA Astrophysics Data System (ADS)

    Jacquot, Jonathan; Bobkov, Volodymyr; Colas, Laurent; Heuraux, Stéphane; Křivská, Alena; Lu, Lingfeng; Noterdaeme, Jean-Marie

    2015-12-01

    RF sheaths rectification can be the reason for operational limits for Ion Cyclotron Range of Frequencies (ICRF) heating systems via impurity production or excessive heat loads. To simulate this process in realistic geometry, the Self-consistent Sheaths and Waves for Ion Cyclotron Heating (SSWICH) code is a minimal set of coupled equations that computes self-consistently wave propagation and DC plasma biasing. The present version of its wave propagation module only deals with the Slow Wave assumed to be the source of RF sheath oscillations. However the ICRF power coupling to the plasma is due to the fast wave (FW). This paper proposes to replace this one wave equation module by a full wave module in either 2D or 3D as a first step towards integrated modelling of RF sheaths and wave coupling. Since the FW is propagative in the main plasma, Perfectly Matched Layers (PMLs) adapted for plasmas were implemented at the inner side of the simulation domain to absorb outgoing waves and tested numerically with tilted B0 in Cartesian geometry, by either rotating the cold magnetized plasma dielectric tensors in 2D or rotating the coordinate vector basis in 3D. The PML was further formulated in cylindrical coordinates to account for for the toroidal curvature of the plasma. Toroidal curvature itself does not seem to change much the coupling. A detailed 3D geometrical description of Tore Supra and ASDEX Upgrade (AUG) antennas was included in the coupling code. The full antenna structure was introduced, since its toroidal symmetry with respect to the septum plane is broken (FS bars, toroidal phasing, non-symmetrical structure). Reliable convergence has been obtained with the density profile up to the leading edge of antenna limiters. Parallel electric field maps have been obtained as an input for the present version of SSWICH.

  3. Sound radiation from an infinite elastic cylinder with dual-wave propagation-intensity distributions

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1988-01-01

    The radiation of sound from an elastic cylindrical shell filled with fluid and supporting multiwave propagation is studied analytically. Combinations of supersonic and subsonic shell waves are considered. The radiated field is mapped by using acoustic intensity vectors evaluated at various locations. Both time averaged and instantaneous intensity are investigated. The acoustic intensity is seen to vary markedly with axial distance down the cylinder. The effect is shown to be associated with cross terms in the intensity relations, and its magnitude and location to depend upon the relative phase and amplitudes of individual waves. Subsonic shell waves are demonstrated to interact strongly with supersonic shell waves to cause a large modification in the radiated intensity distributions near the shell surface.

  4. The various manifestations of collisionless dissipation in wave propagation

    NASA Astrophysics Data System (ADS)

    Benisti, Didier; Morice, Olivier; Gremillet, Laurent

    2012-10-01

    In this talk, we provide a theoretical description of collisionless dissipation [1], for an electrostatic wave propagating in a three-dimensional plasma, from the linear regime when it simply amounts to Landau damping, to the strongly nonlinear one when it significantly affects the wave group velocity, both, along and across the local wave number. We, moreover, discuss the impact of dissipation on the longitudinal and transverse extent of the wave packet, which allows us to reinterpret previously published kinetic simulations [2-4]. Finally, we illustrate our results on a two-dimensional simulation of stimulated Raman scattering.[4pt] [1] D. B'enisti, O. Morice, and L. Gremillet, Phys. Plasmas 16, 063110 (2012). [2] J. E. Fahlen, B. J. Winjum, T. Grismayer, and W. B. Mori, Phys. Rev. Lett. 102, 245002 (2009). [3] J. W. Banks, R. L. Berger, S. Brunner, B. I. Cohen, and J. A. F. Hittinger, Phys. Plasmas 18, 052102 (2011). [4] J. E. Fahlen, B. J. Winjum, T. Grismayer, and W. B. Mori, Phys. Rev. E 83, 045501(R) (2011).

  5. Elastic wave propagation in bone in vivo: methodology.

    PubMed

    Cheng, S; Timonen, J; Suominen, H

    1995-04-01

    The purpose of this study was to investigate the usefulness of elastic wave propagation (EWP) in estimating the mechanical properties (elasticity) of human tibia. The test group was composed of 78-yr-old women assigned to high (n = 19) and low (n = 17) bone mineral density (BMD) groups as measured at the calcaneus by the 125I-photon absorption method. The EWP apparatus consisted of an impact-producing hammer with a force strain gauge and two accelerometers positioned on the bone. Results for nylon and acrylic were used to calibrate the apparatus. Polyvinyl chloride (PVC) solid rods and tubes of various diameters were used to evaluate the relationship between the elastic wave velocity and cross-sectional area. The density and the cross-sectional area of tibia were measured by the computerized tomographic (CT) method at the same intersection points as velocity recordings. The velocities in tibia of bending waves produced by the mechanical hammer were found to depend on the density, area moment of inertia, and density-dependent elastic constants of bone. It is important to account for the changes of these quantities along the bone. It is suggested that the velocity of elastic waves and various indices derived there from provide inexpensive ways of evaluating the elastic properties of bone.

  6. Plasma and radio waves from Neptune: Source mechanisms and propagation

    NASA Technical Reports Server (NTRS)

    Wong, H. K.

    1994-01-01

    This report summarizes results obtained through the support of NASA Grant NAGW-2412. The objective of this project is to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as if flew by Neptune. This study has included data analysis, theoretical and numerical calculations, ray tracing, and modeling to determine the possible source mechanism(s) and locations of the Neptune radio emissions. We have completed four papers, which are included in the appendix. The paper 'Modeling of Whistler Ray Paths in the Magnetosphere of Neptune' investigated the propagation and dispersion of lighting-generated whistler in the magnetosphere of Neptune by using three dimensional ray tracing. The two papers 'Numerical Simulations of Bursty Radio Emissions from Planetary Magnetospheres' and 'Numerical Simulations of Bursty Planetary Radio Emissions' employed numerical simulations to investigate an alternate source mechanism of bursty radio emissions in addition to the cyclotron maser instability. We have also studied the possible generation of Z and whistler mode waves by the temperature anisotropic beam instability and the result was published in 'Electron Cyclotron Wave Generation by Relativistic Electrons.' Besides the aforementioned studies, we have also collaborated with members of the PRA team to investigate various aspects of the radio wave data. Two papers have been submitted for publication and the abstracts of these papers are also listed in the appendix.

  7. Wave speed propagation measurements on highly attenuative heated materials

    DOE PAGES

    Moore, David G.; Ober, Curtis C.; Rodacy, Phil J.; ...

    2015-09-19

    Ultrasonic wave propagation decreases as a material is heated. Two factors that can characterize material properties are changes in wave speed and energy loss from interactions within the media. Relatively small variations in velocity and attenuation can detect significant differences in microstructures. This paper discusses an overview of experimental techniques that document the changes within a highly attenuative material as it is either being heated or cooled from 25°C to 90°C. The experimental set-up utilizes ultrasonic probes in a through-transmission configuration. The waveforms are recorded and analyzed during thermal experiments. To complement the ultrasonic data, a Discontinuous-Galerkin Model (DGM) wasmore » also created which uses unstructured meshes and documents how waves travel in these anisotropic media. This numerical method solves particle motion travel using partial differential equations and outputs a wave trace per unit time. As a result, both experimental and analytical data are compared and presented.« less

  8. Simulation of seismic wave propagation for reconnaissance in machined tunnelling

    NASA Astrophysics Data System (ADS)

    Lambrecht, L.; Friederich, W.

    2012-04-01

    During machined tunnelling, there is a complex interaction chain of the involved components. For example, on one hand the machine influences the surrounding ground during excavation, on the other hand supporting measures are needed acting on the ground. Furthermore, the different soil conditions are influencing the wearing of tools, the speed of the excavation and the safety of the construction site. In order to get information about the ground along the tunnel track, one can use seismic imaging. To get a better understanding of seismic wave propagation for a tunnel environment, we want to perform numerical simulations. For that, we use the spectral element method (SEM) and the nodal discontinuous galerkin method (NDG). In both methods, elements are the basis to discretize the domain of interest for performing high order elastodynamic simulations. The SEM is a fast and widely used method but the biggest drawback is it's limitation to hexahedral elements. For complex heterogeneous models with a tunnel included, it is a better choice to use the NDG, which needs more computation time but can be adapted to tetrahedral elements. Using this technique, we can perform high resolution simulations of waves initialized by a single force acting either on the front face or the side face of the tunnel. The aim is to produce waves that travel mainly in the direction of the tunnel track and to get as much information as possible from the backscattered part of the wave field.

  9. Lateral wave propagation in a three-layered medium

    NASA Astrophysics Data System (ADS)

    Dunn, John M.

    1986-09-01

    The effect of an intervening layer on a lateral wave which propagates along the interface between two different electrical media is considered. The lateral wave travels down from a time-harmonic electric dipole source in the upper region, through the middle region, and parallel to the interface between the middle and lower regions. It is assumed that the magnitude of the wavenumber in the upper medium is much greater than that of the middle, which in turn is much greater than that of the lower. The middle layer affects the lateral wave in two ways. It multiplies the usual lateral wave results by an overall factor which depends on the thickness of the slab and the electrical properties of the three media. It also changes at what distance the transition from intermediate to far field behavior occurs. Typically, the presence of the slab increases the magnitude of the fields near the transmitter, but leads to smaller field strengths in the far field region. The formulas are derived in two ways. The first utilizes an iterative procedure based on impedance boundary conditions and boundary layer theory. The second uses the more traditional steepest descent evaluation of the exact integrals available for the problem.

  10. Wave turbulence in a two-layer fluid: Coupling between free surface and interface waves

    NASA Astrophysics Data System (ADS)

    Issenmann, Bruno; Laroche, Claude; Falcon, Eric

    2016-12-01

    We experimentally study gravity-capillary wave turbulence on the interface between two immiscible fluids of close density with free upper surface. We locally measure the wave height at the interface between both fluids by means of a highly sensitive laser Doppler vibrometer. We show that the inertial range of the capillary wave turbulence regime is significantly extended when the upper fluid depth is increased: The crossover frequency between the gravity and capillary wave turbulence regimes is found to decrease whereas the dissipative cut-off frequency of the spectrum is found to increase. We explain these observations by the progressive decoupling between waves propagating at the interface and the ones at the free surface, using the full dispersion relation of gravity-capillary waves in a two-layer fluid of finite depths. The cut-off evolution is due to the disappearance of parasitic capillaries responsible for the main wave dissipation for a single fluid.

  11. Surface waves at the interface between a dielectric and a topological insulator

    NASA Astrophysics Data System (ADS)

    Maimistov, A. I.; Lyashko, E. I.

    2016-10-01

    Surface waves that propagate along the interface between an isotropic linear or nonlinear (of the Kerr type) dielectric and a topological insulator have been studied theoretically. A dispersion relation for surface waves, which are represented by superpositions of TE and TM waves, has been obtained. This hybridization occurs because, upon passage through the interface, the polarization of a surface wave changes, which is caused by an induced surface current (which is transverse to the electric field vector of the wave). The surface current of this kind is characteristic of topological insulators. Expressions for the energy flux transferred by a surface wave have been given.

  12. Surface wave chemical detector using optical radiation

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  13. Surface Waves and Landau Resonant Heating in Unmagnetized Bounded Plasmas

    NASA Astrophysics Data System (ADS)

    Bowers, Kevin

    2001-10-01

    Owing to the large areas and high plasma densities found in some recently developed devices [1], electrostatic theories of plasma resonances and surface wave [2-3] propagation in such devices are suspect as the size of the device is much larger than the free space wavelength associated with the peak plasma frequency. Accordingly, an electromagnetic model of surface wave propagation has been developed appropriate for large area plasmas. The predicted wave dispersion of the two models differs for extremely long wavelengths but is degenerate in devices small compared with wavelength. First principles particle-in-cell simulations using new techniques developed for the demanding simulation regime have been conducted which support these results. Given the slow wave character and boundary localized fields of surface waves, a periodic electrode may be used to resonantly excite a strong wave-particle interaction between surface waves and electrons. At saturation, the electron velocity distribution is enhanced above the phase velocity of the applied wave and suppressed below. The use of this technique (``Landau resonant heating'') to selectively heat the electron high energy tail to enhance electron-impact ionization is demonstrated using particle-in-cell simulation. [1] Matsumoto (Sumitomo Metal Industries). Private Communication. July 1999. [2] Nickel, Parker, Gould. Phys. Fluids. 7:1489. 1964. [3] Cooperberg. Phys. Plasmas. Vol. 5, No. 4, April 1998.

  14. Evolution of the derivative skewness for nonlinearly propagating waves.

    PubMed

    Reichman, Brent O; Muhlestein, Michael B; Gee, Kent L; Neilsen, Tracianne B; Thomas, Derek C

    2016-03-01

    The skewness of the first time derivative of a pressure waveform, or derivative skewness, has been used previously to describe the presence of shock-like content in jet and rocket noise. Despite its use, a quantitative understanding of derivative skewness values has been lacking. In this paper, the derivative skewness for nonlinearly propagating waves is investigated using analytical, numerical, and experimental methods. Analytical expressions for the derivative skewness of an initially sinusoidal plane wave are developed and, along with numerical data, are used to describe its behavior in the preshock, sawtooth, and old-age regions. Analyses of common measurement issues show that the derivative skewness is relatively sensitive to the effects of a smaller sampling rate, but less sensitive to the presence of additive noise. In addition, the derivative skewness of nonlinearly propagating noise is found to reach greater values over a shorter length scale relative to sinusoidal signals. A minimum sampling rate is recommended for sinusoidal signals to accurately estimate derivative skewness values up to five, which serves as an approximate threshold indicating significant shock formation.

  15. Longitudinal elastic wave propagation characteristics of inertant acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Kulkarni, Prateek P.; Manimala, James M.

    2016-06-01

    Longitudinal elastic wave propagation characteristics of acoustic metamaterials with various inerter configurations are investigated using their representative one-dimensional discrete element lattice models. Inerters are dynamic mass-amplifying mechanical elements that are activated by a difference in acceleration across them. They have a small device mass but can provide a relatively large dynamic mass presence depending on accelerations in systems that employ them. The effect of introducing inerters both in local attachments and in the lattice was examined vis-à-vis the propagation characteristics of locally resonant acoustic metamaterials. A simple effective model based on mass, stiffness, or their combined equivalent was used to establish dispersion behavior and quantify attenuation within bandgaps. Depending on inerter configurations in local attachments or in the lattice, both up-shift and down-shift in the bandgap frequency range and their extent are shown to be possible while retaining static mass addition to the host structure to a minimum. Further, frequency-dependent negative and even extreme effective-stiffness regimes are encountered. The feasibility of employing tuned combinations of such mass-delimited inertant configurations to engineer acoustic metamaterials that act as high-pass filters without the use of grounded elements or even as complete longitudinal wave inhibitors is shown. Potential device implications and strategies for practical applications are also discussed.

  16. Microscopic Models for Electromagnetic Wave Propagation in Highly Dispersive Media

    DTIC Science & Technology

    1990-06-18

    rotations, the effects of pressure and temperature and to show the classes of density fluctuations in I which give spatial dispersion, ie, the k- dependance ...complex plane the response e (co, Q) lives on some Riemann surface which is determined by the k- dependance . 2. Talks and Publications Three talks were...sources of 1- dependance (k- dependance in Fourier transform variables) have been identified. One is bubbles or cavitation which scatter the propagating

  17. Surface acoustic wave oxygen sensor

    NASA Technical Reports Server (NTRS)

    Collman, James P.; Oglesby, Donald M.; Upchurch, Billy T.; Leighty, Bradley D.; Zhang, Xumu; Herrmann, Paul C.

    1994-01-01

    A surface acoustic wave (SAW) device that responds to oxygen pressure was developed by coating a 158 MHz quartz surface acoustic wave (SAW) device with an oxygen binding agent. Two types of coatings were used. One type was prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer containing the axial ligand. A second type was prepared with an oxygen binding porphyrin solution containing excess axial ligand without a polymer matrix. In the polymer based coatings, the copolymer served to provide the axial ligand to the oxygen binding agent and as a coating matrix on the surface of the SAW device. The oxygen sensing SAW device has been shown to bind oxygen following a Langmuir isotherm and may be used to measure the equilibrium constant of the oxygen binding compound in the coating matrix.

  18. Propagation of nonlinear, radiatively damped longitudinal waves along magnetic flux tubes in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Herbold, G.; Ulmschneider, P.; Spruit, H. C.; Rosner, R.

    1985-01-01

    For solar magnetic flux tubes three types of waves are compared: longitudinal MHD tube waves, acoustic tube waves propagating in the same tube geometry but with rigid walls and ordinary acoustic waves in plane geometry. It is found that the effect of the distensibility of the tube is small and that longitudinal waves are essentially acoustic tube waves. Due to the tube geometry there is considerable difference between longitudinal waves or acoustic tube waves and ordinary acoustic waves. Longitudinal waves as well as acoustic tube waves show a smaller amplitude growth, larger shock formation heights, smaller mean chromospheric temperature but a steeper dependence of the temperature gradient on wave period.

  19. Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface

    PubMed Central

    Zhu, Bo O.; Chen, Ke; Jia, Nan; Sun, Liang; Zhao, Junming; Jiang, Tian; Feng, Yijun

    2014-01-01

    Transmission and reflection are two fundamental properties of the electromagnetic wave propagation through obstacles. Full control of both the magnitude and phase of the transmission and reflection independently are important issue for free manipulation of electromagnetic wave propagation. Here we employed the equivalent principle, one fundamental theorem of electromagnetics, to analyze the required surface electric and magnetic impedances of a passive metasurface to produce either arbitrary transmission magnitude and phase or arbitrary reflection magnitude and phase. Based on the analysis, a tunable metasurface is proposed. It is shown that the transmission phase can be tuned by 360° with the unity transmissivity or the transmissivity can be tuned from 0 to 1 while the transmission phase is kept around 0°. The reflection magnitude and phase can also been tuned similarly with the proposed metasurface. The proposed design may have many potential applications, such as the dynamic EM beam forming and scanning.

  20. Modelling Mechanical Wave Propagation: Guidelines and Experimentation of a Teaching-Learning Sequence

    ERIC Educational Resources Information Center

    Fazio, Claudio; Guastella, Ivan; Sperandeo-Mineo, Rosa Maria; Tarantino, Giovanni

    2008-01-01

    The present paper reports the design process and the experimentation of a teaching-learning sequence about the concept of mechanical wave propagation and the role played by media where waves are propagating. The sequence focuses on the central issue of the relationships between observable phenomena, like macroscopic behaviours of waves, and their…

  1. Parametric Excitations of Fast Plasma Waves by Counter-propagating Laser Beams

    SciTech Connect

    G. Shvets; N.J. Fisch

    2001-03-19

    Short- and long-wavelength plasma waves can become strongly coupled in the presence of two counter-propagating laser pump pulses detuned by twice the cold plasma frequency. What makes this four-wave interaction important is that the growth rate of the plasma waves occurs much faster than in the more obvious co-propagating geometry.

  2. A Problem-Based Approach to Elastic Wave Propagation: The Role of Constraints

    ERIC Educational Resources Information Center

    Fazio, Claudio; Guastella, Ivan; Tarantino, Giovanni

    2009-01-01

    A problem-based approach to the teaching of mechanical wave propagation, focused on observation and measurement of wave properties in solids and on modelling of these properties, is presented. In particular, some experimental results, originally aimed at measuring the propagation speed of sound waves in metallic rods, are used in order to deepen…

  3. Study of Magnetohydrodynamic Surface Waves on Liquid Gallium

    SciTech Connect

    Hantao Ji; William Fox; David Pace; H.L. Rappaport

    2004-05-13

    Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed.

  4. Model test research of breakwater core material influence on wave propagation

    NASA Astrophysics Data System (ADS)

    Wang, Deng-ting; Sun, Tian-ting; Chen, Wei-qiu; Zhu, Jia-ling

    2016-10-01

    The interaction between waves and porous breakwater has an important theoretical significance and great application value of engineering. In this paper, the tests of the core material's influence in rubble mound breakwater on wave propagation are carried out. The relations among the transmitted wave height, incident wave element, and breakwater width are discussed. The calculation formula is obtained. The test results show that different core materials have obvious influence on wave propagation.

  5. Instationary compaction wave propagation in highly porous cohesive granular media

    NASA Astrophysics Data System (ADS)

    Gunkelmann, Nina; Ringl, Christian; Urbassek, Herbert M.

    2016-07-01

    We study the collision of a highly porous granular aggregate of adhesive \\upmu m-sized silica grains with a hard wall using a granular discrete element method. A compaction wave runs through the granular sample building up an inhomogeneous density profile. The compaction is independent of the length of the aggregate, within the regime of lengths studied here. Also short pulses, as they might be exerted by a piston pushing the granular material, excite a compaction wave that runs through the entire material. The speed of the compaction wave is larger than the impact velocity but considerably smaller than the sound speed. The wave speed is related to the compaction rate at the colliding surface and the average slope of the linear density profile.

  6. On the accurate simulation of tsunami wave propagation

    NASA Astrophysics Data System (ADS)

    Castro, C. E.; Käser, M.; Toro, E. F.

    2009-04-01

    A very important part of any tsunami early warning system is the numerical simulation of the wave propagation in the open sea and close to geometrically complex coastlines respecting bathymetric variations. Here we are interested in improving the numerical tools available to accurately simulate tsunami wave propagation on a Mediterranean basin scale. To this end, we need to accomplish some targets, such as: high-order numerical simulation in space and time, preserve steady state conditions to avoid spurious oscillations and describe complex geometries due to bathymetry and coastlines. We use the Arbitrary accuracy DERivatives Riemann problem method together with Finite Volume method (ADER-FV) over non-structured triangular meshes. The novelty of this method is the improvement of the ADER-FV scheme, introducing the well-balanced property when geometrical sources are considered for unstructured meshes and arbitrary high-order accuracy. In a previous work from Castro and Toro [1], the authors mention that ADER-FV schemes approach asymptotically the well-balanced condition, which was true for the test case mentioned in [1]. However, new evidence[2] shows that for real scale problems as the Mediterranean basin, and considering realistic bathymetry as ETOPO-2[3], this asymptotic behavior is not enough. Under these realistic conditions the standard ADER-FV scheme fails to accurately describe the propagation of gravity waves without being contaminated with spurious oscillations, also known as numerical waves. The main problem here is that at discrete level, i.e. from a numerical point of view, the numerical scheme does not correctly balance the influence of the fluxes and the sources. Numerical schemes that retain this balance are said to satisfy the well-balanced property or the exact C-property. This unbalance reduces, as we refine the spatial discretization or increase the order of the numerical method. However, the computational cost increases considerably this way

  7. Solar wind dynamic pressure effect on planetary wave propagation and synoptic-scale Rossby wave breaking

    NASA Astrophysics Data System (ADS)

    Lu, Hua; Franzke, Christian; Martius, Olivia; Jarvis, Martin J.; Phillips, Tony

    2013-05-01

    We provide statistical evidence of the effect of the solar wind dynamic pressure (Psw) on the northern winter and spring circulations. We find that the vertical structure of the Northern Annular Mode (NAM), the zonal mean circulation, and Eliassen-Palm (EP)-flux anomalies show a dynamically consistent pattern of downward propagation over a period of ~45 days in response to positive Psw anomalies. When the solar irradiance is high, the signature of Psw is marked by a positive NAM anomaly descending from the stratosphere to the surface during winter. When the solar irradiance is low, the Psw signal has the opposite sign, occurs in spring, and is confined to the stratosphere. The negative Psw signal in the NAM under low solar irradiance conditions is primarily governed by enhanced vertical EP-flux divergence and a warmer polar region. The winter Psw signal under high solar irradiance conditions is associated with positive anomalies of the horizontal EP-flux divergence at 55°N-75°N and negative anomalies at 25°N-45°N, which corresponds to the positive NAM anomaly. The EP-flux divergence anomalies occur ~15 days ahead of the mean-flow changes. A significant equatorward shift of synoptic-scale Rossby wave breaking (RWB) near the tropopause is detected during January-March, corresponding to increased anticyclonic RWB and a decrease in cyclonic RWB. We suggest that the barotropic instability associated with asymmetric ozone in the upper stratosphere and the baroclinic instability associated with the polar vortex in the middle and lower stratosphere play a critical role for the winter signal and its downward propagation.

  8. Probing Acoustic Nonlinearity by Mixing Surface Acoustic Waves

    SciTech Connect

    Hurley, David Howard; Telschow, Kenneth Louis

    2000-07-01

    Measurement methods aimed at determining material properties through nonlinear wave propagation are sensitive to artifacts caused by background nonlinearities inherent in the ultrasonic generation and detection methods. The focus of this paper is to describe our investigation of nonlinear mixing of surface acoustic waves (SAWs) as a means to decrease sensitivity to background nonlinearity and increase spatial sensitivity to acoustic nonlinearity induced by material microstructure.

  9. Amplification of nonlinear surface waves in an inhomogeneous transition layer

    NASA Astrophysics Data System (ADS)

    Brodin, G.; Gradov, O. M.

    1991-12-01

    A plasma with a boundary transition layer of variable depth in the presence of a powerful electromagnetic field is considered. It is shown that a displacement of the boundary will grow, and will propagate as a nonlinear surface wave in the direction in which the depth of the transition layer decreases.

  10. Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo.

    PubMed

    Stroh, Albrecht; Adelsberger, Helmuth; Groh, Alexander; Rühlmann, Charlotta; Fischer, Sebastian; Schierloh, Anja; Deisseroth, Karl; Konnerth, Arthur

    2013-03-20

    Corticothalamic slow oscillations of neuronal activity determine internal brain states. At least in the cortex, the electrical activity is associated with large neuronal Ca(2+) transients. Here we implemented an optogenetic approach to explore causal features of the generation of slow oscillation-associated Ca(2+) waves in the in vivo mouse brain. We demonstrate that brief optogenetic stimulation (3-20 ms) of a local group of layer 5 cortical neurons is sufficient for the induction of global brain Ca(2+) waves. These Ca(2+) waves are evoked in an all-or-none manner, exhibit refractoriness during repetitive stimulation, and propagate over long distances. By local optogenetic stimulation, we demonstrate that evoked Ca(2+) waves initially invade the cortex, followed by a secondary recruitment of the thalamus. Together, our results establish that synchronous activity in a small cluster of layer 5 cortical neurons can initiate a global neuronal wave of activity suited for long-range corticothalamic integration.

  11. Ultrasound shear wave simulation based on nonlinear wave propagation and Wigner-Ville Distribution analysis

    NASA Astrophysics Data System (ADS)

    Bidari, Pooya Sobhe; Alirezaie, Javad; Tavakkoli, Jahan

    2017-03-01

    This paper presents a method for modeling and simulation of shear wave generation from a nonlinear Acoustic Radiation Force Impulse (ARFI) that is considered as a distributed force applied at the focal region of a HIFU transducer radiating in nonlinear regime. The shear wave propagation is simulated by solving the Navier's equation from the distributed nonlinear ARFI as the source of the shear wave. Then, the Wigner-Ville Distribution (WVD) as a time-frequency analysis method is used to detect the shear wave at different local points in the region of interest. The WVD results in an estimation of the shear wave time of arrival, its mean frequency and local attenuation which can be utilized to estimate medium's shear modulus and shear viscosity using the Voigt model.

  12. An Investigation of Seismic Wave Propagation in Eastern North America

    DTIC Science & Technology

    1978-07-30

    Also shown in Figure 22 are the Ms-mb results of Liebermann and Pomeroy for explosions and earth- quakes in the Western United States. The Ms-mb...United States Earth- quakes, Ph.D. Dissertation, Saint Louis University. Liebermann , R.C., and P.W. Pomeroy, 1969, Relative Excitation of Surface Waves

  13. Surface Wave Cloak from Graded Refractive Index Nanocomposites

    PubMed Central

    La Spada, L.; McManus, T. M.; Dyke, A.; Haq, S.; Zhang, L.; Cheng, Q.; Hao, Y.

    2016-01-01

    Recently, a great deal of interest has been re-emerged on the possibility to manipulate surface waves, in particular, towards the THz and optical regime. Both concepts of Transformation Optics (TO) and metamaterials have been regarded as one of key enablers for such applications in applied electromagnetics. In this paper, we experimentally demonstrate for the first time a dielectric surface wave cloak from engineered gradient index materials to illustrate the possibility of using nanocomposites to control surface wave propagation through advanced additive manufacturing. The device is designed analytically and validated through numerical simulations and measurements, showing good agreement and performance as an effective surface wave cloak. The underlying design approach has much wider applications, which span from microwave to optics for the control of surface plasmon polaritons (SPPs) and radiation of nanoantennas. PMID:27416815

  14. Surface Wave Cloak from Graded Refractive Index Nanocomposites

    NASA Astrophysics Data System (ADS)

    La Spada, L.; McManus, T. M.; Dyke, A.; Haq, S.; Zhang, L.; Cheng, Q.; Hao, Y.

    2016-07-01

    Recently, a great deal of interest has been re-emerged on the possibility to manipulate surface waves, in particular, towards the THz and optical regime. Both concepts of Transformation Optics (TO) and metamaterials have been regarded as one of key enablers for such applications in applied electromagnetics. In this paper, we experimentally demonstrate for the first time a dielectric surface wave cloak from engineered gradient index materials to illustrate the possibility of using nanocomposites to control surface wave propagation through advanced additive manufacturing. The device is designed analytically and validated through numerical simulations and measurements, showing good agreement and performance as an effective surface wave cloak. The underlying design approach has much wider applications, which span from microwave to optics for the control of surface plasmon polaritons (SPPs) and radiation of nanoantennas.

  15. Electromagnetic scattering and depolarization across rough surfaces: Full wave analysis

    NASA Astrophysics Data System (ADS)

    Bahar, Ezekiel; Huang, Guorong; Lee, Bom Son

    1995-05-01

    Full wave solutions are derived for vertically and horizontally polarized waves diffusely scattered across an interface that is two-dimensionally rough separating two different propagating media. Since the normal to the rough surface is not restricted to the reference plane of incidence, the waves are depolarized upon scattering; and the single scattered radiation fields are expressed as integrals of a surface element transmission scattering matrix that also accounts for coupling between the vertically and horizontally polarized waves. The integrations are over the rough surface area as well as the complete two-dimensional wave spectra of the radiation fields. The full wave solutions satisfy the duality and reciprocity relationships in electromagnetic theory, and the surface element scattering matrix is invariant to coordinate transformations. It is shown that in the high-frequency limit the full wave solutions reduce to the physical optics solutions, while in the low-frequency limit (for small mean square heights and slopes) the full wave solutions reduce to Rice's (1951) small perturbation solutions. Thus, the full wave solution accounts for specular point scattering as well as diffuse, Bragg-type scattering in a unified, self-consistent manner. It is therefore not necessary to use hybrid, perturbation and physical optics approaches (based on two-scale models of composite surfaces with large and small roughness scales) to determine the like- and cross-polarized fields scattered across the rough surface.

  16. Propagating waves of self-assembly in organosilane monolayers

    PubMed Central

    Douglas, Jack F.; Efimenko, Kirill; Fischer, Daniel A.; Phelan, Fredrick R.; Genzer, Jan

    2007-01-01

    Wavefronts associated with reaction–diffusion and self-assembly processes are ubiquitous in the natural world. For example, propagating fronts arise in crystallization and diverse other thermodynamic ordering processes, in polymerization fronts involved in cell movement and division, as well as in the competitive social interactions and population dynamics of animals at much larger scales. Although it is often claimed that self-sustaining or autocatalytic front propagation is well described by mean-field “reaction–diffusion” or “phase field” ordering models, it has recently become appreciated from simulations and theoretical arguments that fluctuation effects in lower spatial dimensions can lead to appreciable deviations from the classical mean-field theory (MFT) of this type of front propagation. The present work explores these fluctuation effects in a real physical system. In particular, we consider a high-resolution near-edge x-ray absorption fine structure spectroscopy (NEXAFS) study of the spontaneous frontal self-assembly of organosilane (OS) molecules into self-assembled monolayer (SAM) surface-energy gradients on oxidized silicon wafers. We find that these layers organize from the wafer edge as propagating wavefronts having well defined velocities. In accordance with two-dimensional simulations of this type of front propagation that take fluctuation effects into account, we find that the interfacial widths w(t) of these SAM self-assembly fronts exhibit a power-law broadening in time, w(t) ≈ tβ, rather than the constant width predicted by MFT. Moreover, the observed exponent values accord rather well with previous simulation and theoretical estimates. These observations have significant implications for diverse types of ordering fronts that occur under confinement conditions in biological or materials-processing contexts. PMID:17566108

  17. Experimental research on dust lifting by propagating shock wave

    NASA Astrophysics Data System (ADS)

    Żydak, P.; Oleszczak, P.; Klemens, R.

    2017-03-01

    The aim of the presented work was to study the dust lifting process from a layer of dust behind a propagating shock wave. The experiments were conducted with the use of a shock tube and a specially constructed, five-channel laser optical device enabling measurements at five positions located in one vertical plane along the height of the tube. The system enabled measurements of the delay in lifting up of the dust from the layer, and the vertical velocity of the dust cloud was calculated from the dust concentration measurements. The research was carried out for various initial conditions and for three fractions of black coal dust. In the presented tests, three shock wave velocities: 450, 490 and 518 m/s and three dust layer thicknesses, equal to 1.0, 1.5 and 2.0 mm, were taken into consideration. On the grounds of the obtained experimental results, it was assumed that the vertical component of the lifted dust velocity is a function of the dust particle diameter, the velocity of the air flow in the channel, the layer thickness and the dust bulk density. It appeared, however, that lifting up of the dust from the thick layers, thicker than 1 mm, is a more complex process than that from thin layers and still requires further research. A possible explanation is that the shock wave action upon the thick layer results in its aggregation in the first stage of the dispersing process, which suppresses the dust lifting process.

  18. Propagation of global shear Alfven waves in gyrokinetic tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Nishimura, Y.; Lin, Z.; Holod, I.; Chen, L.; Decyk, V.; Klasky, S.; Ma, K.; Adams, M.; Ethier, S.; Hahm, T.; Lee, W.; Lewandowski, J.; Rewoldt, G.; Wang, W.

    2006-04-01

    Employing the electromagnetic gyrokinetic simulation models, Alfven wave dynamics in global tokamak geometry is studied. Based on a small parameter expansion by the square-root of the electron-ion mass ratio, the fluid-kinetic hybrid electron model solves the adiabatic response in the lowest order and solves the kinetic response in the higher orders. We verify the propagation of shear Alfven waves in the absence of drives or damping mechanisms by perturbing the magnetic field lines at t=0 in a global eigenmode structure. The Alfven wave experiences continuum damping. In the presence of energetic particles, excitations of toroidal Alfven eigenmode (TAE) is expected within the frequency gap. With the ηi gradient drive, at a critical β value, the kinetic ballooning mode (KBM) is excited below the ideal MHD limit. W.W.Lee et al., Phys. Plasmas 8, 4435 (2001). Z.Lin and L.Chen, Phys. Plasmas 8, 1447 (2001). J.A.Tataronis and W. Grossman, Z. Phys. 14, 203 (1973). C.Z.Cheng, L.Chen, and M.S.Chance, Ann.Phys. 161, 21 (1984). C.Z.Cheng, Nucl. Fusion 22, 773 (1982).

  19. Application of the Parareal Algorithm for Acoustic Wave Propagation

    SciTech Connect

    Mercerat, Diego; Guillot, Laurent; Vilotte, Jean-Pierre

    2009-09-09

    We present an application of the parareal algorithm to solve wave propagation problems in the time domain. The parareal algorithm is based on a decomposition of the integration time interval in time slices. It involves a serial prediction step based on a coarse approximation, and a correction step (computed in parallel) based on a fine approximation within each time slice. In our case, the spatial discretization is based on a spectral element approximation which allows flexible and accurate wave simulations in complex geological media. Fully explicit time advancing schemes are classically used for both coarse and fine solvers.In a first stage, we solve the 1D acoustic wave equation in an homogeneous medium in order to test stability and convergence properties of the parareal algorithm. We confirmed the stability problems outlined by Bal and Farhat et al. for hyperbolic problems. These stability issues are mitigated by a time-discontinuous Galerkin discretization of the coarse solver. It may also involve a coarser spatial discretization (hp-refinement) which helps to preserve stability and allows more significant computer savings. Besides, we explore the contribution of elastodynamic homogenization to build consistent coarse grid solvers. Extension to 2D/3D realistic geological media is an ongoing work.

  20. FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Wang, Maoyan; Zhang, Meng; Li, Guiping; Jiang, Baojun; Zhang, Xiaochuan; Xu, Jun

    2016-08-01

    The frequency dependent permittivity for dusty plasmas is provided by introducing the charging response factor and charge relaxation rate of airborne particles. The field equations that describe the characteristics of Terahertz (THz) waves propagation in a dusty plasma sheath are derived and discretized on the basis of the auxiliary differential equation (ADE) in the finite difference time domain (FDTD) method. Compared with numerical solutions in reference, the accuracy for the ADE FDTD method is validated. The reflection property of the metal Aluminum interlayer of the sheath at THz frequencies is discussed. The effects of the thickness, effective collision frequency, airborne particle density, and charge relaxation rate of airborne particles on the electromagnetic properties of Terahertz waves through a dusty plasma slab are investigated. Finally, some potential applications for Terahertz waves in information and communication are analyzed. supported by National Natural Science Foundation of China (Nos. 41104097, 11504252, 61201007, 41304119), the Fundamental Research Funds for the Central Universities (Nos. ZYGX2015J039, ZYGX2015J041), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120185120012)

  1. Whole heart modeling - Spatiotemporal dynamics of electrical wave conduction and propagation.

    PubMed

    Hui Yang; Yun Chen; Leonelli, Fabio M

    2016-08-01

    Cardiac electrical activities are varying in both space and time. Human heart consists of a fractal network of muscle cells, Purkinje fibers, arteries and veins. Whole-heart modeling of electrical wave conduction and propagation involves a greater level of complexity. Our previous work developed a computer model of the anatomically realistic heart and simulated the electrical conduction with the use of cellular automata. However, simplistic assumptions and rules limit its ability to provide an accurate approximation of real-world dynamics on the complex heart surface, due to sensitive dependence of nonlinear dynamical systems on initial conditions. In this paper, we propose new reaction-diffusion methods and pattern recognition tools to simulate and model spatiotemporal dynamics of electrical wave conduction and propagation on the complex heart surface, which include (i) whole heart model; (ii) 2D isometric graphing of 3D heart geometry; (iii) reaction-diffusion modeling of electrical waves in 2D graph, and (iv) spatiotemporal pattern recognition. Experimental results show that the proposed numerical solution has strong potentials to model the space-time dynamics of electrical wave conduction in the whole heart, thereby achieving a better understanding of disease-altered cardiac mechanisms.

  2. Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media

    NASA Astrophysics Data System (ADS)

    Schmidt, Felix; Wagner, Norman; Lünenschloß, Peter; Toepfer, Hannes; Dietrich, Peter; Kaliorias, Andreas; Bumberger, Jan

    2015-04-01

    The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric

  3. Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media

    NASA Astrophysics Data System (ADS)

    Schmidt, Felix; Lünenschloss, Peter; Mai, Juliane; Wagner, Norman; Töpfer, Hannes; Bumberger, Jan

    2016-04-01

    The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections. Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric

  4. DETERMINATION OF TRANSVERSE DENSITY STRUCTURING FROM PROPAGATING MAGNETOHYDRODYNAMIC WAVES IN THE SOLAR ATMOSPHERE

    SciTech Connect

    Arregui, I.; Asensio Ramos, A.

    2013-06-01

    We present a Bayesian seismology inversion technique for propagating magnetohydrodynamic transverse waves observed in coronal waveguides. The technique uses theoretical predictions for the spatial damping of propagating kink waves in transversely inhomogeneous coronal waveguides. It combines wave amplitude damping length scales along the waveguide with theoretical results for resonantly damped propagating kink waves to infer the plasma density variation across the oscillating structures. Provided that the spatial dependence of the velocity amplitude along the propagation direction is measured and the existence of two different damping regimes is identified, the technique would enable us to fully constrain the transverse density structuring, providing estimates for the density contrast and its transverse inhomogeneity length scale.

  5. Guided wave propagation in a honeycomb composite sandwich structure in presence of a high density core.

    PubMed

    Sikdar, Shirsendu; Banerjee, Sauvik

    2016-09-01

    A coordinated theoretical, numerical and experimental study is carried out in an effort to interpret the characteristics of propagating guided Lamb wave modes in presence of a high-density (HD) core region in a honeycomb composite sandwich structure (HCSS). Initially, a two-dimensional (2D) semi-analytical model based on the global matrix method is used to study the response and dispersion characteristics of the HCSS with a soft core. Due to the complex structural characteristics, the study of guided wave (GW) propagation in HCSS with HD-core region inherently poses many challenges. Therefore, a numerical simulation of GW propagation in the HCSS with and without the HD-core region is carried out, using surface-bonded piezoelectric wafer transducer (PWT) network. From the numerical results, it is observed that the presence of HD-core significantly decreases both the group velocity and the amplitude of the received GW signal. Laboratory experiments are then conducted in order to verify the theoretical and numerical results. A good agreement between the theoretical, numerical and experimental results is observed in all the cases studied. An extensive parametric study is also carried out for a range of HD-core sizes and densities in order to study the effect due to the change in size and density of the HD zone on the characteristics of propagating GW modes. It is found that the amplitudes and group velocities of the GW modes decrease with the increase in HD-core width and density.

  6. Self-consistent evolution of tissue damage under stress wave propagation

    SciTech Connect

    Amendt, P; Glinsky, M; Kaufman, Y; London, R A; Sapir, M; Strauss, M

    1999-01-14

    Laser-initiated stress waves are reflected from tissue boundaries, thereby inducing tensile stresses, which are responsible for tissue damage. A self-consistent model of tissue failure evolution induced by stress wave propagation is considered. The failed tissue is represented by an ensemble of spherical voids and includes the effect of nucleation, growth and coalescence of voids under stress wave tension. Voids nucleate around impurities and grow according to an extended Rayleigh model that includes the effects of surface tension, viscosity and acoustic emission at void collapse. The damage model is coupled self-consistently to a one-dimensional planar hydrodynamic model of stress waves generated by a short pulse laser. We considered the problem of a bipolar wave generated by a short pulse laser absorbed on a free boundary of an aqueous system. The propagating wave includes a tensile component, which interacts with the impurities of exponential distribution in dimension, impurity density ({approximately}10{sup 8} cm{sup -3}) void and an ensemble of voids is generated. For moderate growth reduces the tensile wave component and causes the pressure to oscillate between tension and compression. For low impurity density ({approximately}10{sup 6} cm{sup -3} ) the bubbles grow on a long time scale (5-10 {micro}sec) relative to the wave interaction time ({approximately}100 nsec). At later times the growing bubbles interact with each other causing pressure oscillations and delay the system from reaching the 1 bar ambient compression pressure. This effect increases considerably the bubble lifetime consistent with experiments. At the collapse stage small bubbles collapse earlier and induce pressures, which reduce the collapse time of the larger bubbles.

  7. Time-resolved study of laser initiated shock wave propagation in superfluid 4He

    NASA Astrophysics Data System (ADS)

    Garcia, Allan; Buelna, Xavier; Popov, Evgeny; Eloranta, Jussi

    2016-09-01

    Intense shock waves in superfluid 4He between 1.7 and 2.1 K are generated by rapidly expanding confined plasma from laser ablation of a metal target immersed in the liquid. The resulting shock fronts in the liquid with initial velocities up to ca. Mach 10 are visualized by time-resolved shadowgraph photography. These high intensity shocks decay within 500 ns into less energetic shock waves traveling at Mach 2, which have their lifetime in the microsecond time scale. Based on the analysis using the classical Rankine-Hugoniot theory, the shock fronts created remain in the solid phase up to 1 μs and the associated thermodynamic state appears outside the previously studied region. The extrapolated initial shock pressure of 0.5 GPa is comparable to typical plasma pressures produced during liquid phase laser ablation. A secondary shock originating from fast heat propagation on the metal surface is also observed and a lower limit estimate for the heat propagation velocity is measured as 7 × 104 m/s. In the long-time limit, the high intensity shocks turn into liquid state waves that propagate near the speed of sound.

  8. Coupling layers regularizes wave propagation in stochastic neural fields

    NASA Astrophysics Data System (ADS)

    Kilpatrick, Zachary P.

    2014-02-01

    We explore how layered architectures influence the dynamics of stochastic neural field models. Our main focus is how the propagation of waves of neural activity in each layer is affected by interlaminar coupling. Synaptic connectivities within and between each layer are determined by integral kernels of an integrodifferential equation describing the temporal evolution of neural activity. Excitatory neural fields, with purely positive connectivities, support traveling fronts in each layer, whose speeds are increased when coupling between layers is considered. Studying the effects of noise, we find coupling reduces the variance in the position of traveling fronts, as long as the noise sources to each layer are not completely correlated. Neural fields with asymmetric connectivity support traveling pulses whose speeds are decreased by interlaminar coupling. Again, coupling reduces the variance in traveling pulse position. Asymptotic analysis is performed using a small-noise expansion, assuming interlaminar connectivity scales similarly.

  9. Propagation mechanism of laser-supported detonation wave

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Tsujioka, M.

    1991-01-01

    Modeling and numerical analysis for a flowfield caused by intense laser absorption are done, where a propagation phenomenon called LSD (Laser-Supported Detonation) appears. The problem is formulated on the basis of microscopic physics and chemistry including several elementary reactions and an absorption process called inverse bremsstrahlung. To take account of thermal-nonequilibrium in plasma where electron temperature dominates other phenomena, the electron/heavy-particle two-temperature model is used. Utilizing a time splitting technique, the problem treating the interaction between flowfield and radiation field is divided into a chemically-frozen gasdynamics and a radiation-absorption-induced chemical reaction. By this technique, the initial stage of an LSD wave is simulated.

  10. Vibration and wave propagation characteristics of multisegmented elastic beams

    NASA Technical Reports Server (NTRS)

    Nayfeh, Adnan H.; Hawwa, Muhammad A.

    1990-01-01

    Closed form analytical solutions are derived for the vibration and wave propagation of multisegmented elastic beams. Each segment is modeled as a Timoshenko beam with possible inclusion of material viscosity, elastic foundation and axial forces. Solutions are obtained by using transfer matrix methods. According to these methods formal solutions are first constructed which relate the deflection, slope, moment and shear force of one end of the individual segment to those of the other. By satisfying appropriate continuity conditions at segment junctions, a global 4x4 matrix results which relates the deflection, slope, moment and shear force of one end of the beam to those of the other. If any boundary conditions are subsequently invoked on the ends of the beam one gets the appropriate characteristic equation for the natural frequencies. Furthermore, by invoking appropriate periodicity conditions the dispersion relation for a periodic system is obtained. A variety of numerical examples are included.

  11. Optimised prefactored compact schemes for linear wave propagation phenomena

    NASA Astrophysics Data System (ADS)

    Rona, A.; Spisso, I.; Hall, E.; Bernardini, M.; Pirozzoli, S.

    2017-01-01

    A family of space- and time-optimised prefactored compact schemes are developed that minimise the computational cost for given levels of numerical error in wave propagation phenomena, with special reference to aerodynamic sound. This work extends the approach of Pirozzoli [1] to the MacCormack type prefactored compact high-order schemes developed by Hixon [2], in which their shorter Padé stencil from the prefactorisation leads to a simpler enforcement of numerical boundary conditions. An explicit low-storage multi-step Runge-Kutta integration advances the states in time. Theoretical predictions for spatial and temporal error bounds are derived for the cost-optimised schemes and compared against benchmark schemes of current use in computational aeroacoustic applications in terms of computational cost for a given relative numerical error value. One- and two-dimensional test cases are presented to examine the effectiveness of the cost-optimised schemes for practical flow computations. An effectiveness up to about 50% higher than the standard schemes is verified for the linear one-dimensional advection solver, which is a popular baseline solver kernel for computational physics problems. A substantial error reduction for a given cost is also obtained in the more complex case of a two-dimensional acoustic pulse propagation, provided the optimised schemes are made to operate close to their nominal design points.

  12. Modes in light wave propagating in semiconductor laser

    NASA Technical Reports Server (NTRS)

    Manko, Margarita A.

    1994-01-01

    The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.

  13. Radio-wave propagation for space communications systems

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.

    1981-01-01

    The most recent information on the effects of Earth's atmosphere on space communications systems is reviewed. The design and reliable operation of satellite systems that provide the many applications in space which rely on the transmission of radio waves for communications and scientific purposes are dependent on the propagation characteristics of the transmission path. The presence of atmospheric gases, clouds, fog, precipitation, and turbulence causes uncontrolled variations in the signal characteristics. These variations can result in a reduction of the quality and reliability of the transmitted information. Models and other techniques are used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz have been reviewed. Particular emphasis has been placed on the effects of precipitation on the Earth/space path, including rain attenuation, and ice particle depolarization. Other factors are sky noise, antenna gain degradation, scintillations, and bandwidth coherence. Each of the various propagation factors has an effect on design criteria for communications systems. These criteria include link reliability, power margins, noise contribution, modulation and polarization factors, channel cross talk, error rate, and bandwidth limitations.

  14. Waves of DNA: Propagating excitations in extended nanoconfined polymers

    NASA Astrophysics Data System (ADS)

    Klotz, Alexander R.; de Haan, Hendrick W.; Reisner, Walter W.

    2016-10-01

    We use a nanofluidic system to investigate the emergence of thermally driven collective phenomena along a single polymer chain. In our approach, a single DNA molecule is confined in a nanofluidic slit etched with arrays of embedded nanocavities; the cavity lattice is designed so that a single chain occupies multiple cavities. Fluorescent video-microscopy data shows fluctuations in intensity between cavities, including waves of excess fluorescence that propagate across the cavity-straddling molecule, corresponding to propagating fluctuations of contour overdensity in the cavities. The transfer of DNA between neighboring pits is quantified by examining the correlation in intensity fluctuations between neighboring cavities. Correlations grow from an anticorrelated minimum to a correlated maximum before decaying, corresponding to a transfer of contour between neighboring cavities at a fixed transfer time scale. The observed dynamics can be modeled using Langevin dynamics simulations and a minimal lattice model of coupled diffusion. This study shows how confinement-based sculpting of the polymer equilibrium configuration, by renormalizing the physical system into a series of discrete cavity states, can lead to new types of dynamic collective phenomena.

  15. Propagation of Electromagnetic Waves in Two Dimensionally Periodic Media

    NASA Astrophysics Data System (ADS)

    Dong, Tian-Lin

    1985-12-01

    The propagation of electromagnetic waves in two dimensionally periodic structure is systematically investigated, to provide the basic theory for two dimensionally modulated dielectric waveguide. A canonical two dimensionally periodic medium of infinite extent, whose dielectic constant varies sinusoidally in two orthogonal directions, is first examined. The charact solutions are represented exactly by a double Fourier series which is known as the Floquet solution. The harmonic amplitudes of the Floquet solution are determined by a five-term recurrence relation in the vector form, properly taking into account the hybrid-mode nature of the propagation problem. The five-term recurrence relation is then treated by different approaches so that clear physical pictures and practical numerical methods can be obtained. The characteristic solutions for two dimensionally periodic medium are then applied to the boundary-value problem of multi-layer dielectric waveguides containing a finite layer of periodic medium. As an example, the guidance problems are analysed and the numerical analysis of the dispersion characteristics are then carried out. Besides the canonical medium as a model, more general two dimensionally periodic medium are also discussed.

  16. Stress Wave Propagation Across a Rock Mass with Two Non-parallel Joints

    NASA Astrophysics Data System (ADS)

    Chai, S. B.; Li, J. C.; Zhang, Q. B.; Li, H. B.; Li, N. N.

    2016-10-01

    A rock mass includes a number of joints, which govern the mechanical behavior of the rock mass and greatly affect stress wave propagation. Generally, joints do not parallel with each other, resulting in multiple wave reflections between joints and complex wave propagation process in rock masses. The present study presents an approach to analyze stress wave propagation through a rock mass with two non-parallel joints when the angle between the two joints is <10°. For incident P-wave impinging on this kind of rock mass, multiple reflections take place between the two joints. Meanwhile, transmitted waves are generated and propagate successively away from the joints. The mathematical expressions for P-wave propagation across the two joints are established in time domain by analyzing the wave field in the rock mass. By comparing with the result from numerical simulation, the new approach is proved to be effective to analyze wave propagation across two non-parallel joints, where the influence of joint tips on wave propagation is neglected. Parametric studies show that the joint stiffness, joint angle and frequency of incident wave have different effects on transmission and reflection coefficients.

  17. Global SH-wave propagation in a 2D whole Moon model using the parallel hybrid PSM/FDM method

    NASA Astrophysics Data System (ADS)

    Jiang, Xianghua; Wang, Yanbin; Qin, Yanfang; Takenaka, Hiroshi

    2015-06-01

    We present numerical modeling of SH-wave propagation for the recently proposed whole Moon model and try to improve our understanding of lunar seismic wave propagation. We use a hybrid PSM/FDM method on staggered grids to solve the wave equations and implement the calculation on a parallel PC cluster to improve the computing efficiency. Features of global SH-wave propagation are firstly discussed for a 100-km shallow and 900-km deep moonquakes, respectively. Effects of frequency range and lateral variation of crust thickness are then investigated with various models. Our synthetic waveforms are finally compared with observed Apollo data to show the features of wave propagation that were produced by our model and those not reproduced by our models. Our numerical modeling show that the low-velocity upper crust plays significant role in the development of reverberating wave trains. Increasing frequency enhances the strength and duration of the reverberations. Surface multiples dominate wavefields for shallow event. Core-mantle reflections can be clearly identified for deep event at low frequency. The layered whole Moon model and the low-velocity upper crust produce the reverberating wave trains following each phases consistent with observation. However, more realistic Moon model should be considered in order to explain the strong and slow decay scattering between various phases shown on observation data.

  18. Lunar Surface Propagation Modeling and Effects on Communications

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2008-01-01

    This paper analyzes the lunar terrain effects on the signal propagation of the planned NASA lunar wireless communication and sensor systems. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate that the terrain geometry, antenna location, and lunar surface material are important factors determining the propagation characteristics of the lunar wireless communication systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, operating frequency, and surface material. The analysis results from this paper are important for the lunar communication link margin analysis in determining the limits on the reliable communication range and radio frequency coverage performance at planned lunar base worksites. Key Words lunar, multipath, path loss, propagation, wireless.

  19. Love waves propagation in a transversely isotropic piezoelectric layer on a piezomagnetic half-space.

    PubMed

    Ezzin, Hamdi; Ben Amor, Morched; Ben Ghozlen, Mohamed Hédi

    2016-07-01

    A theoretical approach is taken into consideration to investigate Love wave propagation in a transversely isotropic piezoelectric layer on a piezomagnetic half-space. The magneto-electrically open and short conditions are applied to solve the problem. The phase and group velocity of the Love wave is numerically calculated for the magneto-electrically open and short cases, respectively. The variations of magneto-electromechanical coupling factor, mechanical displacements, electric and magnetic potentials along the thickness direction of the layers are obtained and discussed. The numerical results clearly show the influence of different stacking sequences on dispersion curves and on magneto-electromechanical coupling factor. This work may be relevant to analysis and design of various acoustic surface wave devices constructed from piezoelectric and piezomagnetic materials.

  20. On propagation of electromagnetic and gravitational waves in the expanding Universe

    NASA Astrophysics Data System (ADS)

    Gladyshev, V. O.

    2016-07-01

    The purpose of this study was to obtain an equation for the propagation time of electromagnetic and gravitational waves in the expanding Universe. The velocity of electromagnetic waves propagation depends on the velocity of the interstellar medium in the observer's frame of reference. Gravitational radiation interacts weakly with the substance, so electromagnetic and gravitational waves propagate from a remote astrophysical object to the terrestrial observer at different time. Gravitational waves registration enables the inverse problem solution - by the difference in arrival time of electromagnetic and gravitational-wave signal, we can determine the characteristics of the emitting area of the astrophysical object.